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Abstract

Encrypted protocols, such as Secure Socket Layer (SSL), are becoming more prevalent

because of the growing use of e-commerce, anonymity services, gaming and Peer-to-

Peer (P2P) applications such as Skype and Gtalk. The objective of this work is

two-fold. First, an investigation is provided into the identification of web browsing

behaviour in SSL tunnels. To this end, C5.0, naive Bayesian, AdaBoost and Genetic

Programming learning models are evaluated under training and test conditions from

a network traffic capture. In these experiments flow based features are employed

without using Internet Protocol (IP) addresses, source/destination ports or payload

information. Results indicate that it is possible to identify web browsing behaviour

in SSL encrypted tunnels. Test performance of ˜95% detection rate and ˜2% false

positive rate is achieved with a C5.0 model for identifying SSL. ˜98% detection rate

and ˜3% false positive rate is achieved with an AdaBoost model for identifying web

browsing within these tunnels. Second, the identifying characteristics of SSL traffic

are investigated, whereby a new tool is introduced to generate new flow statistics that

focus on presenting the features in a unique way, using bins to represent distributions

of measurements. These new features are tested using the best performers from

previous experiments, C5.0 and AdaBoost, and increase detection rates by up to

32.40%, and lower false positive rates by as much as 54.73% on data sets that contain

traffic from a different network than the training set was captured on. Furthermore,

the new feature set out-preforms the old feature set in every case.

ix
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Chapter 1

Introduction

When the Internet was first born, it was most widely used as a way to share academic

research, resources, and communications. In these very early days, security was not

a large concern. Most protocols introduced as the Internet began to pick up speed

– such as HTTP, SMTP, FTP, and Telnet – did not provide encryption techniques.

As the popularity of the Internet increased, network traffic identification became a

specific point of interest for administrators. Network traffic identification is impor-

tant for traffic engineering, network reliability, security, and quality of service. In

the early days, when the Internet was a relatively new technology, one could simply

identify traffic by the port numbers being used. Applications generally conformed to

the values assigned by the Internet Assigned Numbers Authority [1] (IANA). How-

ever, identifying what applications are running on a network has become increasingly

difficult. The amount of applications that run over the Internet has increased, and

non-standard port usage has become common. Sometimes, non-standard ports are

even used for protocols that already have a port assigned to them. For example, al-

though port 22 has been assigned for SSH, system administrators will often configure

the port to listen on another port instead. This is often done in an attempt to increase

security, by avoiding probes for an SSH server on the port. One work notes that in

one of their studies, over 100,000 attacks were received on the default SSH port, while

none were received on SSH servers listening on non-standard ports [2]. Furthermore,

dynamic port usage has become popular in many applications, especially in domains

such as P2P [3, 4, 5].

Deep packet inspection (DPI) became the solution to non-standard port usage.

With DPI, network administrators could once again identify which particular appli-

cations were being used. DPI works by analyzing the payload of the information

sent over the physical wire. In other words, the algorithms that are employed read

the messages being sent back and forth to determine what applications or protocols

1
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might be running. This method is extremely effective for applications that do not

use encryption methods. DPI is inherently computationally expensive, however, as

it requires reading the contents of the packets and comparing them to application

signatures. Furthermore, because DPI relies on the contents of the packet, encrypted

packets are immune to this sort of identification. Security and privacy concerns have

led to an increased use in encryption methods. The May 2011 Palo Alto Networks’

Application Usage and Risk Report found SSL now accounts for about 23% of the

overall bandwidth in the 28 exabytes of data analyzed, and predicts the amount will

continue to increase [6]. The report also states that in some cases, SSL is used purely

as a means to evade detection.

Encryption allows a user to hide the underlying message of an application from

eavesdroppers. Some of these encryption methods perform a plain text initiation of

the protocol (such as SSH - Secure Shell, or SSL - Secure Sockets Layer), which allows

deep packet inspection to identify the encryption method being used. However, if an-

other application is being tunneled through such a connection, deep packet inspection

cannot be used to identify this “hidden” application due to the encryption.

In this thesis, the objective is to detect behavioural models in the SSL tunnels to

identify, specifically, web browsing behaviour in a given traffic capture. To this end,

C5.0, naive Bayesian, AdaBoost and Genetic Programming (GP) learning models are

evaluated under many training and test conditions to find the most suitable method

for automatically generating a signature to recognize such behaviour. In these exper-

iments, flow-based features are employed without using the IP addresses, source/des-

tination ports or payload information. Furthermore, this research introduces a new

approach to flow features, by considering the distribution of packets within the flow

and by investigating how much effect this has (if at all) on the performance of such

classifiers to identify different behaviours in SSL tunnels.

The rest of this thesis provides an in-depth investigation into the above stated

goal. A literature review including definitions of SSL, TLS, and related work is given

in Chapter 2. Next, a technical background is given of both network traffic (including

encryption, and flows) and the machine learning techniques used in Chapter 3. The

data collection and data generation methods are discussed in Chapter 4. Experiments

and results are outlined in Chapter 5. The need for a new set of features is discussed
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in Chapter 6. A new tool for generating flow statistics is outlined in Chapter 7. Next,

a new set of experiments and their results are given in Chapter 8. Finally, conclusions

are given and potential future work is discussed in Chapter 9.



Chapter 2

Literature Review

This chapter summarizes the literature that covers the areas of interest in this thesis.

Section 2.1 covers literature that has defined the SSL and TLS protocols. Section 2.2

explains the scenarios in which SSL is being used today. Then, the chapter is finished

with a review of related research in Section 2.3.

2.1 History of the SSL/TLS Protocol

The purpose of SSL is to apply the following goals to reliable data communications:

data confidentiality, data integrity, authentication, and non-repudiation. By provid-

ing a protocol designed to offer these goals, SSL can be used to prevent many network

based attacks such as eavesdropping, IP spoofing, and connection hijacking [7]. In

this document, with the exception of this section, the abbreviation SSL (Secure Sock-

ets Layer) is used as a shorthand when referring to both SSL and TLS (Transport

Layer Security) for which a history is given in the following.

SSL The Secure Sockets Layer, or SSL, was designed by Netscape Communications.

The protocol was developed due to the growing concerns of security on the World

Wide Web, and was an attempt to provide secure communications over the Internet.

SSL was designed to use cryptography to address these concerns and included impor-

tant features, allowing it to achieve all the goals of cryptography, such as signed server

certificates. Furthermore, SSL included the ability to define the available cipher algo-

rithms allowing it to comply with varying cryptography laws around the world. SSL

was cleverly implemented at the application level, allowing the protocol to be used

not only for secure HTTP transactions, but any reliable transport communications

over a network. SSL was released to the public in 1995 as version 2.0. SSL version

1.0 was never made public. The original design of SSL unfortunately contained some

security flaws [8]. This led to the entire redesign of SSL, which came soon after in

4
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1996, bringing the protocol to version 3.0. By this point, the Internet was in need of

a standard, and so TLS was born.

TLS TLS (Transport Layer Security) was developed using SSL 3.0 as a standard

to build on. The protocol is defined in RFC 2246, and was developed by the Internet

Engineering Task Force (IETF) Network Working Group [9]. TLS 1.0 is defined

to use the version value 3.1 and explains the historical significance of this as “TLS

version 1.0 is a minor modification to the SSL 3.0 protocol, which bears the version

value 3.0” [9]. For this reason, TLS is often referred to as SSL 3.1. TLS version 1.0

was released in 1999 and quickly became the standard for providing privacy over the

Internet. The protocol even contained the ability to downgrade the connection to

SSL 3.0, which helped in its adoption, and included several minor changes, including

the following [10]:

• The SSL Message Authentication Code algorithm was replaced by the Hashing

for Message Authentication Code (HMAC) algorithm.

• Certificates all the way back to the root CA are not always needed. Intermediate

authorities are permitted.

• The Fortezza algorithms are not included due to their closed source nature.

In 1995, Phillip Rogaway drafted his comments about problems with cipher block

chaining in the IPSec protocol [11]. These comments prompted the realization that

these same problems mentioned by Rogaway also existed in the TLS 1.0 protocol

when used in the cipher block chaining mode [12]. Later, further problems were also

found with the cipher block chaining mode [12], and the protocol was finally updated

to TLS 1.1 (SSL 3.2) with RFC 4346 in April 2006 [13]. The new protocol contained

minor security enhancements.

The TLS protocol was updated one more time to version 1.2 (SSL 3.3) in August

2008. This version, amoung other changes, removed the reliance on the recently

broken MD5-SHA1 for the pseudo-random function and finished message hashes.

The algorithm combination was replaced with SHA-256, and options were enabled to

allow cipher-suite specific hashing algorithms and pseudo-random functions [14].
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2.2 Different Use Cases of SSL

Since SSL operates between the transport layer and application layer, it can be used

to secure any application that utilizes a reliable transport protocol such as the Trans-

mission Control Protocol – TCP. Further details of the transport layer can be found

in Section 3.1. The protocol works as a tunnel, which can be used to encapsulate any

message that is possible over standard TCP/IP communications. This feature of SSL

makes it one of the most useful protocols for encryption, and makes it difficult for an

observer to identify the underlying application. Deep packet inspection provides net-

work administrators with the ability to detect SSL, but since DPI involves inspecting

the packets contents – and the contents messages from the application running under

SSL are encrypted – it will not give the administrator any insight into what the SSL

tunnel is being used for.

Most commonly, SSL is known for its use in secure communications between a

web browser and a web server. This is exactly the case when you do e-commerce such

as shopping, or any sort of on-line banking. It is also common for private browsing

communications such as e-mail [10, 15], and has become popular in other on-line

applications such as voice over IP (VoIP) [16, 17], and VPN connections [18]. The

extensive use of SSL has resulted from its flexibility and relatively low overhead. A

Google employee cited (with reference to Gmail):

“On our production front-end machines, SSL/TLS accounts for less than

1% of the CPU load, less than 10KB of memory per connection and less

than 2% of network overhead.” [15]

Modifications of SSL even exist so that it may be used over other protocols such

as User Datagram Protocol (UDP). Since SSL does not have any specific application

requirements to be used, the possibility of any application running within it makes it

very difficult to identify what its particular application usage is on a network.

2.3 Related Work

Research on application identification in network traffic has been a focus for several

institutions for quite some time. Before the turn of the century, signature based
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application identification programs began to show up in literature such as Bro [19]

and Snort [20]. It has become widely accepted among researchers that port based

identification is not a viable approach to application identification [3, 4, 21, 22, 23,

24, 25, 26, 27]. Port based identification is limited in its ability due to dynamic port

usage, such as those used by P2P applications [3, 4], and port masquerading [24, 27].

The programs mentioned above rely on well known signatures, instead of ports, to

identify the applications. Therefore, these programs are able to detect applications

that use dynamic ports, non-standard ports, or port masquerading.

However, work by Moore et al. [21] acknowledges that tunneling is used by those

aiming to evade port based and even signature based application detection and pro-

poses a deep packet inspection solution. Furthermore, it has been acknowledged by

several researchers that signature based identification, even deep packet inspection,

is either no longer a viable solution, or is increasingly less effective [22, 23, 24, 25,

26, 27, 28]. The reasons these works present are many, including high CPU cost

of deep packet inspection, privacy concerns and legal issues, encryption thwarting

their effectiveness, and the daunting task of maintaining a database of application

signatures.

Early work by Williams et al. [4] identifies the need for classification techniques to

be considered in terms of their computational performance, not just their accuracy,

and therefore supports the notion to move away from DPI techniques. Wright et

al. [29] take a deeper look into tunnels that contain multiple applications. This

is possibly the first work that attempts to address these concerns. Following the

emerging idea of using packet-level statistics such as packet size, timing, and direction,

this research investigates identifying the number of applications running within a

tunnel to 20% accuracy. Furthermore, when a single application is being tunneled,

Wright et al. are able to identify the program with up to 80% accuracy using these

simple measurements.

Yamada et al. [30] do make an attempt to focus on SSL encrypted communications.

Perhaps one of the earliest studies that makes this a particular focus, Yamada et al.

use IP addresses to help identify web clients, and considers the notion of activities

within a communication instead of a network flow. These activities represent an

action such as clicking on a button and waiting for a page to load. The system
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makes some use of DPI by decoding the SSL protocol in an attempt to estimate

actual volume transfer. However, their system focuses on intrusion detection instead

of classification.

In the same year, Bernaille et al. [31] studied SSL, and was possibly the first to

involve real SSL traffic for identification. Bernaille et al. only use packet lengths, and

only considers the first few packets in identifying the underlying applications for SSL

traffic. Since the first few packets are used, this methodology is not reasonable when

tunnels are used for multiple applications within a single tunnel. Furthermore, this

approach is not scalable when the compression features of SSL are used. Crotti et

al. [32, 33] used a similar method, whereby statistically-based classification techniques

were used to detect applications using what they call application fingerprints. Using

probability distribution functions, they were able to achieve promising results, how-

ever, these results again relied on packet ordering and were susceptible to the same

problems as Bernaille et al. [31]. Later, other research tackled the tunneling problem

but focused on SSH tunnels [28, 34]. These approaches used fingerprinting techniques

again to detect non-standard applications running within tunnels, but were not used

to identify the applications explicitly and focused more on the intrusion detection

front.

Erman et al. [22] also approach the classification problem using flow based clas-

sifiers, but introduce the use of semi-supervised techniques to get around the fact

that labeled traffic is hard to come by. These techniques can use unlabeled traf-

fic to increase their accuracy. In response to concerns about flow based techniques

being unreasonable for real-time classification, Erman et al. use a layered approach,

allowing their classifiers to make best guesses at particular stages in a flow’s life-cycle.

At this point, NetMate and other flow based techniques were becoming more

popular [4, 22, 29, 31]. However, these studies often ignore encryption as a major

case [4, 22], or simulate encryption [29]. When encryption is made a focus, their tech-

niques do not take into account multiple applications within a tunnel or compression

techniques [31].

Researchers began to acknowledge the importance and rising usage of SSL. Many

reasons are cited for SSL’s increased adoption such as the rise of e-commerce and

privacy or authentication concerns. On the flip side of identification, some began
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developing techniques to obfuscate traffic within these tunnels [35, 36]. These works

altered the timing and data volumes to avoid leakage of information.

Newer research points towards the possibility that different applications may each

benefit from different techniques, parameters, or tuning of training data [23]. Al-

though research continued in the area of fine tuning techniques [25, 26, 27, 37, 38, 39,

40, 41], some research began to combine techniques [42, 43, 44, 45, 46, 47] with some

promising results. Unfortunately, these works can complicate the process, especially

in training or configuration [38, 42]. Perhaps some of the most interesting techniques

are those that combine DPI or signatures with packet-level statistics [45].

Flow based techniques continue to be a focus in recent research [27, 43, 44, 45,

48, 49, 50, 51], and although encryption is becoming a more popular focus, SSL is

seldom the focus [43, 44, 48, 49, 50].

Two recent and significant works in identifying SSL and their underlying appli-

cations are the flow-based machine learning approaches used by McCarthy et al. [51]

and the use of a hybrid method of signatures and flows statistics by Sun et al. [45].

The work by McCarthy et al. [51] uses an entirely generated data set to set up the

theoretical foundation for SSL classification using these methods, and Sun et al. [45]

were able to achieve promising SSL detection results on their experiments using data

from a network monitor.

In this thesis, novel contributions include an investigation of SSL identification

and tunneled applications using only packet-level statistics (ie. flows) on real traffic.

Furthermore, this work introduces the use of a genetic program and tests its perfor-

mance in the domain of SSL classification. Initial results of the genetic program are

not great, but lead to further discoveries into the importance of the features used for

identifying SSL. This work provides a novel investigation into the features that best

help identify SSL traffic, and further extend researcher’s capabilities by introducing a

new flow statistic generating tool. Unlike many previous works [27, 45, 46], this thesis

does not neglect to include both same-network and robustness tests, which become

an integral part of discovering SSL’s identifying characteristics.



Chapter 3

Background

3.1 Overview of Network Traffic

Network traffic contains considerably more information than the general user is aware

of. To most users, the Internet and other networks “just work” and that is the

most they will ever care to know. However, behind the scenes, many things must

be calculated and transmitted on the physical wire to allow a device to communicate

with other devices. Network traffic is generally conceptualized in the form of a layered

model. A layered model describes the many different headers and encapsulations used

by different computer networking technologies, both hardware and software. The

TCP/IP protocol stack, which is the Five-Layer Model (Figure 3.1), is one common

model used to describe the Internet.

In this model, Layer-1 is the Physical Layer, which is the layer many people are

actually aware of. This is because it involves the physical hardware that connects the

devices on the network. The Physical Layer is often described as the means by which

bits can be sent over a network. Layer-1 differs from the other layers because there

is no concept of a packet at this point. A packet consists of the next four layers in

the Five-Layer model.

Layer-2 is the Data Link Layer. The Data Link Layer is used to allow two in-

terfaces on the same link (often no more than a wire) to send messages back and

forth. The Data Link Layer is often implemented by a software driver for an ethernet

card, which tells the interface how it needs to “wrap” the data frame in order to com-

municate over the wire. It includes things such as the Media Access Control (MAC)

addresses of the source and destination interfaces as well as the type of network frame

being wrapped (most commonly, Internet Protocol). Since the Data Link Layer is de-

pendent on the structure of the network, it provides the necessary instructions for

transmitting a frame over the physical wire.

The Network Layer, which is Layer-3, is often called the Internet Layer. It provides

10
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the network addresses required for correctly routing packets in the right direction.

This layer is directly responsible for enabling your ISP to know where to send your

request when visiting a web page, or how to connect to a FTP server, and does so

by attaching a small header to the data frame. The Internet Protcol (IP) works on

this layer. By defining a a common address space (ie, the IP address), the Internet

Protocol is able to let different network types to be interconnected and transmit

messages between them. This is also the layer that allows the Internet to work on

almost any type of network.

Next, the data is encapsulated with another header, this time called the Trans-

port Layer, Layer-4. The transport layer header is designed to provide “end to end”

message transfer capabilities. In other words, this layer is responsible for ensuring

the message is forwarded to the correct application on an end system. The header

will include information such as the source and destination port numbers. Further-

more, the transport layer may also be responsible for error control, segmentation, flow

control, congestion control, or port numbers depending on the Layer-4 protocol used.

Common transport layer protocols include Transmission Control Protocol (TCP) and

User Datagram Protocol (UDP).

Finally, a packet begins and ends its journey as a simple application message. The

data at this point is called the Application Layer message. It is nothing more than the

message (or part thereof) that an application wishes to send across a network. This

is also the layer that SSL takes advantage of in providing secure communications,

although SSL can also be viewed as a process that creates its own layer before the

Application Layer. Some examples of common protocols that run on this layer and

their descriptions are given in Table 3.1.
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Figure 3.1: Internet - Five Layer Network Model

Table 3.1: Common Application Protocols

Protocol Encryption Description

HTTP none
Most well known for its use in data communtication
for the world wide web.

HTTPS SSL
The same protocol as HTTP, but encrypted with an
SSL tunnel. Commonly used for banking, e-mail,
and other confidential transmissions.

FTP none A protocol for transferring files.

FTPS SSL The FTP protocol encrypted with an SSL tunnel.

IMAP none Used for accessing e-mail.

Secure IMAP SSL The IMAP protocol encrypted with an SSL tunnel.

3.1.1 Technical Details of SSL

The primary focus of network traffic in this thesis is on Secure Sockets Layer (SSL)

traffic. As mentioned in Section 2.1, the term SSL is used in this document to refer

to both SSL and TLS traffic. The reason for this is that TLS is largely considered

a standardization of SSL, and shares many features with it. SSL uses cryptography

to provide security to any application that runs on a reliable transport protocol.

Cryptography is the study of techniques for secure communications. Repeating from
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Figure 3.2: Encryption - An example

Section 2.1, SSL attempts to provide data confidentiality, data integrity, authenti-

cation, and non-repudiation to these connections through the use of a standardized

protocol. A key part to providing all these goals is the use of encryption.

Encryption is the transformation of a message (called the plain-text) to a message

that is unreadable by those who do not have the necessary knowledge to decrypt the

message (called the cipher-text). An eavesdropper can easily interpret the contents

of plaint-text messages being sent between computers over a medium such as the

Internet, but when encryption is used, the usefulness of this practice is thwarted. In

the case where encryption is used, the eavesdropper will only be able to read the

cipher-text, which does not give them the application message unless they know how

to decrypt it (Figure 3.2). It is usually ensured (to the best of ability) that only the

intended recipient(s) are able to decrypt the message. It is important to note here

that since SSL is used at the application layer, the headers for the previous layers

(in particular, the transport layer header containing packet size and TCP flags) are

left unencrypted. This is important and becomes the basis for gathering information

about encrypted communications for this thesis.

Though the name Transport Layer Security is somewhat misleading, SSL/TLS

run at the application layer, and encrypt everything above the transport layer. This

effectively creates a new layer, the SSL layer, within the application layer (illustrated

with a dotted border in Figure 3.1). By running as a “virtual” layer between the

transport layer and the application layer, the SSL protocol has independence from

the underlying application protocol. This gives SSL the ability to be used with any
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Figure 3.3: Simple SSL handshake

application1.

Figure 3.3 shows the basic interactions involved in a simple SSL handshake. This

represents the communications that occur before a client can communicate securely

with the server. The figure shows the first several packets of an SSL tunneled commu-

nication and is roughly the same for any application that implements it. The protocol

communication is initiated in plain text. The simple SSL handshake is typically used

for banking and other scenarios where the client is not authenticated with a certifi-

cate. The client will usually be required to identify themselves with a username and

password, however, this is not part of the SSL protocol and instead is something that

is tunneled through SSL at the application layer. The handshake begins with the

client sending a message to the server indicating that it would like to begin a secure

session with SSL. This is called the client “hello”, and contains information such as

supported protocol versions (ie. 3.0 for SSL, or 3.1+ for TLS) and the encryption al-

gorithms (ciphers) available. The server will then respond with a server “hello” which

includes a chosen encryption method (that it deems strongest), protocol information,

1 Though it is possible to tweak SSL to work on applications that use protocols other than TCP,
the standard protocol only allows the use of reliable protocols such as TCP.
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and also includes its signed certificate. The certificate is the server’s proof that they

are who they say they are, and is often verified by a third party (called a Certificate

Authority, or CA). The CA will verify the server’s certificate (which contains the

server’s public key) by signing the certificate with their private key. The client then

validates this certificate using the public key of the CA, which is stored locally by

the client for CAs that it trusts. Now, the two devices can securely communicate a

key exchange with the server using the server’s public key, with which the client can

transfer the secret key (essentially a random number), which then will be used as the

initialization vector for the encryption method chosen.

3.1.2 Flows

Network traffic flows – or just flows for short – are used extensively in this work

to provide measurements about the communications over a network. A flow is an

artificial concept, and is used to encapsulate the idea of connectedness between two

devices. Flows are defined in RFC 2722 [52] where they are explained as:

“an artificial logical equivalent to a call or connection. [...] a portion of

traffic, delimited by a start and stop time.”

RFC 2724 [53] gives a more detailed description as:

“a set of packets between two endpoints (as defined by their source and

destination attribute values and start and end times), and as bi-directional.”

Within this document, the notion of a flow is described as identifiable by a 7-tuple:

(IPsource, PORTsource, IPdestination, PORTdestination, tstart, tend, PROTO)

where IPx is the ip address of x, PORTx is a port used by x, tx is the time at x, and

PROTO is the protocol used. A flow is bi-directional, and therefore must have at least

one packet in each direction to be considered a valid flow. Only the UDP and TCP

protocols are considered since most applications on the Internet use one of these two

protocols. UDP flows end after a timeout of 600 seconds, ie. when no packet has been

sent or received on the (IPsource, PORTsource, IPdestination, PORTdestination, PROTO)

combination for 600 seconds. TCP flows require a successful TCP connection to be
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considered a valid flow, and the flow ends after a successful TCP connection tear-

down or 600 second timeout. The 600 second timeout was chosen because it is the

suggested timeout value for inactive flows in RFC 2720 [54].

3.2 Machine Learning

Machine learning is an application of artificial intelligence that uses algorithms to

enable a computer to learn from input data. The data given to a machine learn-

ing algorithm is used to generate an understanding of the data, based on what the

algorithm can “learn” from the input it is given. The goal for any machine learn-

ing technique is to identify patterns (often very complex ones) in large amounts of

data, patterns that even a very skilled human would not be able to recognize due

to the enormous amount of information that is often presented. These techniques

take advantage of a computer’s ability to process massive amounts of data quickly

and efficiently. In this work, machine learning is used to provide classification. In

classification, the data is given to a machine learning algorithm as multiple instances,

each consisting of a set of values. These values can take multiple forms, including

strings (a sequence of characters, such as a word), an integer, a real number, or a

selection of one of multiple discrete values (such as true or false). Each one of these

values is called an attribute, or a feature (both terms are used interchangeably in the

literature).

The formation of this understanding is done in what is called the training phase,

and is used to form a model. The model can then be used to identify new cases

in the testing phase. The goal is to identify to which class (also called the label)

each instance in the test set belongs to. This thesis investigates the training and

testing of four machine learning approaches – naive Bayes, C5.0, AdaBoost with J48,

and Symbiotic Bid-Based Genetic Programming – in order to identify SSL traffic.

Furthermore, these same techniques are also tested for their ability to identify appli-

cations, specifically web browsing, running within SSL tunnels from a given network

traffic trace.
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3.2.1 Naive Bayes

The naive Bayes machine learning technique forms a statistical model of the data

that is given in the training phase. The algorithm relates each feature to the prob-

ability that feature will result in a particular outcome based on the entire training

set. To preform testing, the probability of each possible outcome is calculated based

on the features each test instance has. Naive Bayes gets its name because it makes

the (naive) assumption that each feature is independent, and uses Bayes rule of con-

ditional probability. The mathematical equation for how naive Bayes calculates this

probability is represented in Eq. 3.1.

P [Ci|F ] =
P [F1|Ci]× P [F2|Ci]× · · · × P [Ff |Ci]

P [F ]
(3.1)

where C is the set of classes, i is the index of the class being evaluated, F is the

set of features, f is the total number of features, and P [Ci|F ] is the probability of

resulting class Ci given features F . The denominator, P [F ], is for normalizing the

probabilities, but otherwise the equation is simply a product of the probabilities given

the features. The class with the greatest probability based on these calculations is

ultimately chosen by the classifier to be the predicted result.

Since naive Bayes creates a statistical model from all attributes available, the

resulting model considers each class as a single Gaussian representation across the

full attribute space.

3.2.2 C5.0

C5.0 is a decision tree classifier. C5.0 is a commercial implementation and improve-

ment upon C4.5 [55] designed by the same author. In general, the C5.0 algorithm

works the same as C4.5, however C5.0 cites better speed, memory usage, and smaller

sized trees as some of its benefits [56].

Decision trees are built by repeatedly splitting the training set on the feature

(attribute) which “best” splits the data. There are multiple methods for deciding

which feature is best, but C5.0 uses a measure of information entropy. The exact

criterion for splitting the training set is the normalized information gain, which is the

difference in entropy caused by choosing a specific attribute for splitting the data.
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The attribute that has the highest normalized information gain is ultimately selected

to be the one on which the training set is split. It first calculates the entropy of input

data S as defined in Eq. 3.2.

E(S) =
c
∑

i=1

−pilog2pi (3.2)

where c is the total number of classes, and pi is the proportion of exemplars that

belong to class i. If the split is not pure, then the exemplars are divided to minimize

impurity. The next step is to reduce the entropy by calculating the information gain

for each attribute, A, in the input data, S, as determined by Eq. 3.3

G(S,A) = E(S)−
∑

v∈(A)

|Sv|

|S|
E(Sv) (3.3)

where E(S) is the entropy of the input defined in Eq. 3.2, and |Sv| is the number

of instances that have value v for the attribute A. In other words, when a tree is

constructed, at each step the split that results in the largest decrease in impurity is

chosen. A more detailed explanation of the decision tree can be found in [57].

The resulting model of C5.0 is, in effect, a series of IF/THEN statements which

do not necessarily employ all attributes. Given this structure, there may be multiple

paths for the same outcome (class).

In this thesis, the boosting feature for C5.0 is not used. Instead, AdaBoost with

J48 is used separately as described in Section 3.2.3. Moreover, attribute winnowing

is left unexplored in this work.

3.2.3 AdaBoost with J48

AdaBoost, which stands for Adaptive Boosting, is a machine learning meta-algorithm.

AdaBoost is called a meta-algorithm because it is only used to support another ma-

chine learning algorithm, and is not a machine learning algorithm on its own. Ad-

aBoost, therefore, can be used with a variety of other machine learning algorithms,

and attempts to boost their performance. The specific method used in this work is

termed AdaBoost.M1, but herein will be referred to as just AdaBoost.

AdaBoost gets the ‘Ada’ part of its name from the word ‘adaptive’. AdaBoost

is adaptive because it increases the weight of instances that are incorrectly classified
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with each round of its execution, adapting the input to create expert classifiers. An

increase in weight means that the importance of classifying this particular instance

correctly is greater. Due to this feature, AdaBoost can be very sensitive to outliers or

incorrectly labeled data, and great care should be taken to ensure that the training

data is as accurate as possible in order to generate a model that performs well on

unseen data (ie. the test data set).

The ‘boost’ part of AdaBoost is in reference to the machine learning technique,

boosting, which attempts to use multiple models (as opposed to just one) to increase

classification performance. With each iteration of AdaBoost, after the weights are

adjusted, a new model is created. This ensures a model more specialized at classifying

these previously unsolved instances. All models are combined at the end to form one

boosted model, allowing each sub-model to make a bid on each instance it is asked

to classify. A bid is essentially a measure of confidence: how certain that particular

model is that it can correctly classify the instance.

In this work, AdaBoost is used with J48. J48 is a Java implementation of C4.5

found in Weka [58].

Essentially, AdaBoost works on the assumption that several classifiers, which are

experts in their particular domain, are better than just one general classifier that is

used for all test cases. In this spirit, several J48 trees are created, each an expert at

a certain set of instances. A more methodical explanation of the training algorithm

is given below in Algorithm 1.

Algorithm 1 gives a generalization of how the multiple J48 classifiers are built

using AdaBoost. The algorithm begins with instances that all have equal weights,

and builds a J48 tree in the same form a C4.5 tree would normally be built. Then,

if every instance was correctly identified, or error is greater than 50%, the algorithm

terminates. The algorithm re-assigns all weights in the data set by first multiplying

the correctly identified instances by e/(1− e). Then, the weights of all instances are

normalized to have a sum equal to the sum of weights before this updating step. The

weight updating process effectively increases the weight of the incorrectly identified

instances, and decreases the weight of the correctly identified instances. These steps

are repeated until either all t iterations are completed, or a model is built that has

either zero error or greater than 50% error. In the case of the termination clause
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Algorithm 1 Algorithm for training AdaBoost with J48 tree

for all Instances i do

Weight(i) ← 1

end for

for 1→ Max iterations do

m← J48(Instances)

e← Error(m)

if (e = 0) or (e >= 0.5) then

break

end if

Add m to resulting model

for all correctly classified instances i do

Weight(i) ← Weight(i)×(e/(1− e))

end for

Normalize all instance weights

end for

based on 50% error, the model is not used: only models built in previous iterations

are in the final model.

When the models are tested, their confidence is affected by a weight as well.

Specifically, the weight −log(e/log(1− e)) is given to the class predicted by each sub-

model, where e is the error value calculated for that sub-model while being trained.

The final model produced by AdaBoost is much more complex than the algorithm

it is boosting. Multiple sub-models are combined to maximize the statistical proper-

ties of the solution. As a result, the solution transparency – or human-readability –

is likely to be lost.

3.2.4 Genetic Programming

In this work, a specific type of Genetic Programming is employed, namely Symbiotic

Bid-Based Genetic Programming. The symbiotic co-evolutionary model, which is

applied in the Symbiotic Bid-Based (SBB) Genetic Programing approach, uses a

combination of competitive co-evolution and symbiotic co-evolution to evolve a set
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of programs to solve a problem. The architecture of the system is relatively complex

compared to the above techniques.

SBB has 3 sets of populations, shown in Figure 3.4. These include the point

population, team population, and learner population. In the case of an explicit action

problem domain, such as classification, the point population consists of a subset of

the instances from the training set. The team population is evolved, and contains

individuals that index learners from the learner population. Each team indexes at

least two learners, and these learners evolve what is called a bidding program in

association with their action. The bidding program accepts the input of an instance

(ie. a member of the point population) and returns a bid value, between 0 and 1.

This bid is used to determine which learner in the team may apply their action. In

the case of a classification problem, this action is just simply a class label. Each of

these populations is described in further detail below.

Point 
population

Team 
population

Learner 
population

Testing

Figure 3.4: Basic SBB Framework

The point population contains Psize instances from the training set. This popu-

lation is constantly refreshed: Pgap of these points are removed with each generation

of the algorithm, and replaced with Pgap new random points. The points chosen to

be swapped out are those that score the lowest on a measure of fitness. The fitness

measure is calculated as:
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fk =







1 + 1−c
Msize

if c > 0

0 otherwise
(3.4)

where c is the number of teams which can correctly identify the point, and Msize is

the number of teams in the team population. The function is basically a linear fitness

function, with highest fitness for a point that is only classified by one team and lower

fitness for points which are classified by multiple teams. The point population decou-

ples the cost of fitness evaluation from the size of the training set. By preforming the

evaluation on the smaller point population, the algorithm can more quickly complete

an iteration.

The team population consists of Msize teams, which index from 2 to ω learners

from the learner population. A team is nothing more than a set of indices. The team

population follows a similar replacement policy as the point population: with each

generation Mgap teams are removed, and replaced with new teams. To decide which

teams are replaced, each team is given a fitness measure defined as:

si =
∑

pk

(

G(mi, pk)
∑

mj
G(mj, pk)

)3

(3.5)

where pk iterates over each point, mi is the current team, mj iterates over every

team, and G(x, y) returns 1 if x can correctly classify y. In other words, for each

point a team can classify, that team gets an additional fitness of one divided by the

number of other teams that can classify it. The team population is responsible for

selecting multiple learners which can cooperate to form a classifier. This provides

task decomposition and allows learners to focus on separate parts of a problem.

The learner population is where the programs are evolved. A learner has two

elements to it: a bidding program and an action. The action is simply the class label

when dealing in the classification domain (other problem domains are possible, but

not discussed here). The bidding program is a sequence of instructions from Table 3.2

where R[y] is the value of the register at index y, and I[y] is the value of the feature

at index y. It is the job of the bidding program to place a bid on each instance.

This bid, after having the time to evolve, should become analogous to the learner’s

confidence that its action is the right action to take. By evolving a high bid for points
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for which its action is correct, and a lower bid for points that are incorrect, the learner

is able to increase the score of any team that indexes it. Learners are removed when

no more teams reference the learner. In short, the learner population provides a pool

of programs which may appear in a classifier.

When the team population is replaced with Mgap new teams, the new teams are

made by first copying an existing team. The copy then has learners removed, added,

and mutated according to probabilities represented by pmd, pma, and pmm respectively.

There is also a possibility for learner action change at this stage, pmn. A more detailed

description of the algorithm can be found in [59].

SBB is able to derive new features from the feature set. This trait allows SBB

to take advantage of relations between features in a way that is not possible by the

aforementioned algorithms. Models produced by SBB may have multiple programs

associated with the same class. The evolved programs can be quite short, and there-

fore solution transparency is possible.

Table 3.2: Instruction set

Function Register-Register definition Immediate value definition

Addition R[x]← R[x] +R[y] R[x]← R[x] + I[y]
Subtraction R[x]← R[x]−R[y] R[x]← R[x]− I[y]

Multiplication R[x]← R[x]×R[y] R[x]← R[x]× I[y]
Division R[x]← R[x]÷R[y] R[x]← R[x]÷ I[y]
Cosine R[x]← cos(R[y]) R[x]← cos(I[y])

Logarithm R[x]← ln |R[y]| R[x]← ln |I[y]|

Exponential R[x]← eR[y] R[x]← eI[y]

Conditional if R[x] < R[y]: R[x]← −R[x] if R[x] < I[y]: R[x]← −R[x]

The final output of SBB is one team. The team that scores the highest on the last

set of points is chosen to be the best solution. This final result works the same way a

team works in the training stage: a team is given as input the instance to be tested

on, its learners bid, and the highest bidder gets to preform its action (in classification,

this action is assigning the class label).
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Data Collection and Data Generation

The data used in this study is gathered from network traffic capture files. These

captures consist of the raw data that traveled over the physical wire at a given point

on a network. The captures contain headers, timing information, and the application

data (if available). The data sets used in this study are outlined in Table 4.1.

Table 4.1: Data Sets Used

Data set Date captured Total flows Availability

UCIS3 Jun 10, 2010 - Jun 12, 2010 27,782,845 Private
UCIS2 Jan 25, 2007 4,195,245 Private
NIMS4 Jan 31, 2011 - Feb 7, 2011 1,259,724 New/Public

MAWI2010 Jun 6, 2010 - Jun 15, 2010 3,536,058 Public
MAWI2011 Jan 1, 2011 - Jan 11, 2011 4,006,610 Public

4.1 UCIS2 & UCIS3

These data sets are traffic captures from the Dalhousie campus network. The Infor-

mation Technology Services of Dalhousie University captured and labeled the packets

using a commercial product called PacketShaper [60]. PacketShaper uses deep packet

inspection to identify up to 700 applications. In this work, the focus is on applications

that run within an SSL tunnel. Since SSL has a plain text initiation (as described in

Section 3.1.1), the ground truth is known in the case of UCIS3. Unfortunately, the

UCIS2 data set does not have SSL labeled.

Both UCIS2 and UCIS3 captures were taken on a full-duplex T1 fibre link at a

point between the Dalhousie campus network and the Internet. The captures therefore

contain all of Dalhousie’s interaction with the outside Internet during these time

periods, and as such, represent a real-world network usage scenario. The UCIS2

data set consists of 22 GB of raw IP header data captured on January 25th 2007.

On the other hand, the UCIS3 data set consists of 122 GB of raw IP header data

24
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captured from June 10th - June 12th, 2010. It should be noted here that due to

privacy concerns, the IP addresses have been mapped to new random values, the

checksum set to zero, and the captures have the payload removed and therefore only

contain header information. However, the packets were labeled before removing this

information, allowing for deep packet inspection to be used for this purpose.

4.2 Public Captures: MAWI2010 and MAWI2011

The public captures used in this work consist of those gathered by the Measurement

and Analysis on the WIDE Internet (MAWI) Working group [61]. Each day MAWI

captures 15 minutes of traffic on a trans-Pacific 150Mbps link, truncates the captures

so that only header information is available, and publicly distributes them on-line.

For this work, several adjacent days have been combined into two new data sets. The

MAWI2010 data set consists of data captured from June 6th, 2010 to June 15th, 2010.

The dates were chosen to overlap the time when the UCIS3 data set was captured.

Another data set, MAWI2011, was created using captures from the beginning of 2011,

from January 1st, 2011 to January 11th, 2011. This data set was made to provide

further robustness tests, as well as understand the effect of training models in a

different time period than they are trained on. In other words, I aim to answer the

question “will a previously generated model work effectively today?”

4.3 Generated Traffic Captures

In order to obtain traffic traces for which the absolute truth about the underlying

applications running in SSL tunnels is known, network traffic was generated in the

Network Information Management and Security lab at Dalhousie University. The

traffic generated is intended to be representative of regular SSL tunneled HTTP traf-

fic. In the real world, most of this traffic would be generated during secure browsing

activities such as banking, social networking, and web-based communications such as

e-mail. Unfortunately, these activities are rather difficult to mimic. The approach

taken in this thesis involves using an SSL tunnel to wrap random “regular” (ie. non-

encrypted) web browsing activity. This is the same procedure that would be used

to securely visit a bank website or securely access an e-mail through a web browser.
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Figure 4.1: BFake Setup

Since the goal is to identify patterns within SSL when tunneling the HTTP protocol,

this should provide a reasonable compromise.

The web browsing traffic generation was done by a simple program written in

Python and created specifically for this scenario, called BFake [62]. Figure 4.1 shows

the setup of BFake, whereas Table 4.2 shows the client and server machines software

setup employed in these experiments.

The BFake program was run in a virtual machine on the client machine with

browser settings set to send all traffic to a listening stunnel [63] port. The stunnel

proxy was set to create a persistent connection with the proxy machine. The proxy

machine was configured to receive the data, remove the SSL tunnel wrapping the

HTTP request, and forward this on to a Privoxy [64] proxy server running on the

same machine. The proxy server was configured to keep connections alive for up to

5 minutes with the HTTP servers if the remote server allowed it. The captures were

made on the proxy server, allowing us to capture both the SSL encrypted requests,

as well as the corresponding HTTP traffic. Thus, SSL flows that may contain several

page views within the same tunnel were obtained. Over the course of many days,

33GB of full capture web browsing traffic was generated.

BFake operates by controlling a standard browser. This is very important to note,

because the traffic generated needs to be as similar as possible to how traffic would

look if it were captured by a person browsing the web doing their regular business.
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Table 4.2: Client and server software setup.

Server Client
Debian 5.0 Ubuntu 10.10 VM running in Gentoo Linux

Services used tshark 1.2.11 OpenSSL 0.9.8o
OpenSSL 0.9.8o stunnel 4.29
stunnel 4.29 Firefox 3.6.13
Privoxy 3.0.16 Selenium server 2.0b1

To this end, Firefox 3 [65] is employed in all our experiments.

The general procedure followed by the program is described as follows. First, the

program randomly chooses how many websites it will visit as “seeds” (starting pages)

in the current iteration. The program then picks a random web-site, from a list of

choices, where it will begin at. The Alexa Top Sites [66] are used for the program

to choose from. BFake then pre-determines the number of links it will follow from

that web-page. After every page load, the program will wait a random (log-normally

distributed) amount of time before clicking a random link on the current page. After

fulfilling the amount of links to follow, which was previously determined, BFake will

then do one of two things:

• If the number of “seed” web-pages decided in the first step has been achieved,

the program will close all browser instances, remove any browsing history or

cookies, and terminate.

• If the number of “seed” web-pages has not been achieved, the program chooses

a new seed web-site to begin at, opens that page in the current browser, and

repeats the process.

The sequence of steps is described in pseudo code in Algorithm 2.

BFake does have a few limitations. There is no user input in BFake. The lack

of user input means the program cannot use the POST HTTP request method as

intended, such as writing a message on a forum or typing into an interactive text-

box. Furthermore, there is no bias in how BFake chooses the links to follow, and no

bias on the amount of time spent on a web-page given the information it contains.

These are all important characteristics of web browsing activity that could cause some

minor differences in the generated traffic when compared to real-life traffic captures.
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Algorithm 2 BFake process

S ← List of websites

loop

visit(random(S))

C ← random number

for 1→ C do

L← links on webpage

wait(random time)

visit(random(L))

end for

end loop



Chapter 5

Experiments and Results: With Standard Flow Statistics

In this section, experimental methodology and the results achieved are presented

using standard flow statistics provided with a popular open source tool for the task:

NetMate. The outline of experimental methodology includes all the steps necessary

to reproduce the results, given the original data captures. The data sets used in these

experiments are large enough that results should be similar with any sufficiently large

(and realistic) data set.

5.1 Pre-processing of the Data

First, an explanation is given of the steps taken to ensure that the final data sets

employed are accurate and useful. This is called pre-processing the data. It should be

obvious that pre-processing of the data has an effect on everything that will follow,

and therefore may have a great effect on the performance of the resulting models.

Great care should be taken to ensure that the flow statistics generated and labeling

are performed as accurately as possible.

5.1.1 Merging Captures

Most captures that span a large length of time are separated into several smaller files.

In order to preserve flows, which may span across several of these files, the captures

should be merged into one larger file that contains all the packets from each capture in

chronological order. This is achieved using mergecap, a software tool distributed with

Wireshark [67]. Merging the files will allow the flow generator (NetMate) to process

the captures as one continuous piece of data rather than several smaller pieces.

29
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5.1.2 Converting Traffic Captures to Flows

To convert raw traffic captures into flow statistics, a program called NetMate[68]

and a module called netAI [69] are used. The combination of the aforementioned

programs will be referred to as just NetMate for the rest of this thesis. NetMate

reads raw captures, and calculates a variety of statistics about each flow contained

in the capture. The software used in these experiments is a slightly modified version,

which includes a module to export 40 features of a flow as well as a module to export

these features for only the first second of a flow. Table 5.1 shows the features that

are calculated and exported. The flows that contain only the first second of data

are referred to as 1st-second flows. 1st-second flows have their attributes calculated

only for the first second beginning with the first packet in the flow. The intention

is to discover whether application identification is possible early in the stages of

a communication between two devices, rather than waiting for the two devices to

finish communicating. Furthermore, 1st-second flows will show if classifying encrypted

network traffic is possible with a window of data as opposed to the entire flow. This

becomes important for network throttling or identifying encrypted applications within

long, continuous flows, which may contain several applications.

Each data set is run through NetMate with two different modules. The first

module exports all information about the entire connection of the flow. The second

exports only statistics about the first second of every flow. A breakdown of the effect

this has on the UCIS3 data is shown in Table 5.2, which essentially shows the number

of flows that exceed one second for each type of traffic considered in this research.

Following this, it is important to mention that UDP flows that contain less than one

packet in each direction are removed (via a script) from the data sets. This is essential

to conform to the definition of a flow given in Section 3.1.2.

5.1.3 Labeling the Data and Removing IP/port information

The approach for labeling the data differs depending on the data set. For the UCIS3

data set, the labels are provided by the Dalhousie ITS team. As mentioned in Sec-

tion 4.1, the packets are labeled using DPI, and the label is stored in the IP header’s

Differentiated Services Code Point (DSCP) field. It is important to note that no

labeling is done by ITS for the underlying application inside an SSL communication,
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Table 5.1: Features exported by NetMate. (f&b) indicates that a feature is calculated
separately for both the forward and the backward directions of the flow.

(a) Data based features

Name Description

proto protocol
total fpackets, total bpackets total packets (f&b)
total fvolume, total bvolume total bytes (f&b)

min fpktl, min bpktl minimum packet length (f&b)
mean fpktl, mean bpktl mean packet length (f&b)
max fpktl, max bpktl maximum packet length (f&b)
std fpktl, std bpktl standard deviation of packet lengths (f&b)

sflow fpackets, sflow bpackets average sub-flow packets (f&b)
sflow fbytes, sflow bbytes average sub-flow bytes (f&b)

fpsh cnt, bpsh cnt push flag count (f&b)
furg cnt, burg cnt urg flag count (f&b)

total fhlen, total bhlen header length (f&b)

(b) Time based features

Name Description

duration duration
min fiat, min biat minimum inter-arrival time (f&b)

mean fiat, mean biat mean inter-arrival time (f&b)
max fiat, max biat maximum inter-arrival time (f&b)
std fiat, std biat standard deviation of inter-arrival times (f&b)

min active minimum active time
mean active mean active time
max active maximum active time
std active standard deviation of active times
min idle minimum idle time
mean idle mean idle time
max idle maximum idle time
std idle standard deviation of idle times

Table 5.2: Effects of 1s module on UCIS3 data set

Type Flows Affected % Affected

TOTAL 7,688,120 27.67%
OTHER (HTTP) 6,253,072 (2,142,078) 25.7% (46.46%)

SSL 803,459 45.44%
SSH 34,798 97.67%

SKYPE 280,680 23.90%
P2P 316,103 66.34%
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Table 5.3: Flow counts in each data set. * indicates port based labelling.

UCIS3 UCIS2 MAWI2010 MAWI2011 NIMS4

HTTPS 1,750,048* 843,204* 93,198* 88,797* 337,135
HTTP 4,610,264* 1,714,694* 856,857* 1,211,051* 922,589
OTHER 19,717,811 1,615,265 2,582,895 2,703,468 0
P2P 476,491 N/A N/A N/A 0

SKYPE 1,174,358 N/A N/A N/A 0
SSH 35,622 15,863 N/A N/A 0

SSL (non-web) 18,250 6,219* 3,108* 3,294* 0

and therefore all SSL communications running over the standard port for web brows-

ing (443) was labeled as HTTPS. Given that the flow has already been identified

as SSL, and port 443 is reserved by most machines for SSL, this labeling method

should be reasonably accurate. For the generated captures (the NIMS data set), the

ground truth is known, and can easily be labeled using a priori knowledge. For public

captures, the flows are labeled by port the number alone, because no other suitable

alternative is available to use without payload. The UCIS2 data set does not have

SSL labeled, and therefore uses the same labeling method as the public data sets.

The last step in pre-processing the data is to remove the IP and port number

information from the flows. This information is removed since both IP address and

port information are not useful in identifying the contents of encrypted tunnels. The

information may provide an unfair bias by helping to identify IP addresses that fre-

quently use SSL (such as HTTPS servers) or commonly used ports for SSL tunnels.

However, the goal is to identify arbitrary flows that may be intentionally obfuscated

using proxies or non-standard ports. The final count of each labeled data set is shown

in Table 5.3. It is important to note that a small fraction of these flows are removed

in pre-processing the 1-second flows because a response has not yet been received in

the backward direction. This has a small (about 3%) effect on the overall number of

flows in the 1-second test set.

5.2 Usage of the Machine Learning Techniques

Each machine learning technique is trained on a training set, and tested on the

resulting test sets (the remaining flows from the data sets). Training sets are chosen
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by randomly selecting a pre-determined amount of each application type. To aid in

selecting the distribution of the flows, an analysis of several select features is done to

identify what the distribution of the features looked like for particular applications. It

is quite obvious that the flows that most closely resemble SSL in terms of features are

flows on port 80, as shown in Figure 5.1, which gives violin plots showing the density

of some selected features. The assumption is made that this is due to HTTPS being

the most common use of SSL. This hypothesis is given further merit when considering

98.97% of SSL flows traveled through port 443 – the port number assigned to HTTPS

by the Internet Assigned Numbers Authority (IANA) [1]. To complement this, work

by Este et al. reported that SSL was classified as HTTP by their classifier which had

never seen SSL traffic [38]. From this, an increased amount of flows from port 80 are

used to aid the machine learning algorithms in creating a distinction.

Naive Bayes and AdaBoost are implemented using Weka [58]. Weka is an open

source machine learning toolkit consisting of implementations of several different ma-

chine learning algorithms and techniques. Regarding parameters, none are needed for

naive Bayes, and AdaBoost is configured with the values in Table 5.4. C5.0 models

are built using the commercial software [55], no options are used (ie. the default

tree is made), and the parameter for confidence factor is varied from 1 to 50. The

confidence factor sets a threshold for the pruning of the tree. The C5.0 algorithm

compares the error of the children of this node against the resulting error if these

nodes were removed and the node was made a leaf with the label of the majority

class. The confidence factor is used to decide when pruning should be preformed

based on this comparison. After varying this value, the best preforming model is

chosen. The confidence factor is varied to explore the effects of pruning the C5.0

tree in different ways. SBB models are evolved using the source code developed here

at Dalhousie University by Peter Lichodzijewski and John Doucette [70]. The code

is further extended to allow an evolved team to be applied to several test sets and

re-run at a later execution time. SBB is run with 50 different seed values due to

its stochastic nature, and the best preforming model is chosen. Table 5.5 shows the

parameters used for SBB.
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Figure 5.1: Violin Plots of Select Features Using Full Flows

Table 5.4: AdaBoost Parameters

AdaBoost

Parameter Description Value
I Number of boost iterations 10
P Percentage of weight mass used to build classifiers 100

J48

Parameter Description Value
C Confidence threshold for pruning 0.25
M Minimum number of instances per leaf 2
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Table 5.5: SBB parameters used

Parameter Description Value
Psize Point population size 120
Msize Team population size 120
Pgap Point population to replace with each generation 20
Mgap Team population to replace with each generation 60

pmd/pma Probability of learner deletion/addition 0.7
pmm Probability of learner mutation 0.2
pmn Probability of learner action change 0.1
ω Maximum size of a team 10

maxProgSize Maximum size of a program in instruction count 48
pbidmutate Probability of a bid program mutating two instructions 1
pbidswap Probability of a bid program swapping two instructions 1
pbidadd Probability of adding a new instruction 1
pbiddelete Probability of deleting an instruction 1

numLevels The number of levels of teams to use. 1

5.2.1 Training and Test Sets

The training sets are quite possibly the most important part of any machine learning

algorithm. A model created by a machine learning algorithm can only learn the

information that was given in the training phase. The training set, therefore, puts

an upper bound on the quality of the resulting model’s performance (ie. it defines

the absolute best a machine learning algorithm can do). Unfortunately, there are

no clear rules defined for what size training set is best, or how to best choose the

training set instances. The choice is sometimes made more difficult by the availability

of labeled data, or requirements emphasizing quick training times (smaller sets are

usually faster). This experiment analyzes the results of 6 different training sets,

sampled once for both types of flows used (ie. the same flows are used to create

sets for full flows as are used for 1-second flows). These training sets are designed

to explore the possible options and contrast differences between these choices. The

training sets range in size from 12000 to 70000 flows.

The training and test sets are split up into two levels. At the first level, training

sets are designed for identification of SSL traffic. These training sets are comprised

entirely of flows from the UCIS3 data set, since these flows are very reliably labeled

and show realistic patterns. The test sets contain all remaining flows from the data
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sets employed. Thus, I refer to these SSL-identifying learning models as level 1

solutions, designed to identify SSL traffic from a given traffic file without using IP

addresses, port numbers, or payload information. The second level is designed to

distinguish SSL tunneled browsing behaviour from non-browsing SSL behaviour. The

training sets at this level consist of different configurations of HTTPS and non-HTTPS

SSL flows from the UCIS3 and NIMS4 data sets. The test sets contain the remaining

SSL flows from each data set.

A uniform random selection is preformed and the amount of data given in Table 5.6

is sampled. Amounts that have an asterisk (*) beside them in these tables are sampled

from the artificially generated data set. All other flows are sampled from the UCIS3

data set, which contains the most realistic and reliably labeled data. The bias given

to SSL and HTTPS flows is for the obvious reason: this is the protocol that I am

interested in detecting in this research. Uniform samples of the remaining labeled

applications are used in order to give a diversity to the training set, with the exception

that there is a bias to HTTP flows as it is concluded that HTTP flows would be the

most difficult to distinguish from SSL flows. To provide a bit more diversity in the

training sets, some more flows are sampled from the “other” category (unlabeled

flows). An explanation of the justification and intention of each training set is given

below.

L1 UCIS3 This is a general training set comprised of entirely UCIS3 labeled flows.

This training set should be able to provide enough training data for the reliable

identification of SSL.

L1 UCIS3 LARGE This is a large training set designed to investigate the impact

of additional flows in the training set.

L2 UCIS3 A data set containing equal amounts of SSL on port 443 from the UCIS3

data set and SSL not on port 443 from the UCIS3 data set. This balanced

training set will be used to train models that are able to identify tunneled web

browsing among SSL flows.

L2 UCIS3 LARGE This training set is similar in intention to L1 UCIS3 LARGE

in that it aims to investigate the use of additional flows. However, since SSL
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flows that do not run on port 443 are scarce in numbers, the addition of non-SSL

flows to increase performance is investigated.

L2 NU This training set combines the NIMS4 HTTPS flows (flows generated in the

lab) with UCIS3 non-SSL flows. This is the only training set that contains

HTTPS flows where the ground truth is 100% certain. Because of this, results

will rely heavily on how similar the NIMS4 HTTPS flows are to the SSL flows

on port 443.

L2 NU LARGE This training set aims to investigate whether the NIMS4 HTTPS

flows are similar enough to UCIS3 HTTPS flows that the inclusion of extra

flows from it will increase performance. The training set includes the same

training flows as the L2 UCIS3 LARGE training set and includes 20000 addi-

tional HTTPS flows from NIMS4.

Table 5.6: Training sets. Amounts with * indicate sampling from an artificially
generated data set.

(a) Level 1 Training Sets

L1 UCIS3 L1 UCIS3 LARGE

SSL 6,000 20,000
OTHER 6,000 20,000
(HTTP) (3,000) (10,000)
SSH 1,000 5,000

SKYPE 1,000 5,000
P2P 1,000 5,000

TOTAL 15,000 55,000

(b) Level 2 Training Sets

L2 UCIS3 L2 UCIS3 LARGE L2 NU L2 NU LARGE

HTTPS 6,000 10,000 6,000* 10,000 + 20,000*
Other SSL 6,000 5,000 0 5,000
OTHER

0
20,000 6,000 20,000

(HTTP) (10,000) (3,000) (10,000)
SSH 0 5,000 1,000 5,000

SKYPE 0 5,000 1,000 5,000
P2P 0 5,000 1,000 5,000

TOTAL 12,000 50,000 15,000 70,000
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5.3 Results

When evaluating network traffic classification, one usually considers two measures

of a classifier: detection rate (DR) and false positive rate (FPR). To facilitate in

describing these two measures, I will refer to in class and out of class flows. An

in class flow is a flow that is labeled as SSL when referring to level 1 classification, or

HTTPS when referring to level 2 classification.

The detection rate is a measure of how often the classifier can correctly identify

the target (in class) application or protocol. In this work, the detection rate would

be equivalent to the percentage of in class flows that were flagged correctly. In

mathematical terms, detection rate can be described as:

DR =
tp

tp+ fn
(5.1)

where tp is the number of detected in class flows (true positives), and fn is the

number of in class flows incorrectly identified as out of class (false negatives). tp+fn

is therefore just the total number of in class flows.

False positive rate is a measure of how often a classifier incorrectly identifies

an out of class flow as being in class. The false positive rate can be expressed in

words as the probability that an out of class flow will be labeled as in class and

becomes significant in this field when considering how often an administrator would

be bothered by false alarms. In mathematical terms, false positive rate is described

as:

FPR =
fp

fp+ tn
(5.2)

where fp is the number of out of class flows incorrectly labeled as in class (false

positives) and tn is the number of out of class flows correctly identified as out of class

(true negatives).

It is important to note that detection rates of 100% are not achieved despite clear

text initiation of the SSL handshake because of the tactic used. All algorithms only

have packet-level information available to them, and no payload, port, or IP address

information is given. These results, then, are a best guess based on the associated

flow attributes.
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Table 5.7: L1 UCIS3 - Results quoted are independently calculated with respect to
the test set specified

(a) Detection Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 97.30% 96.25% 93.86% 80.34%
UCIS2 99.42% 98.09% 97.18% 49.12%
NIMS4 97.55% 75.41% 63.20% 15.66%

MAWI2010 96.17% 86.36% 82.19% 61.19%
MAWI2011 94.71% 83.29% 77.79% 65.02%

(b) False Positive Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 27.36% 1.96% 2.49% 3.35%
UCIS2 58.39% 5.08% 7.92% 9.69%
NIMS4 98.44% 6.72% 5.99% 7.36%

MAWI2010 40.36% 1.62% 1.95% 2.32%
MAWI2011 37.74% 1.61% 1.65% 1.77%

5.3.1 Full flows, level 1

The performance in terms of detection rate and false positive rate is shown in Table 5.7

and Table 5.8.

Subjectively, the best performing model above was the C5.0 solution trained on

the L1 UCIS3 LARGE training set. While AdaBoost provides a solution with slightly

better results, the trade-off for a more simple model gives C5.0 a particular advantage

when identifying SSL traffic. Not only does C5.0 have lower computational cost

when evaluating, but the model is also easier to understand and interpret by an

administrator.

The C5.0 solution considers the forward push count (fpsh cnt) as the first attribute

on which to split. The branch for a fpsh cnt ≤ 1 is a relatively small branch and most

commonly results in a decision of NON-SSL. The branch for fpsh cnt > 1 is much

larger and seems to be the more difficult part for C5.0 judging by the numerous

branches. After considering the forward push count, C5.0 creates many fine tuned

sub-trees and does not appear to have an easy time breaking off groups of either

class (a simple problem would produce smaller branches, where leaves produced high

yields of specific class). The top 5 used attributes in evaluation are forward push
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Table 5.8: L1 UCIS3 LARGE - Results quoted are independently calculated with
respect to the test set specified

(a) Detection Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 98.09% 96.92% 95.71% 81.12%
UCIS2 99.63% 98.14% 97.71% 50.40%
NIMS4 98.41% 74.41% 76.25% 18.15%

MAWI2010 97.31% 89.47% 89.16% 62.40%
MAWI2011 92.22% 86.54% 80.50% 66.30%

(b) False Positive Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 32.27% 1.44% 1.98% 3.16%
UCIS2 66.71% 5.50% 6.58% 10.18%
NIMS4 99.29% 5.85% 3.63% 8.32%

MAWI2010 43.90% 1.81% 2.07% 2.30%
MAWI2011 41.20% 1.51% 1.72% 1.83%

count, standard deviation of forward packet length, maximum forward packet length,

maximum backward packet length, and mean backward inter-arrival time.

5.3.2 Full flows, level 2

The performance in terms of detection rate and false positive rate is shown in Table 5.9

through Table 5.12.

An investigation of these tables show that AdaBoost performs best in terms of only

these measures (detection rate and false positive rate). Once again, the slightly lower

detection rate and slightly higher false positive rate that C5.0 gives is considered.

In this case, however, a low false positive rate is more vital. At the first level, an

investigator can verify results using the plain-text SSL handshake; however, at the

second level this option is no longer available. Furthermore, the negative effect of

higher processing time is mitigated because the first level classifier will have removed

any non-SSL flows. The model generated from the L2 UCIS3 training set provides

the best balance of low false positive rate and high detection rate on all test data

sets.

The AdaBoost model is much more difficult to analyze due to the effect of boosting.
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Table 5.9: L2 UCIS3 - Results quoted are independently calculated with respect to
the test set specified

(a) Detection Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 97.69% 97.85% 96.53% 81.73%
UCIS2 99.72% 98.25% 98.03% 76.72%
NIMS4 94.16% 74.16% 66.45% 35.64%

MAWI2010 97.84% 85.54% 86.40% 61.04%
MAWI2011 96.48% 80.20% 85.19% 62.00%

(b) False Positive Rate. Note: out of class flows do not exist in the
NIMS4 data set.

Naive Bayes AdaBoost C5.0 SBB
UCIS3 90.98% 3.19% 5.31% 10.13%
UCIS2 89.31% 3.68% 4.79% 5.23%
NIMS4 N/A N/A N/A N/A

MAWI2010 88.00% 6.21% 8.43% 0.87%
MAWI2011 88.59% 5.40% 7.56% 1.15%

Table 5.10: L2 UCIS3 LARGE - Results quoted are independently calculated with
respect to the test set specified

(a) Detection Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 98.11% 93.53% 91.38% 80.29%
UCIS2 99.56% 96.31% 94.05% 47.11%
NIMS4 97.56% 60.02% 59.05% 13.85%

MAWI2010 97.04% 77.34% 74.19% 61.81%
MAWI2011 96.13% 66.74% 65.41% 66.57%

(b) False Positive Rate. Note: out of class flows do not exist in the
NIMS4 data set.

Naive Bayes AdaBoost C5.0 SBB
UCIS3 90.67% 2.57% 4.43% 12.44%
UCIS2 88.78% 3.97% 7.11% 3.34%
NIMS4 N/A N/A N/A N/A

MAWI2010 82.59% 4.38% 3.76% 1.48%
MAWI2011 73.47% 3.92% 1.97% 1.43%
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Table 5.11: L2 NU - Results quoted are independently calculated with respect to the
test set specified

(a) Detection Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 10.16% 0.82% 1.65% 21.34%
UCIS2 4.47% 1.58% 4.03% 52.21%
NIMS4 97.97% 99.86% 99.73% 99.91%

MAWI2010 28.42% 24.92% 26.76% 89.02%
MAWI2011 31.82% 4.49% 4.70% 15.41%

(b) False Positive Rate. Note: out of class flows do not exist in the
NIMS4 data set.

Naive Bayes AdaBoost C5.0 SBB
UCIS3 7.01% 0.98% 1.25% 18.62%
UCIS2 7.67% 2.65% 8.73% 67.31%
NIMS4 N/A N/A N/A N/A

MAWI2010 19.69% 13.42% 1.99% 71.72%
MAWI2011 10.90% 0.55% 0.79% 25.26%

Table 5.12: L2 NU LARGE - Results quoted are independently calculated with re-
spect to the test set specified

(a) Detection Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 96.70% 93.76% 91.07% 90.41%
UCIS2 99.24% 96.63% 95.29% 98.01%
NIMS4 98.90% 99.93% 99.77% 99.64%

MAWI2010 96.89% 80.64% 71.94% 85.53%
MAWI2011 95.91% 69.14% 66.98% 85.09%

(b) False Positive Rate. Note: out of class flows do not exist in the
NIMS4 data set.

Naive Bayes AdaBoost C5.0 SBB
UCIS3 90.25% 3.49% 4.96% 18.35%
UCIS2 89.23% 6.98% 6.34% 21.02%
NIMS4 N/A N/A N/A N/A

MAWI2010 87.84% 7.92% 1.99% 8.40%
MAWI2011 80.75% 5.46% 2.00% 12.17%
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Table 5.13: L1 UCIS3 1S - Results quoted are independently calculated with respect
to the test set specified

(a) Detection Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 92.47% 96.04% 94.60% 90.01%
UCIS2 96.32% 98.09% 97.08% 95.96%
NIMS4 88.59% 91.49% 80.85% 99.91%

MAWI2010 91.66% 89.15% 88.14% 85.66%
MAWI2011 90.81% 82.20% 82.60% 86.81%

(b) False Positive Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 18.36% 2.03% 2.10% 4.11%
UCIS2 46.82% 5.03% 5.76% 9.54%
NIMS4 70.41% 6.07% 5.77% 19.69%

MAWI2010 22.33% 2.85% 3.61% 2.73%
MAWI2011 25.30% 1.88% 1.40% 2.57%

Because it essentially provides several decision tree models combined into one, the

effects of each decision made by the tree are much more difficult to understand.

Looking at the first feature considered by the first tree built, the maximum forward

packet length is used to split the flows (C5.0 used standard deviation of forward

packet length). From this point, both branches have sub-trees with a great span and

therefore showed great complexity in identifying the underlying process. The second

and fourth trees in the AdaBoost model use the forward push count as the feature on

which to split the initial set of data. This implies that this feature is also important

for identifying the underlying application in SSL, not just for identifying SSL itself

as discovered when analyzing level 1 models.

5.3.3 1st-second flows, level 1

The performance in terms of detection rate and false positive rate is shown in Ta-

ble 5.13 and Table 5.14.

For the first time in these tests, analysis of the models show that SBB trained

on the L1 UCIS3 1S training set provides a simple yet effective solution. The SBB

solution employs 14 of the features, and identified an instance of SSL in only 51
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Table 5.14: L1 UCIS3 LARGE 1S - Results quoted are independently calculated with
respect to the test set specified

(a) Detection Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 95.14% 96.96% 95.09% 88.19%
UCIS2 97.54% 97.94% 97.42% 94.88%
NIMS4 96.58% 90.33% 91.23% 99.57%

MAWI2010 93.16% 91.17% 88.83% 84.28%
MAWI2011 93.20% 89.04% 87.71% 86.21%

(b) False Positive Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 22.01% 1.33% 1.51% 5.48%
UCIS2 52.75% 5.52% 5.81% 7.37%
NIMS4 93.89% 3.88% 2.67% 18.04%

MAWI2010 28.85% 2.14% 2.49% 2.09%
MAWI2011 30.53% 1.35% 1.43% 1.99%

instructions. SBB most commonly employs the mean forward packet length feature,

followed by mean idle time, then minimum active time, standard deviation of the idle

time, and backward push count. It is interesting to note that SBB focuses on time

based features while the other models so far do not. SBB, unlike the other models,

has the ability to make more complex relations between features, which may be the

reason why time based features are more useful for SBB.

The best model, however, appeares to be C5.0 trained on the L1 UCIS3 1S train-

ing set. C5.0 generates a relatively simple decision tree, which will be analyzed later

in Section 5.3.5.

5.3.4 1st-second flows, level 2

The performance in terms of detection rate and false positive rate is shown in Ta-

ble 5.15 through Table 5.18.

Analysis of the above models once again shows that AdaBoost trained on the

L2 UCIS3 1S training set is able to perform best in the second layer identification

(web browsing vs non web browsing). The maximum forward packet length is the first

considered attribute in both the AdaBoost and C5.0 implementations. This model is
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Table 5.15: L2 UCIS3 1S - Results quoted are independently calculated with respect
to the test set specified

(a) Detection Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 93.70% 97.53% 96.51% 80.59%
UCIS2 96.08% 96.39% 96.96% 53.96%
NIMS4 66.98% 87.05% 89.56% 19.68%

MAWI2010 77.06% 79.64% 83.06% 59.61%
MAWI2011 77.76% 77.43% 81.44% 64.59%

(b) False Positive Rate. Note: out of class flows do not exist in the
NIMS4 data set.

Naive Bayes AdaBoost C5.0 SBB
UCIS3 15.06% 3.13% 4.94% 11.80%
UCIS2 21.98% 2.01% 12.18% 3.93%
NIMS4 N/A N/A N/A N/A

MAWI2010 37.48% 5.73% 9.98% 0.03%
MAWI2011 36.89% 5.23% 17.15% 0.06%

Table 5.16: L2 UCIS3 LARGE 1S - Results quoted are independently calculated with
respect to the test set specified

(a) Detection Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 96.04% 94.13% 91.44% 80.25%
UCIS2 98.15% 94.28% 95.08% 49.28%
NIMS4 99.84% 72.47% 74.11% 16.43%

MAWI2010 93.16% 77.82% 74.81% 59.94%
MAWI2011 92.07% 68.40% 73.35% 64.34%

(b) False Positive Rate. Note: out of class flows do not exist in the
NIMS4 data set.

Naive Bayes AdaBoost C5.0 SBB
UCIS3 94.28% 2.49% 4.02% 11.79%
UCIS2 89.40% 8.58% 8.70% 4.55%
NIMS4 N/A N/A N/A N/A

MAWI2010 60.56% 14.07% 12.23% 0.52%
MAWI2011 67.58% 15.72% 14.93% 0.67%
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Table 5.17: L2 NU 1S - Results quoted are independently calculated with respect to
the test set specified

(a) Detection Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 10.70% 1.30% 1.42% 11.58%
UCIS2 4.53% 0.64% 0.54% 30.32%
NIMS4 99.39% 99.79% 99.62% 99.86%

MAWI2010 28.18% 26.01% 25.12% 16.04%
MAWI2011 32.28% 2.17% 4.34% 7.11%

(b) False Positive Rate. Note: out of class flows do not exist in the
NIMS4 data set.

Naive Bayes AdaBoost C5.0 SBB
UCIS3 6.45% 0.55% 2.17% 11.75%
UCIS2 7.14% 0.98% 4.54% 50.86%
NIMS4 N/A N/A N/A N/A

MAWI2010 22.86% 8.63% 7.34% 1.26%
MAWI2011 19.43% 0.30% 3.77% 3.32%

Table 5.18: L2 NU LARGE 1S - Results quoted are independently calculated with
respect to the test set specified

(a) Detection Rate

Naive Bayes AdaBoost C5.0 SBB
UCIS3 95.74% 94.43% 92.51% 87.47%
UCIS2 97.96% 96.71% 93.67% 95.09%
NIMS4 99.98% 99.92% 99.75% 98.32%

MAWI2010 93.93% 85.55% 83.23% 75.55%
MAWI2011 93.02% 74.54% 76.81% 77.08%

(b) False Positive Rate. Note: out of class flows do not exist in the
NIMS4 data set.

Naive Bayes AdaBoost C5.0 SBB
UCIS3 94.47% 3.18% 4.81% 15.69%
UCIS2 92.97% 16.77% 12.15% 10.36%
NIMS4 N/A N/A N/A N/A

MAWI2010 80.10% 21.54% 16.32% 5.34%
MAWI2011 80.84% 17.76% 13.44% 7.66%
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discussed further in Section 5.3.5.

5.3.5 Further Analysis and Best Solution

Unfortunately, models that are trained using NIMS4 flows at level 2 do not perform

well on any other data sets other than itself, which suggests that the NIMS4 data

set includes different behaviours than the other data sets. However, NIMS4 flows

still seem to contain accurate HTTPS flows, as shown by the detection rate of models

trained on the UCIS3 data set when tested on NIMS4. It is likely that the NIMS4 data

set simply do not exhibit enough diversity in behaviours. The classifiers trained on a

subset of the NIMS4 data preform exceptionally well when tested on the remaining

NIMS4 data set, which further enforces the theory that there is not enough diversity

in the flows. Large training sets were sometimes found to be detrimental to the

performance of a machine learning algorithm in these tests.

The above results from Section 5.3.1 through Section 5.3.4 hint towards many

interesting details. To no surprise, naive Bayes performs poorly in every case, having

very high false positive rates. The results also show that by only considering the

first second of a flow, it is possible to achieve very comparable results as flows that

contain statistics about the entire duration of the flow. Furthermore, using only

the first second of a flow has positive impacts on the performance of the classifiers

evaluated on the NIMS4 data set. Models that are trained on UCIS3 have higher

detection rates and lower false positive rates when tested on the NIMS4 data set

in almost every case for both level 1 and 2 classification. The 1st-second flows also

increased overall performance on robustness tests (testing the trained models on data

from a network entirely different than the network they are trained on, ie. trained

using UCIS3, but tested on MAWI2010 or MAWI2011) as well as the UCIS2 data

set. 1st-second flows increased SBB performance drastically; however, SBB still has

trouble performing well relative to AdaBoost and C5.0.

Herein, a couple of the best solutions using 1st-second flows are analyzed. At the

first level, I have a model created by the C5.0 algorithm trained on the L1 UCIS3 1S

training set with a confidence factor of c = 3, which preforms exceptionally well (see

Section 5.2 for a description of confidence factor). As discussed in Section 5.3.3, I

consider the C5.0 model over the AdaBoost model due to the decreased complexity
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Table 5.19: Level 1: Per-application Results for C5.0 using the L1 UCIS3 1S training
set

(a) Hit and Miss Chart by Application

UCIS3 UCIS2 NIMS4 MAWI2010 MAWI2011

SSL
HIT 1,663,381 824,339 272,505 84,560 75,823
MISS 94,972 24,777 64,563 11,379 15,971

HTTP
HIT 4,299,457 1,567,064 863,989 782,652 1,131,057
MISS 297,155 138,744 52,875 61,041 33,780

OTHER
HIT 18,864,520 1,477,413 N/A 2,469,966 2,601,389
MISS 219,884 48,110 N/A 60,764 19,168

P2P
HIT 389,682 N/A N/A N/A N/A
MISS 1,011 N/A N/A N/A N/A

SKYPE
HIT 1,153,957 N/A N/A N/A N/A
MISS 11,414 N/A N/A N/A N/A

SSH
HIT 33,937 14,697 N/A N/A N/A
MISS 675 128 N/A N/A N/A

(b) Detection rates by application

UCIS3 UCIS2 NIMS4 MAWI2010 MAWI2011

HTTPS
HIT 1,697,207 812,453 293,408 73,935 68,533
MISS 42,911 30,448 43,660 18,898 19,973

Other SSL
HIT 11,852 6,090 N/A 2,928 3,116
MISS 1,842 125 N/A 178 172

of C5.0 while still achieving comparable results. The results by application are shown

in Table 5.19. A summary of the detection rate and false positive rate can be found

in Table 5.13.

19 features are used by C5.0. The percentage of times each feature is used for the

training set is shown in Table 5.20. Forward push count is a popular choice among

all trained models, and appears here as the first node. Interestingly, C5.0 uses the

forward push count twice in a row to begin the tree. It would be reasonable to assume

that this feature is very important in effectively detecting SSL flows. Following this,

C5.0 has used many of the packet length features, as well as the protocol to further

separate flows. At the lower levels of the tree, it seems the most difficult to solve

instances have made C5.0 increase the use of inter-arrival time features rather than

relying on packet length based features.
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Table 5.20: Feature usage in C5.0 decision tree

100% fpsh cnt 6% total fhlen
73% max fpktl 4% mean biat
59% max bpktl 3% total bpackets
51% proto 3% std biat
39% std fpktl 2% mean fpktl
37% std bpktl 2% bpsh cnt
36% total bhlen 2% min fpktl
34% min biat 1% total bvolume
15% min fiat 1% mean bpktl
10% total fvolume

For the second level, as discussed in Section 5.3.4, the AdaBoost model is rated

as the best performer. The AdaBoost model is definitely much more complex and

more difficult to analyze, however there are a couple reasons why this is the case at

the second level:

1. The second level payload cannot be inspected by an investigator to check for

accurate results. This means a low false positive rate is crucial.

2. The second level is much more difficult for the machine learning algorithm

to distinguish since both web browsing and non-web browsing activities will

contain the similar traits of the tunnel, SSL.

This model is built using the L2 UCIS3 1S training set. For differentiating be-

tween web browsing and non-web browsing traffic, AdaBoost has made use of many

of the same features C5.0 used to classify SSL traffic. The results of testing the Ad-

aBoost model are given, separated by application, in Table 5.21. A summary of the

detection rate and false positive rate can be found in Table 5.15.

Because of the complexity of AdaBoost, it is much more difficult to analyze the

results. In this case, there are essentially ten J48 decision trees in the model that

are all evaluated for each instance, and the highest bidder is given the chance to

apply its label. What can be gathered is the first attribute used by the first J48 tree

was maximum packet length at this level, instead of forward push count, which was

used at level 1. Forward push count is, however, used as the second attribute by one

branch of the J48 tree. Furthermore, forward push count is also used by the first
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Table 5.21: Level 1: Per-application Results for AdaBoost using the L2 UCIS3 1S
training set

(a) Hit and Miss Chart by Application

Data Set HTTPS NON-WEB SSL

UCIS3 HIT 1,697,207 11,852
MISS 42,911 1,842

UCIS2 HIT 812,453 6,090
MISS 30,448 125

NIMS4 HIT 293,408 N/A
MISS 43,660 N/A

MAWI2010 HIT 73,935 2,928
MISS 18,898 178

MAWI2011 HIT 68,533 3,116
MISS 19,973 172

(b) Detection rates by application

Data Set SSL NON-WEB SSL

UCIS3 97.53% 96.87%
UCIS2 96.39% 97.99%
NIMS4 87.05% N/A

MAWI2010 79.64% 94.27%
MAWI2011 77.43% 94.77%
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node in the second, third, and fifth J48 trees in the AdaBoost model. This confirms

its importance in identifying not only SSL, but differentiating between web browsing

and non-web browsing activities within an SSL tunnel. The majority of each tree is

comprised mostly of packet length based features.



Chapter 6

A Need for a Different Feature Set

The preliminary investigation of identifying SSL traffic brought forth some interesting

discoveries. As discussed in Section 5.3.5, the models trained on 1st-second flows ac-

tually performed better on robustness tests. Furthermore, 1st-second flows increased

SBB performance, and overall caused only a small decrease in detection rate for other

algorithms on the UCIS3 data set.

When SBB performed best, the algorithm used many of the timing features, which

were much less commonly used by C5.0 and AdaBoost. One major difference between

SBB and the other algorithms was that SBB was able to derive more complex relations

between features. For example, SBB could divide one timing feature by another, and

create a ratio. It seems logical that using the timing features in this way would

be more useful: timing is likely to change depending on the network architecture,

configuration, congestion, and the applications being used. The exact forward inter-

arrival time may not be an identifying characteristic, but perhaps the forward inter-

arrival time is important relative to backward inter-arrival time.

These discoveries lead to the investigation of what information about a flow is

most useful in aiding a machine learning algorithm to properly detect SSL traffic.

NetMate calculates several different features for each flow, but these features are

somewhat arbitrary and often will not help in uniquely representing an application.

For example, the maximum packet size for a flow is a rather questionable attribute.

Often, when sending a large message, the maximum packet size for a flow is very

independent of the application. Instead, the maximum packet size will likely be

governed by the maximum size allowable over the network medium (1500 bytes for

Ethernet, which limits most of the Internet). An important question to ask is whether

the necessary features to most effectively identify SSL traffic are extracted and made

available by NetMate. The discoveries outlined above, and discussed in further detail

in Section 5.3, hint toward a couple points:
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1. The timing data can be useful, especially for robustness. However, timing data

seems to be represented by NetMate in a format such that the C5.0 and Ad-

aBoost algorithms cannot directly make the best use of the information.

2. Identifying SSL flows is possible using a window of data. This implies that char-

acteristics of SSL are seen throughout the entire connection. Perhaps, many of

the identifying characteristics are contained within relations. “Total”, “mini-

mum”, or “maximum” values of packet lengths or inter-arrival times are likely

less important.

From these points, a new set of experiments are designed to test these ideas and

provide a basic investigation in the direction of these ideas. Although the experiments

are far from a complete investigation into these topics, the following work lays the

foundation for further research into the topics discussed.



Chapter 7

New flow statistics tools

One of the major ways in which the following experiments contribute to research

is in the development of a new tool for gathering flow statistics. I believe that in

order to properly identify SSL flows, the it is necessary to give the machine learning

algorithms the ability to make use of relations of features within the flows.

So to investigate this, a new tool is designed from the ground up, called flowt-

bag [71]. Flowtbag is made publicly available and developed as an open source tool

for generating flow statistics. I designed and developed this new tool using my expe-

rience gained from working with NetMate. From a high level perspective, Flowtbag

operates very similar to NetMate. The program accepts a network traffic capture

file, or a live stream of network data as input. Flowtbag then iterates through each

packet, assigning it to a flow based on the criteria given in Section 3.1.2. Flowtbag

parses the header and calculates any values needed for the features it will export.

When a flow is considered complete (as per the criteria in Section 3.1.2), flowtbag

calculates the final outputs and prints them to a file along with identifying flow crite-

ria. An interface allows a researcher to easily define new features for the program to

extract. Using this interface, flowtbag can be used to create a set of features which

describe relations such as a more granular view of the distribution of packet lengths

and packet timing.

In order to investigate the aforementioned ideas, a new set of very simple fea-

tures is created for these experiments. These new features are described in detail in

Section 7.1.

7.1 New Features

Using the interface developed for flowtbag, the program is configured to calculate

a new set of features. Instead of calculating minimum, mean, maximum, total, and

standard deviation, flowtbag is set to calculate ratios (percentages) for packet lengths
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and inter-arrival times. A similar technique was used successfully by [72, 73] for

identifying web pages in HTTP connections.

The ratios describe the percentage of packets in a flow that fall into a particular

range. First, a window is defined. In these experiments, a somewhat arbitrary window

of the first 200 bytes is used for packet length, and the first 200000 microseconds for

inter-arrival time. Within these windows, a resolution is set. In this case, flowtbag

calculates the percentage of packets that are in this window, with a resolution of 4. In

other words, the packet lengths for the first 200 bytes (the first 200000 microseconds

for inter-arrival time) are binned in ranges of 50 (50000 for inter-arrival time). The

percentage of packets that land in each bin is calculated. A final (5th) feature counts

the percentage of packets that did not land within the window. These features are

used to create a new set of flow statistics for the data sets described in Section 5.2.1.

An example of the sort of data this features would represent is given in Figure 7.1.

This approach compliments the earlier investigation into applications running

within encrypted tunnels. It provides some initial investigation into flow measure-

ments that can be made at any point during a tunnel. The features are duration and

packet count agnostic. This would allow us to take “snapshot” measurements within

long running tunnels that may contain multiple applications, such as those used by

applications like tor [74]. It is likely that features that represent distributions such

as these, if they are identifying characteristics, would be similar for a particular ap-

plication over any sufficient length of time.
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Table 7.1: Features

New features
Replaced Features

(expressed in total packet counts)

1 to 50 bytes minimum packet length
51 to 100 bytes mean packet length
101 to 150 bytes maximum packet length
151 to 200 bytes standard deviation of packet length
over 200 bytes

10000ms to 50000ms inter-arrival minimum inter-arrival time
50001ms to 100000ms inter-arrival mean inter-arrival time
100001ms to 150000ms inter-arrival maximum inter-arrival time
150001ms to 200000ms inter-arrival standard deviation of inter-arrival time

over 200000ms inter-arrival

Figure 7.1: An example of the sort of data that is captured by the new features.



Chapter 8

Experiments & Results: New Flow Features

In the following sections, a new set of experiments are described and the results are

presented and examined in detail. These experiments use the new set of features

described in Section 7.1, and investigate the effects that these features have on the

AdaBoost and C5.0 algorithms. The experiments contrast the results with the fea-

tures used in the previous experiments. These experiments are preformed entirely

disjoint of the experiments described in Chapter 5.

8.1 Pre-processing of the Data

The pre-processing of the data is done in a similar fashion to the first set of experi-

ments, as it was described in Section 5.1. The data is first merged using mergecap.

At this point, however, rather than using NetMate to process the data captures into

flow statistics, flowtbag is used. Three sets of processed data (flows) are generated

from each data set: a set containing the original features, a set containing the new

features, and a set containing both the new and the old set of features. Furthermore,

for this set of experiments, the 1st-second flows are not investigated. UDP flows

that do not contain at least one packet in each direction are automatically filtered

out by flowtbag. Labeling of the data sets is dealt with in the same manner as the

preliminary investigation.

8.2 Usage of the Machine Learning Techniques

In the following set of experiments, a similar technique is used in creating appropriate

test and training sets. Training sets were limited to the L1 UCIS3 and L2 UCIS3

training sets described in Table 5.6 since these seemed to provide the most useful

combination of results and size. The training and test sets do not contain the same

flows as were in the first set of experiments, but rather are entirely new, randomly
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generated sets. However, each of these new training sets do contain the same flows,

with the only difference being the features represented.

AdaBoost, and C5.0 are used in these experiments. SBB and naive Bayes are

not used due to their performance observed in experiments discussed in Chapter 5.

Furthermore, although the confidence factor of C5.0 was varied in the experiments

discussed in Chapter 5, the results did not warrant doing this again – the confidence

factor did not seem to change the overall performance in any identifiable pattern.

So, in many ways, the following experiments are a simplified version of the earlier

experiments, focusing on the effect of these new features rather than achieving the

most optimal performance.

8.3 Results

The results of the following experiments are considered once again in terms of their

detection rate (Eq. 5.1) and false positive rate (Eq. 5.2). A quick investigation of

feature usage is also presented.

8.3.1 Results Summary

Table 8.1a shows the detection rate of each of the feature sets against each of the 5

data sets. Table 8.1b shows the false positive rate of each of the feature sets against

each of the 5 data sets. The results of the first column under each algorithm, the

original feature set, show very similar trends to the ones observed in Section 5.3.3.

Using an entirely new randomly sampled training set in these experiments, and using

a new program to generate these statistics, it is apparent that the new combination

has not introduced any inconsistencies. The same drastic drops in detection rate

experienced before is once again present on the NIMS4 data set. The detection rates

and false positive rates are relatively close to the original set of experiments.

The results from Table 8.1 are most interesting, however, when comparing the

original feature set results against the results using the new set of features. The

effects can be more easily observed in Table 8.2.Table 8.2a shows the detection rate

in terms of the point change (i.e. new percentage minus old percentage), as well as the

actual percentage change that this had on the original value. The most noticeable

change with the new features is the major increase in detection rate for both the
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C5.0 AdaBoost
ORIG BINS ALL ORIG BINS ALL

UCIS3 95.02% 95.58% 96.32% 96.30% 96.56% 96.92%
UCIS2 95.78% 98.28% 97.10% 97.81% 98.45% 98.80%
NIMS4 66.51% 88.06% 72.43% 75.80% 97.17% 89.73%

MAWI2010 86.73% 87.81% 88.61% 88.60% 89.47% 90.02%
MAWI2011 75.91% 85.94% 88.21% 84.05% 87.03% 82.16%

(a) Detection rates

C5.0 AdaBoost
ORIG BINS ALL ORIG BINS ALL

UCIS3 2.62% 2.58% 2.40% 2.00% 1.90% 1.37%
UCIS2 13.05% 8.70% 8.97% 6.64% 4.97% 4.78%
NIMS4 11.42% 8.41% 6.81% 6.55% 3.56% 2.25%

MAWI2010 2.41% 1.87% 2.74% 2.96% 1.34% 1.89%
MAWI2011 2.55% 1.81% 2.21% 1.59% 1.16% 1.15%

(b) False positive rates

Table 8.1: Results of the original feature set, new feature set, and all features on each
of the data sets

NIMS4 data set and the MAWI2011 data set. A closer look will reveal that using the

new feature set, both C5.0 and AdaBoost have increased detection rate on all data

sets. Furthermore, the C5.0 and AdaBoost algorithms also benefit from a decreased

false positive rate on all data sets. While only minor effects are experienced for

detection rate and false positive rate on the UCIS3 data set, the robustness tests

show very noticeable positive effects. It is certainly positive to see that there were no

negative effects from the use of these features. The new features help all tests achieve

a detection rate of over 85%. This is a drastic change for some tests, an increase in

detection rate of up to 32.40%. Moreover, false positive rates drop as much as 33.33%

for C5.0 and 54.73% for AdaBoost. It is without a doubt that these features have

been more beneficial to the machine learning algorithms. Most notably, the features

have made a significant improvement on the robustness tests.

Evaluating the new features against using all features, one can observe even more

interesting details. One of the more noteworthy details is that for robustness tests,

there is actually an increase in false positive rate for about half of the tests. One can

also see a decrease in detection rate on about half of the tests. It is clear that the
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C5.0 AdaBoost
Point Change % Change Point Change % Change

UCIS3 0.56 0.59% 0.26 0.27%
UCIS2 2.50 2.61% 0.64 0.65%
NIMS4 21.55 32.40% 21.37 28.19%

MAWI2010 1.08 1.25% 0.87 0.98%
MAWI2011 10.03 13.21% 2.98 3.55%

(a) Detection rate

C5.0 AdaBoost
Point Change % Change Point Change % Change

UCIS3 -0.04 -1.53% -0.10 -5.00%
UCIS2 -4.35 -33.33% -1.67 -25.15%
NIMS4 -3.01 -26.36% -2.99 -45.65%

MAWI2010 -0.54 -22.41% -1.62 -54.73%
MAWI2011 -0.74 -29.02% -0.43 -27.04%

(b) False positive rate

Table 8.2: Point change and percentage change using the new features over the old
features for each data set.

combination of the features has caused some interfering information.

Based on these summary results, one could speculate that the combination of

minimum, mean, maximum, and standard deviation for a particular characteristic

provides useful information, but can be misleading, especially during robustness tests

for SSL tunnel identification. As discussed in Chapter 6, this could be due to a number

of things including different network configurations, congestion, and the applications

being used on the network. These types of network conditions, which are unrelated to

the way SSL operates and presents itself, will likely shift many of the original features

such as minimum, maximum, and mean values.

8.3.2 Feature Usage

Another way to examine these results is to take a deeper look into the solutions

developed by these algorithms and investigate their choices of features. Feature usage

is easiest to determine from the C5.0 algorithm. The number of times that a feature

is used during training can be counted and can provide a percentage that gives an

indication of how important this feature is to the model. AdaBoost, on the other
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hand, is more difficult to quantify due to the nature of AdaBoost being a boosting

algorithm. Multiple evaluations are done for each test instance by AdaBoost, and

analysis is further complicated by weights for each sub model. For this reason, the

features used by C5.0 are analyzed.

Table 8.3 shows the top 5 most used features of the C5.0 algorithm for this set

of experiments. In three sub-tables, the data is given for using NetMate’s original

feature set, bins, and all features.

It is immediately apparent that using the original set of features provided by

NetMate, the packet length is important. Packet length attributes consist of 4 of the

top 5 attributes, with forward push count making its way in as the only non-packet

length related feature. Surprisingly, this domination of packet length features is not

seen when using the binning method. Instead, the algorithms focus more on time

based features. With the bins, inter-arrival time based features make up 3 of the top

5. Packet length is still used as the first feature to split on, and once again forward

push count keeps its place on the list. Using all features, there is no obvious point of

focus for C5.0. Packet length and time based features make up 2 of the 5 each, and

as always forward push count stays on the list of the top 5.

The analysis is promising for many reasons. These feature usage tables combined

with the test results agree with early speculation that time based features are more

useful for SSL robustness tests. The results indicate that it is possible to achieve

comparable or better detection and false positive rates, and increase robustness of the

learning models by using time based features. It seems likely there are better ways of

representing the time based features, since this is just one way of representing these

features. Through analysis, it is likely an investigator could define better values for

binning, or even better ways of representing the features.
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Table 8.3: C5.0 Feature Usage

NetMate
Usage Attribute

100% max fpktl
78% std fpktl
56% fpsh cnt
54% max bpktl
48% min fpktl

Bins
Usage Attribute

100% fpktl5
59% fpsh cnt
48% biat5
46% biat1
44% fiat1

All
Usage Attribute

100% max fpktl
59% fpsh cnt
54% fiat1
47% std fpktl
43% std idle



Chapter 9

Conclusion & Future work

In this work, four machine learning techniques are used to investigate the problem

of identification of applications within an SSL tunnel without using payload, port

numbers, or IP addresses. Specifically, web browsing behaviour is explored within SSL

tunnels as a case study, and the machine learning algorithms naive Bayes, AdaBoost

with J48, C5.0, and Genetic Programming are evaluated to identify such a behaviour.

Results indicate that by using only the first second of a network traffic flow, SSL can

be identified by obtaining a 94.60% detection rate and only 2.10% false positive rate

with C5.0 when tested on the same network as the training data is from. The results

for robustness testing (ie. testing on a different network than the model is trained on)

are also promising with detection rates from 82.60%–88.14% and false positive rates

from 1.40%–3.61%. In identifying web browsing within these tunnels, the AdaBoost

model has the best performance with a detection rate of 97.53% and a false positive

rate of 3.13%. Robustness tests give detection rates between 77.43% and 79.64%, and

false positives rates from 5.23%–5.73%. The push count is found to be an important

factor in identifying both SSL and web browsing within SSL tunnels, and packet

length based features are also very important.

The research is further extended by investigating the features used, based off the

discoveries made. While investigating SSL, SBB preformed well on robustness tests

using time based features, but other machine learning algorithms did not seem to

make much use of these features. Furthermore, it was obvious that an entire SSL

flow is not necessary in order to be detected. Therefore, a new tool is created to

experiment with features that compliment some of the questions left. While time

based features seem very important for robustness tests, it is also apparent that

packet length based features have an important role to play in detecting SSL. The

new experiments show promising results for both C5.0 and AdaBoost. Detection rate

is increased by up to 32.40% on robustness tests, and false positive rates drop as
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much as 54.73%. These changes can easily be attributed to the new features, as they

drastically increased the usage of time based features, as speculated. Furthermore,

the new features out-preformed the old feature set in every case.

Identifying useful features for flow based statistics has always been an area of

investigation and debate. Many machine learning algorithms such as decision trees

are not able to consider relations among features such as the ratio of forward packet

length to backward packet length, and may need to be explicitly given to machine

learning algorithms in the form of new features. Going forward, further investigation

needs to take place into what measurements are important for identifying applications.

Moreover, the set of important features may be specific to the application. An inves-

tigation into what makes these features important is warranted to fully understand

how to best utilize or model the characteristics present in particular applications.

Further investigation in identifying encrypted web browsing traffic might look in

more detail at anonymization networks such as the Tor Project [74], which make

web browsing easy to encrypt and disguise. The Tor Project uses a virtual circuit

of encrypted tunnels and bounces encrypted communications around the world. Tor

allows a user to run many sorts of applications within these tunnels including peer-

to-peer and web browsing applications.

More work needs to be done on properly generating realistic SSL flows, including

those containing web browsing activity. Traffic generation is a difficult task, but is

necessary because data sets that contain labeled traffic are very rare. It is difficult

to know the ground truth of captures that do not contain payload information, and

payload information is rarely, if ever, given.

Future work might also explore the effect that observing a wireless network may

have on the techniques described in this thesis. Wireless networks employ different

protocols than standard wired connections, and often use an additional set of en-

cryption techniques due to the nature of wireless communication. Furthermore, IP

version 6 provides another avenue in which the patterns of the SSL protocol may be

altered. IP version 6 will contain a lot of the same information as IP version 4, how-

ever the identifying attributes in which applications such as SSL display themselves

may change.

Comparing the measurable benefits and disadvantages of using hybrid approaches



65

instead of the purely flow-based approach described in this thesis would provide some

more insight into the feasibility of such classifiers. Hybrid approaches offer a trade

off by allowing the use of some payload information to boost performance at the cost

of increased resources.

In this thesis, SBB version 3 was adopted to avoid the O(n2) cost of training

(where n is the size of the team population) associated with version 1 of SBB. How-

ever, under tasks with discrete outcomes such as classification, Pareto co-evolution

is significantly more accurate. Future research may also consider using SBB version

1 under a streaming context (limited to training exemplars selected from within a

sliding window). This is significantly faster than SBB version 1 and, as long as label

information is reliable, at least as accurate (and therefore more accurate than the

SBB version used in this thesis) [75].
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