
VISION-BASED GRASP PLANNING OF 3D OBJECTS USING
GENETIC ALGORITHM

by

Zichen Zhang

Submitted in partial fulfillment of the
requirements for the degree of

Master of Applied Science

at

Dalhousie University
Halifax, Nova Scotia

August 2012

c© Copyright by Zichen Zhang, 2012

DALHOUSIE UNIVERSITY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

The undersigned hereby certify that they have read and recommend to the Faculty of

Graduate Studies for acceptance a thesis entitled “VISION-BASED GRASP PLANNING

OF 3D OBJECTS USING GENETIC ALGORITHM” by Zichen Zhang in partial

fulfillment of the requirements for the degree of Master of Applied Science.

Dated: August 1, 2012

Supervisor:
Dr. Jason Gu

Readers:
Dr. Williams J. Phillips

Dr. Yuan Ma

ii

DALHOUSIE UNIVERSITY

DATE: August 1, 2012

AUTHOR: Zichen Zhang

TITLE: VISION-BASED GRASP PLANNING OF 3D OBJECTS USING
GENETIC ALGORITHM

DEPARTMENT OR SCHOOL: Department of Electrical and Computer Engineering

DEGREE: M.A.Sc. CONVOCATION: October YEAR: 2012

Permission is herewith granted to Dalhousie University to circulate and to have copied for
non-commercial purposes, at its discretion, the above title upon the request of individuals
or institutions. I understand that my thesis will be electronically available to the public.

The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted material
appearing in the thesis (other than brief excerpts requiring only proper acknowledgement
in scholarly writing), and that all such use is clearly acknowledged.

Signature of Author

iii

To my Mom Ping Ding, and Dad Baoping Zhang

iv

Table of Contents

List of Tables . vii

List of Figures . viii

Abstract . x

List of Abbreviations and Symbols Used . xi

Acknowledgements . xii

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Previous Research . 2
1.2.1 Different Robot Hand . 2
1.2.2 How to Perceive the Environment 2
1.2.3 Problem Description . 3

1.3 Objectives and Contribution . 4

1.4 Outline . 5

Chapter 2 Background . 6

2.1 Force-Closure Grasp . 6

2.2 Contact Model . 7

2.3 Quality Metrics . 7

2.4 Grasp Planning in Eigengrasp Space . 9

2.5 Genetic Algorithm . 10

Chapter 3 Genetic Algorithm on Grasp Planning 12

3.1 Solution Landscape . 12

3.2 Operators . 15

3.3 Sampling Method . 16
3.3.1 Type1 sampling . 17
3.3.2 Type2 sampling . 18

v

3.3.3 Type3 sampling . 18
3.3.4 Type4 sampling . 18
3.3.5 Type5 sampling . 19
3.3.6 Type6 sampling . 19

Chapter 4 Results and Discussion . 22

4.1 Implementation . 22

4.2 Parameter Tuning . 28

4.3 Performance . 39

4.4 Comparison with Simulated Annealing Planner 47

4.5 Grasp Planning using Another Quality Metric 52

Chapter 5 Conclusion and Future Work . 57

5.1 Conclusion . 57

5.2 Future Work . 58

Bibliography . 59

vi

List of Tables

2.1 Variable List . 10

3.1 Operator List . 17

4.1 Dimension of the search space . 24

4.2 Different population size, BLX-0.5(Type1 sampling), Kσ = 0.2(repetition
sampling) . 30

4.3 BLX-0.5 with type1 sampling, Kσ = 0.2 with different sampling
methods for mutation . 32

4.4 BLX-0.5 with type4 sampling, Kσ = 0.2 with different sampling
methods for mutation . 33

4.5 BLX-0.5 with type3 sampling, Kσ = 0.2 34

4.6 BLX-0 with type1 sampling, Kσ = 0.2 35

4.7 BLX-0.25 with type1 sampling, Kσ = 0.2 35

4.8 Statistics of performance index for type1,3,4 sampling of BLX-0.5 . . 36

4.9 Statistics of performance index for BLX-0, BLX-0.25, BLX-0.5 with
type1 sampling . 36

4.10 BLX-0.5 with type1 sampling, Kσ = 0.3 with repetition method . . . 38

4.11 BLX-0.5 with type1 sampling, Kσ = 0.4 with repetition method . . . 38

4.12 Statistics of performance index for different Kσ 39

4.13 Statistics of the best pre-grasps found from both planners 49

4.14 Execution time of the GA and SA planners 49

4.15 Statistics of the best pre-grasps found from both planners given the
same running time . 49

4.16 Function evaluations of the GA and SA planners in given time limit . 53

4.17 Statistics of the best pre-grasps found from both planners with Q f inal
as the quality measure. Better one indicated in Blue 53

vii

List of Figures

1.1 Robots helping with household work 1

1.2 Popular Robot Hands . 2

2.1 Coulomb Friction Model and the friction cone[1] 7

2.2 A generalized flow chart of genetic algorithm 11

3.1 The solution landscape . 13

3.2 Eigengrasp movement of Barrett Hand. It has two-dimensional eigen-
grasp sub-space. EG1,2 refer to the first and second eigengrasp re-
spectively. The number to the right is the corresponding value of
this eigengrasp. 14

3.3 BLX-α . 16

3.4 BLX-α with six sampling methods 20

3.5 Two different mutation sampling methods with different sampling
for BLX-0.5, “m repeat” means repetition sampling for mutation,
“m truncate” means truncation sampling for mutation 21

4.1 Some of the original objects in the Household Objects and Grasps
Data Set . 22

4.2 The Graspit! Simulator . 23

4.3 The Graphical Interface of the GA grasp planner 23

4.4 The two hand models used in our test and their predefined contact
locations . 24

4.5 Barrett Hand grasping a glass . 29

4.6 Average pre-grasp quality found using BLX-0.5 with type1 sam-
pling, Gaussian Mutation with Kσ = 0.2 and repetition sampling
method . 37

4.7 The on-line and off-line performance of the genetic algorithm 40

viii

4.8 Visualization of the intermediate process of the GA planner with
pc = 0.8, pm = 0.1. The number on the top left corner denotes the
generation. The two red arrows show the two elitists in each gen-
eration. 41

4.9 Visualization of the intermediate process of the GA planner with
pc = 0.8, pm = 0.01. 42

4.10 Visualization of the intermediate process of the GA planner with
pc = 0.8, pm = 0.2. 43

4.11 Visualization of the intermediate process of the GA planner with
pc = 0.8, pm = 0.3. 44

4.12 Visualization of the intermediate process of the GA planner with
pc = 0.7, pm = 0.1. 45

4.13 Visualization of the intermediate process of the GA planner with
pc = 0.9, pm = 0.1. 46

4.14 Best pre-grasps found by GA and SA planners 50

4.15 The corresponding final grasps and the quality 51

4.16 Best pre-grasps found by GA and SA planners with Q f inal as the
quality measure . 54

4.17 The corresponding final grasps obtained with Q f inal as the quality
measure . 55

ix

Abstract

Vision-based grasp planning can be approached as an optimization problem, where a hand

configuration that indicates a stable grasp needs to be located in a large search space. In

this thesis, we proposed applying genetic algorithm (GA) to grasp planning of 3D object

in arbitrary shapes and any robot hand. Details are given on the selection of operators and

parameters of GA. GraspIt! simulator [2] is used for implementing the proposed algorithm

and as the test environment. A quantitative analysis including the comparison with simple

random algorithm and simulated annealing (SA) method is carried out to evaluate the per-

formance of the GA based planner. Both GA and SA grasp planner are tested on different

sets of hand-object. And two different quality metrics are used in the planning. Given the

same amount of time, GA is shown to be capable of finding a force-closure grasp with

higher stability than SA.

x

List of Abbreviations and Symbols Used

Kσ A constant controlling the standard deviation of Gaus-
sian mutation

Q f inal A quality metric on the stability of the final grasp

Qpre Pre-grasp Quality

WL1 Wrench space constructed using L1 norm

WL∞
Wrench space constructed using L∞ norm

ε Worst case grasp quality measure

n Population size

pc Crossover probability

pm Mutation probability

v Invariant average case grasp quality measure

BLX-α Blend Crossover

DOF Degree of Freedom

EG EigenGrasp

GA Genetic Algorithm

GWS Grasp Wrench Space

p.d.f. Probability density function

RCGA Real-Coded Genetic Algorithm

SA Simulated Annealing Algorithm

STD Estimated STandard Deviation

TWS Task Wrench Space

xi

Acknowledgements

I would like to thank my supervisor Dr. Jason Gu for giving me this opportunity to work

with him and for all his guidance. I would also like to thank Dr. Yuan Ma and Dr. Williams

J. Phillips for being on my committee and for their time. And I would also like to thank

Nova Scotia Health Research Foundation (NSHRF), Faculty of Engineering and Depart-

ment of Electrical & Computer Engineering at DAL for their financial support.

To all my colleagues in the Robotics Lab, I appreciate the time sharing space, sharing

thoughts and sharing laughter with you. In no particular order, thank you, Shijie Zhou,

for discussing with me on all the courses we took together, the research projects we did

together and on ideas that came to my mind “randomly”, for showing me the dedication

to research, for all your advice on my research and life; Yuanlong Yu, for your advice on

choosing my research topic; Ze Yu, for kindly providing the course materials; Kun Zhan,

for being someone I look up to in terms of research ability; Siva Kumar, for bringing so

much laughter to our whole lab; Hamidreza Moslehi, for encouraging me when I felt a little

uncertain about my research. I wish to say thank you to all my friends at DAL engineering

for being a part of my “boring” life at university. Particularly, thank you Xiaoou Mao, for

having coffee break and “ice cream cone break” with me - my only entertainment some-

times, for bringing me food and sharing your apartment when I had to work overnight at

university, for being so lazy which makes me feel pretty good about myself.

Thank you to all the people lived or are living in the little house at Sherwood Street. You

all have been a very important part of my life. Thank you, Roland & Bernice Alexander,

for all your help especially when I first came to Canada, you make me feel like having a

family here, and this thesis would not have been completed without your input and patience

in revising almost all my research paper; Jinyi Liu, for teasing me and giving me pressure

with your degree; Peiheng Wu, for often staying up late so that I do not feel lonely when

I am working at midnight; Carla, for sharing the happiness of singing; Youngchan, Sujin

and Juwon, my dear Korean friends, for bringing so much fun to my life.

Last but not least, to my parents, who have always been my source of inspiration. I am

proud of you as much as you said how much you were proud of me. This thesis is for you.

xii

Chapter 1

Introduction

1.1 Motivation

The advancement of robotics has been an important part of the progress of mankind over the

past few decades. Today’s robots not only find their applications in industry, military, but

also start to be more involved in human-centered environments. Several robots have been

designed to help people with everyday work, like cleaning the floor, flipping pancakes and

even folding towels, as shown in Fig. 1.1. Due to the population aging and the lack of

human resources in delivering home care, there has been an increasing need for robots that

are capable of assisting people at home, especially elderly or disabled people.

Think about a common task in a home environment: bring me an apple. Before we can

deliver it, the first step is to pick up the target object and hold it firmly, that is grasping.

Grasping is necessary for the robots to complete high-level tasks. Thus it has become a

very active field of research. This thesis will look into the problem of grasp planning on 3D

objects, to find a way for the robots to be capable of grasping objects in a stable and robust

manner.

(a) (b) (c)

Figure 1.1: Robots helping with household work

1

2

PR2 Gripper
1 DOF

(a)

Barrett Hand
4 DOFs

(b)

DLR Hand II
13 DOFs

(c)
Robonaut Hand

14 DOFs

(d)

Shadow Hand
20 DOFs

(e)

Figure 1.2: Popular Robot Hands

1.2 Previous Research

1.2.1 Different Robot Hand

There has been a large body of work in designing robot hands. Five of the most popular

robot hands with different precisions and degree of freedoms (DOFs) are shown in Fig. 1.2.

Based on the complexity of the hand, they can be categorized into three types: gripper,

dexterous hands and anthropomorphic hands. Gripper is a simple end-effector, with only

1 DOF, like the PR2 Gripper. Dexterous hands have more DOFs and are able to perform

some grasping work which requires more dexterity of the hands, e.g., the Barrett Hand.

The anthropomorphic hands are delicately designed with the goal of replicating the human

hand with similar shape and comparable functionality, like the Robonaut hand and Shadow

Hand.

1.2.2 How to Perceive the Environment

Before a robot can plan and execute grasps, it has to be able to perceive the environment,

gather some information about the object and potential obstacles. Most sensory information

is obtained through tactile and vision feedback.

Vision feedback is the most widely used method. A grasp is planned based on the

3

geometrical information obtained from an image sensor. People have successfully used

vision feedback to plan grasps on 2D objects and 3D objects. Tactile sensor is often used

to compensate the vision information of the object. It allows the robot to be aware of

the properties of the contact surface and adjust force and torque in real time. And it also

can be used when vision information is not available. This makes the grasp more robust

in unstructured and cluttered environment. Here we focus on vision-based method only.

Note that by saying “vision-based”, we simply mean that we do not rely on any tactile

information in grasp planning. And all the data used in this work is from a database that

contains the geometry of objects rather than raw data from image sensors. How to utilize

tactile sensors for grasp planning is an active research field in its own right. Readers who

are interested are referred to [3, 4, 5] for detailed information.

1.2.3 Problem Description

There have been two general methods used in the vision-based robotic grasping research:

synthesis approach and heuristic approach [6]. Synthesis approach was adopted when the

research was first started decades ago. It dealt with some basic problems in grasping, such

as how to evaluate the grasp quality. A grasp is defined in the contact space of the object.

Once the grasp quality metrics were defined and became widely used, research had been

focused on actual grasping. The intrinsic limitation of this approach that it requires a pre-

cise object model becomes the bottleneck to achieve real-time grasping on novel objects.

Due to the uncertainty associated with real sensor data and the disturbance from the envi-

ronment, it is impossible to construct a complete and accurate object model from sensor

data. And also it is not the natural way of grasping an object from a human’s perspective.

Heuristic approach is adopted to solve the above problems, where the grasp is planned

in the configuration space of the hand. A grasp action starts with “pre-grasp”-a set of

hand poses close to, but not in touch with the object-inspired by the fact that humans

unconsciously preshape the hand before the actual grasp [7]. It defines the starting posture

and approach direction of the hand. After the pre-shape is determined, the hand is moved

along the direction toward the object until in contacts. Then fingers are closed to conform

to the surface of the object to complete the entire grasp action. The pre-grasps can be

obtained in this way: for simple gripper, by some simple heuristic rules based on the object

shape or for more dexterous hand, by searching for hand poses that will most likely yield

4

grasps with good quality.

Both approaches can be considered as optimization problems. But the solution space

is too vast to search in an effective manner. And it is discontinuous since there are some

surface points or hand configurations that we want to avoid. Also the quality measures for

evaluating the stability of a grasp are often non-linear. As a general-purpose optimization

method, Genetic Algorithm (GA) is widely used to tackle this type of problem.

In the literature, some work has been done in applying genetic algorithm to grasp plan-

ning. A. Chella et al. proposed a hybrid method of genetic algorithm and neural network

to planar object grasping [8], where a dataset is first generated off-line by using genetic al-

gorithm and then trained by neural networks for the purpose of real-time application. This

method only dealt with 2D objects in superellipses shape. N. Daoud [9] used genetic algo-

rithm to find grasps for 3D objects with an LMS mechanical hand. It had not been tested

on other hand types and only limited information was given on the performance of the al-

gorithm. S. Mannepalli et al. [10] proposed using GA to find good fingertip placements in

2D space of prismatic objects. Sangkhavijit, C. et al. [11] applied GA in finding 4-fingered

stable grasps from surface points of 3D objects. Mesgari, H. et al. [12] worked on a prob-

lem where an simple end-effector mounted on a robotic arm grasps a planar object with

only one-point contact. GA was adopted to find the best grasping point which maximizes

a performance index called MAG.

The above works fall into the category of synthesis grasp planning. To the best of

our knowledge, although GA has been mentioned as a possible optimization method in

the scenario of heuristic grasp planning [2], not much work has been done in applying

genetic algorithm to this problem. The only relevant work dates back to 1998, when J.J

Fernandez et al. proposed a genetic approach to find good grasps with three-fingered robot

hands [13]. Their work had some limitations. Firstly, they only tested on three-fingered

hands. Secondly, only a certain hand-object placement was allowed. Lastly, only some

pre-defined 3D objects with regular shapes were tested.

1.3 Objectives and Contribution

GA was often used to deal with the optimization problem in grasp planning. Previous

work of applying GA to grasp planning had their limitations as discussed in the last sec-

tion. In addition, no quantitative result has been addressed in the literature regarding the

5

performance of the GA based grasp planner and few details have been found on the param-

eter selection. These problems make it difficult to compare with planners based on other

algorithms. To fill the gap of current research and gain a better understanding of GA’s

applicability in the context of grasp planning optimization, we study the effect of apply-

ing GA on heuristic grasp planning of 3D objects in arbitrary shapes and different hands in

this thesis. We carefully choose the operators and parameters of GA taking into account the

characteristics of the solution landscape in this grasp planning problem. And the proposed

GA grasp planner is applied on different sets of hand-object including 3D objects in dif-

ferent shapes and hand models with different number of DOFs to examine its performance

and robustness. Comparison with other algorithms such as simple random algorithm and

simulated annealing algorithm (SA) are done for further evaluation of the GA planner. The

execution time of SA and GA planners are considered for a fair comparison of their per-

formance. Two different quality metrics are used in the planning. For both quality metrics,

the proposed GA planner is shown to outperform the SA planner, which has been generally

used as the optimization method in heuristic grasp planning.

1.4 Outline

This thesis is structured as follows. Chapter 2 reviews some of the important background

knowledge in the domain of robot grasp planning. Chapter 3 formulates the optimization

problem in grasp planning. The components and important concepts in designing a genetic

algorithm based grasp planner are described. The selection of operators and parameters

of the GA planner are discussed in detail. In Chapter 4, the performance of the GA based

planner is examined with quantitative analysis including comparisons with a simple random

planner and an SA based planner. Chapter 5 concludes the thesis and presents the future

work.

Chapter 2

Background

In this chapter, we review background materials on robot grasping and genetic algorithms.

Essential knowledge necessary for understanding the mechanism of grasping was intro-

duced, including the definition of a stable grasp, the quality metrics to evaluate a grasp, and

the methodology to deal with the high DOFs of dexterous robot hands. Genetic algorithm

is briefly described in the end. Its basic components and working mechanism are reviewed.

2.1 Force-Closure Grasp

First we would like to distinguish between two terms, grasping and manipulation. Grasping

refers to the action and state of holding an object firmly using a hand, while manipulation

addresses the ability of moving the object in hand, for example, try moving a ping-pong

ball between multiple fingers. Our research is in the area of robot grasping. In the litera-

ture, there are two types of grasps in general, originally suggested in [14]: power grasps

and precision grasps (also referred to as fingertip grasps [15], or pinch grasp [16]). Preci-

sion grasps means holding an objects with fingertips only, offering better dexterity. Power

grasps on the other hand, allow the use of inner links and palms to provide a more stable

grasp with better robustness against external disturbances. It is more suitable on human-

made objects [16]. In this thesis, we focus on creating power grasps because we aim at

developing robot grasping ability in household environment.

Force closure is a notion generally used in evaluating if a grasp is stable. Here we adopt

the definition in [2]:

A force-closure grasp can resist all object motions provided that the end-

effector can apply sufficiently large forces at the unilateral contacts.

The term Form-closure also exists in the literature. It is a similar idea as force-closure

except that it is achieved only through frictionless contact constraints. In this thesis, when

6

7

Figure 2.1: Coulomb Friction Model and the friction cone[1]

a grasp has force-closure on an object it is considered to be a stable grasp.

2.2 Contact Model

The fact that we use force-closure to describe grasp stability indicates that we consider

friction of the contact. We use Coulomb Friction Model, which can be defined as:

| f t | ≤ µ f n (2.1)

where f t is the tangent force, f n is the normal force and µ is the friction coefficient on this

contact. This model can be illustrated in Fig. 2.1.

µ determines the shape of the friction cone. And the direction of the total force should

be inside this cone. Point contact with friction model is the commonly used model for

frictional contact. This model approximates the friction cone with a friction pyramid. The

boundary of this pyramid consists of several force vectors. The total force is represented

as a linear combination of these force vectors. For fingers which are made of compliant

materials, such as rubber, the soft finger model should be used. In this model, torque at a

contact is also defined in a cone around normal. For more details, readers are referred to

[1].

2.3 Quality Metrics

A grasp can be described in terms of “the wrench space”, which contains the information

of forces and torques that the hand exerts on the object. In the case of grasping a 3D object,

the wrench space is 6 dimensional. The particular task that the hand is required to perform

8

is defined as Task Wrench Space (TWS) and the wrench that a grasp is able to apply on the

target object is called Grasp Wrench Space (GWS). If the TWS falls inside the GWS, the

grasp is considered to be stable, or force-closure. The grasp quality is usually defined as a

ratio of the TWS and GWS [17].

In [18], two methods of constructing a unit GWS were introduced. One method tries to

bound the sum magnitude of the contact normal forces to 1N, creating a GWS named WL1 ,

while the other one bounds the maximum magnitude to 1N, creating a GWS named WL∞
.

Given m contacts, let w1,w2, ...,wm denote the wrenches at these contact by applying

unit normal forces, f1, f2, ..., fm denote the normal forces. The total wrench is:

w =
m

∑
i=1

fiwi (2.2)

Considering friction, the wrench can be expressed as:

Wi =
{

wi,1, ...,wi,k
}

k : number of force vectors to approximate the friction cone (2.3)

WL1 =ConvexHull(
m⋃

i=1

{Wi}) (2.4)

WL∞
=ConvexHull(

m⊕
i=1

{Wi}) (2.5)

The wrench WL1 is a convex hull over the wrenches at every contact. WL∞
is a convex hull of

the Minkowski sum over the wrenches at each contact, which quickly becomes complicated

with a large number of contacts. WL1 is chosen in our work because of its computational

efficiency .

Two widely used quality measures for evaluating the stability of a grasp are ε quality

and v quality. The former one measures the smallest euclidean distance from the origin

to the surface of the GWS, ε , which is a worst case quality measure. To overcome the

limitation of the ε quality that it varies with the choice of torque origin, the volume of the

unit GWS v is proposed as an invariant average case quality measure, which is called the

volume quality measure [19]. For force-closure grasps, 0 < ε < 1, v > 0. The larger these

two quality measures are, the more stable a grasp is.

9

2.4 Grasp Planning in Eigengrasp Space

As mentioned earlier, heuristic grasp planning can be approached as an optimization prob-

lem: to search for a stable grasp from a high-dimensional space of possible hand config-

urations. One of the main difficulties is that the search space is high-dimensional due to

the large number of hand degree of freedoms (DOFs). Principal component analysis on

grasping data [20] reveals that a certain low-dimensional space contributes significantly to

the success of the grasp action. Inspired by this, eigengrasp [21] was proposed to reduce

the dimensionality, where the high-dimensional space was projected to a low-dimensional

control space while maintaining sufficient information needed for finding stable grasps.

The first step of the grasp planning is to find a good pre-grasp that is expected to yield a

force-closure final grasp. Then the final grasp will be executed and stability will be checked

as the second step. The quality metric proposed in [21] is used to evaluate the quality of a

pre-grasp:

Qpre = ∑
all contacts

δi (2.6)

where δi is a measure of the distance between the desired contact locations on the hand and

the object. The contact locations on the hand are selected to be on the fingers and palms in

our study to create a power grasp. This quality measure assumes that the closer the hand is

from the object, the better potential it has to give a stable power grasp on the object. For

details, the reader is referred to [21].

The lower the Qpre, the closer the hand is from the object and the better the pre-grasp is.

The optimization goal is to find a pre-grasp that can minimize this quality measure. There-

fore, the grasp planning problem in the configuration space of the hand can be represented

as [21]:

argmin
p,w

Q(p,w), subject to : p ∈ℜ
b,w ∈ℜ

6 (2.7)

where Q(p,w) : ℜd 7→ℜ is the objective function to be minimized over the variable space

of dimension d = b+6. b is dimension of the eigengrasp space, p is a vector representing

the hand posture, and w is a vector of the position and orientation of the wrist. In our

case, we use axis-angle representation for the 3D rotation. The variables used are listed in

Table 2.1. A larger range of T z is chosen for tall objects.

10

Table 2.1: Variable List

Property Name Definition Range
Tx x-coordinate [-250,250]

Position Ty y-coordinate [-250,250]
Tz z-coordinate [-250,350]
θ angle between the z-axis and the axis [0,π]

Orientation φ angle between the projection of the axis on
x-y plane and x-axis

[-π ,π]

α rotation angle around the axis [0,π]
Eigengrasp EG[0,..,b] amplitude along the eigengrasp dimension [-4,4]

2.5 Genetic Algorithm

Genetic Algorithm (GA) is a global optimization algorithm originally developed by John

Holland [22]. It is one type of evolutionary algorithm, which draws inspiration from Dar-

win’s theory of evolution. Solutions of a problem are encoded into a string, which is called

“chromosome”. Each member in the string is called “gene”, which can be a binary num-

ber or floating-point number. GA starts with an initial “population”, which is a certain

number of solutions/chromosomes that typically are randomly chosen from the solution

space. At the beginning of every iteration, the chromosomes are evaluated and each will

be given a fitness value. The population will evolve by “selection” and “reproduction” at

every generation. “Selection” means some chromosomes in this population will be chosen

as the “parents” based on their fitness, to go through the reproduction operators, mainly

“crossover” and “mutation”. “Crossover”, or more generally “recombination” is a process

where the child chromosome is obtained by exchanging the information of parent chro-

mosomes. “Mutation” is applied to one chromosome by making a random change on it.

Both crossover and mutation are applied with a probability, pc and pm, respectively. The

children generated by crossover and mutation will be put into the next generation. The

iteration goes on until a termination condition is satisfied. It can either be a certain number

of generations has been reached, a good enough solution has been found, or the population

reaches a stable state where no better results are expected to be produced in successive

generations.

There are a variety of variations of genetic algorithms. A generalized flowchart of the

11

Figure 2.2: A generalized flow chart of genetic algorithm

genetic algorithm can be illustrated in Fig 2.2.

The pre-grasp quality function (2.7) - the objective function in grasp planning - is non-

linear, high-dimensional and discontinuous. On the other hand, we do not have a full un-

derstanding of the search space. Genetic algorithm is considered to be a suitable algorithm

for this type of problem.

The fundamental theorem of GA, also called Schema Theorem, is stated as follows:

Short, low-order, above average schemata receive exponentially increasing tri-

als in subsequent generations [23].

“Schemata” is a subset of the chromosome. Schema Theorem explains how GA is able

to evolve to a better solution. Note that although in theory, GA is proven to have global

convergence, practical applications do not always follow the theory. It is mainly due to

the limitation on the hypothetically unlimited population size and unlimited number of

iterations. Finite population will inevitably mislead the search to a different solution sub-

space with what is theoretically predicted [24]. Consequently, instead of converging to a

global optimum, the algorithm may end up with a sub-optimal solution.

Chapter 3

Genetic Algorithm on Grasp Planning

In this chapter, we will apply GA on grasp planning. We start with a close look at the

search space. The selection of operators and parameters are then investigated in detail.

To understand and overcome the sampling bias caused by crossover operators, we test six

types of sampling methods.

3.1 Solution Landscape

There have been lots of methods of genetic operators proposed in the past literature. The

operators as well as the representation of solutions have to be carefully chosen according

to the characteristics of the search space, which is the space of all possible solutions to a

problem.

First we need to decide on the encoding for a solution. As discussed in the previous

section, the variables in this problem take real value. We naturally adopt floating-point rep-

resentation. GA that uses floating-point encoding is called Real-Coded Genetic Algorithm

(RCGA). It provides higher accuracy and faster speed as opposed to binary-coded GA.

Each chromosome can thus be represented as:

chromosome =< T x,Ty,T z,θ ,φ ,α,EG0,EG1, ... > (3.1)

The position and orientation of the hand is defined in terms of the contact space of object.

We define the range of the variables so that possible solution space is around the object, as

shown in Table 2.1. The solution landscape is illustrated in Fig. 3.1. The red area shows

the space taken up by the target object. The pre-grasp is considered to be illegal if the

hand and the object get in touch. The legal solutions fall in the space outside the object.

The closer to the object, the better the pre-grasp is. “Good” denotes the space that gives

the best pre-grasps. As it extends outward, the quality goes down, denoted by “Normal”.

In the solution space close to the boundary (e.g. when the position variables take values

to the minimum or maximum, the hand is far away from the object), the pre-grasps has

12

13

Figure 3.1: The solution landscape

a very low quality, denoted as “Bad”. Although “Bad” pre-grasps are not considered to

be illegal, we want to avoid them. “Normal” and “Bad” do not indicate particular quality

value. They are just two terms used to informally show the transition trend of the solutions.

In the grasp planning, we will only search for solutions that do not collide with the object.

That is, if any illegal solution is obtained during any step of the GA, it will be dropped and

that GA step will be repeated until a legal solution is found. This makes the solution space

discontinuous. Imagine the action of moving the hand from inside the object to outside,

there will be a sudden transition from the worst grasp to the best. It addresses one of the

difficulties for an optimization algorithm to find the best solution.

If we take a close look at each variable individually, we can find that the good solutions

are not distributed evenly in the search space. There is a certain range that is supposed to

give a better solution. In order for GA to succeed in solving a problem, we must take into

account the problem specific knowledge in designing or choosing the genetic operators.

Thus it is necessary to gain a better understanding of these variables.

For the three position variables denoting the position of the the wrist, we want the

search to be focused on the center area, where the hand is closer to the object. For the

three variables representing the orientation of the hand, variable θ and φ encode the axis of

rotation. θ means the angle between the z-axis and this axis. φ denotes the angle between

the projection of this axis on x-y plane and x-axis. And α refers to the rotation angle around

the axis. θ = 0 means the palm of the hand is facing upward, while θ = π means the palm

14

(a) EG1,2: 0,0

(b) EG1: -1.13 (c) EG1: 2

(d) EG2: -1.37 (e) EG2: 1.57

Figure 3.2: Eigengrasp movement of Barrett Hand. It has two-dimensional eigengrasp sub-
space. EG1,2 refer to the first and second eigengrasp respectively. The number to the right
is the corresponding value of this eigengrasp.

15

facing down. φ can be viewed as the projection of the direction of the palm on the x-y plane,

the range of which goes from −x direction to x direction. Changing α can be thought of as

rotating the hand to find a correct orientation of the fingers while keeping the palm facing

the same direction. For the variables that represent the eigengrasp (which indirectly control

the joint movement), some example movements along the eigengrasp dimensions of Barrett

Hand are shown in Fig. 3.2. There is no preferred range for the orientation and eigengrasp

variables. The possible solutions should be searched evenly throughout the entire range.

3.2 Operators

In this section ,we discuss the details of each component of the GA planner.

The first step is to choose the parent selection method, i.e, which chromosome will be

chosen from current population to be saved to the mating pool to go through the rest oper-

ators. The most popular two selection methods are Roulette Wheel Selection and Tourna-

ment Selection.

In Roulette Wheel Selection, the probability of a chromosome of being chosen is pro-

portional to their fitness. The main disadvantage of this method is that chromosomes with

low fitness score rarely get the chance to be selected. The much better solutions will domi-

nate the population very fast which leads to premature convergence. Another disadvantage

is that it can be very slow to move toward a better chromosome when the entire population

have very similar fitness [25]. In Tournament Selection, Ts individuals are chosen to com-

pete with each other and the one with better fitness score wins. Ts stands for tournament

size. There are two slightly different implementations: Tournament Selection Without re-

placement (TSWOR) and Tournament Selection With Replacement (TSWR). In TSWR,

candidates for each tournament are randomly chosen, while in TSWOR, an individual does

not enter a tournament if it has already been chosen. The best chromosome in a population

may have many copies or no copies in the mating pool using TSWR, while the best is guar-

anteed to have exactly Ts copies in the mating pool in TSWOR [26]. TSWOR is chosen in

our implementation, with a tournament size of two.

For crossover operator, we employed blend crossover (BLX-α) operator proposed in [27],

which is defined as: Suppose we have two parents x1,x2, children y1,y2 are uniformly cho-

sen from the interval [Cmin− Iα,Cmax + Iα] at random, where Cmin = min{x1,x2},Cmax =

max{x1,x2}, I = Cmax−Cmin,α ∈ [0,1]. This can be illustrated in Fig. 3.3. α is normally

16

xmin xmaxx1 x2

IαI αI

ymin ymax

Figure 3.3: BLX-α

set to a number bigger than 0, to make the children generated span a slightly larger space

than the parents, which from a statistical perspective compensates for the shrinking of the

solution space over the generations [28]. The effect that the solution space will be attracted

towards a certain area preferred by the search operator is also called the search bias [29].

There will be further discussion in the next section.

Gaussian Mutation is applied as the mutation operator. A new gene value is obtained by

adding to the current value a number drawn from a Gaussian distribution N(0,σ) , where

σ is a user-specified parameter [25]. Let

σi = Kσ · ri (3.2)

We want to select the parameter Kσ to make sure that the possible solution can cover the

full range. Since the value range for a Gaussian distribution is approximately equal to 6σ ,

we choose Kσ = 0.2 as an initial value, where ri is the range of the value of genei. Larger

values of Kσ will be tested in order to find the most appropriate value.

Elitism is often used to prevent the loss of the best chromosome in a population. In our

case, two best chromosomes (also called Elitists) up to the present generation are kept and

added to the next population. At each generation, the offspring are compared to the elitists.

The elitists are replaced with the best two of the offspring if they have better quality and

are kept otherwise. In addition, we adopt the generational model for survivor selection,

i.e., the entire population are replaced by their offspring at each generation. To summarize,

the operators are listed in Table 3.1.

3.3 Sampling Method

As discussed earlier, there is an inherent bias caused by the crossover operator, whereby

the search will go toward a certain area rather than the whole space. We want this area to

contain optimum solutions, or relieve this bias. We also discussed the distribution of the

17

Table 3.1: Operator List

Operators Method
Representation Floating-point Numbers
Parent Selection TournamentSelectionWithoutReplacement, Ts = 2
Crossover BLX-al pha
Mutation Gaussian Mutation
Elitism Two Elitists, added to the next population
Survivor Selection Generational Model

good solutions in the search space in the previous section. With this a priori information

we have, it is necessary to investigate the bias of BLX-α crossover operator to find out if

this bias is beneficial for the search.

In BLX-α crossover, children solutions are generated by sampling from an extended

area around the parents. In [30], the search bias is examined with three sampling methods.

Instead in this section, we will show the bias with six sampling methods.

We consider one dimensional search without loss of generality. This search space is

given by

X = {x ; xmin ≤ x≤ xmax} (3.3)

3.3.1 Type1 sampling

In type1 sampling, we repeat sampling from the range [ymin,ymax], until the offspring are in

the feasible range [xmin,xmax]. All the notations that we use here are consistent with those

in Fig. 3.3.

y =

ymin +u(ymax− ymin), if xmin ≤ y≤ xmax

repeat sampling, otherwise.
(3.4)

where

ymin = x1−α(x2− x1) (3.5a)

ymax = x2 +α(x2− x1) (3.5b)

u : uniform random number ∈ [0.0,1.0]. (3.5c)

We assume that the parents are uniformly distributed in the space [xmin,xmax].

18

3.3.2 Type2 sampling

In type2 sampling, the offspring is generated from a modified space where all the values

are feasible:

y = y
′
min +u(y

′
max− y

′
min), (3.6)

where

y
′
min =

xmin, ymin < xmin,

ymin, otherwise
(3.7a)

y
′
max =

xmax, ymax > xmax,

ymax, otherwise
(3.7b)

3.3.3 Type3 sampling

The offspring are generated as follows:

y =

y
′
min +u1(c− y

′
min), if u2 ≥ 0.5,

c+u1(y
′
max− c), if u2 < 0.5.

(3.8)

where

c =
(x1 + x2)

2
(3.9a)

u1,u2 : uniform random number ∈ [0.0,1.0]. (3.9b)

Here, c is the center of the two parents.

3.3.4 Type4 sampling

In type4 sampling, instead of truncating ymin and ymax as in Type2, we truncate y if it is out

of the range [xmin,xmax]:

y
′
= ymin +u(ymax− ymin), (3.10a)

y =

xmin, if y

′
< xmin,

xmax, if y
′
> xmax,

y
′
, otherwise

(3.10b)

19

3.3.5 Type5 sampling

Type5 sampling is similar with Type3 except that it truncates the offspring in the last step

rather than truncating ymin and ymax.

y
′
=

ymin +u1(c− ymin), if u2 ≥ 0.5,

c+u1(ymax− c), if u2 < 0.5.
(3.11a)

y =

xmin, if y

′
< xmin,

xmax, if y
′
> xmax,

y
′
, otherwise

(3.11b)

where

c =
(x1 + x2)

2
(3.12a)

u1,u2 : uniform random number ∈ [0.0,1.0]. (3.12b)

3.3.6 Type6 sampling

Type6 sampling is a variation from Type3. There is no truncation done in this method. The

steps are repeated until the offspring is in the feasible range.

y =

ymin +u1(c− ymin), if u2 ≥ 0.5,

c+u1(ymax− c), if u2 < 0.5.
, if xmin ≤ y≤ xmax

repeat sampling, otherwise

(3.13)

where

c =
(x1 + x2)

2
(3.14a)

u1,u2 : uniform random number ∈ [0.0,1.0]. (3.14b)

We run the BLX-0.5 operator on the randomly generated parents x1,x2, using the above

six sampling methods. Each one is run for 5,000,000 times. The probability density func-

tion (p.d.f.) of offspring y generated with each method are shown in Fig. 3.4. BLX-0 and

BLX-0.25 with type1 sampling are also included.

From the figure, we can see that the BLX-α operator has an inherent bias towards

the center of the search space. Increasing α will reduce this bias as expected, since the

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

offspring

p
.d

.f

xmin xmax

type1

type2

type3

type4

type5

type6

type1_BLX0

type1_BLX0.25

Figure 3.4: BLX-α with six sampling methods

sampling range is extended, leading to an increasing chance for the boundary space to get

searched. For BLX-0, almost no solutions fall in the boundary space. This will likely make

GA converge too quickly which is referred to as premature convergence. This indicates

the population is confined to a small space containing a local optimum in its earlier stage.

As the diversity of the population goes down, the search narrows drastically, since crossing

over a homogeneous population does not produce solutions radically different from those

in the current population.

Comparing these six sampling methods, we can see that the p.d.f of type(1,2,6) are al-

most identical, and type(4, 5) are similar as well. We will treat them as equivalent. Type3

sampling produces solutions more evenly distributed in the search space. Type(1,2,6) has

highest p.d.f. on the center while the boundary gets a lowest p.d.f. The solutions of

type(4,5) have a very high p.d.f near the boundary because of the truncation. This leads to

the lowest p.d.f in the remaining search space. We would prefer type(4,5) only when the

global optimum is very close to the boundary of the search space. Type3 sampling would

be the one preferred if no a priori information is known about the solution space because

21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

offspring

p
.d

.f

xmin xmax

type1(m_repeat)

type1(m_truncate)

type3(m_repeat)

type3(m_truncate)

type4(m_repeat)

type4(m_truncate)

Figure 3.5: Two different mutation sampling methods with different sampling for BLX-
0.5, “m repeat” means repetition sampling for mutation, “m truncate” means truncation
sampling for mutation

of its less bias.

Note that the above probability density functions are generated empirically. For the

theoretical proof on the p.d.f of offspring produced by BLX operator, readers are referred

to Appendix A in [29].

In the above discussion, we focused on crossover operator only. In fact, in the imple-

mentation of Gaussian Mutation, there also can be two sampling methods: one is repeating

until the children are in the feasible space, the other is truncating the children to the limit of

the feasible range. The effect of these two sampling methods on mutations are illustrated

in Fig. 3.5. We call these two methods the “repetition method” and “truncation method”

respectively. The solutions of the truncation method concentrate on the boundary while

other areas are less likely to be searched as opposed to the repetition method.

Chapter 4

Results and Discussion

In this chapter, we will run the Genetic Algorithm based planner with different parameters

to test its capabilities and show the process of parameter tuning. The performance of the

GA-based planner will be analyzed and compared with planners based on Simulated An-

nealing Algorithm and Random Algorithm. The best pre-grasps found by the planner will

be saved. The corresponding final grasps will also be executed for a complete analysis.

4.1 Implementation

The algorithm is implemented in C++ under a modified version of GraspIt! [2] which runs

in ROS framework [31]. All the tests are performed in this modified GraspIt! simulator, on

a desktop computer with a AMD Athlon II Quad-core 2.9Ghz CPU and 6G RAM. GraspIt!

is a widely used open-source robot grasping simulator, as shown in Fig. 4.2. It provides

an interactive environment for the user to do the grasp planning on any given hand model.

Internally, it uses Qhull [32] to build the convex hull of the wrench space. Then the grasp

quality ε and v can be obtained. GraspIt! can serve as a test bed for new robot hand design,

grasp planning algorithms. The objects used for the tests are imported from the Household

Objects and Grasps Data Set [33]. Original objects in this database are shown in Fig. 4.1.

Figure 4.1: Some of the original objects in the Household Objects and Grasps Data Set

22

23

Figure 4.2: The Graspit! Simulator

Figure 4.3: The Graphical Interface of the GA grasp planner

24

(a) Barrett Hand

(b) Human Hand

Figure 4.4: The two hand models used in our test and their predefined contact locations

Table 4.1: Dimension of the search space

Hand Model DOFs and Eigengrasp Space GA Encoding Length
Barrett 4DOFs 7→ 2 EG 8 genes

Human Hand 20DOFs 7→ 6 EG 12 genes

The interface for starting GA grasp planner and setting parameters is shown in Fig. 4.3.

The Barrett Hand and the Human Hand model released with the GraspIt! simulator are

employed in this study. The DOFs and the eigengrasp (EG) space of the hand models are

listed in Table. 4.1. We choose these two hand models because they are good representation

25

of the type of hand they belong to. Barrett Hand is a simple dexterous hand and human hand

model can be thought as an anthropomorphic hand. Also the difference in their DOFs are

helpful in evaluating the optimization algorithm. The contact locations defined for both

hands are shown in Fig. 4.4, denoted with red lines.

The materials of all the objects used in our study are assumed to be wood. For the

two hand models, the palm of the Barrett Hand is considered to be plastic and the fingers

are wood. For Human Hand, the fingertips are rubber and all the remaining parts are

plastic. The contacts with the fingertips of the human hand are analyzed by using the

soft finger model, while all the other contacts are constructed using point contact with

friction model.

Before we start to carry out the tests of grasp planning, we list our assumptions here:

• no gravity is considered (the object is very light)

• all the objects are rigid

• a 3D model of the grasped object is available(for evaluating the quality of the grasps)

The genetic algorithm used in our implementation is laid out as in Algorithm 1. The

hand state is encoded into a chromosome. A population of chromosomes evolve at each

generation by applying crossover and mutation operators to the parents from the mating

pool, which keeps the parents selected by the parent selection operator. All the parents

are saved in the mating pool. The quality of each chromosome is calculated by Eq. 2.6.

n stands for the population size. The extra two slots in the population are used to keep

Elitists. The best solutions over generations are saved in the “BestChromList”. f lip is a

function with a boolean return value. It returns true with the specified probability. Random

number is used in almost every component of GA: initialization, selection, crossover and

mutation. There is a limitation of the system supplied random number generator “rand()”,

that there is sequential correlation in successive calls to the generator. To guarantee that

the performance of GA is not affected by the weakness of “rand()”, we used the random

number generator of L’Ecuyer with Bays-Durhan shuffle and added safeguards that were

described in [34] and implemented in [35]. The period of it is 2×1018.

26

Algorithm 1 Genetic Algorithm on Grasp Planning

{Generate initial population with (n+2) chromosomes}
for all chromosome do

A random number for each gene within the range

end for

Evaluate the quality of each chromosome

Save two Elitists

Generation = 1

while Generation 6= MaxGeneration do

clear newPop

{select (n+2) parents from currentPop, save into the mating pool }
tournamentSelectionWithoutReplacement(currentPop)

for i≤ n do

parent1 = currentPop.mat(i)

parent2 = currentPop.mat(i+1)

{crossover}
if f lip(crossoverprobability) then

crossover(parent1,parent2)

end if

{mutation}
for all Genes in parent1,parent2 do

if flip(mutationprobability) then

Gaussian Mutation

end if

end for

Evaluate the quality of parent1,parent2

Add parent1,parent2 to the newPop

i = i+2

end for

continue on the next page

27

{Add Elitists to newPop}
newPopElitist1 = best individual of the newPop

newPopElitist2 = second best of the newPop

if Q(newPopElitist1) < Q(currentElitist1) then

Add newPopElitist1 to the newPop

newPopElitist2 = newPopElitist1

else

Add currentElitist1 to the newPop

end if

if Q(newPopElitist2) < Q(currentElitist2) then

Add newPopElitist2 to the newPop

else

Add currentElitist2 to the newPop

end if

{Elitists are the last two individuals in the newPop}
newPopElitists = newPop(n),newPop(n+1)

currentPopulation = newPopulation

currentElitists = newPopElitists

if Q(currentElitists) < Q(worst BestPool) then

insert newPopElitists into BestChromList

worst BestPool= worst quality in BestChromList

end if

Generation ++

end while

28

4.2 Parameter Tuning

Given particular GA operators, parameters tuning is crucial for achieving good perfor-

mance. Three parameters are typically considered:

• n : Population size

• pc : Probability of crossover

• pm : Probability of mutation

In our case, we also decide on which sampling method to use. And we will tune α in the

BLX operator and Kσ in the Gaussian Mutation operator.

It is suggested that good solutions can be obtained at a high crossover probability, a low

mutation probability, and a moderate population size [36]. However, there is no general

theory on parameter selection. The optimal parameters are generally problem-dependent.

It may differ with the type of problem and operators. And the importance of crossover

versus mutation has always been debated, directly determining the range of the parameter.

In practice, parameters are often empirically tuned until satisfactory results are obtained.

To simplify the tuning process we will start with some general recommendations of

parameters: n = 30−100, pc = 0.5−1.0 and pm = 0.01−0.1. On the other hand, in order

to gain a better understanding of this optimization problem in grasp planning, we are not

restricted to these recommendations: some different sets of parameters will be tested, with

a higher mutation probability pm.

A larger population size generally leads to a better solution because it contains more

diverse schemata, i.e., a larger search space is explored [23]. But increasing the population

size is not always useful. Firstly, GA will slow down because more computing power is

required. Secondly, the population size will reach a limit when increasing it does not add

diversity to the search.

The role of crossover is a main driving force to exchange information between chro-

mosomes to exploit the search space. A high pc may lead to a faster convergence speed,

which is usually not desired, because that means less search space will be explored and

consequently the global optimum is less likely to be found. A low pc on the other hand

should also be avoided. With the existence of mutation, the chromosome may be changed

29

Figure 4.5: Barrett Hand grasping a glass

even before the schemata in them gets the chance to be exchanged with others, i.e., the

available information is not fully exploited.

The purpose of mutation is to maintain diversity of the population and prevent pre-

mature convergence. If the pm is too low, the population will converge quickly to a local

optimum. However, pm cannot be too high either, otherwise, it will destroy the useful

schemata and make it resemble a random search. To tune the parameters, the program is

executed with a Barrett Hand grasping a glass, as shown in Fig. 4.5.

Some preliminary tests show that the GA planner usually does not produce better solu-

tions after 5,000 generations with a population size of 50 or 100. Optimization with each

set of parameters is performed over 5,000 generations and the best pre-grasp found is saved

as well as the running time. To account for the stochastic nature of GA, each test is repeated

five times. The best pre-grasp qualities are taken as the average from the five runs, denoted

as “Average” in the tables. We first compare the performance between a population size

of 50 and 100. BLX-0.5 crossover with type1 sampling method, and Kσ = 0.2 are used

in this comparison. We test the planner using different combinations of pc and pm. The

result is shown in Table 4.2. Note that in this table, we also show the best pre-grasp quality

found from the five runs, which is put in the parentheses next to “Average”. “STD” is the

estimated standard deviation. The best average solution achieved at different population

sizes are highlighted in red, while the best solution is marked in blue. The following results

will be presented in the same format.

30

Ta
bl

e
4.

2:
D

iff
er

en
tp

op
ul

at
io

n
si

ze
,B

L
X

-0
.5

(T
yp

e1
sa

m
pl

in
g)

,K
σ
=

0.
2(

re
pe

tit
io

n
sa

m
pl

in
g)

(a
)n

=
50

n=
50

p m

0.
01

0.
1

0.
2

0.
3

0.
4

0.
5

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

p c

0.
5

32
.8

83
(2

8.
25

9)
4.

10
1

25
.3

29
(2

0.
00

9)
5.

54
3

19
.9

96
(1

4.
05

3)
7.

74
2

16
.5

86
(1

5.
41

9)
1.

14
1

18
.1

72
(1

5.
51

)
2.

40
7

18
.6

03
(1

5.
39

3)
3.

48

0.
6

29
.2

81
(2

3.
48

5)
6.

36
9

20
.0

61
(1

3.
74

3)
5.

86
4

17
.6

79
(1

4.
35

2)
5.

67
16

.7
98

(1
5.

81
6)

0.
93

5
19

.0
42

(1
7.

28
2)

1.
74

2
18

.5
33

(1
5.

75
6)

2.
56

0.
7

33
.7

75
(2

9.
78

9)
2.

35
1

26
.8

42
(1

9.
47

6)
4.

22
8

18
.2

35
(1

4.
72

8)
6.

28
3

18
.8

24
(1

6.
74

2)
2.

35
5

19
.0

45
(1

6.
04

8)
5.

27
2

21
.7

11
(1

6.
62

8)
5.

88
3

0.
8

24
.7

54
(1

7.
29

9)
7.

90
9

20
.1

81
(1

3.
62

8)
8.

63
7

17
.8

75
(1

4.
50

6)
7.

00
4

19
.6

64
(1

5.
12

2)
5.

48
4

20
.0

05
(1

7.
44

)
2.

73
5

20
.9

26
(1

8.
04

1)
2.

47
6

0.
9

31
.9

93
(2

2.
94

1)
5.

71
3

28
.1

51
(2

7.
44

8)
0.

59
6

16
.7

68
(1

4.
92

2)
3.

01
7

18
.0

08
(1

5.
67

3)
2.

65
4

20
.0

87
(1

5.
99

4)
3.

02
19

.0
3(

15
.8

75
)

1.
95

8

1
28

.7
06

(1
8.

66
5)

5.
78

8
18

.0
36

(1
3.

75
7)

5.
56

5
19

.6
02

(1
5.

16
4)

6.
14

5
18

.7
51

(1
5.

96
6)

3.
76

8
21

.9
01

(1
9.

41
1)

4.
78

1
20

.6
73

(1
9.

14
5)

1.
39

(b
)n

=
10

0

n=
10

0
p m

0.
01

0.
1

0.
2

0.
3

0.
4

0.
5

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

p c

0.
5

26
.8

15
(2

1.
40

8)
5.

34
9

17
.9

82
(1

4.
62

6)
6.

82
1

16
.0

98
(1

5.
14

5)
0.

85
9

18
.6

9(
16

.5
68

)
1.

67
3

18
.8

15
(1

6.
44

3)
2.

30
4

18
.9

78
(1

6.
09

5)
2.

08
3

0.
6

31
.0

7(
22

.5
3)

5.
19

6
24

.9
97

(1
7.

69
7)

6.
16

6
16

.8
46

(1
5.

04
8)

2.
13

3
18

.1
41

(1
5.

03
9)

1.
79

6
18

.9
76

(1
5.

05
8)

2.
62

20
.3

44
(1

9.
41

9)
0.

97
9

0.
7

26
.9

15
(1

5.
91

8)
6.

81
25

.6
68

(1
4.

88
5)

6.
07

9
17

.7
26

(1
6.

26
4)

1.
36

3
21

.1
24

(1
7.

53
1)

4.
89

1
18

.7
92

(1
6.

91
6)

2.
25

7
20

.0
68

(1
7.

47
5)

1.
72

3

0.
8

26
.7

52
(1

9.
63

9)
5.

69
2

16
.9

6(
13

.6
78

)
6.

62
9

18
.3

27
(1

6.
90

9)
1.

68
7

20
.3

06
(1

7.
65

7)
2.

41
4

21
.5

94
(1

9.
20

6)
2.

08
3

20
.8

53
(1

7.
71

7)
3.

20
4

0.
9

20
.1

89
(1

5.
90

6)
5.

21
3

23
.2

35
(1

4.
03

9)
8.

14
9

15
.8

28
(1

5.
42

8)
0.

25
9

19
.9

53
(1

6.
82

7)
2.

38
5

19
.9

95
(1

8.
76

3)
0.

97
3

22
.7

4(
20

.2
7)

2.
11

2

1
21

.7
23

(1
4.

73
8)

6.
91

2
15

.6
4(

13
.9

88
)

2.
05

1
19

.0
37

(1
6.

30
6)

3.
20

7
19

.4
15

(1
7.

54
9)

1.
48

1
21

.1
36

(1
8.

15
1)

2.
60

8
23

.7
39

(2
1.

23
4)

1.
62

2

31

We can see that with a population size n = 100, the planner gives a better average best

solution at pc = 1.0, pm = 0.1 compared to the one at n = 50, pc = 0.6, pm = 0.2. For some

parameter sets, a larger population shows a better consistency in finding a good solution in

multiple runs. The column pm = 0.2 in both tables is a good example. Although n = 50

is better than n = 100 in terms of the best solution found in all the runs, n = 100 wins

when taking the average of different runs. This suggests that the planner is less susceptible

to local optimum with n = 100. If we take the average of all the values in the whole

table, it will be 21.57(17.597) for n = 50 and 20.707(17.002) for n = 100 in the format of

“Average(Best)”. The larger population size overall yields better results for different tested

parameters. A population size of 100 is used throughout the following parameter tuning

process.

We continue testing using the two sampling methods for mutation operator, with a

Kσ = 0.2. Results are shown in Table. 4.3 and 4.4. With either type1 or type4 BLX-0.5

crossover in use, the repetition method is superior to truncation method in every aspect:

average best, best, and standard deviation. This result was as expected. According to

Fig. 3.5, the truncation method has a strong bias toward the boundary. This bias acts on the

three position variables, leading the search to the space far away from the object and thus

degrades the performance of GA. The repetition method has a smaller bias and this bias

concentrates toward the center where good solutions can be found. The promising areas

will be more likely to be searched over.

Repetition sampling method for the mutation operator will be used in all the follow-

ing tests. Next, we will compare the six sampling methods for BLX-α crossover operator

and tune the α . We want to see how the bias indicated on Fig. 3.4 impacts the perfor-

mance of GA planner. Since type1 and type4 sampling of BLX-0.5 are already tested and

type1=type2=type6 and type4=type5 as previously noted, we will only run the test on

type3 for BLX-0.5. Results are listed in Table. 4.5. The best average qualities obtained

by different sampling methods appear to be very close. To avoid a wrong inference due to

the stochastic factor, we evaluate the sampling methods based on the overall performance

in the whole table with different pc and pm. The performance index for all six types are

summarized in Table 4.8. “Average” is the best average solution of all pc, pm. “Best” is

the best solution from five runs of all pc, pm. “Average of all parameters” means taking

the average of the average solutions of all pc, pm. “Average best of all parameters” means

32

Ta
bl

e
4.

3:
B

L
X

-0
.5

w
ith

ty
pe

1
sa

m
pl

in
g,

K
σ
=

0.
2

w
ith

di
ff

er
en

ts
am

pl
in

g
m

et
ho

ds
fo

rm
ut

at
io

n

(a
)R

ep
et

iti
on

M
et

ho
d

R
ep

et
iti

on
Sa

m
pl

in
g

p m

0.
01

0.
1

0.
2

0.
3

0.
4

0.
5

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

p c

0.
5

26
.8

15
(2

1.
40

8)
5.

34
9

17
.9

82
(1

4.
62

6)
6.

82
1

16
.0

98
(1

5.
14

5)
0.

85
9

18
.6

9(
16

.5
68

)
1.

67
3

18
.8

15
(1

6.
44

3)
2.

30
4

18
.9

78
(1

6.
09

5)
2.

08
3

0.
6

31
.0

7(
22

.5
3)

5.
19

6
24

.9
97

(1
7.

69
7)

6.
16

6
16

.8
46

(1
5.

04
8)

2.
13

3
18

.1
41

(1
5.

03
9)

1.
79

6
18

.9
76

(1
5.

05
8)

2.
62

20
.3

44
(1

9.
41

9)
0.

97
9

0.
7

26
.9

15
(1

5.
91

8)
6.

81
25

.6
68

(1
4.

88
5)

6.
07

9
17

.7
26

(1
6.

26
4)

1.
36

3
21

.1
24

(1
7.

53
1)

4.
89

1
18

.7
92

(1
6.

91
6)

2.
25

7
20

.0
68

(1
7.

47
5)

1.
72

3

0.
8

26
.7

52
(1

9.
63

9)
5.

69
2

16
.9

6(
13

.6
78

)
6.

62
9

18
.3

27
(1

6.
90

9)
1.

68
7

20
.3

06
(1

7.
65

7)
2.

41
4

21
.5

94
(1

9.
20

6)
2.

08
3

20
.8

53
(1

7.
71

7)
3.

20
4

0.
9

20
.1

89
(1

5.
90

6)
5.

21
3

23
.2

35
(1

4.
03

9)
8.

14
9

15
.8

28
(1

5.
42

8)
0.

25
9

19
.9

53
(1

6.
82

7)
2.

38
5

19
.9

95
(1

8.
76

3)
0.

97
3

22
.7

4(
20

.2
7)

2.
11

2

1
21

.7
23

(1
4.

73
8)

6.
91

2
15

.6
4(

13
.9

88
)

2.
05

1
19

.0
37

(1
6.

30
6)

3.
20

7
19

.4
15

(1
7.

54
9)

1.
48

1
21

.1
36

(1
8.

15
1)

2.
60

8
23

.7
39

(2
1.

23
4)

1.
62

2

(b
)T

ru
nc

at
io

n
M

et
ho

d

Tr
un

ca
tio

n
Sa

m
pl

in
g

p m

0.
01

0.
1

0.
2

0.
3

0.
4

0.
5

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

p c

0.
5

29
.8

38
(2

6.
38

5)
3.

27
6

19
.3

83
(1

4.
34

6)
6.

88
17

.3
93

(1
4.

21
1)

6.
83

2
22

.4
01

(1
4.

89
7)

7.
25

3
19

.0
59

(1
5.

39
2)

4.
11

7
25

.8
48

(1
6.

06
7)

9.
17

2

0.
6

24
.2

47
(1

7.
53

7)
6.

97
7

26
.1

05
(1

3.
77

)
6.

90
2

22
.9

8(
17

.4
)

6.
66

9
18

.2
(1

6.
96

)
0.

83
3

23
.6

28
(2

0.
01

7)
6.

10
9

21
.9

34
(1

7.
68

9)
4.

34
9

0.
7

24
.1

81
(1

7.
12

6)
5.

30
5

26
.0

07
(1

4.
44

)
6.

51
9

25
.5

11
(1

5.
52

3)
6.

39
6

26
.0

6(
15

.5
77

)
6.

30
5

23
.4

26
(1

6.
29

9)
8.

94
1

24
.5

57
(1

8.
60

5)
5.

78
9

0.
8

22
.2

94
(1

4.
68

7)
8.

62
2

29
.0

38
(2

7.
53

1)
0.

85
1

27
.6

76
(1

7.
29

4)
5.

83
1

25
.1

84
(1

7.
09

)
6.

86
8

23
.3

36
(1

6.
22

)
6.

81
4

22
.2

59
(1

6.
25

8)
6.

11
9

0.
9

29
.1

48
(2

2.
81

4)
3.

63
7

25
.0

08
(1

3.
51

5)
6.

56
3

22
.8

95
(1

8.
00

1)
5.

91
5

21
.1

26
(1

9.
26

6)
1.

67
8

23
.1

8(
19

.0
54

)
6.

68
1

27
.6

62
(2

1.
13

4)
4.

52
6

1
25

.3
15

(1
7.

73
2)

6.
91

5
25

.6
24

(1
3.

56
5)

6.
78

3
23

.6
32

(1
8.

90
7)

5.
29

22
.3

44
(1

8.
64

)
4.

74
5

28
.7

75
(2

3.
62

3)
4.

55
3

28
.5

11
(2

0.
13

8)
5.

11
6

33

Ta
bl

e
4.

4:
B

L
X

-0
.5

w
ith

ty
pe

4
sa

m
pl

in
g,

K
σ
=

0.
2

w
ith

di
ff

er
en

ts
am

pl
in

g
m

et
ho

ds
fo

rm
ut

at
io

n

(a
)R

ep
et

iti
on

M
et

ho
d

R
ep

et
iti

on
Sa

m
pl

in
g

pm

0.
01

0.
1

0.
2

0.
3

0.
4

0.
5

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

pc

0.
5

27
.6

4(
16

.0
72

)
8.

12
4

24
.1

23
(1

4.
24

8)
9.

26
1

15
.3

58
(1

4.
08

2)
1.

45
27

.9
91

(2
1.

08
6)

4.
08

9
20

.1
85

(1
5.

55
7)

6.
90

1
26

.1
32

(1
7.

31
)

6.
20

3

0.
6

23
.9

58
(1

5.
61

3)
8.

22
3

26
.9

98
(1

7.
94

1)
6.

64
9

18
.5

3(
14

.2
86

)
3.

89
2

26
.0

86
(1

7.
86

1)
6.

33
1

26
.6

24
(1

8.
40

4)
5.

97
9

23
.3

93
(1

8.
75

6)
5.

45
5

0.
7

26
.5

71
(1

9.
62

5)
6.

69
16

.5
5(

13
.4

96
)

6.
16

8
18

.7
42

(1
5.

16
8)

5.
61

6
29

.6
74

(2
1.

38
)

4.
72

1
28

.1
84

(1
8.

26
5)

6.
44

2
29

.1
71

(2
0.

24
6)

5.
02

2

0.
8

26
.7

32
(1

5.
41

8)
8.

09
3

27
.0

4(
18

.5
48

)
4.

75
6

16
.0

68
(1

3.
94

3)
1.

36
1

25
.9

34
(1

4.
92

)
8.

25
28

.1
73

(1
8.

24
5)

6.
05

3
29

.2
41

(1
9.

11
1)

6.
04

0.
9

25
.5

55
(1

3.
86

1)
7.

30
5

29
.0

9(
27

.4
46

)
1.

79
1

24
.0

22
(1

8.
91

)
6.

28
2

27
.8

7(
20

.3
01

)
6.

31
6

31
.4

41
(2

1.
49

3)
5.

60
6

26
.6

66
(1

9.
48

1)
6.

25
9

1
32

.0
01

(2
9.

76
3)

2.
13

7
26

.3
14

(1
3.

54
5)

7.
14

8
24

.2
23

(1
6.

02
)

6.
18

6
24

.4
57

(1
7.

58
7)

5.
92

7
30

.0
23

(2
0.

82
)

6.
27

32
.1

93
(2

5.
74

7)
3.

89
3

(b
)T

ru
nc

at
io

n
M

et
ho

d

Tr
un

ca
tio

n
Sa

m
pl

in
g

p m

0.
01

0.
1

0.
2

0.
3

0.
4

0.
5

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

p c

0.
5

26
.6

76
(1

6.
95

7)
6.

79
25

.6
52

(1
4.

55
8)

6.
82

4
20

.6
59

(1
4.

29
6)

7.
22

5
27

.9
91

(2
1.

08
6)

4.
08

9
20

.1
85

(1
5.

55
7)

6.
90

1
26

.1
32

(1
7.

31
)

6.
20

3

0.
6

27
.6

39
(1

8.
76

1)
6.

62
6

22
.4

25
(1

3.
48

9)
7.

98
26

.7
97

(1
6.

07
5)

6.
06

7
26

.0
86

(1
7.

86
1)

6.
33

1
26

.6
24

(1
8.

40
4)

5.
97

9
23

.3
93

(1
8.

75
6)

5.
45

5

0.
7

30
.0

99
(1

9.
04

9)
7.

02
7

26
.0

19
(1

4.
17

4)
6.

77
4

24
.6

93
(1

5.
65

1)
7.

83
8

29
.6

74
(2

1.
38

)
4.

72
1

28
.1

84
(1

8.
26

5)
6.

44
2

29
.1

71
(2

0.
24

6)
5.

02
2

0.
8

29
.6

51
(1

4.
87

7)
8.

53
8

27
.4

52
(2

3.
27

8)
2.

49
1

29
.6

99
(2

8.
32

1)
0.

93
3

25
.9

34
(1

4.
92

)
8.

25
28

.1
73

(1
8.

24
5)

6.
05

3
29

.2
41

(1
9.

11
1)

6.
04

0.
9

31
.6

11
(2

9.
02

3)
1.

97
8

27
.8

54
(1

9.
44

1)
4.

71
4

26
.9

36
(1

9.
33

5)
6.

15
3

27
.8

7(
20

.3
01

)
6.

31
6

31
.4

41
(2

1.
49

3)
5.

60
6

26
.6

66
(1

9.
48

1)
6.

25
9

1
29

.6
7(

19
.6

51
)

5.
65

9
30

.8
58

(2
9.

43
2)

2.
60

9
27

.9
83

(1
8.

49
4)

5.
76

7
24

.4
57

(1
7.

58
7)

5.
92

7
30

.0
23

(2
0.

82
)

6.
27

32
.1

93
(2

5.
74

7)
3.

89
3

34

Ta
bl

e
4.

5:
B

L
X

-0
.5

w
ith

ty
pe

3
sa

m
pl

in
g,

K
σ
=

0.
2

B
L

X
-0

.5
,ty

pe
3

p m

0.
01

0.
1

0.
2

0.
3

0.
4

0.
5

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

p c

0.
5

25
.2

26
(2

0.
34

9)
4.

73
5

23
.5

88
(1

5.
28

9)
5.

72
9

15
.6

(1
4.

94
)

0.
67

7
20

.4
66

(1
5.

49
9)

6.
00

8
18

.1
55

(1
5.

43
3)

2.
37

1
20

.2
6(

18
.7

27
)

1.
73

3

0.
6

32
.0

12
(2

5.
60

6)
4.

49
5

19
.5

88
(1

3.
67

)
6.

66
8

16
.7

47
(1

5.
71

1)
1.

27
20

.0
49

(1
7.

01
6)

2.
47

9
20

.2
62

(1
6.

33
5)

3.
15

1
20

.2
88

(1
8.

39
4)

1.
47

6

0.
7

24
.2

74
(1

3.
85

3)
9.

14
9

20
.8

53
(1

3.
72

4)
7.

94
6

20
.6

61
(1

7.
02

9)
5.

72
4

16
.2

9(
15

.5
52

)
0.

63
5

21
.3

29
(1

8.
05

6)
2.

93
19

.1
22

(1
7.

90
1)

1.
43

8

0.
8

30
.5

64
(2

0.
63

1)
7.

14
20

.0
43

(1
3.

56
)

8.
57

8
18

.8
41

(1
5.

53
1)

2.
65

1
17

.1
37

(1
5.

64
9)

1.
16

4
23

.1
97

(1
9.

11
5)

4.
09

22
.1

03
(2

0.
12

5)
1.

62
6

0.
9

22
.2

48
(1

4.
38

9)
7.

79
2

21
.7

18
(1

3.
70

6)
7.

58
8

19
.2

04
(1

5.
27

5)
3.

18
5

22
.4

61
(1

7.
79

5)
6.

09
7

21
.4

84
(2

0.
06

8)
0.

93
3

22
.8

01
(1

8.
07

1)
3.

02
9

1
28

.7
61

(2
0.

05
8)

5.
78

20
.2

44
(1

4.
1)

8.
27

1
20

.0
07

(1
6.

21
3)

3.
26

9
20

.9
17

(1
8.

47
)

2.
07

9
23

.3
63

(2
1.

42
4)

1.
90

5
23

.5
61

(2
1.

80
4)

1.
38

7

35

Ta
bl

e
4.

6:
B

L
X

-0
w

ith
ty

pe
1

sa
m

pl
in

g,
K

σ
=

0.
2

B
L

X
-0

p m

0.
01

0.
1

0.
2

0.
3

0.
4

0.
5

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

p c

0.
5

32
.1

89
(2

3.
23

6)
6.

80
9

22
.8

04
(1

5.
93

6)
8.

89
3

18
.0

15
(1

4.
97

1)
6.

53
6

18
.0

9(
16

.3
83

)
1.

77
5

19
.7

93
(1

7.
65

5)
1.

51
3

21
.9

52
(1

8.
45

1)
1.

97

0.
6

27
.7

46
(1

8.
89

6)
6.

98
8

23
.6

14
(1

6.
03

8)
6.

71
3

15
.8

7(
14

.7
81

)
1.

19
8

20
.4

64
(1

6.
80

1)
5.

31
4

18
.8

1(
15

.4
48

)
2.

18
2

20
.3

72
(1

6.
90

2)
2.

86
2

0.
7

25
.7

35
(1

9.
21

)
6.

86
8

22
.3

91
(1

6.
44

2)
5.

76
5

16
.1

06
(1

5.
51

9)
0.

45
5

20
.7

77
(1

7.
23

2)
5.

03
9

21
.2

58
(1

6.
94

2)
2.

93
20

.5
65

(1
6.

71
2)

3.
42

3

0.
8

28
.3

97
(2

4.
12

5)
6.

96
1

21
.2

69
(1

6.
51

8)
5.

04
9

18
.1

74
(1

4.
20

7)
6.

23
22

.3
93

(1
9.

86
8)

4.
70

7
19

.5
22

(1
7.

96
2)

1.
58

3
23

.0
69

(1
7.

81
3)

6.
91

7

0.
9

23
.5

(1
5.

79
)

5.
25

20
.9

75
(1

5.
49

6)
5.

61
5

16
.8

06
(1

5.
79

2)
0.

77
5

21
.5

74
(2

0.
54

6)
0.

62
8

22
.6

18
(1

8.
03

8)
5.

03
7

22
.2

66
(1

7.
98

)
3.

01
3

1
27

.4
93

(2
2.

17
3)

4.
28

6
29

.1
78

(2
5.

35
8)

2.
30

4
20

.5
38

(1
6.

73
)

5.
83

9
20

.1
19

(1
8.

59
)

2.
13

1
22

.1
69

(1
9.

57
6)

2.
12

4
25

.4
88

(2
1.

11
)

3.
21

3

Ta
bl

e
4.

7:
B

L
X

-0
.2

5
w

ith
ty

pe
1

sa
m

pl
in

g,
K

σ
=

0.
2

B
L

X
-0

.2
5

p m

0.
01

0.
1

0.
2

0.
3

0.
4

0.
5

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

p c

0.
5

31
.7

66
(2

3.
00

8)
7.

78
6

22
.1

93
(1

5.
68

3)
6.

40
4

15
.1

24
(1

4.
51

9)
0.

8
19

.7
42

(1
7.

72
9)

1.
54

1
20

.2
24

(1
6.

19
1)

3.
01

8
21

.0
6(

16
.2

34
)

3.
79

9

0.
6

26
.9

01
(2

0.
27

3)
4.

43
9

16
.6

55
(1

3.
91

1)
2.

34
9

20
.9

66
(1

3.
97

8)
8.

10
5

18
.8

99
(1

7.
52

7)
2.

01
6

23
.5

79
(1

8.
91

7)
4.

24
5

22
.8

75
(2

0.
38

9)
2.

68
9

0.
7

22
.7

92
(1

7.
10

4)
5.

05
6

20
.7

91
(1

6.
11

7)
4.

88
8

18
.0

87
(1

4.
30

3)
6.

67
5

19
.1

37
(1

5.
85

7)
3.

07
5

26
.3

69
(2

2.
27

8)
3.

97
6

20
.2

66
(1

7.
89

8)
2.

40
6

0.
8

23
.8

05
(1

8.
24

4)
4.

65
20

.0
3(

14
.2

18
)

6.
31

2
17

.8
22

(1
4.

25
7)

6.
98

7
20

.0
89

(1
7.

40
1)

2.
78

9
22

.7
38

(1
9.

63
5)

2.
47

8
22

.1
42

(1
6.

34
8)

3.
69

2

0.
9

29
.9

6(
17

.5
78

)
6.

99
9

21
.6

74
(1

5.
07

1)
6.

44
18

.5
24

(1
4.

33
6)

5.
7

21
.2

5(
20

.5
74

)
0.

86
2

21
.8

37
(1

9.
21

4)
3.

16
6

20
(1

6.
42

6)
3.

73
3

1
25

.9
37

(2
1.

94
2)

4.
66

6
22

.3
02

(1
4.

88
)

5.
15

4
16

.3
63

(1
5.

14
1)

1.
26

4
20

.9
85

(1
6.

86
6)

2.
80

5
28

.2
73

(2
3.

98
3)

3.
55

24
.9

8(
18

.3
77

)
4.

56
9

36

Table 4.8: Statistics of performance index for type1,3,4 sampling of BLX-0.5

Type(1,2,6) Type3 Type(4,5)

Average 15.64 15.60 15.358
Best 13.678 13.56 13.496

Average of all parameters 20.707 21.484 25.638
Average best of all parameters 17.002 17.196 18.182

Table 4.9: Statistics of performance index for BLX-0, BLX-0.25, BLX-0.5 with type1
sampling

BLX-0 BLX-0.25 BLX-0.5

Average 15.87 15.124 15.640
Best 14.207 13.911 13.678

Average of all parameters 22.003 21.837 20.707
Average best of all parameters 17.923 17.4 17.002

taking the average of the best solutions of all pc, pm.

In Table 4.8, the performance in the top two rows are quite similar. From the bottom

two rows which is the overall performance, we conclude that the order of performance is

type1>type3>type4, with type1 being the best. Bad performance of type4 is likely due to a

strong bias toward the boundary. Comparing type1 with type3, a little more bias towards the

center seems to be helpful in the performance. This bias leads the search toward the center

space where a better pre-grasp is more likely to be found, while the population diversity is

maintained with enough solutions from the boundary because of a moderate p.d.f. near the

boundary.

Results obtained with BLX-0 and BLX-0.25 operators are listed in Table 4.6 and 4.7.

And the performance index for different α are summarized in Table 4.9. The BLX-0.5

operator outperforms the other two in three out of four performance indexes. The overall

performance is shown in the bottom two rows, which indicates that BLX-0.5 > BLX-0.25

> BLX-0.

Recalling that for the three position variables, the bias toward the center is desired,

where the hand is closer to the object. But a strong bias may cause premature convergence.

For other variables, we want the search to evenly cover the entire space. In this case, BLX-

0.5 with type1 sampling provides a better balance. As a result, we will use BLX-0.5 as the

37

crossover operator.

After determining the sampling methods to use and the α of the BLX operator, we will

tune the parameter Kσ . The result of Kσ = 0.2,0.3,0.4 is presented in Table 4.3, 4.10 and

4.11. The impact of these three Kσ are also evaluated based on the overall performance,

listed in Table 4.12. Kσ = 0.2 outperforms the other two in terms of the average of the

solutions obtained from all the parameters pc and pm. It will be used throughout later

tests. The average pre-grasp quality found using BLX-0.5 with type1 sampling, Gaussian

Figure 4.6: Average pre-grasp quality found using BLX-0.5 with type1 sampling, Gaussian
Mutation with Kσ = 0.2 and repetition sampling method

Mutation with Kσ = 0.2 and repetition sampling method are shown in Fig. 4.6(data from

Table. 4.3). We will use type1 sampling with pc = 0.8, pm = 0.1 for the following tests.

This set of pc, pm is chosen since it finds the best solution and also determines a good

average best solution. It should be recognized that, the search space is different when

either the hand or the object is changed. The parameters we chose may not be applicable for

other hand-object combinations. Thus the robustness of the GA planner is very important

38

Ta
bl

e
4.

10
:B

L
X

-0
.5

w
ith

ty
pe

1
sa

m
pl

in
g,

K
σ
=

0.
3

w
ith

re
pe

tit
io

n
m

et
ho

d

K
σ
=

0.
3

p m

0.
01

0.
1

0.
2

0.
3

0.
4

0.
5

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

p c

0.
5

22
.0

78
(1

6.
87

9)
7.

36
20

.7
12

(1
4.

13
4)

9.
01

1
18

.5
93

(1
4.

91
)

6.
27

1
18

.2
68

(1
6.

31
6)

1.
62

3
19

.5
96

(1
7.

81
6)

3.
13

4
20

.1
2(

16
.0

33
)

2.
74

6

0.
6

34
.8

22
(3

0.
35

7)
5.

69
3

20
.9

36
(1

4.
88

7)
7.

75
7

18
.2

78
(1

6.
37

8)
1.

50
3

18
.9

46
(1

6.
48

1)
3.

61
6

20
.1

78
(1

6.
49

5)
5.

43
9

19
.5

96
(1

7.
11

4)
1.

74

0.
7

24
.7

61
(1

4.
93

6)
8.

45
5

19
.9

53
(1

4.
90

6)
6.

27
9

19
.6

67
(1

5.
89

7)
5.

81
4

20
.4

12
(1

6.
47

5)
4.

27
6

19
.9

03
(1

7.
02

6)
2.

18
23

.6
17

(1
8.

85
1)

3.
74

5

0.
8

18
.9

24
(1

4.
22

4)
5.

06
2

17
.3

14
(1

3.
91

8)
5.

60
6

18
.8

85
(1

5.
88

6)
3.

21
2

20
.6

11
(1

7.
89

2)
3.

21
3

21
.3

08
(1

7.
91

4)
3.

15
23

.6
28

(1
8.

41
3)

4.
51

3

0.
9

20
.1

73
(1

4.
26

4)
7.

30
7

23
.3

58
(1

4.
54

9)
7.

22
8

18
.7

84
(1

5.
97

)
2.

37
19

.3
12

(1
8.

47
7)

0.
69

4
21

.1
44

(1
8.

77
7)

3.
55

9
20

.2
08

(1
8.

16
8)

2.
43

3

1
21

.9
45

(1
5.

76
8)

5.
95

1
23

.9
92

(1
4.

67
9)

6.
85

3
20

.5
99

(1
6.

42
9)

5.
62

9
21

.8
64

(1
8.

82
4)

2.
00

1
24

.2
25

(2
2.

1)
1.

48
6

24
.3

69
(2

2.
47

8)
1.

77
8

Ta
bl

e
4.

11
:B

L
X

-0
.5

w
ith

ty
pe

1
sa

m
pl

in
g,

K
σ
=

0.
4

w
ith

re
pe

tit
io

n
m

et
ho

d

K
σ
=

0.
4

p m

0.
01

0.
1

0.
2

0.
3

0.
4

0.
5

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

p c

0.
5

29
.8

45
(2

4.
68

8)
4.

24
18

.7
03

(1
4.

16
1)

5.
71

2
17

.4
44

(1
6.

18
4)

1.
64

2
20

.1
07

(1
5.

82
5)

4.
96

18
.7

6(
14

.3
99

)
2.

62
8

21
.6

(1
8.

88
7)

2.
86

6

0.
6

28
.9

13
(2

4.
03

3)
3.

90
5

23
.6

71
(1

7.
11

3)
8.

12
8

16
.8

15
(1

4.
53

3)
2.

36
1

20
.7

75
(1

6.
39

)
4.

46
1

21
.6

66
(1

5.
54

9)
4.

66
19

.9
15

(1
7.

92
5)

1.
71

0.
7

28
.7

31
(1

6.
11

4)
8.

34
1

19
.6

91
(1

3.
50

3)
8.

12
4

19
.2

18
(1

4.
29

9)
3.

65
3

23
.8

17
(1

7.
38

7)
4.

64
9

18
.1

44
(1

5.
98

3)
3.

53
2

20
.2

26
(1

9.
05

7)
1.

44
4

0.
8

26
.2

59
(1

4.
34

3)
11

.8
57

22
.8

69
(1

5.
30

1)
6.

93
17

.8
46

(1
5.

74
4)

1.
22

3
22

.8
77

(1
7.

61
2)

5.
03

1
21

.9
48

(1
7.

29
4)

4.
07

8
22

.0
53

(1
9.

82
2)

3.
00

9

0.
9

21
.6

11
(1

7.
93

5)
5.

53
9

22
.7

52
(1

3.
67

5)
8.

30
7

17
.5

42
(1

4.
46

8)
2.

67
4

19
.5

91
(1

7.
62

9)
1.

18
7

18
.5

49
(1

6.
61

7)
1.

17
1

20
.2

25
(1

9.
17

2)
1.

01
2

1
24

.4
43

(1
4.

20
9)

7.
41

6
24

.8
37

(1
4.

27
)

6.
53

2
22

.3
86

(1
8.

29
7)

5.
20

7
20

.7
44

(1
7.

66
1)

2.
31

8
23

.4
27

(2
0.

61
4)

1.
73

6
25

.5
95

(2
2.

15
8)

3.
09

1

39

Table 4.12: Statistics of performance index for different Kσ

Kσ = 0.2 Kσ = 0.3 Kσ = 0.4

Average 15.64 17.314 16.815
Best 13.678 13.918 13.503

Average of all parameters 20.707 21.141 25.638
Average best of all parameters 17.002 17.073 18.182

in grasp planning. Further tests will be presented in the following sections.

4.3 Performance

The on-line performance and off-line performance proposed by De Jong [36] are used

to monitor the evolution of the quality of the grasps over generations and evaluate the

convergence performance of GA. On-line performance at generation t is an average of the

best from each generation in the past. Off-line performance keeps track of the best solution

Q(best) up to each generation and is calculated by taking an average of Q(best) of the past

generation at generation t. We run the GA planner with the best parameters we selected

from the previous section. The on-line and off-line performance over 5,000 generations

as well as the elitists and the Q(best) of each generation are shown in Fig. 4.7. In this

plot, we also include the on-line and off-line performance of a simple random planner.

For a fair comparison, the random planner is executed for 5,000∗100 = 500,000 function

evaluations. And the results for both planners are presented in the figure over function

evaluations rather than generations.

The figure shows that the population of the planner evolves rapidly over the first 200-

250 generations and grows slowly afterwards. In the later stage, the population reaches a

stable status. Most individuals are within a small space around the elitist. During this time

period, crossover hardly produces new individuals and is not efficient in the search of the

solution space. However, the diversity is maintained by mutation so that the rest of the

configuration space still gets the chance to be searched over, which is indicated in the blue

line. Compared with the simple random planner, we can see that GA is far more efficient.

That is the reason we do not want to use a high mutation probability for GA, since that will

make it act like a random algorithm.

To better understand the intermediate evolving process, we visualize all the solutions

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

50

100

150

200

250

300

Function Evaluations

Q
(p

,w
)

13.708

The elitist of
each generation

Q(best)

online

offline

online−random

offline−random

Figure 4.7: The on-line and off-line performance of the genetic algorithm

in the population at every generation. Each chromosome is represented as an arrow, which

shows the centering position and orientation of the palm, as illustrated in Fig. 4.4a. The

blue arrow is located at the center of the palm, perpendicular to the surface. It is a projec-

tion of the entire search space on the 6D space of the hand position and orientation. This

should give us some idea of the distribution of solutions at each generation, even though

it does not cover the eigengrasp posture space. Screenshots of the visualized solutions are

taken at 1 per 10 generations. The first 170 generations are shown in Fig. 4.8. We can see

that the solutions in the first generation are evenly distributed because they are uniformly

chosen at random. Then the population starts to concentrate toward the area which gives

better pre-grasps. Most solutions are around the side of the top part of the glass. At this

stage, mutation operator is keeping the diversity of the population by randomly changing

the genes. Thus the other part of the solution space gets explored with some solutions,

which prevents the search from getting stuck in a local minimum.

The intermediate process using different pc and pm is illustrated in Fig. 4.9 to Fig. 4.13

41

1 10 20

30 40 50

60 70 80

90 100 110

120 130 140

150 160 170

Figure 4.8: Visualization of the intermediate process of the GA planner with pc = 0.8, pm =
0.1. The number on the top left corner denotes the generation. The two red arrows show
the two elitists in each generation.

42

1 10 20

30 40 50

60 70 80

90 100 110

120 130 140

150 160 170

Figure 4.9: Visualization of the intermediate process of the GA planner with pc = 0.8, pm =
0.01.

43

1 10 20

30 40 50

60 70 80

90 100 110

120 130 140

150 160 170

Figure 4.10: Visualization of the intermediate process of the GA planner with pc =
0.8, pm = 0.2.

44

1
10 20

30 40 50

60
70 80

90 100 110

120 130 140

150 160 170

Figure 4.11: Visualization of the intermediate process of the GA planner with pc =
0.8, pm = 0.3.

45

1 10 20

30 40 50

60 70 80

90 100 110

120 130 140

150 160 170

Figure 4.12: Visualization of the intermediate process of the GA planner with pc =
0.7, pm = 0.1.

46

1 10 20

30 40 50

60 70 80

90 100 110

120 130 140

150 160 170

Figure 4.13: Visualization of the intermediate process of the GA planner with pc =
0.9, pm = 0.1.

47

to help us study the effect of changing pc and pm. When pc = 0.8, pm = 0.01, premature

convergence occurs since the pm is too low to keep the diversity of the population. The

population converges quickly to a local-optimum at generation 60, as shown in Fig. 4.9.

And the search has little opportunity to jump out of the local-optimum because very few

new solutions are generated. From Fig. 4.10, 4.11, we can see that increasing pm signifi-

cantly increases the diversity of the population. When pm = 0.2, we can still observe that

the search focuses on a certain area, while when pm = 0.3, the search starts to behave like

a random search, with solutions evenly distributed in the search space. Keeping pm = 0.1

and changing pc (0.7,0.8,0.9), however, does not impact the search as much in terms of the

population diversity and convergence speed, as shown in Fig. 4.12, 4.13. Increasing pc will

make the information exchange between solutions faster, but it does not necessarily lead to

premature convergence with the existence of mutation operator and a proper pm.

4.4 Comparison with Simulated Annealing Planner

Simulated Annealing (SA) is another popular algorithm for global optimization. Simulated

annealing algorithm and genetic algorithm have some similarities. They are both stochas-

tic methods that are suitable for solving nonlinear, multimodal and high-dimensional op-

timization problems. SA uses one solution at every iteration. The solution tends to jump

to a better state (with lower “energy” , the term for the objective function used in SA),

while still accepting higher energy at a lower probability to avoid being stuck at a local

optimum. It can be viewed as GA with mutation operator only and the population size is

one. Theoretically, global convergence holds for both of them. The proof can be found

in [37] for SA and [38, 39, 40] for GA. The practical performance of both algorithms are

problem-dependent. In [21], SA was applied on grasp planning to find good pre-grasps.

Quantitative results were reported that it achieved a good performance. And it was imple-

mented in the original release of GraspIt! simulator. However, since the global optimum

pre-grasp is unknown to us, we are still not sure how good a pre-grasp can be. A com-

parison between GA and SA grasp planners would help us understand their applicability

on this problem and have further evaluation on GA’s performance using SA planner as a

benchmark. We test both GA and SA planner on the same sets of hand-object combina-

tions and compare their performance. We use the default parameters for SA planner that

48

implemented in Graspit! simulator. It was stated in [21] that increasing the iterations be-

yond 70,000 does not improve the performance. Thus the SA planner is performed over

70,000 iterations. And the GA planner is terminated at 5,000 generations, which is 500,000

function evaluations. Each test is repeated five times and the best pre-grasp quality results

are averaged. These results are given in Table 4.13. And the best pre-grasps found for both

planners on each hand-object combination are shown in Fig. 4.14.

The results show that GA planner outperforms SA planner in most cases in terms of the

best pre-grasps found. And it is robust to different hand-object combinations. The average

execution time of the two algorithms is listed in Table 4.14. The SA planner performs

faster than GA planner. This shows GA is better in finding global optimal pre-grasp with a

sacrifice in calculation speed.

In fact, the optimization in grasp planning usually finds its application in off-line use,

such as building a database [41]. Thus the difference in execution time is not a big concern

in this work. However, for a fair comparison, we want to see what happens if the two

algorithms are given the same amount of time. We run the GA planner with the same time

as the average time of SA planner listed in Table 4.14. The result is also obtained from

five runs on each hand-object combination, shown together with result of SA planner from

Table 4.13 in Table 4.15. The better average pre-grasp quality obtained for each hand-

object from the two planners is marked in red. GA planner performs better in five out of

eight cases. This shows that even given the same amount of time, the performance of GA

is comparable to that of SA. We recognize that it is helpful to have GA as another option in

the grasp planning task. In applications such as building a database, we can run both GA

and SA planners and save the better result into the database.

The final grasps resulting from the pre-grasps in Fig. 4.14 are executed and shown in

Fig. 4.15. “e” and “v” refers to the ε quality and v quality. The object is set to transparent

to show the contact between the hand and object. Note that, the quality of pre-grasp is an

informal estimate of the final grasp quality. But they are not equivalent. A good pre-grasp

may result in a non force-closure grasp and a better pre-grasp may lead to worse final grasp

as indicated in Fig. 4.15. We also notice from both figures that the difference in best quality

from both planners is usually too minimal to be noticed in terms of the hand posture and

position.

49

Ta
bl

e
4.

13
:S

ta
tis

tic
s

of
th

e
be

st
pr

e-
gr

as
ps

fo
un

d
fr

om
bo

th
pl

an
ne

rs

Pl
an

ne
r T

yp
e

G
la

ss
B

ot
tle

M
ug

Sp
ra

y
B

ot
tle

B
ar

re
tt

H
um

an
B

ar
re

tt
H

um
an

B
ar

re
tt

H
um

an
B

ar
re

tt
H

um
an

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

SA
13

.9
68

(1
3.

71
7)

0.
29

7
12

.0
32

(1
1.

38
2)

0.
57

4
15

.3
17

(1
3.

22
)

2.
15

5
10

.0
05

(8
.7

5)
1.

42
2

14
.8

47
(1

1.
10

4)
4.

11
5

11
.9

99
(1

0.
88

5)
1.

56
1

14
.9

1(
14

.3
64

)
0.

49
4

9.
22

1(
7.

13
8)

2.
63

3

G
A

13
.8

19
(1

3.
42

1)
0.

68
9

11
.8

4(
10

.7
74

)
1.

15
11

.7
73

(1
1.

56
)

0.
18

9
9.

01
7(

8.
73

2)
0.

31
2

13
.0

55
(1

1.
19

4)
1.

69
4

10
.3

87
(9

.4
79

)
0.

80
7

12
.9

45
(1

0.
34

)
2.

70
6

9.
72

2(
8.

97
2)

1.
11

Ta
bl

e
4.

14
:E

xe
cu

tio
n

tim
e

of
th

e
G

A
an

d
SA

pl
an

ne
rs

Pl
an

ne
rT

yp
e

E
xe

cu
tio

n
Ti

m
e(

se
co

nd
s)

B
ar

re
tt

H
um

an
H

an
d

SA
(7

0,
00

0
ite

ra
tio

ns
)

12
5

18
3

G
A

(5
00

,0
00

fu
nc

tio
n

ev
al

ua
tio

ns
)

22
6

27
2

Ta
bl

e
4.

15
:S

ta
tis

tic
s

of
th

e
be

st
pr

e-
gr

as
ps

fo
un

d
fr

om
bo

th
pl

an
ne

rs
gi

ve
n

th
e

sa
m

e
ru

nn
in

g
tim

e

Pl
an

ne
r T

yp
e

G
la

ss
B

ot
tle

M
ug

Sp
ra

y
B

ot
tle

B
ar

re
tt

H
um

an
B

ar
re

tt
H

um
an

B
ar

re
tt

H
um

an
B

ar
re

tt
H

um
an

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

SA
13

.9
68

(1
3.

71
7)

0.
29

7
12

.0
32

(1
1.

38
2)

0.
57

4
15

.3
17

(1
3.

22
)

2.
15

5
10

.0
05

(8
.7

5)
1.

42
2

14
.8

47
(1

1.
10

4)
4.

11
5

11
.9

99
(1

0.
88

5)
1.

56
1

14
.9

1(
14

.3
64

)
0.

49
4

9.
22

1(
7.

13
8)

2.
63

3

G
A

(S
am

e
Ti

m
e

w
ith

SA
)

13
.8

9(
13

.5
67

)
0.

31
7

11
.9

83
(1

0.
86

6)
0.

99
8

13
.1

31
(1

1.
95

1)
1.

70
9

10
.6

81
(8

.8
14

)
1.

17
2

15
.7

07
(1

4.
80

7)
0.

81
4

10
.5

66
(1

0.
17

4)
0.

37
4

13
.7

93
(1

1.
97

6)
1.

59
7

10
.8

01
(9

.6
22

)
0.

68
6

50

Fi
gu

re
4.

14
:B

es
tp

re
-g

ra
sp

s
fo

un
d

by
G

A
an

d
SA

pl
an

ne
rs

51

Fi
gu

re
4.

15
:T

he
co

rr
es

po
nd

in
g

fin
al

gr
as

ps
an

d
th

e
qu

al
ity

52

4.5 Grasp Planning using Another Quality Metric

The pre-grasp quality metric that we used is fast to compute but it has a limitation. It

was focused on forming an enveloping grasp around the object, which from a stability

standpoint may not be a force-closure grasp. And a pre-grasp with a low (better) quality

is not necessarily an enveloping grasp. For instance, if the hand has all the fingers fully

opened, and is positioned very close and parallel to the surface of the object (like the spray

bottle used in our study), then the hand is so close to the object that the it may yield a

very good pre-grasp quality, but the hand is not even enveloping the object. Or for the

mug, some good pre-grasps with the palm close to the handle may have some problem in

stability. This limitation was also indicated from the results of last section.

As mentioned earlier, in off-line applications, the speed of the grasp planning method

is not as important as the stability of the grasp that it can find. To find better final grasps,

we propose planning the pre-grasps using the quality of the final grasp directly. Instead

of using pre-grasp quality as the objective function, each pre-grasp is evaluated with its

corresponding final grasp so that the stability of the solution is guaranteed. For every

pre-grasp found by the optimization algorithm, we move the hand along the approaching

direction defined by the pre-grasp by maximum 50mm until the hand is in contact with

the object and then close the fingers to complete the final grasp. If no contact is found in

this 50mm distance, the hand is moved back to its intial position and the fingers are closed.

Then the ε quality and v quality can be obtained. We use a combination of these two quality

measures to evaluate the final grasp:

Q f inal =−(100ε +30v) (4.1)

This Q f inal is used as the objective function of the optimization. The negative value is taken

so that it is a minimization problem, consistent with the pre-grasp quality metric we used

in previous sections. We use ε as the primary quality measure. It gets more weight than v

quality. And the scale was chosen just to make the quality large enough so that it is easier

to compare.

Since the execution of the final grasp takes a lot of computation power, both GA and

SA algorithms run very slow on this problem. We run both planners with a time limit:

1,000 seconds for Barrett Hand and 1,500 seconds for Human Hand. The quality of the

pre-grasp found from five runs of both planners was summarized in Table 4.17. And the

53

Ta
bl

e
4.

16
:F

un
ct

io
n

ev
al

ua
tio

ns
of

th
e

G
A

an
d

SA
pl

an
ne

rs
in

gi
ve

n
tim

e
lim

it

Pl
an

ne
rT

yp
e

Fu
nc

tio
n

E
va

lu
at

io
ns

)

B
ar

re
tt(

1,
00

0
se

co
nd

s)
H

um
an

H
an

d(
1,

50
0

se
co

nd
s)

SA
18

,1
42

11
,9

13

G
A

16
,7

50
12

,4
88

Ta
bl

e
4.

17
:S

ta
tis

tic
s

of
th

e
be

st
pr

e-
gr

as
ps

fo
un

d
fr

om
bo

th
pl

an
ne

rs
w

ith
Q

fi
na

l
as

th
e

qu
al

ity
m

ea
su

re
.B

et
te

ro
ne

in
di

ca
te

d
in

B
lu

e

Pl
an

ne
rT

yp
e

G
la

ss
B

ot
tle

M
ug

Sp
ra

y
B

ot
tle

B
ar

re
tt

H
um

an
B

ar
re

tt
H

um
an

B
ar

re
tt

H
um

an
B

ar
re

tt
H

um
an

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

A
ve

ra
ge

(B
es

t)
ST

D
A

ve
ra

ge
(B

es
t)

ST
D

SA
-1

3.
57

3(
-1

4.
56

)
0.

87
-6

4.
10

3(
-7

0.
91

1)
9.

27
8

-1
2.

99
2(

-1
4.

12
3)

1.
17

6
-5

8.
32

(-
59

.8
32

)
2.

48
9

-3
9.

51
(-

43
.9

92
)

3.
90

2
-1

98
.5

12
(-

20
2.

37
4)

6.
30

4
-1

2.
85

2(
-1

5.
90

5)
2.

65
2

-3
5.

33
7(

-4
1.

81
9)

7.
24

4

G
A

-1
5.

57
6(

-1
6.

65
9)

1.
07

3
-6

6.
45

3(
-7

1.
21

)
7.

20
8

-1
3.

91
8(

-1
6.

14
7)

1.
96

9
-5

9.
56

(-
61

.9
86

)
3.

65
-4

2.
26

6(
-4

6.
07

1)
4.

74
9

-1
94

.4
99

(-
21

4.
71

2)
29

.5
74

-1
4.

46
2(

-1
8.

26
2)

3.
29

1
-4

1.
47

4(
-4

9.
49

2)
10

.9
21

54

Fi
gu

re
4.

16
:B

es
tp

re
-g

ra
sp

s
fo

un
d

by
G

A
an

d
SA

pl
an

ne
rs

w
ith

Q
fi

na
l

as
th

e
qu

al
ity

m
ea

su
re

55

Fi
gu

re
4.

17
:T

he
co

rr
es

po
nd

in
g

fin
al

gr
as

ps
ob

ta
in

ed
w

ith
Q

fi
na

l
as

th
e

qu
al

ity
m

ea
su

re

56

best pre-grasps and their corresponding final grasps are shown in Fig. 4.16 and 4.17. Both

planners are able to find force-closure grasps. GA clearly outperforms SA on all the objects

when using Barrett Hand. For grasp planning with Human Hand, the performance of GA

and SA are close. GA is slightly better with better solutions for three of the four objects

tested.

The average of the function evaluations that the planners were able to perform within

the given time limit are listed in Table 4.16. The total function evaluations of both planners

are very close. As discussed in previous sections, GA evolves very fast to a good solution

in the first 200 generations. For grasp planning using Barrett Hand, GA was able to finish

about 165 generations, enough to get a force-closure solution with better stability than SA.

When using Human Hand, more DOFs were involved in the optimization. On average,

GA was able to finish about 125 generations. Within these number of generations, GA

performed a little better than SA but does not show as big an advantage as in the case of

Barrett Hand.

Grasp planning with this final grasp quality metric (4.1) is able to yield pre-grasps that

result in force-closure final grasps. This method takes much longer time than the method

using (2.6) as the quality metric, since the evaluation of each solution involves executing

the final grasp. However, the final grasp obtained are more stable than those using (2.6) as

the quality measure, because the objective function (4.1) is directly related to the stability

of the final grasp.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we proposed applying genetic algorithm to vision-based grasp planning on

3D objects. This algorithm can be used on 3D object in arbitrary shapes and any robot

hand with the assumption that the objects are rigid and a model of the object was already

obtained from the image sensor.

We firstly reviewed the related work and basic knowledge in the domain of robot grasp-

ing. Heuristic grasp planning approach was used because of its better applicability in

practice. The planning process was divided into two steps. The first step was to to find a

pre-grasp that is more likely to yield a stable final grasp. And in the second step, the grasp

is completed by moving the hand toward the object until getting in contact and closing the

fingers to perform a power grasp. The grasp planning was formulated as an optimization

problem with the objective of finding a good pre-grasp. The quality measures of pre-grasp

and final grasp were introduced.

The concepts essential in building a genetic algorithm based grasp planner were intro-

duced. The operators and parameters of genetic algorithm were described in detail. They

were known to have a crucial impact on the performance and the best parameters may

depend on specific problems. To better understand this optimization problem in order to

choose the proper operator, the solution landscape were examined as well as the bias intro-

duced by the crossover operator with different sampling methods.

We implemented this algorithm using GraspIt! simulator. Barrett Hand grasping a

glass was used as a demonstration for choosing parameters and evaluating the performance.

Extensive tests were carried out to choose the appropriate parameters for grasp planning,

including the population size, probability of crossover and mutation, different sampling

methods for crossover and mutation, the α of the BLX-α operator, and the variance used

in Gaussian Mutation operator. A set of parameters that give the best performance were

chosen for further tests. The quantitative results on a number of hand-object combinations

57

58

indicate that genetic algorithm can be used to obtain a good pre-grasp posture and is robust

to different solution space introduced by different hand or object. Compared to the grasp

planner based on simulated annealing algorithm, the GA planner was superior in most

cases in terms of the average best solution obtained. Although the time issue is not the

main concern of this work (since neither of this methods are fast enough for real-time

application), we included the execution time for the complete details of the information.

The GA planner worked slower when both planners were given enough time to reach a

stable state. Then we ran GA planner with the same amount of time as SA planner for a

fair comparison. The performance of GA was comparable with that of SA. To overcome the

limitation of the pre-grasp quality, we investigated the possibility of using another quality

metric for this problem. In the optimization process, each pre-grasp was evaluated based

on its corresponding final grasp with a stability quality measure consisting of ε quality and

v quality. With this quality metric as the objective function, GA and SA planners were both

able to find force-closure grasps for each hand-object set. And overall, GA outperforms

SA given the same amount of time with this quality measure.

5.2 Future Work

Future work will be focused on improving the performance of the GA planner. The pa-

rameter tuning process in this thesis was basically a brute-force method. We would like

to try some advanced methods for parameter tuning to see how they work, like Factorial

Experiment [42] and Nelder-Mead algorithm.

The robustness is very important for GA in grasp planning since the search space

changes with the hand and object. We will apply adaptive methods like the one proposed in

[43] to tune the parameters pc and pm on-the-fly. And since GA is intrinsically parallel, it

would be interesting to investigate the performance of a parallel GA, utilizing the power of

multiple-core computers. Furthermore, considering the resemblance between SA and GA,

hybrid methods which combine them [44] to take the best from both worlds may largely

improve the performance. Similar hybrid methods also include combining GA and Nelder-

Mead algorithm [45] to utilize the global exploration ability of GA and the local search

ability of Nelder-Mead.

Bibliography

[1] R. M. Murray, Z. Li, and S. S. Sastry, “A mathematical introduction to robotic manip-
ulation,” 1994.

[2] A. T. Miller, “Graspit!: A versatile simulator for robotic grasping,” Ph.D. dissertation,
Columbia University, New York, USA, June 2001.

[3] D. Goeger, N. Ecker, and H. Woern, “Tactile sensor and algorithm to detect slip in
robot grasping processes,” in Robotics and Biomimetics, 2008. ROBIO 2008. IEEE
International Conference on, Feb. 2009, pp. 1480 –1485.

[4] J. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. Kuchenbecker, “Human-inspired
robotic grasp control with tactile sensing,” Robotics, IEEE Transactions on, vol. 27,
no. 6, pp. 1067 –1079, Dec. 2011.

[5] J. Platt, R., A. Fagg, and R. Grupen, “Nullspace composition of control laws for grasp-
ing,” in Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on,
vol. 2, 2002, pp. 1717 – 1723 vol.2.

[6] D. Bowers and R. Lumia, “Manipulation of unmodeled objects using intelligent
grasping schemes,” Fuzzy Systems, IEEE Transactions on, vol. 11, no. 3, pp. 320
– 330, June 2003.

[7] A. Miller, S. Knoop, H. Christensen, and P. Allen, “Automatic grasp planning using
shape primitives,” in Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE
International Conference on, vol. 2, Sept. 2003, pp. 1824 – 1829 vol.2.

[8] A. Chella, H. Dindo, F. Matraxia, and R. Pirrone, “Real-time visual grasp synthesis
using genetic algorithms and neural networks,” in Proceedings of the 10th Congress of
the Italian Association for Artificial Intelligence on AI*IA 2007: Artificial Intelligence
and Human-Oriented Computing, ser. AI*IA ’07. Berlin, Heidelberg: Springer-
Verlag, 2007, pp. 567–578.

[9] N. Daoud, J. Gazeau, S. Zeghloul, and M. Arsicault, “A fast grasp synthesis method
for online manipulation,” Robotics and Autonomous Systems, vol. 59, no. 6, pp. 421
– 427, 2011.

[10] S. Mannepalli, A. Dutta, and A. Saxena, “A multi-objective ga based algorithm for
2d form and force closure grasp of prismatic objects,” I. J. Robotics and Automation,
vol. 25, no. 2, 2010.

[11] C. Sangkhavijit, N. Niparnan, and P. Chongstitvatana, “Computing 4-fingered force-
closure grasps from surface points using genetic algorithm,” in Robotics, Automation
and Mechatronics, 2006 IEEE Conference on, Dec. 2006, pp. 1 –5.

59

60

[12] H. Mesgari, F. Cheraghpour, and S. Moosavian, “Application of mag index for op-
timal grasp planning,” in Mechatronics and Automation (ICMA), 2011 International
Conference on, Aug. 2011, pp. 2171 –2176.

[13] J. Fernandez and I. Walker, “Biologically inspired robot grasping using genetic pro-
gramming,” in Robotics and Automation, 1998. Proceedings. 1998 IEEE Interna-
tional Conference on, vol. 4, May 1998, pp. 3032 –3039 vol.4.

[14] J. R. Napier, “The prehensile movements of the human hand,” J Bone Joint Surg Br,
vol. 38-B, no. 4, pp. 902–913, Nov. 1956.

[15] X.-Y. Zhang, Y. Nakamura, K. Goda, and K. Yoshimoto, “Robustness of power
grasp,” in Robotics and Automation, 1994. Proceedings., 1994 IEEE International
Conference on, May 1994, pp. 2828 –2835 vol.4.

[16] Q. V. Le, D. Kamm, A. F. Kara, and A. Y. Ng, “Learning to grasp objects with multiple
contact points.” in ICRA. IEEE, 2010, pp. 5062–5069.

[17] N. S. Pollard, “Parallel methods for synthesizing whole-hand grasps from generalized
prototypes,” MIT, Tech. Rep., 1994.

[18] C. Ferrari and J. Canny, “Planning optimal grasps,” in Robotics and Automation, 1992.
Proceedings., 1992 IEEE International Conference on, May 1992, pp. 2290 –2295
vol.3.

[19] A. T. Miller and A. T. Miller, “Graspit!: A versatile simulator for robotic grasping,”
IEEE Robotics and Automation Magazine, vol. 11, pp. 110–122, 2004.

[20] M. Santello, M. Flanders, and J. F. Soechting, “Postural Hand Synergies for Tool
Use,” Journal of Neuroscience, vol. 18, no. 23, pp. 10 105–10 115, Dec. 1998.

[21] M. Ciocarlie and P. Allen, “Hand posture subspaces for dexterous robotic grasping,”
The International Journal of Robotics Research, vol. 28, pp. 851–867, 07/2009 2009.

[22] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI, USA:
University of Michigan Press, 1975.

[23] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[24] Z. Michalewicz, Genetic algorithms + data structures = evolution programs (2nd,
extended ed.). New York, NY, USA: Springer-Verlag New York, Inc., 1994.

[25] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. SpringerVer-
lag, 2003.

[26] K. Sastry and D. E. Goldberg, “Modeling tournament selection with replacement us-
ing apparent added noise,” in Intelligent Engineering Systems Through Artificial Neu-
ral Networks. Proceedings of the Conference ANNIE 2001, vol. 2, 2001, pp. 129–134.

61

[27] Eshelman, “The CHC Adaptive Search Algorithm : How to Have Safe Search When
Engaging in Nontraditional Genetic Recombination,” Foundations of Genetic Algo-
rithms, pp. 265–283, 1991.

[28] H. Pohlheim, “GEATbx - genetic and evolutionary algorithm toolbox for use with
matlab. http://www.geatbx.com/,.”

[29] Y. Yoon, Y.-H. Kim, A. Moraglio, and B.-R. Moon, “A theoretical and empirical
study on unbiased boundary-extended crossover for real-valued representation,” Inf.
Sci., vol. 183, no. 1, pp. 48–65, Jan. 2012.

[30] S. Tsutsui and D. E. Goldberg, “Search space boundary extension method in real-
coded genetic algorithms,” Information Sciences, pp. 133–3, 2001.

[31] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA Workshop on Open
Source Software, 2009.

[32] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex
hulls,” ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, vol. 22, no. 4, pp.
469–483, 1996.

[33] M. Ciocarlie, C. Pantofaru, K. Hsiao, G. Bradski, P. Brook, and E. Dreyfuss, “A side
of data with my robot: Three datasets for mobile manipulation in human environ-
ments,” IEEE Robotics & Automation Magazine, Special Issue: Towards a WWW for
Robots, vol. 18, June 2011.

[34] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes
in C (2nd ed.): the art of scientific computing. New York, NY, USA: Cambridge
University Press, 1992.

[35] K. Sastry, “Single and multiobjective genetic algorithm toolbox in c++,” University of
Illinois at Urbana-Champaign, Urbana IL, Tech. Rep. IlliGAL Report No. 2007016,
2007.

[36] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive systems.”
Ph.D. dissertation, University of Michigan, Ann Arbor, MI, USA, 1975.

[37] C. J. P. Blisle, “Convergence theorems for a class of simulated annealing algorithms
on rd,” Journal of Applied Probability, vol. 29, no. 4, pp. pp. 885–895, Dec. 1992.

[38] R. F. Hartl, “A global convergence proof for a class of genetic algorithms,” 1990.

[39] D. Greenhalgh and S. Marshall, “Convergence criteria for genetic algorithms,” SIAM
J. Comput., vol. 30, no. 1, pp. 269–282, Apr. 2000.

[40] G. Rudolph, “Convergence analysis of canonical genetic algorithms,” Neural Net-
works, IEEE Transactions on, vol. 5, no. 1, pp. 96 –101, Jan 1994.

62

[41] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The columbia grasp database,”
in IEEE Intl. Conf. on Robotics and Automation, 2009.

[42] L. H. Lee and Y. Fan, “An adaptive real-coded genetic algorithm,” Applied Artificial
Intelligence, vol. 16, no. 6, pp. 457–486, 2002.

[43] M. Srinivas and L. Patnaik, “Adaptive probabilities of crossover and mutation in ge-
netic algorithms,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 24,
no. 4, pp. 656 –667, Apr. 1994.

[44] S. W. Mahfoud and D. E. Goldberg, “Parallel recombinative simulated annealing: A
genetic algorithm,” Parallel Computing, vol. 21, no. 1, pp. 1–28, 1995.

[45] R. Chelouah and P. Siarry, “Genetic and nelder-mead algorithms hybridized for a
more accurate global optimization of continuous multiminima functions,” European
Journal of Operational Research, vol. 148, no. 2, pp. 335–348, July 2003.

	List of Tables
	List of Figures
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgements
	Introduction
	Motivation
	Previous Research
	Different Robot Hand
	How to Perceive the Environment
	Problem Description

	Objectives and Contribution
	Outline

	Background
	Force-Closure Grasp
	Contact Model
	Quality Metrics
	Grasp Planning in Eigengrasp Space
	Genetic Algorithm

	Genetic Algorithm on Grasp Planning
	Solution Landscape
	Operators
	Sampling Method
	Type1 sampling
	Type2 sampling
	Type3 sampling
	Type4 sampling
	Type5 sampling
	Type6 sampling

	Results and Discussion
	Implementation
	Parameter Tuning
	Performance
	Comparison with Simulated Annealing Planner
	Grasp Planning using Another Quality Metric

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

