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ABSTRACT

A regime-switching model is a time-series model in which parameters change values

according to the regime at present time. While regime-switching models have been very

popular in applied work, there is a lack of literature for simulation studies. New methods

based on regime-switching models are often proposed with neither a proof of convergence

nor simulations to demonstrate their basic properties. In this thesis, a detailed simulation

study of regime-switching models is conducted. A strategy to generate initial search values

in the parameter estimation of regime-switching models is proposed. It is shown that this

method can dramatically reduce the number of restarts of the optimizer. Even in 3-regime

models (with 15 unknown parameters), parameters can be estimated reasonably well with

only 5 restarts.
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CHAPTER 1

INTRODUCTION

A financial market often changes patterns over time. It can also exhibit dramatic changes

due to unexpected events such as natural hazards and financial crisis. A widely accepted

fact is that financial markets behave quite differently in different economic situations.

Traders often adjust their portfolios according to market trend, which is defined as the long

term tendency of a financial market to move in a certain direction. A financial market is

traditionally classified into 3 categories: bearish, bullish and neutral. The first two terms

describe overall market gain and loss respectively. The term neutral market is used when

no strong upward or downward trend is observed.

As an example, we plot the weekly Standard & Poor index from January 2002 to March

2012 in Figure 1.1. The index dropped sharply in 2002 as a consequence of the collapse of

internet bubble. We can consider the market over this period as bearish. The stock market

recovered slowly since 2003 until the financial crisis hit United States in 2008 when the

index experienced dramatic drop in the whole year. One could say the index was in bull

market between 2003 and 2008. However, there are clearly patterns in the movement of the

S&P index within this time period. The index bounced back sharply between 2003-2004

and increased at a much slower pace from 2005 to 2006. Should the market trend in those

two periods be defined as the same or should we consider them differently in the analysis?

In general, market categorization is very subjective and complicated. It is common to

observe a few days of sharp market drop in a bullish market or a short period of market

rally in a bearish market. There is no standard way to clearly define market trends by

direct observation of financial data. This makes financial market analysis very challenging.

To better understand the changing patterns of financial market, statistical modeling and

1
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analyses of financial data are often used to identify the underlying economic stages and

examine how the market behaves under different economic regimes.

2002 2004 2006 2008 2010 2012

80
0

10
00

12
00

14
00

Date

S
&

P
 In

de
x

Figure 1.1: Weekly S&P index from January 2002 to March 2012

Among many approaches to this problem, regime-switching models have become very

popular in the past decade. A regime-switching model is a time-series model in which

parameters change values according to the regime at present time. The changing of regimes

is governed by a finite-state stochastic process, which is often unobservable. There are two

types of regime-switching models: threshold models and Markov models. In a threshold

regime-switching model, regime switching is determined by the value of observed variables

and predefined thresholds. A Markov regime-switching model, on the other hand, assumes

that the unobservable stochastic process is a Markov chain. In this thesis, we focus our

attention on Markov regime-switching models. Therefore the word ‘Markov’ will be

omitted as long as there is no confusion in the context.

Regime-switching model is a special case of a more general framework called hidden

Markov Model (see Zucchini and MacDonald (2009)). Regime-switching models were

first introduced to econometric study by Hamilton (1989) and have become very popular

particularly in applied works. Applications of regime switching models spread over a

broad range of research areas, such as modeling shifts in inflation and interest rates (Garcia

and Perron (1996); Ang and Bekaert (2002)), structural breaks in business cycle (Kim and

Nelson (1999); Piger et al. (2005); Altug and Bildirici (2010)), changes in government

policy (Valente (2003); Owyang and Ramey (2004); Sims and Zha (2006)) and shifts
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in exchange rate (Bekaert and Hodrick (1992); Bollen et al. (2000)). While the basic

regime-switching model has been extended in many ways, there is a lack of literature for

simulation studies. New methods based on regime-switching models are often proposed

with neither a proof of convergence nor simulations to demonstrate their basic properties.

The purpose of this thesis is to carry out a detailed simulation study of regime-switching

models. We study different ways of estimating parameters in regime-switching models.

We show that the convergence of empirical parameter estimates to true values, although

it theoretically holds, can be very slow and even impossible to achieve especially on real

financial data with high volatility.

The structure of this thesis is as follows: In the reminder of this chapter, we review some

statistical prerequisites in order to understand regime-switching models. A very generic

regime-switching model, based on which the simulation is carried out, is introduced in

detail. Before stepping into the discussion of how to solve this model, we first study two

easier regime-switching submodels in Chapter 2, in which some parameters are assumed to

be fixed. A full empirical analysis of the generic model is presented in Chapter 3. Finally,

a summary of this study and comments regarding future work are presented in Chapter 4.

1.1 A Basic Regime-Switching Model

Regime-switching models rely on a special type of stochastic process called Markov chain,

which is slightly more complicated than a sequence of i.i.d random variables. Given all

previous states, the present state of a Markov chain depends on and only on the last state.

This condition is called the Markov property. Formally,

P (Xt|Xt−1, . . . , X0) = P (Xt|Xt−1) , (1.1)

where Xt denotes the regime at time t. Now we can define Markov chain as

Definition 1.1.1. A stochastic process {Xt, t = 0 . . .} is said to be a Markov chain if the

following conditions are satisfied

• Xn only takes on a finite or countable number of values {ai, i = 0 . . .}. The set

{ai, i = 0 . . .} is called the state space of {Xt, t = 0 . . .}.

• Xn satisfies the Markov property as defined in (1.1).
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If the state space {ai, i = 0 . . .} is a finite set, we say {Xt, t = 0 . . .} is a finite Markov

chain. A Markov chain is said to be time-homogeneous if the transition probability

distribution P (Xt|Xt−1) is independent of time t. In this thesis, we will only consider

finite state time-homogeneous Markov chains, which will simply be called Markov chains

when there is no confusion in the context.

Associated with each Markov chain is a transition probability matrix P , where entry

pi,j is the probability of switching from regime i to regime j. In general, the states of a

Markov chain are directly observable so that the only parameter is P . In certain situations,

the states are not visible but can emit observable outputs. In those cases, true states as well

as transition matrix P should be inferred from observations. The underlying statistical

models are called hidden Markov models, which include regime-switching models as a

special case.

In what follows, we will describe the regime-switching model for our experimentation.

Suppose we are interested in modeling and predicting a stationary time series {yt}, which

is generated by the following AR(1) model:

yt = cst + φstyt−1 + εt (1.2)

where

εt ∼ N
(
0, σ2

st

)
.

Here st represents the present regime at time t. st can shift among N possible values

1, . . . , N according to a Markov chain. The parameters (cst , φst , σst) all depend on the

value of st. The regime-shifting feature of this model enables {yt} to exhibit different

behaviors over time, which could be helpful in better describing the dynamics of financial

markets.

1.2 The Hamilton Filter

In this section, we present a well-known algorithm called the Hamilton Filter, which is

used to make inference about current regime st in model (1.2). First, we need to introduce

some notations:
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• pij: transition probability between regime i and j.

P (st = j|st−1 = i, . . . , s1 = k, yt−1, . . . , y0) = P (st = j|st−1 = i) = pij

• θ: the vector of parameters:

θ = (φ1, . . . , φN , c1, . . . , cN , σ1, . . . , σN , p11, . . . , pN,N−1)

• Yt: the vector of historical observations up to time t

Yt = (yt, . . . , y0)

• ηjt: conditional probability density function of yt given current regime st and past

observations up to time t− 1

ηjt

= f (yt|st = j,Yt−1;θ)

= f (yt|st = j, yt−1;θ)

=
1√
2πσj

exp

[
−(yt − cj − φjyt−1)

2

2σ2
j

]
(1.3)

• ξjt: conditional regime probability distribution given all observations up to time t

ξjt = P (st = j|Yt;θ)

In general, ξjt is the quantity of primary interest and we will show next how to calculate it.

Using Bayes rule, ξjt can be represented as

ξjt

= P (st = j|yt,Yt−1;θ)

=
f (yt|st = j,Yt−1;θ)P (st = j|Yt−1;θ)

f (yt|Yt−1;θ)

=
ηjt · P (st = j|Yt−1;θ)

f (yt|Yt−1;θ)
(1.4)
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where ηjt can be directly calculated by (1.3). The second term in the numerator of (1.4) is

equal to

P (st = j|Yt−1;θ)

=
N∑
i=1

P (st = j, st−1 = i|Yt−1;θ)

=
N∑
i=1

P (st = j|st−1 = i,Yt−1;θ)P (st−1 = i|Yt−1;θ)

=
N∑
i=1

pijξi,t−1 (1.5)

The denominator of (1.4) can be calculated as

f (yt|Yt−1;θ)

=
N∑
k=1

f (yt, st = k|Yt−1;θ)

=
N∑
k=1

f (yt|st = k,Yt−1;θ)P (st = k|Yt−1;θ)

=
N∑
k=1

ηkt

N∑
i=1

pikξi,t−1 (1.6)

Substituting (1.5) and (1.6) back to (1.4) gives

ξjt =
ηjt

∑N
i=1 pijξi,t−1∑N

k=1 ηkt
∑N

i=1 pikξi,t−1
(1.7)

If θ is given, the calculation of ξjt only depends on ξi,t−1 and ηit for i = 1, . . . , N . This

implies an algorithm to iteratively calculate ξjt, which was first proposed in Hamilton

(1989). One of the advantages of the Hamilton Filter is that the log likelihood can be

derived as a by-product in the calculation of ξjt. The log likelihood function of the regime
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switching model can be written as

log f (y1, . . . , yn|θ)

=
n∑

t=1

log f (yt|Yt−1;θ)

=
n∑

t=2

log f (yt|Yt−1;θ) + log f (y1|y0;θ)

=
n∑

t=2

log f (yt|Yt−1;θ) + log
N∑
j=1

f (y1|s1 = j, y0;θ)P (s1 = j|y0;θ)

It is in general not feasible to calculate P (s1|y0;θ) or f(y0;θ). In practice, one can replace

P (s1|y0;θ) by any nonnegative vector π whose entries sum up to 1 and work with the

modified log likelihood

n∑
t=2

log f (yt|Yt−1;θ) + log
N∑
j=1

f (y1|s1 = j, y0;θ) πj (1.8)

where π is often chosen to be the stationary distribution of the transition matrix P . As

indicated by Krishnamurthy and Ryden (1998), the choice of π will not change the

asymptotic properties of the maximum-likelihood estimator (MLE). Therefore its impact

on parameter estimation will be minor when the number of observations is large. In

this thesis, initial state probabilities are equally weighted i.e πi = πj = 1/N for all i, j.

A detailed description of the Hamilton Filter with likelihood calculation is outlined in

Algorithm 1.

1.3 Parameter Estimation and Consistency of MLE

The parameter θ can be estimated by maximizing the modified loglikelihood function (1.8).

The first theoretical result regarding the consistency of the MLE of general hidden Markov

models was given by Leroux (1992). Later Bickel et al. (1998) proved the asymptotically

normality of the MLE for general hidden Markov models. It was also shown that the

observed information matrix is a consistent estimator of the Fisher information matrix. An

important assumption in those proofs is that the conditional distribution of yt depends on
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Algorithm 1 Hamilton Filter
Require: yt where t = 0 . . . n− 1 and pij, ci, φi, σi with i, j = 1 . . . N

1: Set ξi,0 = 1/N, i = 1 . . . N
2: loglike = 0
3: for t from 1 to n do

4: for i from 1 to N do

5: Set ηit = 1√
2πσ

exp
[
− (yt−ci−φiyt−1)2

2σ2
i

]
6: end for

7: Set sum = 0
8: for j from 1 to N do

9: fj = ηjt
∑N

i=1 pij · ξi,t−1
10: sum = sum+ fj
11: end for

12: for j from 1 to N do

13: ξjt = fj/sum
14: end for

15: loglike = log(sum)
16: end for

and only on the hidden state xt i.e the following condition is assumed to be satisfied:

P (yt|Yt−1,Xt) = P (yt|xt)

This assumption is clearly not true in the regime-switching model specified by (1.2),

where yt also depends on yt−1. For that reason, regime-switching model (1.2) is also

called Markov-switching autoregression. Krishnamurthy and Ryden (1998) first proved

the consistency of the MLE of finite state regime switching models. Douc et al. (2004)

proved later the consistency and asymptotic normality of the MLE in the more general

case when the state space Xn is compact. For completeness of this thesis, the main results

of Krishnamurthy and Ryden (1998) are summarized in Theorem 1.3.1.

Theorem 1.3.1 (Krishnamurthy and Ryden (1998)). Let {Xk}∞k=1 be a finite state Markov

chain with values {1, . . . , r}. Here r is assumed to be known and fixed. Denote the

transition probabilities as aij = P (Xn = j|Xn−1 = i) for i, j = 1, . . . , r, where aij =

aij(φ) is a function of a parameter vector φ in a compact Euclidean space Φ. For each

φ, let Qφ be the transition kernel of this Markov chain. Denote {ek}∞k=1 a sequence of

i.i.d random variables with known marginal distribution. Let d be a positive integer and
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{Yk}∞k=−d+1 be a real-valued (nonlinear) autoregressive series of lag d such that

Yn = g (Yn−1, . . . , Yn−d, en;θXn(φ))

where g is a real-valued function and θi are functions from Φ to a Euclidean space Θ.

Finally, let φ0 denote the true parameter. Assume the following conditions hold

• A(φ0) is irreducible and Qφ0 has a unique stationary distribution.

• The Markov chain {Zk}∞k=1 = {(Xk, Yk, . . . , Yk−d+1)}∞k=1 is ergodic under φ0.

• aij(φ) and θi(φ) are continuous and f (y1|y0, . . . , y−d+1;θi(φ)) is continuous.

• For each i and φ ∈ Φ,

Eφ0

{
sup|φ′−φ|≤δ| log f(Y1|Y0, . . . , Y−d+1; |θi(φ

′)
}
< ∞

for some δ > 0

Then for each φ ∈ Φ, there exists a constant H(φ) such that

1

n
logmax

i
f (Y1, . . . , Yn|Y0, . . . , Y−d+1, X1 = i;φ) → H(φ)

as n → ∞. Furthermore, define K(φ) = H(φ0)−H(φ) and Φ0 = {φ ∈ Φ : K(φ) = 0}.

Denote φ̂n the MLEs (a set of estimates that maximize the conditional likelihood) with n

observations. We have supφ∈φ̂n
infφ′∈Φ0 |φ− φ′| → 0 almost surely.

From a practice perspective, the MLE can be obtained by maximizing the modified

conditional log-likelihood (1.8). Note that this is a constrained optimization problem with

0 < pij < 1,
∑N

i=1 pij = 1, σi > 0 and 0 < φi < 1 for all i, j = 1 . . . N . In a more

general case when the φi are bounded within interval [a, b], appropriate transformations

can be applied so that 0 < φi < 1. Given these constraints, we can transform parameters

to convert the maximization of (1.8) into an unconstrained problem. For σi and φi, let us

define li = log(σi), ri = logit(φi) and optimize with respect to li and ri instead. In order

to optimize P , we define an ordered list for each regime i

{−∞ < γi,1 < γi,2 < . . . < γi,N−1 < ∞}
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such that

P (z < γi,1) = pi,1

P (γi,1 < z < γi,2) = pi,2

. . .

P (γi,N−1 < z) = pi,N

where z ∼ N(0, 1). In this way, we can re-parameterize the model using

γi,1, log (γi,2 − γi,1) , . . . , log (γi,N−1 − γi,N−2)

and convert the optimization problem into an unconstrained one.

Two types of methods are commonly used to find the global maximum of (1.8). The

first approach is to use Expectation-Maximization (EM) algorithms. An EM method is

an iterative algorithm for finding MLE of parameters in statistical models with latent

variables. A single iteration of an EM algorithm consists of two steps: an expectation step

to calculate the expectation of the loglikelihood of the complete data and a maximization

step to maximize this quantity with respect to the unknown parameters. The EM algorithm

is usually credited to Dempster et al. (1977). It is well known that the EM algorithm

converges to the nearest local maximum (Wu (1983)). For a detailed discussion of theory

and applications of EM algorithms, one can refer to McLachlan and Krishnan (2008).

Another approach to obtain MLE is via direct optimization of (1.8) using a numerical

optimization solver. Loosely speaking, numerical optimization techniques can be classified

into two groups, either as deterministic methods or stochastic methods. Deterministic

optimization algorithms have no ingredient of randomness in their designs. Their under-

lying mechanisms often assume certain properties of the objective function or rely on

geometrical structure of the search space. Popular deterministic optimization frameworks

and methods include line-search algorithms, trust-region algorithms and Nelder-Mead

methods etc. Stochastic optimization algorithms, on the other hand, allow (intelligent)

random search of the parameter space. Simulated annealing (Kirkpatrick et al. (1983)),

particle swarm optimization (Kennedy and Eberhart (1995)) and evolutionary algorithms

(Bäck (1996)) are examples of popular stochastic optimization techniques.

In this thesis, the Nelder-Mead algorithm is used to optimize (1.8). The Nelder-Mead
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algorithm is a deterministic optimization method which was proposed by Nelder and

Mead (1965). It is probably one of the most popular optimization algorithms for the past

40 years. Due to its simplicity and robustness, Nelder-Mead is still being extensively

used in many applications such as optical engineering (Tse et al. (2010)), biostatistics

(Minard et al. (2011)) and kinematics (Wang et al. (2011)). Nelder-Mead utilizes no

derivative information. These type of methods are often called derivative-free or direct

search methods.

We now examine a simple illustrative example which helps to reveal the basic properties

of a regime switching model and the structure of the associated loglikelihood function.

Consider a two regime model with the following generating parameters

φ = (0.97, 0.92) , c = (12, 28) ,σ = (5, 8) , p =

(
0.75 0.25

0.1 0.9

)
(1.9)

From this model, we sample a sequence of 500 data points as observations. The simulated

sequence and true regimes are shown in Figure 1.2. The portions of the sequence that

are generated from regime 2 are highlighted in red. Suppose all parameters are known

except for φ1 = 0.97 and c1 = 12, which should be estimated from the data. In Figure

1.3, we plot the loglikelihood function and its contour. Note the loglikelihood function

has larger values over a long and narrow region. Along a line passing through the center

of this region, the loglikelihood gradually decreases as it moves away from the global

maximum. There are also many local maxima along the same direction. On the other hand,

the loglikelihood value drops sharply in other directions. The structure of this loglikelihood

function indicates a possible correlation between φ and c.

In this special example, the only unknowns are φ1 and c1, which are the multiplicative

coefficient and the constant in the AR(1) process. It is likely that φ1 and c1 interplay in a

similar way as in a AR(1) model. For a stationary AR(1) model, the mean of the series

is c
1−φ . It is then reasonable to assume that the gradient (i.e the direction of the steepest

decrease of loglikelihood) is perpendicular to

c

1− φ
=

12

1− 0.97
= 400.
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Or equivalently,

φ = 1− c

400
(1.10)

The contour plot in Figure 1.3b seems to confirm our hypothesis. The black line is

as defined in (1.10) and the circle represents the true parameters. Along (1.10), the

loglikelihood function remains large even at points far away from the true values. Moving

in other directions, particularly along the line perpendicular to (1.10), the value of the

loglikelihood function quickly drops. This implies that the shape of the loglikelihood

function is not only determined by φi and ci but also by means of the underlying time

series. The optimization of loglikelihood function (1.8) is generally very hard as we can

observe from Figure (1.3a), in which many local minima exist around the neighborhood of

the global maximum.
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Figure 1.2: A simulated sequence with true regimes. Data from regime 2 is colored in red
in the sequence plot.
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Figure 1.3: In (a), the loglikelihood function of the regime switching model specified in
(1.9) is plotted as a function of φ1 and c1. All other parameters were assumed to be known.
A total of 500 points was simulated. The contour of the loglikelihood function is plotted
in (b). The circle indicates the true parameters. The points on the line define the same
sequence mean as the true parameters.



CHAPTER 2

PARAMETER ESTIMATION OF

REGIME-SWITCHING SUBMODELS

At the end of Chapter 1, we examined an example of a regime-switching model in order

to illustrate the difficulties in parameter estimation for this type of models. We showed

that there might be correlation between φ and c, which introduces many local maxima to

the loglikelihood function. In order to further investigate this hypothesis, we study two

regime-switching submodels which are more restrictive than (1.2). In these two models,

we assume that either φi or ci is known and try to estimate all other parameters under those

circumstances. Those two models are easier to estimate than (1.2). Our goal is to provide

some empirical evidence to understand how parameter estimation is influenced by φi and

ci in a separate manner. As our experimental results show, these two restrictive models

are already very hard to estimate by themselves. It should be noted that more restrictive

regime-switching models are not unusual in applied work.

2.1 A Mixture Model with Switching Feature

2.1.1 Model and Experimental Settings

The first model to be considered is a simplification of (1.2) where the multiplicative

coefficients φi are zero. More specifically, we study

yt = cst + εt (2.1)

15
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N=2
c σ P

M1 c = (0, 10) σ = (1, 2) P =

(
0.75 0.25
0.1 0.9

)

M2 c = (0, 5) σ = (1, 2) P =

(
0.8 0.2
0.1 0.9

)

M3 c = (0, 2) σ = (1, 2) P =

(
0.85 0.15
0.1 0.9

)

N=3

M4 c = (0, 10, 20) σ = (1, 2, 3) P =

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

M5 c = (0, 5, 10) σ = (1, 2, 3) P =

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

M6 c = (0, 2, 4) σ = (1, 2, 3) P =

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

Table 2.1: Parameters in the simulation of model (2.1)

where st is the index of N possible regimes 1, 2, . . . , N and

εt ∼ N
(
0, σ2

st

)
.

The sequence {st} follows a Markov chain with transition matrix P . Associated with each

regime i is a pair of parameters (ci, σi), which are to be inferred from the data together

with P . In the rest of this thesis, we refer to this model as the switching mixture model.

The switching mixture model (2.1) can be considered as an extension of finite mixture

models, which are well studied. A finite mixture model is defined in exactly the same

way as in (2.1) except st is assumed to follow a multinomial distribution. The general

theory and applications of finite mixture models are well presented in McLachlan and Peel

(2005).

In our simulation, data is generated from six different models whose parameters are

listed in Table 2.1. Three of the six models (M1-M3) have two regimes and the other three

(M4-M6) have three regimes. The models are numbered in an order of increasing difficulty.

The absolute differences between the ci increase in model M1, M2 and M3, while the

standard deviation of the error is kept the same. This makes M1 the easiest model and M3

the hardest model to fit. Similarly, parameters of M6 are the hardest to estimate, whereas

M5 is relatively easier to fit and M4 is the easiest model. In Figure 2.1, three sequences

simulated from models M1, M2 and M3 are plotted. It is apparent from the graph that

M1 is the easiest model among the three. The sequence from M1 has a clear pattern and
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data points from two different regimes are well separated. On the other hand, it is very

difficult to tell the number of regimes in M2 and M3 by looking directly at the data. Three

sequences simulated from model M4 - M6 are plotted in Figure 2.2. Similar patterns can

be observed from those sequences, although separation of clusters is not clear even in the

easiest model M4.
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(a) A simulated sequence from M1
time

y
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(b) A simulated sequence from M2
time

y
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(c) A simulated sequence from M3
time

y

Figure 2.1: Simulated sequences from switching mixture model M1 - M3 are plotted in (a)
- (c) respectively. Data points from two different regimes of M1 are clearly separated. It is
difficult to tell the number of regimes by directly looking at the sequences from M2 and
M3.

From each model, 100 sequences with 2500 data points were sampled. For each

sequence, parameters were estimated on the first 100, 400, 900, 1600 and 2500 points. The

number of regimes was assumed to be known in parameter estimation.

In order to obtain the MLE, it is critical to choose appropriate starting points. In
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Figure 2.2: Simulated sequences from switching mixture model M4 - M6 are plotted in (a)
- (c) respectively.

numerical optimization, the choice of initial search values has an great impact on the

performance of the optimizer. The closer the initial values are to the true parameters, the

more likely an optimizer is able to converge to the global optimum and thus provide a better

estimate. For derivative-free black box optimization problems, random sampling is the

only choice to generate initial values without knowing anything about the contours of the

objective function. The focus is often on restart strategies, which aim to intelligently restart

the optimizer at different regions of the search space to avoid unnecessary calculation.

In most analyses of financial data using regime switching models, optimizers are simply

restarted from a large pool of initial values. The choices of those initial values are usually

subjective and reflect the author’s belief about where the global maximum resides.

Most optimization problems in statistical modeling are aimed at estimating model
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parameters. Their objective functions are usually loglikelihood functions. Although

derivative information is not available in general, these optimization problems are not

completely “black box”. Rather, it is possible to extract some information from the data to

generate initial values that may be in the neighborhood of the true parameters. As shown

above, the only difference between mixture models and switching mixture models is in their

switching mechanisms. The Markov switching feature introduces a few more parameters

and makes things slightly more complicated. However, we believe the differences between

these two models to be minor. As a demonstration, we plot the loglikelihood function of

model M3 with respect to c1 (i.e all parameters except for c1 are fixed) for a simulated

sequence in Figure 2.3. Plotted in the same graph are the loglikelihood functions of the

corresponding mixture model for the same sequence but with a different number of points.

Mixing coefficients of the mixture model are calculated as the limiting probability of

the transition matrix of M3. The loglikelihood functions are shifted so that they can be

incorporated in the same figure. All loglikelihood functions peak around 0, which is equal

to the true c1. Although the sequence is simulated from M3, the MLE of the mixture model

is very close to the true parameter. This suggests that we might be able to use mixture

models as approximates to switching mixture models in parameter estimation.

In order to generate initial values in our experimentation, a mixture model is fitted to

the simulated data using the R library ‘mclust’ (Fraley et al. (2012)). The fitting outputs

include estimates of ci and σi for i = 1, . . . , N , which are used as initial values in the

switching mixture model. Each observation yi will also be assigned to one of the N

regimes by ‘mclust’, from which nij , the number of times {yt} switch between regime

i to regime j can be obtained. The initial transition probability pij can be calculated as

nij/(n− 1), where n is the length of the sequence.

2.1.2 Experimental Results

The results of parameter estimation are listed in Table 2.2 - Table 2.7. In these tables, we

report the percentage of the 100 runs in which the optimizer converges (denoted as cp) and

the percentage for which the estimated parameters have a larger loglikelihood value than

for that of the true parameters (denoted as bp). An estimated parameter will be considered

as a good estimate if it has a higher loglikelihood than the true parameter. In the tables, we

also report the mean and standard deviation of the estimated parameters. It appears that

the switching mixture model (2.1) can be well estimated in almost all cases, implying that
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Figure 2.3: Loglikelihood functions of model M3 and the associated mixture model with
respect to c1. Data is simulated from M3. Mixing coefficients of the mixture model are
calculated as the limiting probability of the transition matrix of M3. The loglikelihood
functions are shifted to start from the same value.

the mixture model is able to provide good initial values. This confirms our assumption that

switching mixture models are very well approximated by mixture models.

In all three two-regime models M1 - M3, both the percentage of convergence and the

percentage of better likelihood are close to 100% in most cases. The only exception is

when 100 data points were used in the estimation of M3. Even in this case, both bp and cp

are larger than 90%. Boxplots of estimate errors in M1, M2 and M3, which were calculated

as the difference between estimated parameters and true parameters, are given in Figure

2.4. In all cases, the estimated value converges to the true parameter and the standard

deviation of errors decreases as the number of points used for estimation increases. Out of

the three models, M3 appears to be the hardest model to fit. However when n is large, the
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N=2

cp bp c = (0, 10) σ = (1, 2) P =

(
0.75 0.25
0.1 0.9

)

n = 100 100% 100%
Mean (0.05,10) (0.94,1.97)

(
0.72 0.28
0.097 0.903

)

Std (0.2,0.26) (0.14,0.17)
(

0.097 0.097
0.033 0.033

)

n = 400 100% 100%
Mean (0.003,10.02) (0.995,1.99)

(
0.745 0.255
0.099 0.901

)

Std (0.08,0.12) (0.069,0.079)
(

0.041 0.041
0.019 0.019

)

n = 900 100% 100%
Mean (0.0023,10.013) (1.003,1.998)

(
0.746 0.254
0.101 0.899

)

Std (0.058,0.076) (0.041,0.055)
(

0.029 0.029
0.012 0.012

)

n = 1600 100% 100%
Mean (-0.00027,10.011) (1.004,1.998)

(
0.747 0.253
0.101 0.899

)

Std (0.042,0.062) (0.029,0.038)
(

0.022 0.022
0.0085 0.0085

)

n = 2500 100% 100%
Mean (0.00093,10.013) (1.006,1.997)

(
0.747 0.253
0.101 0.899

)

Std (0.0033,0.052) (0.024,0.035)
(

0.017 0.017
0.0063 0.0063

)

Table 2.2: Estimation Result of model M1

differences in the standard deviation of estimation errors for the three models becomes

small. Moreover, n = 400 seems to be a threshold in the performance of the estimator.

When n = 100, none of the three models can be estimated well. The absolute values

and variances of the estimation errors are quite large in this case. When n ≥ 400, the

differences in the error means and variances among models become small.

Parameters in three-regime models M4 - M6 can be estimated reasonably well. In all

cases, the cp value is close to 100%. The value of bp remains high for different n when

fitting M4 and M5. On the other hand, bp drops as n increases for model M6. It seems

that as more information becomes available, the more likely it is that the optimizer gets

trapped in a local maximum. Note M6 is the hardest model to fit among M4 - M6. The

corresponding mixture model is also difficult to fit by itself. This would result in initial

values that are far away from the true parameters even when n is large. Boxplots of errors

in the parameter estimation of M4 - M6 are given in Figure 2.5. Errors in the estimates

of M4 and M5 are comparable, whereas estimation errors in M6 have significant larger

variances. For all 3 models, at least 900 data points are required in order to get reasonable

estimates.
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N=2

cp bp c = (0, 5) σ = (1, 2) P =

(
0.8 0.2
0.1 0.9

)

n = 100 100% 100%
Mean (0.03,5.01) (1,1.97)

(
0.78 0.22
0.11 0.89

)

Std (0.22,0.33) (0.17,0.25)
(

0.091 0.091
0.049 0.049

)

n = 400 100% 100%
Mean (0.005,5.02) (0.998,1.99)

(
0.802 0.198
0.103 0.897

)

Std (0.099,0.16) (0.068,0.12)
(

0.042 0.042
0.023 0.023

)

n = 900 100% 100%
Mean (-0.0056,5) (0.996,1.99)

(
0.801 0.199
0.102 0.898

)

Std (0.065,0.108) (0.048,0.077)
(

0.026 0.026
0.016 0.016

)

n = 1600 100% 100%
Mean (-0.002,5.01) (0.997,1.99)

(
0.8 0.2

0.102 0.898

)

Std (0.049,0.081) (0.035,0.056)
(

0.018 0.018
0.011 0.011

)

n = 2500 100% 100%
Mean (-0.0026,5) (1.001,1.992)

(
0.802 0.198
0.101 0.899

)

Std (0.039,0.064) (0.029,0.042)
(

0.014 0.014
0.0086 0.0086

)

Table 2.3: Estimation Result of model M2

N=2

cp bp c = (0, 2) σ = (1, 2) P =

(
0.85 0.15
0.1 0.9

)

n = 100 93% 91%
Mean (0.13,2.96) (1.12,1.61)

(
0.81 0.19
0.34 0.66

)

Std (0.44,1.18) (0.31,0.47)
(

0.14 0.14
0.3 0.3

)

n = 400 100% 95%
Mean (-0.017,2.08) (0.99,1.96)

(
0.84 0.16
0.12 0.88

)

Std (0.13,0.3) (0.098,0.14)
(

0.059 0.059
0.076 0.076

)

n = 900 100% 99%
Mean (-0.0036,2.05) (1,1.99)

(
0.846 0.154
0.107 0.893

)

Std (0.076,0.13) (0.062,0.07)
(

0.033 0.033
0.026 0.026

)

n = 1600 100% 100%
Mean (-0.0038,2.03) (1,1.99)

(
0.85 0.15
0.103 0.897

)

Std (0.054,0.104) (0.045,0.052)
(

0.022 0.022
0.018 0.018

)

n = 2500 100% 99%
Mean (0,2.02) (1,2)

(
0.85 0.15
0.103 0.897

)

Std (0.05,0.079) (0.034,0.044)
(

0.016 0.016
0.0015 0.0015

)

Table 2.4: Estimation Result of model M3
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N=3

cp bp c = (0, 10, 20) σ = (1, 2, 3) P =

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

n = 100 100% 99%
Mean (0.018, 9.99, 20) (0.96, 1.94, 2.78)

⎛
⎝ 0.78 0.11 0.11

0.05 0.89 0.07
0.23 0.06 0.7

⎞
⎠

Std (0.19, 0.44, 0.81) (0.12,0.32,0.57)

⎛
⎝ 0.08 0.07 0.07

0.04 0.06 0.04
0.12 0.07 0.14

⎞
⎠

n = 400 100% 100%
Mean (0.014, 9.99, 19.99) (0.99, 1.98, 2.95)

⎛
⎝ 0.79 0.1 0.1

0.04 0.9 0.06
0.21 0.05 0.74

⎞
⎠

Std (0.08, 0.16, 0.34) (0.06,0.12,0.22)

⎛
⎝ 0.035 0.024 0.026

0.018 0.025 0.021
0.048 0.027 0.052

⎞
⎠

n = 900 100% 100%
Mean (0.01, 10, 19.98) (1, 1.98, 3)

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

Std (0.057, 0.1, 0.23) (0.046,0.08,0.16)

⎛
⎝ 0.024 0.019 0.017

0.01 0.015 0.014
0.025 0.017 0.027

⎞
⎠

n = 1600 100% 100%
Mean (0.01, 9.99, 19.99) (1, 1.98, 2.99)

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

Std (0.045, 0.073, 0.18) (0.031,0.058,0.12)

⎛
⎝ 0.019 0.015 0.016

0.008 0.012 0.009
0.021 0.012 0.022

⎞
⎠

n = 2500 100% 98%
Mean (0, 9.99, 19.99) (0.99, 1.99, 2.99)

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

Std (0.036, 0.058, 0.13) (0.023, 0.046, 0.085)

⎛
⎝ 0.014 0.011 0.01

0.006 0.009 0.007
0.019 0.01 0.019

⎞
⎠

Table 2.5: Estimation Result of model M4
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N=3

cp bp c = (0, 5, 10) σ = (1, 2, 3) P =

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

n = 100 99% 98%
Mean (0.006, 4.87, 10.33) (0.95, 1.93, 2.67)

⎛
⎝ 0.74 0.17 0.09

0.06 0.86 0.08
0.24 0.1 0.66

⎞
⎠

Std (0.28, 0.93, 1.73) (0.21,0.39,0.8)

⎛
⎝ 0.15 0.16 0.07

0.08 0.1 0.064
0.16 0.17 0.22

⎞
⎠

n = 400 100% 99%
Mean (0.018, 5.03, 9.98) (0.98, 1.99, 2.94)

⎛
⎝ 0.79 0.11 0.1

0.04 0.9 0.06
0.21 0.05 0.74

⎞
⎠

Std (0.1, 0.18, 0.45) (0.068,0.15,0.27)

⎛
⎝ 0.048 0.039 0.03

0.021 0.03 0.028
0.051 0.035 0.056

⎞
⎠

n = 900 100% 99%
Mean (0.003, 5.01, 10.01) (0.99, 2, 2.97)

⎛
⎝ 0.79 0.1 0.1

0.04 0.9 0.06
0.21 0.05 0.74

⎞
⎠

Std (0.065, 0.13, 0.3) (0.049,0.11,0.2)

⎛
⎝ 0.026 0.023 0.021

0.015 0.018 0.015
0.027 0.022 0.035

⎞
⎠

n = 1600 100% 100%
Mean (0, 4.99, 9.99) (1, 2, 2.99)

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.74

⎞
⎠

Std (0.043, 0.094, 0.22) (0.038,0.072,0.14)

⎛
⎝ 0.019 0.018 0.016

0.011 0.014 0.01
0.02 0.017 0.027

⎞
⎠

n = 2500 100% 99%
Mean (0, 4.99, 9.99) (0.99, 1.99, 2.99)

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.74

⎞
⎠

Std (0.034, 0.077, 0.16) (0.028, 0.054, 0.12)

⎛
⎝ 0.016 0.013 0.013

0.009 0.011 0.009
0.017 0.016 0.021

⎞
⎠

Table 2.6: Estimation Result of model M5
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N=3

cp bp c = (0, 2, 4) σ = (1, 2, 3) P =

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

n = 100 99% 98%
Mean (−0.31, 1.35, 4.89) (1.42, 1.39, 1.88)

⎛
⎝ 0.5 0.31 0.18

0.22 0.52 0.25
0.25 0.32 0.43

⎞
⎠

Std (1.28, 1.05, 2.43) (3.26, 0.77, 1.3)

⎛
⎝ 0.34 0.3 0.27

0.28 0.32 0.26
0.29 0.28 0.3

⎞
⎠

n = 400 100% 92%
Mean (−0.05, 1.9, 4.48) (1.06, 1.65, 2.68)

⎛
⎝ 0.74 0.17 0.09

0.13 0.68 0.19
0.18 0.22 0.61

⎞
⎠

Std (0.22, 0.67, 1.56) (0.86, 0.48, 0.54)

⎛
⎝ 0.13 0.12 0.13

0.17 0.28 0.23
0.14 0.23 0.25

⎞
⎠

n = 900 100% 88%
Mean (0.01, 1.94, 4.02) (1.01, 1.88, 2.92)

⎛
⎝ 0.77 0.13 0.1

0.09 0.78 0.13
0.19 0.1 0.71

⎞
⎠

Std (0.11, 0.48, 0.6) (0.09,0.71,0.26)

⎛
⎝ 0.11 0.12 0.07

0.16 0.23 0.16
0.07 0.08 0.11

⎞
⎠

n = 1600 100% 88%
Mean (0, 1.97, 4.06) (1, 1.95, 2.94)

⎛
⎝ 0.79 0.12 0.09

0.05 0.85 0.1
0.2 0.09 0.72

⎞
⎠

Std (0.07, 0.31, 0.5) (0.05,0.19,0.21)

⎛
⎝ 0.06 0.07 0.04

0.06 0.14 0.11
0.06 0.07 0.08

⎞
⎠

n = 2500 100% 79%
Mean (0.01, 1.98, 4.01) (1, 1.97, 2.97)

⎛
⎝ 0.79 0.11 0.1

0.05 0.86 0.1
0.2 0.08 0.72

⎞
⎠

Std (0.05, 0.18, 0.5) (0.04, 0.11, 0.16)

⎛
⎝ 0.03 0.05 0.04

0.04 0.14 0.13
0.05 0.08 0.08

⎞
⎠

Table 2.7: Estimation Result of model M6
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Figure 2.4: Boxplots of estimation errors in M1, M2 and M3
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Figure 2.5: Boxplots of estimation errors in M4 - M6
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Figure 2.5: Boxplots of estimation errors in M4 - M6 (Continued)
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Figure 2.5: Boxplots of estimation errors in M4 - M6 (Continued)
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2.2 A Regime-Switching Model with Known Constant

2.2.1 Model Specification and Experimental Settings

Next, we consider another simplified version of (1.2) where the constants are all known i.e,

yt = φstyt−1 + cst + εt (2.2)

where εt ∼ N
(
0, σ2

st

)
and c1, . . . cN are given. We refer to this model as the fixed intercepts

switching model (FISM).

If we rewrite yt−1 as xt in (2.2) and drop the Markov switching property, the resulting

model can be considered as a mixture of N regression lines. Hereafter, we refer to this

simplified model as the mixing regression model (MRM). The regime st at time t in the

MRM follows a multinomial distribution with

P = (p1, . . . , pN)

As a demonstration, a sequence of data sampled from (2.2) is plotted in Figure 2.6a. The

two-dimensional data points (yt, yt−1) are shown in Figure 2.6b. Data points from regime

1 are highlighted in blue and values from regime 2 are colored in red. A point (yt, yt−1) is

considered from regime i if yt is in regime i. In the last section, we have shown that mixture

models can be used to approximate switching mixture models and to generate initial search

values. In order to estimate parameters in (2.2), we can take a similar approach by fitting a

MRM and use its output as initial search values. One problem with this approach is that

the MRM is hard to estimate by itself. Instead of writing down the likelihood function for

the MRM, we can further reduce it to a clustering problem. The objective is to classify

points (yt, yt−1) into N clusters (lines) by minimizing their sum of least square terms.

More specifically, we want to assign points (yt, yt−1) to N lines so that

n∑
t=1

(yt − φstyt−1 − cst)
2 (2.3)

is minimized. Note that this is similar to the traditional clustering problem. The difference

is that here we use the least square penalty rather than Euclidian distances in the optimiza-

tion. To solve this optimization problem, we propose a deterministic iterative algorithm
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Figure 2.6: In (a), a simulated sequence of a regime switching model with two regimes
is plotted. The generating parameters are: φ = (0.97, 0.92), c = (10, 15), σ = (2, 4),
p11 = 0.75 and p22 = 0.9. In (b), the sequence is converted to a mixture of two regression
lines by letting xt = yt−1
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that is similar to the k-mean algorithm. We call this method the k-line algorithm.

Suppose at step k + 1, a set of φk
1, . . . , φ

k
N are estimated from the last iteration k. For

each point (yt, yt−1), we assign it to one of the N lines such that the least square term is

minimized. After all points are classified, a new coefficient φk+1
i is updated by minimizing

(2.3) only over those points that have been assigned to line i. This algorithm continues

to iterate until the difference between the sums of residual squares from two consecutive

steps is small. A graphical example demonstrating one iteration of the k-line algorithm is

shown in Figure 2.7.

Similar to the k-mean problem, the k-line clustering is computationally difficult and the

k-line algorithm will not guarantee to converge to a global minimum. It is well known

that k-mean clustering is NP hard and so is k-line clustering. However our goal is not

to find a single global minimum for this problem. Instead, we are interested in a pool

of estimates of φis with which (2.3) are small but not necessary minimal. Our hope is

that these estimates will correspond to different regions of the original search space of

(2.2), so that the probability that the optimizer stops at a local minimum is small. In order

to generate initial values for the k-clustering algorithm, we propose the following two

methods:

1. RSTART1: As we have shown above, the regime switching model can be considered

as a mixture of regression lines. If the regime st at time t is given for all t, φi and ci

can be estimated as easily as fitting a regression line to the data points belonging to

regime i only. Although st is generally not known, we can still get a rough estimate

of φi for each regime i by fitting a regression line (with given ci) to all data. The

estimates φ̂1, . . . , φ̂N will not converge to the true values as n increases. However,

they should provide a reasonable approximate to the true values, especially when the

differences among φis are minor. More specifically, in RSTART1, φ̂i is estimated by

minimizing the sum of least squares

n∑
t=1

(
yt − φ̂iyt−1 − ci

)2

,

where ci is known. φ̂i has a closed form solution, which is equal to

∑n
t=1(yt − ci)yt−1∑n

t=1 y
2
t−1

.
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Estimates φ̂1, . . . , φ̂N will be used as initial values in the k-clustering algorithm.

2. RSTART2: The basic idea of RSTART2 is to introduce some randomness in gener-

ating initial values so that different regions of the search space can be explored. In

RSTART2, first solve a linear regression for all data points. Suppose the regression

line is y = φ̂x+ ĉ and the standard deviation of the error term is σ̂. Next, calculate

the mean of x or yt−1 i.e x̄ =
∑n−1

i=1 yi/(n− 1). Let ȳ = φ̂x̄ + ĉ. We then sample

N values yi, i = 1, . . . , N from N(ȳ, σ̂). The slope of the line by connecting the

two points (0, ci) and (x̄, yi) is used as initial estimate of φi i.e φ̂i is calculated as

(yi − ci)/x̄.

The first method above is a deterministic algorithm. The second method is a probabilistic

algorithm that will give different initial values each time. In the estimation of the mixture

regression model (2.2), we restarted the optimizer 5 times for each sequence. Initial values

were generated using the first method once and the second method was used in the other

four runs. We refer to this initial-value-sampling scheme as R.IVS1.

Data was simulated from five different models and the generating parameters are listed

in Table 2.8. Model R1-R3 have two regimes and the other two models (M4 and M5) have

three regimes. As in Section 2.1, 100 sequences with 2500 data points are sampled from

those models. Parameters were estimated on the first 100, 400, 900, 1600 and 2500 points

and the number of regimes was assumed to be known.

2.2.2 Experimental Results

The simulation results are given in Table 2.9 - Table 2.13. cp remains high in all models

with differing numbers of data points. bp versus n is plotted in Figure 2.10, in which

different patterns can be observed for R1 and R2 - R5. The bp value in the estimation of R1

drops first, reaches its minimum at n = 900 and bounces back after that. The difference

between the minimal and maximal bp values is small for R1. On the other hand, the bp

values for R2 - R5 show steady decline with increasing n. Among these 4 models, the

optimizer performed best in R5 and worst in R3. However, the bp value is above 80% even

in the worst scenario, indicating the proposed strategy to select initial values is successful.

The boxplots of estimation errors are plotted in Figure 2.11 and 2.12 for two dimensional

and three dimensional models respectively. The multiplicative coefficients φis can be

estimated very well in all cases. The absolute error in the estimation of φi for all models
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N=2
c φ σ P

R1 c = (5, 30) φ = (0.98, 0.95) σ = (1, 2) P =

(
0.75 0.25
0.1 0.9

)

R2 c = (10, 20) φ = (0.98, 0.96) σ = (2, 3) P =

(
0.75 0.25
0.1 0.9

)

R3 c = (10, 15) φ = (0.98, 0.97) σ = (3, 6) P =

(
0.75 0.25
0.1 0.9

)

N=3

R4 c = (5, 15, 30) φ = (0.98, 0.95, 0.92) σ = (2, 2, 3) P =

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

R5 c = (10, 15, 20) φ = (0.98, 0.96, 0.94) σ = (3, 3, 5) P =

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

Table 2.8: Parameters in the simulation of model (2.2)

quickly vanishes as n increases. Estimates of entries of the transition matrix P are very

slow to converge except in R1. Even with 2500 points, the error mean and variance in the

estimation of individual transition probability pij can be large. For example, the mean

errors are larger than 0.1 for most estimates p̂ii of the diagonal entries of transition matrix

P for model R2 - R5.

The standard deviations of the error terms σ were estimated well in R1 and R4, when

the true σ is small. Estimates of σ were reasonable in R2 and R5. In contrast, σ̂ is far

away from the true value in R3, where the variances are the largest amongst all models.

Recall that R3 also has the worst bp values. This implies that the magnitude of error terms

has a great impact on the performance of the optimizer. A large variance of error could

make a low dimensional model (i.e with small number of regimes) harder to fit than a

higher dimensional model.
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Figure 2.7: An illustration of how to choose initial search values.

N=2, c = (5, 30)

cp bp φ = (0.98, 0.95) σ = (1, 2) P =

(
0.75 0.25
0.1 0.9

)

n = 100 100% 96%
Mean (0.981, 0.949) (1.01, 1.98)

(
0.751 0.249
0.116 0.884

)

Std (0.003, 0.0025) (0.31, 0.37)

(
0.095 0.095
0.091 0.091

)

n = 400 100% 95%
Mean (0.981, 0.949) (1.09, 2.04)

(
0.751 0.249
0.11 0.89

)

Std (0.003, 0.003) (0.43, 0.43)

(
0.052 0.052
0.029 0.029

)

n = 900 100% 92%
Mean (0.981, 0.949) (1.12, 1.99)

(
0.76 0.24
0.11 0.89

)

Std (0.004, 0.004) (0.43, 0.08)

(
0.049 0.049
0.037 0.037

)

n = 1600 100% 99%
Mean (0.98, 0.95) (1.02, 1.99)

(
0.75 0.25
0.1 0.9

)

Std (0.001, 0.002) (0.19, 0.06)

(
0.028 0.028
0.019 0.019

)

n = 2500 100% 97%
Mean (0.98, 0.95) (1.05, 2)

(
0.76 0.24
0.1 0.9

)

Std (0.003, 0.003) (0.28, 0.05)

(
0.031 0.031
0.026 0.026

)

Table 2.9: Estimation Result of model R1
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Figure 2.8: In RSTART1, two regression lines (with given constant terms) are fitted to the
whole data set. The resulting slope terms φi are used as initial values in the k-clustering
algorithm.

N=2, c = (10, 20)

cp bp φ = (0.98, 0.96) σ = (2, 3) P =

(
0.75 0.25
0.1 0.9

)

n = 100 99% 100%
Mean (0.98, 0.96) (7.3, 2.19)

(
0.36 0.64
0.39 0.61

)

Std (0.007, 0.004) (54.23, 0.86)

(
0.36 0.36
0.35 0.35

)

n = 400 100% 99%
Mean (0.98, 0.96) (2.29, 2.47)

(
0.43 0.57
0.35 0.65

)

Std (0.005, 0.002) (0.93, 0.62)

(
0.34 0.34
0.35 0.35

)

n = 900 100% 95%
Mean (0.98, 0.96) (2.46, 2.54)

(
0.54 0.46
0.29 0.71

)

Std (0.003, 0.001) (0.85, 0.56)

(
0.33 0.33
0.31 0.31

)

n = 1600 100% 93%
Mean (0.98, 0.96) (2.49, 2.67)

(
0.53 0.47
0.25 0.75

)

Std (0.003, 0.0001) (0.86, 0.48)

(
0.33 0.33
0.28 0.28

)

n = 2500 100% 85%
Mean (0.98, 0.96) (2.52, 2.7)

(
0.6 0.4
0.23 0.77

)

Std (0.002, 0.0003) (0.75, 0.42)

(
0.27 0.27
0.22 0.22

)

Table 2.10: Estimation Result of model R2
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Figure 2.9: An illustration of RSTART2 on a two-regime model.
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(d) Connect the two sampled points with the intercepts
(0, ci) for i = 1, 2. The slopes of the two lines are used
as initial values in the k-line algorithm.

Figure 2.9: An illustration of RSTART2 on a two-regime model.



39

●

●

●

●

●

500 1000 1500 2000 2500

85
90

95
10

0

n

bp

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ●

●

●

R3

R2

R4

R5

R1

Figure 2.10: Percentage of better loglikelihood in estimations of R1 - R5

N=2, c = (10, 15)

cp bp φ = (0.98, 0.97) σ = (3, 6) P =

(
0.75 0.25
0.1 0.9

)

n = 100 95% 100%
Mean (0.98, 0.97) (5.03, 3.65)

(
0.56 0.44
0.42 0.58

)

Std (0.008, 0.006) (2.22, 1.78)

(
0.35 0.35
0.36 0.36

)

n = 400 100% 95%
Mean (0.98, 0.97) (5.43, 4)

(
0.72 0.28
0.29 0.71

)

Std (0.003, 0.003) (1.78, 1.49)

(
0.26 0.26
0.28 0.28

)

n = 900 100% 94%
Mean (0.98, 0.97) (5.54, 3.6)

(
0.8 0.2
0.28 0.72

)

Std (0.002, 0.003) (1.3, 1.38)

(
0.19 0.19
0.22 0.22

)

n = 1600 99% 89%
Mean (0.98, 0.97) (5.38, 3.74)

(
0.81 0.19
0.22 0.78

)

Std (0.003, 0.0005) (1.46, 1.27)

(
0.18 0.18
0.11 0.11

)

n = 2500 100% 81%
Mean (0.98, 0.97) (5.24, 3.91)

(
0.82 0.18
0.22 0.78

)

Std (0.002, 0.0004) (1.45, 1.35)

(
0.12 0.12
0.11 0.11

)

Table 2.11: Estimation Result of model R3
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N=3,c = (5, 15, 30)

cp bp φ = (0.98, 0.95, 0.92) σ = (2, 2, 3) P =

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

n = 100 99% 100%
Mean (0.984, 0.957, 0.913) (1.84, 1.78, 1.79)

⎛
⎝ 0.58 0.21 0.21

0.3 0.55 0.15
0.25 0.26 0.49

⎞
⎠

Std (0.008, 0.011, 0.013) (0.66, 0.86, 0.95)

⎛
⎝ 0.35 0.27 0.27

0.3 0.33 0.24
0.29 0.29 0.32

⎞
⎠

n = 400 100% 100%
Mean (0.982, 0.953, 0.917) (1.92, 1.96, 2.56)

⎛
⎝ 0.51 0.36 0.13

0.3 0.62 0.08
0.22 0.14 0.64

⎞
⎠

Std (0.006, 0.008, 0.008) (0.58, 0.59, 0.74)

⎛
⎝ 0.3 0.29 0.18

0.27 0.28 0.13
0.23 0.14 0.23

⎞
⎠

n = 900 100% 98%
Mean (0.981, 0.953, 0.918) (2.04, 2.07, 2.73)

⎛
⎝ 0.58 0.3 0.12

0.28 0.64 0.08
0.19 0.13 0.68

⎞
⎠

Std (0.005, 0.007, 0.006) (0.57, 0.48, 0.51)

⎛
⎝ 0.27 0.26 0.17

0.24 0.26 0.14
0.18 0.11 0.19

⎞
⎠

n = 1600 100% 95%
Mean (0.981, 0.95, 0.92) (2.01, 1.95, 2.9)

⎛
⎝ 0.55 0.36 0.09

0.28 0.64 0.08
0.14 0.14 0.73

⎞
⎠

Std (0.003, 0.004, 0.003) (0.35, 0.28, 0.31)

⎛
⎝ 0.26 0.26 0.14

0.22 0.23 0.08
0.11 0.11 0.11

⎞
⎠

n = 2500 100% 92%
Mean (0.98, 0.95, 0.92) (1.98, 1.99, 2.98)

⎛
⎝ 0.58 0.34 0.08

0.25 0.67 0.08
0.13 0.13 0.74

⎞
⎠

Std (0.002, 0.002, 0.002) (0.21, 0.22, 0.24)

⎛
⎝ 0.24 0.24 0.06

0.23 0.23 0.1
0.08 0.09 0.08

⎞
⎠

Table 2.12: Estimation Result of model R4
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N=3,c = (10, 15, 20)

cp bp φ = (0.98, 0.96, 0.94) σ = (3, 3, 5) P =

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

n = 100 100% 100%
Mean (0.974, 0.96, 0.946) (2.55, 2.39, 2.73)

⎛
⎝ 0.45 0.25 0.3

0.27 0.48 0.25
0.24 0.23 0.53

⎞
⎠

Std (0.011, 0.011, 0.011) (1.64, 1.32, 1.23)

⎛
⎝ 0.34 0.27 0.34

0.31 0.32 0.29
0.32 0.28 0.36

⎞
⎠

n = 400 100% 100%
Mean (0.97, 0.96, 0.945) (3.25, 2.83, 3.56)

⎛
⎝ 0.64 0.17 0.19

0.16 0.66 0.18
0.13 0.16 0.71

⎞
⎠

Std (0.011, 0.01, 0.009) (1.14, 0.87, 1.24)

⎛
⎝ 0.28 0.22 0.23

0.2 0.29 0.25
0.16 0.2 0.23

⎞
⎠

n = 900 100% 100%
Mean (0.973, 0.96, 0.946) (3.51, 3.4, 3.71)

⎛
⎝ 0.77 0.14 0.09

0.13 0.76 0.11
0.11 0.11 0.78

⎞
⎠

Std (0.007, 0.008, 0.007) (0.98, 0.92, 1.16)

⎛
⎝ 0.15 0.15 0.08

0.11 0.16 0.13
0.09 0.13 0.13

⎞
⎠

n = 1600 100% 95%
Mean (0.975, 0.96, 0.944) (3.47, 3.43, 3.96)

⎛
⎝ 0.77 0.13 0.1

0.12 0.81 0.07
0.11 0.09 0.8

⎞
⎠

Std (0.007, 0.006, 0.005) (0.95, 0.9, 1.07)

⎛
⎝ 0.1 0.09 0.07

0.1 0.1 0.05
0.09 0.08 0.1

⎞
⎠

n = 2500 100% 94%
Mean (0.976, 0.96, 0.944) (3.44, 3.43, 4.08)

⎛
⎝ 0.8 0.11 0.09

0.1 0.83 0.07
0.11 0.09 0.8

⎞
⎠

Std (0.006, 0.005, 0.005) (0.85, 0.86, 1.05)

⎛
⎝ 0.08 0.06 0.05

0.08 0.09 0.06
0.08 0.06 0.09

⎞
⎠

Table 2.13: Estimation Result of model R5
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Figure 2.11: Boxplots of estimation errors in R1 - R3
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Figure 2.12: Boxplots of estimation errors in R4 and R5
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Figure 2.12: Boxplots of estimation errors in R4 and R5 (Continued)
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Figure 2.12: Boxplots of estimation errors in R4 and R5 (Continued)



CHAPTER 3

PARAMETER ESTIMATION OF

REGIME-SWITCHING MODELS

3.1 Experimentation

In the last chapter, two models which are more restrictive than regime-switching models

were carefully studied. Now let us revisit the regime-switching AR(1) model that was

defined in Chapter 1:

yt = cst + φstyt−1 + εt (3.1)

where st can switch between multiple regimes 1, . . . , N according to a Markov chain and

εt ∼ N
(
0, σ2

st

)

The goal of this chapter is to examine parameter estimation for this more general model. We

propose a mechanism to generate initial search values based on results from the last chapter.

We show that this scheme can perform reasonably well and reduce the computational cost

dramatically.

It should be noted that the formulation of the regime-switching model (3.1) is the same

as the regression switching model (2.2). The only difference is whether the constants ci are

known or not. Therefore, we use the same generating parameters and sample datasets as in

Section 2.2. The true parameters are listed in Table 2.8, where models are given different

names to distinguish them from fixed intercepts switching models. Here the constants are

unknown and need to be inferred from the data.

In the simulation study of the fixed intercepts switching models, we proposed two ways

46
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N=2
c φ σ P

F1 c = (5, 30) φ = (0.98, 0.95) σ = (1, 2) P =

(
0.75 0.25
0.1 0.9

)

F2 c = (10, 20) φ = (0.98, 0.96) σ = (2, 3) P =

(
0.75 0.25
0.1 0.9

)

F3 c = (10, 15) φ = (0.98, 0.97) σ = (3, 6) P =

(
0.75 0.25
0.1 0.9

)

N=3

F4 c = (5, 15, 30) φ = (0.98, 0.95, 0.92) σ = (2, 2, 3) P =

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

F5 c = (10, 15, 20) φ = (0.98, 0.96, 0.94) σ = (3, 3, 5) P =

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

Table 3.1: Generating parameters of model (3.1) in the simulation. The values are the
same as in Table 2.8

to generate initial values and used them in combination in the optimization of the likelihood

function. This initial-value-sampling scheme is called R.IVS1.Our experimental results

showed R.IVS1 was able to provide good initial search values. Therefore we want to

adapt this scheme to fit the regime switching model (3.1). Because the only difference

between regime switching models and mixing regression models rests with whether the ci

are known, we can first sample ĉi for all i and treat them as given. RSTART1 or RSTART2

can then be used to sample initial values for other parameters. To be more specific, a

regression line is first fitted to all data points (yt, yt−1) for t = 2, . . . , nt. Suppose that the

estimated constant and standard deviation are ĉ and σ̂. Initial values of c0i are sampled

from the normal distribution N(ĉ, σ̂). Initial values for other parameters are generated

using RSTART1 and RSTART2 where the c0i are treated as given. Please see Figure 3.1 for

a graphical demonstration of how to sample initial constants.

3.2 Experimental Results

The estimation results are listed in Table 3.2 - Table 3.6. The boxplots of estimation error

are given in Figure 3.3 and 3.4, where outliers are not shown. First, notice that there are

a few unusually large numbers in Table 3.2 - Table 3.6, which have been displayed in

bold font. The estimates of σ1 in F1 with n = 100 have mean 578 and standard deviation

5754. A careful examination of the data finds two outliers with value 57 and 57543. After

removing these two outliers, the mean and standard deviation are reduced to 1.75 and 1.18

respectively. There are four other instances of extreme values. All of them come from
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estimations of model F4 and can be found in Table 3.5. Estimates of σ3 with n = 1600 and

n = 2500 all have large mean and standard deviation. There is one outlier in each case with

value 164725 (n = 1600) and 5446 (n = 2500). Removing outliers reduces their mean

and standard deviation to 2.72 and 0.66 for n = 1600 and to 2.74 and 0.64 for n = 2500.

Another pair of extreme values appears in the estimation of σ1 with n = 1600. This is due

to an outlier which equals 5336. The adjusted mean and variance are 2.33 and 2.61. The

last pair of extreme values from F4 are from estimates of c3 with n = 2500, where the mean

and standard deviation are 39848 and 398231. It turns out there is one outlier which equals

to 3982343. The adjusted mean and standard deviation are 25.2 and 8.2. The existence of

those outliers suggests the optimizer failed to reach the neighborhood of true parameters

in those cases. This may be caused by bad initial search values. It is also possible that the

log-likelihood function has certain structure such as a sharp valley, forcing the optimizer to

search along one direction. The true reason causing this phenomenon would need further

investigation. Nevertheless, extreme values are signs of poor performance of the optimizer

and illustrate the difficulties in the parameter estimation of regime-switching models.

The percentage of getting better likelihood in 100 runs is plotted with respect to n in

Figure 3.2 for all models. The bp values for F2, F3 and F5 are all roughly 90% and above,

indicating good estimation results in those cases. The bp values for F1 and F4 exhibit

different patterns. It should be noted that F1 and F4 are the two models with extreme

values in their estimations. Their low bp values confirm our claim above about the poor

performance of the optimizer in those cases.

When the number of data points used in optimization is small (n = 100, 400), the bp

value for F1 is very low. The performance of the optimizer improves as n increases and bp

reaches its maximum with 2500 data points. From Table 3.2, we can see that the parameters

of F1 can be well estimated. There is a clear trend of convergency in all parameters of F1,

which suggests F1 is not a very hard model to estimate. More importantly, this indicates

the proposed method to generate initial values failed to provide good start search points in

the estimation of F1, especially when n is small.

The bp value for F4 drops sharply as n increases. From Table 3.5, we can see that

the parameter estimation of F4 is rather poor compared with other models. As we have

discussed above, there are quite a few outliers in the estimates of c and σ, especially with

large n. The estimation of transition matrix P was also not satisfactory. For example, the
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mean of p̂11 for n = 2500 is equal to 0.48 and the true value is 0.8.

For all models, the multiplicative coefficients φ can be estimated very well even with

small n. φ can be estimated with two digits of precision for all models and all n. This is

the same as the result from estimating R1 - R5, where the constant term c is assumed to be

given. In other words, φ can always be estimated well regardless of whether knowing c. c,

σ and P can be reasonably well estimated in F2, F3 and F5. Although very slow, there is

a tendency to converge. However, those estimates are still relatively far away from the true

values even with all 2500 data points.

Our experimental results demonstrate the difficulties of estimating regime-switching

models. Even in some easy cases, parameter estimates show very slow convergent speed.

Often in those models, estimated parameters have a better loglikelihood value than the true

parameter. This indicates the regime-switching models are very hard to fit and will need

more data in order to obtain accurate estimates. The proposed scheme to sample initial

values is successful. The total number of parameters in a N regime model is N2 + 2N .

Except in F4, the parameters can be reasonably estimated with only 5 restarts, which is

very unusual in high dimensional optimization.
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N=2

cp bp φ = (0.98, 0.95) c = (5, 30) σ = (1, 2) P =

(
0.75 0.25
0.1 0.9

)

n = 100 98% 61%
Mean (0.966, 0.955) (10.62, 23.51) (577.71, 2.12)

(
0.78 0.22
0.17 0.83

)

Std (0.099, 0.017) (10.95, 10.68) (5754.05, 1.37)

(
0.17 0.17
0.12 0.12

)

n = 400 100% 48%
Mean (0.977, 0.954) (10.34, 24.25) (1.68, 1.88)

(
0.82 0.18
0.17 0.83

)

Std (0.011, 0.012) (8.06, 8.98) (0.85, 0.71)

(
0.08 0.08
0.08 0.08

)

n = 900 98% 56%
Mean (0.98, 0.955) (7.76, 24.68) (1.47, 1.74)

(
0.8 0.2
0.15 0.85

)

Std (0.007, 0.009) (5.64, 8.2) (0.69, 0.39)

(
0.074 0.074
0.076 0.076

)

n = 1600 100% 70%
Mean (0.98, 0.953) (6.61, 27.19) (1.22, 1.88)

(
0.78 0.22
0.12 0.88

)

Std (0.005, 0.008) (3.89, 6.65) (0.5, 0.31)

(
0.06 0.06
0.06 0.06

)

n = 2500 100% 79%
Mean (0.98, 0.951) (5.99, 28.57) (1.12, 1.92)

(
0.77 0.23
0.11 0.89

)

Std (0.003, 0.005) (2.76, 5.12) (0.38, 0.25)

(
0.05 0.05
0.05 0.05

)

Table 3.2: Estimation Result of model F1

N=2

cp bp φ = (0.98, 0.96) c = (10, 20) σ = (2, 3) P =

(
0.75 0.25
0.1 0.9

)

n = 100 100% 100%
Mean (0.92, 0.91) (39.64, 47.42) (2.03, 2.13)

(
0.5 0.5
0.46 0.54

)

Std (0.058, 0.058) (28.72, 28.88) (0.81, 0.84)

(
0.35 0.35
0.35 0.35

)

n = 400 100% 99%
Mean (0.958, 0.946) (20.59, 26.67) (2.36, 2.54)

(
0.52 0.48
0.41 0.59

)

Std (0.018, 0.022) (8.96, 10.94) (0.65, 0.64)

(
0.37 0.37
0.33 0.33

)

n = 900 100% 93%
Mean (0.963, 0.953) (18.64, 23.25) (2.48, 2.55)

(
0.62 0.38
0.37 0.63

)

Std (0.011, 0.014) (5.35, 6.88) (0.67, 0.64)

(
0.33 0.33
0.32 0.32

)

n = 1600 100% 96%
Mean (0.965, 0.959) (17.03, 20.49) (2.42, 2.51)

(
0.63 0.37
0.27 0.73

)

Std (0.008, 0.009) (3.93, 4.26) (0.78, 0.71)

(
0.31 0.31
0.28 0.28

)

n = 2500 100% 97%
Mean (0.967, 0.96) (16.55, 20.11) (2.53, 2.5)

(
0.73 0.27
0.27 0.73

)

Std (0.007, 0.009) (3.4, 4.29) (0.65, 0.63)

(
0.24 0.24
0.25 0.25

)

Table 3.3: Estimation Result of model F2

N=2

cp bp φ = (0.98, 0.97) c = (10, 15) σ = (3, 6) P =

(
0.75 0.25
0.1 0.9

)

n = 100 98% 100%
Mean (0.928, 0.89) (35.72, 54.09) (4.12, 4.18)

(
0.55 0.45
0.41 0.59

)

Std (0.055, 0.096) (26.45, 46.77) (2.34, 1.67)

(
0.37 0.37
0.37 0.37

)

n = 400 100% 98%
Mean (0.968, 0.948) (15.99, 25.54) (5.12, 4.08)

(
0.73 0.27
0.35 0.65

)

Std (0.019, 0.03) (9.24, 14.47) (1.61, 1.7)

(
0.26 0.26
0.32 0.32

)

n = 900 100% 99%
Mean (0.973, 0.962) (13.75, 18.9) (4.97, 4.11)

(
0.81 0.19
0.25 0.75

)

Std (0.01, 0.014) (5.01, 6.96) (1.49, 1.65)

(
0.16 0.16
0.2 0.2

)

n = 1600 100% 99%
Mean (0.975, 0.965) (12.6, 17.47) (4.65, 4.43)

(
0.81 0.19
0.2 0.8

)

Std (0.009, 0.009) (4.27, 4.37) (1.55, 1.59)

(
0.14 0.14
0.11 0.11

)

n = 2500 100% 97%
Mean (0.976, 0.968) (12.2, 16) (4.59, 4.47)

(
0.81 0.19
0.19 0.81

)

Std (0.007, 0.008) (3.29, 4.02) (1.54, 1.56)

(
0.1 0.1
0.09 0.09

)

Table 3.4: Estimation Result of model F3
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N=3

n cp bp φ = (0.98, 0.95, 0.92) c = (5, 15, 30) σ = (2, 2, 3) P =

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

100 100% 99%
Mean (0.97, 0.954, 0.928) (9.74, 15.61, 28.27) (1.63, 1.6, 1.85)

⎛
⎝ 0.5 0.31 0.19

0.32 0.52 0.16
0.22 0.24 0.54

⎞
⎠

Std (0.028, 0.025, 0.065) (8.67, 10.44, 21.08) (0.76, 0.79, 0.89)

⎛
⎝ 0.31 0.29 0.26

0.33 0.34 0.21
0.27 0.29 0.32

⎞
⎠

400 100% 98%
Mean (0.977, 0.959, 0.934) (7.18, 13.25, 24.07) (2.07, 1.92, 2.23)

⎛
⎝ 0.56 0.3 0.14

0.27 0.59 0.14
0.18 0.19 0.63

⎞
⎠

Std (0.02, 0.02, 0.03) (4.47, 6.71, 10.64) (0.74, 0.66, 0.88)

⎛
⎝ 0.29 0.29 0.17

0.3 0.32 0.22
0.21 0.22 0.26

⎞
⎠

900 100% 87%
Mean (0.977, 0.956, 0.934) (7.05, 14.43, 24.2) (2.17, 2.11, 2.53)

⎛
⎝ 0.56 0.29 0.15

0.27 0.62 0.11
0.2 0.15 0.65

⎞
⎠

Std (0.01, 0.02, 0.03) (3.9, 7.61, 9.82) (2.09, 0.79, 0.74)

⎛
⎝ 0.32 0.3 0.21

0.32 0.33 0.17
0.23 0.19 0.25

⎞
⎠

1600 100% 73%
Mean (0.98, 0.956, 0.926) (6.34, 14.11, 26.86) (55.67, 1.98, 1649.95)

⎛
⎝ 0.55 0.26 0.19

0.26 0.66 0.08
0.18 0.14 0.68

⎞
⎠

Std (0.01, 0.02, 0.04) (3.89, 6.48, 8.57) (533, 0.64, 16472)

⎛
⎝ 0.37 0.33 0.27

0.32 0.32 0.11
0.23 0.17 0.22

⎞
⎠

2500 100% 48%
Mean (0.978, 0.954, 0.922) (5.84, 14.07, 39848) (3.27, 2.14, 57.18)

⎛
⎝ 0.48 0.31 0.21

0.2 0.71 0.09
0.17 0.14 0.69

⎞
⎠

Std (0.02, 0.04, 0.1) (3.83, 6.43, 398231) (11.64, 0.62, 544)

⎛
⎝ 0.36 0.35 0.29

0.28 0.29 0.12
0.21 0.14 0.21

⎞
⎠

Table 3.5: Estimation Result of model F4

N=3

n cp bp φ = (0.98, 0.96, 0.94) c = (10, 15, 20) σ = (3, 3, 5) P =

⎛
⎝ 0.8 0.1 0.1

0.04 0.9 0.06
0.2 0.05 0.75

⎞
⎠

100 100% 100%
Mean (0.961, 0.947, 0.924) (13.32, 19.39, 28.96) (2.73, 3.08, 2.36)

⎛
⎝ 0.51 0.22 0.27

0.3 0.47 0.23
0.28 0.22 0.5

⎞
⎠

Std (0.03, 0.04, 0.07) (12.79, 14.15, 23.9) (1.46, 7.97, 1.41)

⎛
⎝ 0.33 0.26 0.32

0.33 0.33 0.28
0.34 0.3 0.37

⎞
⎠

400 100% 100%
Mean (0.971, 0.957, 0.94) (10.45, 15.94, 21.88) (3.34, 3.08, 3.34)

⎛
⎝ 0.64 0.17 0.19

0.18 0.78 0.14
0.18 0.17 0.65

⎞
⎠

Std (0.02, 0.02, 0.03) (6.21, 7.72, 9.96) (1.27, 1.11, 1.26)

⎛
⎝ 0.26 0.18 0.23

0.23 0.29 0.24
0.23 0.22 0.29

⎞
⎠

900 100% 100%
Mean (0.974, 0.963, 0.944) (9.51, 13.9, 20.6) (3.55, 3.42, 3.56)

⎛
⎝ 0.76 0.12 0.12

0.13 0.76 0.11
0.15 0.09 0.76

⎞
⎠

Std (0.01, 0.02, 0.03) (4.12, 5.47, 9.17) (1.04, 1.03, 1.14)

⎛
⎝ 0.19 0.12 0.15

0.16 0.16 0.12
0.19 0.08 0.18

⎞
⎠

1600 100% 98%
Mean (0.973, 0.967, 0.952) (9.52, 12.7, 17.96) (3.86, 3.51, 3.48)

⎛
⎝ 0.77 0.14 0.09

0.12 0.79 0.09
0.1 0.08 0.82

⎞
⎠

Std (0.01, 0.01, 0.02) (3.06, 3.3, 5.6) (1.07, 0.89, 0.97)

⎛
⎝ 0.11 0.12 0.07

0.1 0.1 0.08
0.08 0.07 0.09

⎞
⎠

2500 100% 89%
Mean (0.974, 0.966, 0.957) (9.62, 12.66, 16.15) (3.71, 3.61, 3.63)

⎛
⎝ 0.79 0.11 0.1

0.11 0.8 0.09
0.1 0.08 0.82

⎞
⎠

Std (0.01, 0.01, 0.01) (2.78, 2.58, 4.1) (1.03, 0.95, 0.99)

⎛
⎝ 0.08 0.07 0.07

0.08 0.09 0.06
0.07 0.07 0.08

⎞
⎠

Table 3.6: Estimation Result of model F5
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Figure 3.3: Boxplots of estimation errors in F1 - F3
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Figure 3.4: Boxplots of estimation errors in F4 and F5
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Figure 3.4: Boxplots of estimation errors in F4 and F5 (Continued)
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Figure 3.4: Boxplots of estimation errors in F4 and F5 (Continued)



CHAPTER 4

CONCLUSIONS AND FUTURE WORK

In this thesis, we conducted a simulation study of a regime switching model, in order to

better understand the (empirical) properties of the loglikelihood function and MLE. It

was shown that the interaction of the slope coefficient φ and the constant c introduces

many local maxima to the loglikelihood function, which makes parameter estimation a

very hard optimization problem. To further investigate the interaction between φ and c,

two sub-models that are easier to fit than the regime switching model (1.2) were studied.

The first model is called the switching mixture model (2.1), in which φ is assumed to

be zero. We showed that this model can be considered as an extension of a mixture

model. Each switching mixture model has an associated mixture model by dropping the

Markov property. Our experimentation indicated switching mixture models can be well

approximated by mixture models. A good strategy for fitting a switching mixture model

is to first fit the corresponding mixture model. The estimated parameters of the mixture

model can then be used as initial search values in the parameter estimation of the switching

mixture model.

The second sub-model studied in this thesis is called the fixed intercepts switching

model, in which the constant vector c is assumed to be given. In order to fit this model, we

suggest initially approximating intercepts switching models by so-called k-line clustering

problems. A deterministic algorithm was proposed to find approximate solutions of k-

line clustering problems, which can be used as initial search values in optimizing the

loglikelihood function of the corresponding fixed intercepts switching models. An initial-

value-sampling scheme R.IVS1 was proposed to generate initial values in order to solve

the k-line clustering problem. Experimental results demonstrated the effectiveness of this
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method. Parameters in most fixed intercepts switching models were estimated very well.

Finally, the technique for deriving initial values in fitting fixed intercepts switching

models was extended in order to solve regime switching models. The proposed method was

shown to provide good initial search values and effectively reduce the number of restarts

of the optimizer. Even in 3-regime models (with 15 unknown parameters), parameters can

be estimated reasonably well with only 5 restarts.

The work in this thesis can be extended in many aspects. Although the initial-value-

sampling method was proven successful, there were situations in which its performance

was not as good as in other cases. The potential reasons are not clear and need further

investigation. Also, the optimizer in our experimentation was only restarted 5 times due to

limited time and computational capabilities. It will be interesting to increase the number

of restarts of the optimizer and observe whether the probability of getting estimates with

better loglikelihood will increase as well. An increasing bp value indicates the proposed

initial-value-sampling method is able to generate points that spread over the entire region

around the MLE.

For simplicity, the regime-switching model considered in this thesis is a one dimensional

AR(1) model. In order to further study parameter estimation and the convergence properties

of regime switching models, one could consider multidimensional AR(k) models i.e

yt = Asty
(k)
t−1 + cst + εt

where yt, cst and εt are m dimensional vectors. y(k)
t−1 is a mk dimensional vector of past

observations up to time t− k and A is a m by mk matrix. Note that the proposed method

to generate initial search values can be extended to m dimensions using multiple regression

techniques. Parameter estimation in multidimensional AR(k) models is expected to be

much harder. Furthermore, we only considered models with two or three regimes in this

thesis. The properties of regime switching models with more regimes should also be

studied. It would be interesting to test whether the proposed initial-value-sampling method

could succeed in higher dimensional cases.

In this thesis, the Nelder-Mead algorithm was used to optimize loglikelihood functions.

Although a popular optimizer, Nelder-Mead does have some drawbacks as shown by

McKinnon (1998). Other alternative optimizers could also be used. Of particular interest
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to the author is a special type of evolutionary strategy called the Covariance Matrix Adap-

tation Evolution Strategy (CMA-ES). Evolutionary strategies are a class of optimization

techniques based on the idea of evolution and adaptation. CMA-ES was proposed by

Hansen and Ostermeier (2001). It is often applied when traditional optimizers (such as

quasi-Newton or conjugate gradient) fail due to local maxima, discontinuities or noises

in objective functions. However, CMA-ES is rarely known or used among statisticians.

It would be interesting to benchmark and compare the performance of CMA-ES and

Nelder-Mead in fitting regime-switching models.
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