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ABSTRACT

Realistic physical-biological ocean models pose challenges to statistical techniques due

to their complexity, nonlinearity and high dimensionality. In this thesis, statistical data

assimilation techniques for parameter and state estimation are adapted and applied to

biological models. These methods rely on quantitative measures of agreement between

models and observations. Eight such measures are compared and a suitable multiscale

measure is selected for data assimilation. Build on this, two data assimilation approaches,

a particle filter and a computationally efficient emulator approach are tested and contrasted.

It is shown that both are suitable for state and parameter estimation. The emulator is also

used to analyze sensitivity and uncertainty of a realistic biological model. Application of

the statistical procedures yields insights into the model; e.g. time-dependent parameter

estimates are obtained which are consistent with biological seasonal cycles and improves

model predictions as evidenced by cross-validation experiments. Estimates of model

sensitivity are high with respect to physical model inputs, e.g river runoff.
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CHAPTER 1

INTRODUCTION

Over recent decades, 3-dimensional numerical models have become important tools in

oceanography. Today, they are used for a variety of purposes, e.g. increasing our knowledge

about oceanic processes, reconstructing the past, or forecasting the state of the ocean.

Ocean models help to fill observation gaps, shed light on unknown mechanisms and

provide evidence for, or against, scientific theories. With the constant rise in computing

power, ocean models continue to grow in their capabilities and complexity.

The application of statistical procedures to ocean models presents a challenge due to

the models’ complexity. Ocean models are typically high-dimensional, nonlinear and

require a long runtime, which severely limits the number of model evaluations that can

be performed. Nevertheless, statistical techniques are needed to objectively assess and

improve the abilities of ocean models, to gain a better understanding of the models, and to

increase their value as scientific tools. This thesis presents the development and application

of statistical techniques to biological ocean models. Existing techniques are expanded,

and adapted, for the use with complex models, with the goal of examining, improving and

comparing biological ocean models with observations.

Biological ocean models are a subclass of ocean models that are typically aimed at

simulating biological processes at lower trophic levels, i.e. processes that relate to organ-

isms such as phytoplankton which are at the bottom of the food web. As these biological

processes are strongly connected to the chemistry and physics of the ocean, biological

ocean models often contain a simple representations of chemical and physical processes.

For this reason biological models are also referred to as physical-biological, or biogeo-

chemical models. The close coupling of the lower trophic biology to physical and chemical

1
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processes in the ocean that makes them an important research area: as the bottom of the

food web, phytoplankton are the basis of life in the ocean. Phytoplankton account for

half of the earth’s primary production (Field et al., 1998). Biological processes at the

lower trophic levels control the export of carbon from the atmosphere to the deep ocean,

significantly affecting world climate (Field et al., 1998). A better understanding of the

lower trophic level processes thus helps to explain and predict events of global importance.

The first biological ocean model goes back to Riley (1946), who developed and analyzed

a spatially-averaged model of phytoplankton development on Georges Bank. This model

contained just one variable, phytoplankton, and was simple enough to be solved without

the help of a computer. Since then, biological ocean models have become increasingly

complex and require significant computing power. A typical biological ocean model of

today simulates the carbon cycle in the upper ocean and contains variables for phytoplank-

ton and zooplankton, detritus and nutrients. If they are of interest, other biological or

chemical properties such as dissolved oxygen are included in the model as well. All vari-

ables are embedded in a 3-dimensional physical submodel which simulates their physical

environment including water circulation and mixing.

The famous quote “Essentially, all models are wrong, but some are useful.” (Box and

Draper, 1987) holds true for biological ocean models, especially with regard to the com-

plex processes that occur in the ocean. As biological ocean models are becoming more

commonly used scientific tools, there is a growing need to develop methods to examine

their usefulness and improve them objectively. The fundamental part of assessing the capa-

bilities of models is the comparison with observational data, or real world measurements.

The definition of methods and metrics to quantitatively measure the agreement between

observations and model predictions is an essential part of model assessment.

For biological ocean models, satellite observations of surface chlorophyll provide

an invaluable source of data. These observations are images of the ocean taken by

satellites depicting the chlorophyll concentration close to the surface. The Coastal Zone

Color Scanner, launched in 1978 was the first dedicated satellite sensor to provide ocean

colour information which is used to derive chlorophyll concentrations (Mitchell, 1994).

Today, satellite images of chlorophyll are widely available at a high temporal and spatial

resolution, cover a large area, and thus have a great potential for model-data comparison.

However, missing values and high levels of observation error, especially close to the
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coast, are characteristics of chlorophyll satellite data which make their use more difficult.

In Chapter 2, eight image comparison measures aimed especially at the comparison of

biological ocean models with satellite images of chlorophyll, are presented and compared.

The image comparison measures that are examined, range from simple techniques such

as the root mean square error and image correlation (both adapted to handle missing

values) to more complex procedures taken and adapted from the computer vision literature.

In a series of rigorous tests, the measures’ performance in typical scenarios, including

increasing levels of missing values and observation error, is evaluated. One measure, the

adapted grey block distance that compares model and data at multiple resolutions, is shown

to perform well throughout all of the tests. It forms the basis of the data assimilation

studies in Chapter 3 and 4.

One step up from model-data comparison is the improvement of models using obser-

vations. For this purpose, a variety of statistical procedures has been developed, which

assimilate, or incorporate, observations into numerical models. These procedures are

collectively known as data assimilation procedures (Kitagawa, 1996; Doucet et al., 2000).

Data assimilation can be divided into two broad categories, state and parameter estimation,

both of which are important in the context of biological ocean models. State estimation

aims to improve the model state, one or more of the model’s variables, without changing

the parameters of the model. They are typically sequential procedures which use a series

of observations to assimilate them in sequence at the time the observations were made.

The aim of state estimation is generally to increase model accuracy for a time period

in the past with available data, or improve the model’s short term forecasting skill by

improving initial conditions. Parameter estimation procedures use observations to improve

the agreement between model and observations by adjusting the parameters of the model.

The goals of parameter estimation are manyfold, as improved parameters can be used to

obtain better state estimates and to learn about the processes that are modelled via the

parameters. Parameter estimation plays an important role in biological ocean models

because biological parameters are often poorly known.

The simplified representation of plankton species in typical biological models motivates

the parameter estimation study in Chapter 3. While biological models have been growing

in complexity, they often represent phytoplankton and zooplankton by one or just a few

variables. This implies that a variety of different plankton species are lumped together into
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single variables, and thus each variable represents an inhomogeneous group of organisms.

The parameters associated with plankton variables therefore are a simplified version of

reality and describe an average property of the species composition represented by each

variable. As phytoplankton populations experience strong seasonal shifts and spatial

variation, there is little reason to assume that species composition in the variables stays

fixed in time or space. To examine if changes in plankton compositions are reflected in their

parameters, time- and space-dependent parameter estimation experiments are performed

in Chapter 3, based on a year-long series of daily chlorophyll satellite observations and the

comparison measure introduced in Chapter 2.

Since the experiments in Chapter 3 require many model evaluations, an emulator ap-

proach that saves computing time is used for parameter estimation. Emulators are model

surrogates that approximate model output based on an existing set of model simulations.

The emulator approximations can be obtained considerably faster than regular model esti-

mation (within seconds as opposed to days) and thus allows a large number of experiments

needed to obtain parameter estimates at a fine temporal resolution. Using the emulator, two

representative plankton parameters are examined for both temporal and spatial dependence.

The development of the parameters is assessed using a cross-validation procedure and

contrasted with expected development based on biological processes.

Based on the results in the previous chapter, Chapter 4 examines the capabilities of

a particle filter using the same environment, model and observations as the emulator

approach. Particle filters are statistical procedures for data assimilation that can be used

for both state and parameter estimation. They require no assumptions about the underlying

model and are thus very versatile and suitable for highly nonlinear applications. In the

realm of particle filters, the model state is assumed to be uncertain and to have a probability

distribution. Particle filters approximate this distribution with an ensemble of model

simulations which represent a sample from that distribution. Despite their versatility,

the application of particle filters has been impeded by an inadequate representation of

the probability distribution by the ensemble in many high-dimensional applications (van

Leeuwen, 2009). For this reason, the use of particle filters for ocean models is not

widespread. The implementation of a particle filter in Chapter 4 includes modifications to

achieve a suitable ensemble representation while keeping the ensemble size low to satisfy

computational constraints. Emulator results from Chapter 3 provide a reference solution
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that helps to evaluate the particle filter’s performance in this high-dimensional problem

and its general applicability to biological ocean models.

While Chapters 2 to 4 focus on observation-driven procedures to analyze and improve

models, Chapter 5 contains a thorough examination of a typical biological ocean model

without the use of data. Here, a combined model sensitivity and uncertainty analysis is

performed to analyze how uncertainty in the model’s inputs (e.g. parameters, initial and

boundary conditions) is propagated to its output. Model sensitivity and model uncertainty

are two properties that are inherently connected. Model sensitivity describes the response

of the model output to changes in its inputs; a model is said to be sensitive to a particular

input if a small change in the input causes a large response in the output. Since many inputs

to ocean model contain uncertainty, the model’s sensitivity determines how that uncertainty

is expressed in the model’s output. Knowledge about a models sensitivity therefore allows

for statements regarding the spatial and temporal distribution of uncertainty in the model.

It also determines how a reduction in model uncertainty can best be achieved, as reducing

the error in a sensitive input is an effective way to diminish model uncertainty.

An uncertainty analysis involves sampling the model inputs and performing model

simulations for each sample. In light of the high computational cost for each simulation,

the uncertainty analysis in Chapter 5 utilizes the model emulator from Chapter 3 to

approximate model output and reduce the number model evaluations. The aim in Chapter 5

is to identify significant sources of uncertainty in the biological output of a typical model,

examine temporal and spatial patterns in model uncertainty, and to evaluate the emulator’s

capabilities for performing such a study.

Together, the following four chapters present an analysis of different aspects of typical

biological ocean models. Suitable methods for dynamical numerical model analysis are

identified and adapted and the new methods are used to gain general insights into biological

ocean models.



CHAPTER 2

INTRODUCTION AND ASSESSMENT OF

MEASURES FOR QUANTITATIVE

MODEL-DATA COMPARISON USING

SATELLITE IMAGES
1

2.1 Introduction

In applications that involve satellite data and numerical modelling, it is desirable to

compare the model output to measured data quantitatively. In this chapter, I assess the use

of algorithms from the field of computer vision that measure the similarity of two images

(henceforth referred to as image comparison measures) for model-data comparison. The

image comparison measures proposed in this chapter offer an unexplored alternative to the

measures currently used in model skill assessment and data assimilation.

Model skill assessment relies on similarity measures that quantify the distance of data

and model output (see e.g. Allen et al., 2007; Stow et al., 2009, for model skill assessment

in oceanographic contexts). As a quick and easy measure, the root mean square error

is frequently used (see e.g. Lehmann et al., 2009). In variational data assimilation, a

cost function is defined measuring the discrepancy between data and their corresponding

model counterparts (Bennett, 2002), usually a mean square error. In ensemble-based

data assimilation, which includes particle filters, a likelihood function must be defined,

specifying the observation or model errors (Dowd, 2007).

Satellite data typically come as single-channel (as opposed to multi-channel images,
1based on: Mattern, J. P., K. Fennel, and M. Dowd, Introduction and Assessment of Measures for

Quantitative Model-Data Comparison Using Satellite Images, Remote Sensing, 2, 794–818, 2010b.

6
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such as RGB images, which contain 3 channels, one for each red, green and blue colour

information) digital images, i.e., numeric values arranged on a grid. Hence I can consider

model-data comparison to be the comparison of two single-channel digital images: one

representing the data, the other the model state. I focus specifically on the comparison of

ocean colour data to corresponding data derived from numerical oceanographic models.

In the context of computer vision, a variety of image comparison methods have been

developed for the comparison of regular (single-channel, discrete-valued) grey scale images

(see e.g. Avcıbaş et al., 2002, and references therein). Satellite ocean colour images exhibit

two major differences from regular images: (1) intensity values are generally not discrete,

and (2) satellite images often contain regions of missing values caused by cloud cover or

other atmospheric distortions (Mannino et al., 2008), as well as masked regions due to

the presence of land (islands, coastline). Missing values especially pose a challenge to

existing image comparison measures and here I present suitable adaptations. Although

I focus on ocean colour, the methods can be readily applied to other variables such as

sea surface temperature and sea surface height. I also broaden the definition of an image.

While regular grey scale images contain discrete values arranged on a complete grid, I

allow non-discrete and missing values. Because of the similarity to regular images, I use

the words image and pixel even though I am not dealing with regular images.

Image comparison measures can be divided roughly into two categories, both are widely

used in different applications (Avcıbaş et al., 2002; Lehmann et al., 1997; Le Moigne and

Tilton, 1995; Alberga, 2009). One category, high level image comparison, incorporates

edge detection (see Holyer and Peckinpaugh, 1989; Cayula and Cornillon, 1992; Belkin

and O’Reilly, 2009, for oceanographic examples), or other segmentation methods to extract

features from images (Nichol, 1987). Another approach in high level image comparison is

to find a mapping to morph one image into another (see Beezley and Mandel, 2008, for

a use in data assimilation). The extracted features or morphed images are then classified

or compared in place of the images. Low level image comparison, the second category,

consists of direct comparison of images as a whole. In this chapter, I focus on various

approaches of low level image comparison and hereafter the term image comparison refers

to this category only.

Some of the simplest low level image comparison methods utilize pixel-by-pixel com-

parison, i.e., only pixels at the same location are compared (e.g., root mean square error
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and correlation). In the computer vision literature it is often pointed out that pixel-by-pixel

comparison, while having certain advantages (mainly simplicity and low run-time), often

reflects human perception poorly and are too sensitive to small changes within an image

(Santini and Jain, 1999). A small offset of one or multiple objects within an image can,

for example, cause the root mean square error to increase dramatically. For this reason

it is desirable not to restrict the comparison to pixels at the same location, but to include

neighbourhoods of pixels.

In this chapter I compare the performance of 8 image comparison measures after

adapting them to allow for missing and non-discrete values. Among the tested methods,

the root mean square error and the normalized cross-correlation represent widely used

pixel-by-pixel measures (see e.g. Avcıbaş et al., 2002; Di Gesú and Starovoitov, 1999).

I demonstrate that these pixel-by-pixel measures have shortcomings in the context of

satellite image comparison. The results indicate the benefits of alternative, neighbourhood-

based methods. The shortcomings of root mean square error and cross-correlation become

especially apparent with respect to missing values in images.

In this chapter I use ocean colour images from the SeaWiFS and MODIS satellites. The

raw images were processed with the algorithm of Mannino et al. (2008) to produce images

that measure the absorption of light due to the organic constituent coloured dissolved

organic matter (CDOM) and chlorophyll.

This chapter is organized as follows. In Section 2.2 I define the nomenclature. Sec-

tion 2.3 contains descriptions of the 8 image comparison measures to be tested. I evaluate

the performance of the image comparison measures in a series of tests in Section 2.4. The

results are summarized in Section 2.5.

2.2 Nomenclature

2.2.1 Definition of Symbols

I consider a digital image A as a set of pixels

A = {ai,j}m,n
i,j=1 (2.1)

with values ai,j ∈ [0, g] ∪ {NaN}. The symbol NaN indicates a missing value in a pixel,

[0, g] is the closed interval from 0 to g and ∪ denotes the union symbol for two sets. A is



9

defined on a m× n grid

X = {(i, j)}m,n
i,j=1 (2.2)

so that the pixel ai,j is located at (i, j) ∈ X .

In the following I use A = {ai,j}m,n
i,j=1 and B = {bi,j}m,n

i,j=1 to denote model and satellite

images, respectively. I assume that both images are defined on the same grid X . Further, I

define ANaN and Areal as the set of all points in X where the pixels of A are NaN (missing

value) and not NaN (real valued) respectively. Together they form a partition of X

ANaN = {(i, j) ∈ X : ai,j = NaN} and Areal = X \ ANaN , (2.3)

where \ denotes the relative complement of two sets. In the same way, I also define a

partition of B:

BNaN = {(i, j) ∈ X : bi,j = NaN} and Breal = X \BNaN . (2.4)

Missing values in model and data images present a challenge to similarity measures

because they cannot be compared to other values in a meaningful way. Generally, the

location of missing values in A will not correspond to the location of missing values in B,

and vice versa, so that ANaN �= BNaN . This leads to the formation of 4 subregions on the

grid which form a partition of X and need to be treated differently by the image similarity

measures. These subregions are:

• ANaN ∩BNaN ,

• Areal ∩ Breal = Xreal,

• Areal ∩ BNaN and

• ANaN ∩Breal,

where ∩ denotes the intersection of two sets.

The region of pixels with missing values in both model and data, ANaN∩BNaN , is ignored

by all similarity measures presented here. These pixels therefore should not influence

a given similarity measure’s result. The size of ANaN ∩ BNaN relative to the size of X

may, however, affect the confidence in the similarity measures result. In this application

ANaN ∩BNaN consists solely of land pixels.
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Pixels within the subregion of X with non-NaN values in both model or data, Xreal =

Areal ∩ Breal, can be treated like those in regular images. Pixel-by-pixel comparison

measures, which do not consider the distance between two pixels at different locations,

such as the root mean square error, base their results solely on this region. Pixels with

missing values either in A or B (ANaN ∪ BNaN) are not taken into account by these pixel-

by-pixel measures, while other similarity measures presented herein can make use of

them.

Cloud cover and a variety of different distortions can lead to missing values in satellite

images. Additionally, the satellite image may not cover the entire model domain. Pixel

locations in Areal ∩ BNaN , with values in the model but missing values in the data are

therefore common for satellite data. They can become important for those similarity

measures that compare the distance between two pixels at different locations.

Pixel locations with values in the data but not in the model, in ANaN ∩ Breal, are not

considered in this chapter, as I do not make use of data that extends beyond the model

domain. Generally it is possible to consider this region e.g., when data from outside the

model domain is available. In that case the neighbourhood-based measures introduced

here can make use of the additional data. The 3 remaining regions considered here are

illustrated in Figure 2.1.

2.3 Image Comparison Methods

Most of the image comparison measures that I assess here require modifications to work

with missing values (Table 2.1). Dealing with missing values in pixel-by-pixel measures is

trivial, as pixels with missing values in A or B can only be ignored by these measures. I

consider the widely used root mean square error and normalized cross-correlation, and,

as a less widely used pixel-by-pixel distance measure, I include an adaptation of the

entropic distance D2 (Di Gesú and Roy, 2002) in my tests. The remaining 5 distance

measures presented here are based on the comparison of neighbouring pixels and require

modifications to make use of the information in Areal ∩BNaN , where only one of the two

images have non-missing values. I altered the image Euclidean distance and Delta-g

(Δg) only slightly from their original formulations while I changed the adapted Hausdorff

distance, the averaged distance and the adapted grey block distance significantly.
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Figure 2.1: Schematic of a satellite taking an image (left panel) and corresponding sub-
regions on the model grid (right panel). Subregion 1 in the right panel corresponds to
Xreal = Areal ∩Breal for the satellite image A and model B, where the view of the ocean is
clear. The satellite image does not cover the entire model domain and clouds as well as
other interferences cause missing values in the data, creating subregion 2 (Areal ∩BNaN).
The model domain includes land, resulting in subregion 3 (ANaN ∩BNaN).
.

2.3.1 Parametrisations

Most of the 8 image comparison measures I introduce in the following sections feature

one or more parameters. Table 2.1 lists the parametrizations that I used here and identifies

the scale parameters for the neighbourhood-based measures.

In the following, I refer to an image comparison measure (in its original formulation

or my adaptation) by its full name, e.g., “image Euclidean distance” while I use its

abbreviation, e.g., “IE”, to refer to the particular parametrization of the measure that I used

in my tests. Table 2.1 contains a list of the abbreviations; in case of the adapted Hausdorff

distance, I test two different parametrizations, AHD and AHD2.

The choice of parameters used with the methodologies, including my choice of using

the entropic distance D2 over e.g., D1 (both were introduced by Di Gesú and Roy (2002)),

are based on results I obtained from an initial set of tests performed for a range of likely

parameters, as well as on parameter values suggested in the original literature.

2.3.2 Pixel-by-Pixel Measures

As stated in Section 2.2, all pixel-by-pixel measures listed below simply ignore model

pixels that correspond to data pixels with missing values. They operate only on Xreal, the

region where neither A or B have missing values.
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2.3.2.1 Root Mean Square Error (RMS)

The Root Mean Square (RMS) error is defined as

dRMS (A,B) =

√
1

|Xreal|
∑

(i,j)∈Xreal

(ai,j − bi,j)2, (2.5)

where |Xreal| is the number of pixels in Xreal.

2.3.2.2 Normalized Cross-Correlation (NXC)

The Normalized Cross-Correlation ratio (NXC, Di Gesú and Starovoitov (1999)), is a

pixel-by-pixel comparison measure based on cross-correlation that is closely related to the

root mean square error and also widely used. It has the form

dNXC (A,B) = 1−
∑

(i,j)∈Xreal
ai,jbi,j√∑

(i,j)∈Xreal
a2i,j

∑
(i,j)∈Xreal

b2i,j

. (2.6)

2.3.2.3 Entropic Distance D2 (D2)

The Entropic Distance D2 (D2) is one of 6 entropy-based image comparison measures

introduced by Di Gesú and Roy (2002). As with RMS, pixels with missing value are

ignored by D2. The distance between two images A and B is then defined as

dD2 (A,B) =
1

|Xreal|
∑

(i,j)∈Xreal

2 hi,j(A,B)

(
1− hi,j(A,B)

2

)
(2.7)

where hi,j(A,B) =
|ai,j−bi,j |

g
and g is the highest intensity value in the images (see

Section 2.2), ensuring |ai,j−bi,j |
g

∈ [0, 1]. This measure is based on an extended definition of

Shannon entropy (Shannon, 2001), it is a true metric (Di Gesú and Roy, 2002). The factor 2

in the numerator in the above equation ensures that each term 2 hi,j(A,B)
(
1− hi,j(A,B)

2

)
is monotonically increasing in hi,j and does not reach its maximum at 1

2
which is true for

the Shannon entropy (see Section 5.2.4).

2.3.3 Neighbourhood-Based Measures

Neighbourhood-based measures utilize a variety of methods that allow for the comparison

of non-neighbouring pixels. With the exception of the adapted grey block distance, all of

the comparison measures in this section make use of a direct approach to pixel comparison
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by defining a measure for the distance between pixels. A common definition for the

distance between two non-NaN pixels ai,j and bk,l is

d∗(ai,j, bk,l) =
( |ai,j − bk,l|p

gmax
+
|i− k|p
mmax

+
|j − l|p
nmax

)1/p

, (2.8)

which measures the distance in the 3-dimensional space spanned by intensity, horizontal

and vertical pixel location. For p = 1, d∗ is called city block distance, for p = 2, d∗

corresponds to the Euclidean distance and for p→∞ to the maximum distance

d∗max(ai,j, bk,l) = max

( |ai,j − bk,l|
gmax

,
|i− k|
mmax

,
|j − l|
nmax

)
. (2.9)

The constants gmax, mmax and nmax in Equations (2.8) and (2.9) are scaling parameters. As

suggested by Di Gesú and Starovoitov (1999), I set them to gmax = g and mmax = nmax =

max(m,n), where g is the maximum intensity value in the images and m and n are the

dimensions of A and B. The pixel distance d∗ is used in the original formulation of the

Hausdorff distance, the averaged distance and Delta-g. To account for NaN-valued pixels,

I extend d∗ in the following sections and discuss it in more detail.

2.3.3.1 Adapted Hausdorff Distance (AHD, AHD2)

The Hausdorff distance was presented by Huttenlocher et al. (1993) and has been used

in numerous variations (e.g. Dubuisson and Jain, 1994; Sim et al., 1999). I present two

adaptations of the Hausdorff distance (AHD, AHD2) based on its original and most

common definition (Huttenlocher et al., 1993; Di Gesú and Starovoitov, 1999):

dAHD (A,B) = max
i,j

(max (d(ai,j, B), d(bi,j, A))) , (2.10)

where d(ai,j, B) is a function defining the distance between a pixel in A and the entire

image B (or a pixel in B and the entire image A for d(bi,j, A)). This distance is commonly

defined as

d(ai,j, B) = min
k,l

(d∗NaN (ai,j, bk,l)) and d(bi,j, A) = min
k,l

(d∗NaN (bi,j, ak,l)) (2.11)
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and includes the function d∗NaN which I adapted for use with missing values: In addition to

the 2 pixels ai,j and bk,l, d∗NaN (ai,j, bk,l) is also dependent on bi,j in the following way

d∗NaN (ai,j, bk,l) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 if ai,j = NaN or bi,j = NaN

∞ if bk,l = NaN and i �= k or j �= l

d∗(ai,j, bk,l) otherwise,

(2.12)

where d∗ is the distance of two non-NaN pixels defined in equation (2.8). If bi,j = NaN, this

will result in d∗NaN (ai,j, bk,l) = 0 independent of k and l. This property of d∗NaN ensures that

dAHD (A,B) = 0 for Xreal = ∅. Note that d∗NaN (ai,j, bk,l) �= d∗NaN (bk,l, ai,j); the symmetry

in equation (2.10) ensures that dAHD is symmetrical (i.e., dAHD (A,B) = dAHD (B,A)).

Furthermore, the adapted Hausdorff distance is equal to the original Hausdorff distance

(Huttenlocher et al., 1993) if there are no missing values in A and B.

The above definition of the adapted Hausdorff distance is sensitive to factors such as

noise and missing values. To decrease this sensitivity, I average over the kmax largest values

of max (d(ai,j, B), d(bi,j, A)), instead of just using the maximum as in equation (2.10). By

defining dmax(k) as the kth largest value of max (d(ai,j, B), d(bi,j, A)) for all (i, j) ∈ X , I

can express the averaging as

d
(kmax)
AHD (A,B) =

1

kmax

kmax∑
k=1

dmax(k), (2.13)

which is equivalent to the formulation in Equation (2.10) for kmax = 1, i.e., d(1)AHD (A,B) =

dAHD (A,B). In my tests I use two parametrizations of the adapted Hausdorff distance

which only differ in their choice of kmax: for AHD kmax = 1, while kmax = 20 for AHD2.

The averaging of the largest values described above has been used in Sim et al. (1999) to

decrease the sensitivity of the Hausdorff distance to outliers. Huttenlocher et al. (1993)

explored a similar idea for the Hausdorff distance and portions of regular images.

2.3.3.2 Averaged Distance (AVG)

The Averaged Distance (AVG) is an image comparison measure introduced by Di Gesú

and Starovoitov (1999). I modified it to work with missing values as I have done for

the adapted Hausdorff distance. The averaged distance is defined as the square root of
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averaged distances of sub-images of A and B:

dAVG (A,B) =

√√√√ 1√
2nreal

m−w∑
i=w

n−w∑
j=w

√(
d(ai,j, Bwi,j

)
)2

+
(
d(bi,j, Awi,j

)
)2
, (2.14)

where Awi,j
and Bwi,j

are w × w sub-images of A and B, centered on (i, j) ∈ X . The

distance d is defined in equation (2.11). The normalizing factor nreal < (m− w)(n− w)

is the number of summands in equation (2.14) for which ai,j �= NaN and bi,j �= NaN. It is

defined as

nreal = |{(i, j) ∈ X : w ≤ i ≤ m− w, w ≤ j ≤ n− w, ai,j �= NaN, bi,j �= NaN}| .
(2.15)

2.3.3.3 Delta-g (DG)

The distance measure Delta-g (DG) was introduced by Wilson et al. (1997) for grey scale

image comparison. Due to its relatively complex definition, I will only give a simplified

description of it here and explain the changes I made to the original formulation. In

Delta-g, a grey scale image is viewed as a function of intensity y defined on a grid, i.e.,

A(i, j) = ai,j for (i, j) ∈ X . For each intensity level y, I consider those pixels in A that

have the same intensity level or are above it:

X(A, y) = {(i, j) ∈ X : ai,j ≥ y} . (2.16)

This serves as a way to define a distance

dDG((i, j) , X(A, y)) = min
(k,l)∈X(A,y)

d((i, j) , (k, l)) (2.17)

where d((i, j) , (k, l)) is the distance of two points in X , e.g. the Euclidean distance

d((i, j) , (k, l)) =
√

(i− k)2 + (j − l)2. Equation (2.17) is the basis of Delta-g and

d((i, j) , X(A, y)) is computed for each intensity level y. Here, Delta-g makes use of the

discrete value characteristic of typical grey scale images, as there is only a finite number

of intensity levels in a grey scale image (typically y ∈ {0, 1, 2, . . . , 255}). I emulate

this characteristic by mapping the intensity values of the satellite images from [0, g] to

their closest value on an equidistant grid Y = {0, g
nlev−1 ,

2g
nlev−1 , . . . , g}, where nlev is the
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number of levels. Equation (2.17) is then evaluated at every intensity level y ∈ Y . A

higher nlev typically improves the results of Delta-g but increases runtime significantly.

The comparison of A and B is performed by introducing

d∗DG(A, (i, j) , y) = min

(
c,max

y′∈Y
(dDG((i, j) , X(A, y′)), |y − y′|)

)
(2.18)

for a constant c and computing

∑
(i,j)∈X

∑
y∈Y

|d∗DG(A, (i, j) , y)− d∗DG(B, (i, j) , y)| (2.19)

which is followed by a normalization to correct for the number of pixels. To deal with

missing values, I ignore pixels in ANaN ∩ BNaN and define dDG((i, j) , X(A, y)) = ∞
(infinity) if ai,j is NaN.

2.3.3.4 Image Euclidean Distance (IE)

The Image Euclidean Distance (IE) is an Euclidean distance of two images, that considers

the spatial links between different pixels (Wang et al., 2005). While the RMS is the

Euclidean distance of two images, assuming that all (mn) dimensions of A and B are

orthogonal, the image Euclidean distance takes into account the grid structure, on which

the pixels are located. I simply ignore missing values in the computation of the image

Euclidean distance and define

dIE (A,B) =
1

|Xreal|
m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

d̂(ai,j, bi,j, ak,l, bk,l) (2.20)

where

d̂(ai,j, bi,j, ak,l, bk,l) =

⎧⎨
⎩0 if #NaN {ai,j, bi,j, ak,l, bk,l} > 0

(ai,j − bi,j)gi,j,k,l(ak,l − bk,l) otherwise
(2.21)

is computed for all combinations of pixels in A and B. The symbol #NaN denotes the

number of missing values in a set. The spatial distance between the pixels is incorporated

into the Gaussian function gi,j,k,l which is defined as

gi,j,k,l =
1

2πσ2
exp

(
−(i− j)2 + (k − l)2

2σ2

)
. (2.22)
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As each pixel in A is compared with each pixel in B the complexity of IE is O((mn)2).

This complexity can be reduced by comparing each pixel to only those pixels that are

close to it, as other pixels will add near-zero terms to the sum in Equation (2.21). If only

those pixels in a w × w window around each pixel are considered in the comparison, the

complexity of IE reduces to that of AVG.

2.3.3.5 Adapted Grey Block Distance (AGB)

I also adapted the grey block distance, presented by Juffs et al. (1998) for regular grey

scale images, to deal with missing values and refer to this as Adapted Grey Block Distance

(AGB). In this measure the distance of two images is determined by comparing the mean

grey level of successively smaller subdivisions (grey blocks) of the images.

Calculation of the grey block distance between two images A and B involves dividing

A and B into blocks and comparing their mean intensity levels. This is done for different

resolution levels, i.e., the blocks are successively decreased in size and a comparison is

performed at every level. For regular grey scale images the blocks must cover the image

completely at every resolution (Juffs et al., 1998), and the blocks cannot extend beyond the

boundaries of the image. In my adapted grey block distance, dAGB, I weight the difference

between the mean intensity level of two blocks based on the number of missing values they

contain. For two images A and B, the blocks must completely include the region where

either A or B has non-NaN pixels at every resolution. However, A and B may be padded

with missing values or embedded into larger images filled with missing values, effectively

allowing blocks to extend beyond the boundaries of the original image.

To facilitate the division of A and B into successively smaller blocks, I embed both

images into the centers of larger, NaN-filled, square images, Aext and Bext, respectively,

with an edge length that is a power of two. For A and B of size m× n, Aext and Bext are

of size 2next × 2next with next = �log2 (max(n,m))
, where �·
 denotes the ceiling (round

up to nearest integer) function. All other pixels of Aext = {a(ext)
i,j }2next

i,j=1 not defined by the

embedding of A are missing values, so that

a(ext)
i,j =

⎧⎨
⎩ai−δx,j−δy if i ∈ {δx + 1, . . . , δx +m}, j ∈ {δy + 1, . . . , δy + n}

NaN otherwise
(2.23)

with δx =
⌊
1
2
(2next −m)

⌋
and δy =

⌊
1
2
(2next − n)

⌋
, where �·� denotes the floor (round
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down to nearest integer) function. The same applies to Bext.

Beginning with the full image as a single square block, a series of increasingly smaller

blocks is determined by dividing each block at the previous level into four equal quadrants.

In this way, a 2next × 2next image can be divided next times until the block resolution is equal

to the image’s pixel resolution. For the r-th resolution level, the distance of Aext and Bext

is defined as

d
(r)
AGB (Aext, Bext) =

∑2r−1

j=1

∑2r−1

i=1

∣∣∣ā(r)i,j − b̄
(r)
i,j

∣∣∣ min
(
#real(ā

(r)
i,j ),#real(b̄

(r)
i,j )

)
∑2r−1

j=1

∑2r−1

i=1 min
(
#real(ā

(r)
i,j ),#real(b̄

(r)
i,j )

) (2.24)

which corresponds to a weighted L1 norm. In the above equation ā
(r)
i,j and b̄

(r)
i,j denote

the mean intensity of the block at the coordinates i, j of Aext and Bext, respectively. The

symbols #real(ā
(r)
i,j ) and #real(b̄

(r)
i,j ) denote the number of non-NaN values in ā

(r)
i,j and b̄

(r)
i,j ,

respectively. Missing values are ignored in the calculation of the intensity mean for each

block, if a block contains only missing values, its mean intensity is defined as 0. At the

lowest resolution level (r = 1) one single block covers an entire image, at the highest level

(r = next + 1) each block contains a single pixel, so that

ā
(1)
1,1 =

1

|Areal|
∑

(k,l)∈Areal

ak,l and ā
(next+1)
i,j = a(ext)

i,j . (2.25)

The adapted grey block distance is then defined as a weighted sum of the distances at each

resolution level:

dAGB (A,B) = dAGB (Aext, Bext) =
next+1∑
r=1

1

wr
d
(r)
AGB (Aext, Bext) , (2.26)

where
1

wr
is a weighting factor that depends on the parameter w > 0.

The formation of blocks described above has the crucial disadvantage of dividing and

further subdividing the images at the same position, thus creating a strong bias. Two

pixels, one in the left half of Aext, one in the right half of Bext, will only be compared

at the lowest resolution level (by means of contributing to the block mean), even if they

are neighbouring pixels, like, for example, a(ext)
1
2
2next , 1

2
2next

and b(ext)
1
2
2next+1, 1

2
2next

. In contrast,

a(ext)
1
2
2next , 1

2
2next

and b(ext)
1
2
2next−1, 1

2
2next

will be compared at every resolution level, except for the
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Figure 2.2: Original (blue, solid line) and alternate (red, dotted line) division of a 2next×2next

image into blocks for resolution levels r = 2 (left image) and r = 3 (right image).

last. Thus, differences in Aext and Bext may affect dAGB (Aext, Bext) differently, depending

on their location.

In order to decrease this bias, I introduce a second division into blocks for the resolution

levels r = 2, 3, . . . , next. In this alternate division, the location of blocks is moved in X

and Y direction by 2r−2 (half the blocks edge size; see Figure 2.2). The mean of the block

distances at the original division and the alternate division is then used to compute d
(r)
AGB

for r = 2, 3, . . . , next in my implementation.

By expanding A and B the complexity of the adapted grey block distance increased

to O(next(2
next)2) which can be expressed in terms of m and n as O(log2(max(m,n)) ×

max(m,n)2).

2.4 Image Comparison Tests & Results

2.4.1 Test 1: Translated and Masked Features

In the first test, I explore whether the image comparison measures can detect translated and

masked features in satellite images. For this purpose I introduce 3 images: D, M1 and M2.

I assume that D is a satellite image that is compared to the model-derived images M1 and

M2. In the first case, there is a feature that is present in both D and M1, but at different

locations; for example an eddy that is offset between data and model. This translated

feature is not present in M2 (see Figure 2.3 (a) and (b)). I consider it desirable for a distance

measure d to rate D and M1 to be closer than D and M2, i.e., d(D,M1) < d(D,M2),

because of the common feature in D and M1 that does not appear in M2. In this case I

prefer the model to show, as opposed to not show, a feature (e.g., the eddy) that appears in
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(a) translated feature image series 1 (b) translated feature image series 2

(c) masked feature image series 1 (d) masked feature image series 2

Figure 2.3: Examples of the manually created images used for the translated and the
masked feature tests. In each test case, the first image represents the satellite image D
which is compared to the images M1 (center image) and M2 (right image). D and M1

share a common feature that does not appear in M2. The location of this feature in M1 is
highlighted by a white dotted circle in every image. In the masked feature tests (c) and
(d), this location is masked by NaN-values in D. The feature of interest in (b) and (d) is
flipped upward from image D to image M1.

the satellite image, even if not at identical locations.

I use slightly modified versions of the above sets of images for the masked feature test,

in which the satellite image D contains missing values at the same location where M1

contains the feature. Figure 2.3 (c) and (d) show examples of D, M1 and M2 for the masked

feature case. The feature is masked in M1 if only pixels in Xreal are considered in the image

comparison and therefore not accessible by pixel-by-pixel comparison measures. Yet,

as both D and M1 show the feature, I consider d(D,M1) < d(D,M2) or the equivalent
d(D,M1)
d(D,M2)

< 1 a desirable characteristic of d.

I applied the image comparison measures to the test cases presented in Figure 2.3. The

results are shown in Figure 2.4 as ratios of d(D,M1)
d(D,M2)

. For the masked feature test, Figure 2.4

also includes the results of a control experiment, where the pixels with missing values in

D are set to missing values in M1 and M2, so that DNaN = M1,NaN = M2,NaN . I further

added a small amount of noise to all images in Figure 2.3, so that none of the distances are

zero and d(D,M1)
d(D,M2)

retains a meaningful value.
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(a) translated feature image series 1 (b) translated feature image series 2

(c) masked feature image series 1 (d) masked feature image series 2

Figure 2.4: Results of tests for the image series shown in Figure 2.3, expressed as ratios
d(D,M1)
d(D,M2)

. Ratios smaller than 1 are desirable
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In the cases with translated features, all pixel-by-pixel measures judge M2 to be signifi-

cantly closer to D than M1, which is an inherent shortcoming of pixel-by-pixel comparison.

For the neighbourhood-based measures the results are more diverse: AHD and Delta-g

show the most desirable results and clearly rate D and M1 closer than D and M2, while

the results of IE are similar to those of RMS. The other measures fall in between, with
d(D,M1)
d(D,M2)

close to 1.

For the cases with masked features, the pixel-by-pixel measures show the same pattern:
d(D,M1)
d(D,M2)

has the same value for the sets of images used in the test cases and their respective

control experiments (d(D,M1)
d(D,M2)

�= 1 because not the entire feature is masked), the masked

feature does not have any effect. The neighbourhood-based measures account for the

masked feature to some degree, except for IE. For the masked feature image series 1 the

distance of the two images is reduced significantly by the masked feature. For image series

2, this difference is not so obvious and the effect of the masked feature is insignificant or

masked by noise.

The performance of the pixel-by-pixel measures is a direct result of not considering

neighbouring pixels. This also leads pixel-by-pixel measures to ignore the pixels in DNaN

when comparing D to M1 and M2 in the masked feature case; consequently d(D,M1)
d(D,M2)

is the

same for both, test and control experiment. All other methods compare pixels at different

locations, which leads to an advantage in this test. Not all of the measures identify D

to be closer to M1, however. The individual results are also strongly dependent on the

measures’ scaling parameters, an influence which I will return to in Section 2.5. The

results of the masked feature test show clearly that the adapted comparison measures can

make use of pixels in DNaN ∩M1,NaN and that these pixels can change results significantly.

The exception is my implementation of IE which is not a pixel-by-pixel measure but also

ignores all pixels in DNaN .

In this test I focused on the very specific scenario of a single translated/masked feature.

The results are somewhat artificial as the images have been specifically created to be nearly

identical except for the feature of interest. Nevertheless, translated and masked features

can easily be caused by inconsistencies in the model (e.g., time lags) in conjunction with

large areas of missing values.
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Figure 2.5: A series of 4 translated images (top row) and a series of rotated images (bottom
row) used in Test 2. Markers are inserted into the images to illustrate the direction of the
translation and the angles of the rotation, respectively.

2.4.2 Test 2: Translation & Rotation of Images

In this test I examine the effect of translation and rotation of a base image on the comparison

measures. Stepwise translation or rotation of an image offers a simple way to create a

series of similar images. Due to the nature of satellite images (as opposed to, e.g., images

of white noise) an increased translation or rotation leads to an apparent increase in distance

to the untransformed image. The image comparison measures should reflect this increase

in distance.

For this test I generated a large number of series of transformed images. Starting with a

large satellite image, each series was created by successively translating or rotating the

image and then clipping it at the same position after each transformation. The clipping was

done to ensure that the series contains no missing values that are introduced to the large

image by the respective transformation. By adopting this approach I generated 100 series

of translated images and 100 series of rotated images, each series containing between 5

and 6 images. Image sizes are constant within a series but range between 30 × 30 and

50× 50 pixels among different series. The translations are performed along the X and Y

axes as well as along their bisecting line. The translation distance between two images is

5 to 10 pixels. For each series of rotated images, the center of rotation is roughly in the

center of the clipped image and the rotation angle between two images is 20◦. In this test
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Figure 2.6: Fractions of passed neighbour tests and monotonic tests for 100 series of
translated and rotated images.

the images do not contain missing values and I do not add any noise to the images.

Given a series of increasingly translated or rotated images A1, A2, . . . , Aq (e.g., see

Figure 2.5) I perform two tests for each image comparison measure d:

neighbour test: A comparison measure d passes the neighbour test if any image in a

series is closest to one of its neighbours. More precisely, the test is passed if for

any given image in the series, the distance to one of the neighbouring images in the

series is smaller than the minimum distance to any non-neighbouring image, i.e., if

min
j∈{i−1,i+1}

d(Ai, Aj) < min
j∈{1,...,i−2}∪{i+2,...,q}

d(Ai, Aj) for i = 1, 2, 3, . . . , q (2.27)

monotonic test: d passes the monotonic test if, for the first image in the series, the distance

to the other images in the series is monotonically increasing, i.e., if

d(A1, A2) < d(A1, A3) < d(A1, A4) < . . . < d(A1, Aq). (2.28)

The results of the two tests applied to both sets of images are shown in Figure 2.6. The

ratio of passed tests is high for most distance measures, especially in the rotation neighbour

test scenario. Generally, the results are better for the rotated images. This is especially

obvious for AVG and NXC which have relatively low scores for the translated images, but

perform roughly twice as well in the rotation test cases.

There is no indication that the pixel-by-pixel measures perform worse than the neigh-

bourhood-based methods, in fact RMS and D2 are among the best performing measures
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in all 4 test cases. It is interesting to note that the results of D2 are slightly better than

those of the RMS. Among the neighbourhood-based measures, AGB and IE perform well

throughout all tests. The difference in parametrization among the two Hausdorff based

measures is obvious, with AHD2 performing significantly better than AHD.

2.4.3 Test 3: Noise Sensitivity

In real life applications, it is to be expected that the satellite images contain some noise

which may affect the image comparison. It is therefore important to test the noise sensitivity

of image comparison methods. A multitude of publications have addressed this issue for

regular grey scale images (e.g., Avcıbaş et al., 2002). To assess how variable levels of

noise in images affect the satellite image comparison methods, I examine how the results

from the previous test change under the influence of noise.

I used the 100 series of translated satellite images from the previous test. For each series,

I determined the standard deviation σ of intensity values among all the images in the series.

I then added Gaussian noise with mean 0 and standard deviation xσ to each image (where

adding the noise created negative values these were set to 0), where x is increased from 0.2

to 1.0 in increments of 0.2. For each noise level I performed the neighbour and monotonic

test in the same manner as in the previous Test 2.

The results show that all comparison measures are affected by increased noise (Fig-

ure 2.7). The measures that employ averaging (AGB, IE and RMS) are the least sensitive

to noise, with AGB performing best in both test cases. Especially the performance of

AVG and NXC drops significantly as noise increases. D2 performed better than RMS at

no noise, but drops below RMS with increasing noise. AHD and AHD2 exhibit a similar

decline in performance compared to the no-noise results.

2.4.4 Test 4: NaN-Sensitivity

In addition to noise, missing values may also affect the performance of image comparison

measures. In this test I examine the sensitivity of the image comparison measures to the

location and number of missing values.

For this test I used two images of dimension 40 × 40 and with a translation distance

of 10 pixels from a series of translated images in Test 2. I then created 100 copies of the

second image and selected a fraction xNaN of each copy to be missing values, varying xNaN

from 0.1 to 0.9. The selection was performed in a way that creates uniformly distributed
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(a) Neighbour Test

(b) Monotonic Test

Figure 2.7: Fraction of passed neighbour tests and monotonic tests for different levels of
noise.

circles of missing values in the image, forming cloud-shaped areas (to mimic regions of

missing values on optical ocean imagery), see Figure 2.8 for examples. Finally, I use the

image comparison measures to compare the first image to all of the NaN-covered copies

of the second image, computing 100 image distances for each comparison measure. I then

record mean and standard deviation of distances (Figure 2.9).

The mean can be thought of as a measure of bias in this test: For a single realization of

a randomly NaN-covered image, I can expect that a major feature is covered resulting in

an increase or decrease of distance when compared to another image. While this makes it

more likely that the distance diverts further from the mean as the number of missing values

is increased, I do not expect the mean to change significantly with an increase in xNaN if

the distance measure is unbiased. A significant change in mean implies that the distance

measure is directly affected by the number of missing values and thus biased.

Noteworthy in this case are the adaptations IE and AVG which both show a significant

bias. For IE, there is negative bias as the amount of missing values increases, lowering the

mean distance. AVG, on the other hand, shows a positive bias, while the mean in all other

distance measures is affected insignificantly.

The standard deviation in this test is a measure of missing value stability (NaN-stability).
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Figure 2.8: 3 realizations (rows) of the same image covered randomly in missing values.
From left to right the number of missing values is increased in each column from 10% to
90% in increments of 20%.

(a) normalized mean distance (b) standard deviation of distance

Figure 2.9: Mean and standard deviation of image distances for different levels of missing
values. For each distance measure, the mean values have been normalized, so that their
mean is 1.
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Figure 2.10: Fraction of passed monotonic tests for the NaN-translation case.

A lower standard deviation is desirable. It means that the distance between two images

is less dependent on the location of missing values. The least stable distance measures,

with highest standard deviations are IE, RMS and NXC. Measures that ignore pixels in

ANaN ∩ Breal, with the exception of D2 which features one of the highest NaN-stabilities,

show the worst performance in this test. They are followed by AHD which is significantly

less NaN-stable than AHD2, illustrating the positive effect of its parametrization.

2.4.5 Test 5: NaN-Translation

In the previous test I assessed the sensitivity and stability of the image comparison measures

when faced with missing values. Here, I examine the effects of missing values on the

measures’ ability to correctly estimate relative distances between images.

I use again 100 series of translated images and randomly add missing values to the

images, as described for Test 4. Using the monotonic test I compare the untouched image

with the altered ones to test if the distance in the series increases. Because the previous

results suggest that this test is significantly harder to pass than the monotonic test without

missing values (Test 2) or under the influence of noise (Test 3), the image series in this test

are slightly less translated (3 to 5 pixels in between individual images).

The results of this test (Figure 2.10) are similar to those of previous tests: my implemen-

tations of AGB, AHD2, RMS, D2 and IE perform well. NXC is the worst, passing less

than half of the tests.



30

2.4.6 Test 6: Time-Series

All of the previous tests focused on the comparison of images that were generated by

translating or rotating a base image or one of its features. In this final test I consider a

numerical ocean model-generated time series of images. A time series poses a somewhat

different challenge to the series of images generated through translation: Features appear

and disappear in the center of the image (e.g., by upwelling) and features such as fronts

and eddies not only change their location, which is the case with translated images, but

also their shape and size. This test is closer to a realistic application than the previous ones.

I use images of model-simulated chlorophyll (taken from the model presented in Fennel

et al., 2008). Using a model to generate test images is advantageous because there are no

missing values, no noise and the time interval between images can be selected. Also, I

expect the images to exhibit similar features to satellite images.

For this test, I use 6 series of 31 images (with a time difference of 12 days between

two consecutive images); the images are clipped and ranged in size from 40× 50 pixels

to 70 × 150 pixels among different series (Figure 2.11). Since the apparent distance of

two images in a time series does not necessarily grow monotonically with time, I use a

variation of the neighbour test in this scenario: I compare the distances of an image to

its two neighbours with the distances to the other images within a window of 7 images,

instead of all images (as done in Test 2). Performing a neighbour test for every image

series, I obtain a ratio of passed to total tests for each series. The mean ratio and its

standard deviation among the series are displayed in Figure 2.12 for different noise and

missing value levels, which were added as described in Test 3 and 4, respectively.

The best performers in the test cases without noise or missing values are AVG, D2

and AGB. The results of AGB are only slightly affected by the addition of noise and

missing values, while the performance of D2 and especially AVG drops considerably with

increasing noise. Among the pixel-by-pixel measures, D2 achieves better results than

RMS in all cases. The relatively good results of NXC indicate that there is a high level of

correlation for neighbouring images in the time series. For neighbourhood-based measures,

many results confirm previous observations: The parametrization for AHD2 performs

better than the one used in AHD. IE shows good performance that is not very sensitive to

noise.
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Figure 2.11: An extraction of 4 consecutive images in a time series of images generated by
a physical-biological ocean model.

Figure 2.12: Results of the time-series test. Bar height indicates average fraction of passed
tests for the 6 time series of images.

2.5 Discussion

For this chapter, I adapted 8 image comparison measures for use with satellite images. My

motivation was to compare satellite imagery with spatial fields derived from numerical

ocean models, which has applications in model skill assessment and data assimilation. The

distinguishing features of satellite images compared to regular images are that their values

are continuous non-integer values and that pixels or portions can be missing. The examined

comparison measures range from simple but widely used pixel-by-pixel methods to more

complex methods that evaluate the distance of pixels at different locations. I compared the

behaviour of the comparison measures in 6 tests and assessed their response to different

levels of noise and missing values. The qualitative performances of the measures are
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Test RMS NXC D2 AHD AHD2 AVG DG IE AGB

Test 1: translated & masked

features

– – – + + ◦ + – +

Test 2: translation & rotation + – + – + ◦ ◦ + +

Test 3: noise sensitivity + – + – ◦ – – + +

Test 4: NaN-sensitivity – – + – + +a ◦ –a +

Test 5: NaN-translation + – + – + – ◦ ◦ +

Test 6: time-series ◦ – + – ◦ ◦ – ◦ +
a The significant bias introduced through missing values is not included in the rating.

Table 2.2: Qualitative performance ratings of the image comparison measures for the 6
Tests in Section 2.4. The symbols indicate relative performance in the tests: + is good
performance, ◦ is average performance and – is bad performance.

summarized in Table 2.2, and discussed in more detail below. One of the main goals was

to compare the performance of the two very commonly used distance measures root mean

square error and image correlation to lesser known alternatives.

Two measures outperformed both root mean square error and correlation throughout all

of my tests. AGB, a neighbourhood-based measure, achieved the best overall test results.

It is especially insensitive to noise and missing values. The pixel-by-pixel measure D2

also achieved better results than the two commonly used methods, but is less advantageous

in cases where translated or masked features play an important role (compare Test 1). In

applications where runtime is not a primary concern, I recommend using AGB as distance

measure. If low runtime is required, D2 and RMS are good options. The ultimate choice

should be application dependent.

Test 1 highlights the advantages of incorporating neighbouring pixels into satellite image

comparison; while the neighbourhood-based methods can make use of the information

in pixels that have values in the model but missing values in the data, the pixel-by-pixel

measures cannot. Despite these inherent problems of pixel-by-pixel comparisons, the

neighbourhood-based measures are not always superior to the pixel-by-pixel measures. In

Test 4, D2 distinguished itself from the other pixel-by-pixel measures by exhibiting a very

high NaN-stability.

One important factor to consider is the parametrization of the image comparison mea-

sures. Every neighbourhood-based measure I tested features one parameter or more. All of
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them contain a scaling parameter that weights the spatial distance of two pixels compared

to their distance in intensity (the scaling parameters are listed in Table 2.1). Scaling

parameters have a strong effect on the distance measures and the optimal choice depends

on the resolution of the images that are compared. For high-resolution images, the distance

between two neighbouring pixels is low and spatial distance needs to be weighted lower

in comparison to distance in intensity than for similar images with coarser resolution. A

possible explanation for the good results of AVG in Test 6 in contrast to the average results

in the other tests is that its scaling parameter matches the scale of model-generated images

from Test 6 better than the scale of the satellite images used for tests 1–5.

Beside the scaling parameters, other parameters have significant effects on the results,

too. A good example is the performance of AHD and AHD2, two parametrizations of

the adapted Hausdorff distance. AHD2 performed better than AHD in all tests, due to a

change of one parameter (kmax) that controls the adapted Hausdorff distance’s proneness to

extreme values.

A larger number of parameters allows for a high level of customization but has the

negative side effect that parameters may need to be adapted for each application. Root mean

square error and normalized cross-correlation have no parameters and thus do not require

the user to select a specific parametrization. The customizability of the neighbourhood-

based measures varies strongly. The image Euclidean distance has only one parameter.

The Hausdorff distance is highly customizable: Dubuisson and Jain (1994) present 24

variations of the Hausdorff distance, some with their own parameters. Pixel-by-pixel

measures can also have a high number of parameters, e.g. there are various flavors of

entropic distances. The entropic distance D2 used here is just one of 6 different entropic

distances introduced in Di Gesú and Roy (2002), each can be customized further.

Missing values are one of the distinguishing features of satellite images. Test 4 focused

directly on the effects of the number of missing values on image distances. Bias introduced

through missing values has different effects: In model skill assessment or data assimilation,

bias is not an important issue since the number of missing values stays constant; one

satellite image is compared to a number of model-derived images, each with the same

number of missing values. Bias becomes important in scenarios where one image is

compared to two or more images that have different number of missing values. NaN-

stability, on the other hand, plays a more universal role and my results indicate that even for
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low ratios of missing values, the comparison measures display significantly different levels

of NaN-stability. Here lies one of the apparent weaknesses of the standard pixel-by-pixel

measures RMS and NXC: very low NaN-stability.

All of my tests are based on the assumption that I can produce images that are less

similar to one another by either moving a specific feature within the image, by increasing

translation or rotation of the entire image, or by increasing the time difference of images in

a time-series. This is done for a reason; apart from time-series and simple transformations,

there is no easy way to create a set of images for which there is an objective indication of

image similarity. Using any comparison measure as the standard for determining image

similarity would be circular and predetermine the outcome of the tests.

Beside test performance, ease of implementation and runtime need to be considered.

The pixel-by-pixel measures are generally very easy to implement and they are the fastest

methods. Because they compare only pixels at the same location they have a complexity

O(mn). All neighbourhood-based measures have a higher complexity and, due to their

more elaborate means of comparing pixels at different locations, are also harder to imple-

ment and more costly to compute. The variation in runtime and ease of implementation

among them is significant. One of the fastest neighbourhood-based measures I tested is

AGB. It has a complexity of roughly O(log2(max(m,n))max(m,n)2). AVG is the only

other neighbourhood-based measure with a complexity below O((mn)2), although its

runtime is strongly dependent on its parametrization. The slowest methods are AHD, IE

and DG; runtime of the latter is also very dependent on the choice of parameters. Ease of

implementation is not as easy to judge objectively. I found image Euclidean distance and

adapted Hausdorff distance to be the easiest to implement while an efficient implementa-

tion of average distance, adapted grey block distance and especially Delta-g took more

effort.

2.6 Conclusions

This chapter shows that low level image comparison measures, developed for regular grey

scale images, can successfully be adapted to work with satellite images. In comparison to

standard comparison measures such as root mean square error (RMS) and cross-correlation,

two of the adapted measures show better performance throughout all of my tests. These

measures are the adapted grey block distance (AGB), which compares images at multiple
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scales, and the entropy based measure D2. The advantages of these measures are especially

apparent in scenarios that involve missing values, one of the distinguishing features of

satellite images. AGB also exhibits the lowest sensitivity to noise among the measures I

tested and I would therefore recommend it over RMS. While AGB requires more runtime

than pixel-by-pixel measures, it is among the fastest neighbourhood-based methods I

tested. In cases where runtime or ease of implementation are the prime concerns, the

pixel-by-pixel measure D2 represents a viable alternative to RMS.



CHAPTER 3

ESTIMATING TIME-DEPENDENT

PARAMETERS FOR A BIOLOGICAL

OCEAN MODEL USING AN EMULATOR

APPROACH
1

3.1 Introduction

Simple models are often considered advantageous over more complex ones, because they

tend to be easier to interpret and to calibrate and less expensive computationally. Their

low complexity is typically achieved by combining many properties of the simulated

system into single model variables and averaging them in time and space. In the context of

biological ocean models, a good example for this is the blending of many plankton species

into functional groups or often even into bulk model variables for phytoplankton and

zooplankton (so called NPZD-class models). In the bulk variable treatment, each variable

represents a large variety of real species with a range of specific physiological charac-

teristics (e.g. different growth and nutrient uptake rates, different carbon-to-chlorophyll

ratios). Since the abundance of these species and their relative contribution to the plankton

community changes in space and time, so should the physiological characteristics of the

bulk variables. In this chapter, I find evidence for temporal and spatial dependence of the

parameters of a biological model that contains just two plankton variables, suggesting that

using static parameters is overly simplified and suboptimal. Using an emulator approach

in combination with a temporally and spatially dense set of satellite observations I can

1based on: Mattern, J. P., K. Fennel, and M. Dowd, Estimating time-dependent parameters for a biological
ocean model using an emulator approach, Journal of Marine Systems, 9697, 3247, 2012.
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effectively infer parameter values that evolve in time and space and lead to an improved

representation of plankton in the model.

Many studies have employed data assimilation in the context of biological models,

often in order to optimize the poorly known parameters but also to update the model

state and improve the models’ forecast abilities. The techniques used in these studies

can be divided into 3 broad categories: (1) Variational techniques, such as 3DVAR and

4DVAR (e.g. Smedstad and O’Brien, 1991; Lawson et al., 1996; Powell et al., 2008), (2)

Monte-Carlo based techniques which include the ensemble Kalman filter (e.g. Allen et al.,

2003; Evensen, 2003; Hu et al., 2012), particle filter methods (Losa et al., 2003; Mattern

et al., 2010a; Dowd, 2011) and Markov chain Monte Carlo methods (e.g. Dowd, 2007;

Jones et al., 2010), and (3) emulator techniques. Emulators differ from the aforementioned

techniques in that they effectively replace computationally expensive model simulations

with fast approximations. Emulators require a set of model simulations for specific

values of the stochastic inputs (parameters), then approximate unknown model output

based on these simulations. The approximation is used in place of the true model output,

eliminating the need for additional model simulations. This property makes emulators more

efficient than other approaches, especially Monte Carlo techniques which rely on ensemble

generation through random sampling and therefore generally require considerably more

model simulations (Rougier and Sexton, 2007).

The emulator approach that I use in this chapter is based on the polynomial chaos

expansion, which was first introduced by Wiener (1938) and later extended (Askey and

Wilson, 1985; Wan and Karniadakis, 2006). Polynomial chaos relies on a set of orthogonal

polynomial basis functions for the approximation of model results. The method has been

applied widely in physical sciences (see Xiu and Karniadakis, 2003, for an overview), with

only few applications in an oceanographic context (Lucas and Prinn, 2005; Thacker et al.,

2012). Emulators applied in oceanographic contexts include emulators based on Gaussian

process models (Scott et al., 2011) and other techniques (Frolov et al., 2009; Hooten et al.,

2011). To my knowledge, emulator approaches have been used in the context of biological

ocean models in only one study by Hooten et al. (2011) where 7 biological parameters are

estimated. I focus this chapter on just 2 biological parameters, but employ the emulator

to estimate their time-dependence in order to achieve a better representation of plankton

dynamics in the model and an enhanced understanding of the biological model dynamics.
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I further use the emulator to obtain improved state estimates in an efficient manner.

Previously, two approaches have emerged to better represent the diversity of plankton.

The first approach is to divide planktonic species into functional groups so that each

plankton variable represents a more homogeneous and functionally distinct group of fewer

species. While the simpler NPZD-class models contain only one phytoplankton and one

zooplankton variable (e.g. Doney et al., 1996; Franks and Chen, 1996; Fennel et al., 2008),

many biological models include two or more phytoplankton variables distinguishing, for

example, between small and large phytoplankton, diatoms, diazotrophs etc. (e.g. Moore

et al., 2001; Aumont et al., 2003; Gregg et al., 2003; Lehmann et al., 2009). One obvious

limitation to adding more and more functional groups is that the number of poorly known

parameters necessary for describing the biological interactions between functional plankton

groups, and different pools of other organic and inorganic matter, increases dramatically

(Denman, 2003) with consequent degradation of predictive skill.

In a recent, alternative approach, Follows et al. (2007) initialized a model with roughly

100 phytoplankton groups with their functional parameters drawn randomly from pre-

scribed probability distributions. This approach allows for spatial and temporal variations

in the self-organizing plankton community structure that emerges from local environmen-

tal conditions and competition (Goebel et al. (2010), see also review by Follows and

Dutkiewicz (2011)) and represents a significant step toward a more flexible and realistic

representation of plankton diversity in biological models. One drawback may be the large

computational overhead required to carry on the order of 100 state variables.

I propose an alternative approach for the simulation of functional groups in biolog-

ical models, namely incorporating variability or uncertainty by allowing the plankton

parameters to be random variables with probability distributions that are allowed to vary

in time. The main idea is that a small number of variables can achieve a more flexible

representation of the plankton community, if their parameters are not fixed but stochastic

properties governed by probability distributions. This approach effectively allows one

phytoplankton variable to take on a range of different growth rates, sinking rates, etc.

mimicking the behaviour of different functional groups at different times. In combination

with observations and a data-assimilative framework, the uncertainty in the model can be

constrained by limiting the stochastic parameters to ranges that explain the observations

best. I accomplish this using the emulator approach described above.
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Most studies which combine biological modelling with the estimation of stochastic

parameters treat influences such as the varying plankton assemblage as error terms (Dowd,

2011). In these cases one aims to find a static distribution for the stochastic parameter of

interest. Stochastic parameters then induce uncertainty into the model state; the mean (or

median) model state represents the best estimate of the true state, while its variance (or

error estimate) captures the model uncertainty including the variations caused by changing

plankton assemblages. Here, my approach is different: using a time-series of observations,

I find the parameter values that best explain each observation. That is, parameter values

are allowed to change in time and the best state estimate is the model state associated with

the series of time-varying parameters.

For this purpose, I use a set of daily chlorophyll satellite images to obtain daily values

for two parameters of the biological model. I find that there is a strong time-dependence in

the optimal parameter values which follow a seasonal cycle. Chlorophyll state estimates

derived from the time-varying parameters are significantly closer to observed chlorophyll

values than those of a model simulation with optimized fixed parameters. The improvement

remains significant in a cross-validation experiment which I performed to avoid overfitting

the observations. This is evidence that the introduction of time-varying parameters can

achieve a more realistic representation of the biological dynamics in a typical biological

ocean model.

3.2 Methods

3.2.1 Biological Model and Parameters of Interest

The model domain is the Middle Atlantic Bight (MAB), a coastal region in the northwest

Atlantic that stretches from Cape Cod in the north to Cape Hatteras in the south (Figure 3.1).

The model is based on the Regional Ocean Modeling System (ROMS; Haidvogel et al.

(2008)) and consists of a physical model coupled with a biological component. Open

boundary conditions for temperature, salinity, sub-tidal frequency velocity and sea level

are taken from the larger-scale MAB and Gulf of Maine (MABGOM) regional model

described in Chen and He (2010). Further details of the physical model are described in Hu

et al. (2012). The biological component is described in Fennel et al. (2006); it simulates a

simplified nitrogen cycle and has been employed successfully in various modelling studies

(Fennel et al., 2008; Fennel and Wilkin, 2009; Previdi et al., 2009; Bianucci et al., 2011).
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Figure 3.1: Snapshot of the chlorophyll variable in the biological model. The left im-
age shows the surface concentration, on the right multiple slices of the 3-dimensional
chlorophyll field are placed over the bathymetry of the model region.

The model contains one state variable each for phytoplankton and zooplankton, as well

as variables for chlorophyll, nitrate, ammonium and small and large detrital nitrogen.

Chlorophyll is simulated separately from phytoplankton to account for the effects of

photoacclimation which allows phytoplankton species to regulate their chlorophyll content

based on the availability of light and nutrients (Geider et al., 1998). Here, all model runs

are for 1 year, starting on 1 January 2006 and ending on 31 December 2006. The initial

and boundary conditions for the biological variables are taken from a larger scale model

of the Northeast North American (NENA) shelf that uses the same biological component

(Fennel et al., 2006) as described in Hu et al. (2012). A spin-up time of 12 days is used

before the model is confronted with observations. The start of the simulations in winter, a

time when variation of the biological parameter values has little impact on the model state

(see results in Chapter 5) justifies the relatively short spin-up time.

Despite the relative simplicity of the biological model with only two plankton variables,

one for phytoplankton and one for zooplankton, it requires more than 30 physiological

parameters for the biological dynamics. Here I focus on only two of these parameters: the

maximum ratio of chlorophyll to phytoplankton carbon, and the maximum grazing rate

of zooplankton. These two parameters were selected based on a sensitivity study where

I compared the effect of variations in several candidate parameters on the chlorophyll



41

field. Specifically, I performed 1-year simulations for a baseline parameters set and for

parameters sets where one parameter was doubled and halved. The selection criterion

is based on chlorophyll sensitivity because I use chlorophyll satellite observations (see

Section 3.2.2 below).

The most sensitive parameters were found to be the maximum ratio of chlorophyll to

phytoplankton carbon and a parameter controlling the grazing rate of zooplankton. From

here onward, I will refer to the maximum ratio of chlorophyll to phytoplankton carbon as

θ1 and the maximum grazing rate of zooplankton as θ2. The physiological parameter θ1
sets an upper limit on the concentration of chlorophyll relative to phytoplankton biomass.

In the model equations (Fennel et al., 2006), the fraction of phytoplankton growth that is

devoted to chlorophyll synthesis, ρChl, is a function of θ1:

ρChl(θ1) = θ1
μXPhy

α I XChl
.

Here, XPhy and XChl are the phytoplankton and chlorophyll variables respectively and
μXPhy

α I XChl
is the ratio of achieved-to-maximum potential photosynthesis (Geider et al., 1997).

The parameter θ2 controls the growth and abundance of zooplankton, which interacts with

and is strongly dependent on the concentration of phytoplankton. It scales the zooplankton

grazing rate g according to:

g(θ2) = θ2
X2

Phy

kP +X2
Phy

,

where kP is the half-saturation concentration of phytoplankton ingestion. The model

equation that contains the sources and sinks of chlorophyll incorporates both ρChl(θ1) and

g(θ2), in its full form it is:

∂XChl
∂t

= ρChl(θ1)μXChl︸ ︷︷ ︸
growth

− g(θ2)XZoo
XChl
XPhy︸ ︷︷ ︸

grazing

−mP XChl︸ ︷︷ ︸
mortality

− τ (XSDet +XPhy)XChl︸ ︷︷ ︸
aggregation

.

Here XZoo and XSDet are the zooplankton and the small detritus variables respectively; the

constants mP and τ are mortality and aggregation parameters. Since both θ1 and θ2 directly

scale major growth and loss terms, it is not surprising that variations in either parameter

have a strong effect on the chlorophyll concentration.
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3.2.2 Chlorophyll Observations and Model-Data Comparison

Observations are essential in model calibration, optimization and validation. In all cases

model output is compared to observations or made to fit the observations according to

a chosen criterion. Thus both the observations and the choice of criterion can affect

the results. In Chapter 2, I formulated and analyzed several criteria tailored to model-

data comparisons of satellite observations, and suggested a new measure, the “adapted

grey block distance” (AGB) as preferable over more commonly used measures such as

the root mean square error. For the calculation of AGB, two images are compared at

different resolution levels by dividing them into subsequently smaller, square blocks and

determining the average intensity value for each block. For each resolution level, from the

coarsest resolution where one block encompasses the entire image, up to the finest where

each block is made up of a single pixel, the root mean square error is determined, weighted

and summed, resulting in the AGB distance value. When comparing an image derived

from the model to an observation image, the comparison at multiple resolutions can be

advantageous when noise is present in the observations and there are spatial offsets in the

images (Mattern et al., 2010b). The AGB is also adapted to deal with missing values in

images. Because of these qualities, I make use of AGB for the remainder of this chapter.

Note however, that the methods described in this chapter do not require the use of AGB,

and that any suitable model-data distance measure can be substituted.

The observations used in this chapter are daily images of surface chlorophyll concentra-

tions derived from the SeaWiFS satellite for the year 2006 (350 images are available). Each

image represents a daily average of one or more satellite scenes that have been interpolated

onto the model grid. Due to clouds and other effects that impair the view of the optical

satellite sensors, large portions of the images may be missing (compare, e.g., the sample

satellite images in Figure 3.2). In addition, noise is present in the satellite data set and

especially evident in coastal regions (see, e.g. the average chlorophyll development of the

data in the estuaries in Fig 3.7). The same observational data set used here was also used

in Hu et al. (2012) and is described in more detail there.

The distance value of AGB when comparing the satellite image at time index t with the

corresponding model chlorophyll field is denoted as

d(t, θ1, θ2) for t = 1, 2, . . . , nobs. (3.1)
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Figure 3.2: The time-dependent model-data distance function for the optimal fixed parame-
ter set and two smoothed versions of it. The two smoothed curves correspond to smoothing
intensities of 5 and 10 (dark red and green, respectively); the Gaussian smoothing windows
are shown on the right. Two data images illustrate one point of the distance function with
a high value and many missing values as well as one with a low distance function value
and few missing values. High distance values tend to be caused by little available data.
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Here, nobs is number of (not necessarily equally spaced) time steps with available observa-

tions (in this case nobs = 350). The dependence of d on the parameters θ1 and θ2 stems

from the influence of both parameters on model chlorophyll.

3.2.3 The Emulator: The Polynomial Chaos Expansion

Polynomial chaos is an approach to quantifying how uncertainty in a model’s inputs relates

to uncertainty in its outputs. Like other emulator approaches it uses deterministic model

runs given specific values of the uncertain inputs (i.e. the model’s parameters, initial

or boundary conditions, all of which will be referred to as parameters in the following).

The resulting model output for these specific parameter values is then interpolated in

parameter space to obtain approximations of the model output for all parameter values

within the considered range. Since each uncertain input has a probability distribution (a

prior distribution which must be specified) every model output that is dependent on the

uncertain inputs must also have a distribution (induced by the uncertainty in the input).

The polynomial chaos expansion provides a framework with which the properties of the

distribution of any output value, such as the mean and variance of the distribution, can be

approximated easily.

As the name suggests, polynomial chaos performs a polynomial interpolation in param-

eter space. This feature becomes useful in cases where one wants to obtain an estimate of

the model output for a parameter value without performing additional model simulations.

Using polynomial chaos, one can estimate any model output for the parameter values of

choice. These outputs could range from the phytoplankton concentration in a given grid

cell to the entire 3-dimensional chlorophyll field of the model. The interpolation feature of

the polynomial chaos expansion can also be used to approximate other functions which

depend on the uncertain inputs, e.g. I use it here to approximate the distance function in

(3.1).

A short introduction to the polynomial chaos theory follows (for recent, more detailed

studies see Xiu and Karniadakis (2003) and Marzouk and Najm (2009)). Since the focus is

on stochastic parameters I base this explanation solely on parameter inputs. While I include

two stochastic parameters, the methodology is described below for only one stochastic

parameter θ. By assuming independent stochastic parameters, the theory translates in

a straightforward manner into multidimensional parameter space (Xiu and Karniadakis,

2002).
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Let the function f(x, t, θ) be the property of interest, e.g. any model output or a function

thereof (e.g. the distance measure in (3.1) which is a function of the model’s chlorophyll

output). The function f may be dependent on space x, time t and the uncertain parameter

θ. In the polynomial chaos expansion f is approximated by a basis function expansion:

f(x, t, θ) =
kmax∑
k=0

ak(x, t) φk(θ) + εtrunc(θ) (3.2)

where ak(x, t) are expansion coefficients, independent of the uncertain input θ, and the

kth basis function φk(θ) is a polynomial of order k in the parameter space defined by

θ. The parameter kmax is the maximum order of polynomials used in the approximation

and determines the quality of the approximation and εtrunc is the truncation error. Without

cutoff, i.e. for kmax = ∞, the approximation is exact and εtrunc(θ) = 0. However, the

number of required model runs grows with kmax, so that computational constraints enforce

the use of relatively small values in typical applications.

k φk(θ) for θ ∈ [−1, 1] Nk

0 1 1
1 1 θ 1

3

2 1
2
(3 θ2 − 1) 1

5

3 1
2
(5 θ3 − 3 θ) 1

7

4 1
8
(35 θ4 − 30 θ2 + 3) 1

9

5 1
8
(63 θ5 − 70 θ3 + 15 θ) 1

11

6 1
16
(231 θ6 − 315 θ4 + 105 θ2 − 5) 1

13

Table 3.1: The first 7 Legendre polynomials φk and their associated normalization factors
Nk.

The choice of polynomials in equation (3.2) is dependent on the probability density

function of the parameter θ which is denoted p(θ). The polynomials are chosen to be

orthogonal with respect to p, so that

∫
S

φk(θ) φi(θ) p(θ) dθ = δk,i Nk . (3.3)

Here S is the support of p (the region where p(θ) > 0); the Kronecker delta function δk,i

is equal to 1 if k = i and 0 otherwise; Nk =
∫
S
φk(θ)

2 p(θ) dθ is a normalization factor

specific to the kth polynomial and independent of θ. All common distributions have well
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known sets of polynomial basis functions (Xiu and Karniadakis, 2002) and polynomial

chaos can be generalized further to accommodate arbitrary distributions of θ (Wan and

Karniadakis, 2006). For example, the corresponding set of orthogonal polynomials for

a θ with uniform distribution, which I will use in this chapter (see Section 3.2.4), are

the Legendre polynomials and φk is the kth Legendre polynomial. The first 7 Legendre

polynomials and their associated normalization factors are listed in Table 3.1.

i 1 2 3 4 5 6 7
θ(i) -0.9491 -0.7415 -0.4058 0 0.4058 0.7415 0.9491
ωi 0.1295 0.2797 0.3818 0.4180 0.3818 0.2797 0.1295

Table 3.2: The quadrature points θ(i) and associated weights ωi for Gauss Legendre
quadrature of maximum order kmax = 6.

To perform the basic polynomial chaos approximation in equation (3.2), one needs to

compute the coefficients ak. They are given by

ak(x, t) =
1
Nk

∫
S

f(x, t, θ)φk(θ) p(θ) dθ, (3.4)

which is approximated by a Gaussian quadrature as (Xiu and Karniadakis, 2002):

ak(x, t) ≈ 1
Nk

kmax∑
i=0

f(x, t, θ(i))φk(θ
(i)) ωi. (3.5)

Here θ(i) is a quadrature point in parameter space and given by the roots of φkmax+1 and

the scalars ωi are Gaussian quadrature weights (both are dependent on the choice of the

distribution of θ and the parameter kmax). Table 3.2 contains the quadrature points and their

weights for uniform θ and Gauss-Legendre quadrature with kmax = 6. From a computa-

tional perspective, it is important to note that the computation of the coefficients ak requires

the computation of f(x, t, θ(i)) at each quadrature point θ(i) for i = 0, 1, . . . , kmax. In other

words, kmax + 1 model runs are needed. Increasing the precision of the approximation by

increasing kmax by one, therefore comes at the cost of an additional model run.

One advantage of polynomial chaos lies in the straightforward way in which the uncer-

tainty in the input (the stochastic parameter θ) translates into the output (f ). Due to the

orthogonality of the polynomials, expected value and variance of f are straightforward to



47

calculate once the coefficients ak have been computed. Expectation and variance are given

by

E(f(x, t, θ)) = a0(x, t),

var(f(x, t, θ)) =
n∑

k=1

a2k(x, t) Nk. (3.6)

They represent the mean and variance of f introduced by the variation of θ. To obtain good

estimates of the full variance of f , e.g. for the purpose of creating estimates of model error,

it is important to capture all the error of the uncertain inputs and to choose appropriate

prior distributions for the inputs.

As mentioned, the above equations feature only one stochastic parameter θ. When

expanded to more than one parameter, the computational cost for polynomial chaos

increases exponentially with the number of stochastic parameters. For example, when

including nθ stochastic parameters to be approximated using polynomials of order kmax,

(kmax + 1)nθ model runs are required. Furthermore, if one desires to increase the order of

polynomials, the quadrature points change, so that completely new model runs will have to

be performed. However, it should be noted that the model simulations are only performed

once prior to any attempts at inference.

3.2.4 Polynomial Chaos Setup and Approximation

When implementing polynomial chaos, the factors that need careful considerations are

(1) the choice of uncertain model inputs (parameters), (2) the prior distributions assigned

to these inputs, and (3) the highest order of polynomials kmax for each input. In an ideal

scenario, one would take a fully Bayesian approach, that is treat all inputs that are not

completely known as uncertain and incorporate them into the polynomial chaos procedure.

However, complex models such as 3-dimensional ocean models have a large number

of inputs that are not fully known, e.g. many parameters, physical forcing, boundary

conditions, etc. To incorporate all these sources of uncertainty into the polynomial chaos

expansion would necessitate a large number of model runs and prove to be infeasible using

current computing resources.

Here, I undertake a targeted study focused on just two biological parameters. Once the

uncertain inputs are selected, assigning a prior distribution to the inputs requires careful

consideration, as one typically has little knowledge of the uncertainty (or error) of the
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Figure 3.3: The interpolated time-averaged distance function. Image (a) shows a contour
plot of the distance function with quadrature points (black crosses) and the global minimum
(blue star) which corresponds to the optimal fixed parameter set. A slice through the
interpolated function in (a) is shown in (b) as a green line in comparison to model results
(red pluses). The slice in (b) also illustrates the effect of lowering kmax, thereby using fewer
basis functions to approximate the average distance function.

inputs. Often, and the case here, one bases the prior distribution on previous experiments,

literature values or educated guesses. In the choice of kmax, one is again limited by

computational resources and faced with a trade-off between precision and number of

model runs. The optimal choice is dependent on the problem; in this chapter I found that

the functions and fields I chose to interpolate were well approximated by polynomials of

order 6 (see below).

For this chapter, the two parameters θ1 and θ2 (see Section 3.2.1) are considered to

be stochastic. As the prior distribution for θ1 and θ2 I used a uniform distribution and

set the lower and upper limits of the distribution as 0.25 and 1.75 times the parameters’

standard value, respectively. The standard values are taken from Fennel et al. (2006) and

turned out to be reasonably close to the optimal (fixed) parameter set for this study (see

Figure 3.3, Section 3.3.1.2). I chose the uniform distribution because of its finite support

which does not permit negative parameter values, as well as yielding a simple polynomial

chaos setup.2 Finally, I selected the maximum order kmax = 6 for both parameters. As a

2While model uncertainty estimates might benefit from a different parameter distribution, here I rely
on the polynomial interpolation aspect of polynomial chaos which is not very sensitive to changes in the
distribution. Polynomial interpolation is exact at the quadrature points and a change in distribution affects the
layout of the quadrature points in parameter space. Only a drastic change in the quadrature point layout can
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result (kmax + 1)2 = 49 model runs had to be performed. The 7 × 7 grid of quadrature

points in parameter space is shown in Figure 3.3.

After performing the necessary model runs, polynomial chaos allows for the approxi-

mation of any function that is dependent on the stochastic parameters. It can therefore be

used to approximate the distance function in (3.1) for the purpose of model-data compari-

son. Here, d takes on the role of f in equation (3.2), so f(x, t, θ1, θ2) = d(t, θ1, θ2). As

described in Section 3.2.3, the following steps are taken to approximate d. After the model

is run for the parameter values of each quadrature point, the distance function is computed

for each of the model runs at all time steps from 1 to nobs. The expansion coefficients ak(t)

specific to the distance function are then computed using equation (3.5). As the distance

function d is not dependent on x, the coefficients ak do not depend on x either. Now I

can use the approximation in equation (3.2) to approximate the distance function for each

value of θ1 and θ2 in their respective ranges.

Approximating multi-dimensional fields such as the surface chlorophyll (as in the

emulation experiment of Section 3.3.2.1 below) works in a similar way. The surface

chlorophyll values in the topmost model layer are extracted for all model runs at all time

steps. The extracted output, which is dependent on θ1, θ2, t and the two horizontal spatial

coordinates contained in x, is set equal to f(x, t, θ1, θ2). Surface chlorophyll specific

coefficients ak(x, t) are computed which are, like the surface chlorophyll field, dependent

on the spatial coordinates x. No recomputation of the polynomials φk(θ) is necessary to

obtain approximate surface chlorophyll values from equation (3.2).

3.3 Results

I hypothesized that temporal changes in plankton species composition manifest as shifts

in the parameters values of the biological model. In other words, I expect that parameter

values that shift in time and space will better explain the observations. The polynomial

chaos expansion allows one to obtain approximations of model output for any parameter

value within prescribed bounds. This property allows one to find optimal parameter

values with only a limited number of computationally costly model runs. Specifically, I

employed the polynomial chaos expansion to approximate the distance between observed

cause a strong effect on the polynomial interpolation but such a change would need to be caused by an equally
drastic change in the parameter distribution, e.g. a strong shift in the range of the uniform distributions.
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and simulated surface chlorophyll. First, I minimized the distance for the entire data set to

obtain global optimal parameters independent of time and space (referred to as optimal

fixed parameters in the following). Then I minimized the chlorophyll distance for single

(daily) observations individually and for different model regions to identify temporal

and spatial variations in the optimal parameter values. Both optimizations are based on

the same set of 49 model runs and further require only the computationally much less

demanding evaluations of the polynomial chaos-based interpolation.

3.3.1 Interpolating the Model-Data Distance Function and Parame-

ter Estimation

3.3.1.1 Smoothing the Distance Function

I obtained estimates of optimal parameter values by interpolating and minimizing the

time-dependent distance function d in (3.1). This function appears to be very noisy and

varies considerably from one day to the next (Figure 3.2), not necessarily due to bad model

output on days with large values of d, but because of a large number of missing values

(Figure 3.2).

In order to diminish the influence of outliers in my analysis and to create a more robust

distance function, I used a low-pass filter in the form of a Gaussian window to smooth

d. From here on, I use the term smoothing intensity to describe the amount of smoothing

that was applied to the distance function. The smoothing intensity is a positive integer

value which increases with the amount of smoothing. More precisely, twice the smoothing

intensity plus 1 is the width of the Gaussian smoothing window in days (I only use window

widths that are odd), i.e. a smoothing intensity of 0 refers to a window width of 2×0+1 = 1

and therefore no smoothing, while a smoothing intensity of 10 refers to a window width

of 2× 10 + 1 = 21. Examples of the smoothed distance function and the corresponding

Gaussian windows are shown in Figure 3.2. For simplicity, I do not remove any of the data

outliers from my analysis, eliminating the need to create an objective criterion for their

removal.

The objective of smoothing the distance function is to minimize the impact of outliers,

reduce overfitting and to improve the parameter optimization.

3.3.1.2 Optimal Fixed Parameters

Typical parameter optimization studies assume fixed parameter values, and the optimized

parameters are determined by minimizing the model-data discrepancy over the full set
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of available observations. I can do the same using the polynomial chaos expansion: To

obtain estimates of the optimal fixed parameter values with respect to the distance function

d(t, θ1, θ2) in (3.1), I eliminated the time dependence of d by computing its average in

time. I then used the polynomial chaos expansion to approximate the resulting average

distance function in parameter space as detailed in Section 3.2.4. The resulting distance

function is smooth and exhibits a clearly defined global minimum close to the center of

the domain defined by the ranges of θ1 and θ2 (Figure 3.3). Because the average distance

function changes more along the θ1-axis than in the direction orthogonal to it, I can deduce

that model chlorophyll is more sensitive to relative changes in the value of the maximum

chlorophyll to carbon ratio (θ1) than the zooplankton grazing parameter (θ2).

One can think of the inverse of the distance function as likelihood of the underlying

parameter values (an idea that will be revisited in the following chapter). The parameter

values that minimize the distance, maximize the likelihood. At this point only the maximum

likelihood estimates are considered. However, the emulator allows for the approximation

of the full likelihood function. I will take advantage of this for parameter estimation in

Section 3.3.4.2.

In order to gauge the quality of the polynomial interpolation of the distance function, I

performed a number of analysis model runs along a slice through the parameter domain

(green line in Figure 3.3(a)). A comparison of the approximated distances (light green line

in Figure 3.3(b)) with the exact distances obtained for the analysis runs (red symbols in

Figure 3.3(b)) reveals that the average distance function is generally well approximated by

the interpolation for kmax with only some edge effects typical of polynomial approximations.

This leads me to conclude that the position of the global minimum of the average distance

function in Figure 3.3(a) represents a good approximation of the optimal parameter values

with respect to the full data set. In the following I will refer to the parameter pair that

minimizes the interpolated average distance function as the optimal fixed parameters.

The analysis model runs can also help assess the convergence of the polynomial chaos

approximation. I chose kmax = 6 for the approximation in equation (3.2). The effects of

truncating the sum at lower orders (smaller values for kmax) are shown in Figure 3.3(b).

The results of the analysis model runs remain fairly well approximated for kmax ≥ 4, but

below that, the approximation becomes considerably worse. Interestingly, the position

of the minimum changes relatively little with the addition of higher order polynomials.
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Figure 3.4: Two-dimensional histogram of the position of the global minimum of the time-
averaged distance function in parameter space (compare Figure 3.2) for the bootstrapping
experiment with 1000 bootstraps described in Section 3.3.1.2. With decreasing bootstrap
size, the location of the minimum becomes more variable, especially along the axis
corresponding to the parameter θ2. The white star in the center of each image is a reference
point.

For the purposes of this chapter, the position of the minimum of the average distance

function is approximated well and choosing a higher kmax at the cost of additional model

runs appears unnecessary.

For a different data set or a subset of the data, the average distance function and the

position of its minimum is likely to change. It is desirable to gain an understanding

of the uncertainty in the position of the global minimum given in Figure 3.3. For this

purpose, I performed a bootstrapping experiment: I generated subsets of the observations

(the bootstraps) by randomly selecting a fixed number of satellite images from the 350

images that make up the complete observational data set. For each bootstrap, I calculate

the global minimum of the respective time-averaged distance function. For the relatively

large bootstrap size of 200 images, drawn without replacement, I see a tight clustering of

minima around the full data minimum (Figure 3.4(a)). With a decrease in bootstrap size,

the range becomes greater, especially along the θ2 axis. At the small bootstrap size of 10,

the minimum positions are distributed all along the selected range of θ2 (Figure 3.4(d)).

It is apparent that the optimal fixed parameter set is very much dependent on the subset

of data used in the optimization exercise and can vary considerably based on its choice.

In the following sections, I show that this dependence is mainly due to an underlying

time-dependence of the optimal parameters and not primarily due to the noise contained in

the data set.
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Figure 3.5: The parameter paths obtained by minimizing the time-dependent distance
function in each time step for 4 different smoothing intensities. The smoothing intensities
(0, 5 and 10) in panels (a) to (c) correspond to those shown in Figure 3.2.
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3.3.1.3 Time-Varying Parameters

Time-dependence of the optimal values of the physiological parameters θ1 and θ2 sug-

gests that there is a signal in the observations that the model cannot account for if the

parameter values are fixed. To uncover time-dependence, I return to the polynomial chaos

approximation of the distance function. In the previous section I used it to obtain a set

of optimal fixed parameters for the entire data set by minimizing the average distance

function. Using a very similar procedure, I can approximate the distance function for

each daily observation to obtain a set of optimal parameters for each day. In other words,

I used the polynomial chaos expansion to interpolate d(t, θ1, θ2) in parameter space for

t = 1, . . . , nobs and determine the global minimum of the function for each t. I performed

this procedure for the unsmoothed version of d as well as for versions that have been

smoothed at different intensities as described in Section 3.3.1.1. Then I arranged the

resulting parameter values for each smoothing intensity into a parameter path in time,

as shown in Figure 3.5. The path corresponding to the unsmoothed distance function

appears very jagged, dominated by high frequency variation and with little structure; as

the temporal smoothing increases the paths become more structured and a loop emerges. It

is important to note that the optimal parameter values obtained this way correspond to the

model simulations with fixed parameters. In other words, the optimal parameter values

at any date, say 15 August, correspond to a model simulation that has been running with

these fixed parameters until 15 August. It is dependent on the model if the parameter paths

obtained from these fixed parameter simulations are suitable as time-dependent parameters

of the model and translate into improved state estimates. For the model used here, this is

tested in experiments in Section 3.3.3, and the issue is further discussed in Section 3.4.

The structure of the parameter paths can be interpreted in a straightforward way. With

no smoothing, the procedure picks the optimal parameter set to match one satellite image

alone, including the noise contained within the image. The distance to the previous or

following image is not considered. As the distance function is noisy (see Figure 3.2), I

expect a high amount of noise in the daily optimal parameter values as well. The high

frequency variations in the daily optimal parameters are therefore likely local fits to the

noisy data. However, Figure 3.5 also shows clear evidence of a low frequency parameter

change visible at higher smoothing intensities. This low frequency signal reveals that there

is a time-dependence of the optimal parameter values that cannot be explained by the noise
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in the observations, indicating that the fit between model and observations can be improved

by allowing parameters to follow the low frequency signal using cross-validation.

These results also suggest that there is an optimal smoothing intensity, strong enough to

filter out the effects of the noise contained in the data, yet not too strong to also remove

the low frequency signal I am interested in. In the following section, I show how the

chlorophyll output of the model can be improved by using the low frequency parameter

paths. Based on a comparison with the observations I also determine the optimal smoothing

parameter that best isolates the low frequency signal.

3.3.2 Emulating Surface Chlorophyll

3.3.2.1 Polynomial Chaos-Based Emulation

In the previous section, I described how time-dependent parameter paths can be obtained

from the interpolation of the likewise time-dependent distance function. Here I utilize

these paths to obtain improved model estimates of surface chlorophyll fields. I use the

polynomial chaos expansion as an emulator, i.e. a system that allows me to obtain estimates

of the state of the ocean for a parameter combination I did not perform a model run for.

In this chapter, I emulate the full surface chlorophyll field using the polynomial chaos

based-interpolation.

As described in Section 3.2.4, the polynomial chaos expansion can be used to interpolate

virtually any model output in parameter space, including the time-dependent chlorophyll

concentrations in the surface layer of the model. This feature allows one to efficiently

interpolate the chlorophyll values along the parameter paths. I obtained daily pairs of

parameter values from one of the time-dependent parameter paths (see Figure 3.5). Then,

with the help of the polynomial chaos expansion, I estimate the surface chlorophyll fields

that correspond to the daily parameter values. This procedure results in an emulated

time-dependent surface chlorophyll field, which is dependent on the smoothing intensity

that underlies the chosen parameter path. Note that one can use the same procedure to

obtain estimates of depth-resolved chlorophyll fields or other biological properties along

the parameter paths.

I then compared the interpolated chlorophyll fields to the observations as in previous

sections, using the same distance measure d in (3.1) but replacing chlorophyll model output

with the interpolated model chlorophyll fields. This way, I obtain a distance value for each

day which, averaged in time, results in an average distance value. I computed average
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Figure 3.6: The average distance values of various experiments: The emulation exper-
iment (Section 3.3.2.1), the bootstrapping results for the cross-validation experiment
(Section 3.3.2.2) and the time-varying parameter runs (Section 3.3.3), each dependent on
the smoothing intensity. They are compared to the average distance value obtained by
the optimal fixed parameter run (Section 3.3.1.2) which is independent of the smoothing
intensity. For scale, two slices of the average distance function for fixed parameters (see
Figure 3.2) are displayed in the same plot.
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distance values for different smoothing intensities (blue diamonds in Figure 3.6).

The resulting average distance values based on the emulation experiment are smallest for

the parameter path without smoothing (Figure 3.3(a)), and increase with more smoothing.

They are directly comparable to the average distance value of the optimal fixed parameter

model run from Section 3.3.1.2. For smoothing intensities up to 45 all average distances

are well below the values of the optimal fixed parameter run (indicated by the dashed line

in Figure 3.6). In other words, the emulated chlorophyll fields are considerably better than

those of any model run with fixed parameters, which was to be expected. The fact that the

lowest distance is associated with the no-smoothing path, indicates that at least part of

the improvement is due to overfitting the data. At low smoothing intensities the emulated

values fit even outlying values and noise very well, completely disregarding the model

dynamics.

In the following section I perform a cross-validation to address this issue and determine

for which smoothing intensities overfitting is not a concern. The cross-validation also

allows me to identify the optimal level of smoothing.

3.3.2.2 Choosing the Optimal Smoothing Parameter in a Cross-Validation Experi-

ment

The jagged nature of the parameter paths at low smoothing intensities (Figure 3.5(a)) indi-

cates overfitting of the model to the observations. Cross-validation experiments provides a

technique to distinguish overfitting from real improvement in model performance. I follow

the typical approach where the observational data set is partitioned into two parts, the

training set and the validation set. The training set is only used to optimize the models

parameters, the quality of the model output is then assessed by a comparison with the

validation set. Overfitting the training set will not lead to a better model performance with

respect to the validation set.

I performed multiple cross-validation experiments in a bootstrap fashion. In each

experiment, the observations were split into training and validation set in the following

way. The training set contains the first and last satellite image as well as a number of

randomly selected images in between; the validation set consists of the remaining images.

I then performed 25 cross-validation experiments for each of five training set sizes (175,

150, 125, 100 and 75) ranging from half of the observational data set to roughly one

fifth. In each experiment, I determined the parameter path according to the procedure
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described in Section 3.3.1.3, but only using the training data set. This way I obtained

optimal parameter values corresponding to the time steps of the training data. I determined

the quality of these parameter values with respect to the validation data set in 3 steps: (1) I

linearly interpolated the parameter values corresponding to the training set dates in time

to obtain the parameter values for the validation set dates. (2) I used the freshly obtained

parameter values to interpolate the surface chlorophyll field in parameter space, yielding

a surface chlorophyll field for each validation set date. (3) With the standard distance

measure, I computed the distances of the surface chlorophyll fields to the validation data

and calculated the average distance.

The average distance values obtained through the above procedure are shown as red

dots in Figure 3.6, and exhibit a clear difference compared to the values of the emulation

experiment without cross-validation (Figure 3.6, blue diamonds). First of all, the cross-

validation distance values are generally higher than those of the emulation experiment. This

is to be expected from a cross-validation experiment which uses two separate data sets for

optimizing parameters and assessing the fit. More important is another difference: While

the setup without cross-validation has the lowest distance at a smoothing intensity of 0 and

then increases steadily, the cross-validation mean has a minimum at a smoothing intensity

of 10, corresponding to a smoothing window width of 21 days. The minimum is relatively

flat towards higher smoothing intensities but shows a sharper incline for intensities lower

than 5. This property is strong evidence for the presence of overfitting at low smoothing

intensities. For no or little smoothing the jagged parameter path describes the noise in

the observations and the parameter values do not generalize well to the validation data

set in the cross-validation. As the smoothing is increased, overfitting becomes less of a

problem and disappears. When smoothing is increased even further, useful information in

the observations is filtered out so that average distances increase again, albeit at a slow

rate. I therefore consider a smoothing intensity of 10, the position of the minimum of the

cross-validation mean curve, the optimal smoothing intensity for my emulation experiment,

and use it as the standard smoothing intensity for the emulation experiment in the following

section.

In this section and the previous one, I have shown that the time-dependent parameter

paths in combination with state interpolation can be used as a emulation tool that produces

state estimates which are considerably better than those of any fixed parameter model run.
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The improvement is not due to fitting noise in the data, as the smoothing intensity can

be adjusted to avoid the problem of overfitting; it is due to the presence of an underlying

time-dependence or seasonal cycle in the parameters. In the following, I assess the utility

of the parameter paths for obtaining time-dependent parameter values for the biological

model.

3.3.3 Model Runs with Time-dependent Biological Parameters

In addition to obtaining improved estimates of chlorophyll by means of a polynomial

chaos interpolation, the parameter paths can also be used in a more straightforward way.

One can perform biological model runs with time-varying values of θ1 and θ2 by plugging

parameter paths directly into the model. The values of the two parameters are taken from a

specific parameter path and so the results are again dependent on the smoothing intensities

used to obtain the path.

To implement time-varying parameters in the model I extended the parameter paths

which are defined only for the discrete time steps t = 1, . . . , nobs, to the interval [1, nobs]

by linearly interpolating the paths in time. In the numerical model this was implemented

by incorporating a simple lookup table for the parameter values at t = 1, . . . , nobs. At each

model time step the model looks up the values of θ1 and θ2 that correspond to the two

closest points in time and performs the time interpolation. By using different lookup tables,

one can perform model runs for different parameter paths or smoothing intensities. I set

the initial values of θ1 and θ2 to the first value of the parameter path and ran the model,

keeping all other settings unchanged. Again, I computed the average distance values for

the time-varying parameter runs (Figure 3.6, yellow squares).

For the time-dependent parameter runs, the lowest average distance is achieved at a

smoothing intensity of 5 (Figure 3.6, yellow squares), although there appears to be no strong

dependence on the smoothing intensity as all distance values are very closely grouped.

Generally, the time-dependent parameter results are in between those corresponding to

the emulation experiment described in Section 3.3.2.1 (Figure 3.6, blue diamonds) and

the optimal fixed model run results (Figure 3.6, dashed black line). One would expect

a degraded performance of the time-varying runs in comparison to the emulated results

given the memory of the model with time-dependent parameters, an effect that I will

reconsider in the discussion in Section 3.4. However, the improvement in average distance

in comparison to the optimal fixed parameter run is still large. In comparison with the
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Figure 3.7: The development of the average concentration of surface chlorophyll for the
model, the optimal fixed parameter run, the time-varying parameter run (with a smoothing
intensity of 5, corresponding to the best average distance result in Figure 3.6) and the
emulation experiment (with a smoothing intensity of 10, corresponding to the lowest
average distance in the cross-validation experiment in Figure 3.6). The analysis is divided
into 3 model regions which are displayed in the left panel. The corresponding absolute
residuals are shown in Figure 3.8.

optimal fixed values of θ1 and θ2, the model creates considerably better chlorophyll output

if I allow the values to change in time. As the model reacts relatively slowly to shifts in

parameter values and the average distance values of the different time-varying runs are

very similar I can conclude that these runs do not overfit the data. To further assess the

improvement I performed a follow up comparison of the estimated chlorophyll values

using the 3 estimators: the optimal fixed parameter run, the time-dependent parameter run

and the emulation experiment, in the following section.

3.3.4 Temporal and Spatial Analysis

3.3.4.1 Spatial Comparison of Chlorophyll Estimates from Model and Emulator

In order to asses how the differences in average distance values for the 3 runs, the optimal

fixed parameter run (Section 3.3.1.2), the time-dependent parameter run (Section 3.3.3) and

the polynomial chaos-based emulation experiment (Section 3.3.2.1), translate into differ-

ences in surface chlorophyll I calculated the regional chlorophyll averages for 3 regions of

the model domain, the estuaries, the coastal and the open ocean region (Figure 3.7). In the

estuaries, all model estimates of chlorophyll underestimate the observations (Figure 3.7(a)).
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Figure 3.8: The absolute residuals of the surface chlorophyll content shown in Figure 3.7;
monthly averages of the absolute residuals are displayed as thick lines. The grey area in
the background is the variance of the surface chlorophyll content based on equation (3.6).

This result is not unexpected, as the relatively coarse resolution model cannot adequately

represent estuarine dynamics. Additionally, satellite chlorophyll estimates might be biased

high due to high levels of coloured dissolved organic matter in the water which is known

to enhance the chlorophyll signal in satellite images (Mannino et al., 2008).

The model estimates agree better with the observations in the other two regions, the

coastal region and the open ocean. In both regions it is also apparent that the time-varying

parameter model run and the emulated state estimates show improvement over the optimal

fixed parameter run. A look at the deviations from the data, shown in Figure 3.8, reveals

that surface chlorophyll estimates are indeed most accurate for the emulated state estimates,

followed by the time-varying parameter model run and the fixed parameter model run.

Improvement is most evident in April, during the spring bloom. In a few instances, the

fixed parameter model produces the lowest absolute residuals in some regions of the

model. These are however offset by higher residuals in other regions (compare, e.g.,

the June residuals in Figure 3.8 across all 3 regions). This demonstrates that there is no

uniform improvement across the entire model domain, instead the improvement achieved
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by time-varying parameters depends on both time and space.

Generally, improvement is more likely where the parameter variation induces the greatest

variance into the surface chlorophyll state. This observation follows from a comparison

of the absolute residuals with the variance (see equation (3.6); shown as grey area in

Figure 3.8). Where the variance is high, a change in the parameter values has a large

effect on the surface chlorophyll concentration. This, in turn, allows for more effective

adjustments of the chlorophyll concentration by means of changing θ1 and θ2.

3.3.4.2 Spatial Differences in Optimal Parameter Values

Based on the optimal smoothing intensity found in Section 3.3.2.2, I now re-evaluate the

development of optimal parameter values in time and examine the uncertainty in the model

state. Instead of using the minimum as a point estimate for an optimal parameter value,

I am interested in a region of good parameter values. These values are “good” in the

sense that they are associated with low (but not necessarily minimal) distance values and

therefore high likelihood values. To determine good parameter values, I performed the

following steps: (1) For each day with available data, I interpolated the corresponding

distance function in parameter space using the polynomial chaos expansion. (2) For each

of the distance functions, I determined the region in parameter space that makes up 20%

of its lowest values (20% of the highest likelihood). (3) Finally, I computed the frequency

with which a given pair of parameter values is contained within the 20% region. I expect

that a good pair of parameter values is contained frequently in the 20% region of low

distance. The frequency of occurrence in this region, obtained for all parameter values,

therefore provides an estimate of the distribution of good parameter values which can be

visualized easily.

Estimates of the parameter distribution for each season (Figure 3.9(a)), obtained by

the procedure described above, correspond well to the parameter paths in Figure 3.5, yet

the distribution additionally reveals features hidden in the point estimates. For example

during the spring (AMJ; corresponding to April, May and June) there appears to be very

little sensitivity to changes in θ2, the zooplankton grazing parameter, and good parameter

values are distributed all along the θ2 axis. In summer (JAS; July, August, September),

the distribution changes in this respect, as low values of θ2 become less probable as good

parameter values. Seasonal differences are generally apparent, strengthening my previous

observations that optimal parameter values change in time.
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Figure 3.9: The distribution of good parameter values in parameter space depending on
season, the contours mark the regions of good parameters (regions in parameter space
containing consistently 20% of the lowest distance values throughout the season; compare
Section 3.3.4.2). The first panel shows a contour plot of the distributions for the entire
model domain, the other panels contain the distributions for the 3 regions shown in
Figure 3.7.



64

So far, I focused mostly on the change of parameters in time, but I can also use the

same methodology for an analysis of spatial differences. For a spatial analysis, I use the 3

model regions introduced in Section 3.3.4.1 and shown in Figure 3.7. All previous results

were based on the distance function introduced in (3.1) which uses the full data set to

compute distance values. By including observations from within one of the 3 regions

only, the distance values can be recomputed and one can gain an understanding of suitable

parameter values for that region. In order to detect spatial differences in good parameters I

performed the distribution estimation for the 3 regions again (Figure 3.9(b,c,d)).

Differences between model regions are apparent. In the estuaries, where chlorophyll is

always underestimated, good parameter combinations tend to increase chlorophyll by com-

bining high values of the chlorophyll-to-carbon ratio with low values of the zooplankton

grazing rate throughout the whole year. More temporal variation is evident in the other

two regions. In the shelf region, seasonal changes are most apparent and values of the

zooplankton grazing rate tend to be generally high, especially in spring and summer. This

result corresponds well to the tendency of the optimal fixed parameter run to overestimate

chlorophyll during those months. In the outer ocean region which exhibits the lowest

chlorophyll values, the model tends to be most insensitive to changes in the zooplankton

grazing parameter whereas a very narrow range of θ1 is preferred. The low amount of

chlorophyll combined with relatively little chlorophyll variability sustains only a small

population of zooplankton, thus the grazing parameter of zooplankton has a low impact.

Taken together, the results for the 3 model regions account for the full domain result

presented above. The distance measure that was used (AGB) has no knowledge about the

regions, thus the influence of the regions on the general result is mainly determined by their

size. Hence, the large coastal and open ocean regions far outweigh the influence of the

small estuaries region. Due to their different parameter preferences, the fit between data

and model remains relatively poor for the estuaries region (compare Figure 3.8). Despite

being small, the estuaries exert a constant influence on the parameter estimation to raise

chlorophyll levels. Here the polynomial chaos based interpolation shows its strength as a

model analysis tool.
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3.4 Discussion

In this chapter I obtained improved surface chlorophyll estimates from a biological ocean

model by treating two of its parameters as stochastic. This was achieved through the ap-

proximation of the model by a low dimensional emulator, the polynomial chaos expansion.

Using the polynomial chaos expansion in combination with a model-data distance function

I found that the probability densities of the two biological parameters have a clear time

dependence and their expected values follow a seasonal path through parameter space

(Figure 3.5).

At two points in this chapter high frequency variations were encountered; they appeared

in the distance function (Figure 3.2) and the derived parameter paths (Figure 3.5). In the

case of the distance function I attribute the high frequency signal to noise and missing

values in the chlorophyll images. The high frequency changes in the parameter paths

indicate that the same noise is overfitted by my optimization procedure. I confirmed this

inference in a cross-validation experiment (Section 3.3.2.2), where I observed a strong

increase in the average distance value for low smoothing intensities while the best results

were achieved at medium smoothing intensities (Figure 3.6). This result is evidence that

the improvement of my time-varying parameter state estimates is based on an actual signal

in the observations that is not captured in the fixed parameter run.

By treating only two biological parameters as stochastic and by adjusting them to fit the

observations, I do not account for the fact that model-data discrepancies are also caused by

other sources of model error, such as the other biological parameters, parameters of the

underlying physical model, physical forcing, boundary and initial conditions as well as the

functional form of the equations themselves. For example, the selection of the maximum

chlorophyll-to-carbon ratio (θ1) as a stochastic parameter and its optimization may adjust

for errors in the phytoplankton growth rate and errors in the model’s nutrient supply. A

fully Bayesian approach, which would incorporate all sources of model uncertainty, is

computationally infeasible. I chose to focus this chapter on one obvious shortcoming of

the model, the representation of phytoplankton and zooplankton as homogeneous groups.

Within this much more limited scope, I selected the two parameters that have the strongest

influence on the model’s chlorophyll concentration. Here, my motivation is simply that the

most sensitive parameters will likely be identifiable using chlorophyll data and yield the

biggest improvement in chlorophyll estimates.
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Figure 3.10: The development of the time-varying values of θ1 and θ2 (smoothing intensity
of 10, compare Figure 3.5) in relation to the development of the surface chlorophyll content.
In addition to θ1, panel (a) also shows the resulting carbon to chlorophyll (C:Chl) ratio in
the surface time-varying parameter run and the corresponding C:Chl ratio for the optimal
fixed parameter model run. For better comparison, θ1 is transformed to 1

θ1
which is also a

carbon to chlorophyll ratio and then scaled by a factor of 10.
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Although I have no detailed information on the phytoplankton species succession and

seasonal changes in grazing rate, I can attempt a qualitative comparison of the devel-

opment of θ1 and θ2 with typical seasonal changes in the plankton composition of the

Middle Atlantic Bight. In the model run with time-varying parameters, there is a positive

correlation between the inverse of the maximum chlorophyll-to-carbon ratio ( 1
θ1

) and the

achieved phytoplankton carbon-to-chlorophyll ratio (C:Chl) in the surface (Figure 3.10(a)).

In comparison to the model with optimal fixed parameters, the time-varying parameters

lead to an increase in C:Chl in the summer months following the phytoplankton spring

bloom. In the Middle Atlantic Bight dinoflagellates typically dominate the phytoplankton

community in the shelf region during summer (Marra et al., 1990) while diatoms are the

dominant phytoplankton group during the spring bloom (Barlow et al., 1993). Due to

a significantly lower C:Chl in diatoms in comparison to dinoflagellates (Chan, 1980), I

would expect a lower C:Chl during the spring bloom and a higher C:Chl in summer. While

the optimal fixed parameter run shows no marked increase in C:Chl as the bloom subsides,

there is a notable increase in the C:Chl induced by the time-varying parameters, consistent

with the expected C:Chl development (Figure 3.10(a)). This improved correlation does not

imply causation, as I have pointed out in the previous paragraph, yet it is consistent with the

hypothesis that variations in C:Chl are significantly affected by shifts in the phytoplankton

composition.

Evaluating the development of θ2, the zooplankton grazing parameter, is more difficult.

In the model, the zooplankton maximum occurs in the summer, is preceded by a notable

increase in θ2 in April (Figure 3.10(b)) and remains high for several months until November.

This pattern may reflect a correction of the seasonal cycle of zooplankton. The increase of

θ2 in April enhances zooplankton grazing and hints that the effect of grazing in the model

is too low at that time of the year. Kane (2005) found that the zooplankton species Calanus

finmarchicus, an important part of the zooplankton population, show a sharp increase in

abundance in early spring and suggest that it is a consequence of an import of zooplankton

into the Middle Atlantic Bight from neighbouring regions. Such a process is unaccounted

for in the biological model and could explain the development of θ2 in spring. Lack of

import causes an underestimation of zooplankton abundance and grazing in the model,

which is counteracted by an increased zooplankton grazing parameter. It should be noted,

however, that it may be difficult to constrain the zooplankton parameter using chlorophyll
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observations, given the indirect effect of changes in zooplankton grazing on chlorophyll.

In addition, zooplankton dynamics are known to be highly variable from one year to the

next, even under similar phytoplankton conditions (Flagg et al., 1994).

Given the self-imposed restriction of optimizing two parameters, the improvement

in surface chlorophyll estimates is considerable. By using the parameter paths as time-

varying parameter values, more improvement can be achieved than by changing θ2 (the

zooplankton grazing parameter and one of the models most sensitive parameters) from its

most disadvantageous value in the broadly selected parameter range, to its optimum value

(Figure 3.3). The results of the emulation experiment tend to be better than those of the

biological model simulation with time-varying parameters; the main reason for this is that

the emulation experiment is not bound by the model dynamics and changes in parameters

become effective immediately. In contrast, the time-varying parameter model run has a

memory of accumulated (or lost) chlorophyll and a change in parameter value needs some

time to translate into a changed surface state. I expect that the level of improvement to

be gained from time-varying parameters, will in general depend on the model’s memory,

where properties with fast response will be more prone to improvements.

I varied only two of the biological parameters and decided to keep the general setup

simple, e.g. by using the entire data set without excluding outliers. The distance function I

interpolated appears to be smooth and well approximated by the polynomial interpolation

(Figure 3.3). Consequently, I can still expect good results for fewer quadrature points in

parameter space, which has the benefit of decreasing the number of necessary model runs.

Yet even after a reduction of quadrature points it would be computationally expensive to

extend the analysis to more than a few parameters. Other emulator approaches can sample

parameter space in a more efficient, non-grid based manner (e.g. latin hypercube sampling

introduced by McKay et al. (1979) or a free selection of parameter values as in Hooten et al.

(2011)) and may be better suited for parameter estimation in higher dimensional spaces.

One advantage of the polynomial chaos technique is that it offers a straightforward way to

obtain model uncertainty estimates (see Section 3.2.3), which do not require an additional

analysis step. In contrast to other emulators that do not utilize basis functions, there is no

need to run Monte Carlo-based sampling techniques within the emulator framework to

obtain approximates of model uncertainty (integrals of interest can be evaluated directly

with the help of the polynomial basis functions).
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I focused this chapter on one specific data type, satellite images of chlorophyll, in

conjunction with one specific model-data distance measure, the AGB. The approach I took

to estimate optimal parameters and further obtain improved state estimates is very flexible

and allows for the use of other model-data distance measures (such as RMSE), other data

types (such as in-situ measurements) and combinations of different observations. Any

model-data distance measure suitable for the comparison of the data type of choice or a

(weighted) sum of multiple such distance measures would have to be substituted for the

distance function d in (3.1). The polynomial chaos expansion can then operate on the new

distance values without any further changes. In fact, the use of one or more new data sets

or new distance measures does not require new model simulations.

A great advantage of the polynomial chaos expansion is the amount of postprocessing

and analysis options. Once the necessary model simulations have been performed (in this

case 49 runs) various different analyses, from distance function interpolation, to spatial

analyses and chlorophyll surface state interpolations, can be performed without any further

model simulations. In addition to direct estimates of the model output, the polynomial

chaos expansion also provides estimates of the variance (equation (3.6)) of the output.

While it is not a measure for the full model error, knowledge of the variance can be useful

for analyzing the model output, for example, to gauge the impact of the parameter variation

on a specific model region or time. In my analysis, the variance (Figure 3.8) gives a good

indication where in space and time model improvement is possible by means of parameter

optimization. Given these advantages, I consider the polynomial chaos expansion a useful

tool for model analysis and the introduction of uncertainty into biological models.

This chapter offers some insights into general parameter optimization issues. The

average model-data distance function is well behaved and contains a clearly defined

global minimum (Figure 3.3), which even simple parameter optimization techniques will

find easily. Yet its smoothness hides the fact that the optimal parameters for individual

observations are widely scattered in parameter space (Figure 3.5). Part of the reason for

the wide spread of optimal parameter values is the strong underlying time dependence.

Was I to optimize the model with fixed parameters using only satellite data from spring

months, I would get significantly different results than by using fall data (Figure 3.9). By

optimizing the model with a full year’s worth of observations the fixed parameter values

fall somewhere in between the optimal seasonal values. For this chapter, only one year
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of daily satellite observations was used. One of my next steps will be to analyze if the

parameter paths generalize well for other years.

3.5 Conclusions

The model-data fit of a typical biological ocean model can be greatly improved by allowing

biological parameters to vary in time. I obtained the parameter values of two biological

parameters by minimizing a time-dependent distance function using an emulator-based ap-

proximation. State estimates that are based on the time varying parameters fit observations

much better than those gained from the optimal fixed parameter run. This improvement

is not due to overfitting the data, instead there is a low frequency variation present in the

parameter values: The two biological parameters analyzed here appear to follow a seasonal

cycle in parameter space in the mean. The development of at least one of the parameters

matches patterns observed in plankton dynamics in the Middle Atlantic Bight.

Beside temporal differences, I also detect spatial differences of optimal parameter values

for selected model regions. The estuaries and coastal and open ocean regions in the

model domain show clear preferences for distinct parameter values. The polynomial chaos

expansion can help identify spatial differences, detect model regions with a generally bad

fit to the data and assess their influence on optimal parameter values.

The polynomial chaos expansion proved to be a versatile tool for the optimization

and analysis of the biological model. While computational cost limits the number of

parameters one can analyse jointly to just a few, large gains can be achieved by analysing

only two parameters to which the model is sensitive. The number of postprocessing options

is great: model uncertainty estimates can be obtained directly, and multiple parameter

estimations with different data sets can be performed efficiently without the requirement

for any additional model runs.



CHAPTER 4

PARTICLE FILTER-BASED DATA

ASSIMILATION FOR A 3-DIMENSIONAL

BIOLOGICAL OCEAN MODEL AND

SATELLITE OBSERVATIONS

4.1 Introduction

Numerical ocean models are growing in their capabilities and their significance for ocean

research and prediction. At the same time, an ever larger number of observing platforms,

from underwater observatories to satellites provide an unprecedented wealth of ocean

observations. Data assimilation procedures, which combine models and observations,

represent the principal means by which a large number of observations can be used to

improve model estimates and forecast abilities, and quantify uncertainty. Beside emulator-

based methods which were introduced in the previous chapter, two major categories of

data assimilation methods are: (i) variational methods, such as 4DVAR (Bennett, 2002),

and (ii) ensemble methods, such as the ensemble Kalman filter (EnKF) (Evensen, 2009).

Ensemble, or sample-based, approaches have become popular in recent years due to their

relative ease of implementation, and their straightforward treatment of model error. They

treat the data assimilation problem from a probabilistic perspective, viewing dynamical

prediction as a Markov process, and the blending of model predictions with observations

from a Bayesian perspective (Wikle and Berliner, 2007).

Particle filters represent a very general class of ensemble-based statistical data as-

similation techniques that offer complete solutions to nonlinear and non-Gaussian data

71
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assimilation problems (Ristic et al., 2004). Unlike the EnKF, there are no restrictive

assumptions about the probability distributions (the EnKF assumes that the prediction and

filtering distributions are normal, and that the likelihood function is linear and normal).

When these assumptions are violated the EnKF solutions are sub-optimal (van Leeuwen,

2010), which has been demonstrated for nonlinear systems (Dowd, 2007). Hence, the

generality of the particle filter makes it attractive for application to the complex, highly

nonlinear models encountered in oceanography and meteorology. Yet, particle filters have

been applied infrequently due to practical problems in the ensemble representation in high

dimensional applications (van Leeuwen, 2009, see also discussion in Section 4.5). Here,

I present a particle filter that focuses on parameter and chlorophyll state estimation for

a 3-dimensional biological ocean model, a large-scale system with a high-dimensional

state space. In this application a number of modifications are introduced that improve the

particle filter’s robustness and allow for effective data assimilation.

As a basis, I use sequential importance resampling (SIR; Gordon et al., 1993; Kitagawa,

1996), the most standard particle filter algorithm. Like all particle filters, SIR is a sequential

or recursive technique which assimilates observations in sequence, a setup that is suitable

for online estimation, i.e. forward operation and prediction. For the purpose of state

estimation, particle filters use an ensemble of model simulations, run in parallel, that

allow for the approximation and propagation of model uncertainty. While applications of

other ensemble techniques, especially the EnKF, are numerous in oceanography (Ciavatta

et al., 2011; Hu et al., 2012), most SIR particle filters have only been applied in the

context of relatively simple models (Dowd, 2007; Mattern et al., 2010a) or using synthetic

(typically model-generated) observations (Annan and Hargreaves, 2010) which do not

contain outliers or observation errors. In this chapter, SIR is applied to a realistic 3-

dimensional biological ocean model of the Middle Atlantic Bight in the North Atlantic

(Hu et al., 2012; Mattern et al., 2012), and used to assimilate daily satellite observations

of chlorophyll derived from ocean colour (see Mannino et al., 2008).

The model’s state space has more than 2 million dimensions and I evade problems posed

by the high dimensionality by allowing errors in a few select biological parameters only.

By ignoring model errors arising from other sources, such as physical model inputs, the

procedure is effectively operating in a much lower dimensional error subspace. While

only two biological parameters are selected to contain errors in this application, the error
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subspace approach can be easily extended to more parameters and other stochastic inputs.

My goal in this chapter is to explore this particle filter configuration and identify effective

approaches that allow me to obtain reliable and improved model chlorophyll and biological

parameter estimates through data assimilation.

The approach for particle filter-based data assimilation I take in this chapter is motivated

by previous research. In Chapter 3, the same ocean model and the same set of observations

is used to perform data assimilation using polynomial chaos, a statistical emulator technique

(introduced by Wiener, 1938). I obtained both chlorophyll state estimates and biological

parameters estimates from the emulator. The model and observations from Chapter 3 are

used as a suitable test bed for state and parameter estimation.

Results from the previous chapter also influenced the particle filter implementation. In

Chapter 3, I found that the optimal values of the biological parameters exhibit a strong

seasonal cycle and that these time-dependent parameters explain the data considerably

better that the optimal but fixed parameters. This motivated my implementation of state-

augmentation (Section 4.3.2) which permits time-dependent parameter estimation within

the particle filter framework. In Chapter 3, I also found that the optimal parameter values

vary strongly due to the presence of outliers and errors in the observations. These findings

gave rise to my implementation of the asynchronous data assimilation (ADA; Section 4.3.4)

and the implementation of the SIR weighting procedure (Section 4.3.1), both of which help

to increase the robustness of the particle filter, allowing it to be effectively implemented

for a realistic 3-dimensional biological ocean model using real satellite observations.

4.2 Methods

4.2.1 Particle Filtering Overview

Before presenting my particle filter implementation, a short overview of the basic particle

filtering procedure is provided here. More detailed descriptions of particle filters and some

of their extensions can be found in Ristic et al. (2004); Dowd (2007); van Leeuwen (2009).

For particle filters and ensemble-based data assimilation techniques in general, models

are considered to be stochastic, i.e. the model state is represented by a multi-variate

probability distribution. This probability distribution is approximated with an ensemble of

particles. Each particle, or ensemble member, is a particular model state and represents a

sample from the probability distribution of the model state. Starting with an initial ensemble
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of particles, sequential data assimilation techniques perform a sequence of assimilation

steps to propagate the ensemble forward in time and update it with information from

observations as they become available. Each assimilation step consists of two distinct

sub-steps: the forecast step, and the observation update step.

The forecast step simulates the time evolution of the ensemble. Each particle is moved

forward in time with the numerical model. For this purpose, the model state associated

with each particle is used as an initial condition for the model and a model simulation is

started for each particle. The model simulations are run until the next point in time with

available observations and a new ensemble is formed from the most recent model states.

In the subsequent observation update step, the new ensemble is updated with information

from the newly available observations. This update typically accounts for observation

errors as well as model uncertainty which is derived from the ensemble. While the forecast

step is conceptually the same in all sequential techniques, including the EnKF, the filters

differ in their implementation of the observation update step.

The SIR observation update step consists of a weighting of each ensemble member

dependent on the current observations and a subsequent weight-based resampling. The

weights assigned to each particle represent their distance from the current observations.

In particle filter theory, the weight of the ith ensemble member xi
t given the current

observation yt is equal to the likelihood p(yt|x(i)
t ) (the probability of the observations

given the ensemble member). In practice, this likelihood is often unknown (and in case of

high-dimensional model states, typically infeasible to compute) and thus the weights need

to be approximated.

After the weights have been determined, a weight-based resampling of the ensemble is

performed. An ensemble member with high fidelity to the observations, and therefore a

large weight, has a higher probability of being drawn during the resampling than a lower-

weighted particle. The sampling is performed with replacement so that particles can be

drawn more than once. This means that at the end of the resampling the new ensemble will

typically include multiple replicates of high-weighted particles, while some low-weighted

particles do not get resampled (in other words, it is a weighted bootstrap). Through this

procedure, the current observations have now been assimilated into the updated ensemble,

and the ensemble-approximated model distribution moved towards the observations. The

model-generated states that enter the observation update, leave it intact and remain true to
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the model dynamics, as the resampling introduces no potentially undesirable shifts in the

ensemble members.

4.2.2 Model and Chlorophyll Observations

In this chapter, the particle filter is applied to the same 3-dimensional physical-biological

ocean model introduced in Section 3.2.1. To enable direct comparisons between the

particle filter and the emulator approach introduced in the previous chapter, the same set of

satellite chlorophyll observations (see section 3.2.2) is used for particle filter assimilation

as well.

Assimilation of daily images tests the particle filter’s ability to deal with outliers and

missing pixels. Large portions of the images can be missing due to clouds and other effects,

so that some images contains only localized information about parts of the domain. In

addition, significant noise is present in the satellite data set, especially close to the coast.

As noted in Chapter 3, high noise levels and the abundance of dissolved organic material

impede data assimilation and parameter estimation in the estuaries. For this reason, the

estuaries are excluded from the assimilation experiments presented here.

4.2.3 Biological Parameters of Interest

An important part of the particle filter implementation, the ensemble generation, relies on

treating two selected parameters of the biological model as stochastic. In this section I will

briefly describe the role of the two parameters in the model and motivate why I selected

these parameters in particular.

The first parameter of interest, θ1, is the phytoplankton maximum chlorophyll-to-carbon

ratio, it regulates the mechanism by which phytoplankton can adapt their chlorophyll

content. The second parameter θ2 is a zooplankton grazing parameter which controls

the rate at which zooplankton consume phytoplankton. While θ1 affects the chlorophyll

variable in the model directly, θ2 has a more indirect effect on chlorophyll, through altering

the grazing pressure on phytoplankton and hence their abundance. My motivation for

selecting these two parameters is twofold: firstly, the model exhibits a strong sensitivity to

relative changes in both parameters, especially θ1. Consequently, even small parameter

adjustments can have a large effect on the chlorophyll output of the model. Secondly, both

parameters are physiological plankton parameters known to vary greatly among species

and can thus be considered stochastic with a high uncertainty. Varying these parameters
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presents a suitable way to produce variable chlorophyll output in the model. While it

would be easy to incorporate more parameters into the particle filter procedure, I limit the

analysis to these two parameters because their effects were examined and their optimal

values were identified in Chapter 3. This allows me to compare and contrast the particle

filter-based parameter estimates to previous results.

4.3 Particle Filter Implementation

In this section, I describe the aspects of the particle filter implementation that are important

to this application and deserve special attention. While the SIR resampling is straightfor-

ward to implement, the computation of the weights can be implemented in various ways

and needs careful consideration.

In this application, each particle in the ensemble is a realization of the biological state of

the system described in Section 4.2.2, consisting of the concentrations of the 7 biological

state variables in each of the 82×130 (horizontal)×36 (vertical) = 383760 grid cells of the

model. As the state of the physical ocean model is unaffected by the biological parameters,

it remains deterministic and does not need to be considered by the SIR procedure or

even included in the state vector. With only the biological variables included, a state

vector is 7× 383760 = 2686320 dimensional. For some of my particle filter experiments,

I additionally append two model parameters to the state, this is described in detail in

Section 4.3.2.

4.3.1 SIR Weighting

In the resampling step of the SIR procedure, a weight is assigned to each ensemble member

proportional to its likelihood (see Section 4.2.1). In practice, the likelihood is typically

unknown and can only be approximated. In my particle filter implementation, I base the

computation of the associated weights on the assumption that the likelihood is inversely

related to a suitable distance measure for model state and observations.

In this application, each observation is a satellite image, typically more than 1100

surface chlorophyll concentration values arranged in a matrix which also contains missing

values (on average, the proportion of missing values is 75%). The corresponding surface

chlorophyll field in the model can easily be transformed into a similar image at the same

resolution, reducing the model-data comparison to the problem of comparing two images
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Figure 4.1: A typical ensemble of values for θ1 illustrating the effect of the weighting
parameter aweight. Black dots show the weight of ensemble members during resampling
over the corresponding parameter value for a weighting parameter aweight of 1 (a), 16 (b)
and 128 (c). Weights are obtained according to the procedure described in Section 4.3.1.
Also shown are the ensemble mean and standard deviation of θ1 (dashed and solid red
lines) and the weighted ensemble mean (dotted blue line). The distance between weighted
and unweighted ensemble mean acts as an indicator for the ensemble shift that can be
expected from the SIR resampling. For aweight = 1 the ensemble is not likely to shift
significantly after resampling, due to the small differences in weights. By increasing aweight,
differences in weight become more pronounced, increasing the expected ensemble shift.
For aweight ≤ 128, one or just a few ensemble members carry high weights, increasing the
chance of ensemble collapse.

which typically contain missing values. For the purpose of image comparison, I employ

the adapted grey block (AGB) distance measure introduced by Mattern et al. (2010b)

which I also used in Chapter 3. To compute the AGB distance value, two images are

compared at different resolution levels by dividing them into successively smaller blocks

and computing the mean value of the pixels within each block. The root mean square error

(RMSE) is then computed at each resolution level, from the highest resolution, where each

block consists of only one pixel, to the lowest, where a single block encompasses the entire

image. For the purpose of comparing satellite images, this multi-resolution approach has

proven to be advantageous over standard approaches such as the regular RMSE (Mattern

et al., 2010b) because it is less sensitive to noise and adapted to work with missing values

in the images. However, my SIR weighting implementation is flexible and any suitable

model-data distance measure could be used.

To transform the AGB distance values into weights, I use the following procedure:
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(1) Compute di = dAGB(x
(i)
t , yt), the AGB distance between the current satellite observa-

tion and ensemble member i for each i = 1, . . . , nens.

(2) Calculate raw weights as the inverse of the AGB values: ŵ(i) = 1
di

.

(3) Normalize the raw weights and transform them according to: w̃(i) =
(

ŵ(i)

maxj ŵ(j)

)aweight

,

where aweight is an adjustable parameter that spreads (or contracts) the distribution of

weights (discussed in more detail below).

(4) Determine final weights as w(i)
t =

w̃
(i)
t

∑nens
j=1 w̃

(j)
t

, so that their sum is one.

The parameter aweight in step (3) adjusts the weights before they enter the resampling

process. It does not change their relative ranking but affects their variance. The parameter

aweight brings the weights closer together (for aweight < 1) or spreads them apart (for

aweight > 1). In practice, such an adjustment is needed if the values of the weights are

too similar or differ by orders of magnitude. The former is the case in this application:

typical values of di (step 1) are strongly dependent on the satellite observation but do

not vary much across the ensemble of model simulations. Consequently, the normalized

raw weights obtained in step (2) are tightly clustered (more than 70% of the raw weights

are between 0.9 and 1.0 during a typical assimilation run). If no adjustment is made

to the weights before resampling takes place (beside the normalization in step (4)), the

ensemble members are resampled at almost equal probability. As a result, the effect of the

resampling on the ensemble is very small. This is illustrated by the example in Figure 4.1.

For aweight = 1, which corresponds to no weight adjustment, the SIR resampling will have

almost no effect even in cases where parameter and weights are strongly correlated, i.e. an

increase in θ1 is accompanied by an increase in weights (Figure 4.1(a)). For higher values

of aweight, ensemble members with higher weights become more prominent (Figure 4.1(b)),

up to a point where one ensemble member dominates the ensemble (Figure 4.1(c)). In

the latter case the ensemble is likely to collapse to just a few unique particles. The

adjustment of aweight has a similar effect as changing the observation error distribution,

which is done, for example, to decrease the effects of outliers (van Leeuwen, 2003). In this

application, both the true likelihood and the value of aweight that would best approximate

the likelihood are unknown. Furthermore, I am limited to a small number of particles,

so that it is essential to select aweight to extract a maximum amount of information from

the observations while avoiding ensemble collapse – even though this step introduces
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subjectivity into the weighting procedure. I set aweight = 16 for this application, based on a

series of experiments in which I simulated thousands of assimilation steps, measured the

average raw ensemble weight after resampling (see step(2)) and estimated the probability

of ensemble collapse.

The effects of this weighting implementation on the ensemble structure and its develop-

ment from one assimilation step to the next are visualized in Figure 4.2 for a typical SIR

simulation with 10 ensemble members. It gives a detailed view of the time history of the

particles and the effect of the weights on the resampling of the ensemble. By tracing each

particle back to its “parent” particle, the particle it was resampled from, I determine that

7.5 is the average number of assimilation steps it takes to trace a given ensemble back to

its last common “ancestor” particle (see green line in Figure 4.2). This number indicates

that the expected number of ensemble collapse events is relatively low and that particles

with high likelihoods do not get too much weight. At the same time it is apparent from

Figure 4.2 that the weighting is effective at steering the ensemble.

4.3.2 State-Augmentation

State-Augmentation is an extension that permits parameter estimation within the particle

filter framework and was introduced by Kitagawa (1998). In this extension, the model

state xt is augmented by a vector of model parameters, θt ∈ R
nθ to form

x�
t =

(
xt

θt

)
.

The new, augmented state vector replaces the regular state vector in the particle filter pro-

cedure (Section 4.2.1) so that the ensemble of state vectors now carries information about

parameter values, which are weighted and resampled along with all other information con-

tained in the vector. The process of resampling parameter values yields a time-dependent

parameter distribution which can adapt to improve the fit to the observations. Suitable

parameter values produce good state estimates which are characterized by being similar

to the observations. This, in turn, results in high likelihood values for state vectors with

suitable parameter values, ensuring that they are resampled with a higher probability than

less suitable ones. As a result, after a number of resampling steps, the ensemble should be

populated by the parameter values that best fit the observations (Dowd, 2011).

In this application I augment the state vector by nθ = 2 parameters. As described in
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Figure 4.2: A detailed view of the development of θ1 during a typical particle filter
experiment with an ensemble size of nens = 10 over 68 assimilation steps. Each red dot
marks one particle, the area of the dot is proportional to its weight during the resampling.
The thin lines connect each particle to its “parent” particle from which it was resampled
and its “children” which are resampled from it. The lines highlighted in green trace the
last ensemble at assimilation step 68 back through their ancestors. The (vertical) parameter
value offsets between a parent particle and its children are due to the parameter noise that
is applied during resampling. The ensemble median and the region between the 0.1 and
0.9 ensemble quantiles are displayed in the background (dark grey line and light grey area,
respectively). This, less detailed view is used in Figures 4.5 and 4.6. The data for this plot
is taken from one of the particle filter experiments in Section 4.4.5, it uses the standard
particle filter configuration.
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Section 4.2.3, these parameters are two biological parameters, the maximum carbon-to-

chlorophyll ratio (θ1) and the maximum zooplankton growth rate (θ2). Initial values for

the parameters are drawn from parameter specific uniform distributions, which are listed

in Table 4.1 and based on parameter ranges used in Chapter 3. In my implementation of

the particle filter procedure, the parameters in the state vector are treated the same way as

all other entries in x�
t , with the exception that perturbations of the model state only affect

the parameters.

4.3.3 Ensemble Generation and the Error Subspace

Perturbations to the state vectors are necessary in my particle filter setup to prevent the

ensemble from degenerating. If no perturbations are introduced after resampling, two

replicates of the same ensemble member would result in two identical model simulations,

since both model state and parameter values are resampled together. Over the course

of multiple assimilation steps, replicates of ensemble members with high weights could

replicate further until the ensemble degenerates into a collection of one or just a few unique

ensemble members. This is referred to as ensemble degeneracy or ensemble collapse

and presents a well-known issue with particle filters (Dowd, 2006). Many schemes have

been developed to address this problem (van Leeuwen, 2009). Here, I simply perturb the

parameters that are part of the augmented state. This approach avoids modifications to

the rest of the state vector, thus keeping the resampled model states true to the model.

While the model contains other error sources, introduction of noise through parameters

and other model inputs is an effective way to add uncertainty into the model results, and is

explored in more detail in the following chapter. This approach has the additional benefit

of avoiding shocks to the biological model by creating consistent biological states.

In my implementation, I vary the augmented parameters by adding normally distributed

random noise to the parameter values after they have been resampled. The standard

deviation of the noise is parameter-specific and listed in Table 4.1. In the rare cases where

the noise causes a parameter value to become negative, the sign of that value is switched,

ensuring positive parameter values. No measures are taken to prevent parameter values

from exceeding any upper limit. From an implementation point of view, it is important that

enough noise is added to each parameter to effectively counteract ensemble degeneracy,

but not so much that state-augmentation becomes meaningless. That is, if the addition of

noise causes the parameter values to deviate far from their original values, the positive
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effect of resampling the parameters will be lost.

The evolution of the ensemble and its error sources can be summarized in a state-space

equation. With state-augmentation, the state-space equation of this application is

(
xt+1

θt+1

)
=

(
Fmodel(xt, θt)

θt

)
+

(
0

εθ

)
,

where Fmodel represents the model which propagates the biological state xt from one

assimilation time step to the next, using the parameters in θt. The parameter vector θt is

only modified by the additive error term εθ (as described above), which allows it to adapt

to the observations through the filter-based estimation procedure. Unlike the parameters,

no error is introduced to the biological state directly.

In this application, I know that time varying values of θ1 and θ2 can describe the data

significantly better than the optimal but fixed parameter set (see Chapter 3). To allow

the particle filter to capture the time dependence of suitable parameter values, I choose

a relatively high standard deviation for the parameter noise εθ, permitting the parameter

values to easily readjust in the course of assimilation (Figure 4.2).

The variation of θ1 and θ2 gives rise of the idea of an error subspace: all of the error

introduced into the ensemble originates in perturbations of these two parameters. Therefore,

the particle filter ensemble needs to approximate the 2-dimensional parameter distribution,

rather than the much higher dimensional distribution of the state space. As a consequence,

I may expect good representation of the distribution even for a relatively small ensemble.

One shortcoming of this approach is that it is based on the assumption that the model

error can be explained by a few parameters (here: θ1 and θ2) alone, although there are

numerous other error sources (e.g. other parameters, boundary and initial conditions, or

the model’s spatial and temporal discretization) – a point that is discussed in more detail in

Section 4.5. However, good results can be expected from the error subspace approach if

the parameters that are varied are major sources of model error that can induce enough

variability into the ensemble to avoid its degeneration. From Chapter 3, I know that values

of θ1 and θ2 vary greatly and also that they have a strong impact on the observed variable

chlorophyll. Thus, the two parameters fulfil the requirement of being major error sources

with regard to model chlorophyll.
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4.3.4 Asynchronous Data Assimilation

Particle filters that assimilate observations sequentially, and one-by-one, are typically

very sensitive to outlying observations which can induce strong, undesired shifts of the

ensemble. To increase the robustness of the particle filter in the presence of outliers, data

can be assimilated asynchronously, i.e. not individually as each observation becomes

available, but as a set of observations at a later point in time. Many implementations

of asynchronous data assimilation have been developed for sequential techniques, e.g.

for particle filters (Godsill et al., 2004; van Leeuwen, 2009; Dowd, 2011) and the EnKF

(Evensen and van Leeuwen, 2000; Sakov et al., 2010) and are often referred to as fixed

lag smoothers as they are meant to smooth the evolution of the ensemble and remove

undesired shifts. The general idea is to run the model forward, collect several observations

and assimilate them into the model together.

Here, I implemented a simple asynchronous data assimilation (ADA) scheme for the

particle filter mainly because the noise level in the satellite observations is high and they

contain a large number of missing values. The latter may cause a single image to contain

only localized information about part of the domain. Both factors contribute strongly to

the rapid changes of optimal parameter values (see Figure 3.5).

The ADA procedure is as follows:

(1) Initialize the counter variable ncounter = 0 and start the regular SIR particle filter

procedure.

(2) Proceed to the next forecast step and increase ncounter by 1.

(3) If ncounter ≤ nADA, compute the weights for the current observation but skip SIR

resampling, and continue to step (2).

(4) Otherwise, compute the weights for the current observation and collect the nADA

previous weights, average them for each ensemble member and use the average weight

to perform SIR resampling. Continue to step (1).

Note that the model does not need to be stopped and restarted when no resampling

occurs. It is sufficient to store model output at the time steps corresponding to the

available observations, so that the weights can be computed when a full assimilation step is

performed. The above procedure represents a simple way to combine nADA+1 observations
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name section nens S-Aa ADA nADA trunc. dist.b nrep
c

reference simulation 4.4.1 the reference simulation does not use SIR

1 baseline 4.4.2 20 � � 4 9

2.1 no ADA 4.4.3 20 � – 3

2.2 strong ADA 4.4.3 20 � � 9 5

3.1 no state-augmentation 4.4.4 20 � 4 1

3.2 truncated baseline 4.4.4 20 � � 4 � 1

3.3 truncated, no S-Aa 4.4.4 20 � 4 � 1

4.1 nens = 10 4.4.5 10 � � 4 3

4.2 nens = 5 4.4.5 5 � � 4 4
a state-augmentation
b using the truncated distribution
c number of replicates

Table 4.2: Configuration of the particle filter experiments.

into one assimilation step. Outlying observations still enter the SIR resampling but their

effect on the ensemble is greatly reduced by the averaging process. The effect of this ADA

scheme are assessed in Section 4.4.3.

4.4 Experiments and Results

4.4.1 Particle Filter and Model Setup

I use the following basic setup for all experiments. Unless noted otherwise, my experiments

are particle filter simulations for the year 2006. I start the model simulations on January 1st,

after an adjustment phase of 10 days the 350 daily satellite observations are assimilated into

the model. The model simulations are stopped on December 31st. The initial conditions

for the physical and biological variables are taken from a spun up model simulation started

January 1st 2005. Initial parameters are taken from the distributions listed in Table 4.1.

To assess the particle filter results quantitatively, I compare them to a model simulation

with optimized, fixed parameters. This reference simulation uses the same model with

an identical setup and optimal parameter values obtained from the emulator approach in

Chapter 3. The time-dependent optimal values for θ1 and θ2 are based on the same set

of observations that I use for the particle filter assimilation (including the removal of the

estuaries data, see Section 4.2.2). This means that the reference simulation produces the
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best chlorophyll output I can expect from a regular simulation of the model in this scenario.

If the particle filter can achieve similar results to the optimized reference simulation, I

consider it a success (see Table 4.2 for an overview of all experiments).

In the following, I introduce the particle filter baseline experiment (Section 4.4.2), a sim-

ulation that uses the particle filter with asynchronous assimilation and state-augmentation.

In the experiments thereafter, I assess the individual effects of ADA (Section 4.4.3) and

state-augmentation (Section 4.4.4). Finally, I explore the effect of the ensemble size on the

baseline experiment (Section 4.4.5).

Because the particle filter results are based on parameters that are drawn from a uniform

distribution initially and assigned random noise terms, I perform several replicate simula-

tions to assess the stability of the particle filter experiments and the reliability of its results.

The replicates simulations are exact copies of the particle filter experiments, except for the

random terms. For experiments with replicates runs, the results listed in Table 4.3 show

the mean result and its standard deviation. In the table, I also included the best and the

worst results of the baseline experiment in order to provide a full account of the results

encountered in the replicate simulations.

4.4.2 Experiment 1: Baseline Experiment

The first particle filter experiment uses the standard configuration and acts as a baseline

that other configurations are compared against. It uses ADA (with nADA = 4), state-

augmentation, and an ensemble size of nens = 20.

In order to compare the performance of the baseline experiment to the reference simula-

tion, I focus on the average surface chlorophyll content in the shelf and open ocean regions

of the model domain (Figure 4.4). The reference simulation recreates the chlorophyll

dynamics in the observations reasonably well (Figure 4.4(a)). The best fit is achieved in

the months following the chlorophyll spring bloom (May, June and July) when chlorophyll

levels stay relatively low and do not fluctuate much. The biggest discrepancy appears dur-

ing the bloom in April in the open ocean region where the model overestimates the surface

chlorophyll content, and late in the year in December when chlorophyll is underestimated.

Because there is most room for improvement in these months, I include the mean absolute

chlorophyll residual for April and December in Table 4.3, along with the mean absolute

residuals for the entire year.

In comparison to the reference simulation, the baseline particle filter configuration
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Figure 4.3: The surface chlorophyll development in the shelf region (see inset in (d)) for
selected particle filter experiments in comparison to the observations and the reference
simulation with optimized parameters. For the particle filter, both ensemble median and the
region between the 0.1 and the 0.9 quantile are shown. The panels correspond to different
particle filter experiments. The particle filter simulation that achieved the median fit to the
observations among the replicates of the baseline experiment (Section 4.4.2) is shown in
(a), those with the worst and best fit are displayed in (b). An experiment without ADA
(Section 4.4.3) is depicted in (c), an experiment without state-augmentation (Section 4.4.4)
in (d).
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Figure 4.4: The surface chlorophyll development in the open ocean region (see inset in (d))
for the particle filter experiments in Figure 4.3. For the particle filter, both ensemble median
and the region between the 0.1 and the 0.9 quantile are shown. The panels correspond to
different particle filter experiments. The particle filter simulation that achieved the median
fit to the observations among the replicates of the baseline experiment (Section 4.4.2)
is shown in (a), those with the worst and best fit are displayed in (b). An experiment
without ADA (Section 4.4.3) is depicted in (c), an experiment without state-augmentation
(Section 4.4.4) in (d).
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Figure 4.5: The development of θ1 for the same experiments depicted in Figure 4.4. The
faint red line and the thick red line correspond to the optimal parameter values obtained in
Chapter 3. For the particle filter, both ensemble median and the region between the 0.1
and the 0.9 quantile are shown.
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Figure 4.6: The development of θ2 for the same experiments depicted in Figure 4.4,
corresponding to the development of θ1 in Figure 4.5.
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performs, on average, slightly better in the shelf region and slightly worse in the open

ocean region (Table 4.3). For a better overview, I have included the simulations that

achieved the worst, the best and the median results among replicate simulations (based on

absolute residuals in the open ocean region) in Figure 4.4 and 4.5. There are some obvious

differences between individual simulations that use the same configuration: the median

simulation (Figure 4.4(a)), for example, shows an improved fit to the observations in April,

then a underestimation of chlorophyll throughout August, and finally improvement again

towards the end of the year. In contrast, the best simulation does a worse job at predicting

the decline of the chlorophyll bloom in early April but performs better for the rest of the

simulation (Figure 4.4(b)).

Despite obvious differences among individual simulations, even the worst particle filter

results remain close to those of the reference simulation (see Figure 4.4(b)). The highest

variation can be found in the April chlorophyll residuals (Table 4.3), where most but not

all particle filter simulations can improve upon the reference simulation and where the

best results show a very strong improvement. In contrast, all particle filter simulations

can improve upon the reference simulation for the December residuals and the standard

deviation among simulations is considerably smaller. In the following section, I examine

if the relatively low variation of the particle filter residuals throughout most of the year is

due to the stabilizing effects of the ADA.

The parameter development for the particle filter with standard configuration (Fig-

ure 4.5(a) and (b) for θ1 and Figure 4.6(a) and (b) for θ2) reveal that the values of the

augmented parameters do not converge to a fixed value but roughly retrace the smoothed

optimal time-dependent values for θ1. This means that the assimilation can capture the

time-dependence of θ1, the parameter with the strongest effect on model chlorophyll. For

θ2, which has a smaller impact on surface chlorophyll (Figure 3.3), optimal parameters

are retraced less closely, but the 2-dimensional parameter distribution remains centered

in a region that produces adequate results. The fact that the particle filter simulations can

identify the time-dependence and follow the optimal parameter values likely contributes

to improved chlorophyll estimates. To what extent the chlorophyll estimates benefit from

state-augmentation is investigated in Section 4.4.4.



93

4.4.3 Experiment 2: Effect of ADA

In my second experiment, I perform one simulation where ADA is deactivated, so that

each observation is assimilated individually and one simulation where I increase the effect

of ADA by increasing the smoothing window and setting nADA to 9.

The surface chlorophyll development for the experiment without ADA (Figure 4.4(c))

shows some interesting features in comparison to the baseline experiment. The average,

year-long absolute residuals and their variability among the experiments have notably

increased without ADA (Table 4.3). The particle filter has become less robust and the

general performance over the time span of the entire experiment has dropped. Yet, the

April and December residuals exhibit an improvement compared to the baseline experiment

and the associated variability during these months is lower too. One possible explanation

for these results can be found in the evolution of the parameter values (Figure 4.5(c)).

In instances where there is a large deviation between the model and the chlorophyll

observations, the daily assimilation can quickly adjust model state and parameter values.

This can be advantageous in the short term (April and December) where it can lead to

a more consistent improvement compared to the standard experiment. Yet strong shifts

also occur if the particle filter estimates are close to the observations. These shifts have

a negative impact and frequently force the parameter estimates away from the optimal

parameter values. For example, a strong shift in θ1 in May (see Figure 4.5(c)) causes a

long-lasting underestimation of chlorophyll (Figure 4.4(c)). Overall, the negative shifts

outweigh the positive ones, evidenced by the year-long results in Table 4.3.

One additional problem that affects the simulations without ADA is caused by the daily

assimilation. The simulations without ADA exhibit a low ensemble spread (compare

Figure 4.4(c) to (a) or (b)) which hinders a quick recovery from shifts in the ensemble. The

low spread is likely caused by the faster succession of assimilation steps (daily compared

to every 5 days in the baseline experiment) which contract the ensemble more frequently.

Furthermore, the use of ADA decreases the number of independent observations that

are assimilated. More independent observations, in the simulations without ADA, have

a negative effect on particle filter performance, as they can increase the probability of

ensemble collapse (Snyder et al., 2008; van Leeuwen, 2009).

After deactivating ADA in one simulation, I perform a further simulation to explore

the effect of increasing nADA, the number of observations that are averaged in the ADA
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procedure. For nADA = 9, the result is a slight degradation of the mean performance

compared to the baseline experiment (Table 4.3). Here it appears that the wider gap

between assimilation steps prohibits a quick adjustment of the ensemble causing the

assimilation to become sluggish. Given these results, I expect no increase in performance

for nADA > 9.

In summary, the ADA has a stabilizing effect on the particle filter simulations. Without

ADA, resampled parameter values appear less smooth in time and the particle filter state

estimates become less reliable due to outliers in the data. By averaging the weights over

multiple time steps with the ADA procedure, I can reduce the problem posed by outliers in

the observations while still permitting parameter values to change in time.

4.4.4 Experiment 3: Effect of State-Augmentation

In this experiment I examine the effects of state-augmentation on the particle filter assimila-

tion results. State-augmentation serves as a way to estimate parameter values with particle

filters and provides the ensemble with a parameter memory: suitable parameter values

are “remembered” by carrying them over from one assimilation step to the next. The base

run with state-augmentation exhibits a clear pattern in the ensemble of parameter values,

retracing the optimal time-dependent parameter values (Figure 4.5(a)). This indicates that

a memory of suitable parameter values is advantageous and may be required to obtain

agreement of the chlorophyll estimates.

To assess the influence of state-augmentation, I perform a particle filter simulation

with the same configuration as the baseline experiment, but deactivate state-augmentation.

Parameter values are now no longer resampled but instead redrawn from a static distribution

at the end of every assimilation step, rendering the parameter distribution essentially

memoryless (illustrated in Figure 4.5(d)). In an initial experiment, I use the same uniform

distributions that the parameters are drawn from initially. To assess the influence of the

parameter distribution I perform an additional experiment replacing the original distribution

with a truncated one (see Table 4.1).

Without state-augmentation, the ensemble median of the particle filter simulation re-

mains close to the reference simulation (compare Figure 4.4(d)) and consequently the

results of the two simulations are very similar (Table 4.3). The resampling of states in

combinations with random assignment of parameter values seem to have little effect on the
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Figure 4.7: The development of the surface chlorophyll concentration (a) and θ1 (b) for
the particle filter with truncated parameter distributions (compare Section 4.4.4) with and
without state-augmentation. In both panels, the ensemble median and the region between
the 0.1 and the 0.9 quantile are shown for both particle filter experiments. Panel (a) also
contains the observations and the reference simulation, (b) shows the smoothed optimal
values (obtained from Chapter 3).

evolution of the ensemble. In fact, in the case of the average surface chlorophyll concentra-

tion, the ensemble median remains above the output of the reference simulation throughout

the entire simulation. This bias is present even when it implies a severe overestimation of

the chlorophyll concentration (see for example the April result in Figure 4.4(d)). In this

particle filter configuration, the resampling cannot effectively correct chlorophyll estimates

which instead appear to be dependent on the static parameter distribution chosen for the

experiment.

To further assess the influence of the parameter distributions, I perform an additional

experiment with modified distributions. Again, I use uniform distributions but truncate

their range by one third on the upper side (see Table 4.1). As a result, the optimal parameter

values are no longer close to the mean of their respective distributions. The use of these

new distributions adds a bias to the chlorophyll estimates and causes a clear decline in the

fit to the observations for the particle filter without state-augmentation (Fig 4.7). With state-

augmentation turned on, however, the effects of the ill-chosen initial parameter distribution

are barely noticeable, as the resampling quickly determines the time evolution of parameter
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values (Fig 4.7(b)). This experiment clearly confirms my previous observation that the

particle filter configuration without state-augmentation is strongly dependent on parameter

distribution, whereas the resampling of states has a negligible corrective effect: a closer

investigation reveals that the particle filter implementation without state-augmentation

produces on average considerably lower weights during resampling when compared to

particle filter with state-augmentation. Due to the random assignment of parameter values,

none of the particles in the small ensemble experiences a lasting benefit from suitable

parameter values. This negative effect cannot be effectively counteracted by the SIR

resampling.

It is apparent that the parameter memory provided by state-augmentation is an important

asset in this application. It allows the particle filter to resample parameter values and focus

them in suitable regions in parameter space which are allowed to vary in time. In addition,

good results can be obtained without prior knowledge of suitable parameters values, as

state-augmentation provides the particle filter with a means to adjust parameters quickly

and break out of ill-posed initial distributions.

4.4.5 Experiment 4: Ensemble Size

The ensemble represents a sample from the probability distribution of the biological state

variables. It is expected that a larger ensemble and therefore a higher sample size should

lead to a better representation and more accurate results. However, computational cost

of an particle filter simulation grows linearly with the ensemble size and computational

constraints force me to keep the ensemble size small. In my final experiments, I examine

the influence of the ensemble size on the particle filter implementation.

Since the standard particle filter configuration yielded good results with nens = 20

ensemble members, my first experiments involve a decrease in the ensemble size. For

nens = 10 I can detect no significant difference in my results in Table 4.3 in comparison to

the standard configuration. A further reduction of the ensemble size to 5, however, causes

a decline in performance. The relatively high standard deviation of the SIR results with

20 ensemble members and the differences between the best and worst results in Table 4.3

indicate that ensemble sizes larger than 20 may lead to more stable results. However,

due to the slow convergence rate of Monte Carlo techniques (a rate of 1√
nens

) and based

on the similar performance for 10 and 20 ensemble members, a large increase in the

ensemble size would be required to reach this goal. Because of computational limitations
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and since I expect little improvement in the mean result, I perform no further experiments

for nens > 20.

While it may seem surprising that 10 ensemble members are sufficient to approximate

the high-dimensional distribution of the model state. This is a result of the 2-dimensional

error subspace that the particle filter operates in. Since state-perturbations are only caused

by two parameters, it is sufficient that the ensemble can approximate the 2-dimensional

parameter distribution and its time-evolution to obtain adequate results. An expanded

state-augmentation that incorporates more than two parameters will likely profit from

larger ensemble sizes.

4.5 Discussion

In this chapter, I applied the particle filter technique for data assimilation using a 3-

dimensional biological ocean model and a set of daily satellite observations of chlorophyll

for the purpose of joint state and parameter estimation. My goal was to assess particle filter

application for a realistic model, large-scale, and the complexity of using real observations

with significant outliers and anomalous values. To do this, I made use of an error subspace

by allowing a small number (two) of the biological model parameters to be stochastic and

so produce ensemble variation for the prediction step of the filter. I modified the sequential

importance resampling (SIR) algorithm for particle filtering as follows. To increase

the SIR’s robustness with regard to outlying observations, I assimilated observations

asynchronously and altered the observation update step by controlling the weight spreading

that governs resampling of the ensemble. Finally, I used state-augmentation to allow for

joint parameter and state estimation.

One of the main problems in using particle filter for data assimilation in realistic large

scale scenarios is ensemble collapse and the accompanying low ensemble spread that pre-

vents effective data assimilation. Ensemble collapse is often caused by an undersampling

of the state space. A second cause is the number of independent observations, as large

a number of successive assimilation steps increase the probability of ensemble collapse.

Both issues have been reported for particle filter applications in high-dimensional state

spaces (Snyder et al., 2008; van Leeuwen, 2009). I have shown in this chapter, it can also

be caused by outlying observations which are ubiquitous in biological applications. In
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high-dimensional applications, the state space is typically sparsely populated by a small en-

semble relative to the number of dimensions. As a consequence, one or just a few ensemble

members tend to lay close to the observation (in the sense of obtaining a high likelihood)

and receive high weights in the particle filter-based assimilation procedure. This leads

to the resampling of the few highly-weighted ensemble members and the collapse of the

ensemble. A similar process can occur in the presence of outlying observations. Outliers

deviate notably from the rest of the observations and tend therefore not to lay close to those

regions of the state space where previous observations have consolidated the ensemble.

Again, only the few close ensemble members receive high weights. As the experiment in

Section 4.4.3 shows, outlying observations can bring an ensemble close to collapse and

can therefore effectively impede data assimilation.

In this application, I avoid the problem posed by the high dimensionality of the model

by effectively operating the data assimilation in a lower dimensional error subspace. This

is achieved by introducing stochasticity into the ensemble solely by varying a few model

parameters that the model is very sensitive to. Furthermore, the stochastic parameters

are incorporated into the augmented state. The variation of parameters as a means by

which stochastic variation is added to the ensemble, is especially suitable for biological

models (Annan, 2001). These models contain parameters with a large range of possible

values that are in practice not very well known and whose effect on the model output is

great. For this chapter I chose parameters that the model chlorophyll is very sensitive to,

ensuring adequate spread in the predictive ensemble with respect to chlorophyll for most

of the simulation. At some points however, the predictive ensemble does not cover the

observations well and as a consequence the improvement obtained by the particle filter

assimilation remains relatively low (e.g. the surface chlorophyll development in November

and December in the open ocean region in Figure 4.4).

I consider this work as a first assessment of the error subspace approach. With biological

parameters only, model error, especially from physical sources (which play an important

role, see the following chapter), is not well represented and other factors would have to be

considered for a more comprehensive assessment (Palmer et al., 2005). However, it is easy

to add more and different error sources (either as augmented parameters or randomly drawn

noise without memory) to the error subspace, likely at the cost of larger ensemble sizes.

Additional work is required to assess the benefits and drawbacks of a higher dimensional
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error subspace and the effect of adding physical error sources on biological state and

parameter estimation. Recently, some other particle filtering approaches suitable for state

estimation for large scale systems have been proposed: van Leeuwen (2010) suggests

carefully modifying the initial distribution of the error sources (in this application: θ1 and

θ2) with the aim of preventing weight collapse by using future observational information,

and Chorin and Tu (2009) suggest a nonlinear particle filter based on implicit sampling

that behaves well for low numbers of particles. My use of error subspace provides an

alternative approach, useful for both state and parameter estimation.

To address the detrimental effect of observational noise and outliers, I make use of

ADA in my particle filter implementation. Without ADA, single anomalous observations

can introduce strong shifts into the ensemble during assimilation (Figure 4.5(d)) whose

effect persists over multiple assimilation steps and decreases the fit to the observations

significantly. In fact, the particle filter configuration without ADA produces some of

the worst results among my particle filter experiments (Table 4.3). The simple ADA

scheme which I introduce in Section 4.3.4 is straightforward to implement and essentially

averages over multiple observations before assimilating them into the ensemble. The

second implementation aspect that increases the particle filter’s robustness is the weighting

during resampling. Here, I base the particle filter’s weights on transformed inverse distance

values, and introduce a parameter that allows for suitable spreading of the weights. This

approach is flexible, as it allows the use of various types of observations along with suitable

model-data distance measures.

An effect of using large-scale numerical models is that their computational cost effec-

tively precludes the use of large ensemble sizes (even in very high dimensional problems,

such as numerical weather prediction, ensemble sizes are between 5 and 100 (Gneiting

and Raftery, 2005)). Ensemble-based data-assimilation techniques (e.g. particle filters)

that are built on these relatively small samples can show strong variability in their results

from one experiment to the next. To quantify this variability I ran multiple replicates of

my main experiments (see Table 4.2). Most particle filter experiments stayed close to the

reference simulation, yet I observed some variation, both beneficial and detrimental. The

use of multiple realizations to quantify sampling variability is standard tool in statistics

(Gelman and Rubin, 1992), and its use is important in assessing the effectiveness of all

data assimilation schemes relying on small ensembles.
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State-augmentation allows for joint state and parameter estimation within the particle

filter procedure (Dowd, 2011). In my experiments, the particle filter benefits from this

resampling of parameters contributing to consistent chlorophyll estimates and allowing

parameters to diverge from ill-posed initial distributions. For the two biological parameters

that are part of the state-augmentation it is realistic to assume time-dependence (see

Chapter 3). Parameter estimates obtained via state-augmentation could reliably identify the

low frequency time evolution of θ1, the chlorophyll-to-carbon ratio (Figure 4.5(a) and (b)).

For θ2, the less sensitive zooplankton grazing parameter, the estimates are less reliable and

vary greatly amongst different particle filter simulations. In this application, it appears that

state-augmentation is more useful to obtain better state estimates than to obtain reliable

parameter estimates.

4.6 Conclusions

I have implemented a particle filter algorithm for data assimilation of real daily satellite

observations of chlorophyll into a realistic time dependent 3-dimensional biological ocean

model. The particle filter offers advantages over other ensemble data assimilation methods

in that it produces the correct target distributions for the state and parameters for general

nonlinear models and non-Gaussian errors, a feature which is not supported by the widely

used ensemble Kalman filter (van Leeuwen, 2009). I have provided modifications to the

particle filter that allow it to work successfully with realistic, high-dimensional models

and in the presence of outlying observations. This advancement offers the possibility for

state-of-the-art, statistically rigorous sequential ensemble data assimilation to be applied

to high-dimensional ocean models and observations.



CHAPTER 5

SENSITIVITY AND UNCERTAINTY

ANALYSIS OF MODEL HYPOXIA

ESTIMATES FOR THE

TEXAS-LOUISIANA SHELF

5.1 Introduction

Quantification of uncertainty is an important part of numerical modelling. Knowledge of

model uncertainty allows for an assessment of the reliability and precision of the model

and therefore its general usefulness as a tool for prediction and analysis (Karniadakis and

Glimm, 2006). Inherently connected to the concept of model uncertainty is that of model

sensitivity. Model uncertainty is the model error which is due to lack of knowledge of

the simulated system or due to lack of (computational) resources to simulate the degree

of complexity of the system. Model sensitivity characterizes the response of the model

output to changes in its input; a model is said to be sensitive to a particular input if a slight

change in the input can trigger a large change in the model output. Because many model

inputs are not well known and contain uncertainty, the sensitivity of an input determines

the effect of input uncertainty on model uncertainty.

In this chapter, I perform a combined sensitivity and uncertainty analysis for a complex

3-dimensional physical-biological ocean model. The model simulates nitrogen-limited

primary production and dissolved oxygen on the Texas-Louisiana shelf in the northern

Gulf of Mexico. It is aimed at estimating the occurrence and extent of hypoxia, defined as

the oxygen concentrations below a critical threshold. The goal of this chapter is to assess

101
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the sensitivity of biological model output and hypoxia estimates to example inputs of

various categories: on the biological side of the model, my analysis includes one example

parameter that influences the nitrogen cycle, biological boundary and initial conditions,

and nutrient river input. For the physical model, I assess the impact of the parametrization

of sub-grid scale horizontal mixing, the wind input as an example of physical forcing

with significant impact on the extent of hypoxia (Feng et al., 2012), and freshwater river

input. From the results, I gain an understanding of the relative importance of the inputs on

biological properties and the temporal and spatial distribution of model uncertainty.

In oceanography, previous studies of model uncertainty and sensitivity are typically

applied to physical ocean models (Lermusiaux, 2006; Kim et al., 2010; Thacker et al.,

2012). Sensitivity analyzes are also commonly found in the field of ecosystem modelling

(Clancy et al., 2010; Makler-Pick et al., 2011; Melbourne-Thomas et al., 2011) analysing

models that are typically not based on 3-dimensional physical models. Only few studies

have investigated uncertainty propagation in physical-biological ocean models: Béal et al.

(2010) assess the effect of mixing errors on biological properties in a physical-biological

model.

Unless uncertainty is directly integrated into the model (see e.g. Lermusiaux, 2006) an

uncertainty or sensitivity analysis entails many model simulations and is thus computation-

ally demanding, in particular for complex models. Typically, uncertainty analyses represent

input uncertainty via random samples using Monte Carlo techniques (Clancy et al., 2010;

Kim et al., 2010; Melbourne-Thomas et al., 2011), a computationally inefficient approach

that may not be practicable for complex models. Emulator-based approaches, such as the

polynomial chaos expansion (introduced by Wiener, 1938), offer a computationally more

efficient alternative for the task of propagating uncertainty in model inputs to the output

(Xiu and Karniadakis, 2003; Shen et al., 2010; Thacker et al., 2012). They propagate

uncertainty by sampling the input distribution in a non-random fashion and interpolating

model output in between samples. For this sensitivity and uncertainty analysis, I use the

polynomial chaos expansion and assess its use for sensitivity analyzes for biological ocean

models.
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5.2 Methods

5.2.1 Uncertainty Propagation with the Polynomial Chaos Expan-

sion

Emulators are surrogates for models that approximate unknown model output based on

existing output. Emulators offer a suitable way to propagate uncertainty in model inputs

(the model’s parameters, initial or boundary conditions, physical forcing, etc.) to its

outputs (Xiu and Karniadakis, 2003; Matre et al., 2004). For this purpose, emulators

require output from model simulations that are based on variations of the uncertain inputs.

By interpolating between the existing output values, emulators can estimate model output

for new, unknown values of the inputs and even approximate the probability distribution

of the model output. The polynomial chaos expansion, the emulator technique that is

used in this chapter, is based on polynomial interpolation. In Chapter 3, I focused on the

interpolation feature of polynomial chaos to estimate parameter values for a biological

ocean model. In this chapter I focus on the polynomial chaos-based approximation of the

model output probability distribution and the estimation of some of its properties.

I provided an introduction to the polynomial chaos expansion in Chapter 3, here I briefly

review the main aspects with regard to uncertainty propagation. In the following I consider

the stochastic model input θ, which can be, for example, a model parameter or a scaling

factor for the model’s boundary condition. Because I only consider variations of individual

(and 1-dimensional) inputs in this chapter, I assume in the following that θ is 1-dimensional.

Although I do not consider the multi-dimensional case here, the theory translates in a

straightforward manner into two or more dimensions for multiple, independent inputs (Xiu

and Karniadakis, 2002).

Here, the model output of interest is represented by the function f(x, t, θ). The output

may be dependent on space x, time t and the uncertain input θ. In the polynomial chaos

expansion, f is approximated by a basis function expansion:

f(x, t, θ) =
kmax∑
k=0

ak(x, t) φk(θ) + εtrunc(θ) (5.1)

where ak(x, t) are expansion coefficients, independent of the uncertain input θ, and the

kth basis function φk(θ) is a polynomial of order k in the parameter space defined by

θ. The parameter kmax is the maximum order of polynomials used in the approximation
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and determines the quality of the approximation and εtrunc is the truncation error. Without

cutoff, i.e. for kmax = ∞, the approximation is exact and εtrunc(θ) = 0. However, the

number of required model runs grows with kmax, so that computational constraints force

me to use relatively small values in typical applications using complex models.

The choice of polynomials in equation (5.1) is dependent on the probability density

function (pdf) of the parameter θ which I denote p(θ). The polynomials are chosen to be

orthogonal with respect to p and all common distributions have specific sets of polynomial

basis functions (Xiu and Karniadakis, 2002). For the beta distribution, which is used

here for its finite support, the corresponding set of orthogonal polynomials are the Jacobi

polynomials and φk is the kth Jacobi polynomial.

To approximate f in Equation (5.1), the coefficients ak need to be computed which

in turn requires the computation of f(x, t, θ(i)) at each quadrature point θ(i) for i =

0, 1, . . . , kmax. These are the points where existing model output of kmax + 1 model

simulations is required for the emulator-based approximation. Once the coefficients have

been computed, two important properties of the output distribution, the expected value and

variance of f are straightforward to calculate. They are given by

E(f(x, t, θ)) = a0(x, t) (5.2)

var(f(x, t, θ)) =
n∑

k=1

a2k(x, t) Nk. (5.3)

Here Nk =
∫
S
φk(θ)

2 p(θ) dθ is a normalization factor specific to the kth polynomial and

independent of θ; S is the support of p (the region where p(θ) > 0). The properties in

Equations (5.2) and (5.3) are the mean and variance of the probability distribution of f

based on the distribution of θ. Different inputs will produce different distributions in f ,

therefore mean and variance are dependent on θ.

When the polynomial chaos-based approximation is expanded beyond a single (1-

dimensional) input, the computational cost for the standard polynomial chaos expansion

increases exponentially with the number of stochastic inputs (and the number of dimen-

sions of each input). As a result, a joint analysis of 8 inputs (each 1-dimensional) with

polynomials of order kmax would require (kmax +1)8 model runs, while only (kmax +1)× 8

are required for an individual analysis of each input. Although methods have been pro-

posed to reduce the number of required simulations by performing sparse sampling (see e.g.
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Blatman and Sudret, 2010), I am specifically interested in the effect of individual inputs

on the model under similar conditions. For this reason, I sample each input distribution in

the same manner but restrict the uncertainty analysis here to one parameter at the time.

5.2.2 Model Description

Figure 5.1: The model domain and its bathymetry. The Mississippi delta and the
Atchafalaya mouth are marked by brown circles with “M” and “A”, respectively.

The physical-biological ocean model of the Texas-Louisiana shelf in the northern Gulf

of Mexico (Figure 5.1) is based on a configuration of the Regional Ocean Modeling System

(ROMS; Haidvogel et al. (2008)) with a biological component (Fennel et al., 2006). The

model is taken directly from Fennel et al. (2011) where it is described in detail. Here I

provide a short overview with a focus on the model inputs with uncertainty. The main

objective of the model is to simulate the biological nitrogen cycle and the distribution

of disolved oxygen in the shelf region which is heavily influnced by runoff from the

Mississippi and Atchafalaya rivers Bianchi et al. (2010). For this reason the model domain

is centered around the mouths of these rivers and stretches along the coast, in the region

that is most heavily influenced by river runoff (Figure 5.1).

5.2.2.1 Hypoxia on the Texas-Louisiana Shelf

The Mississippi-Atchafalaya river system is fed by a vast 3 220 000 km2 drainage basin

and supplies a high load of nutrients (recent estimates are at around 1.25 Tg nitrogen per

year Aulenbach et al., 2007) to the Texas-Louisiana shelf. The nutrients fuel phytoplankton
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growth on the shelf and contribute to the formation of zones of low dissolved oxygen in

bottom waters. Oxygen is depleted when sinking organic material is remineralized by

bacteria consuming oxygen in the process. In summer, when the water is highly stratified

and the ocean bottom is cut off from the oxygen resupply from the air, zones of low oxygen

form. These zones are called hypoxic if the oxygen concentration is below a critical

threshold of 63 mmol O2 m−3 (the equivalent of 2 mg L−1) that is considered harmful

to many marine organisms. In fall, when the water column becomes less stratified the

hypoxic area begins to shrink and disappear before reforming the following year. Hypoxia

on the Texas-Louisiana shelf has been subject to many studies, a recent overview is given

by Bianchi et al. (2010).

5.2.2.2 Instant Remineralization (IR) and Sediment Oxygen Demand (SOD) Model

Configurations

Biochemical processes that take place in the sediments have a major influence on the forma-

tion and development of hypoxic zones. Some of the sinking organic material reaches the

ocean floor and is slowly remineralized in the sediments. The model formulation offers two

simplified ways to mimic the biochemical processes in the sediments: instant remineraliza-

tion (IR) and sediment oxygen demand (SOD) based on a physical parametrization. As the

name suggests, sinking organic material is remineralized instantaneously when it reaches

the ocean bottom in the IR configuration. This approach has the advantage of making

the oxygen consumption dependent directly on the amount of organic matter that reaches

the sediment, yet has the disadvantage of speeding up the process of remineralization

which in reality leads to a slower but longer lasting consumption of oxygen. In the SOD

configuration, sediment oxygen consumption and nutrient production are parametrized and

dependent on temperature and assumed to occur only in water depths shallower than 50 m

water depth where detritivores are present. This approach is able to simulate a more steady,

slow consumption of oxygen, yet the oxygen flux is independent of the flux of organic

matter to the bottom and decoupled from the supply of nutrients. Here, I examine both

the IR and the SOD model configurations and their response to uncertainty in the inputs.

Both configurations use negative oxygen concentrations as a simplified way to account for

oxygen dept due to the accumulation of reduced species under anaerobic conditions.

5.2.3 Model Inputs of Interest

In my experiments I introduce uncertainty to the model inputs listed in Table 5.1. All
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variations I introduce into the model input are simple scalings. For example, uncertainty is

introduced into the wind field by scaling the wind speed up and down across the entire

domain. The univariate scaling factor can be approximated at a much lower computational

cost than a multidimensional distribution which would be required to represent temporal or

spatial variations in the input uncertainty. An alternative approach to vary multidimensional

input is a dimension reduction, e.g. via principal component analysis (see Thacker et al.,

2012), and subsequent variation of the lower dimensional representation.

5.2.3.1 Input Distributions

My aim is to quantify and compare the effect of uncertainty in various model inputs on the

model output. For this purpose, I apply the same relative amount of variation to each of

the inputs. That is, I use a distribution with a constant ratio of standard deviation/mean for

all inputs. While these input uncertainties do not reflect my best knowledge of the real

uncertainty of the inputs (accurate uncertainty estimates would be hard to obtain for most

of the inputs), this approach allows for straightforward comparison of the effect on the

output uncertainty, in keeping with sensitivity analyzes.

All variations in the input are based on the variation of a scaling factor that is multiplied

with the input quantity, e.g. the amount of runoff from the rivers in the model. For a scaling

factor that is equal to one, I obtain the baseline model simulation with standard parameters,

which represents the scenario I consider the most likely. Departure of the scaling factor

from 1 will create perturbations in the model.

Figure 5.2: The pdf of the scaled beta distribution in a comparison to a normal distribution
with equal mean (1.0) and standard deviation (0.2). The beta pdf is zero beyond the [0, 2]
interval, whereas the support of the normal distribution is not limited. Cyan circles and
green squares mark the 7 and 9 polynomial chaos quadrature points, respectively, at which
the pdf is sampled in the polynomial chaos expansion.

For my experiments, I assume a beta distribution with a scaled support, so that it allows

for values of the scaling factor between 0 and 2. The scaled beta distribution has the
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probability density function

p(x) =
1
2
(1
2
x)α−1 (1− 1

2
x)β−1

B(α, β)
for x ∈ ]0, 2[. (5.4)

Here, α and β are positive parameters that determine the shape of p, and B(α, β) =∫ 1

0
xα−1(1 − x)β−1dx is the beta function which acts as a normalizing constant. I only

consider beta distributions with parameters α = β > 1 which results in symmetric

distributions with mean values of 1 and with variances that can be adjusted via α and β.

Here, I select a standard deviation of 0.2, the resulting distribution is similar to a Normal

distribution with equal mean and standard deviation (see Figure 5.2). The advantages of

the beta distribution is that it is truncated and thus does not allow for scaling factors less

than 0. The beta distribution also comes with its associated set of orthogonal polynomials,

the Jacobi polynomials (Xiu and Karniadakis, 2003), simplifying the implementation of

the polynomial chaos expansion.

5.2.4 Quantifying Uncertainty in Hypoxic Area Estimates Using Shan-

non Entropy

A parcel of water is defined as hypoxic if its dissolved oxygen concentration is below the

critical threshold of 63 mmol O2 m−3. In the model, the hypoxic area comprises all grid

cells with an oxygen concentration below the threshold. If I consider a single grid cell at a

fixed point in time, it can be in one of two states, it can either be hypoxic or not. When

uncertainty is introduced into the model, the grid cell has a certain probability of being

hypoxic. Now the aim is to identify a suitable measure to quantify the uncertainty in the

state of the grid cell. If the probability of being hypoxic is zero, it is certain that the grid

cell is not hypoxic and the measure of uncertainty should be 0 to indicate that there is no

uncertainty. For the same reason the measure of uncertainty should be 0 if it is certain that

hypoxia is occurring and the probability of being hypoxic is one. In all other cases the

uncertainty measure should be greater than zero and should reach its maximum when both

hypoxia and no hypoxia have equal probability, i.e. when the probability of hypoxia is 1
2
.

A measure of uncertainty that fulfils the above criteria is the Shannon entropy introduced

in Shannon (2001) (originally published in 1948). It is defined for a discrete random
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variable X that has n possible values x1, x2, . . . , xn as

H(X) = −
n∑

i=1

pi logb(pi). (5.5)

Here pi = Prob(X = xi) is the probability of X taking the value xi, and b is the base of

the logarithm that can be chosen on an application dependent basis. For any of the pi = 0,

the product pi logb(pi) = 0 as well.

Figure 5.3: The relationship of phypox, the probability of hypoxia, and hypoxia entropy
(a) and the relationship between error in phypox and error in hypoxia entropy (b). The
dashed lines in (b) depict an error of 0.1 in phypox in form of an underestimation (green)
and overestimation (red; errors below 0.1 are due to restricting phypox to values between 0
and 1). The solid lines show the resulting error in the entropy propagated via the function
in (a) (see Equation (5.6)).

In this application, X is the state of a grid cell which can take one of n = 2 values:

x1 = “hypoxia” and x2 = “no hypoxia”. I let phypox = p1 be the probability of X being

hypoxic and choose b = 2. Then the Shannon entropy simplifies to

H(X) = −phypox log2(phypox) − (1− phypox) log2(1− phypox). (5.6)
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The above expression is shown in Figure 5.3(a) as a function of phypox, it behaves as desired:

If the probability of hypoxia is zero (phypox = 0) or one (phypox = 1) the Shannon entropy

is zero. In between, the Shannon entropy is greater than zero and at phypox =
1
2

it reaches

its maximum value of one. These properties indicate intuitively that the Shannon entropy

is a suitable measure of uncertainty for hypoxic area estimates and one can show generally

that the Shannon entropy fulfils the criteria expected from a measure of uncertainty for a

discrete random variable (Shannon, 2001; Jaynes, 1957). In this chapter I will only use the

Shannon entropy in its binary form (5.6) and refer to it simply as entropy.

5.2.5 Estimating Properties of the Output Distribution

After performing the required model simulations (performed for the input values at the

quadrature points; see Section 5.2.1), I obtain the model output at the quadrature points.

These represent samples from the probability distribution of the model output. My goal

is to estimate properties of the distribution from these samples. The polynomial chaos

expansion offers a straightforward and numerically efficient way to estimate the mean

and standard deviation of the output distribution (see Equations (5.2) and (5.3)). However,

other properties I am interested in, such as the median, other quantiles and the entropy

cannot be obtained that way. I need to resort to a procedure of interpolation and binning

for their approximation.

In the following, I consider a 0-dimensional (point) model output f(θ) that is dependent

on the 1-dimensional model input θ. The procedure below describes the approximation of

pf(f(θ)), the pdf of the model output, based on p(θ), the pdf of θ. For higher dimensional

model output the procedure needs to be repeated for every entry in the output vector or

matrix:

(i) Interpolate the model output in parameter space, i.e. estimate f̂(θ) ≈ f(θ) based on

the model output at the quadrature points. Any suitable interpolation technique can

be used here, in this chapter polynomial interpolation based on the polynomial chaos

expansion is a natural choice.

(ii) Create a fine equidistant grid in parameter space, covering values of θ where p(θ) is

(significantly1) greater than zero. Let θgrid
i for i = 1, 2, . . . , n denote the resulting n

grid points.
1If p(θ) is greater than zero on an unlimited interval, e.g. in case of a normal distribution, it is sufficient

to only include those regions of the parameter space where p(θ) is greater than a small, positive threshold.
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(iii) Obtain values of f̂ and p for each grid value, i.e. obtain pairs
(

f̂(θgrid
i ), p(θgrid

i )
)

for

i = 1, 2, . . . , n.

(iv) Bin the values of f̂(θgrid
i ) for i = 1, 2, . . . , n into m bins (non-overlapping intervals).

Let xj for j = 1, 2, . . . ,m+ 1 be the limits of the bins.

(v) Sum the probability values associated with each bin, i.e. compute

ŝj =
∑

i :xj≤f̂(θgrid
i )<xj+1

p(θgrid
i ) for j = 1, 2, . . . ,m.

(vi) Finally, normalize the sums to obtain sj =
ŝj∑m

k=1 ŝk
, which is an approximation of the

probability of the model output being in the jth bin, i.e. sj ≈
∫ xj+1

xj
pf(x)dx.

At this point I have associated model output values with probability values. After the

normalization in step (vi) I obtain an estimated pdf for the output. This pdf can then be

used to obtain the desired distribution properties. In practice, I use 100 bins of equal size

to cover the interval between minimum and maximum value of the interpolated model

output (step (iv)) in conjunction with 1000 grid points (step ii). An increase in the number

of bins typically requires a finer grid with more points.

For the purpose of estimating the entropy of a binary event (such a having model oxygen

output less than the hypoxic threshold; see Section 5.2.4), it is sufficient to use two bins in

step (iv) so that all output values below the threshold are collected in the first bin. After

the normalization step (vi), the sum of input pdf values in the first bin is an estimate of

the probability of the event having the first of two possible outcomes (in my example: an

oxygen concentration below the threshold).

I tested the above procedure by estimating the mean and standard deviation of multiple

output distributions and comparing the values with the estimates obtained directly from

the polynomial chaos expansion. Both estimates differ by at most 0.005% in my tests and

thus agree to the precision that is relevant here. Note, that the above procedure can be

replaced by a Monte Carlo procedure based on random samples from the input distribution.

However, I found the Monte Carlo procedure to be less efficient as it required a larger

sample size and thus more computing time. No matter which of the aforementioned

procedures is used to turn the model output into estimates of the model distribution, the
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limiting factor for their accuracy is typically the number of quadrature points. More

quadrature points lead to a smaller error in the interpolation and more accurate estimates,

but they also require more model simulations (see Section 5.2.1).

5.2.6 Uncertainty in Emulator Estimates

The emulator approximation of model output contains the truncation or interpolation error

εtrunc(θ) (see Equation (5.1)). To estimate the magnitude of this error for the biological

output and the derived uncertainty estimates (see Section 5.2.5), I compare the emulator

estimates for two different numbers of quadrature points, i.e. for two different values of

kmax. Based on the experiments in Chapter 3 with 7 quadrature points, I select kmax = 6

and 8 which corresponds to emulator approximations based on 7 and 9 quadrature points,

respectively. For both values of kmax I obtained the emulator approximations for most

model inputs2 (see Section 5.2.3).

If the model is well-approximated by the emulator, then the change from 7 to 9 quadra-

ture points should be accompanied by a small reduction in the truncation error and little

change in the output estimates. If, on the contrary, the output estimates vary considerably,

this indicates that the output is not approximated well by the emulator with 7 quadrature

points (indeed, a large change in εtrunc(θ) would indicate that the sum in Equation (5.1) is

not close to converging and thus even 9 quadrature points are not sufficient).

By comparing selected uncertainty estimates that are based on the emulator approxima-

tions for 7 and 9 quadrature points, I found that the truncation error varied considerably

among different inputs. Based on the magnitude of the error, I can divide the inputs

into two distinct classes. The first class consists of inputs that induce changes into the

biological model directly and do not affect the physical model (e.g. biological parameters,

biological initial and boundary conditions). The effect of these inputs is well-approximated

by the emulator and the 7 and 9 point-based uncertainty estimates are very similar (see

Figure 5.4). The second class of inputs consists of those that change the physics of the

model and thereby indirectly alter the biology (e.g. both river runoff scenarios, diffusivity,

and wind). The biological model output appears to be very sensitive to changes in these

parameters and the emulator-based approximation is not precise in places and can vary

greatly between 7 and 9 quadrature points (Figure 5.4).
2I did not obtain approximations for the nutrient initial conditions and nutrient boundary conditions

inputs based on 9 quadrature points. These inputs have such a low effect on the output (see e.g. results in
Figure 5.6) that I feel confident that 7 quadrature points are sufficient for the emulator approximation.
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Figure 5.4: Comparison of emulator-based estimates of the probability of bottom hypoxia
(top row; (a)-(c)) and the bottom oxygen concentration (bottom row; (d)-(f)) for 7 and 9
quadrature points (qp) at a day in mid July for instant remineralization (IR) configuration.
The scatter plots depict the variation in the emulator estimates for river, one of the physical
inputs, and μ0, a biological input. In the scatter plots, distance from the diagonal is
emphasized by colour intensity. For the physical input, which displays a higher variation,
the maps ((b) and (e)) visualize the spatial location of the values with high variation (the
colours correspond to those in the scatter plot (a) and (d), respectively).
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To explore if the truncation error exhibits any dependence on space, I map the error val-

ues back onto the model grid (Figure 5.4(b) and (e)). The spatial dependence of uncertainty

in both estimated mean chlorophyll concentrations and estimated bottom hypoxia proba-

bilities is striking. High uncertainties in the emulator estimates are constrained to clusters

along the coast and are especially evident close to the location of the Mississippi and

Atchafalaya mouths. My results in Section 5.3 show that these regions of elevated emulator

uncertainty are highly dynamic regions that also feature the highest model uncertainty.

5.2.6.1 Propagation of Uncertainty into Entropy Estimates

In light of the high uncertainty for some of the emulator-based estimates of the probability

of hypoxia (Figure 5.4), it is important to note how the uncertainty propagates from

probability estimates to entropy estimates (see Section 5.2.4). Based on Equation (5.6),

it is straightforward to compute the uncertainty in entropy based on the uncertainty in

the probability estimates; due to the log function, the transformation is not constant

(Figure 5.3). Instead, the uncertainty is increased for probability estimates close to zero or

close to one (corresponding to low entropy values) whereas uncertainty is diminished at

probability values close to 0.5 (corresponding to high entropy values). Low entropy values

therefore have a higher uncertainty than high values.

5.3 Results

5.3.1 Baseline Oxygen Dynamics without Uncertainty

To gain an understanding of model dynamics prior to the introduction of uncertainty I

evaluate the output of the baseline model simulations for the SOD and the IR configurations.

These simulations use the standard model inputs without uncertainty and correspond to the

model simulations with all scale factors set to one (see Section 5.2.3).

For the model evaluation, I focus on the temporal development of dissolved oxygen

at one station on the shelf between the Mississippi Delta and the mouth of Atchafalaya

Bay, from here on simply referred to as the station (see star in Figure 5.5(a)). To get a

spatial overview, I examine a spatial snapshot of bottom oxygen across the model domain

on 17 July 2004, a time when the hypoxic zone in the model has reached one of its largest

extents. Both temporal and spatial oxygen fields are displayed in Figure 5.5 for the SOD

and IR model configurations.
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Figure 5.5: Snapshots of the simulated bottom oxygen concentration on 17 July 2004 for
the SOD (a) and IR (b) configurations and corresponding time-depth plots of the oxygen
development ((c) and (d)) at the station marked by the blue star in between the Mississippi
(brown circle with “M”) and the Atchafalaya (brown circle with “A”) mouths. Grey and
black colours mark hypoxic areas with oxygen concentrations below 63 mmol O2m−3.
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The oxygen concentration at the location of the station exhibits a slow decline at the

ocean bottom throughout the spring months of 2004, beginning in April. The decline is

briefly interrupted by several mixing events that deliver oxygen-rich surface water to the

bottom. Both SOD and IR models show hypoxic conditions at the sea floor in late May

and strongly hypoxic conditions throughout most of July and the first half of August. In

mid-August strong mixing increases bottom oxygen and leads to non-hypoxic conditions.

The IR configuration exhibits more persistent hypoxic conditions with lower oxygen levels

in comparison to the SOD model which switches more frequently between hypoxic and

non-hypoxic conditions.

The spatial view (Figure 5.5(a) and (b)) reveals larger hypoxic areas along the coast

close to the mouths of the Mississippi and Atchafalaya in both model configurations.

Bottom oxygen concentrations increase farther away from the rivers and are especially

high close to the shelf break. The station is at the fringe of the strongly hypoxic region

that is fed by the Mississippi River. In the SOD configuration, the hypoxic area appears

less homogeneous and more fractured in comparison to the IR configuration and the SOD

bottom oxygen concentration field shows more small scale variability.

5.3.2 Uncertainty in Bottom Oxygen

I now introduce uncertainty into the model by means of varying the model inputs (see

Section 5.2.3). First, I focus on the effect of the bottom oxygen concentration at the location

of the station. To characterize the probability distribution of bottom oxygen and its seasonal

development, I compute its quantiles averaged over periods of 3 months (see Fig 5.6).

Two main results are immediately apparent in the SOD and IR model configurations when

comparing the quantiles. Based on the interquartile range (the difference between the

0.75 and 0.25 quantiles) which characterizes the dispersion of the output distribution, the

effect of the different inputs varies considerably and their effect shows a strong seasonal

dependence.

Uncertainties in the wind input, the main driver of vertical mixing, have the strongest

effect on bottom oxygen for both model configurations. Effects of similar magnitude are

caused by the horizontal mixing coefficients (hdiff, hvisc) and both river inputs (river,

disch). On the other side of the spectrum, nutrient initial and boundary conditions have

little to no impact on the bottom oxygen concentration at the station. The phytoplankton

growth rate (μ0) is the only input exhibiting a distinctly different effect on the two model
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Figure 5.6: Seasonal (time-averaged) quantiles of the bottom oxygen distribution at the
station marked in Figure 5.5 for 2004. Each bar marks the region between 0.1 and 0.9
quantile (outer bar), the region between the 0.25 and 0.75 quantile (inner bar), and the
median (solid black line) for one uncertain input, in one season in 2004. The blue solid
line in the background marks the development of bottom oxygen in the baseline simulation
without uncertainty; its seasonal averages are displayed as dotted blue lines.
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configurations. In the IR configuration where sediment oxygen consumption is determined

by sinking organic material, the effect of μ0 is relatively strong, compared to the SOD

configuration where oxygen consumption is decoupled from the biological nutrient cycle.

One further notable point is the very similar effect of the river and disch input in the IR

configuration; the additional variation of the river nutrient supply appears to have little

added effect. Some of the distributions exhibit considerable skewness and a deviation of

the median from baseline (the no uncertainty mean; dotted blue line in Fig 5.6), which are

due to the nonlinearity of the model.

The time dependence of the effect of the uncertain inputs is consistent across inputs for

both model configurations. In the middle of the year (April through September) the effect

of the inputs on bottom oxygen is considerably higher than during rest of the year. The

reason for the low effect early and late in the year is that temperatures are lower and the

ocean is well-mixed, model behaviour that cannot be disrupted by the uncertainty in the

input I prescribed.

5.3.3 Entropy of Hypoxia

Temporal Development of Entropy

Now I focus on the entropy of hypoxia which quantifies the uncertainty in model hy-

poxia estimates which reaches its highest value if the probability of hypoxia is 0.5 (see

Section 5.2.4). The temporal development of hypoxia (Figure 5.7) shows low entropy

values for most of the year and near the ocean surface. These values correspond to a low

uncertainty due to a low probability of hypoxia; variation of the model inputs has a very

low probability of causing hypoxia near the surface, or early or late in the year. High

entropy values and therefore high uncertainty can only be found close to the ocean bottom

and from mid-May to mid-September, in the times and places where hypoxia is likely to

be induced. Here, the SOD and IR model configurations show some differences.

In the SOD configuration, the inputs that have a strong effect on bottom oxygen (see

previous Section 5.3.1) cause high uncertainties in bottom hypoxia from June through

September. The maximum likelihood region of hypoxia, where the probability of hypoxia

is greater than 0.5 (region outlined in green in Figure 5.7), varies strongly among different

model inputs (compare Figure 5.7(a)-(d)) and is characterized by high entropy values.

Thus estimates concerning the number and duration of hypoxic events that the station

experienced in 2004 are highly uncertain. This, of course, is only true for the model inputs
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Figure 5.7: Time-depth plots of hypoxia entropy for selected inputs to the SOD and IR
configurations (SOD: (a)-(d), IR: (e)-(k)) for the station marked in Figure 5.5. The large
panels ((a) and (e)) show the development of entropy for the entire year 2004, smaller
panels focus on the time span mid-May to mid-September (marked by the blue, vertical
lines in (a) and (e)). Regions outlined in green have a probability > 0.5 of being hypoxic.
The inputs that are not shown in this figure typically exhibit low uncertainty in oxygen
estimates and entropy values close to zero. As a representative of these inputs, I have
included the nutrient initial conditions input (k).
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that have a strong effect on bottom oxygen, but not for those with low effects such as the

nutrient initial conditions (as an example, I have included the nutrient initial conditions for

the IR configuration in Figure 5.7(k), in the SOD configuration entropy values are equally

low).

The IR model configuration features stronger, more persistent hypoxic events at the

station (Figure 5.5(d)) which correspond to larger maximum likelihood regions (Fig-

ure 5.7(e)-(k)). With the exception of horizontal viscosity, all inputs exhibit low entropy

values within the maximum likelihood region. These correspond to points where the model

is nearly certain that hypoxia will occur.

Figure 5.8: Seasonal (time-averaged) hypoxia entropy values for the SOD (a) and IR (b)
configurations at the station marked in Figure 5.5.

To summarize the temporal development of entropy, I obtained seasonal averages of the

entropy at the station (Figure 5.8). Both model configurations show the same patterns in

the first half of 2004: uncertainties due to variations of the input are close to zero early

in the year and become significantly larger in April. During the second half of the year,

uncertainties are larger in the SOD configuration compared to the IR, with the exception

of those caused by the μ0 input which are generally lower in the SOD configurations due

to the tighter coupling between the nitrogen cycle and sediment remineralization that I
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explained above. Generally, uncertainty values of bottom hypoxia correspond well to the

variations caused in the bottom oxygen concentrations (Figure 5.7).

Spatial Distribution of Entropy

The spatial distribution of hypoxia entropy in mid July (Figure 5.9) corresponds well

to my previous observations: Regions in the domain away from the coast exhibit low

uncertainty and a low probability of hypoxia; high entropy values occur close to the coast

and mostly along the fringe of the maximum likelihood hypoxic area. The station (blue star

in Figure 5.9) is in this region of high entropy values along the fringe which accounts for

the high uncertainty values observed in the temporal development previously (Figure 5.7).

Consistent with the properties of the region of hypoxia in the baseline simulations, the

SOD model configuration shows a less homogeneous and more fractured region of high

entropy compared to IR (compare Figure 5.9 SOD (a)-(d) to IR (e)-(i)). All model inputs

create a region of low entropy within the maximum likelihood hypoxic area close to the

Mississippi and Atchafalaya River mouths. These correspond to a high probability of

hypoxia and low uncertainty.

Based on the spatial maps of the probability of hypoxia I compute brackets for the

size of the hypoxic area on 17 July 2004 (Figure 5.10). For this purpose, I sum the

areas of the model bottom grid cells whose probability of hypoxia is greater than a given

threshold. For a threshold of 0.5, I obtain the maximum likelihood area of hypoxia. Other

thresholds can define uncertainty estimates for the size of the hypoxic area: the interval in

between thresholds of 0.6 and 0.4 correspond to the size estimate of the area with entropy

values ≥ 0.97 (see Figure 5.3(a)). The wind input, both river inputs and the horizontal

mixing coefficients induce wide ranges into the size estimates, especially in the SOD

model configuration. For example, for both river inputs, the area between the 0.6 and 0.4

probability threshold is greater than 5 000 km2 which corresponds to more than 40% of

the maximum likelihood estimate (Figure 5.10(a)). In the SOD configuration, the sizes of

the maximum likelihood areas for the high uncertainty inputs also deviate strongly from

the estimates of the baseline simulation without uncertainty. Here it is most apparent that

the symmetric distribution of the uncertain input can lead to a highly skewed response in

the model.

Overall, the hypoxia entropy estimates correspond well to my previous observations:

some inputs have result in large uncertainty in hypoxia, while two inputs (nutrient initial
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Figure 5.9: Spatial maps of bottom hypoxia uncertainty (entropy) for selected inputs to the
SOD and IR configurations on 17 July 2004. Regions outlined in green have a probability
> 0.5 of being hypoxic. The bottom row of panels displays inputs with low entropy
values and the SOD and IR river input maps ((j) and (l)) which are nearly identical to their
respective disch input maps (a) and (e). The blue star in (a) marks the station corresponding
to the time-depth plots in Figure 5.7, the Mississippi and Atchafalaya River mouths are
marked by brown circles with “M” and “A”, respectively.
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Figure 5.10: The distribution of the size of the hypoxic area on 17 July 2004 induced by
uncertainty in the inputs. Each bar corresponds to one uncertain input to the SOD (a) and
IR (b) model configuration. The outer bar is the size of the area that has a probability
of hypoxia between at least 0.75 (lower limit of outer bar) and at least 0.25 (upper limit
of outer bar). The inner bar marks the [0.4, 0.6] probability interval and the black line
corresponds to the area with a probability that is at least 0.5, the maximum likelihood
area. The blue vertical lines mark the size of the hypoxic area in the SOD and IR baseline
simulations without uncertainty. The entropy values corresponding to these probabilities
are marked in Figure 5.3. The time development of these properties for the SOD disch
input are shown in Fig 5.11.
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and boundary conditions) have nearly no effect on bottom oxygen. Uncertainty in hypoxia

is temporally and spatially constrained, as variation of my uncertain model inputs cannot

induce hypoxic conditions early or late in the year, or far offshore from the Mississippi

and Atchafalaya River mouths.

5.3.4 Comparison of Hypoxic Area Estimates with Observations

For the freshwater river input I obtained several years of emulator-based uncertainty

estimates to derive a time-series of the distribution of the hypoxic area size (Figure 5.11).

The series exhibits an annual cycle, the recurrent hypoxic area typically disappears from

November to March and reaches its maximum extent in late July or August. The uncertainty

in the hypoxic area displays a seasonal cycle, as well, with high uncertainty during the

summer months and small uncertainty at times of small hypoxic area estimates. The

deviation of the median size of the hypoxic area from the baseline simulation which I

observed in Figure 5.10 persists throughout the four years of simulation.

Using the time-series, I attempt a qualitative comparison with hypoxic area estimates

which I computed based on bottom oxygen observations from the LUMCON cruises

(Rabalais et al., 2007) for the years 2004-2007 (black bars in Figure 5.11). Only in

the years 2004 and 2006, the maximum likelihood estimate and the baseline simulation

estimate agree with the observation-based estimate (Figure 5.11(a) and (c)). In 2005,

variations in the river input cannot explain the deviation between model and observation-

based estimates which lies far outside the region with a hypoxia probability of 0.25 or

higher (Figure 5.11(b)). In 2007, the data lies within this region. In other words, by

extending the maximum likelihood hypoxia area to the area that has a probability of

hypoxia of 0.25 or higher (based on the uncertainty in the freshwater river input) I reach

an area with a size that corresponds to the observation-based estimate (Figure 5.11(d)).

Uncertainties in the freshwater river input can help explain the model misfit here.

It should be noted that the observational estimates contain an error as well due to non-

synopticity in the observations, sampling error in the spatially and temporally varying field,

and the error associated with interpolation. Nevertheless, simple analyzes like this can

help to gain an understanding of model error sources and their effect on model output.

5.3.5 Uncertainty in Surface Chlorophyll Estimates

To explore the effect of uncertain inputs on other model output, I briefly describe the

distribution of surface chlorophyll in the model. Surface chlorophyll is often used in data
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Figure 5.11: Temporal development of the distribution of the size of the hypoxic area
for uncertain disch input for the SOD model configuration in comparison with estimates
based on observations. The coloured regions in the plot correspond to the freshwater river
input to the SOD model configuration. The outer region is the size of the area that has
a probability of hypoxia between at least 0.75 (lower limit of outer region) and at least
0.25 (upper limit of outer region). The inner corresponds to probability values of 0.6 and
0.4. The thick blue line corresponds to the area with a probability that is at least 0.5, the
maximum likelihood size of the hypoxic area. The dotted line shows the development
of the size of the hypoxic area in the baseline simulation without uncertainty. The large
black bars correspond to estimates of the hypoxic area based on observations from the
LUMCON cruises which are performed annually in late July; the width of each bar marks
the date range of the corresponding cruise.
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assimilation and model validation applications for biological ocean models because of the

wealth of available satellite observations (see e.g. Allen et al., 2007; Mattern et al., 2010b).

To obtain an overview of the effect of the inputs on surface chlorophyll, I compute the

time-averaged seasonal quantiles at the station (Figure 5.12). By comparing the surface

chlorophyll quantiles to the bottom oxygen quantiles, it is evident that the same inputs have

a strong effect on both quantities, albeit in a different order. Both river inputs have a very

pronounced impact on surface chlorophyll at the station and the extra nutrient input of the

river compared to the disch input manifests itself in a slightly more spread out distribution.

As with bottom oxygen, seasonal changes in the effect of the inputs are apparent and all of

the inputs have a higher impact during summer.

Figure 5.12: Seasonal (time-averaged) quantiles of the surface chlorophyll distribution
at the station marked in Figure 5.5 for 2004. Each bar marks the region between the 0.1
and 0.9 quantiles (outer bar), the region between the 0.25 and 0.75 quantiles (inner bar),
and the median (solid black line) for one uncertain input, in one season in 2004. The blue
solid line in the background marks the development of surface chlorophyll in the baseline
simulation without uncertainty; its seasonal averages are displayed as dotted blue lines. In
contrast to bottom oxygen (Figure 5.6), differences between the SOD and IR configuration
are not very pronounced.
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The choice of SOD or IR model configuration has no noticeable impact on the surface

chlorophyll field at the station. The effects of the uncertain inputs leads to negligible

differences in the time-averaged quantiles (compare Figure 5.12(a) and (b)). This is true

even for μ0, which, unlike its effect on bottom oxygen, has the same effect on surface

chlorophyll in the SOD and IR configuration.

Figure 5.13: Mean and standard deviation (sd) of surface chlorophyll due to uncertainty
the disch and μ0 input for the SOD configuration.

To get an idea of the spatial spread of uncertainty, I obtain the mean and standard

deviation of the surface chlorophyll field in mid July for the disch and μ0 inputs (Fig-

ure 5.13). Both inputs show similar patterns, mean surface chlorophyll is highest close to

the Mississippi delta and the mouth of the Atchafalaya where the nutrient input into the

model is high. Uncertainty, in form of the standard deviation, is lower for the μ0 input. For

the disch input, high values of the standard deviation are found along the fringes of the

high chlorophyll areas, similar to the spread of entropy along the boundary of the hypoxic

area (Figure 5.9). Variations of the disch input appear to affect the surface patch of high

chlorophyll in a similar way it affects the hypoxic area at the bottom.
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5.4 Discussion

For this chapter, I performed a series of experiments to assess how uncertainty in selected

inputs of a physical-biological coastal ocean model propagates into its output. For this

purpose I used an emulator approach, the polynomial chaos expansion, to approximate

the input and output distributions. I selected 8 uncertain inputs from both the physical

and biological model and used the same relative amount of uncertainty for all inputs.

On the output side, I focus on uncertainty introduced to the biological model, especially

estimates of oxygen and bottom hypoxia. The goals of this chapter were to examine

the effect of different inputs in time and space and compare their impacts. Two benthic

parametrizations, IR and SOD, were considered in the examination.

The results of this chapter offer insights into the sensitivity of my model and allow for

an assessment of the impact of the uncertain inputs at each point in time and space of my

model simulations. The most obvious result of the comparison of the different inputs is

that two inputs, the nutrient boundary and initial conditions, have very little influence on

the bottom oxygen concentration and the surface chlorophyll content in my model, while

the model is considerably more sensitive to the other inputs I investigated. Uncertainty in

the inputs to the physical model (wind, freshwater river input, vertical mixing coefficients)

had the strongest effect on both bottom oxygen and surface chlorophyll. Input to the

biological model had generally a much smaller impact, including variations in the river

nutrient supply, which in addition to the freshwater impact had little extra effect on the

observed model output.

Beside model sensitivity, this chapter provides some insights into model uncertainty,

specifically model uncertainty due to uncertainties, or error in the inputs. Here, my analysis

cannot provide a full assessment of model uncertainty, since the model response to the

inputs were observed individually and not all inputs were considered. Most importantly,

I deliberately chose the same relative error for all inputs in order to better compare their

effect, instead of selecting a specific distribution for each input. Based on my experiments,

I can still draw some important conclusions with regard to model error from the results.

Uncertainty in the inputs typically has little effect on oxygen or chlorophyll outside the

biologically very productive zone close to the river mouths or outside the spring and

summer months (April through September). Within the region and period of higher error,

however, uncertainties due to just a single input can be considerably higher. Estimates of
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hypoxia, for example, are strongly influenced by all of the physical inputs I investigated

(see Figure 5.9) and with it size estimates of the hypoxic area (see Figure 5.10). Even if

the input uncertainties are decreased (in this chapter, I use distribution with an standard

deviation of 20%), it is very likely that their combined impact on bottom oxygen estimates

should lead to high errors in hypoxia estimates in regions around the river mouths.

In conjunction with observations, an uncertainty analysis can be expanded in order

to find a relationship between model uncertainty and misfit of model and observations.

In Section 5.3.4 I contrasted hypoxic area estimates based on observations compared

to model output with uncertainty due to river inflow. I have shown that the variations

I introduced into the river inflow can in three out of four cases explain the discrepancy

with the observations. Assuming that the error in the observations is relatively small, the

uncertainty cannot explain the discrepancy that occurs in one year. Here, an adjustment

of the river inflow in the model would thus likely not lead to much improved fit to the

observations and one has to turn to other sources of model uncertainty for improvement.

I have included this comparison with observations to illustrate just one of many ways to

integrate observations into an uncertainty analysis (see e.g. Allen et al., 2007).

As I have shown in Section 5.2.6.1, the emulator-based uncertainty estimates themselves

are not free of error. While uncertainties in the biological inputs are propagated into the

output reliably, there is a higher error when estimating the model response to variations in

the physical inputs (Figure 5.4). Lower emulation error can be achieved only by adding

more quadrature points, i.e. increasing the number of samples from the input distribution,

yet this comes at a much higher computational cost. What is interesting in regard to the

emulator error is that it spatially correlates with the region of high model uncertainty

(compare Figure 5.4(b) and Figure 5.9). The cause of the error is that the emulator does not

sample the output on a sufficiently dense grid to capture its variability. One reason for this

model behaviour is that, in contrast to the biological inputs, changes in the physical inputs

can affect the stochastic flow field, e.g. instabilities and eddies in the model, leading to

highly variable small scale changes. It is this high model sensitivity to the physical inputs

that leads to the emulator error. For this reason, I hypothesize that the high emulator error

does not cause a systematic overestimation of the model error, but rather that both model

and emulator errors are caused by the same phenomenon, the highly variable model output.

Thus the emulator estimate is right at least qualitatively by assigning high uncertainty
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values to the regions in question.

In order to quantify the uncertainty in model estimates of hypoxia I used entropy, a

simple function of the probability of hypoxia (Figure 5.3(a)). In cases where I am interested

in a binary events (the oxygen at a grid cell concentration can either be below the hypoxic

threshold or not) entropy is the suitable way to quantify uncertainty (Shannon, 2001). High

entropy values that I encounter at many occasions (see Fig 5.7 or 5.9) indicate that the state

of the grid cell, hypoxic or not hypoxic, is highly uncertain. As conversion errors from

probability to entropy are reduced at high entropy values (Figure 5.3(b)), I have higher

confidence in these high uncertainty values. This is further evidence that model-based

prediction of hypoxia is difficult in specific model regions.

5.5 Conclusions

I performed an extensive analysis of the impact of 8 physical and biological inputs on a

physical-biological model of the Texas-Louisiana shelf in the northern Gulf of Mexico.

The goal of the analysis was to assess model sensitivity and uncertainty with a focus on

the biological model output, in particular bottom oxygen and hypoxia. For the purpose

of propagating uncertainty from model input to its output, I used a model emulator,

the polynomial chaos expansion which offered a straightforward approach to propagate

uncertainty. While the computational cost of an emulator-based uncertainty analysis is

significant, it offers the possibility of a thorough assessment of model sensitivity for a

select number of model inputs.

I found that the impact of the different inputs varied considerably: the physical inputs

typically had a stronger effect than the biological inputs, with variations in the freshwater

river input and the wind field having the strongest impact on both bottom oxygen but also

surface chlorophyll. Two of the biological inputs, nutrient initial and boundary conditions,

showed negligible effect on the output. Strong effect of all outputs is constrained to the

biologically active regions in both time and space. The uncertainty induced into the system

is considerable and especially affects estimates of hypoxia and the hypoxic area. For

example, hypoxic area estimates of the model vary by more than 5 000 km2 or by around

40% (probability of hypoxia between 0.4 and 0.6) due to 20% variation in the river inflow.



CHAPTER 6

CONCLUSIONS

In this thesis several methods for the assimilation of observations into biological ocean

models are presented and assessed. Chapter 2 lays the groundwork for data assimilation

by examining eight image comparison measures, adapted for use with satellite images of

surface chlorophyll. The AGB distance, which showed the best performance throughout

various tests was used for data assimilation in the following Chapters 3 and 4. Chapter 3

introduces the use of an emulator for observation-based state and parameter estimation

in a biological ocean model. In Chapter 4 the same model and observations are used to

assess the capabilities of particle filter-based data assimilation for both state and parameter

estimates. Finally, the emulator from Chapter 3 provides the means to estimate model

sensitivity and uncertainty based on prescribed uncertainty in the model inputs. In this

chapter, various outstanding issues in data assimilation are discussed that were motivated

by the work in this thesis.

Due to the complexity of realistic, biological ocean models, the greatest impediment to

application of statistical procedures is the computational cost of the model simulations.

Nonlinear and non-Gaussian statistical procedures, such as the particle filter in Chapter 4,

rely on sample-based solutions, i.e. they require samples to approximate properties of a

particular distribution. The number of samples determines the quality of the statistical

approximation, yet each sample requires an expensive model simulation, severely limiting

the number of samples that can be obtained. One could argue that, with increases in

computational power, the cost of model runs will decrease in the future, allowing more and

faster model evaluations. It can be expected, however, that model complexity will grow

along with the increases in computational capabilities. Thus computational constraints,
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requiring small ensemble and sample sizes, will likely remain important factors influencing

the effectiveness of statistical procedures.

Computational constraints played an important role throughout this thesis and affected

many implementation choices in the previous chapters:

1. Image comparison based on the AGB distance introduced in Chapter 2 is the basis for

data assimilation in this work. From a computational perspective, the AGB distance can be

evaluated very quickly, relative to the simulation time of the ocean models. Even though

many AGB evaluations were required for this work, these have negligible impact on the

overall computational cost of the state and parameter estimation techniques presented here.

2. The emulator approach used in Chapters 3 and 5 allows for the approximation of model

output at comparatively low computational cost, permitting efficient computation of state,

parameter and uncertainty estimates. Yet, the emulator itself is based on model output and

an initial set of model simulations is required for the emulator to operate on. This required

initial set of model runs limits the possible field of applications of the emulator. For

example, eight inputs are analyzed in the emulator-based sensitivity analysis in Chapter 5;

their individual analysis took 7× 8 = 56 model simulations, while a joint analysis would

push computational cost to 78 = 5764 801 model simulations and beyond feasibility. Thus,

while the emulator can increase computational efficiency considerably, it cannot eliminate

computational constraints. Generally, the use of an emulator is highly beneficial in cases

where many model evaluations are required for just a few variable inputs; it becomes less

useful as fewer model evaluations are needed or more variable inputs are considered.

3. As a consequence of the high computational complexity for particle filters and other

ensemble-based data assimilation procedures ensembles are limited to small sizes. Small

ensembles lead to undersampling of the high dimensional model state probability distribu-

tion. This is especially evident in the presence of outliers (see Section 4.3.4) and becomes

problematic in high-dimensional applications of particle filters where it is one important

cause of ensemble collapse (van Leeuwen, 2009). In the particle filter implementation in

Chapter 4, the use of an error subspace reduces the number of dimensions the particle filter

operates in strongly (from potentially more than 2 million to two). The error subspace

approach implicitly relies on the assumption that model error is due to just a few sources.

In the application in Chapter 4, it is assumed that error in modelled chlorophyll resides in

two sources, both of them parameters of the biological model. This approach is limited,
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because there are many more sources of model error, and the variation that is introduced

to the two parameters cannot account for all deviations between model and observations

(see Figure 4.4). Despite these drawbacks, the error subspace approach is practical, can be

extended to more error sources and allows for the successful application of the particle filter

to high-dimensional models and realistic observations using small ensemble sizes. This

approach is especially suitable for biological ocean models which often contain several

unknown parameters that have high uncertainty.

In practice, particle filters and other data assimilation procedures that are partially based

on Bayesian principles are less commonly used than alternative procedures such as the

EnKF and variational techniques. The latter two use Gaussian and linear approximations

to the Bayesian solution and are very commonly found in oceanographic data assimila-

tion. Direct comparisons show that particle filter techniques can achieve better results

in nonlinear applications, such as typical ocean models, but the EnKF is more efficient

computationally (Annan and Hargreaves, 2010). An approach which increases the effi-

ciency of the particle filter is the introduction of the error subspace, as discussed above.

In addition, the use of ADA in the particle filter implementation reduces the number of

independent observations and thereby the probability of ensemble collapse (Snyder et al.,

2008; van Leeuwen, 2009). Other recent approaches aim to add other efficiency-increasing

modifications to the basic particle filter algorithm (van Leeuwen, 2010, 2011) or combine

characteristics of Bayesian techniques with those based on Gaussian approximations (Boc-

quet et al., 2010). More work is required to test these techniques in realistic applications

and in the face of observation error which can have a serious effect on data assimilation

(see Section 4.4.3).

The particle filter introduced in Chapter 4 is a technique designed for data assimilation.

Originally formulated for state estimation, it can easily be extended to estimate parameters

as well. In contrast, the emulator is essentially a surrogate for the model, a quick way to

approximate model output without having to perform new simulations. Only by comparing

the emulator output with observations, e.g. via minimizing the AGB distance between

emulator results and observations (see Section 3.2.4), can state and parameter estimates

be obtained. In Chapters 2 and 4, emulator and particle filter are used in exactly the

same scenario: using the same model and set of observations estimates for the same state

variables and parameters are obtained. The direct comparison shows that, both state and
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parameter estimates from the emulator approach are superior to that of the particle filter

(compare e.g. chlorophyll estimates in Figure 3.7 to Figures 4.3 and 4.4, or parameter

estimates in Figure 3.7). Here, the emulator’s way of sampling parameters in a non-random

fashion appears to be better suited for state estimation and especially parameter estimation

compared to the Monte Carlo-based random sampling and resampling performed by the

particle filter. In addition, the emulator allows for new state and parameter estimates, for

example, based on a localized subset of the observations (see Section 3.3.4.1), without the

need for new model simulations. In comparison, a new set of observations would require a

full new particle filter experiment. However, the improved performance of the emulator

in this scenario comes at a computational price: while the particle filter can obtain its

results with 10 ensemble members, the results of the emulator are based on 49 model

runs. Additionally, the particle filter can potentially examine more parameters and other

model inputs at a relatively low increase in ensemble size, compared to the emulator which

exhibits exponential growth in model simulations with respect to the number of inputs.

The particle filter can also adjust the ensemble probability distribution if an unsuitable

initial distribution is specified (see Section 4.4.4). The emulator, in contrast, is bound to

its initial parameter ranges, and new model simulations would be required if the initial

simulations cannot represent the model state distribution adequately.

The methods introduced in Chapters 2 through 5 are very versatile and their application

is not restricted to specific models or types of observations. The image comparison

techniques can, for example, be applied in other scenarios involving the comparison of

spatial fields which may contain features at different scales, noise and missing values. The

data assimilation procedures presented in this work also pose few restrictions on the model

they can be applied to: neither particle filter nor emulator involve changes to the code of

the model and neither technique requires the model to be linear or the model error to have

a specific distribution. Thus emulator and particle filter are very versatile and allow for a

simple implementation with different models. While the same set of chlorophyll satellite

observations and the same image comparison method are used in this work, these can be

replaced by other types of data in conjunction with suitable model-data distance measures

without fundamental changes to the algorithms presented here.

Parameter estimation is of special interest for data assimilation in biological ocean

models. Both, emulator approach and particle filter allow for efficient parameter estimation
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in complex models. One key advantage of both techniques is that the required model

simulations can be performed in parallel. For complex models which take a long time

to evaluate, this can lead to a substantial decrease in runtime compared to parameter

estimation techniques that require sequential model evaluations, for example variational

data assimilation techniques using gradient descent-based optimization. While the number

of parameters that can be estimated is limited by the computational constraints discussed

above, considerable improvement can be achieved by optimizing just a few key parameters

of biological ocean models (see Chapter 3).

The application of the emulator and particle filter techniques in this work offers some

insights into typical biological ocean models. The most striking finding is the temporal

development of the optimal values of the two plankton parameters that were examined in

Chapters 3 and 4. By assimilating satellite images of chlorophyll at a daily frequency, both

the emulator-based approach and the particle filter found a time-dependence in form of a

seasonal cycle in the optimal parameter values. Moreover, letting the model parameters

follow this seasonal cycle leads to a substantial improvement in the model prediction of

chlorophyll. As discussed in Section 3.4, this finding points to seasonal processes that

are not adequately represented in the model with fixed parameters. A future step would

be to use a longer set of satellite observations to test if this seasonal development of the

biological parameters repeats over multiple years. If so, the model with time-dependent

parameters could be used for forecasting and could be considered a medium-complexity

alternative to highly complex biological models with many more phytoplankton variables,

advocated for example by Follows and Dutkiewicz (2011).

The sensitivity and uncertainty analysis in Chapter 5 highlights the variability of biolog-

ical model output based on uncertainty in the biological and physical model inputs. It is

evident that model properties at the ocean surface and the sea floor are subject to consider-

able amounts of uncertainty based on various inputs. Especially the physical inputs cause

strong variability in the output, which affects both small scale features, such as the oxygen

content in a specific grid cell (see Figure 5.6), as well as large scale properties, such as

the size of the hypoxic area (see Figure 5.10). Unlike the biological inputs, the physical

inputs can cause perturbations in the stochastic flow field, increasing uncertainty in the

model output and decreasing the quality of the emulator approximation (see Figure 5.4).

These results indicate high model uncertainty of key variables of biological models, it



137

also highlights the strong dependence of biological properties on the underlying physical

model.

In summary, this work presents the successful application of state, parameter and

uncertainty estimation techniques to complex biological ocean models. Challenges and

limitations of the techniques are discussed and solutions offered, all in relation to realistic

data assimilation scenarios with realistic models and real observations. Besides testing

the methodology, this work also offers insights into the models to which the methods are

applied.



APPENDIX A

COPYRIGHT

1. A modified version of Chapter 2 was published in the MDPI journal Remote Sensing

and is reproduced here with permission:

All articles published by MDPI are made available under an open access

license worldwide immediately. This means: everyone has free and unlimited

access to the full-text of all articles published in MDPI journals, and everyone

is free to re-use the published material given proper accreditation/citation of

the original publication.

(See http://www.mdpi.com/about/openaccess.)

2. An edited version of Chapter 3 was published by Elsevier in the Journal of Marine Systems. It

is reproduced here with permission:

What rights do I retain as a journal author? [. . . ] the right to include the journal

article, in full or in part, in a thesis or dissertation; [. . . ]

(See http://www.elsevier.com/wps/find/authorsview.authors/rights.)
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