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ABSTRACT 
 

This research examines the viability of a need-based approach that models the age-

trajectories of healthcare utilization. We propose a fundamentally different way of 

treating age in modeling healthcare use. Rather than treating age as a need indicator, we 

refocus modeling efforts to predicting the age-trajectories of healthcare use. Using 

inpatient hospital utilization data from the Discharge Abstract Database, first, we model 

the age-trajectories of the rate of hospital use employing a common functional form. 

Second, we assess variation in these age-trajectories using growth curve modeling. Third, 

we explain variation in these age-trajectories using census variables. Our analysis shows 

that the regional variation in the age-trajectories of the rate of inpatient hospital use is 

sufficient to justify this method, and could be partially explained using census variables. 

This indicates that modeling age-trajectories of healthcare use is advantageous, and the 

current need-based approach may benefit from this new modeling strategy. 
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CHAPTER 1: INTRODUCTION 
 

Identifying how best to allocate healthcare resources is a central and continuous 

challenge for health policy makers. As healthcare funding has typically been distributed 

to regions based on their prior use, a region’s ability to provide healthcare has been 

influenced by previous consumption, existing infrastructure, and politics, and not on the 

population’s relative need. It is now increasingly accepted that using historical 

information does not lead to equitable allocation because it disregards the population’s 

needs, may perpetuate existing inequalities, and may even encourage unnecessary use. 

Demands for more equitable healthcare systems, particularly in publicly funded 

healthcare systems, have led governments’ interest in approaches that allocate healthcare 

funding based on measures of relative need. These models are commonly referred to as 

need-based resource allocation models.  

 

Considerable research and political efforts have motivated the development of need-

based resource allocation models for healthcare planning, and most of these need-based 

approaches employ a common analytical framework to define and adjust for need (1). 

The common analytical framework is characterized by the following basic methodology: 

standard levels of healthcare use are determined, and then applied to population data to 

estimate expected utilization based on population need. To develop a standard level of 

healthcare use, actual healthcare utilization is first modeled as a function of need and 

non-need factors, and then models are used to predict need-expected use while purging 

the influence of non-need factors (2). Although this analytical framework is commonly 

used and provides many advantages, it suffers from a number of limitations that have 

rendered it impractical in many jurisdictions. One such limitation is the treatment of age 

within the models. 

 

Age has been used as a fundamental indicator of need in virtually all need-based 

approaches. Healthcare need is strongly correlated with age, as age is a proxy for both 

morbidity and mortality. However, age is not a direct cause of morbidity or mortality. 

Instead, its effects on morbidity and mortality reflect the accumulation of health deficits 
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associated with life course experiences and exposures that lead to the development of 

chronic disease and acute illness. The age pattern of morbidity and mortality in a 

population reflects the effects of health indicators on birth cohorts as they age. As a result 

of regional differences in determinants of health, the age pattern of morbidity and 

mortality is unlikely uniform across regions. Lack of uniformity should be reflected in 

differences in the age-trajectories of need for healthcare services. As has been shown 

with decades of research examining variations in the age-trajectories of mortality across 

populations (3–5), we expect that the age-trajectories of healthcare use are characterized 

by variable but predictable patterns in healthcare use by age, particularly once adjusted 

for the effects of non-need indicators of health services use. 

 

 Accordingly, we proposed that it is not appropriate to simply include age as a need 

indicator when developing need-based approaches. Rather, modeling efforts should be 

refocused on understanding and predicting the age-trajectories of healthcare use as a 

function of need and non-need determinants. The first step in developing new need-based 

approaches should refocus on modeling the age-trajectories of healthcare use by age, and 

not on simply modeling healthcare use with age as one of a series of need indicators.  

We evaluated whether the trajectories of healthcare use by age followed predictable 

patterns that varied between regions, as a function of differences in population health 

needs. As a first step in creating such a model, this project assessed whether: 

 

A. the regional age-trajectories of inpatient hospital use could be modeled with a 

common functional form; 

B. there was significant regional variation in the age-trajectories of inpatient hospital 

use; and 

C. the regional variation in the age-trajectories of inpatient hospital use could be 

partially explained by ecological-level need indicators 

To assess these questions, we used inpatient hospital utilization data from the Discharge 

Abstract Database for Canadian census divisions, and proceeded with the following three 

steps. First, we graphed and described the relationship between hospital utilization and 
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age, by census division, to identify a functional form that was appropriate for modeling 

age-trajectories of the rate of inpatient hospital use. Second, we used growth curve 

modeling to model the regional variation in the age-trajectories of the rate of inpatient 

hospital use. Third, we assessed the degree to which regional variations in the age-

trajectories of the rate of inpatient hospital use could be predicted using ecological-level 

measures of need from the 2006 Census.  

 

The thesis is organized into five chapters. In chapter two, the background, we discuss the 

conceptual justification for proposing this methodology. Chapter three outlines the 

objectives of this paper. Chapter four consists of the manuscript, which is a general 

overview of the methodology, results, and discussion. Chapter five provides additional 

discussion and conclusion, which further details the implications and relevance of the 

findings. 
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CHAPTER 2: BACKGROUND 
 

Over the past 50 years, there has been much discussion worldwide around what is the 

most efficient and fair way to allocate limited healthcare resources. As many countries 

experience rising healthcare expenditures, the pressure mounts to identify an acceptable 

way to distribute valuable healthcare dollars. Many developed countries seek to promote 

equitable allocation of healthcare resources with need-based resource allocation models 

(6,7). While a great deal of progress has been made in the last 50 years in both health 

services and medicine worldwide, a need-based resource allocation model that can be 

considered as the gold standard has not yet been developed. There remains a need to 

develop a need-based resource allocation model that can be implemented widely.  

2.1 Equity 
 

Equity is considered as one of the fundamental pillars of health policy in many countries, 

in spite of the difficulty in clearly defining and measuring it (6,8,9). In health service 

research, we typically define equity in the context of service access, where pursuing 

equity in access to health services reflects efforts to reduce unequal opportunities for 

health services access between persons or populations after taking into account their need 

for health services. Equitable access thus means equal access for equal need for health 

services regardless of the geographical, financial, educational, or cultural barriers. The 

idea of equal access for equal need also means unequal healthcare use for different levels 

of need. We expect that someone who is chronically ill, with lung cancer, for example, is 

going to need more services than someone who is suffering from a common cold (10). 

Healthcare access is inequitable when someone has greater access to healthcare for 

reasons not related to healthcare need. For example, it would be inequitable if one person 

received more healthcare services than another, on the basis of his/her income, despite 

the identical healthcare need between them. By extension, we would consider it 

inequitable if a high-income region received more healthcare resources than a low-

income region with identical healthcare need.  
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2.2 Funding Models 

2.2.1 Historically-Based Funding  

 

The common approach to allocating healthcare resources in many jurisdictions is to 

distribute funds according to the previous year’s expenditures, typically referred to as 

historical-based funding (11). This model allows the funder to make slight funding 

modifications to reflect economic trends (12). Historically-based funding models are 

advantageous insofar as there are few data requirements and they are conceptually 

simple. Rice and Smith observe that repeating patterns of allocation is practical on a 

short-term basis because it is an efficient use of existing infrastructure, but they go on to 

caution that service structures such as hospitals are often poorly distributed, and 

historically-based funding will perpetuate any inequitable patterns of resource 

distribution (13). Maynard and Ludbrook astutely simplified these models to “what you 

got last year, plus an allowance for growth, plus an allowance for scandals” (14). Simply 

put, historical-based funding models may be practical and simple in the short-term, but 

perpetuate pre-existing inequity in the long run. In spite of the long-standing concerns 

that these models perpetuate inequity in allocating healthcare resources, many provincial 

and regional levels of government in developed countries still allocate healthcare 

resources according to the previous year’s budget (15).  

2.2.2 Need-Based Funding 

 

There has been increasing pressure to redistribute healthcare funds according to a 

population’s need for healthcare (16–18). The United Kingdom (UK) was arguably the 

first country that made a concerted effort to move beyond historically-based funding 

models and use population-level need indicators in the late 1970s. Its funding formula 

was created by the Resource Allocation Working Party (RAWP) and is still known by 

this name. Since its inception, most industrialized countries have developed their own 

variation of a need-based allocation model to distribute healthcare funds. While there is 

some variability in methodology, most need-based approaches follow the five steps 

described in detail below. 
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2.3 Common Analytical Framework in Need-Based Resource Allocation 
Models: an Overview   

Step 1 

The first step is to describe the variation in healthcare use by need and non-need variables 

in the following form:  

 

yi =  αAi +  βXi +  γZi +  εi    (1) 

 

Where yi is the healthcare use of individual i; α is a vector of age coefficients; Ai is a 

vector of dummy variables for age; β and Xi are, respectively, coefficients and variables 

for need indicators; γ and Zi are, respectively, coefficients and variables for non-need 

indicators; and εi is an error term.  Ideally, equation (1) is estimated with individual level 

data. However, as will be addressed below, individual-level data are often not available, 

and ecological data are used instead. 

 

Broadly, this equation says that healthcare use (yi) is determined by a person’s age (Ai), 

their healthcare need (Xi), and other indicators known to influence use (Zi).  

2.3.1 Age And Sex As Need Indicators 

 

Age is almost universally included as a need indicator (13), although it is not a direct 

measure of need. Age is strongly associated with mortality and morbidity, and as such, is 

a good proxy for a broad range of needs. As people age they tend to require higher levels 

of preventative care, curative care, and palliative care services. The incidence and 

prevalence of most chronic conditions increases with age, and the risk of death increases 

with age. Moreover, age also captures shared life experiences between individuals in the 

same cohort. The association between age and healthcare need is not only biologically 

supported but is influenced by shared generational exposures (1,19).  
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For the reasons listed above, age is heavily relied upon as an indicator of need in need-

based resource allocation models. Age coefficients always have statistically significant, 

large effect sizes regardless of other variables included in equation (1). Sex is similar to 

age in that it is also a proxy for need and is widely included in most models (20). 

Moreover, age and sex often interact as proxies for need, because, for example, the age-

trajectories of morbidity are different in men and women (21).   

2.3.2 Other Need Indicators 

 

Need indicators are ‘legitimate’ determinants of need for healthcare use. An example of a 

need indictor is a measure related to an individual’s health or disease status. We expect a 

patient with a chronic condition, such as heart disease, to require more health services 

than someone with a non-life-threatening acute condition, such as an ear infection. 

Ideally, we obtain a perfect measure of a person’s health status, and use this as our need 

indicator. Such a perfect measure does not exist, and we use a variety of measures to 

reflect a person’s need for healthcare. These can include upstream determinants of health 

such as socioeconomic status, measures of health risk behaviors (e.g., obesity, smoking, 

and physical inactivity), and measures of morbidity (e.g., self-assessment of overall 

health status, or prevalence of a chronic disease). When individual-level data are not 

available, ecological-level measures of need are often used.  

2.3.3 Non-Need Indicators  

 

Ideally, need for healthcare would fully explain healthcare use. However, other 

determinants not related to healthcare need also influence use. These are non-need 

indicators. Typical examples of non-need indicators include: a patient’s access to care, 

their help seeking behaviors, and practice variation between physicians and healthcare 

institutions. Much like need, it is often difficult to measure non-need. Depending on what 

other variables are included in a model, a determinant can reflect either need or non-need.  
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2.3.3.1 Example: Education  

Education can act as a need indicator, if it reflects differences in health status 

resulting from the ‘upstream’ determinants of health. People with lower levels of 

education are more likely to suffer from a range of chronic and acute conditions 

when compared to people with higher levels of education (22).  When need is not 

well measured in a model, education therefore serves as a proxy for need. On the 

other hand, if need is well measured, education should be considered as a non-

need determinant. Studies have shown that after adjusting for healthcare need 

people with higher education receive more care than their less educated 

counterparts (23). This may be because education indicates a person’s ability to 

navigate the system, for example. On the basis of equal care for equal need, 

healthcare use should not depend on non-need indicators. Thus, healthcare use 

associated with education after adjustment for need is inequitable.     

To summarize, the first step of the common analytical framework is to describe actual 

healthcare use. Actual utilization is influenced by need and non-need variables, but, as we 

saw with the example of education, characterizing variables as need or non-need is not 

always straightforward. Age is a unique variable because it is such a strong indicator of 

healthcare need.  

Step 2 

The second step of the common analytical approach is to estimate each individual’s need-

expected utilization (y�i∗): 

y�i∗ = α�Ai +  β�Xi +   γ�Zı�      (2) 

As mentioned above, healthcare use reflects need as well as non-need indicators of 

utilization. To build a need-based resource allocation model, we would be interested in 

how much healthcare a person is expected to use based solely on his or her need. To 

estimate need-expected use, we purge the effects of non-need indicators by holding the 

values constant (often by setting them at their means) so that need indicators alone 

influence healthcare use.  
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Step 3 

The third step is to estimate each region’s per-capita healthcare need (y�rneed).  We do so 

by aggregating each individual’s expected need-based utilization within each region and 

dividing it by its population, using sample weights.  

 

y�rneed = ∑y�rneed ×𝑊𝑟𝑖
∑𝑊𝑟𝑖

(3) 

 

where wri is the weight assigned to individual i in region r.  

Step 4 

After estimating regional per-capita healthcare need, we estimate each region’s relative 

need ( ) as compared to other regions, by dividing each region’s aggregate healthcare 

need by the total provincial need. 

 

 

y�rneed = � y�rneed

∑y�rneed
∗ 100� − 100    (4) 

 

This equation yields the proportion of need a region has as compared to other regions.  

 

Step 5 

The fifth and final step is to calculate the relative regional budget by multiplying each 

region’s relative need with the total healthcare budget.  

 

𝑦𝑟𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =  y�rneed ∗ 𝑀    (5) 

 

where M is the total healthcare budget to be allocated to regions. 
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2.4 Notes on the Common Analytical Framework 
 

Equal per capita allocation used by some jurisdictions (for example, allocation of the 

Canada Health Transfer from the federal government to provinces and territories) is the 

simplest application of the common analytic framework described above. For equal per 

capita allocation, equations (1) and (2) do not incorporate any variables. Implicit 

assumption for this procedure is that need is equal across individuals. Thus, with 

equations (4) and (5), the healthcare budget is allocated based on population size alone. 

 

Reliance on utilization data, a key feature of the common analytical framework, has been 

criticized in the literature. Estimating need-expected utilization assumes that it is possible 

to separate healthcare need from use, but distinguishing need indicators from non-need 

indicators is not a simple task. Thus, critics argue for measuring need directly by 

measuring morbidity and/or mortality, such as the standardized mortality ratio (SMR) or 

the rate of a specific condition (e.g., cardiovascular disease). This approach, sometimes 

called epidemiological approach (24), however, is not free from challenges. The first, and 

most prohibitive, limitation to this epidemiological approach is that it is unclear how 

health status indicators translate into healthcare resource requirements. If a region has an 

SMR of 1.8, for example, should it receive 80% more resources than a region with an 

SMR of 1?  There is no evidence to suggest that SMR is proportional to healthcare 

resources required. Similarly, health status indicators typically used in the population-

level allocation models do not indicate what types of services, such as primary care, 

specialists, or hospital services, would best suit to meet the needs of a region (2). 

Moreover, measures of morbidity or mortality are prone to the same issues that need-

expected utilization faces, including data limitations and the problem of how to adjust for 

non-need indicators. Despite the imperfection, therefore, the common analytical 

framework using utilization data is arguably the most suitable and realistic need-based 

approach currently available. 
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2.5 Limitations of the Common Analytical Framework 
 

The common analytic framework suffers from at least four limitations. They are: 

measuring need and non-need is challenging; the models only predict small amounts of 

variation in healthcare use; models are becoming increasingly complex; and age is not 

used to its full potential. While all four will be discussed here in detail, this project 

focused directly on the application of the fourth limitation, the use of age within the 

model.  

 

2.5.1 The Problem of Measuring Need And Non-Need 

 

Implementing the common analytical framework is difficult in practice for two reasons: 

first, we do not have ‘gold standard’ measures of need and non-need to use, and second, 

the data required for the models are often unavailable at the individual level.  

 

The accuracy and ultimate utility of a need-based model is dependent on what variables 

are included in equations (1) and (2) above. Despite a wealth of literature, identifying the 

best way to measure the health care needs of a population remains as a difficult task. 

There are a variety of possible approaches to measure need, but the gold standard remains 

elusive (2,10). While age and sex are typically included in most models, there is 

significant variation in other need and non-need indicators used. Because there is no gold 

standard, concerns remain regarding the comparability and validity of different models. 

Kephart and Asada found that the use of different need indicators in need-based modeling 

could yield different, and even conflicting, results (2).  

 

The common analytical framework ideally calls for individual level data. However, data 

are often unavailable at the individual level, so these models use ecological (small area) 

data, where indicators are measured at the level of a geographic region (25).  
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Mortality data are commonly employed under the assumption that age- and sex-

standardized mortality ratios are correlated with both acute and long-term morbidity 

(16,17,26,27). The primary limitation to using mortality data is that the relationship 

between mortality and morbidity is unclear, made worse the fact that mortality data do 

not include non-fatal morbidity (28). Furthermore, mortality data become increasingly 

irrelevant as a need indicator as populations in developed countries age and the 

prevalence of long-term chronic diseases increases. Rather than mortality, measures of 

morbidity, typically using self-rated health status, have been more widely used as a proxy 

for health need. Morbidity, unlike mortality, follows a continuum - patients can range 

from mildly to severely ill. Thus, morbidity data are more detailed and flexible than 

mortality. We can measure morbidity through self-report or using specific morbidity 

measures (i.e., incident or prevalence rates of specific conditions). Additionally, 

proximity to death is an important additional indicator of healthcare use, and can be used 

as a need indicator (29). Data availability remains an issue both for morbidity and 

mortality data, especially at the individual level.  

 

An alternative to using morbidity and mortality variables is to use more distal social 

determinants of health, which are often widely available at the small area level. Some 

social and economic conditions influence a person’s health status. Socioeconomic status 

(SES), for example, is inversely correlated with the onset of most diseases and life 

expectancy (30,31). Determinants including income, education, housing, ethnicity, and 

gender all influence a person’s health outcome. Furthermore, social determinants operate 

spatially, and are generally manifested in regional age-trajectories of mortality and 

morbidity (3,27). Using ecological variables that represent social determinants of health 

avoids reliance on individual level data while overcoming the limitations of mortality and 

morbidity data.  

2.5.2 Models Only Predict Small Amounts of Variation 

 

Need-based approaches have been criticized for their lack of ability to predict variations 

in health across individuals (32). One report by Rice and Smith noted that even models 
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that included several demographic and social determinants (e.g., age, sex, race, marital 

status, education, and income) were rarely able to explain more than a few percentage 

points of variation in utilization (32). Our ability to predict future healthcare need at the 

individual level is limited, and at best we are only able to explain roughly 20 percent of 

the individual variation (33,34). The way to increase a model’s ability to explain the 

variation is to introduce additional need and non-need determinants, and/or econometric 

methods. However, building such an extensive model is limited by data restrictions and 

makes the model methodologically complex, which is the next limitation discussed in 

subsection 2.5.3.  

2.5.3 Models Are Becoming Increasingly Complex  

 

The efficacy of a need-based model in predicting variation between regions depends on 

the accuracy of the indicators used in the model. One way to increase a model’s 

predictability is to increase the number of predictive variables in the model, and employ 

econometric methods to adjust for unobserved variables, measurement error and 

endogeneity (35). Funding models based on the Resource Allocation Working Party often 

started with a population size count, the age distribution of the population, and a measure 

of morbidity. To increase the value of these models, more need and non-need indicators 

were included (36), along with more complex econometric estimation approaches of 

increasing complexity.  

 

The problem here is twofold: first, the data requirement for these models is unruly. Often 

the data are only available at the national or sub-national (e.g., provincial or state) level, 

not at the small area or individual level, and cannot be extended to other jurisdictions. 

National governments have had more success with implementation because of the 

availability of national-level data; however, sub-national (e.g., provincial) governments 

have data restrictions that render these models futile at the regional level. Second, the 

more complex these models become, the less transparent they are. For a model to be 

implemented into practice it needs to be politically acceptable. It should be intuitive and 

relatively easy to understand and justify (37). Peacock and Segal noted that if an 
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allocation model was made publicly available and was sufficiently transparent, it would 

encourage democratic debate about its appropriateness, ultimately adding to its utility and 

worth (38).   

2.5.4 Age Is Not Used to its Maximum Potential  

 

Age is the most widely used indicator of healthcare need, and typically, unadorned need-

based approaches rely exclusively on age as a need indicator. As discussed above, the 

general reliance on age as a need-indicator can be attributed to its strong association with 

both morbidity and mortality. Age is not a direct indicator of morbidity or mortality, but 

rather, it is an indirect proxy for healthcare need.  

 

While age is strongly correlated with healthcare utilization, the use of age as a proxy 

assumes that the underlying relationship between healthcare need and morbidity or 

mortality across all regions is adequately described by the average relationship (39). It 

assumes that two populations with identical age distributions, after adjustment for other 

need and non-need variables in the models, should have the same healthcare need 

regardless of differences in morbidity and mortality between these populations.  

 

However, assuming invariance of age effects on healthcare need is neither intuitive nor 

accurate. There is a wealth of evidence to suggest that different populations have 

predictably different age-trajectories of morbidity and mortality. For example, Canadian 

Aboriginal and American Native communities suffer disproportionately more from a 

number of chronic and acute illnesses, and tend to experience these diseases at an earlier 

age than their non-Aboriginal counterparts (40–42). In Canada cardiovascular disease is 

the leading cause of death within both Aboriginal and non-aboriginal Canadians (43). 

However, age-standardized mortality rates among Aboriginal women are 61% higher 

compared to non-Aboriginal women. Additionally, the stroke mortality rate is 44% and 

93% higher among Aboriginal men and women (respectively) than the general Canadian 

population (44,45).  
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Consider two hypothetical populations of equal population size: population A with a high 

socioeconomic status, low age-standardized rates of morbidity, and high proportion of 

older individuals; and population B with a low socioeconomic status, high age-

standardized rates of morbidity, and high proportion of younger individuals. Figure 1 

illustrates the relationship between age and morbidity for these two hypothetical 

populations. A typical allocation model, using the common analytic framework explained 

above, and using only age as a need indicator, assumes the relationship between age and 

healthcare use would be uniform across populations. Such an allocation model would 

distribute more funds to population A, even though population B has a greater need for 

care.  

 

The assumption that the relationship between age and healthcare need is constant across 

regions would, therefore, systematically bias against areas where morbidity and mortality 

are concentrated among younger ages (for example, population B in the example above). 

Regions with earlier onset of morbidity would have their need under-estimated and would 

thus be unable to provide the equal access to healthcare for equal need.  

 

Even models that use need indicators in addition to age face the same problem. These 

models treat age as a fixed effect that could potentially be explained away should the 

model include a comprehensive range of need and non-need determinants. The problem 

is that in spite of considerable research efforts, researchers have not thought about age 

beyond its strong association with healthcare use. No matter how many other variables 

we include, age remains one of the most significant and influential indicators of 

healthcare service utilization. As long as age remains in the models as a fixed effect, 

models assume a uniform relationship between age and healthcare use across regions.   

 

An alternative way of thinking about the subject is that health indicators influence the 

different age progressions of morbidity and mortality. That is, the age determined rate 

and frequency with which people will require healthcare follows a trajectory reflecting 

the historical and present influence of health determinants in the population. Viewed 

from this perspective, age should not be treated as a need indicator. Instead of modeling 
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utilization as the first stage in the standard approach, with age and sex as need indicators, 

we should focus on modeling the age-trajectories of utilization as a function of need 

indicators. We expect the age-trajectories of healthcare need and use to vary across 

populations, and have a strong geographical component.  

2.6 Time for a Change  
 

To summarize, the common analytical framework suffers from at least four limitations 

that have prohibited its use in health policy: that need and non-need are not directly 

measured; that the common analytical framework can only predict small amounts of 

variation; that the models are complicated and not transparent; and that age is not 

optimally used. In spite of continuing research efforts, the current models based on the 

common analytical framework have not overcome these limitations and, as a result, have 

not effectively been translated into practical use. It is possible that current research efforts 

are limited by the methodology, and a new approach would provide elucidation to the 

recurrent problems with the common analytical framework. As a way to overcome the 

noted limitations, we have explored a new approach to modeling healthcare utilization as 

a first stage in developing need-based resource allocation models.  

 

While this project was motivated by the need for an improved need-based resource 

allocation model, the new methodology proposed here can extend to all need-based 

approaches. For that reason, this project highlights the implications of modeling the age-

trajectories in all need-based approaches, and is not restricted to need-based resource 

allocation models.  

 

We proposed that a need-based approach that models the age-trajectories of healthcare 

utilization better uses age in the model than the current need-based approaches that 

include age as a need-indicator. The age-trajectories of healthcare need, as reflected in 

healthcare use, should be modeled and conceptualized as the accumulated influence of 

health indicators operating in a population. By approaching the need-based modeling in 

this way, we conceptualized both the role of age and the mechanisms by which health 
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indicators determine healthcare need. This approach directly addressed the fourth 

limitation we have identified: how age has been handled; however, we also believe it has 

potential to indirectly address other limitations as well. By focusing on modeling the age-

trajectories of healthcare need, rather than healthcare use at the individual level, the 

variation explained by models may be dramatically improved. This approach may also 

more clearly articulate the influence of health indicators in a way that is consistent with 

the life course perspective, which has come to dominate the literature in this area. Finally, 

the approach is intuitively appealing and this may lead to more transparent models.  

 

Refocusing the modeling on the age-trajectories of need can be accomplished through the 

use of readily available statistical methods. Specifically, we employed growth curve 

modeling for this purpose. Growth curve models have now been extensively employed in 

the social and biological sciences to model aging and growth processes, and their 

determinants. For example, growth curve models have been used to describe and predict 

the growth of children, patterns of child development and aging (46), and tumor growth 

(47,48). These models are readily estimated using standard statistical software, while 

opening the door to an extensive literature with potential to enhance and improve their 

application to needs based modeling.  

 

To summarize, this thesis explored the viability of a need-based approach that models the 

age-trajectories of healthcare utilization.  
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CHAPTER 3: OBJECTIVES 
 

The aim of this project was to illustrate and evaluate the viability of a need-based 

approach that modeled the age-trajectories of healthcare utilization. We proposed a 

fundamentally different way to treat age in modeling healthcare. Rather than treating age 

as a need indicator, we have refocused modeling efforts to understanding and predicting 

the age-trajectories of healthcare use. To do this, the project had three objectives:  

 

1) To evaluate whether the regional age-trajectories of inpatient hospital use could 

be modeled with a common functional form; 

2) To evaluate whether there was significant regional variation in the age-trajectories 

of inpatient hospital use; and 

3) To determine whether the regional variation in the age-trajectories of inpatient 

hospital use could be partially predicted by ecological-level need indicators 
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CHAPTER 4: MANUSCRIPT 
 

 
A New Approach to Modeling Healthcare Utilization and Need as a 

Function of Age 
 

4.1 Introduction  
 

Need-based approaches, which estimate healthcare resource requirements based on the 

needs of a population, are among the central methods in health services research and 

policy analysis. Their application is widespread and includes healthcare resource 

allocation (1), health human resource planning (7,49,50), analysis of equity in healthcare 

use (51,52), hospital performance evaluation (53,54), and risk adjustment (55). Need-

based approaches typically begin by modeling healthcare utilization as a function of need 

indicators – ‘legitimate’ determinants of healthcare use –, while purging the influence of 

non-need indicators – ‘illegitimate’ determinants of healthcare use (10). In all 

applications, healthcare utilization is strongly predicted by age; so much so that 

unadorned need-based approaches often rely exclusively on age as a predictive variable. 

The general reliance on age as an indicator of healthcare utilization can be attributed to 

its strong association with both morbidity and mortality. In addition, the association 

between age and healthcare need is not only biologically supported but is also influenced 

by shared generational exposures (1,19). In this paper we offer and assess an alternative 

approach to incorporating age in need-based models that is conceptually appealing and 

has the potential to improve the accuracy and applicability of need-based methods. 

 

In most need-based approaches, age is treated as a typical need indicator. Need indicators 

are ‘legitimate’ determinants of healthcare use, and in addition to age, typically include 

sex and measures of health and morbidity. Age is included and treated in most need-

based approaches in the same way as other need indicators, under the implicit assumption 

that there is a constant relationship between age and observed healthcare use and 
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morbidity or mortality across different populations (39). However, assuming a uniform 

relationship between age and healthcare use is neither intuitive nor accurate. There is a 

wealth of evidence to suggest that different populations have different age-trajectories of 

morbidity and mortality, which reflect life course exposures and chronic disease patterns 

(56–60). For example, Canadian Aboriginal and American Native communities suffer a 

disproportionately greater burden of chronic and acute illnesses and tend to experience 

these diseases at an earlier age than their non-Aboriginal counterparts (40–42). The 

assumption that the relationship between age and healthcare use is constant across 

regions would systematically bias against areas where morbidity and mortality are 

concentrated at younger ages.  

 

Therefore, we propose a fundamentally different way of treating age in modeling 

healthcare use. Rather than treating age as a need indicator we have refocused modeling 

efforts to predicting the age-trajectories of healthcare use. Below we explain in detail 

how age is currently treated in the need-based approaches and then present an alternative 

way to model age. We then empirically apply this alternative approach to an 

administrative dataset of inpatient hospital utilization.  

4.1.1 The Current Approach to Incorporating Age 

 

The need-based approach models healthcare utilization by need and non-need factors. 

Need variables reflect ‘legitimate’ indicators of healthcare use, and commonly include 

age, sex, and health status. Non-need variables are factors that influence utilization but 

are not considered as need for healthcare (10). These often include access to healthcare or 

wait times. Currently, there is no consensus on which need and non-need variables should 

be included in need-based approaches (2). Regardless of the number of variables included 

in these models, age is almost always included as a need indicator for healthcare 

utilization. Formally, the common modeling of healthcare use is expressed as follows:  

 

yi =  β1 +  β2Ai + β3𝑋𝑖 + β4Zi + εi    (1) 
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Where yi is the healthcare use of individual i; β1 is the coefficient for the intercept; β2 is 

a vector of coefficient for a vector of age variables, Ai; 𝛽3 and 𝑋𝑖 are, respectively, 

vectors of coefficients and variables for need indicators; β4 and Zi are, respectively, 

vectors of coefficients and variables for non-need indicators; and εi is an error term. 

Equation (1) is commonly stratified by sex, or alternatively, sex is included in Xi as a 

need indicator.  

 

Need-expected utilization (y�i∗) is then obtained by purging equation (1) of the effects of 

the non-need factors, by holding the values of the non-need factors constant (typically by 

setting them at their means).  

 

y�i∗ = 𝛽̂1 + β�2Ai + β�3Xi + β�4𝑍̅i     (2) 

 
In this way, need factors alone influence the modeling predictions. Need-expected 

utilization from (2) applies to individuals, and need-expected utilization for a population 

is obtained by aggregating individual-level values of y�i∗ according to the population’s 

distribution of need variables.  

4.1.2 Consideration of Age: An Alternative Approach 

 

Rather than including age as a need-indicator in the need-based model (β�2Ai in equation 

(2)), we propose an alternative approach that models the age-trajectories of healthcare 

use. This alternative approach is based on the observation that the age-trajectories of 

healthcare use typically follow variable but predictable patterns in different populations, 

and consideration of this predictable variability might allow more appropriate modeling 

of health care needs. A long and extensive history of epidemiological and demographic 

research has documented that populations’ age-trajectories of morbidity and mortality 

result from changes in life-course exposures to determinants of health and consequent 

shifts in chronic disease patterns and cause of death (56,61,64). It is widely recognized 

that, over the past century, societal advancements have modified the patterns of health 

and disease. While the average life expectancy has also increased, the maximum life span 
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has remained fairly stable (61,62). Moreover, it appears that healthy behavior changes, 

such as decreased smoking rates, helped to postpone the onset of chronic diseases until 

later in life. This phenomenon, known as the compression of morbidity, has resulted in a 

‘rectangularization’ of morbidity curves (56,63). Importantly, this compression of 

morbidity is not uniform across populations with different rates of health behaviors. 

Disability increases at much younger ages for some, unhealthier, populations (64). We 

thus hypothesize that the association between age and the utilization of health services 

should follow regular, but variable trajectories that reflect the incidence and progression 

of diseases and disabilities in populations.  

 

Rather than modeling age as one of a series of need indicators, our proposed approach 

seeks to predict the age-trajectories of healthcare use by region. This can be 

accomplished by using a growth curve model (65,66). To do this, we begin by 

incorporating different age-trajectories using a simple growth curve model:  

 

𝑦𝑖𝑗 = �𝛽1 +  𝛿1𝑗� + �𝛽2 +  𝛿2𝑗�𝐴𝑖𝑗 +  𝜀𝑖𝑗  (3a) 

 

In this model, the average intercept (𝛽1) and slope (𝛽2) include random terms (𝛿1𝑗) and 

(𝛿2𝑗), respectively, to reflect differences between regions; thus acknowledging that age-

trajectories are a function of a random intercept �𝛽1 +  𝛿1𝑗� and random slope �𝛽2 +

 𝛿2𝑗� which vary by region. As in equation (2), we can extend equation (3a) to include 

need and non-need indicators, which predict the regional age-trajectories in the form:  

 

𝑦𝑖𝑗 = �𝛽1 +  𝛿1𝑗� + �𝛽2 + 𝛿2𝑗�𝐴𝑖𝑗 +  𝛽3𝑋𝑖𝑗 + 𝛽4𝑋𝑖𝑗𝐴𝑖𝑗 +  𝛽5𝑍𝑖𝑗 + 𝜀𝑖𝑗 (3b) 

 

Which simplifies to:  

 

𝑦𝑖𝑗 = �𝛽1 +  𝛽3𝑋𝑖𝑗 + 𝛿1𝑗� + �𝛽2 + 𝛽4𝑋𝑖𝑗 + 𝛿2𝑗�𝐴𝑖𝑗+ 𝛽5𝑍𝑖𝑗 + 𝜀𝑖𝑗 (3c) 
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The regional intercept �𝛽1 +  𝛽3𝑋𝑖𝑗 + 𝛿1𝑗� and slope �𝛽2 + 𝛽4𝑋𝑖𝑗 + 𝛿2𝑗� describing the 

age-trajectories are variant between regions, and are modified by need-indicators, as well 

as non-need indicators (𝛽5𝑍𝑖𝑗). It would be possible to further allow age-trajectories to 

vary by non-need factors, but we have not done that here. 

 

Equations (3a), (3b), and (3c) assume that the effect of age on utilization varies between j 

regions, through the inclusion of a random component for the intercept (𝛿1𝑗 ) and slope 

(𝛿2𝑗). In equations (3a) to (3c), the age-trajectories are expressed in simple linear form, 

but this linear transformation of non-linear regression models could also be used 

according to the same framework.  

 

Unlike a typical need-based approach, our proposed approach models regional age-

trajectories of healthcare use, and the other need indicators are used to predict variation in 

the age-trajectories. In addition, the random coefficients for age capture unexplained 

variation in the age-trajectories of healthcare use, while providing smoothed estimates of 

healthcare use by age.  

  

Growth curve modeling is an established method that has been widely employed to 

examine a range of phenomena such as child growth trajectories (46,67–69), bacterial 

growth (70–72), and tumor development (47,48,73,74). Useful integration of the growth 

curve modeling into need-based modeling requires several considerations. We considered 

the following three questions to be the most important. First, can the different age-

trajectories of healthcare use in different regions be modeled with a common functional 

form? Second, is there sufficient regional variation in the age-trajectories of healthcare to 

warrant incorporating their variability into modeling? Finally, can ecological-level 

variables indicating need help predict variation in the regional age-trajectories of 

healthcare use?   
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4.2 Methods 

4.2.1 Methods Overview                        

 

To illustrate and examine the feasibility of modeling the age-trajectories of healthcare 

use, we modeled the age-trajectories of the rate of inpatient hospital utilization across 

Canadian census divisions. We employed random coefficient models, also known as 

hierarchical or mixed models, to estimate growth curve parameters.  
 

The study had three objectives and three corresponding analytical steps. The first 

objective was to determine whether the age-trajectories of the rate of inpatient hospital 

utilization could be modeled with a common functional form. To do this, we graphically 

analyzed the regional age-trajectories of the rate of inpatient hospital use for a select and 

diverse set of census divisions, and assessed the appropriateness of a variety of functional 

forms. The second objective was to determine whether there was regional variability in 

the age-trajectories of the rate of inpatient hospital utilization. The variation in the age-

trajectories of the rate of inpatient hospital utilization was described using summary 

statistics. Then we estimated growth curve models to examine the variation in age-

trajectories. The unit of analysis was single year of age by census division, stratified by 

sex. The dependent variable, the per capita rate of inpatient hospital days of care for 

census divisions, by single year of age and sex, was computed using Canadian hospital 

discharge abstract data and census population estimates. The third objective was to 

determine whether the variability in the age-trajectories of the rate of inpatient hospital 

utilization was, in part, predictable. We added census division-level variables to the 

growth curve models, and included cross-level interactions with age to assess whether the 

age-trajectories of the rate of inpatient hospital utilization could be partially explained by 

census division-level need indicators.                                                                      

 

4.2.2 Data Sources 

4.2.2.1 The Discharge Abstract Database (DAD) 
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We used inpatient hospital utilization data as a measure of healthcare use. We obtained 

inpatient hospital utilization data from the Discharge Abstract Database (DAD) through 

the Canadian Institute for Health Information (CIHI). All Canadian hospitals, except 

those in Quebec, submit their hospital discharge data and day surgery data directly to the 

CIHI in a standardized way. The DAD includes information regarding transfers; length-

of-stay; patient deaths; administrative, clinical, and demographic information; and day 

surgeries (e.g., cataract patients). Outpatient procedures (e.g., blood samples or x-rays) 

and all abortion procedures are excluded from the DAD, and were thus not included in 

the study. Visits to the emergency department that do not result in hospital admittance 

were also excluded from the DAD. We excluded long-stay hospital visits (those over 60 

days) because we were interested in measuring inpatient hospital use for acute care, and 

most patients who remain in hospital for longer than 60 days are using the hospital as a 

long-term care facility. We excluded individuals younger than 40 because to assess the 

feasibility of the approach we wished to examine the rates of hospital use attributed to 

chronic disease, and the indicator of admissions under the age of 40 are significantly 

different (influenced by childbearing, accidental injury, and acute illness). We excluded 

individuals past age 89 because the age-specific population data were unavailable at older 

ages, such that we were unable to transform healthcare utilization into per capita rates 

starting at age 90. Thus, the DAD provided the total number of inpatient hospital days, by 

sex, over three years: 2005, 2006, 2007.  

 

Census divisions located in the territories were not included because the relationship 

between healthcare utilization and age are assumed to present differently in these areas 

(75–77). Census divisions in Quebec were not included because the discharge data from 

Quebec is not retrieved or inputted with the same methodology as the other provinces. 

With these exclusions, this study included 184 census divisions.  

4.2.2.2 The 2006 Census  

We obtained population size estimates by age and sex to estimate rates of inpatient 

hospital use, and ecological-level variables indicating healthcare need for census 

divisions from the 2006 Census. One fifth of Canadians received the 2006 long-form 

census by mail and had the option of returning the form via mail, or filling it out and 
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submitting it electronically (online at Statistics Canada). The 2006 census provides 

information pertaining to population demographics (population count, age, sex), lifestyle 

(family make-up, employment), and socioeconomic status (income, education).  Census 

tabulations for 2005, 2006, and 2007 provided summary tabulations of demographic and 

socioeconomic attributes of census division populations by age and sex, and were 

accessed through a Canadian Census Analysis provided by the Data Liberation Initiative. 

Using the DAD inpatient hospital data along with census population information we 

calculated the average per capita rate of hospital days by census division.  

4.2.3 Variables 

 

To represent healthcare utilization we used the rate of per capita inpatient days for each 

census division by sex, averaged over three years. We included individuals between the 

ages of 40 and 89, with age measured in single years of age.  

 

We included census division variables in the third step of the analysis in order to predict 

the variation in the regional age-trajectories of the rate of inpatient hospital use. The 2006 

Census provides a range of variables, many of which would not be applicable to our 

study. To select census variables, we identified the variables that we expected to be the 

most strongly linked to healthcare utilization. We categorized these possible variables as 

being related to: income, employment, education, marital status, language, ethnicity, 

citizenship, immigration, and aboriginal identity. We then selected one or two variables 

from within each category to be included in the model. In many cases, we excluded a 

possible variable to avoid conceptual ambiguity or collinearly (e.g., one variable provided 

the proportion of the population who were Canadian citizens, while another variable 

provided the proportion of the population who were not Canadian citizens.) Additionally, 

while many of the identified census variables were unique, some were not conceptually 

distinct (for example, ‘aboriginal identity’ and ‘aboriginal ancestry’ are intuitively 

associated). In situations where two of the variables were strongly correlated with each 

other, we chose the one we thought would be most reliable or pertinent to healthcare use. 

In cases where two variables were conceptually related to each other, but neither one was 
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intuitively more reliable, we chose the variable with the greatest heterogeneity across 

census divisions. The variables selected and their definitions are shown in Table 1. 

 

4.2.4 Analysis 

Step 1: Determine Whether the Age-Trajectories of Inpatient Hospital Use Could Be 
Modeled with a Common Functional Form 
 

To identify candidate functional forms, we started by graphically evaluating the 

relationship between the per capita rate of inpatient healthcare use and age across census 

divisions. We limited the possible functional forms to: those that were simple with two 

parameters or less; and those that could be linearly transformed. Functional forms that 

met these criteria were evaluated for a diverse and select subset of census divisions that 

included a range of different age patterns. We ran individual regression models for these 

selected census divisions and assessed the fit. To minimize bias resulting from small age 

cohorts, we weighted the dependent variable by the relative size of the age-specific 

population, as compared to the population size for each census division (78). We 

evaluated the residual variation, and selected the functional form that generated the least 

systematic error by age. In other words, we chose a functional form based on both the 

goodness of fit as well as the distribution of the residual variation. Once we had identified 

a preferred functional form we evaluated the goodness of fit, and variation of the 

residuals, for all census divisions, stratified by sex.  

 

Step 2: Determine Whether There is Regional Variation in the Age-Trajectories of 
Inpatient Use 
 

To determine whether the age-trajectories of the rate of inpatient hospital use vary 

systematically across census divisions, we conducted two types of analysis: (1) 

descriptive analysis using the Gini coefficient (79–81), and (2) growth-curve modeling of 

the rate of inpatient use by age, as estimated by random coefficient models.  
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To complete the descriptive analysis we plotted the cumulative per capita rates of 

inpatient use (y-axis) according to age, from 40 to 89 (x-axis) for each census division 

and sex. This is the accumulated use at each age that a person would experience if they 

experienced the average age-specific rates, and survived from ages 40-89. To summarize 

age-trajectories of the rate of inpatient hospital use for each census division as a single 

number, we computed the Gini coefficient. The Gini coefficient is a measure that is 

widely used to describe inequality. For our purposes, it provides a convenient summary 

measure of the shape of the age-trajectories curve. Specifically, the Gini Coefficient, 

which ranges from 0 to 1, was a summary of the concentration of healthcare use by age, 

and defines the degree to which inpatient use is concentrated at the oldest ages, with 0 

representing that healthcare use is consumed equally across all ages and 1 representing 

that healthcare use is concentrated at the oldest age. Higher Gini coefficients identify 

census divisions with more curved age-trajectories, where use is concentrated at the older 

ages, consistent with high compression of morbidity. With the Gini coefficients, we also 

identified a set of diverse census divisions for assessing the versatility of different 

functional forms in our objective 1 analysis.  

 

Once we identified an appropriate functional form, we estimated growth curve models, 

stratified by sex, of the age-trajectories of the rate of inpatient hospital use. We estimated 

growth curve models by random coefficient models. The dependent variable was the log-

transformed rate of inpatient use. The independent variables included age and age-

squared. For ease of interpretation of the modeling results, we set zero to age 65 (the 

rounded median). Additionally, we continued to weight each age-specific rate of 

healthcare use by the proportion of the total population at each age group.  

 

We ran a series of increasingly complex growth curve models. To work with the data 

available, we used regionally aggregated data instead of individual level data (shown in 

equation [3]). The first model (4a) treated the intercept and the slope of the regression as 

fixed effects: 

 

𝑙𝑛 𝑦𝑎𝑗 =  𝛽1 +  𝛽2𝐴𝑎𝑗 + 𝛽3𝐴𝑎𝑗2  +  𝜀𝑖𝑗    (4a) 
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As in equation 1, the intercept 𝛽1 was fixed. 𝛽2 is the coefficient for age, 𝐴𝑎𝑗, and 𝛽3 is 

the coefficient for age-squared 𝐴𝑎𝑗2. 

 

The second model (4b), the random effect model, added a random intercept and slope:  

 

𝑙𝑛 𝑦𝑎𝑗 =  (𝛽1 +  𝛿1𝑗) + �𝛽2 + 𝛿2𝑗�𝐴𝑎𝑗 + (𝛽3 +  𝛿3𝑗)𝐴𝑎𝑗2  +  𝜀𝑖𝑗    (4b) 

 

We used likelihood ratio tests to examine whether the introduction of additional random 

effects in these models significantly improved model fit. To further evaluate the models, 

we obtained empirical Bayes predictions of age-trajectories of the rate of inpatient 

hospital use for census division, and conducted residual diagnostics to examine the 

quality of the predictions across diverse census divisions.  

Step 3: Determine Whether the Regional Variation in the Age-Trajectories Could Be 
Predicted 
 

In the final step of the analysis, we examined whether the census division-level variables 

could predict regional variation in the age-trajectories of the rate of inpatient hospital use. 

We added census division variables as fixed effects into the growth curve model from 

Step 2: 

 

𝑙𝑛 𝑦𝑎𝑗 =  (𝛽1 +  𝛽4𝑋𝑗 + 𝛿1𝑗) + �𝛽2 + 𝛽5𝑋𝑗 + 𝛿2𝑗�𝐴𝑎𝑗 + (𝛽3 +  𝛿3𝑗)𝐴𝑎𝑗2  +  𝜀𝑖𝑗 (4c) 

 

In addition, not shown in the equations, we allowed our coefficients to be correlated. One 

could further complicate model (4c) by allowing non-need variables to modify the 

coefficients, however, it was not explored in this paper.  

 

Table 1 describes the census variables we included in our analysis. For ease of 

interpretation, we centered the census division variables at their individual means. This 

model retained the intercept and the slope of age and age-squared as random effects. We 

also included cross-level interaction terms between each census variable and age to allow 
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the census variables to predict the slope, in addition to the intercept. While interactions 

with age-squared were also explored, they were not included in presented models as they 

offered minimal improvements in model fit at the expense of considerable complexity. 

To examine whether the introduction of census division variables improved the model fit 

we performed a likelihood ratio test. In addition, we obtained empirical Bayes predictions 

and used them to graphically assess the fit of model predictions for diverse census 

divisions.   

4.3. Results 
 

Figure 1 shows the empirical variation in age-specific rates of inpatient hospital use. 

There was little variation across census divisions in the age-specific rate of healthcare use 

prior to age 50, and generally, the most variation across census divisions was seen in the 

healthcare use after age 75, and continued to increase with age.  

 

With respect to the first objective, our results showed that a simple two-parameter 

polynomial, predicting the log of the rate of inpatient use as a function of age and age-

squared, could be used to model the age-trajectories of the rate of inpatient hospital use 

for census divisions displaying a diversity of age trajectories. The second order 

polynomial did not generate much systematic error when fit across the Canadian census 

divisions included in the study. That is, the residual variation was not concentrated at any 

specific age range, and was evenly distributed around zero. The lack of systematic error 

was confirmed when evaluating the fit of the model individually to a set of diverse census 

divisions. Largely, the residual variation was present at older ages, but was generally not 

systematically concentrated at any age. The second order polynomial provided the best fit 

for census divisions with the largest population sizes, presumably because the data were 

not as susceptible to random error. Census divisions with small population sizes were the 

least likely to be successfully modeled with the two-parameter polynomial equation, as 

rates fluctuated with age, especially at the older ages where population counts were 

small. 
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In addition to the second order polynomial, we tested the fit of other functional forms. 

The Gompertz functional form fit the data with reasonable precision, but was too 

complex for the purposes of this study. A simple linear equation had a great deal of 

systematic error at the older ages, across all census divisions. The logistic functional form 

did not fit the data at the oldest ages.  

 

Analysis based on both the Gini coefficients and the growth curves showed that there was 

considerable variability in the age-trajectories of the rate of inpatient use for both sexes. 

Figure 1 describes the variability in census divisions-level age-specific rate. Gini 

coefficients for census divisions ranged from 0.38 to 0.76 for females and from 0.41 to 

0.71 for males. Figure 2 shows the average rate of inpatient use by age for census 

divisions that were below the 10th percentile, between the 10th to 25th, 25th to 50th, 50th to 

75th, 75th to 90th percentiles, and above the 90th percentiles of the Gini coefficient. For 

females and males, the shape and the distribution of the age-trajectories of the rate of 

inpatient hospital use varied most significantly after age 70. The exception to this was 

seen in males in census divisions that ranged from the 10th to 25th percentile of their Gini 

coefficients. The relationship between healthcare use and age for this cohort presented 

differently from the other cohorts after age 48. For this group, inpatient use is less 

associated with age. Additionally, prior to age 61 for females and 66 for males there was 

very little observable variation in the healthcare use by age across census divisions, and 

variation only occurs after age 71 for females and 70 for males.  
 

We confirmed these results through the growth curve analysis. Table 2 shows results 

from the growth curve analyses. Models 1 and 2 in Table 2 show estimates of the fixed 

and random coefficient models based on a second order polynomial for age regressed on 

the log of the rate of inpatient use. For both sexes the inclusion of random coefficients for 

the intercept, age and age-squared significantly improved model fit relative to a fixed 

effect model (p<0.001). While not shown in the table, we also found that the inclusion of 

a random intercept alone (p<0.001), then the inclusion of a random coefficient for age 

(p<0.001) and age-squared (p=0.03) each resulted in incremental improvements in model 

fit. A model with random intercept alone revealed that 50% of the variation in the rate of 
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inpatient use for females and 38% of the variation in the rate of inpatient use for males 

was explained by between-census division variation. The standard deviations of all three 

random coefficients in Model 2 are substantial, relative to the magnitude of the fixed 

effect coefficients, which is an indication of substantial variation in the age-trajectories of 

the rate of inpatient hospital use. The negative correlation between the random 

coefficients for the intercept and age is also noteworthy, and consistent with observations 

from Figure 2. Census divisions that have flatter age-trajectories of the rate of inpatient 

hospital use at age 65 (smaller slope) tend to have higher rate of inpatient use at age 65 

(higher intercept). Taken together, the Gini analysis and the growth curve models 

confirmed the second objective of the study and showed that there was significant 

variability in the regional age-trajectories of the rate of inpatient hospital use.  

 

Census division-level variables were predictive of both the level and age-trajectories of 

the rate of inpatient use. Our analysis found that the introduction of census division-level 

variables into the random coefficient model significantly improved the fit of the model 

for both sexes, as seen through a likelihood ratio test (p<0.001). Main effects of family 

variables (proportion divorced and proportion lone-parent families), socioeconomic 

variables (education, employment rate, and employment participation rate), and ethnic 

variables (proportion of Canadian citizens, and proportion of first generation immigrants) 

were among the significant variables, and helped to explain the census division variation 

in the intercept for both sexes (Table 2, Model 3). The introduction of these variables 

reduced the standard deviation of the intercept (corresponding to age 65) from .28 to .15 

for females, and .24 to .12 for males. Interactions between census division-level variables 

and age were also explored to examine whether the slope could be partially explained, 

and those that were significant were retained in Model 3. Table 2 also shows that for both 

sexes, the interactions between age and proportion of the population that was divorced, 

and age and the median family income were found to be significantly associated with the 

slope. For females, the proportion of lone parent families, and for males the proportion of 

people who identify as Aboriginal, were also significant. To reduce complexity, and 

because they made only small contributions to model fit, interaction terms between age-

squared and the census division-level variables were not included in the final model.  
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4.4. Discussion 
 

An association between age and healthcare use is well established. This study focused on 

this relationship and proposed to model the age-trajectories of healthcare utilization 

rather than including age as an indicator of need for healthcare utilization. Using 

standardized national level administrative inpatient hospital use and census data, we 

showed the feasibility and promise of this new approach. This study had three significant 

findings. First, the age-trajectories of the rate of inpatient hospital use, after age 40, 

exhibited variable but predictable patterns across regions, and these patterns could be 

reasonably modeled using a second order polynomial. Second, there was significant 

regional variation across the age-trajectories of the rate of inpatient hospital use. Third, 

census division-level variables could help predict this regional variation in age 

trajectories of the rate of inpatient hospital use. Taken together, our study indicated that 

modeling the age-trajectories of healthcare utilization, rather than simply including age as 

a need-indicator, can improve need-based approaches.  

 

The methods proposed in this paper are conceptually aligned with current knowledge of 

the relationship between age and morbidity. Additionally, there are a number of reasons 

why the modeling the age-trajectories of healthcare utilization has the potential to 

improve the accuracy, fairness, and versatility of need-based modeling approaches and 

healthcare. 

 

Modeling age-trajectories of healthcare utilization is theoretically intuitive, and consistent 

with what has been learned through decades of epidemiologic and demographic research 

on mortality and morbidity. It has been widely recognized that, over the past century, 

societal advancements and changes in life-course exposure have altered the age-

trajectories of health and disease (61,63). In most western countries, including Canada, 

there has been a transition from a disease pattern produced by infectious diseases, with 

high mortality concentrated at younger ages, to a disease pattern produced by chronic 

diseases, concentrated at older ages. Orman, who was among the first to recognize the 

shift in the patterns of disease (the ‘epidemiological transition theory’), attributed the 
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early decline in mortality and morbidity to a complex array of factors associated with 

‘modernization’ (62), including: developments in health technologies, advancements in 

public health, and improvements in the social determinants of health.  

 

A separate, but consistent observation, the compression of morbidity, suggests that this 

modernization will also shift the age-trajectories of disease to the right, becoming more 

‘rectangluarized’ (13,24). Thus, while the average life expectancy has increased 

significantly in western countries, the maximum life span has not increased 

proportionally, and in fact appears to remain relatively stable. This suggests that 

improvements in health have not significantly modified the intrinsic human life span 

(82), rather, have reduced premature mortality and morbidity (61,62). The use of regional 

age-trajectories in healthcare use modeling may better capture these high order 

epidemiological observations and indeed our findings support this prediction. The 

regional age-trajectories of the rate of inpatient hospital use followed a predictable 

pattern, and census division-level variables helped explain the regional variability, 

consistent with the compression of morbidity and epidemiologic transition theories. 

Additionally, modeling the age-trajectories of morbidity is an intuitive extension of the 

widely used technique of modeling the age-trajectories of mortality, which has been 

widely used for decades to develop ‘model life tables’ for purposes of estimating 

mortality patterns in populations with deficient vital statistics data (83–85).  

 

The proposed method may improve the accuracy of estimates of need-based resource 

requirements by exploiting information on the patterning of age-trajectories of healthcare 

use. By employing information on the functional form of the age-trajectories of 

healthcare use, more smooth and precise estimates can be made for small areas. 

Moreover, the methods proposed are amenable to Bayesian methods to predict the age-

trajectories of healthcare use for small areas, borrowing power from other areas with 

similar attributes. Such methods are widely used for purposes of small area estimation 

(49,86–89). Accordingly, the methods we propose offer the potential to extend need-

based methods to smaller areas of geography than are feasible with current methods. 
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The proposed method has the potential to provide for a more equitable and fair 

distribution of healthcare resources, as it better captures heterogeneity in the need for 

healthcare services by age. Current models, which incorporate age as a fixed effect, 

assume that average healthcare costs by age are equally applicable to different 

populations. As such, they underestimate healthcare requirements for populations in 

which needs are shifted to younger ages as a result of higher incidence and earlier onset 

of chronic disease. Examples of such populations are Canadian Aboriginal and American 

Natives, who suffer disproportionately from a number of chronic and acute illnesses, and 

tend to experience these diseases at an earlier age than their non-Aboriginal, non-Native 

counterparts (40–42). 

 

The proposed approach can be extended to both a variety of data and to commonly used 

need-based modeling approaches. The need-based model in our analysis is fairly 

rudimentary. It employed only ecological data, examined only one type of healthcare 

utilization (the rate of inpatient hospital utilization), and only examined ages over age 40. 

As well, the census division variables used as estimates of need were limited, and no 

effort was made to adjust the models for non-need indicators of utilization. However, the 

method we propose here could readily be extended to individual level data, clustered by 

geography, and both individual and ecological need and non-need indicators of utilization 

could be included in the models. As is customary, need–expected utilization could still be 

obtained by purging predicted utilization of the influence of non-need indicators. 

Extension of the approach we propose to other types of healthcare utilization and age 

ranges will likely require different functional forms. Splines offer a promising approach 

where different functional forms are appropriate for different ranges of age.  

 

To meet the third objective of this study we needed to show that the variability in the 

regional age-trajectories of the rate of inpatient hospital use could be partially explained. 

We therefore selected a limited set of variables to demonstrate viability. Future work 

should carefully identify variables based on the conceptual association between the 

variable and healthcare use within the constraint of the data availability.  
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Our proposed approach could have research and policy implications that extend across a 

number of sectors in health services. For example, these results may be pertinent in 

resource allocation methodology. Using the age-trajectories of healthcare use is an 

attractive alternative to current need-based resource allocation models because it is 

conceptually simple. Alternatively, this approach could benefit human resource planning, 

emphasizing the effects of demographic changes on the health human resource needs of a 

population, and applying the population’s demographic mix to population-utilization 

ratios, determining planning requirements (90).  

 

This study has a number of limitations. For practical application of the proposed method, 

further consideration of the appropriate level of geographical analysis is necessary. First, 

we found that the age-trajectories of the rate of inpatient hospital utilization were 

sufficiently variable at the level of the census division. However, an appropriate level of 

geography to be employed in the proposed method may well be different depending on 

types of healthcare. The existing funding structure may also be an important 

consideration in determining an appropriate level of geography. In Canada, for example, 

need-based resource allocation models are typically used to allocate resources from the 

province to health regions, and viability of the proposed approach at the provincial level 

is an open question.  

 

A second limitation was that the data we received from CIHI contained hospital in-

patients days by year up to age 95. However, we were only able to obtain population 

counts from Statistics Canada up to age 90. The first objective of our project was to find a 

functional form with which to model the data. To minimize the residual error that would 

have resulted from aggregating ages 90 and above, we chose to exclude these patients 

and limit our analysis to people 89 and under. This is unlikely to have had a significant 

impact on the results, as the pattern of inpatient hospital use is well established by age 89. 

Additionally, this study concluded that a second order polynomial could model the age-

trajectories of healthcare usebetween the ages of 40 and 89. However, it would be 

unlikely that the same functional form would fit the data for ages under 40. Additionally, 
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future work would have to confirm that the polynomial functional form would fit to other 

types of healthcare services use.  

 

Third, we were unable to include those census divisions located in Quebec or the 

territories in this study. Additionally, this data set did not contain long-term stay, day 

surgeries, or emergency visits that did not result in a hospital admission. To expand this 

methodology these exclusions would have to be explored in future research.  

 

The fourth limitation was that, by using the rate of inpatient hospital use to reflect 

healthcare use, this study did not acknowledge patient acuity. It is possible that two 

regions may have the same per capita rate of inpatient healthcare use, but different levels 

of resource use by virtue of the case-severity. Also, this project does not address patient 

death. That is, some regions may have lower hospital inpatient hospital use because the 

patients from that region have a higher mortality rate (lower chance of survival) than in 

another region.  

 

4.5. Conclusion 
 

Need-based approaches can be refined and improved by changing the way age is 

incorporated into utilization models. In this paper, we found that age was an integral 

factor in predicting healthcare utilization; and modeling the age-trajectories of health care 

utilization, rather than including age as a standard need indicator, enhanced need-based 

approaches. Incorporating the age-trajectories of healthcare utilization may reduce 

regional variability in healthcare modeling and may permit a more appropriate allocation 

of resources, especially to communities with early onset of morbidity.  

 

We found that this methodology is feasible and has the potential to work in a Canadian 

setting. This methodology is consistent with the life-course perspective: there are regular 

patterns of mortality and it is intuitive to extend this logic to morbidity. The amendment 

to need-based approaches we proposed in this paper – modeling the age-trajectories of 
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healthcare use – could ameliorate the approach and address some of the current 

limitations, thus widening its potential for application. 
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Table 1: Description of Census Division-Level Variables 

Classification Variable Description Mean (Standard 
deviation) 

Income Family income 
(Fam income) 

Average family after-tax income 
(in thousands) 

59.73 (10.41) 

Employment Employment 
participation rate 
(Em part rate) 
 

The size of the labor force 
expressed as a percentage of the 
total population 25 years of age 
and over 

 
  65.1 (6.51) 

 

 Employment rate 
(Em rate) 

The number of persons employed 
expressed as a percentage of the 
total population 25 years of age 
and over 

 
 

60.8 (8.22) 
 

Education High school 
educational attainment 
(HS educ) 

Proportion of the population 25 
to 64 years of age with a high 
school diploma or equivalent 

 
25.9 (3.73) 

 
Marital Status Divorced 

(divorced) 
Proportion of the population who 
have been divorced and are 
currently not married 

 
5.75 (1.36) 

 
Lone parent 
households 

Proportion of the 
population who are 
living as lone-parents 
(ln parent) 

A mother or a father, with no 
spouse or common-law partner 
present, living in a dwelling with 
one or more children. 

 
 

14.5 (3.73) 
 

Language and 
Ethnicity 

Visible minority 
(vis minor) 

Number of persons who self-
identify as a visible minority 

4.12 (7.24) 
 

Citizenship Canadian citizenship 
(Cdn citizens) 

The number of persons who, at 
the time of the Census, have 
official Canadian citizenship 

 
97.6 (2.18) 

 
Dwelling 
characteristics  

Regular repairs 
required 
(%home repair) 

The percentage of respondents, 
who, in the opinion of the 
respondent, state that their 
dwelling requires regular repairs 

 
58.9 (8.14) 

Generational 
status 

First generation 
Canadian 
(1st gen) 

Percentage of people who were 
born in Canada, but neither of 
whose parents were born there 

 
10.4 (9.51) 

 
Aboriginal 
Status 

Aboriginal Identity 
(Aborig iden) 
 

Proportion of the population with 
an affiliation with an Aboriginal 
group that is North American 
Indian, Métis or Inuit 

 
8.72 (11.90) 
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Figure 1: A Box Plot of the Relationship between Observed Inpatient Hospital Use, 
By Sex 

 
Note: The thick grey bars in the center of the vertical lines represent the 25th to 75th percentiles of the per capita rate of 
observed inpatient use. The thin grey vertical lines stemming above represent the 75th to 90th percentiles, and the thin 
grey vertical lines stemming below represent the 25th to 10th percentiles. The extreme values, below the 10th percentile 
and above the 90th percentile, are not shown. In total these graphs show the three-year aggregated data, as provided by 
the DAD, for 184 census divisions.  
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Figure 2: The Average Age-Specific Rate of Healthcare Use by Distribution of Gini 
Coefficient 

Note: The Gini coefficient of one in our data means that all healthcare use is concentrated at the oldest age group 
where a Gini coefficient of zero indicates that healthcare use is spread evenly across all ages. We estimated the Gini 
coefficient for each census division and sex and, based on the distribution of the Gini coefficients across census 
divisions by sex, classified them into six groups for men and women separately: (1) the bottom 10th percentile, (2) 10th-
25th percentiles, (3) 25th-50th percentiles, (4) 50th-75th percentiles, (5) 75th-90th percentiles, and (6) the top 10th 
percentile. We then graphed the three-year average relationship between the rate of inpatient healthcare use (received 
from the DAD) and age for each of these six groups, for men and women separately. 
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Table 2: The Results of the Growth Curve Analysis as Estimated by Random 
Coefficient Models 

Parameter Model 1 Model 2 Model 3 
Fixed 
Component 

Females Males Females Males Females Males 

Intercept  -.07(.02) .11 (.017) -.07 (.02) .11 (.19) -.05 (.012) .13 (.01) 
Age .06 

(.0002) 
.07 
(.0002) 

.06 
(.0004) 

.07 
(.0003) 

.06 (.0003) .07 (.0004) 

Age-squared .0004 
(.00002) 

-.0004 
(.00002) 

.0004 
(.00002) 

-.0004 
(.00003) 

.0004 
(.00002) 

-.0004 
(.00003) 

Divorced     -.03(.012)* -.032(.01)* 
Ln parent     .014(.005)* .013(.004)* 
%home 
repair 

    -.01(.003)* -.007 
(.003)* 

Cdn citizens     -.06(.02)* -.06(.015)* 
Aborig iden     .003(.002) .001(.002) 
1st gen     -.03(.006)* -.03(.004)* 
Em part rate     .03(.007)* .02(.005)* 
Em rate     -.02(.006)* -.02(.005)* 
HS educ     .02(.004)* .014(.004)* 
vis minor     .008(.005) .007(.004) 
Fam income     .006 (.003)* .003 (.002) 
divorced* age     -.001 

(.0004)* 
-.002 
(.0004)* 

ln parent*age     -.0005 
(.0001)* 

 

Aborig 
iden*age 

     -.0002 
(.00006)* 

Fam 
income*age 

    .001 
(.0007)* 

.0002 
(.00008)* 

Random 
Component 

      

Sd (intercept)   .28 (.016) .24 (.014) .15 (.009) .12 (.008) 
Sd (age)   .005 

(.0003) 
.005 
(.0004) 

.004 (.0003) .004 (0003) 

Sd (age-
squared) 

  .0003 
(.00002) 

.0003 
(.00002) 

.0003 
(.0002) 

.0003 
(.00002) 

Corr(inter, 
age) 

  -.24(.08) -.23(.08) -.22(.09) -.30 (.09) 

Corr(age, 
age-squared) 

  -.20(.10) -.024 (.10) -.38(.12) .011(.011) 

Sd (residuals) .26 (.002) .28 (.002) .25 (.002) .27 (.002) .24(.002) .26(.002) 
Note: The results of the growth curve analysis for three models. Model 1 is the fixed regression; Model 2 is the random 
effects regression on the log of the rate of inpatient hospitalization that includes the intercept, age and age-squared as 
random effects; and model 3 is the full regression on the log of the rate of inpatient hospitalization, that treats that 
intercept, age and age-squared as random effects and includes census-division level variables as fixed effects.  
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CHAPTER 5: CONCLUSION  
 

 

Our study explored the feasibility and usefulness of a need-based approach that models 

the age-trajectories of the rate of inpatient hospital use. To do so, we proceeded through 

three analytic phases. First, we examined whether a predictable pattern exists for the 

relationship between age and inpatient use across census divisions, and if so, whether this 

relationship could be modeled with a single functional form. We found that the pattern of 

the age-use relationship was consistently shaped across most census divisions, and that a 

two-parameter polynomial fits the data with little residual error at any age group. Census 

divisions with the smallest populations (those in the bottom tenth percentile of population 

size) were the least likely to follow this pattern.  

 

Second, we examined whether the age-trajectories of the rate of inpatient hospital use 

varied systematically across census divisions, by performing a descriptive analysis and 

applying growth curve models. These results confirmed that there was significant 

variability in the regional age-trajectories of the rate of inpatient hospital use. The 

majority of the variation was concentrated at ages older than 45 and ages younger than 

85. For most census divisions, the average inpatient healthcare utilization remains stable 

from ages 40 to 45, and thus there is little regional variation at these ages. Most census 

divisions start to see significant increases in the rate of healthcare use between ages 50 

and 60, and it is at these ages that the rates of healthcare use start to vary between census 

divisions.  

 

Third, we evaluated whether including census division-level variables could help predict 

the regional variation in the age-trajectories of the rate of inpatient hospital use. We 

found that census division-level variables were partially predictive of both the level and 

age-trajectories of the rate of inpatient use. The introduction of census division-level 

variables into the random coefficient model significantly improved the fit of the models 

for both sexes.  
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This study had three significant findings. The first was that the age-trajectories of 

healthcare use exhibited a predictable pattern across regions, and this pattern could be 

modeled with reasonable accuracy using a two-parameter polynomial. The second 

finding was that there was significant regional variation across the age-trajectories of 

inpatient healthcare utilization. The third finding was that ecological-level data could 

help to explain some of the regional variability in inpatient healthcare use. Taken 

together, our study indicates that age should not be treated as a typical need-indicator. 

Rather, age-trajectories of healthcare utilization vary significantly between regions, and 

jurisdictions that use need-based resource allocation formulas might benefit from 

modeling the age-trajectories of healthcare utilization.  

 

The methods proposed in this thesis are conceptually aligned with current knowledge of 

the relationship between age and morbidity. Additionally, there are a number of reasons 

why modeling the age-trajectories of the rate of inpatient hospital use has the potential to 

improve the accuracy, fairness, and versatility of need-based modeling approaches and 

healthcare. 

 

Modeling age-trajectories of inpatient healthcare utilization is theoretically intuitive, and 

consistent with what has been learned through decades of epidemiologic and 

demographic research on mortality and morbidity. The examination of the age-

trajectories of the rate of inpatient hospital use in this study is aligned with two 

established theories of aging and disease: the epidemiological transition and the 

compression of morbidity. It has been widely recognized that, over the past century, 

societal advancements and changes in life-course exposure have altered the age-

trajectories of health and disease. In most western countries, including Canada, there has 

been a transition from a disease pattern produced by infectious diseases, with high 

mortality concentrated at younger ages, to a disease pattern produced by chronic diseases, 

concentrated at older ages. Orman, who was among the first to recognize the shift in the 

patterns of disease, (‘the epidemiological transition theory’), attributed the early decline 

in mortality and morbidity to a complex array of factors associated with ‘modernization’, 
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including: developments in health technologies, advancements in public health, and 

improvements in the social determinants of health.  

 

A separate, but consistent observation, ‘the compression of morbidity’, postulates that 

this modernization will shift the age-patterns of disease to the right, becoming more 

‘rectangluarized’ (56,64,91). Thus, while the average life expectancy has increased in 

western countries, the maximum life expectancy appears to remain fixed. This suggests, 

improvements in health have not modified the human life span itself; rather, they have 

reduced premature mortality and morbidity (61,62). The use of regional age-trajectories 

in healthcare modeling may better capture these high order epidemiological observations, 

and indeed our findings supported this. The regional age-trajectories of the rate of 

inpatient hospital use followed a predictable pattern, and census division-level variables 

helped explain regional variability, consistent with the compression of morbidity and 

epidemiologic transition theories. Additionally, modeling the age-trajectories of 

morbidity is an intuitive extension of the widely used technique of modeling the age-

trajectories of mortality. The age-trajectories of mortality are so extensively relied upon, 

they form the conceptual basis of life tables.  

 

The proposed method may improve the accuracy of estimates for need-based resource 

requirements by exploiting information on the patterning of age-trajectories of healthcare 

use. By employing information on the functional form of the age-trajectories of 

healthcare use, smooth and precise estimates can be made for small areas. Moreover, the 

methods proposed are amenable to Bayesian methods to predict the age-trajectories of 

inpatient healthcare use for small areas, borrowing power from other areas with similar 

attributes. Such methods are widely used for purposes of small area estimation. 

Accordingly, the methods we proposed offer the potential to extend need-based methods 

to smaller areas of geography than are feasible with current methods. 

 

The proposed method has the potential to provide a more equitable and fair allocation of 

healthcare resources than the current method does, as it better captures heterogeneity in 

healthcare services use by age. Current models, which incorporate age as a fixed effect, 
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assume that average healthcare use by age is applicable to different populations. As such, 

they underestimate healthcare requirements for populations in which needs are shifted to 

younger ages as a result of higher incidence and earlier onset of chronic disease than the 

average population, and will unfairly benefit populations where disease incidents are 

delayed to older ages. For example, Canadian Aboriginal and American Native 

communities suffer disproportionately more from a number of chronic and acute 

illnesses, and tend to experience these diseases at an earlier age than their non-Aboriginal 

counterparts (40–42). In Canada cardiovascular disease is the leading cause of death 

within both Aboriginal and non-aboriginal Canadians (43). However, age-standardized 

mortality rates among Aboriginal women are 61% higher compared to non-Aboriginal 

women. Additionally, the stroke mortality rate is 44% and 93% higher among Aboriginal 

men and women (respectively) than the general Canadian population (44,45). Modeling 

the age-trajectories of inpatient healthcare use would rectify some of this inequity by 

appreciating the differences in the age patterns of disease.  

 

The approach we propose can be extended to a variety of different data and need-based 

modeling approaches commonly used. The need-based model in our analysis is 

rudimentary. It employed only ecological data, examined only one type of healthcare 

utilization (the rate of inpatient hospital utilization), and only examined ages over age 40. 

As well, the census division variables used as estimates of need were limited, and we did 

not adjust for non-need indicators of utilization. However, the method we propose could 

readily be extended to individual level data, clustered by geography, and both individual 

and ecological indicators of need and non-need indicators of utilization could be included 

in the models. As is customary, need–expected utilization could still be obtained by 

purging predicted utilization of the influence of non-need indicators. Extension of the 

approach we propose to other types of healthcare utilization and age ranges will likely 

require different functional forms. Splines, a method by which you run regression in 

connected pieces (78), offer a promising approach where different functional forms are 

appropriate for different ranges of age.  
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To meet the third objective of this study, to determine whether ecological-level variables 

could help predict the regional age-trajectories of the rate of inpatient hospital use, we 

only needed to prove that the variability in the regional age-trajectories of the rate of 

inpatient hospital use could be partially explained. We therefore selected a limited set of 

variables to show viability. Future work should carefully identify the most appropriate 

variables based on the conceptual association between the variable, healthcare use and 

data availability.  

 

With the methodological novelty and feasibility as well as data flexibility, our proposed 

approach could have research and policy implications that extend across a number of 

sectors in health services. For example, these results may be pertinent in resource 

allocation methodology. Using the age-trajectories of healthcare use is an attractive 

alternative to current need-based resource allocation models because it is conceptually 

simple. The relationship between age and healthcare use is so well understood that this 

model provides an intuitive approach to understanding resource allocation. The 

relationship between mortality and age is widely used in a variety of contexts, and is so 

accepted that it forms the basis of life tables. Extending this logic to the age-trajectories 

of morbidity could also provide wide spread benefit. Moreover, modeling the age-

trajectories of healthcare is more transparent than the current model because it follows a 

logical pathway. We know that age is a strong proxy for mortality and morbidity, and 

thus makes a powerful indicator of healthcare use. If we work to explain the variation in 

the age-trajectories of healthcare use, rather than trying to explain the variation of 

healthcare need in addition to age, we make the model more conceptually parsimonious.  

 

This study has a number of limitations. For practical application of the proposed method, 

further consideration of the appropriate level of geographical analysis is necessary. We 

found that the age-trajectories of the rate of inpatient hospital utilization was a sufficient 

variable at the level of the census division. However, an appropriate level of geography to 

be employed in the proposed method may well be different depending on types of 

healthcare, needing to be adjusted with consideration for the existing funding structure. In 

Canada, for example, need-based resource allocation models are typically used to allocate 
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resources from the province to health regions, and viability of the proposed approach at 

the provincial level is an open question.  

 

The data we received from CIHI contained hospital in-patients days by year up to age 95. 

However, we were only able to obtain population counts from Statistics Canada up to age 

90. The first objective of our project was to find a functional form with which to model 

the data. To minimize the residual error that would have resulted from aggregating ages 

90 and above, we chose to exclude these patients and limit our analysis to people 89 and 

under. This is unlikely to have had a significant impact on the results, as the pattern of 

healthcare use is well established by age 89. Additionally, this study concluded that a 

second order polynomial could model the age-trajectories of inpatient hospital use 

between the ages of 40 and 89. However, it would be unlikely that the same functional 

form would fit the data for ages under 40. Additionally, future work would have to 

confirm that the polynomial functional form would fit to other types of healthcare 

services use.  

 

Because of the data source we accessed, we were unable to include those census divisions 

located in Quebec or the territories in this study. Additionally, this data set did not 

contain long-term stay, day surgeries, or emergency visits that did not result in a hospital 

admission. To expand this methodology these exclusions would have to be explored in 

future research.  

 

By using the rate of inpatient hospital use to reflect healthcare use, this study did not 

acknowledge patient acuity. It is possible that two regions may have the same per capita 

rate of inpatient healthcare use, but different levels of resource use by virtue of the case-

severity. Also, this project does not address patient death. That is, a region may have 

lower hospital inpatient hospital use because the patients from that region have a higher 

mortality rate (lower chance of survival) than in another region.  

 

To conclude, our results indicate that age is an integral factor in predicting healthcare 

utilization, and should not be treated simply as a need-indicator. Current need-based 
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approaches that include age as a need-indicator assume that the effect of age is invariant 

between regions, and systematically bias against populations who experience earlier 

onsets of disease. While future studies are necessary to further validate this method, it 

appears that modeling the age-trajectories of healthcare need could greatly benefit need-

based resource allocation models.    
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APPENDIX A: ADDITIONAL GRAPHS 
 

 

 

 

 

 
 

Figure A-1: Box Plot of the Distribution of the Percentiles of the Per Capita Use by 
Age, for all CDs 

Note: Values beyond the 25th and 75th percentiles are excluded. This is for both sexes.  
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Figure A-2: Box Plot of the Distribution of the Percentiles of Per Capita Use by Age 
for Females for all CDs 

Note: Values beyond the 25th and 75th percentiles are excluded.  
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Figure A-3: Box Plot of the Distribution of the Percentiles of Per Capita Use by Age 
for Males for all CDs 

Note: Values beyond the 25th and 75th percentiles are excluded.  
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Figure A-4: A Scatter Plot of all Per Capita LOS across all CDs, With a Fitted Non-
Linear Regression 

Note: The per capita use, by year of age, is fitted with a two-parameter polynomial. All 
census divisions are included. 
 
 
 
Table A-1: The Census Divisions in the Bottom 10th Percentile of Population Size 

1011 1213 1216 1218 4604 4606 4608 

4610 4616 4619 4620 4623 4704 4804 

4818 5943 5945 5957 5959   
   
Note: The overall population size was used to identify the smallest census divisions, and 
the Gini analysis was used to confirm that, by excluding these census divisions, the 
overall age-trajectories of the rate of inpatient hospital use became more uniform and 
smoothed 
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Figure A-5: A Scatter Plot of the Per Capita LOS across CDs, With the Smallest 
10th Percentile of Census Divisions Removed 

Note: The data are fitted with a two-parameter polynomial, and the excluded CDs are 
listed in table 1 of Appendix A.  
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Figure A-6: A Scatter Plot of Per Capita LOS for Females across CDs  

Note: The data are fitted with a two-parameter polynomial, and the excluded CDs are 
listed in table 1 of Appendix A.  
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Figure A-7: A Scatter Plot of Per Capita LOS for Males across CDs 

Note: The data are fitted with a two-parameter polynomial, and the excluded CDs are 
listed in table 1 of Appendix A.  
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Figure A-8: The Distribution of LOS across CDs for all Ages 
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Figure A-9: The Distribution of LOS across CDs for Ages 80 and Above 
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Figure A-10: The Extremes of the Range of Age-Trajectories of the Rate of 
Inpatient Hospital Use, For Both Sexes 

Note: The Gini analysis was used to identify the most extreme range of shapes. The blue 
line represents CDs with the highest Gini coefficients (that is, the CDs with utilization 
most concentrated at older ages), and the green line represents those CDs in the bottom 
10th percentile of Gini coefficients.  
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Figure A-11: The Distribution of Age-Trajectories, Identified Through the Gini 
Analysis 

Note: This graph shows the range of shapes, as identified through the Gini analysis. The blue line 
represents census divisions with the highest Gini coefficients (that is, census divisions with use 
most concentrated at older ages). The green line represents those census divisions in the bottom 
tenth percentile of Gini coefficients. The middle three lines all appear to have the same 
distribution, with slight variation at older ages.  
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Figure A-12: The Distribution of the Age-Trajectories of the Rate of Inpatient 
Hospital Use for Age 65 and Above, As Identified Through the Gini Analysis 
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Figure A-13: The Distribution of the Age-Trajectories of the Rate of Inpatient 
Hospital Use for Males, As Identified Through the Gini Analysis 

Note: Figures 14 and 15 serve to show the differences in the shapes of the age-trajectories 
of the rate of inpatient hospital use between males and females, thus justifying our 
decision to stratify them in the analysis. The most unusual shape is seen in those between 
the 10th and 25th percentile. It appears their healthcare use is concentrated at younger ages 
relative to other CDs. This could be attributable to the fact that some cohorts of men (the 
bottom socioeconomic groups) are known to have shorter life expectancies. Thus, this 
may be reflective of that, and the survivor effect of those remaining.  
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Figure A-14: The Distribution of the Age-Trajectories of the Rate of Inpatient 
Hospital Use for Females, As Identified Through the Gini Analysis 

Note: This graph is much closer in both shape and pattern to the overall graphs. Using the 
results from Figures 11 to 16, we were able to identify a simple quadratic equation as the 
appropriate functional form.  
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Figure A-15: The Density of the Log-Transformation LOS for Ages 65 and Below, 
By Sex 

Note: Figure 17 presented binomial peaks, one on either side of the origin. Here we can see this 
is because ages below 65 are responsible for the negative peak.  
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Figure A-16: The Density of the Log-Transformed LOS for Ages 80 and Above, By 
Sex 
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Figure A-17: The Density of the Log-Transformed LOS for Ages between 65 and 80, 
By Sex 
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Figure A-18: The Relationship between the Log-Transformed LOS and Age for All 
CDs 
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Figure A-19: The Relationship between the Log-Transformed LOS for Females 
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Figure A-20: The Relationship between the Log-Transformed LOS for Males 
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Figure A-21: Box Plot of the Relationship between the Log-Transformed LOS and 
Age, For Both Sexes 

Note: Figures 20 to 23 indicate that the log-transformation linearlizes the relationship 
between LOS and age.  
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Figure A-22: Box Plot of the Relationship between the Log-Transformed LOS and 
Age for Females 
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Figure A-23: Box Plot of the Relationship between the Log-Transformed LOS and 
Age for Males 

 



79 

 

 

 

 

 

 

 

 
Figure A-24: Distribution of the Residuals from the Predicted Regression Line for 
All CDs, for Both Sexes 

Note: The residuals are evenly concentrated around the origin 
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Figure A-25: Distribution of the Residuals from the Predicted Regression Line for 
All CDs for Females 

 



81 

 

 

 

 

 

 

 

 
Figure A-26: Distribution of the Residuals from the Predicted Regression Line for 
All CDs, For Males 
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Figure A-27: Distribution of the Residuals from the Predicted Regression Line 
Excluding the Smallest CDs, For Both Sexes 
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Figure A-28: Distribution of the Residuals from the Predicted Regression Line 
Excluding the Smallest CDs, With a Fitted Line 

Note: The residuals are evenly concentrated around zero, indicating an appropriate fit.  
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Figure A-29: The Density Distribution of the Residuals 

 

 

 

 

 

 

 

 

 



85 

 

 

Table A-2: The Results from the Null Model Analysis for Both Sexes Combined 

xtreg lnpcLOS age_t, fe i(censusdivision)   
      
Fixed-effects (within) regression               Number of obs      =     17400 
Group variable: censusdivi~n                    Number of groups   =       174 
      
R-sq:  within  = 0.9158                         Obs per group: min =       100 
       between = 0.0000                                        avg =     100.0  
       overall = 0.8638                                        max =       100  
      
                                                F(1,17225)         = 187377.27  
corr(u_i, Xb)  = 0.0000                         Prob > F           =    
0.0000 

 

      
------------------------------------------------------------------------------  
     lnpcLOS |      Coef.  Std. Err.     t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------
- 

 

       age_t |   .0658846   .0001522   432.87   0.000     .0655863     .066183 
       _cons |   .0574596   .0021978    26.14   0.000     .0531518    .0617675 
-------------+---------------------------------------------------------------
- 

 

     sigma_u |  
.24438211 

    

     sigma_e |  .28972954     
         rho |  .41570511   (fraction of variance due to u_i)  
------------------------------------------------------------------------------  
F test that all u_i=0:     F(173, 17225) =    71.15          Prob > F = 0.0000 
 

 

Table A-3: The Results from the Random Coefficient Model Analysis for Both Sexes 
Combined 

Performing gradient-based optimization:    
      
Iteration 0:   log likelihood = -2858.3917     
Iteration 1:   log likelihood = -2858.3917     
      
Computing standard errors:    
      
Mixed-effects ML regression                     Number of obs      =     17400 
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Group variable: censusdivision                  Number of groups   =       174 
      
                                                Obs per group: min =       100  
                                                               avg =     100.0  
                                                               max =       100  
      
      
                                                Wald chi2(2)       =  27894.84  
Log likelihood = -2858.3917                     Prob > chi2        =    0.0000 
      
------------------------------------------------------------------------------  
     lnpcLOS |      Coef.  Std. Err.     z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------
- 

 

       age_t |   .0660679   .0003992   165.52   0.000     .0652856    .0668502 
       agesq |   .0001833   .0000224     8.17   0.000     .0001393    .0002272 
       _cons |    .019341   .0197885     0.98   0.328    -.0194438    .0581258 
------------------------------------------------------------------------------  
      
------------------------------------------------------------------------------  
  Random-effects Parameters  |   Estimate   Std. Err.    [95% Conf. 
Interval] 
-----------------------------+-----------------------------------------------
- 

 

censusdivi~n: Unstructured   |    
                   sd(age_t) |   .0049075   .0003028      .0043485    .0055385 
                   sd(agesq) |   .0002564   .0000183      .0002229    .0002949 
                   sd(_cons) |   .2577624     .01417      .2314337    .2870864 
           corr(age_t,agesq) |  -.1224253   .0929178     -.2985519    .0617653 
           corr(age_t,_cons) |  -.2356103   .0781327     -.3818804   -.0778256 
           corr(agesq,_cons) |  -.3994825   .0743886     -.5345671    -.244494 
-----------------------------+-----------------------------------------------
- 

 

                sd(Residual) |   .2744398   .0014937      .2715277    .2773831 
------------------------------------------------------------------------------  
LR test vs. linear regression:       chi2(6) =  9614.53   Prob > chi2 = 0.0000 
      
Note: LR test is conservative and provided only for 
reference. 

 

Note: This model treated the slope and intercept as random effects but did not include 

any census division-level variables 
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Table A-4: The Results from the Full Model Analysis for Both Sexes Combined 

Iteration 0:   log likelihood = -2729.4699      
Iteration 1:   log likelihood = -2729.4699      
       
Computing standard errors:     
       
Mixed-effects ML regression                     Number of obs      =     17400  
Group variable: censusdivision                  Number of groups   =       174  
       
                                                Obs per group: min =       100   
                                                               avg =     100.0   
                                                               max =       100   
       
       
                                                Wald chi2(24)      =  43319.86   
Log likelihood = -2729.4699                     Prob > chi2        =    0.0000  
       
--------------------------------------------------------------------------------------------  
                   lnpcLOS |      Coef.  Std. Err.     z    P>|z|     [95% Conf. 
Interval] 

 

---------------------------+----------------------------------------------------------------  
                     age_t |    .104759   .0500584     2.09   0.036     .0066464    .2028716 
                     agesq |   .0001833   .0000224     8.17   0.000     .0001393    .0002272 
                  divorced |  -.0343346   .0105813    -3.24   0.001    -.0550735   -.0135957 
            loneparentfams |   .0139595     .00443     3.15   0.002      .005277    .0226421 
                 regrepair |  -.0087213   .0030031    -2.90   0.004    -.0146073   -.0028353 
                   can_cit |  -.0611891   .0162203    -3.77   0.000    -.0929803   -.0293979 
          first_generation |  -.0307293   .0050035    -6.14   0.000    -.0405361   -.0209226 
                   ab_iden |   .0015762   .0017051     0.92   0.355    -.0017658    .0049182 
          em_participation |   .0274422   .0059687     4.60   0.000     .0157437    .0391406 
                   em_rate |   -.024335   .0049931    -4.87   0.000    -.0341213   -.0145486 
                     ed_HS |   .0173364    .003897     4.45   0.000     .0096985    .0249744 
              vis_minority |   .0076773   .0045444     1.69   0.091    -.0012296    .0165841 
                income_fam |   3.35e-06   2.23e-06     1.50   0.133    -1.02e-06    7.71e-06 
                           |      
        c.divorced#c.age_t |  -.0016374   .0003213    -5.10   0.000    -.0022671   -.0010076 
                           |      
  c.loneparentfams#c.age_t |   -.000278   .0001345    -2.07   0.039    -.0005417   -.0000144 
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                           |      
       c.regrepair#c.age_t |  -.0000405   .0000912    -0.44   0.657    -.0002192    .0001382 
                           |      
         c.can_cit#c.age_t |  -.0002274   .0004925    -0.46   0.644    -.0011928    .0007379 
                           |      
c.first_generation#c.age_t |  -9.46e-06   .0001519    -0.06   0.950    -.0003072    .0002883 
                           |      
         c.ab_iden#c.age_t |  -.0001111   .0000518    -2.15   0.032    -.0002126   -9.63e-06 
                           |      
c.em_participation#c.age_t |  -.0002369   .0001812    -1.31   0.191    -.0005921    .0001184 
                           |      
         c.em_rate#c.age_t |   .0001204   .0001516     0.79   0.427    -.0001767    .0004176 
                           |      
           c.ed_HS#c.age_t |  -.0000798   .0001183    -0.67   0.500    -.0003117    .0001521 
                           |      
    c.vis_minority#c.age_t |  -7.92e-06    .000138    -0.06   0.954    -.0002784    .0002625 
                           |      
      c.income_fam#c.age_t |   1.78e-07   6.76e-08     2.64   0.008     4.58e-08    3.11e-07 
                           |      
                     _cons |   5.827534   1.648514     3.54   0.000     2.596506    9.058562 
--------------------------------------------------------------------------------------------  
       
------------------------------------------------------------------------------   
  Random-effects Parameters  |   Estimate   Std. Err.    [95% Conf. 
Interval] 

 

-----------------------------+-----------------------------------------------
- 

  

censusdivi~n: Unstructured   |     
                   sd(age_t) |   .0027906   .0002554      .0033218    .0043257  
                   sd(agesq) |   .0002564   .0000183      .0002229    .0002949  
                   sd(_cons) |   .1336364   .0078673      .1190732    .1499807  
           corr(age_t,agesq) |  -.1290497   .1136813     -.3420022    .0965101  
           corr(age_t,_cons) |  -.2402891   .0846875     -.3979714   -.0688165  
           corr(agesq,_cons) |   .0237012   .1080213     -.1859426    .2312809  
-----------------------------+-----------------------------------------------
- 

  

                sd(Residual) |   .2744398   .0014937      .2715277    .2773831  
------------------------------------------------------------------------------   
LR test vs. linear regression:       chi2(6) =  4057.42   Prob > chi2 = 0.0000  
       
Note: LR test is conservative and provided only for 
reference. 
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Table A-5: Model 1 Regression for Females 

Random-effects GLS regression                   Number of obs      =      8700 
Group variable: censusdivi~n                    Number of groups   =       174 
      
R-sq:  within  = 0.0000                         Obs per group: min =        50 
       between = 0.0000                                        avg =      50.0  
       overall = 0.8539                                        max =        50  
      
                                                Wald chi2(2)       = 101188.94  
corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 
      
------------------------------------------------------------------------------  
     lnpcLOS |      Coef.  Std. Err.     z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------
- 

 

       age_t |   .0626209   .0001969   318.09   0.000     .0622351    .0630068 
       agesq |   .0004103   .0000152    26.97   0.000     .0003805    .0004401 
       _cons |  -.0706492   .0204395    -3.46   0.001    -.1107098   -.0305886 
-------------+---------------------------------------------------------------
- 

 

     sigma_u |  
.26372691 

    

     sigma_e |  .26418995     
         rho |   .4991229   (fraction of variance due to u_i)  
------------------------------------------------------------------------------  
 

Table A-6: Model 1 Regression for Males 

Random-effects GLS regression                   Number of obs      =      8700 
Group variable: censusdivi~n                    Number of groups   =       174 
      
R-sq:  within  = 0.0000                         Obs per group: min =        50 
       between = 0.0000                                        avg =      50.0  
       overall = 0.8848                                        max =        50  
      
                                                Wald chi2(2)       = 107973.50  
corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 
      
------------------------------------------------------------------------------  
     lnpcLOS |      Coef.  Std. Err.     z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------
- 
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       age_t |   .0695149   .0002123   327.39   0.000     .0690987     .069931 
       agesq |  -.0000438   .0000164    -2.67   0.008    -.0000759   -.0000116 
       _cons |   .1093312   .0176063     6.21   0.000     .0748234     .143839 
-------------+---------------------------------------------------------------
- 

 

     sigma_u |  
.22424073 

    

     sigma_e |   .2849435     
         rho |  .38245486   (fraction of variance due to u_i)  
------------------------------------------------------------------------------  
 

Table A-7: Model 2 Regression for Females 

Performing gradient-based optimization:     
       
Iteration 0:   log likelihood = -808.27762      
Iteration 1:   log likelihood = -808.27762      
       
Computing standard errors:     
       
Mixed-effects ML regression                     Number of obs      =      8700  
Group variable: censusdivision                  Number of groups   =       174  
       
                                                Obs per group: min =        50   
                                                               avg =      
50.0 

   

                                                               max =        
50 

   

       
       
                                                Wald chi2(2)       =  22338.36   
Log likelihood = -808.27762                     Prob > chi2        =    0.0000  
       
------------------------------------------------------------------------------   
     lnpcLOS |      Coef.  Std. Err.     z    P>|z|     [95% Conf. Interval]  
-------------+---------------------------------------------------------------
- 

  

       age_t |   .0626209   .0004316   145.10   0.000      .061775    .0634668  
       agesq |   .0004103   .0000239    17.16   0.000     .0003634    .0004572  
       _cons |  -.0706492   .0216876    -3.26   0.001    -.1131561   -.0281423  
------------------------------------------------------------------------------   
       
------------------------------------------------------------------------------   
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  Random-effects Parameters  |   Estimate   Std. Err.    [95% Conf. 
Interval] 

 

-----------------------------+-----------------------------------------------
- 

  

censusdivi~n: Unstructured   |     
                   sd(age_t) |   .0051421    .000338      .0045205    .0058491  
                   sd(agesq) |   .0002527   .0000211      .0002145    .0002977  
                   sd(_cons) |   .2811789   .0156029      .2522021    .3134849  
           corr(age_t,agesq) |   -.202784    .102429     -.3927105    .0037322  
           corr(age_t,_cons) |  -.2385651   .0810547     -.3899181   -.0746615  
           corr(agesq,_cons) |   -.436727   .0784138     -.5770902   -.2713027  
-----------------------------+-----------------------------------------------
- 

  

                sd(Residual) |   .2485517   .0019435      .2447716    .2523901  
------------------------------------------------------------------------------   
LR test vs. linear regression:       chi2(6) =  5900.70   Prob > chi2 = 0.0000  
 

Table A-8: Model 2 Regression for Males 

Performing gradient-based optimization:     
       
Iteration 0:   log likelihood = -1434.5945      
Iteration 1:   log likelihood = -1434.5945      
       
Computing standard errors:     
       
Mixed-effects ML regression                     Number of obs      =      8700  
Group variable: censusdivision                  Number of groups   =       174  
       
                                                Obs per group: min =        50   
                                                               avg =      
50.0 

   

                                                               max =        
50 

   

       
       
                                                Wald chi2(2)       =  23623.55   
Log likelihood = -1434.5945                     Prob > chi2        =    0.0000  
       
------------------------------------------------------------------------------   
     lnpcLOS |      Coef.  Std. Err.     z    P>|z|     [95% Conf. Interval]  
-------------+---------------------------------------------------------------
- 
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       age_t |   .0695149   .0004523   153.69   0.000     .0686284    .0704014  
       agesq |  -.0000438   .0000279    -1.57   0.117    -.0000985    .0000109  
       _cons |   .1093312   .0186042     5.88   0.000     .0728675    .1457948  
------------------------------------------------------------------------------   
       
------------------------------------------------------------------------------   
  Random-effects Parameters  |   Estimate   Std. Err.    [95% Conf. 
Interval] 

 

-----------------------------+-----------------------------------------------
- 

  

censusdivi~n: Unstructured   |     
                   sd(age_t) |   .0053542   .0003565      .0046991    .0061007  
                   sd(agesq) |   .0003068   .0000237      .0002637     .000357  
                   sd(_cons) |   .2387419   .0135229      .2136559    .2667734  
           corr(age_t,agesq) |  -.0244745   .1013977     -.2196937    .1726293  
           corr(age_t,_cons) |  -.2299867    .082789      -.384646   -.0627672  
           corr(agesq,_cons) |  -.3674763   .0800064     -.5130004   -.2014191  
-----------------------------+-----------------------------------------------
- 

  

                sd(Residual) |   .2677995    .002094      .2637267    .2719353  
------------------------------------------------------------------------------   
LR test vs. linear regression:       chi2(6) =  4147.69   Prob > chi2 = 0.0000  
       
Note: LR test is conservative and provided only for 
reference. 

  

 

 

Table A-9: Model 3 Regression for Females 

Performing gradient-based optimization:     
       
Iteration 0:   log likelihood = -697.05461      
Iteration 1:   log likelihood = -697.05458      
       
Computing standard errors:     
       
Mixed-effects ML regression                     Number of obs      =      8700  
Group variable: censusdivision                  Number of groups   =       174  
       
                                                Obs per group: min =        50   
                                                               avg =      
50.0 

   

                                                               max =           
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50 
       
       
                                                Wald chi2(23)      =  33143.86   
Log likelihood = -697.05458                     Prob > chi2        =    0.0000  
       
---------------------------------------------------------------------------------------------  
                    lnpcLOS |      Coef.  Std. Err.     z    P>|z|     [95% Conf. 
Interval] 

 

----------------------------+----------------------------------------------------------------  
                      age_t |   .0624101   .0003725   167.54   0.000       .06168    .0631402 
                      agesq |   .0004103   .0000239    17.16   0.000     .0003634    .0004572 
                  Mdivorced |  -.0316301   .0122045    -2.59   0.010    -.0555505   -.0077097 
            Mloneparentfams |   .0135823   .0051076     2.66   0.008     .0035716    .0235931 
                 Mregrepair |  -.0101219   .0034573    -2.93   0.003    -.0168981   -.0033458 
                   Mcan_cit |  -.0633706   .0185128    -3.42   0.001     -.099655   -.0270862 
          Mfirst_generation |  -.0321852   .0056304    -5.72   0.000    -.0432206   -.0211499 
                   Mab_iden |   .0025388   .0019618     1.29   0.196    -.0013063    .0063838 
          Mem_participation |   .0278004   .0068757     4.04   0.000     .0143243    .0412764 
                   Mem_rate |  -.0239102   .0057602    -4.15   0.000       -.0352   -.0126204 
                     Med_HS |   .0200474   .0044855     4.47   0.000     .0112559    .0288388 
              Mvis_minority |   .0081282   .0051985     1.56   0.118    -.0020607    .0183172 
                Mincome_fam |   3.87e-06   2.57e-06     1.51   0.131    -1.16e-06    8.90e-06 
                            |      
        c.Mdivorced#c.age_t |  -.0010868   .0003531    -3.08   0.002    -.0017788   -.0003947 
                            |      
  c.Mloneparentfams#c.age_t |  -.0005157   .0001467    -3.52   0.000    -.0008032   -
.0002282 
                            |      
       c.Mregrepair#c.age_t |  -.0000814   .0000962    -0.85   0.397      -.00027    .0001072 
                            |      
         c.Mcan_cit#c.age_t |  -.0004875   .0004078    -1.20   0.232    -.0012869    .0003118 
                            |      
         c.Mab_iden#c.age_t |  -.0000686   .0000539    -1.27   0.203    -.0001741     .000037 
                            |      
c.Mem_participation#c.age_t |   -.000212   .0001939    -1.09   0.274     -.000592    
.0001681 
                            |      
         c.Mem_rate#c.age_t |   .0000971   .0001673     0.58   0.562    -.0002308     .000425 
                            |      
           c.Med_HS#c.age_t |  -.0001987   .0001243    -1.60   0.110    -.0004424     .000045 
                            |      
    c.Mvis_minority#c.age_t |   -.000032   .0001233    -0.26   0.795    -.0002736    .0002096 
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                            |      
      c.Mincome_fam#c.age_t |   1.74e-07   7.34e-08     2.38   0.018     3.05e-08    3.18e-07 
                            |      
                      _cons |  -.0453973   .0124715    -3.64   0.000     -.069841   -.0209537 
---------------------------------------------------------------------------------------------  
       
------------------------------------------------------------------------------   
  Random-effects Parameters  |   Estimate   Std. Err.    [95% Conf. 
Interval] 

 

-----------------------------+-----------------------------------------------
- 

  

censusdivi~n: Unstructured   |     
                   sd(age_t) |   .0041703   .0003071      .0036099    .0048178  
                   sd(agesq) |   .0002527   .0000211      .0002145    .0002977  
                   sd(_cons) |   .1528443   .0092171      .1358059    .1720203  
           corr(age_t,agesq) |  -.3764085   .1193857     -.5839828   -.1226313  
           corr(age_t,_cons) |  -.2237343   .0906053     -.3923077   -.0406205  
           corr(agesq,_cons) |   .0477786   .1213246     -.1882487    .2785883  
-----------------------------+-----------------------------------------------
- 

  

                sd(Residual) |   .2485517   .0019435      .2447716    .2523901  
------------------------------------------------------------------------------   
LR test vs. linear regression:       chi2(6) =  2732.33   Prob > chi2 = 0.0000  
       
Note: LR test is conservative and provided only for 
reference. 

  

 

 

 

 

Table A-10: Model 3 Regression for Males 

Performing gradient-based optimization:     
       
Iteration 0:   log likelihood = -1303.9416      
Iteration 1:   log likelihood = -1303.9416      
       
Computing standard errors:     
       
Mixed-effects ML regression                     Number of obs      =      8700  
Group variable: censusdivision                  Number of groups   =       174  
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                                                Obs per group: min =        50   
                                                               avg =      
50.0 

   

                                                               max =        
50 

   

       
       
                                                Wald chi2(23)      =  34698.84   
Log likelihood = -1303.9416                     Prob > chi2        =    0.0000  
       
---------------------------------------------------------------------------------------------  
                    lnpcLOS |      Coef.  Std. Err.     z    P>|z|     [95% Conf. 
Interval] 

 

----------------------------+----------------------------------------------------------------  
                      age_t |   .0692304   .0003847   179.97   0.000     .0684764    .0699843 
                      agesq |  -.0000438   .0000279    -1.57   0.117    -.0000985    .0000109 
                  Mdivorced |  -.0319985   .0097165    -3.29   0.001    -.0510425   -.0129545 
            Mloneparentfams |   .0129444   .0040664     3.18   0.001     .0049744    .0209144 
                 Mregrepair |  -.0072143   .0027526    -2.62   0.009    -.0126093   -.0018193 
                   Mcan_cit |   -.058817   .0147424    -3.99   0.000    -.0877117   -.0299224 
          Mfirst_generation |  -.0286307   .0044852    -6.38   0.000    -.0374216   -.0198398 
                   Mab_iden |    .001042    .001562     0.67   0.505    -.0020194    .0041033 
          Mem_participation |   .0244874   .0054742     4.47   0.000     .0137583    .0352166 
                   Mem_rate |   -.022408   .0045859    -4.89   0.000    -.0313963   -.0134198 
                     Med_HS |   .0142555   .0035713     3.99   0.000     .0072559    .0212551 
              Mvis_minority |    .007138   .0041396     1.72   0.085    -.0009754    .0152515 
                Mincome_fam |   2.42e-06   2.04e-06     1.19   0.236    -1.58e-06    6.43e-06 
                            |      
        c.Mdivorced#c.age_t |  -.0021225   .0003731    -5.69   0.000    -.0028539   -.0013912 
                            |      
  c.Mloneparentfams#c.age_t |  -.0000557    .000155    -0.36   0.720    -.0003594    
.0002481 
                            |      
       c.Mregrepair#c.age_t |    .000013   .0001017     0.13   0.898    -.0001862    .0002123 
                            |      
         c.Mcan_cit#c.age_t |  -.0000312    .000431    -0.07   0.942    -.0008759    .0008135 
                            |      
         c.Mab_iden#c.age_t |  -.0001624   .0000569    -2.85   0.004     -.000274   -.0000509 
                            |      
c.Mem_participation#c.age_t |  -.0001456   .0002049    -0.71   0.477    -.0005472     
.000256 
                            |      
         c.Mem_rate#c.age_t |   .0000536   .0001768     0.30   0.762    -.0002929    .0004001 
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                            |      
           c.Med_HS#c.age_t |  -6.67e-06   .0001314    -0.05   0.960    -.0002642    .0002509 
                            |      
    c.Mvis_minority#c.age_t |  -.0000155   .0001303    -0.12   0.905    -.0002708    .0002398 
                            |      
      c.Mincome_fam#c.age_t |   1.79e-07   7.75e-08     2.31   0.021     2.69e-08    3.31e-07 
                            |      
                      _cons |   .1297381   .0102773    12.62   0.000      .109595    .1498811 
---------------------------------------------------------------------------------------------  
       
------------------------------------------------------------------------------   
  Random-effects Parameters  |   Estimate   Std. Err.    [95% Conf. 
Interval] 

 

-----------------------------+-----------------------------------------------
- 

  

censusdivi~n: Unstructured   |     
                   sd(age_t) |   .0042358   .0003158        .00366    .0049023  
                   sd(agesq) |   .0003068   .0000237      .0002637     .000357  
                   sd(_cons) |   .1206927   .0080509      .1059011    .1375502  
           corr(age_t,agesq) |   .1091145   .1183645     -.1245843    .3313431  
           corr(age_t,_cons) |  -.2986315   .0927487     -.4680728   -.1080103  
           corr(agesq,_cons) |  -.1424413    .108168     -.3450488    .0728501  
-----------------------------+-----------------------------------------------
- 

  

                sd(Residual) |   .2677995    .002094      .2637267    .2719353  
------------------------------------------------------------------------------   
LR test vs. linear regression:       chi2(6) =  1598.71   Prob > chi2 = 0.0000  
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