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ABSTRACT 

                                                                     
Electric power is a basic requirement for present day life and its various economic 

sectors. To satisfy the ever-increasing needs for electricity, the number of generating 
units, transmission lines and distribution systems is rising steadily. In addition, electric 
power systems are among the most complex industrial systems of the modern age. Beside 
complexity, the generation of electric power is a main source of gaseous emissions and 
pollutants. The planning and operation of electric power systems must be done  in a way 
that the load demand is met reliably, cost-effectively and in an environmentally 
responsible manner.  Practitioners strive to achieve these goals for successful planning 
and operations utilizing various optimization tools. It is clear that the objectives to be 
satisfied are mostly conflicting. In particular, minimizing the fuel cost and the gaseous 
emissions are two conflicting and non-commensurate objectives. Therefore, multi-
objective optimization techniques are employed to obtain trade-off relationships between 
these incompatible objective functions in order to help decision makers take proper 
decisions. 

In this thesis, two main power system operation problems are addressed. These are 
the economic load dispatch (ED) and the short-term hydro-thermal generation scheduling 
(STHTS). They are treated first as single-objective optimization problems then they are 
tackled as multi-objective ones considering the environmental aspects. These problems, 
single and multi-objective, are nonlinear non-convex constrained optimization problems 
with high-dimensional search spaces. This makes them a real challenge for any 
optimization technique. To obtain the optimal or close to optimal solutions, a modified 
bacterial foraging algorithm is proposed, developed and successfully applied. The 
bacterial foraging algorithm is a metaheuristic non-calculus-based optimization 
technique. The proposed algorithm is validated using diverse benchmark optimization 
examples before implementing it to solve the problems of this thesis. Various practical 
constraints are considered in the different cases of each problem. These include 
transmission losses, valve-point effects for both the ED and the STHTS problems and 
water availability and reservoir configurations for the STHTS problem. In all cases the 
optimal or near-optimal solution is obtained. For the multi-objective optimization cases, 
the Pareto optimal solution set that shows the trade-off relationship between the 
conflicting objectives is successfully captured.           
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CHAPTER 1 INTRODUCTION 
 

1.1 MOTIVATION 

Electric power systems are among the most complex industrial systems of today’s 

civilization that play a central role in the functioning of modern societies. In order to 

perform this role, production and delivery of electric power must be achieved reliably, 

cost-effectively and in an environmentally responsible approach. Successful planning and 

operation of electric power generation, transmission and distribution is a continual 

challenge to electric power engineers all over the world. A prime objective in the 

operation and planning mission is to meet the power load demand at the lowest possible 

cost. A more imperative objective is the safety of individuals and equipment. Reliability 

and continuity of service are among the various essential planning and operational 

considerations. In addition to these objectives, minimizing the environmental impact of 

power generation is getting to be exceedingly important as a consequence of the increase 

in the number of power plants. 

Electric power is mostly produced from conventional non-renewable energy sources 

such as oil, natural gas and coal in addition to nuclear and hydro sources. Thermal plants 

that burn fossil fuels generate the major share of worldwide electric energy. In such 

plants heat energy is released and converted to mechanical form of energy which 

consequently generates electricity. This energy conversion is processed through thermal 

cycles with conversion efficiencies less than 40% [1]. Clearly this increases the fuel 

consumption and decreases the existing resources. Furthermore, the continuous increase 

in the global demand on electric energy is accelerating the depletion of the limited and 

irreplaceable fuel supplies.       

Achieving the efficient and optimal economic load dispatch is one of the important 

tasks in power system operations. This is the optimum allocation of the load among 

various committed plants in such a way that production cost is minimized. The static 

optimization problem of classic economic dispatch deals with the scheduling of all-

thermal generation units that are pre-selected by a unit commitment program [2].  
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The hydro-thermal generation scheduling is another operational optimization 

problem that has attracted increasing attention. This dynamic optimization problem is 

different from the all-thermal case as it deals with both thermal and hydro plants. It 

determines the optimal scheduling of thermal and hydro generation over a period of time 

to meet the load demand at the minimum production cost of the thermal generating units. 

This involves using up the available water resources to maximize the hydro-electric 

generation and hence minimize the fuel cost associated with the thermal generation. In 

addition to power generation considerations, various hydraulic obligations must be met. 

These include, for instance, maximum forebay elevation, reservoir discharge rate and 

spillage and other hydraulic constraints. Besides, other characteristics of hydro-electric 

plants such as their location, number of units, configuration of these units and special 

operating features are to be considered [3]. 

The issue of environmental impacts and air pollution associated with power 

generation has become another important consideration of today’s power system 

operational practice. A significant portion of the total air pollutants and gaseous 

emissions in the atomosphere is produced from burning fossil-based fuels in power 

plants. The harmful effects of the various pollutants, such as nitrogen oxides xNO , 

sulphur dioxide 2SO and carbon dioxide 2CO , are attracting great public concern so that 

they cannot be removed from any operational and planning strategy. In order to minimize 

these impacts on human life and the atmosphere at large, strict environmental laws and 

firm restrictions have been internationally imposed on power generation industry. The 

Clean Air Amendment of 1990, for instance, is one of these environmental laws that aim 

to control and minimize gaseous emission [4-8].  

In light of this situation, optimizing power system operations can no longer be 

achieved by only minimizing fuel costs but also strive to reduce various gaseous 

emissions as well. To handle these conflicting objectives, various multi-objective 

optimization techniques have been proposed and applied to solve the economic-emission 

optimal power system operations. Emission minimization has extensively become 

associated to both economic load dispatch and hydro-thermal generation scheduling 

problems. As a result of solving these multi-objective optimization problems, the 
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decision maker is provided with the tools to take the proper decision regarding the trade-

off between the conflicting objectives of cost and emissions. 

The above mentioned operational power system tasks are nonlinear large-scale 

constrained optimization problems with single or multiple objective functions. There are 

various optimization techniques that have been proposed and applied to resolve these 

problems. Traditionally, the majority of these optimization methods are deterministic and 

derivative-based techniques while most of the recently proposed methods are heuristic in 

nature. Heuristic methods, which are in most cases inspired by the various biological and 

natural phenomena, have been attracting more and more attention due to many reasons 

such as simplicity, flexibility and generality. It is obvious that in either case of 

deterministic or heuristic methods, using digital computers is the only realistic tool to 

tackle such large-scale nonlinear optimization problems of power system operations.              

1.2 THESIS OBJECTIVES AND CONTRIBUTIONS 

Optimal economic and economic-emission operations of power generation systems 

are comprehensively investigated in this thesis considering various operational 

obligations. The conventional optimal economic dispatch and optimal short-term hydro-

thermal generation scheduling problems are studied thoroughly taking into account 

various realistic constraints. Including the environmental aspects in the formulation and 

implementation of the above mentioned problems is considered next. 

A major goal of this thesis is to develop and implement the bacterial foraging 

algorithm (BFA) to solve the above stated power system problems. In this regard, the aim 

is to attempt to enhance the BFA and modify it extensively to tackle the nonlinear large-

scale optimization problems considered in this thesis. The basic BFA was not originally 

designed to handle constrained problems and hence it is important to set up an 

appropriate constraint-handling mechanism and incorporate it in the algorithm. 

Furthermore, concerning some of the drawbacks associated with the basic BFA, such as 

its poor performance with high-dimensioned problems, it is an important goal of this 

work to come up with an adaptive and effective solution approach. In order to treat the 

shortcomings of the BFA and to develop it to effectively fit these problems; it is a key 

objective to put forward a modified version of the BFA.        
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A main objective of this work is to study, formulate and solve the conventional 

economic dispatch problem using the proposed algorithm. Main practical operational 

constraints such as transmission power losses and valve-point effects are also considered 

in the formulation of this problem. In this regard, the proposed algorithm is validated by 

solving this basic power system optimization problem and comparing the results to those 

obtained by other optimization techniques.  

The basic focus of the research conducted in this thesis is the optimization problem 

of short-term hydro-thermal generation scheduling. The aim here is to present a 

comprehensive discussion on the problem statement, formulation and implementation in 

compliance with the scope of this thesis. With respect to the wide range of operational 

and hydraulic obligations associated with the problem, it is important to take into 

consideration the various realistic constraints of the problem. The complexity of this 

large-scale problem makes it a challenge to all optimization methods, therefore it is 

essential to validate the proposed algorithm by working out as many different case 

studies as possible. In this regard, in addition to electrical constraints, a fundamental 

intention is to consider systems of hydraulically coupled and uncoupled plants with fixed 

and variable-head reservoirs as well as cascaded chain systems. 

The last but not least important objective is the inclusion of the environmental 

aspects in the formulation of the above mentioned problems. This is to formulate these 

two problems as multi-objective optimization problems with multiple conflicting 

objectives. In particular, the economic-emission dispatch problem is formulated to 

minimize fuel cost and gaseous emissions simultaneously. Afterwards, the multi-

objective optimization problem of the short-term hydro-thermal scheduling is formulated 

to consider minimizing emissions all together with fuel cost while obtaining the optimal 

scheduling.  

In order to accomplish the objectives targeted by this effort, a number of 

contributions have been made in this thesis. These are attempts to add to the literature of 

economic power system optimization and development of heuristic optimization 

techniques. One of the major contributions is presenting the state of the art of the main 

subjects discussed in the thesis. In this regard, a detailed literature survey on the recent 

developments in the fields of power system optimization is provided.  
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Another important contribution is proposing an improved and enhanced heuristic 

bacterial foraging algorithm by modifying the basic BFA. The modified bacterial 

foraging algorithm (MBFA) is developed to have dynamic and adaptive features so that it 

has become capable of tackling nonlinear large-scale optimization problems with high 

dimension search spaces. In particular, the chemotactic step (or the run-length unit), 

which is the basic element for updating the solution vector in the BFA, is modified to 

have dynamic and adaptive characteristics. Furthermore, the stopping criterion of the 

basic BFA is also adjusted by proposing a more effective course of action for stopping 

the search operation.  These modifications have led to better performance in terms of 

execution time and balancing the exploration and exploitation of the search. 

With the purpose of dealing with the constrained optimization problems studied in 

the thesis, an effective equality constraint-handling mechanism is proposed for the BFA. 

This is a dynamic scheme that adjusts the penalty factor according to the improvement of 

the objective function and the iterations of the algorithm. In addition, inequality 

constraint-handling technique is developed for the BFA to maintain the feasibility of the 

solution. In this regard, the proposed technique guarantees the preservation of the feasible 

solutions and the rejection of the infeasible ones at the same time. 

Developing and implementing the MBFA to solve the problems discussed in this 

thesis without requiring adjusting any of its features is another contribution. In addition, 

the same algorithm is employed to capture the Pareto optimal set of solutions for the 

multi-objective optimization problems in this work. It should be mentioned that the 

ability of the proposed algorithm to obtain the trade-off curves can be generalized for 

other multi-objective optimization problems.                             

1.3 THESIS OUTLINE 

This thesis is divided into two parts and organized in seven chapters. The first part, 

which includes the first three chapters, is devoted to providing the background 

preparation and tools necessary for problem definition, modeling and implementation. 

The second part is dedicated to problem statement, formulation, solution and discussion.  

The motivation behind this research as well as thesis objectives and contributions are 

introduced in this first chapter. In addition, a brief description of the scope of the thesis is 
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given in this chapter. In the second chapter a detailed literature review is presented 

covering the research areas of the thesis. The third chapter presents briefly the basic 

concepts of the optimization theory that are needed for the dissertation. Solution 

methodologies for both single and multi-objective optimization problems are also 

summarized in the chapter. In addition, the basic Bacterial Foraging Algorithm (BFA) is 

presented and discussed. The Modified Bacterial Foraging Algorithm (MBFA), which is 

developed and applied in this thesis, is also presented in  Chapter 3 along with the 

developed constraint-handling methods that are utilized in the thesis. The fourth chapter 

addresses the classical economic dispatch problem of all-thermal generation considering 

transmission losses and valve-point effects. The short-term hydro-thermal generation 

scheduling problem is the subject of the fifth chapter considering fixed-head and 

variable-head hydro plants. Both hydraulically isolated and hydraulically coupled plants 

are studied and discussed. The sixth chapter is devoted to the economic-emission load 

dispatch of power generation as a multi-objective optimization problem considering the 

environmental aspects. Here both the all-thermal and hydro-thermal generation 

scheduling problems are dealt with considering the minimization of not only the cost but 

also the gaseous emissions. The last chapter provides the conclusions, remarks and some 

ideas and hints for future work related to the scope of this thesis.   
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CHAPTER 2 LITERATURE REVIEW 
 

2.1 INTRODUCTION 

In this chapter, a comprehensive survey of the areas of the research conducted in this 

thesis is presented. Based on the research area of interest, this review covers the recently 

published work related to power generation optimal scheduling. To provide the necessary 

background of the thesis subject, this review is divided into two main parts. The first part 

offers an up to date survey and discussion on the optimization methods used to solve the 

short-term hydro-thermal generation scheduling problem. The second part covers recent 

published papers on the field of multi-objective economic-emission dispatch and 

generation scheduling where the environmental aspects are considered. In the two parts, a 

review and a methodology-based classification of most of the publications on these topics 

are presented. 

2.2 OPTIMIZATION METHODS FOR SHORT-TERM HYDRO-THERMAL 
GENERATION SCHEDULING 

Short-term hydro-thermal scheduling (STHTS) consists of determining the optimal 

usage of available hydro and thermal resources during a scheduling period of time (1 day 

to 1 week) [2, 3]. This is to determine, optimally, which of the thermal generating units 

should run as well as the power generated by the hydro and thermal plants so that the 

total cost is minimized.  Minimizing the total cost in this optimization problem is subject 

to many control and operational constraints.  In addition to reliability and security 

requirements, hydraulic and thermal constraints may include load balance, generation 

limits, water discharge, starting and ending storage volume of water and spillage 

discharge rate.   Furthermore, in order to solve the hydro-thermal scheduling problem, 

thermal unit commitment and economic load dispatch problems should be solved all 

together with the hydro schedules. Therefore, the STHTS is a large-scale nonlinear and 

complex constrained power system optimization problem. 

A variety of optimization methods and techniques have been proposed to solve the 

problems of power systems optimal operations and planning since the beginning of the 

last century [3]. Among the earliest optimization techniques applied to the problem were 
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the so-called “base load procedure”, “the best point loading” and the “incremental 

method”. A historical survey, which highlights the earliest works in the field, is offered in 

[3].  At present, several methods and algorithms have been in use to solve power system 

optimization problems [9, 10]. These include variational methods, iterative approaches, 

artificial intelligence tools, and hybrid techniques.  Over the years, different 

methodologies have been applied.  With the development of the mathematical and 

computational techniques, additional details of the problem formulation have been 

addressed. In the beginning, only thermal plants were considered and before long, the 

hydraulic operational and topological constraints were treated.  Figure  2.1 statistically 

illustrates the number of the published research papers on the subject of the STHTS 

problem during the last 20 years (based on IEEE/IET/Elsevier databases). 

 
Figure  2.1   Papers published in each year on the subject of STHTS problem. 

A wide range of optimization techniques has been applied to solve the STHTS 

problem. These techniques are principally based on the criterion of local search through 

the feasible region of solution [9]. Applied optimization methods can be mathematical 

programming algorithms such as linear and nonlinear programming, dynamic 

programming and interior point methods [11, 12]. Among the other methods are the 

artificial intelligence techniques including neural networks, fuzzy systems and the 

evolutionary methods such as genetic algorithms and simulated annealing.  The methods 

considered in this survey can be classified as follows: 
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 Lagrangian relaxation and Benders decomposition-based methods 

 Interior point methods 

 Mixed Integer programming 

 Dynamic programming 

 Evolutionary computing methods 

 Artificial intelligence methods 

 Optimal control methods 

These optimization methods can be generally classified into two main groups: 

deterministic methods and heuristic methods. Deterministic methods include Lagrangian 

relaxation and Benders decomposition methods, mixed integer programming, dynamic 

programming and interior point methods. Genetic algorithms, particle swarm 

optimization and other evolutionary methods are heuristic. Most of the methods that have 

been used to solve the STHTS problem are deterministic in nature. However, modern 

heuristic methods are getting more attention in solving large-scale optimization problems. 

To search for the optimal solution, classical deterministic methods, also known as 

derivative-based optimization methods, apply techniques such as the gradient and 

Hessian operators. They use single path search methods while heuristic methods use 

population-based search techniques to search the solution hyperspace. This difference, in 

fact, is an advantage for the heuristic methods as it helps searching in spaces with non-

smooth characteristics.  It also improves convergence for heuristic methods and makes it 

less dependent on the initial solution points. Being derivative-free, modern methods are 

applicable to any optimization problem regardless of the linearity or nonlinearity of its 

objective function and constraints. In contrast, different deterministic methods are 

required for different optimization problems. Another main difference between the two 

classes is that heuristic methods use stochastic techniques and include randomness in 

moving from one solution to the next while determinist methods follow deterministic 

transition rules. This, of course, gives an advantage to heuristic methods in avoiding local 

minima. In spite of the advantages of heuristic techniques, classical methods have been 

used by the majority of research papers covered in this review. The reason is their 

efficiency in solving optimization problems, the solid mathematical foundation and the 

availability of software tools [13]. 
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Figure  2.2 shows the number of publications and the methods applied to solve the 

STHTS problem in the specified period. In this survey, most of the papers that have been 

published during the past two decades or so are included (based on IEEE/IET/Elsevier 

databases). 

 
Figure  2.2   Number of papers published on different optimization methods used. 

2.2.1 Lagrangian Relaxation and Benders Decomposition 
Methods 

Large-scale optimization problems, such as the STHTS problem, are usually divided 

into a set of independent sub-problems. Decomposition-based methods are used to solve 

this kind of problem using an iterative-based methodology. Lagrangian relaxation and 

augmented Lagrangian techniques are among the most popular decomposition based 

methods.  The original Lagrangian relaxation technique was improved by introducing the 

augmented Lagrangian and the multiplier updating methods. In these techniques, the 

solution is based on computing the optimal values of the Lagrangian multipliers for the 

sub-problems to find a solution to the dual problem. On the other hand, the solution to the 

primal problem is usually infeasible due to the non-convexity of the problem. Therefore, 

a method to find a feasible optimal or near-optimal solution has to be applied. Lagrangian 

multipliers are updated each iteration using several updating tools such as Bundle 

techniques. Benders decomposition and Dantzig-Wolfe are also well-known 
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decomposition methods [9]. A study of the relaxed classical hydro-thermal scheduling 

algorithm from a theoretical point of view was presented in [14, 15]. The focus of these 

papers was the convergence issues of the Lagrangian formulation of the hydro-thermal 

scheduling problem. A relaxation coefficient was proposed to improve the algorithm’s 

convergence prospects and practical procedures to compute the coefficient were 

presented. To illustrate the performance of the algorithm in [15], it was implemented on a 

real system although many details were neglected in the formulation of the problem. This 

was because, as mentioned, the scheduling problem itself was not the subject of this 

paper. 

 A method based on Lagrangian relaxation was also presented by Yan et al. in [16] 

where the STHTS problem was decomposed into two sub-problems.  A method of merit 

order allocation was implemented to solve the hydro sub-problem while the thermal sub-

problem was solved by applying a dynamic programming approach. The method was 

tested using limited water resources hydro units. The hydraulic coupling among these 

water resources and the upper and lower constraints were not considered. The hydro sub-

problem was formulated as a linear programming problem without accounting for the 

nonlinear characteristics. The nonlinearity that could be caused by the start up cost 

function for the thermal units was not taken into consideration. Power exchange with 

other utilities was also not included in this paper. The authors did not consider the 

pumped storage power units in this paper but in a subsequent paper [17]. They presented 

a method to incorporate them where a solution methodology for pumped storage units 

was also presented. The dynamic transition regarding the operation status (generation, 

pumping and idle) of the pumped storage units was considered by the Lagrangian 

relaxation based solution. The algorithm was integrated with a scheduling package and 

implemented to solve the STHTS problem where the importance of the pumped storage 

units was demonstrated. It should be noted that the pumped storage unit implemented was 

always running as either a generator or a pump with short off time. The convergence of 

the algorithm was reported to be very good although a few additional iterations were 

required for updating the Lagrangian multiplier using a sub-gradient approach.  

A peak-shaving method was presented in [18] to study the influence of the 

interchange resource scheduling on the STHTS problem. The interchange was formulated 
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as a decomposed sub-problem with a proposed scheduling strategy to provide a smoother 

hydro generation profile. The methodology was claimed to be suitable for practical 

systems although it was only applied to two test synthetic systems. Results showed that 

the method was beneficial especially for the systems that could be augmented by 

interchange purchases. In [19], a network flow programming based algorithm was 

presented to solve the STHTS problem of dominantly hydro systems. The hydraulic 

subsystem was simulated while the transmission system was modeled as an optimal DC 

load flow. The performance of the approach was found to be efficient when applied to 

two synthetic test systems. The tests were performed using amateur codes that made the 

time of convergence an issue of a concern. Network flow programming was applied to 

solve the hydro sub-problem in a number of papers such as [20]. This paper presented an 

implementation of an incremental network flow programming and integrated it with an 

existing unit commitment and economic dispatching software. The objective was to 

develop a comprehensive industrial hydro-thermal scheduling product for applications in 

an energy management system. The approach was implemented in a realistic system and 

showed acceptable performance with good convergence properties in spite of employing 

a modified golden search algorithm. It might be worth mentioning that the golden search 

could get trapped in local minima due to nonlinearity of the problems considered. 

However, the authors reported that, fortunately, their algorithm gave very satisfactory 

results.  

In [21], a network flow programming algorithm was applied to a hydro dominated 

power system. The problem was decomposed into hydro and electric sub-problems.  

Constraints were represented in detail by network models including transmission DC 

power flow model. The approach was tested using a practical system; however, 

convergence required extended time. The hydro-thermal scheduling problem in a hydro 

dominated power system was the subject of [22]. In this paper, a case study was 

presented considering that the solution of the unit commitment problem was 

predetermined and, hence, thermal start up and shut down operations and power rate 

restrictions were not considered. On the other hand, many constraints were formulated 

such as reservoir release targets, power flow transmission limits, reservoir storage limits 

and discharge variation limits.  
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Augmented Lagrangian relaxation is also another decomposition-based method that 

was presented in a number of papers such as [23].  In this paper, the augmented 

Lagrangian decomposition and coordination technique was applied to the STHTS 

problem instead of the standard Lagrangian relaxation approach. Reducing the oscillation 

of the solutions to the sub-problems in the standard Lagrangian relaxation technique was 

an objective of the augmented Lagrangian approach. By applying this method, the 

linearity and piecewise linearity of the cost functions of the sub-problems were avoided 

and hence the oscillations were reduced. Compared to the standard Lagrangian 

relaxation, the augmented Lagrangian approach requires less computational time with 

better convergence characteristics although oscillations were not eliminated. This lead to 

a smooth movement of the solutions to the sub-problems with a slight change of the value 

of multipliers. The approach was tested using a practical system consisting of thermal, 

hydro and pumped storage units with many practical constraints were considered.  It 

should be pointed out that the selection of the penalty coefficient was not easy, as it could 

be not appropriate for all different units. The oscillations of the solutions to the sub-

problems in the Lagrangian relaxation technique as well as the singularity of these 

solutions were also discussed in [24]. In this paper, a nonlinear approximation method 

was presented. Quadratic nonlinear functions were used to approximate linear cost 

functions. The algorithm was tested and applied to a practical system and the results 

demonstrated its efficiency although when compared to the standard Lagrangian 

relaxation method, no difference in the computational time was reported.  

In [25, 26] a Lagrangian relaxation-based algorithm and a dynamic programming 

technique were integrated into an expert system to solve the STHTS problem. Steam and 

gas turbines were considered as well as many constraints such as the nonlinearity of 

thermal generation cost, transmission losses and the water discharge rates. The algorithm 

was reported to reach a feasible solution in an acceptable time although additional 

iterations were required in some test cases to find the optimal Lagrangian multipliers for 

the nearest feasible solution. Guan et al. presented a Lagrangian relaxation-based 

technique for the STHTS problem in [27]. They concentrated on the solution 

methodology for the hydro sub-problem with the cascaded reservoirs and discrete hydro 

constraints. In the formulation of the problem, the hydro units were represented by one 
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equivalent unit and only one existing river catchment was assumed. Ramp rates and 

system losses constraints were not included in the formulation. The algorithm was tested 

using a realistic system and a near-optimal solution was confirmed. The computational 

time was assumed good although the results were not compared to those of other 

approaches.  

Updating the Lagrangian multipliers was addressed by several papers to overcome 

the problems associated with the commonly used sub-gradient updating method. In [28], 

an application of a bundle method called “the Bundle Trust Region Method” was 

presented and applied to update the Lagrangian multipliers. The categorization of the 

presented method as a trust region method was a point of debate since a method could be 

defined as a trust region method if a dynamic modification is applied to the feasibility 

region whilst this approach could be better classified as a dual penalty cutting plane 

method.  The method was compared to the sub-gradient method and other bundling 

methods and found to have faster convergence although only the line search rule was 

used to compute the ascent direction.  

An alternative bundling method to update the multipliers was presented in [29]. This 

algorithm was called “reduced complexity bundle method” and used to obtain better 

convergence and to avoid the zigzagging behavior of the conventional bundle method, 

which could cause a slow convergence. Tests were run using practical data sets with 

various realistic considerations included. Results showed better feasible solutions to the 

dual cost function compared to the sub-gradient method although no guarantee of 

convergence was offered. It should be mentioned that some details in the methodology 

were not made clear such as the procedure of selecting the bundle elements and how they 

were projected.  

Dual programming algorithms were applied to solve the thermal generation 

scheduling sub-problem as part of the STHTS problem in [30]. Two methods were 

implemented and tested using both small and large-scale test systems. Results were 

considered to have good convergence characteristics. In [31], an updating technique for 

the Lagrangian multipliers was presented. This technique was called the optimal distance 

method. The method was tested and compared to the sub-gradient method and proved to 

have better convergence properties and accuracy of solution. However, convergence in 
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some test cases was not reached easily and more iterations were required to find a 

feasible solution. Another updating approach for the Lagrangian relaxation multipliers 

was presented in [32]. This approach was referred to as “a novel, non-oscillating and 

efficient multiplier updating procedure”. The procedure was tested and showed 

superiority when compared to the sub-gradient and bundling methods based on the 

number of iterations required.  

Reference [33] presented a novel relaxation algorithm to solve river catchment sub-

problems taking into consideration the continuous and discontinuous dynamics and 

constraints as well as hydraulic coupling of cascaded reservoirs. In this approach, another 

set of multipliers was used to relax the minimum hydro generation of each hydro unit. 

The algorithm considered the pumped storage units in addition to thermal and hydro 

units, which were represented by one unit. A near-optimal feasible solution was obtained 

when the algorithm was tested. However, there were some concerns regarding 

convergence issues when compared to a previously applied heuristic method. Bidding in 

energy markets and its influence on the hydro-thermal problem was the subject of [34]. 

The paper presented a novel formulation to integrate bidding and hydro-thermal 

scheduling based on a Lagrangian relaxation approach. A Markov chain model was 

employed to present the hourly market cleaning prices considering the reserve market and 

the self-scheduling requirements. The problem was decomposed into a number of sub-

problems that were solved using a stochastic dynamic programming approach. Pumped 

storage hydro units were also included and many practical considerations were 

formulated although, for simplicity, some assumptions regarding the market clearing 

prices and the “perfect market” were applied.  

In [35], an augmented Lagrangian method was used to solve the STHTS problem 

considering the transmission constraints and including pumped storage units in the 

model. The method was tested using the IEEE 24-bus system and the results showed that 

a feasible solution was reached with no more iterations required for the economic 

dispatch algorithms. The method was reported to be accurate and practical though it was 

not applied to realistic systems. With respect to convergence properties, it was suggested 

that the augmented Lagrangian approach could be improved by using suitable updating 

methods. In [36, 37], various techniques were applied to relax the Lagrangian relaxation 
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multipliers. These are; Datzig-Wolfe linear programming, sub-gradient method and 

Branch & Bound. Real generation data was used to perform the application of the 

methods considering many practical constraints such as system losses and other thermal 

and hydro limits but not the ramp rates. Results were shown to demonstrate the 

effectiveness and optimization capabilities of the applied techniques, however, 

convergence issues and stopping criterion were not discussed.   

A Lagrangian relaxation approach was also presented in [38]. The dual problem was 

solved using a Lagrangian relaxation approach with a disaggregated bundle method. In 

order to improve the performance of the bundle method, a warm-starting procedure was 

also introduced. Results showed better convergence characteristics compared to the 

aggregated bundle methods although the implementation was only run on a simple 

system.  

In [39], a comparison of Lagrangian relaxation and truncated dynamic programming 

methods was presented. The comparison was performed based on the time required for 

the two methods to reach a near-optimal feasible solution. In spite of the fact that the dual 

optimal solution obtained by the Lagrangian relaxation method was not always satisfied, 

it was found to be more flexible for large-scale problems with lower cost than the 

truncated dynamic programming approach. The approach presented in [40] was a 

Lagrangian relaxation technique based on variable splitting to solve the hydro-thermal 

scheduling problem in large-scale predominantly hydro-electrical systems. The problem 

was decomposed into a set of sub-problems; hydro, thermal and electric. In this approach, 

the resulting dual problem was non-differentiable and could be solved using a bundling 

method. A final feasible solution was found by an augmented Lagrangian relaxation 

technique. However, some infeasibility was still recognized due to the representation of 

nonlinear constraints by a piecewise linear approximation. The common problem of 

oscillatory effects associated with the Lagrangian relaxation technique could also be 

pointed out.  Another decomposition method, which is widely applied to solve the hydro-

thermal scheduling problem, is the Benders decomposition method. In this approach, the 

large-scale problem is usually decomposed into sets of coupling variables and the dual 

formulation of the sub-problems is employed to find the solution.  
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A multistage Benders decomposition method was presented in [41] to solve the 

security constrained hydro-thermal scheduling problem. In this work, the hydro system 

was modeled considering many details and constraints such as cascaded reservoirs, 

storage and spillage and other hydraulic constraints. The DC model losses for each line 

were represented by a piecewise linear function. The approach was applied to a study 

case considering the IEEE 118-bus system. In an extension to the multistage Benders 

decomposition, the problem was solved by iterative forward and backward recursions in 

[42]. Benders cuts approach was applied to approximate the cost-to-go function for each 

stage. In [43], the strategies for handling infeasibility that may occur during the 

multistage Benders decomposition iterative process were discussed. Considering not only 

the DC transmission losses but also the AC power flow, Benders decomposition 

technique was presented in [44, 45]. This approach studied modeling the transmission 

network using AC power flow when applied to solve the STHTS problem. Congestion 

management and quality control of service that are typically presented in large and 

weakly meshed networks were also considered. The method was tested using a 9-bus 

system and an actual power system. It was considered to have robust convergence 

properties although, as expected for Benders decomposition method, there was a tailing 

off effect and slow convergence. To help in reducing the computational times, an 

accelerating technique was included in the scheme and presented in [45]. 

2.2.2 Interior-Point Methods 

Since the publication of Karmarkar’s revolutionary paper [46] in 1984, the field of 

optimization has been remarkably changed when he rediscovered the interior point (IP) 

methods [47]. In his paper, Karmarkar proved that IP methods were capable to solve 

linear programs in a polynomial time manner. He also provided, for the first time, direct 

evidence that IP methods were faster than the simplex method especially in large-scale 

optimization problems. The earliest ideas for the IP methods can be traced back to 1955 

when Frisch [48] proposed a log barrier function to replace the linear inequality 

constraints. Gill et al. [49] explained the relationship between Karmarkar’s method and 

Fiacco and McCormick’s classical logarithmic barrier method.  

In general, IP methods can be categorized as; projective methods, affine scaling 
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methods or primal-dual methods [50]. The primal-dual algorithm was first outlined by 

Megiddo [51]. This “primal-dual path following” approach proposed that the optimal 

solution should follow the center path. In 1992, Mehrotra [52] proposed the predictor-

corrector technique to be integrated with the “interior point path following” methods.  IP 

methods have been applied to solve the problems of power system optimization since 

early 1990’s. Clements et al. [53] was the first who applied IP methods to power system 

in 1991. In his research, Clements applied a nonlinear programming interior point 

approach to solve the state estimation problems in power systems. Afterwards, a large 

number of papers tackling the subject of the application of IP methods in various fields 

were introduced. A review of the IP methods that were applied to a variety of power 

system optimization problems up to 1993 is presented in [12]. IP methods have been 

successfully applied to power system operation and planning areas such as economic 

dispatch, unit commitment and hydro-thermal scheduling problems. In addition to long 

and medium-term hydro-thermal scheduling, IP methods have been also employed to 

determine the optimal short-term schedules for hydro-thermal systems. An updated 

review on the application of IP methods is presented in [54]. 

Palacio et.al in [55] proposed a primal-dual IP method to solve the STHTS problem 

and studied the influence of the bilateral contracts and spot market on the optimal 

scheduling. Transmission losses of each power transaction were calculated and the effects 

of the loading order on the transmission losses allocated to the pool and bilateral loads 

were studied. To validate the results, two test systems were used; a 6-bus system and a 

27-bus system that was assumed equivalent to a specific real system. Various thermal and 

hydraulic constraints were considered, but some were not addressed such as the down and 

up ramp rates.  

A genetic algorithm was combined with a primal-dual IP method in the methodology 

of [56]. In this reference, the determination of the on/off status of the thermal units was 

performed using the genetic algorithm while the IP method was employed to solve the 

economic dispatch problem in order to solve the STHTS problem. Results showed that 

the total available hydraulic energy could not be used because of the hydraulic and 

generation constraints. Inter-temporal constraints caused by cascaded reservoirs and 

maximum up and down ramps were among the constraints considered while the 
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transmission system losses were not. Robustness and speed of convergence of primal-

dual and predictor-corrector IP methods were studied in [57]. To solve the STHTS 

problem, the two IP methods were implemented and both were reported to be robust and 

fast when tested. In this implementation, the thermal system related constraints were not 

involved because the model considered a predominant hydro system. Costs of startup and 

shutdown of thermal generating units and the minimum up and down ramp rates were 

taken into consideration. In order to make it simple, the model used only pure quadratic 

cost functions for generation considering the same quadratic coefficients for all units. In a 

conclusion on the convergence issues, the results showed that the number of iterations 

required was increased by the active bounds, while the generation costs were found to be 

more critical than the transmission costs and therefore led to faster convergence.  

In [58], the objective of the STHTS problem was to minimize the difference between 

the generation costs and the consumer benefit in a predominantly hydro-electric system 

considering the dynamic restrictions of the consumer energy constraints. To achieve this 

goal, a primal-dual IP method was used and the STHTS problem was treated as a single 

problem. It was found that as the price-responsive load increased, the hydro generation 

therefore increased and as a result the thermal generation decreased which reduced the 

generation costs. The authors in [59] proposed an STHTS model in which the spot market 

trades and the bilateral transactions were discriminated. A primal-dual IP method was 

employed to solve the hydro and thermal sub-problems and a bundle method was 

implemented for the dual problem. In this method, the unit commitment status was 

assumed known. Although the power balance equations did not include the system 

transmission losses, they were assumed to be supplied by the pool. The hydropower was 

modeled as a function of the forebay and the afterbay elevation but without considering 

the flow losses and the effects of the net head and the discharge rate on the joint 

efficiency of the turbine-generator.  

Troncoso et al. in [60] used a genetic algorithm to compute the optimal STHTS 

problem and compare its performance to that of the IP method. Results showed that the 

genetic algorithm reached better feasible minima while the IP method achieved better 

performance in CPU time. It was also shown that the IP algorithm including the 

constraints converged without difficulty when the problem was solved only to obtain an 
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initialization point. On the other hand, when the same problem was solved using the 

former solution, the stopping criteria needed more iterations. It should be mentioned also 

that the constraints did not include the system power losses.  

The need to decrease the computational burden of the genetic algorithm was 

expressed as an important issue for real systems. Reference [61] presented a homogenous 

IP method to solve the STHTS problem. Many constraints were considered in the model 

assuming that there existed a local large reservoir for each hydro generation unit so that 

the head variations were ignored. The long-term bilateral contracts and the forecasted 

market hourly prices for day-ahead auction were integrated in the model. In this 

implementation, a large-scale system with large number of constraints and variables was 

used to evaluate the algorithm. 

2.2.3 Mixed Integer Programming 

Integer and mixed-integer programming have been widely applied to solve different 

optimization problems such as the hydro-thermal scheduling problem. The commonly 

shared characteristic of these problems is having continuous and discrete variables that 

could only take an integer value.  Branch and Bound (B&B) and cutting plane are among 

the most widely applied mixed-integer programming methods.  

The STHTS problem is one of the most complex mixed-integer programming 

problems. Several mixed-integer programming approaches and algorithms have been 

introduced and many commercial solvers are available. To improve the performance of 

these solvers, a convex hydro-thermal scheduling method was presented in [62]. In this 

paper, convexity issues of some standard commercial mixed-integer programming solvers 

were discussed. The nonlinear mixed-integer short-term hydro-thermal scheduling 

problem was linearized and the conditional constraints such as the on/off status of the 

generation units, which was a function of the minimum up/down times, were normalized. 

The method was tested and results were demonstrated to show good solution quality and 

computational speed although it was concluded that the convergence computational speed 

could be improved by using a better B&B procedure.  

In [63], a mixed-integer model for hydro-electric systems short-term planning was 

presented. This model was designed to avoid the problems caused by nonlinearity and 
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non-convexity by considering only the points with good degree of efficiency. The 

problem was decomposed into sub-problems with relaxed coupling constraints. The 

model was tested practically using a power system consisting of nuclear and hydro 

generation units with some assumptions were applied and some constraints were not 

considered for the sake of simplicity. In [64], a mixed-integer programming based 

algorithm was used to deal with the unit commitment problem while a multi-embedded 

linear programming model was applied to find the optimal scheduling for hydro-thermal 

systems. Linear programming and network flow programming were used to formulate the 

multi-embedded blocks. The hydro units were represented by a linear model in which 

water head was fixed and assumed known. To test the algorithm, it was applied to a 

realistic large-scale case study and the results showed the total cost of the study. 

However, no information was given regarding neither the computer memory nor the 

computational time required by the algorithm although direct methods, in general, are 

expected to have good convergence properties. The problem of computational time 

associated with the mixed-integer programming approaches is widely recognized 

especially when applied to large-scale optimization problem such as the STHTS problem.  

An algorithm was presented in [65] to deal with this problem by improving the 

Branch and Bound (B&B) search method. In order to achieve this goal, an initial feasible 

integer solution was provided to lead the B&B to the optimal solution. An under-relaxed 

procedure was applied to the hydro-thermal system entirely to overcome the oscillation 

problem. The algorithm was tested using realistic large-scale case studies showing good 

performance and computational features.  

2.2.4 Dynamic Programming 

The dynamic programming optimization approach has been extensively used to solve 

the hydro-thermal scheduling problem because of the complexity of this problem and 

existence of the dynamic variables.  The ability of dynamic programming to overcome 

the difficulties of the nonlinearity and non-convexity of large-scale systems is another 

reason for its popularity. In dynamic programming, large size problems, which consist of 

many state variables and dynamic elements, are decomposed into smaller problems that 

could be solved independently. With the so called “curse of dimensionality” [10], which 
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is the limited ability to solve large-sized problems with large number of variables, is the 

main disadvantage of dynamic programming. In spite of this drawback, it has been 

applied to various power system areas and studied by a considerable number of 

publications in the literature.  

Yang and Chen presented a special form of dynamic programming techniques in [66] 

to solve the STHTS problem. To improve the performance of dynamic programming and 

overcome its disadvantages, namely, the high computational time and large memory 

storage, a multi-pass dynamic programming technique was implemented. The algorithm 

was tested using real data obtained from a realistic power system containing thermal and 

hydro units; however, some constraints were not considered. Although the cases tested in 

this paper did converge into reasonable solutions, there was no indication that global 

optimal solutions were guaranteed. In fact, the solutions that were reached might be local, 

especially when we keep in mind that the algorithm used was an iterative-based process.  

A multi-pass dynamic programming approach was presented again in [67] by the 

same authors and applied to a similar hydro-thermal power system but, in this paper, the 

pumped storage units were included in the system formulation. The same approach was 

used also in [68] considering the pumped storage units and battery energy storage system 

which was simulated and integrated into the system. The energy stored in the battery 

storage system was presented as an additional state variable in the problem formulation. 

In [69], a similar approach using the multi-pass dynamic programming was presented and 

tested using real data although results regarding the convergence issues and 

computational time and memory storage required were not presented in details to be 

compared with other published work. A solution to the dual sub-problem of thermal and 

hydro units was presented in [70], which was the second of two papers whereas the first, 

[71] was devoted to solve the primal problem. A dynamic programming method was used 

to solve the thermal unit sub-problem while the hydro sub-problem was solved using the 

approximation in the state space within the multi-pass dynamic programming. The 

procedure was tested by running a number of simulations and results demonstrated a 

good performance and improved computational time.  

In [72], a multi-pass dynamic programming was integrated with an evolutionary 

programming (EP) algorithm in order to obtain an improved solution. Two case studies 
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were presented to implement the approach considering, in addition to thermal and hydro 

units, pumped storage units which either worked in pumping mode or generation mode 

with no idle times. An extended differential dynamic programming and mixed scheduling 

approach was presented in [73] to determine the optimal short-term scheduling of hydro-

thermal systems. The problem was decomposed into thermal and hydro sub-problems. An 

analytical approach was used to solve the thermal sub-problem while the extended 

differential dynamic programming was implemented for the hydro sub-problems. 

Unpredictable changes in natural inflow and its impact on the total cost were taken into 

consideration while developing a quick and practical estimation way for this change.  

In [74], a priority-list-based dynamic programming was used to solve the hydro unit 

commitment as a part of the STHTS problem to reduce the dimension of the problem. A 

successive approximation method was employed to obtain better convergence properties 

when applied to realistic test systems. 

2.2.5 Evolutionary Computing Methods 

Based on evolutionary theory and inspired by the principle of “survival of the fittest” 

[75], evolutionary computation is one of the computational intelligence based approaches 

that have been applied to solve complex optimization problems [76]. Flexibility and 

capability to obtain good quality solutions are the advantages of evolutionary 

computation; however, these are highly affected by computer requirements and 

convergence characteristics [77]. Several evolutionary computation techniques have been 

introduced and applied to power system optimization problems, these include; genetic 

algorithms (GA), simulated annealing (SA), evolutionary strategies, evolutionary 

programming (EP) and particle swarm optimization (PSO). 

2.2.5.1 Genetic Algorithms 

Genetic algorithms have been widely applied to power systems since they were 

introduced by John Holland in his book [78] in 1975. GA is a search technique that 

searches for a population of solution points starting from an initial arbitrary solution 

within the feasible region [10]. Genetic algorithms have become one of the most popular 

approaches because of the many advantages that have been acknowledged such as their 
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ability to handle any objective function with any constraints. Moreover, they are less 

likely to converge to local minima since their population-based search is a probabilistic 

transition strategy [79]. On the other hand, their main weakness is the high computational 

time required for convergence [77]. Various planning and operation problems of power 

systems have been solved using genetic algorithms such as economic dispatch, unit 

commitment and hydro-thermal scheduling problems. One of the earliest applications of 

GA to solve the STHTS problem was presented in [80]. In this work, a GA-based method 

was applied to the 24-hour ahead generation scheduling of hydraulically coupled units. 

The GA was used to solve the hydro sub-problem considering the water balance as well 

as the effects of net head and water travel time delays. A realistic system was employed 

to test the method and compare its performance to a dynamic programming approach. 

Results showed good performance with good solution quality and robustness of GA 

especially in avoiding local minima as it was theoretically stated. A good overview on 

GA was presented in [81] and applied to determine the optimal short-term scheduling of 

hydro-thermal systems. In this lengthy paper, a case study system of chain cascaded 

hydro units and a number of thermal units was used to evaluate the algorithm where the 

unit commitment problem was assumed solved while the economic dispatch sub-problem 

was considered. Many practical constraints were included in the formulation, however, 

the size of the problem of the case study was small and there was no evidence that the 

algorithm could be successfully applied to larger size problems. The performance of the 

algorithm was considered good although no comparison with other approaches was 

carried out in order to evaluate whether the algorithm was competitive or not.  

In [82], a diploid genotype GA was applied to the STHTS problem. Unlike the case 

of haploid genotype based GA, where chromosomal strings of individuals are decoded 

directly as a solution, in diploid genotypes based GA an individual has two chromosomal 

strings.  The solution here is represented using a pair of binary strings of the same length. 

A comparison between diploid genotype and haploid genotype GA approaches was 

performed and the superiority of the first was illustrated based on the results obtained 

from performing several simulated test examples. Robustness of the convergence and 

ability to satisfy constraints were also demonstrated although the algorithm was not 

compared to other methods. A concurrent solution of the unit commitment and the 



 

     25 

economic dispatch sub-problems in addition to the STHTS problem using GA was 

presented in [83]. The approach was tested using a realistic system and the results were 

considered good. Test results for purely thermal systems gave lower costs when 

compared to those obtained by other methods including the previously implemented GA 

that presented in the literature, however, no comparison based on computational time was 

presented.  

In [84], the thermal sub-problem was addressed using a priority-list approach while 

an enhanced GA was used for the hydro sub-problem. Several practical constraints were 

considered by the hydro model, which was formulated at the unit level in order to be 

more accurate. The method was tested using a realistic system and proved to be more 

effective than standard GA approaches. The scheduling problem in [85] was decomposed 

into three sub-problems; unit commitment, economic dispatching and STHTS sub-

problems. To test the method, a test example was employed consisting of hydro and 

thermal units but no pumped storage units were included. Volume and discharge water 

constraints were considered as well as spinning reserve and losses, however, some others 

such as ramp rates were not considered. Results regarding total costs and final volume 

and water discharge in reservoirs were presented but no information were revealed about 

the computational time and memory size required.  

An evolutionary algorithm called a cultural algorithm was presented in [86] to solve 

the daily scheduling problem of hydro-thermal systems. The algorithm was compared to 

the GA method and showed better results in terms of solution quality and convergence 

behavior. In reference [87], a real GA and a binary coded GA method were applied to 

solve the STHTS problem and compared from a computational efficiency point of view. 

The two algorithms solved the problem assuming that the unit commitment was already 

solved but the economic dispatch was considered in the problem formulation. Two test 

cases for each algorithm were run, in the first, the valve-point loading effects were 

considered while they were not in the second. Results supported the superiority of the 

real coded GA as it showed better performance than the binary coded GA; however, the 

two algorithms were not compared to other methods.  

In [60], a GA was applied to the optimal short-term scheduling where the on/off 

status of the thermal and hydro units was computed. In order to obtain a guaranteed 
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feasible solution, some heuristics were applied. Several realistic test case examples were 

employed to evaluate the performance of the algorithm. These examples consisted of a 

number of thermal units and one equivalent hydro unit but no pumped-storage units were 

included. Practical electrical and hydro constraints such as ramp constraints were 

formulated which raised the operating cost when considered. The GA was compared to 

an interior-point method approach and as expected, the GA gave better feasible minima 

while the interior-point method showed better convergence properties. 

An optimal gamma-based GA was applied to find the optimal scheduling of fixed-

head short-term hydro-thermal generation systems in [88]. The algorithm was designed to 

minimize the GA variables and hence to reduce the computational burden. Simulation 

results revealed that the proposed algorithm was able to converge with a lower population 

size and smaller execution time compared to the conventional GA.    

2.2.5.2 Simulated Annealing 

Although it is not always classified as an evolutionary method, many researchers 

include Simulated Annealing (SA) techniques under this category. SA, which is a 

heuristic optimization method, was first introduced in 1983 by Kirkpatrick [89]. Inspired 

by thermodynamics, SA technique tackles combinational optimization problems by 

simulating the thermal dynamics associated with the process of gradually cooling metals 

and forming crystals. Simplicity and ability to represent different objective functions of 

complicated optimization problems gave rise to the number of publications and 

applications of the SA techniques in different research areas of optimization. On the other 

hand, the main disadvantage of SA is the repeated annealing since when an optimal 

solution is reached it cannot be detected unless another method is incorporated with the 

SA [77].  

SA techniques have been applied to various optimization problems in power systems 

including unit commitment, maintenance scheduling, transmission networks and 

distribution systems. Wong and Wong in their paper [90] presented a sequential SA 

algorithm to solve the STHTS problem considering various hydro and thermal constraints 

although some other constraints such as ramp rates were not included. To evaluate the 

algorithm it was applied to a test example, however, it was a small size system consisting 
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of equivalent thermal and hydro plants without including pumped storage units. Results 

demonstrated the advantages of the SA techniques such as simplicity and capability to 

handle complex objective functions in addition to the insensitivity to the starting 

schedule. On the other hand, the well-known drawback of SA, which was the high 

computational time required, obviously came into sight. To treat this weakness and 

improve the speed of execution, the authors developed another SA algorithm, which was 

described as a coarse-grained parallel SA algorithm, and presented it in another paper 

[91]. The same testing system was employed to apply the developed parallel algorithm 

and compare it to the previous one. The parallel SA algorithm showed considerable 

difference in computational time in addition to slight improvement in its performance 

compared to the former SA algorithm.  

In [92], SA was implemented to solve the thermal sub-problem while the hydro sub-

problem was solved using a peak shaving method in order to find the optimal short-term 

scheduling for hydro-thermal power systems. The proposed method was tested using a 

modified version of a realistic power system and was considered robust with good 

performance and reasonable conversion time although it was not compared to other 

optimization approaches. 

2.2.5.3  Particle Swarm Optimization 

Particle swarm optimization (PSO) is an evolutionary method motivated by the 

social behavior of bird flocks and fish schools. PSO was first introduced in 1995 by 

Kennedy and Eberhart [93, 94] as a heuristic algorithm for nonlinear optimization 

problems. In addition to the advantages of other evolutionary methods such as simplicity 

and ability to handle complex objective functions, PSO algorithms do not include many 

parameters to adjust and do not need perfect initial points. On the other hand, PSO is not 

ideal from a mathematical background viewpoint and it cannot guarantee convergence to 

global solutions [95]. PSO algorithms have been widely applied to various complex 

optimization problems including power system operational planning and design 

problems. A comprehensive survey of PSO applications in various areas of power system 

optimization as well as a review of the advantages and disadvantages of this approach 

were presented in [95]. Umayal et al. in [96], presented a PSO application to find the 
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short-term optimal generation schedule as a multi-objective optimization problem. In 

addition to the minimization of operation costs, the formulation of the objective function 

had to consider minimizing gaseous emission in order to satisfy environmental 

constraints. Several practical constraints including emission control and the usual hydro 

and thermal constraints were considered but some of them such as ramp rates were not 

accounted for. In order to evaluate the proposed algorithm, two testing systems were 

employed and good performance results were reported. The method was considered 

applicable for realistic large-scale systems; however, the size of the testing systems was 

very limited and no evidence was presented to support this statement. Although it was 

concluded that the proposed solution was simple and required less execution time, there 

was no information regarding convergence properties neither were there any comparison 

with previously applied methods.  

In [97], PSO application to the short-term hydro-thermal scheduling problem was 

studied and compared to other meta-heuristic search algorithms. Comparison revealed 

that the PSO approach was superior as it proved better convergence characteristics and 

less solution time. In [98], different PSO versions were presented, applied to solve 

STHTS problem and compared to each other. According to this reference, there were four 

versions of PSO based on the size of the neighborhood and the formulation of velocity 

updating.  The algorithms were applied to a test system consisting of a number of hydro 

units and an equivalent thermal unit while no pumped storage units were included. 

Compared to other evolutionary approaches, the different PSO algorithms showed better 

performance and in particular, the local versions of the PSO were found best as they 

could maintain the diversity of population. However, considering only one equivalent 

unit to represent all thermal units could violate the accuracy when applied to realistic 

systems. This weakness was remedied in [99] by considering cost characteristics of 

individual thermal units. To solve the problem, a PSO was applied considering the effect 

of valve-point loading on the cost function as well as many, but not all, practical hydro 

and thermal constraints. The algorithm was implemented using a test system that 

consisted of a number of hydro and thermal units with no pumped storage units were 

considered. A comparison to a simulated annealing (SA) as well as to an EP method was 

conducted and showed the superiority of the proposed PSO algorithm.  
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In [100], an evolutionary PSO based solution was presented to solve the problem of 

scheduling pumped-storage units in the frame of the solution to the STHTS problem. The 

proposed approach was a combination of binary version of PSO and a mutation operation 

in order to help reaching global minima and performing fast convergence. Results 

obtained from tests demonstrated good quality solutions and convergence properties 

when compared to other existing applied methods including standard PSO algorithms. In 

[101], a PSO algorithm was applied to solve the STHTS problem using a dynamic 

search-space squeezing strategy to improve the optimization process. It was reported that 

the proposed algorithm had better solution quality and good convergence properties but 

no information regarding computation time was provided. 

2.2.5.4  Evolutionary Strategies and Evolutionary Programming 

Evolutionary strategies and EP are two quite similar evolutionary computation 

methods, were both introduced in 1960, although they were developed separately in 

parallel [76]. In spite of their similarities, the two approaches still have some differences 

from genetic algorithms and other evolutionary based methods. Since they were 

proposed, the two methods have been applied to various power system problems, though 

not as widely and increasingly as genetic algorithms. Compared to the small number of 

published work on the application of evolutionary strategies to solving the STHTS 

problem, several research papers that applied EP techniques have been introduced.  

Werner and Verstege [102] proposed what seems to be a unique application of 

evolutionary strategies to the short-term hydro-thermal scheduling problem. In the 

formulation of the problem, the researchers considered run-of-river plants and pumped-

storage units without decomposing the problem into sub-problems. A hydro-thermal 

testing system was employed to evaluate the method. The system consisted of pumped-

storage units in addition to the thermal units and hydro units that have the ability to store 

a limited amount of water. Results were considered good as the algorithm showed the 

ability to solve the problem with good solution quality although the quality of solution 

was dependent on the initial solutions as is the case in some of the computation methods. 

It was also noted that there was no indication in the paper that convergence to global 
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minimum could be guaranteed and hence it was concluded that more focus on 

convergence properties was required.  

In [103], a novel EP algorithm was presented and applied to the STHTS problem. 

The performance of the proposed algorithm was compared to that of gradient search, 

genetic algorithms and simulated annealing methods and was reported to show better 

results in terms of cost as well as computational time and memory size requirement. Two 

example systems were used to test the algorithm consisting of hydro units and thermal 

unit while pumped-storage unit were not considered, however, the size of the systems 

was relatively small. Another comparison between the EP algorithm and the classical 

gradient search and simulated annealing techniques was presented in [104]. Although 

results agree with those of the previous reference regarding a lower cost and more 

powerful searching compared to gradient search and simulating annealing methods, but in 

contrast, longer execution time was required for convergence than that required by the 

other two methods.  

Reference [105] presented an application of several evolutionary based methods 

including an EP algorithm. In this work, in addition to the usual constraints, 

environmental aspects were also taken into consideration as well as ramp rates and 

transmission losses. The algorithms were applied and compared to classical methods 

whereas results were considered good although no detailed presentation was offered 

about the testing system and its size, about neither the comparison results nor the 

convergence behavior. A constructive EP method, which was a combination of dynamic 

programming and evolutionary programming, was presented in [106] to solve the 

scheduling optimization problem of multiple storage hydro-thermal systems. In this 

method, the problem was decomposed into several sub-problems with cost-to-go 

functions assuming linear variables and constraints. The method was tested using two 

case study systems with multi-storage plants. It was found robust, efficient and suitable 

for a rapid optimal scheduling of practical and large-size systems although, nonlinear, 

non-convex and non-smooth characteristics of realistic systems were not accounted for 

when tested.  

In addition to classical and fast evolutionary algorithms, that are Gaussian and 

Cauchy mutation-based respectively, an improved faster EP method was presented in 
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[107]. In order to evaluate and compare the three algorithms, various aspects were 

studied such as the effect of the initial solutions and computational time in addition to 

minimum and mean cost.  Effects of valve-point loading and prohibited hydro-discharge 

zones on hydro-thermal scheduling with quadratic thermal cost function were explored. 

Results revealed the superiority of the proposed improved fast evolutionary algorithm 

over the other two EP ones. It should be pointed out that the case study used to apply and 

implement the proposed algorithm was very small-size system and there was no proof 

that the same good results could be obtained if applied to practical large-scale complex 

systems. The same results were obtained and presented by the same authors in [108].  

In [109], a hybrid EP-based algorithm was presented to solve the problem without 

decomposition into sub-problems. The algorithm was tested using sample cases and 

results lead to a conclusion that the algorithm was an efficient and advantageous method 

to solve the problem although the test examples were very small-sized and no evidence 

was indicated to verify that the results and conclusion drawn would hold for complex 

large-size systems. Besides, many practical aspects and constraints were not taken into 

consideration including pumped-storage units and ramping limitations. Convergence 

properties as well as computational time and memory size required were not discussed in 

the paper although the execution time was judged acceptable.  Another application of 

hybrid EP was proposed in [110] using a novel EP in the first phase and a direct search 

was used in the second phase. In order to validate the proposed algorithm, it was tested 

using a small size example and compared to other methods. Results showed that the 

proposed algorithm provided better cost results and less computational time in addition to 

robustness and effectiveness. However, except for the cost based comparison, no 

information was presented to support other results and conclusions. An EP algorithm in 

[111] was applied and compared to a genetic algorithm approach and when tested showed 

better performance in terms of cost while no details were shown regarding computational 

time and memory size. A modified differential evolution-based approach was compared 

to an EP algorithm in [112] when applied to solve the short-term hydro-thermal 

scheduling problem. Effects of valve-point loading and emission function inclusion were 

investigated while various thermal and hydro constraints were considered. Results 

showed the effectiveness of the method based on the optimal costs and emission but no 
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presentation regarding convergence and execution time was offered in details. Another 

application of differential evolution-based technique for solving short-term hydro-thermal 

generation scheduling was presented in [113]. The system considered was a multi-

reservoir cascaded one with water transportation delays and valve-point effects. Two test 

systems were used to evaluate the proposed algorithm and compare its performance to 

other evolutionary algorithms. Comparison results demonstrated the superiority of the 

proposed algorithm in terms of cost and computation time.   

2.2.6 Artificial Intelligence Techniques 

In the field of power system operations and planning, very sophisticated computer 

programs are extensively required. They are designed in such a way that they could be 

executed and modified frequently according to any variations. Artificial intelligence is a 

powerful knowledge-based approach that has the ability to deal with the high nonlinearity 

of practical systems. Among their useful features are the ability to learn and build the 

experience within a period and the ability to store the knowledge they learn inspired by 

the human intelligence. Artificial neural networks and fuzzy logic are the most important 

artificial intelligence approaches that have been applied to the STHTS. 

2.2.6.1  Neural Networks 

A neural network is a massively parallel-distributed processor that has the ability of 

learning and storing knowledge and making it available for use through resembling the 

human brain in some aspects.  The learning process is performed by a learning program 

that changes the synaptic weights, which are the inter-neuron connection strengths where 

knowledge is stored, to attain a desired design objective. Once the network is trained, it is 

capable of generation. Generation refers to the capability of the neural network producing 

“reasonable” outputs for inputs encountered during the training process [114].  

Neural network techniques have extensively been of a great interest to power system 

community since not very later than the publication of remarkable Hopfield’s paper in 

1982 [115] . By the late eighties and early nineties, the application of neural network in 

various power system areas has become quite well established [116]. It should be noted 

that most of the implementations in the literature are based on the feed-forward multi-
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layer networks [77]. Although other architectures have also been investigated, they are 

few in number. In spite of the popularity of neural networks in power systems, quite a 

few papers have been published that applied this technique to solve STHTS problem. 

Naresh and Sharma [117] proposed a two-phase neural network-based method to find the 

optimal short-term schedule for hydro-thermal systems. In this implementation, the 

neural network seemed to be a feed-forward network although its structure was not 

indicated. The states of the analogue neurons were employed as scheduled discharge for 

the hydro units. Several hydro and thermal constraints taken into consideration including 

water transportation delay between cascaded reservoirs and transmission losses although 

some others were not accounted for such as ramp rates. The method was applied using a 

test example consisting of multi-chain cascaded hydro units and an equivalent thermal 

unit while no pumped-storage units were included. The performance of the method was 

compared to the results obtained by an augmented Lagrangian method and found very 

close to each other. In [118], a Hopfield neural network was applied to the problem 

considering a system with fixed-head hydro units and a piecewise linear relationship 

between the water discharge and the electrical power output function. A test system with 

two hydro plants and two thermal plants was employed to validate the proposed method 

and to compare it to Newton’s method. Results showed that the two methods did not give 

different cost results, but no comparison regarding neither convergence characteristics 

nor computational time was offered. In spite of that, it was concluded that the proposed 

method was fast and required small computational resources in addition to its efficiency 

and practicality. It should be also noted that the formulation of the problem did not 

consider some realistic constraints and the used test example was not large enough to 

give an evidence that the method could be successfully applied to real word large-scale 

problems in addition of not considering pumped-storage units.  

Pumped-storage units were included in the formulation of the problem presented in 

[119]. In this paper, an enhanced merit order and an augmented Lagrange Hopfield neural 

network were presented and applied for the STHTS problem considering various 

constraints. The merit order was enhanced by heuristic search algorithms while the 

energy function of the Hopfield neural network was an augmented Lagrangian based 

function. The method was evaluated using a system with a number of hydro and thermal 
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units as well as pumped-storage units and results were compared to those obtained by 

other methods such as Lagrangian relaxation and quadratic programming methods. 

Superiority of the proposed technique was demonstrated in terms of production cost and 

computational time requirement noting that the comparison was run considering only 

CPU chip frequency as a common base between the different methods in order to perform 

a reasonable and fair comparison. 

2.2.6.2  Fuzzy Logic-Based Methods 

The idea of fuzzy sets was first introduced by Zadeh in 1965 as a generalization of 

classical set theory [120]. Fuzzy sets use membership functions to map elements of 

universe of discourse to the unit interval [0, 1]. The membership function always reflects 

the features and limitations of the studied system so that the fuzzy set accurately 

represents the problem and makes it easy to understand by non-experts [77]. Fuzzy sets 

has been applied to various power system areas such as operational planning, state 

estimation and load forecasting to represent uncertainties by fuzzification of ambiguous 

variables and employing membership functions that represent system characteristics [9]. 

A comprehensive practical guide to the fundamentals and application issues can be found 

in [120] as well as in other published works such as [121-123].  

Surveys on the application of the fuzzy logic in power systems were presented in 

[124, 125] . In the area of STHTS problem, the number of published papers is relatively 

small compared to the other optimization methods. Among those few papers was the one 

presented in 1996 [126] by Wong and Wong, who proposed a combination of fuzzy set 

algorithm with a genetic algorithm and a simulated annealing method. A Short-term 

generation scheduling was formulated considering take-or-pay fuel cost then the 

formulation was extended to include the economic dispatch problem. A test example was 

used to demonstrate the performance whereas the heat-rate functions of the generators 

included the effect of valve-point loading. Another approach that integrated a genetic 

algorithm and a fuzzy system-based technique for scheduling hydro-electric generation 

was proposed in [127]. In this application, problem objective and constraints were 

fuzzified using genetic algorithms in order to gain better-tuned membership functions and 

hence more accurate representation. The method was tested using a realistic power 
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system and found effective and practical compared to the conventional fuzzy system 

although some system constraints were not considered. The comparison was based on 

production cost and computational time between the two fuzzy-based schemes but it was 

not performed to include other classic methods.  

Reference [128] presented a fuzzy decision-making approach to find the optimal 

short-term schedule for fixed-head hydro-thermal systems considering a multi-objective 

problem. In the formulation for the objective function, not only the cost was to be 

optimized but also the gaseous emission should be minimized in order to meet the 

environmental regulations. However, these objectives were manifold and hence a 

weighting technique was applied to satisfy them all in a non-inferior range. To evaluate 

the method, three testing case studies were employed to demonstrate the effectiveness 

and flexibility of the algorithm. Issues like computational time and memory size as well 

as convergence properties were not focused on although it was pointed out that the high 

computational time required for the complete solution was a limitation. Another 

formulation of short-term scheduling as a multi-objective problem was proposed in [129] 

considering the emission concern. In this paper, an interactive fuzzy satisfying method 

based on an EP technique was proposed considering multi-reservoir cascaded hydro units 

and non-smooth characteristics of thermal units in addition to emission and other hydro 

and thermal constraints. The trade –off between the diverse objectives in the non-inferior 

domain was obtained by the fuzzy satisfying method instead of using weighting methods 

as in the previous reference. The method was validated using a testing system consisting 

of a limited number of hydro and thermal units and results were presented although no 

detailed information was offered regarding convergence behavior or computational time 

requirement. 

2.2.7 Optimal Control and Other Methods 

In addition to the work presented in the previous sections, other approaches that dealt 

with the STHTS problem have been proposed. It should be noted that some of these 

approaches that combined different techniques with one of the methods stated earlier are 

already mentioned in the preceding sections. Among the other methods is the optimal 

control theory that was used to solve the STHTS problem in [130-132]. Optimal control 
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theory is an analytical optimization method that was formulated by Lev Pontryagin and 

his coworkers [133]. This approach uses differential equations to minimize a cost 

function by identifying the paths of state and control variables.  The optimal control 

trajectory can be derived using Pontryagin’s maximum principle as a necessary condition 

or by employing the Hamilton-Jacobi-Bellman equation as a sufficient condition. 

References [3, 134] present a detailed explanation of the application of the optimal 

control theory in hydro-thermal scheduling optimization problem. In [130], it was shown 

that in spite of satisfying the ramp rate constraints when solving the STHTS problem, 

energy delivery capacity is not realized. The maximum principle was applied to 

formulate a set of equations to determine the energy delivery over the scheduling interval. 

The objective was to verify the realization of the energy delivery schedule in real-time 

operation. Although the objective was different from that of the conventional STHTS 

problem, the effort was to show that physical ramp-rate is not equivalent to energy 

delivery capability as it was traditionally assumed.  

Another application of optimal control theory to solve the STHTS problem was 

proposed in [132]. In this paper, Pontryagin’s maximum principle, with the Bolza-type 

functional, was applied to prove a condition for the boundaries of the functional. The 

authors assigned a cost to the water to be included in the cost function instead of only 

considering the thermal cost. The Gauss–Southwell-type selection scheme was applied so 

as only the largest gradient value in the gradient vector was considered instead of 

following the direction of the negative gradient. To apply the method a Mathematica 

package program was used to solve hydro-thermal system consisting of eight thermal 

plants and one hydro-plant of variable head. Two tests were carried out considering the 

same eight thermal units and 10 and 20 hydraulic plants respectively with the same 

variable-head model. Although it was reported that the method achieved good 

convergence and only two additional iterations were required when the number of plants 

was doubled, but the method was not tested for systems with a significantly larger 

number of hydraulic plants. In addition, it was not applied to hydro-thermal systems with 

pumped storage units.  

A different approach to solve the STHTS problem using a nonlinear network flow 

model was presented in [135]. This model had linear side constraints and the problem 
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was not decomposed into hydro and thermal sub-problems. The hydro-thermal 

scheduling problem was formulated as an undecoupled problem while considering the 

network constraints as well as the local and spinning reserve coupling constraints. To 

evaluate the method it was implemented using several case examples. The results 

indicated that the solution was efficient and the computation requirement was reasonable. 

To evaluate the performance of the method, a general optimization code was used to 

solve the same problem. However, no comparison with a well-known standard 

optimization method was presented. Reference [136], presented an approach to improve 

the thermal start-up and shut-down costs of hydro-thermal systems. This approach was 

applied using a program package that was not described clearly in the paper. It was 

indicated that the method was applied to a realistic system although no details about the 

model were presented. The method was reported to have a beneficial impact on the 

performance and overall cost; however, no numerical results were demonstrated. 

2.3 MULTI-OBJECTIVE GENERATION SCHEDULING 

The aim of this section is to present an up-to-date literature survey on the methods 

and approaches applied to solve the multi-objective optimization problem of the power 

generation scheduling considering environmental aspects. This includes economic-

emission dispatch of all-thermal and hydro-thermal generation optimization problems. It 

is worth mentioning in this regard that most of the work published considered all-thermal 

generation systems while not many treated the hydro-thermal generation scheduling. The 

papers presented in this section have been published during the last 15-20 years (based on 

IEEE/IET/Elsevier databases). According to the solution method, the reviewed papers are 

divided into three categories which are; deterministic methods, artificial intelligence 

techniques, and evolution-based algorithms.  

2.3.1 Deterministic Optimization Approaches 

Deterministic methods are widely used in solving various optimization problems due 

to their solid establishment and formulation. These calculus-based methods have been 

extensively applied to multi-objective optimization problems for at least half a century 

[137]. Several reviews are available in the literature on the use of classical methods for 
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multi-objective power system optimization problems. Talaq and El-Hawary in 1994 

published a paper on the algorithms of environmental-economic dispatch in electric 

power systems since 1970 [138]. This paper offered a summary of the work that had been 

published on the economic-emission dispatch although it did not offer an exhaustive list 

of references on this research area.  

Gent et al. developed an algorithm to minimize NOx emission using a Newton-

Raphson-based approach [139] . In their paper they applied an incremental loading 

technique to minimize the gaseous emission. Another attempt to optimize the emission 

dispatch was presented in [140]. This was conducted by applying Kuhn-Tucker 

conditions utilizing an air diffusion model. A method was described in [141] for optimal 

generation scheduling in such a way to comply with the environmental aspects. 

Reference [142] presented a dynamic emission management system for the sulfur oxide 

emissions from fuel fossils of the generators. The approach utilized an automatic 

multiple-strategy selection to control the emissions via generation shifting. To validate 

this system, it was tested and implemented using a nonlinear convex programming 

algorithm.  

A decision approach was applied in [143] to control the pollution emission from the 

generating units. Cost-emission trade-off curves were produced for a realistic system with 

several demand levels and various weather conditions. The computational issues and the 

implications of the results were the main focus of the paper and hence they were analyzed 

and reported. In [144], a description of a method for economic load dispatch and 

optimum mix ratio of high and low sulfur fuels was presented. The idea was based on the 

assumption that there were two types of fuel; low sulfur but high-priced fuel and a lower-

priced but with higher sulfur fuel. Based on Kuhn-Tucker criterion, a coupling method is 

applied for this problem in addition to the decoupling method used for online control. 

The impact of pooling arrangement types on economic cost and emission were analyzed 

in [145]. To assess this impacts, cost-emission trade-offs were obtained using different 

economic dispatch models.  

An algorithm was proposed in [146] to solve the multi-objective problem including 

reliability, economic dispatch and emission minimization objectives. A set of non-inferior 

solutions is obtained using ε-constrained technique. The IEEE 30-bus, with 6-generator 
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system was employed to test and validate the performance of the algorithm. Nanda et al. 

applied a linear and nonlinear goal programming technique in [147] to solve the 

economic-emission dispatch problem. In this approach the two objectives were treated 

and analyzed separately.  A sample 6-generator system was used to test the technique and 

demonstrate its effectiveness. However the power transmission losses were not included 

in the problem formulation. In [148], a model was proposed to evaluate the cost and 

employment impacts of effluent dispatching and fuel switching in order to minimize 

emissions. The model employed probabilistic production cost methods to consider 

emission dispatching and fuel switching. A third objective was also considered in 

addition to the economic-emission objectives. These three objectives were treated by 

applying the weighting approach via the linear programming. Trade-off curves were 

computed and analyzed using practical generation system.  

The multi-objective stochastic function in [149] considered the uncertainties and 

inaccuracies in the production cost and emission as well as system losses by reducing 

them into a deterministic method. Non-inferior solutions were produced using an ε-

constraint approach and a trade-off function between conflicting objectives. The method 

was applied to a selected generation system and the expected minimum cost and emission 

were reported among the results. However, the validation of the method was 

demonstrated using only one sample 6-generator system. In [150], a decision making 

technique was proposed to determine the multi-objective function optimization. The 

economic dispatch and environmental marginal cost are optimized using Powell’s method 

while the Goal programming was utilized for the trade-off between the conflicting 

objectives. No more than one generation system with 5 thermal generating units was 

employed to test the method and demonstrate its performance.  

The hydro-thermal scheduling problem was treated in [151] to minimize both cost 

and emission. A simplified direct method was proposed to minimize these two non-

commensurable objectives considering various water availability constraints. A single 

example of a hydro-thermal generation system which included 4 thermal and 2 hydro 

units was employed to test the proposed method without considering the transmission 

losses. Although no information regarding the execution time was mentioned in the 
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paper, the proposed algorithm was claimed to be fast and potentially applicable for real 

time operations.  

Various methods for emission minimization were summarized and analyzed in [5] 

considering the underutilization provision of the 1990 US Clean Air Act amendments. As 

a result of the presented analysis, practical methods were proposed for cost estimation 

and real time operation considering the regulatory constraints. The Clean Air Act of 1990 

and its impact economic-emission dispatch problem was discussed also in [6]. The 

problem was formulated in light of the environmental regulations in order to provide 

evaluation tools for the different compliance and plants. More analysis of the regulations 

related to emission minimization was presented in [152] where a simple model for 

assessing emissions reduction options was proposed. The issue of the existing capacity 

and its impact on the pollution reduction strategies were discussed and considered in the 

model design.  

The multi-objective economic-emission load dispatch formulated in [153] considered 

line flow constraints by expressing them in terms of active power generation using 

distribution factors. Although transmission losses were considered in the power balance 

equation, some other practical constraints were not included. The emission dispatch was 

included as a constraint in the classical economic dispatch problem presented in [154]. 

An efficient weight estimation technique was also utilized in this approach. A discussion 

on the advantages and disadvantages of different methods was also offered in this 

reference. Although the iteration results for the emission dispatch were illustrated, but no 

information about the convergence characteristics or the computation time was presented.  

In [155], the environmentally constrained economic dispatch was considered in view 

of the Clean Air Act of 1990 using the Lagrangian relaxation method. A large generation 

system with huge number of thermal and hydro generating units was used to validate the 

proposed method. It was reported that the method had the ability to handle various 

constraints and accommodate different environmental considerations and regulations. In 

addition, the method was considered to be fast and accurate although no figures were 

demonstrated to support this claim. Dealing with the 1990 amendments to the Clean Air 

Act was the subject of [8]. A set of emission models suitable for cold start, thermal 

cooling and banking was defined. In addition, an algorithm for emission dispatch was 
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presented to find the minimum cost by restricting the generating units with the emission-

cost highest incremental ratio. A small 3-plant, 9-unit, 6-hour system was employed to 

test the method. In the period of six hours, a maximum reduction of 1.9 and 16.1 percent 

of SO2 and NOx respectively was reported. In various case studies of the system no 

information on the convergence properties or computation time was illustrated. In [156], 

to consider the emission, a proxy cost of emission η was added as a Lagrangian multiplier 

so that the system would operate at the same value of η all the time. The η multiplier was 

defined as the relationship of the change in cost and the change in emission in a particular 

hour. Numerical results showed the performance of the approach by presenting the 

annual cost and emission reductions; however, no information regarding system network 

losses, convergence characteristics or computation time was reported.  

As in [149], the authors of [157] formulated the classical economic dispatch problem 

considering the emission reduction using the ε-constraint form to trade off between the 

objectives for different non-inferior solutions. In addition, they used the surrogate worth 

trade-off method to determine the best solution. A single 6-generator system was used to 

validate the effectiveness of the method considering the network power losses in each of 

the various minimization cases. In all cases, results were illustrated without showing the 

convergence properties or the execution time of the method.  

2.3.2 Artificial Intelligence Techniques 

Artificial neural networks and fuzzy logic-based methods are the two artificial 

intelligence techniques used to solve multi-objective generation-emission optimization 

problems. 

2.3.2.1  Neural Networks 

King et al. developed a simulator to apply the Hopfield neural network for solving 

the economic-environmental dispatching of thermal generating units [158]. The objective 

was to find the optimal solution in a minimum number of iterations. In addition, 

guidelines were offered for selecting the network parameters and the sigmoid function. 

To exemplify the concept and validate the methodology, several test systems were 

implemented considering the transmission power losses of the system. The downside of 
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the method is the increase in the number of coefficients of the Hopfield model even when 

the problem is not large-scaled. It was found that the computation time required for the 

Hopfield model was the same as such required for the Newton-Raphson algorithm 

although the computation complexity in the iterations was less.  

In [159], a back-propagation neural network was used to find the optimal economic-

emission dispatch for thermal generation systems using price penalty factor. The only 

gaseous emission on which the paper focused was the nitrogen oxide as it was the main 

globally major issue. The economic-emission multi-objective problem was formulated as 

a combination of fuel cost and implied cost of the NOx emission through the augmented 

price penalty factor. Some of the constraints including the transmission losses and 

generation limits were considered in the problem formulation while other practical ones 

were not. To test the method, three thermal generation systems were used but no 

comparisons of the performance and results with those of other methods were conducted.  

As an attempt to overcome the numerical complexity associated with the parameters 

of the neural networks, a hardware-based implementation of neural networks was 

proposed in [160]. In this implementation, a scalar function was created to represent the 

two objectives using a weighting technique. The problem optimal solution was obtained 

through adjusting the weighting coefficients. The method was tested using a small all-

thermal generation system of 3 generating units without considering the transmission 

losses in the formulation. In another attempt to address the limitations of the conventional 

neural networks such as the slow convergence, the authors of [161] proposed a more real 

time-oriented neural network. Their approach was a combination of adductive reasoning 

network and decision approach. A trade-off strategy to find the best non-inferior solution 

was also proposed based on an index to measure relative distance from the “ideal point”. 

Two case systems were implemented to find the optimal economic-emission dispatch and 

to test the performance of the proposed technique demonstrating its superiority over 

conventional neural networks.  

As in [159], a price penalty factor was applied by the Hopfield neural network to 

solve the economic-emission optimization problem in [162]. The bi-objective function 

was treated as a single one and a solution was obtained considering the transmission 

losses and accounting for  minimizing the NOx emission [128, 163, 164][128, 163, 164]. 
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An integrated neural network-based approach to solve the economic-emission bi-

objective optimization problem was proposed by Chen et al. in [165]. This approach was 

a combination of a goal attainment method and an adaptive polynomial network to find 

optimal solutions. In addition, the polynomial networks were integrated statistical 

techniques to form a learning scheme for the input-output relationship. To test the 

proposed method and to compare it to the classical neural network, it was implemented 

using two different systems considering the network active power losses and the valve-

point effects.  

In [166], a feed-forward back-propagation neural network was implemented to solve 

the combined economic-emission dispatch problem. The network was trained using the 

results obtained from using the Lagrangian multiplier technique which was employed to 

solve the problem initially. An investigation on the computation time and quality of 

solution in terms of the network parameters was carried out. The proposed technique was 

tested using a 6-generator system and with various network parameters such as number of 

hidden layers and number of layers. The proposed network was reported to be up to 12 

times faster than the conventional neural network after sufficient training. It should be 

noted, however, that the price penalty factors used were fixed for each emission 

condition. 

2.3.2.2  Fuzzy Logic-Based Methods 

A multi-objective function was treated in [167] to find the optimal scheduling for all-

thermal power generation systems. The multi-objective function did not only consider 

cost and emission minimization but also security and reliability aspects. An expert fuzzy 

set system was proposed to find the optimal solution for a dynamic generation dispatch 

problem. The multi-objective problem was transformed into a single objective to obtain 

Pareto optimal solutions using fuzzy logic. The technique was tested using a moderately-

sized system and the performance was assessed using various membership functions. 

Compared to classical methods, the proposed fuzzy-based approach resulted in much less 

computation time as reported in the reference.  

Dhillon et al. in [163] proposed a fuzzy decision making method to determine the 

long-term hydro-thermal generation scheduling considering emission minimization. In 



 

     44 

fact, the multi-objective function had three objectives including minimizing the 

unsatisfied load demand, in addition to cost and emission, over the scheduling period. To 

obtain the non-inferior solutions, the problem was transformed into a scalar one using the 

weighted min-max technique. The fuzzy logic was applied as a decision making scheme 

to find the optimal generation scheduling. A four-thermal and three-hydro generation 

system was used to apply the proposed fuzzy logic-based technique considering 

transmission losses. The same approach of the previous reference was applied by the 

same authors to solve the multi-objective optimization problem for the short-term hydro-

thermal generation scheduling in [128]. Three fixed-head systems were studied to test the 

method considering power losses. As a result, it was reported that the approach could be 

suitable for any number of objectives and the number of iterations required was small. 

However, these conclusions were drawn in light of the results obtained using only one 

case study. In [168], the multi-objective all-thermal power dispatch problem was solved 

using a weighting technique while fuzzy theory was applied to determine the best optimal 

solution among the non-inferior set. A similar approach was followed in [169] where a 

Hooke-Jeeves and evolutionary search technique were applied to find the preferred 

weighting associated with the best solution in the non-inferior domain. A 5-generating 

unit system was utilized to demonstrate the effectiveness of the proposed method. 

Assuming that specific fuzzy goals were defined by the decision maker, an evolutionary 

programming technique-based fuzzy method was proposed in [129] to solve the 

economic-emission hydro-thermal optimization problem. After applying the technique 

and obtaining the solution, the reference membership should be updated in order to 

satisfy the pre-defined fuzzy goals. A single multi-chain hydro-thermal generation system 

was used to test the proposed method considering various practical constraints such as 

power losses and valve-point loading effects. Results showed the effectiveness of the 

method in generating proper Pareto optimal solution although it was applied to only one 

test system. The average CPU time was reported as 4582 seconds which is high execution 

time level. In addition, no information was shown regarding the convergence properties 

and the robustness of the algorithm.  In [170], a weighting-based method was used again 

to produce the non-inferior solutions with the assumption that fuzzy goals were specified 

for each objective function. Fuzzy logic was employed to determine the preferred optimal 
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point after obtaining the best solution among the non-inferior domain. In addition to cost 

and emission minimization, a third objective, which was the security index, was 

considered by the multi-objective optimization problem in [164]. Fuzzy set theory was 

applied to find the compromised solution among the non-inferior solution set as in the 

previous reference. Results were obtained by applying the method on a 25-bus sample 

system of 5 generating units. A comparison of the results with those obtained by other 

selected methods showed the superiority of the proposed technique according to the 

results obtained from the single 5-generator system case study. The same authors of [170] 

presented a similar approach in [171]. In this reference, a fuzzy decision-making 

methodology was applied again to determine the generation schedule of all-thermal 

generation system with an economic-emission multi-objective function. The same 

Hooke-Jeeves method was used to generate a set of non-inferior solutions. 

2.3.3 Evolutionary Computing Methods 

In order to overcome the drawbacks of the classical calculus-based methods, 

population-based techniques have recently been extensively used to solve multi-criteria 

optimization problems. Economic-emission optimization of all-thermal and hydro-

thermal generation systems has been determined using various non-classical approaches. 

These include; genetic algorithms (GA), simulated annealing (SA), evolutionary 

strategies, evolutionary programming (EP), differential evolution (DE) and particle 

swarm optimization (PSO). 

2.3.3.1  Genetic Algorithms and Simulated Annealing 

Wong et al. proposed an SA-based algorithm to solve the multi-objective generation 

dispatch optimization problem [172]. In addition to fuel and environmental costs, security 

requirements of the all-thermal system were taken into consideration in the problem 

formulation. To represent the environmental objective, constant weighting factors were 

augmented in the pollutant emission objective function. The effectiveness of the method 

was demonstrated using a single test system assuming the security of supply to be 

primary concern and neglecting the transmission power losses. An SA technique was also 

applied in [173] to find the optimal economic-emission load dispatch of fixed-head 
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hydro-thermal generation systems. In this implementation, the multi-objective problem 

was converted to a single one using the goal-attainment method. It was assumed that the 

operator had specific goals for each of the objectives.  In a similar formulation, SA was 

used along with an interactive fuzzy satisfying method to solve the fixed-head hydro-

thermal economic-emission dispatch problem in [174].  

In [175], a GA was applied for the multi-objective optimization problem which was 

converted into a single objective using the weighting method. System stability and power 

exchange concerns were discussed considering the economic-emission objective. A 

heuristic evolutionary genetic-based algorithm was proposed to solve the bi-criteria 

optimization problem in [176]. The approach was designed to produce the economic-

emission Pareto front solutions from which anyone could be selected according to 

predefined preferences. Three different thermal generation systems were used to evaluate 

the performance of the algorithm. Results were given in form of trade-off curves that 

could be used to decide the emission level and corresponding cost according to the Pareto 

front. The emission objective function was formulated as an inequality constraint in the 

multi-objective optimization problem presented in [177]. A GA was implemented to 

solve the economic-emission minimization problem employing fuel switching 

techniques. Although no figures were provided to show the computation time and 

convergence characteristics, it was reported that the algorithm was robust, effective and 

efficient. A GA was applied with the same formulation used in [178] where emission was 

formulated as a constraint while minimizing fuel cost and wheeling cost of transmission 

system. In an attempt to avoid the difficulties that conventional GAs suffer from, two 

hybrid GAs were presented to solve the economic-emission power dispatch in [179]. The 

two proposed algorithms were basically a combination of GA and SA techniques. Using 

relative weighting factors, the total emission of various pollutants were combined into a 

single objective before obtaining the trade-off curves between total fuel cost and 

emission. A 10-unit all-thermal generation system with its emission included three 

pollutants; NOx, SO2 and CO2, was utilized to demonstrate the performance of the two 

hybrid algorithms.  In addition, the impact of fuel type switching and hence heat-rate 

characteristics of generators were also considered in the simulation results.  
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In [7], heuristics were introduced to GA to enhance the feasibility of solutions of the 

Pareto front and to reduce computation time. To show the capability of the proposed 

algorithm, the economic-emission multi-objective problem was solved using a 19-thermal 

generating unit system. Results were illustrated by trade-off curves for different fuel 

types although it was not reported that there were wide variety of alternative generated 

solutions.  

Security issues were considered as a third objective in the multi-objective economic-

emission dispatch problem presented in [180]. The GA applied in this work was 

hybridized with an SA technique to perform the selection operation of the algorithm. The 

proposed hybrid algorithm was tested using two standard systems and a Pareto optimal 

set of solutions was provided in form of trade-off curves in addition to some statistical 

data on the convergence property. However, no information was revealed regarding the 

computation time although it was mentioned that reducing search time was one of the 

advantages of the algorithm.  Another combination of real coded GA and SA was 

presented in [181] to solve the multi-objective economic-emission dispatch problem. In 

order to improve the search, a genetic crossover operator and a problem-dependant 

mutation operator were incorporated with a local search heuristic. Several systems were 

used to test the algorithm with the results obtained using specific weight factors for each 

case. It was reported that the complete Pareto set of solutions, providing the trade-off 

curves, was given in a single run of the algorithm. It was also concluded that the 

algorithm was extremely fast although no evidence was provided to show that.  

Abido proposed a non-dominated sorting GA-based approach to solve the multi-

objective economic-emission dispatch problem [182]. A diversity-preserving technique 

was utilized in order to avoid premature convergence and generate a well-distributed 

Pareto front set of solutions. The algorithm was tested using 6-generator all-thermal 

system considering transmission losses and valve-point effects. The performance and 

results of the proposed algorithm were compared to those obtained by other methods with 

demonstrating the superiority of the proposed algorithm. The same author solved the 

same multi-objective problem using a strength Pareto evolutionary algorithm-based 

approach in [183]. In this attempt he again employed a diversity-preserving mechanism 

to enhance the convergence quality and a hierarchical clustering algorithm to provide a 
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representative and manageable Pareto optimal set. He also utilized fuzzy set theory to 

extract the best non-dominated solution among the set of solutions. In [184], the same 

author presented a comparative study among three evolution-based methods used to solve 

the problem. These were the non-dominated sorted GA, niched Pareto GA and strength 

Pareto evolutionary algorithm. In conclusion, it was reported that the strength Pareto 

evolutionary algorithm had the best computation time and better handling of the multi-

objective problem.  

In [185], Rughooputh and King proposed a non-dominated sorting GA with an elitist 

multi-objective evolutionary algorithm to solve the environmental/economic dispatch 

problem. The elitism algorithm was incorporated to ensure that the fitness of the best 

solution among the population would not deteriorate over the generations. Elite parents 

were used to improve the quality of the off-spring and to enhance the convergence of the 

GA. As a result, the diversity of non-dominated Pareto front solutions was improved. 

Fuzzy logic was applied to provide the decision maker with a tool for selecting an 

operating point from the Pareto set of solutions. The same authors applied the elitist 

algorithm in [186] considering another pollutant as a third objective in the multi-objective 

economic-emission optimization problem. The GA proposed in [187] was hybridized 

with a Tabu search algorithm to solve the economic-emission dispatch of all-thermal 

generation system. The authors’ goal of integrating the two algorithms was to minimize 

the probability of getting trapped in local minima and to improve the convergence 

characteristics of the hybrid algorithm.  

To prevent premature convergence, a fuzzy evaluation factor was applied to the 

fitness function of the multi-objective GA in [188]. A third objective was included to 

optimize the system active power loss in addition to cost and emission objectives. In 

[189], hybrid GA was applied and a binary coded GA was used to search the incremental 

cost factor. The two-phase algorithm was designed so that the initial solution used for the 

second phase was the obtained solution of the first phase to reduce the search reason.  

Liu et al. in [190] developed a kind of immune GA to solve the economic-emission 

dispatch problem. They represented the objective functions as antigen and solutions as 

antibody and employed evolutionary strategies to update the population. The economic-

emission dispatch was formulated as a stochastic evolutionary multi-objective 
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optimization problem in [191]. The uncertainties and inaccuracies associated with the 

acquired data were taken into consideration. The GA was applied as an optimizer while a 

Monte Carlo sampling scheme was used to treat the stochastic decision variables.  

A GA equipped with an evolutionary direction operator and a migration operation 

was presented in [192]. To avoid the deforming of the augmented Lagrange function, a 

multiplier updating technique was employed. The economic-emission multi-objective 

optimization problem was formulated using the ε-constraint technique to generate Pareto 

optimal solutions. To demonstrate the effectiveness of the proposed approach, it was 

applied to an all-thermal 6-generator test system with the results were illustrated by the 

trade-off curve of Pareto set of solutions. It was concluded that the proposed method 

required relatively smaller CPU time compared to the conventional GA. The same author 

extended the application of the proposed algorithm to solve the economic-emission multi-

objective short-term hydro-thermal generation scheduling problem [193]. In the problem 

formulation, the ε-constraint technique was utilized to generate Pareto optimal set of 

solutions while the multiplier updating method was used to handle other equality and 

inequality constraints.   

Brar et al. applied a GA in [194] to find the optimal active and reactive power 

scheduling for a multi-objective load dispatch problem. The impact of NOx on the 

environment was treated as an individual objective. A fuzzy decision-making technique 

was employed to determine the fitness of strings in each generation. Fuzzy theory was 

also applied to panelize the fitness for any violated constraints.  

In [195], a non-dominated sorting GA was proposed to determine the optimal 

operation of a day-ahead electricity market. It was reported that the algorithm was 

capable of finding the Pareto optimal front in a single run and providing the market 

decision maker with a realistic and feasible tool to choose the best schedule for the day.  

A comparative study on the application of two evolution-based algorithms to solve 

the economic-emission dispatch problem was presented in [196]. Genetic and ant colony 

search algorithms were presented, implemented to solve the multi-objective problem and 

compared to the conventional Lambda iteration method. The Roulette wheel selection 

and two point crossover were used in the case of the GA but premature convergence was 
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observed although it was reported that its performance was fond better than that of the 

Lambda iteration method.  

In [197], considering the decision maker’s goals to search for a Pareto optimal set of 

solutions, two methods were integrated in a multi-objective GA-based technique. The 

first was a kind of weighted Pareto method and the second was the so-called guided 

multi-objective GA. Using this algorithm, the operator preferences were expressed by 

numerical weights so that the concept of Pareto dominance was extended by biasing the 

chromosome replacement step of the algorithm. Furthermore, according to the preferred 

linear trade-off functions, the shape of the dominance region was changed.  

In addition to cost and gas emission, a third objective was considered in the multi-

objective short-term hydro-thermal scheduling optimization problem presented in [198]. 

This objective was the optimization of the reservoirs’ water spillage. In this 

implementation, a non-dominated sorting GA was proposed to generate the non-inferior 

solutions and reflect the decision-makers presences.   

2.3.3.2  Evolutionary Strategies and Evolutionary Programming 

Wong et al. applied an EP-based algorithm to solve the dynamic economic dispatch 

problem for an all-thermal generation system considering the emission as a constraint 

[199]. In their implementation, they employed solution acceleration techniques to 

improve the speed and robustness of the algorithm.  Specifically, the “cooling” mutation 

and population remapping techniques were developed to enhance the performance of the 

algorithm. To test the algorithm, the authors utilized a 9-generator system with its 

generators’ input-output characteristics were presented by cubic functions considering a 

6-interval scheduling period of 1 hour each. Results showed the obtained optimal power 

scheduling along with the economic-emission dispatch in addition to the statistical 

information in form of cost-iteration curves. However, no trade-off curves were provided 

to show the Pareto front set of solutions and no figures regarding the computation times 

were reported although it was stated that the speed of the algorithm was enhanced. In 

[200], an EP-based interactive approach was presented to solve the economic-emission 

dispatch problem of cogeneration systems. The problem was modeled so that the 

emissions of SO2 and NOx were expressed as a function of fuel enthalpy. The formulation 
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considered several operational and fuel type-based constraints such as steam and fuel mix 

ratio in a boiler which was determined considering the time-of-use dispatch between 

cogeneration systems and utility companies. The EP algorithm was applied to optimize 

the single objective function which was obtained by combining the two objectives using 

the minimum least square error technique. In another attempt, the same author applied the 

same technique in [201] to solve the problem considering a third pollutant which was 

CO2.  

Venkatesh et al. presented a comparison between EP and two GA-based approachs 

applied to solve the economic-emission dispatch problem [202]. The problem was solved 

using the three algorithms considering the line flows that were computed directly using 

the Newton-Raphson method while a modified price penalty factor was applied to 

convert and include the objectives in a single function. Simulation results obtained from 

analyzing several test systems using the three algorithms revealed that the EP algorithm 

was the best among the three methods in terms of fuel cost. However, no comparison 

results were reported regarding computation time or convergence characteristics. In 

[203], an EP algorithm was applied along with a weighting sum method to convert the 

multi-objective function to a single one. The approach utilized a non-dominated solution 

ranking method as a selection mechanism for the Pareto optimal solutions. The method 

was tested using two all-thermal generation systems and trade-off curves and Pareto 

optimal solutions were obtained in a single run and reduced computation time although 

no details were explained. In a similar presentation, two of the authors of the previous 

reference applied the same approach in [204] concentrating on pollutant type in their 

presentation.  

A fuzzy mutated EP algorithm was presented in [205] to solve the emission 

constrained economic dispatch problem. Fuzzy set theory was employed to provide an 

adaptive scaling factor for the mutation process in order to avoid premature convergence. 

A sample 6-unit all-thermal generation system was utilized to test the proposed algorithm 

with only one pollutant was considered. 

Dillon et al. proposed a binary successive approximation-based evolutionary search 

strategy for solving the economic-emission load dispatch problem in [206].  A weighting 

method was developed and used to find trade-off curves for the conflicting objectives of 
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the non-inferior set of solutions. A fuzzy logic-based technique was used to select the 

“preferred” optimal solution on the trade-off curve according to the decision-maker 

preference. The method was applied to several test systems considering various practical 

constraints such as transmission losses and valve-point effects. According to the results 

obtained, it was reported that the method achieved better results in reducing emission 

compared to other methods. On the other hand, its performance was lower in terms of 

cost and losses minimization.  

2.3.3.3  Differential Evolution 

Inspired by natural evolution, a DE algorithm was applied to determine the solution 

of the economic-emission dispatch problem in [207]. Two approaches were presented and 

applied to the studied multi-objective optimization problem. In the first, the emission 

objective was formulated as a constraint for the fuel cost minimization single objective 

function. The second formulation employed the weighting method to convert the bi-

objective function to a combined single one. Two test thermal generation systems were 

used to simulate the problem and test the algorithm and the results were presented 

including 20- Pareto point trade-off curves. A similar approach was used in [208] where a 

DE-based for environmentally constrained economic load dispatch was presented. The 

economic-emission objective function was converted into a single one using a price 

penalty factor method. The algorithm was tested using a 6-unit system and compared to 

other methods demonstrating its superiority in terms of fuel cost, emission and losses in 

addition to CPU time. In [209], a DE algorithm based on a Pareto non-dominant sorting 

technique was proposed for optimal economic-emission dispatching. Fuzzy set theory 

was applied to help the decision maker choose, according to predefined goals, the optimal 

compromised solution from the Pareto optimal domain. A 6-unit thermal generation 

system was utilized to validate the proposed approach and demonstrate the effectiveness 

of the algorithm. The resultant optimal solution and economic-emission dispatch were 

presented along with the Pareto front trade-off curves. In addition, it was concluded that 

the algorithm’s performance was better than that of the conventional non-dominant 

sorting GA in terms of convergence properties, convergence speed, the Pareto front 
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integrality and the non-dominant solutions’ distribution. However, no information was 

reported to support this claim regarding convergence and computation time.     

2.3.3.4  Particle Swarm Optimization 

Umayal and Kamaraj used a PSO technique to find the generation schedule of a 

short-term fixed-head hydro-thermal system considering multi-objective function 

optimization [96]. The problem was formulated to have five objectives that represented 

cost, NOx emission, SO2 emission, CO2 emission and variance of generation mismatch 

with the explicit recognition of statistical uncertainties in the objective variables and 

power demand. Two fixed-head hydro-thermal test systems were used to validate the 

proposed algorithm and show its effectiveness. A non-inferior solution with trade-off 

curves of Pareto optimal set of solutions was generated along with risk levels with the 

given weighting factors of importance. It was reported that the proposed algorithm 

required less computation times, however, no figures were mentioned regarding that and 

no comparison with other techniques was disclosed. 

In [210], a bi-criteria global optimization-based approach and a PSO technique were 

implemented to find the economic-emission optimal all-thermal generation dispatch 

considering the security requirement of power networks. The proposed algorithm was 

tested using 3-area interconnected and longitudinal system and trade-off curve was 

generated to provide the non-dominated solutions. The solution which gave the best 

compromise among the three objectives was selected as the most appropriate one. Results 

were compared to those obtained by GA in terms of fuel cost emission and line loss.  

Abido proposed a redefinition of global and local best in multi-objective 

optimization using PSO technique to solve the economic-emission dispatch problem 

[211]. He applied a clustering algorithm to control the Pareto optimal domain with a 

fuzzy logic-based mechanism to extract the best compromised solution among the Pareto 

front set. The proposed approach was tested on a 6-unit all-thermal generation system 

considering two case studies. In the first case study, the two objectives were optimized 

separately to find the extreme points of the trade-off surface and investigate the diversity 

properties of the Pareto optimal set of solutions. Then the proposed algorithm was 

applied to solve the multi-objective problem by optimizing the two objectives 
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simultaneously. Results showed that the diversity and ell-distribution of the non-

dominated solutions over the Pareto optimal front were preserved. Two out of the 25 non-

dominated solutions were considered the best cost and best emission as a result of a 

single run of the two optimization approaches. 

In [212], a PSO technique was presented to solve the economic-emission dispatch 

problem considering the non-smoothness caused by the valve-point loading effects of the 

thermal generating units. Different weighting factors were assigned to each of the 

objective functions according to its importance. The one-objective function was then 

formulated to represent the conflicting objectives through the weighting method. 

Simulation results were presented in terms of best cost and the corresponding emission 

release without providing any trade-off curves for the Pareto optimal domain. The 

performance of the algorithm was compared to those of other evolution-based algorithms 

and it was reported it had comparable results and very less computational time in spite of 

the lack of evidence. 

Al-Awami et al. incorporated wind-generated power in the economic-emission 

multi-objective optimization problem presented in [213]. They applied a multi-objective-

based PSO algorithm to determine the Pareto optimal set of solutions. The testing 

generation system used to validate the proposed algorithm consisted of two thermal units 

and two wind farms. A set of the Pareto optimal solutions was generated and the impacts 

of various operating conditions, such as load level and cost confident values, on these 

solutions were investigated.        

2.4 SUMMARY 

In this chapter, an extensive bibliographical survey of work published on the 

application of different optimization methods used to solve the short-term hydro-thermal 

and multi-objective economic-emission dispatch problems has been presented. Various 

optimization techniques that tackled the two problems have been overviewed and 

classified with their advantages and limitations having been critically discussed. The 

chapter has provided a general literature survey and a list of published references on the 

two topics aiming to offer the essential guidelines regarding the scope of the thesis and 
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this active research area. It is noteworthy to mention that a major part of the material 

presented in this chapter is discussed in [54] and [214]. 
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CHAPTER 3 BACTERIAL FORAGING ALGORITHM FOR 
OPTIMIZATION 

 

3.1 INTRODUCTION  

This chapter presents the proposed modified bacterial foraging algorithm (MBFA) as 

a powerful heuristic optimization technique. It introduces the modifications and 

improvements to the basic BFA in order to solve nonlinear constrained optimization 

problems. BFA is a recently introduced optimization algorithm, which has been 

successfully employed to solve relatively simple unconstrained problems. However, for 

constrained larger scale problems, essential modifications are required to enhance the 

performance of the algorithm.  In the following sections, the basic BFA is discussed 

before introducing the MBFA and the proposed constraint-handling mechanism applied 

to the algorithm. The chapter begins with a brief introduction to optimization theory and 

the classification of optimization problems as well as the various solution methods.      

3.2 THE CONCEPT OF OPTIMIZATION: AN OVERVIEW 

Optimization is the minimization or maximization of a mathematical function to find 

the best solution while satisfying a number of equality and/or inequality constraints 

[215]. According to this description, optimization is an important tool for solving various 

applied science analytical and practical problems. Modeling optimization problems is the 

key to the process of optimization. In order to construct an appropriate model, an 

objective must be first identified. This objective, based on the nature of the problem, is 

the criterion with respect to which the optimization is executed. The optimization 

objective (also known as merit) could be cost, profit, time, energy, gaseous emission or 

any other quantity or combination of quantities. It is obvious that the objective function is 

expressed in terms of specific characteristics of the system, known as decision or control 

variables.  These variables are often restricted by certain limits and boundaries known as 

constraints [216]. 

According to the designation, the optimization problem can be mathematically 

formulated as: 
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nx
min f(x)

n
)                                                                                     (3.1) 

subject to 

( ) 0
( ) 0

g x
h x

                                                                                           (3.2) 

where 

f(x) : objective function to be minimized  

x : vector of variables or unknowns  

g(x) : vector of equality constraints  

h(x) : vector of inequality constraints  

This formulation is expressed as a minimization problem as the objective is to 

minimize f(x). Nonetheless, it could be also used for optimization problems that require 

maximization of their objective functions since minimization of f(x) is equivalent to 

maximization of –f(x). Therefore, without loss of generality, this issue can be 

accommodated by the above formulation although the discussion throughout this thesis 

will consider optimization as a connotation of minimization.   

3.2.1 Constrained and Unconstrained Optimization 

Optimization problems are commonly classified depending on the type of the 

constraints on their variables although other different criteria can be applied. They could, 

for instance, be classified according to the nature of their objective functions and 

constraints (linear, nonlinear or convex), the smoothness and differentiability of the 

function, the number of unknowns … etc. 

If, in some situations, it is possible to disregard some constraints because they have 

no effect on the solution, then the optimization problem is called unconstrained. 

Unconstrained problems can also come up as a result of trading the constraints by 

penalization terms augmented to the objective function. 

Constrained optimization problems are those subject to constraints on their variables 

imposed by the nature of the problem and consequently the characteristics of the model. 

Constraints can be equality or inequality constraints as formulated in Equation (3.2). 
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They can be boundary, linear or nonlinear constraints depending on the complexity of the 

relationships among the variables [216]. 

3.2.2 Global and Local Optima 

 The function f(x) of Equation (3.1) is said to have a local minimum at any minimizer 

x=x* if f(x*) ≤ f(x*±d) for all sufficiently small values of d. The function f(x) is said to 

have a global minimum at x* if f(x*) ≤ f(x) for all x (not only for all x close to x*). The 

difference between the global and local minima is illustrated in Figure  3.1. 

 

Figure  3.1   Global and local optima. 

Optimization algorithms, in general, do not always converge to the global minimum; 

however, they search for a feasible local solution in the surrounding region such that the 

objective function is smallest. Global solutions are, obviously, sought after but difficult to 

discover and arrive at. Nonlinear non-convex problems usually possess local solutions 

that are not global [216].  

3.3 MULTI-OBJECTIVE OPTIMIZATION 

The optimization problem expressed in Equation (3.1) considers not more than one 

criterion and hence, it is characterized as a single-objective optimization problem. On the 

other hand, a multi-objective optimization problem has more than one criterion to be 

treated concurrently [217, 218]. Multiple and conflicting objectives are naturally involved 



 

     59 

in almost all realistic optimization problems in various operational and planning areas. 

The subject of multi-objective optimization and its applications in various real-world 

problems have been of growing interest to many researchers since 1960’s [219]. 

According to the definition of multi-objective optimization, the goal is to optimize a 

number of conflicting objective functions subject to various constraints. The problem can 

be formally expressed as follows (minimization approach): 

1 2[ , ,..., ]
n

T
G

x
min f(x) f (x) f (x) f (x)

n
) f[[                                             (3.3)                         

subject to 

 
( ) 0
( ) 0

g x
h x

                                                                                           (3.4) 

where 

f(x) : a vector of G conflicting objective functions; f1(x), f2(x),…, fG(x)  

x : vector of variables or unknowns  

g(x) : vector of equality constraints  

h(x) : vector of inequality constraints 

The feasible domain contained in the criterion space is referred to by Z and the feasible 

area in the decision space is denoted by the set S, and defined as follows [220]: 

{ | ( ) 0, ( ) 0}nS x R g x h x                                                           (3.5) 

1 1 2 2{ ( ) | ( ), ( ),..., ( ), }G
G GZ z f x R z f x z f x z f x x S    (3.6) 

Using Equations (3.5) and (3.6), the multi-objective optimization problem expressed in 

Equation (3.3) can be represented as follows: 

1 1 2 2{ , ,..., }G Gmin z f (x) z f (x) z f (x)                                     (3.7) 

3.3.1 Non-Dominated (Pareto-Optimal) Solutions 

Unlike the case of single-objective, in multi-objective optimization there is no such a 

best solution which is superior to other solutions with regard to all conflicting objectives. 

Any solution can be best for one of the objectives but not for others. In fact, for multi-

objective optimization problems there exists a set of incomparable solutions. The 

solutions in this set are known as non-dominated solutions or Pareto optimal solutions 

[137]. A non-dominated point in the criterion space Z has an image in the decision space 
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S, which is called efficient or non-inferior [220]. This can be explained so that a point in 

the criterion space 0z Z is non-dominated if and only if there exists no other point 

z Z such that: 
0

0

, for some {1,2,..., }
, for all 

k k

l l

z z k G
z z l k

 

where 0z is a dominated point in the criterion space Z. In addition, a point in the decision 

space 0x S , is efficient if and only if there exists no other point x S such that: 

  
0

0

( ) ( ), for some {1,2,..., }
( ) ( ), for all 

k k

l l

f x f x k G
f x f x l k

 

where 0x  is inefficient so that its image in the criterion space is a dominated point. On 

the other hand, an efficient or non-inferior point in the decision space has a non-

dominated point as its image in the criterion space. These efficient points form a set of 

efficient solutions which is known as the efficient frontier. In addition to non-inferior 

solution, an efficient solution is also called a non-dominated solution or a Pareto optimal 

solution. The concept of Pareto optimal front and non-dominated solutions are illustrated 

in Figure  3.2 where points A and B are non-inferior while C is an inferior point. 

 

B 

A 

C 

Pareto-optimal front 

f1(x) 

f2(x) 

 
Figure  3.2   Pareto optimal set of solutions. 

3.3.2 Solution Preference and Trade-offs 

Efficient solutions of multi-objective problems are incomparable with each other as 

the conflicting objectives are non-commensurable. This means that no single criterion can 
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be applied to treat these objectives at once. In realistic decision-making situations, one of 

the non-dominated solutions is selected to be the best-compromise solution according to 

the decision maker preference. The main task of a multi-objective optimization is to find 

as many Pareto optimal solution points as possible in order to give a wide range of 

choices among which the decision maker can select the best-compromised solution. In 

this regard, the set of solutions converged close to the Pareto optimal front must be as 

diverse as possible to assure that a good set of trade-off solutions among the objectives is 

accessible [137].       

3.3.3 Classical Multi-Objective Solution Approaches 

Classical multi-objective optimization techniques have been applied for more than 

forty years [137]. The goal can be either to find a set of non-dominated solutions or to 

find a best-compromise one among them. To handle this decision-making process, 

various methods and algorithms have been applied and classified according to various 

standards. In general, these techniques are categorized into two approaches [221]; (1) 

generating methods and (2) preference-based methods. In the first approach, a set of 

Pareto non-dominated solutions are identified for the decision maker to choose the best-

compromise or preferred solution according to some subjective preference. In this case 

no prior knowledge of preference or importance of any objective is specified. On the 

other hand, preference-based methods employ some priori-knowledge of the importance 

of each objective to find a compromise solution. Each of the two approaches has its 

characteristics, advantages and drawbacks. A good judgment has to be made by the 

decision-maker to select the best-compromised solution among the Pareto optimal front 

obtained by the generating approach. Alternatively, in the case of preference-based 

approach, decision-makers have to formulate their subjective preferences properly and 

accurately. More amended and revised classifications were suggested by various 

researchers who have attempted to fine tune the discussed classifications [222, 223]. 

Traditionally, methods of solution transform multiple objectives into a single one and 

then solve the optimization problem using various optimization techniques. The 

following are some of the classical methods that are classified based on preference 

information: 
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3.3.3.1  Weighted-Sum Method 

The weighted-sum method [224], is applied by multiplying each objective by a pre-

defined weight and combining the weighted objectives into a single objective function. 

This method is considered to be the simplest and most commonly used approach [137]. 

The weighted-sum method, also called the parametric approach [1], can be 

mathematically expressed as follows [137, 220]: 

   
1

( )
G

k k
k

min f x w f (x)                                                          (3.8) 

subject to                x S                                                                                               (3.9) 

1
1, 0 ( 1,2,..., )

G

k k
k

w w k G                                            (3.10) 

where ( [0,1])kw is the weighting coefficient of the thk objective function. The 

simplicity and easiness to use make this method suitable for finding solutions to problems 

with convex Pareto optimal front. However, in order to guarantee finding well-distributed 

solutions on the entire Pareto optimal set, the problem should be solved many times using 

different weighting values. Moreover, it is reported that the weighted-sum method cannot 

be utilized for some non-convex objective function spaces. This is because of its 

incapability to find certain Pareto optimal solutions in some specific cases [137]. 

3.3.3.2  Weighted Min-Max Method 

The weighting coefficients used in the weighted-sum method are utilized in the 

weighted min-max method as follows [225]: 

1
( )k kk G

min max w f x                                                                      (3.11) 

subject to             x S                                                                                                (3.12) 

1
1, 0 ( 1,2,..., )

G

k k
k

w w k G                                            (3.13) 
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3.3.3.3  ε–Constraint Method 

The ε-constrained method is used to overcome the difficulty suffered by the 

weighted-sum method in handling some cases with non-convex objective spaces of some 

problems. In this method, one of the objective functions is considered the primary while 

the others are treated as constraints [226]. This is expressed as follows: 

( )kmin f x                                                                                (3.14) 

subject to             ( ) ( 1,2,..., ; )j jf x j G j k                                            (3.15) 

x S                                                                                                (3.16) 

where the parameters ( 1,2,..., ; )j j G j k are the upper bounds  of the values of the 

objective function ( )jf x . Choosing the ε parameters is a critically key factor for the 

success of this method. Therefore, these parameters must be selected so that they lie 

within the boundaries of the objective functions. 

3.3.3.4  Utility Function Method 

In this method a mathematical mapping of the points in the criterion space into real 

numbers is used to represent the preference function. The utility function ( ( ))k kU f x  

represents these numbers so that the greater the number, the more important the objective 

function [220]. A very comprehensive presentation of the mathematical aspects and 

applications of the method is presented in [227]. The utility function approach can be 

mathematically formulated as follows [1]: 

1
( ) ( ( ))

G

k k
k

min f x U f x                                                        (3.17) 

where ( ( ))k kU f x is the utility function of the thk objective function. The utility function 

should be defined in advance, however; it is not easy to evaluate it, and this somewhat 

limits the application of this method.     
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3.4   OPTIMIZATION METHODS FOR POWER SYSTEM OPERATIONS 

In  Chapter 2, various optimization methods that have been used to solve the STHTS 

and economic-emission multi-objective problems were reviewed and classified. In this 

section a brief discussion of optimization methods and techniques is demonstrated. 

Optimization approaches in general can be classified into two main categories; 

deterministic and heuristic.  

Deterministic methods are calculus-based where the search scheme is to compute a 

derivative-based operator such as the gradient, Hessian or both. The following discussion, 

based on references [13, 216, 228-230], is a summary of the most well-known 

deterministic optimization methods used for realistic problems:  

1. Linear programming (LP) methods: These methods are widely used due to the 

easiness of modeling in spite of the nonlinearities associated with realistic problems. 

The real system is simplified to build a linearized LP model. The LP problem is then 

solved using the simplex method or interior point (IP) methods.  

2. Nonlinear Programming (NLP) methods: Since it is a fact that most practical 

problems are nonlinear and non-convex; these methods are needed especially when 

linearization is not feasible.  Sequential quadratic programming (SQP) and 

generalized reduced gradient (GRG) are the most powerful and well established NLP 

methods. SQP methods require solving the approximated problem on each iteration 

and updating the Hessian of the Lagrangian function. 

The second category of optimization techniques is the heuristic (or meta-heuristic) 

methods. These are non-conventional methods that are based on various analogies and 

mostly inspired by natural phenomena and biological evolution. Among these methods 

are EP, evolutionary strategies, GAs, ant colony, SA, Tabu search, PSO and BFA. These 

non-derivative non-calculus based methods have been successfully applied to solve 

various optimization problems especially when no information about the gradient is 

available. These methods are superlative for tackling optimization problems with non-

differentiable and non-continuous characteristics.  

Differences between heuristic and deterministic optimization methods can be 

observed in the way of search for minima as well as in other characteristics [231]. While 
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deterministic methods use single search paths, heuristic methods execute their search on 

population basis.  They use numerous prospective solution points to explore the hyper 

search space. In contrast with deterministic methods, which use deterministic transition 

rules, heuristic methods apply randomness to update their solution vectors. This gives an 

advantage to heuristic methods in avoiding local minima. Heuristic methods can be used 

to solve different classes of optimization problems regardless of the nonlinearity, non-

convexity or non-continuity of the problem. On the other hand, different deterministic 

methods are needed for different optimization problems.      

A brief description of the most popular heuristic optimization methods was provided 

in  Chapter 2. The following sections are devoted to present a detailed description, and in 

depth discussion on the BFA as it is the core of the methodology applied in this thesis.    

3.5 BACTERIAL FORAGING 

 The need for powerful tools to solve non-convex nonlinear optimization problems 

has been an encouraging and consistent motivation.  Non-convexity and non-smoothness 

of accurately modeled optimization problems are challenging characteristics for nearly all 

optimization methods. In order to deal with such issues and to overcome difficulties from 

which deterministic methods, in particular, suffer, researchers introduced and developed 

heuristic techniques. These non-traditional approaches are getting more interest because 

of their attractive features and promising potential. BFA is one of the recently introduced 

evolutionary heuristic optimization techniques. This algorithm, which is inspired by the 

foraging behavior of the E. coli bacteria, has been successfully implemented to solve 

relatively small optimization problems. However, it shows poor convergence 

characteristics for larger non-convex constrained problems with high dimension search 

spaces. The basics of the BFA as modeling of the foraging process and as an optimization 

technique are found in what is known as the foraging theory which will be discussed 

latter in this section. A biological background of the foraging behavior of the E. coli 

bacteria is explained in this section. In addition, a fundamental BFA as a computer 

simulation is introduced and analyzed. The discussion in this section is mainly based on 

the reference [232] in which the BFA is first introduced by Passino in 2002.  
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3.5.1 Foraging Theory 

In nature, organisms and species struggle to maximize their energy intake E per 

amount of foraging time T when they search for nutrients and obtain food. They, in fact, 

perform an optimization task in which the objective is to maximize the following 

function-like: 

E
T

                                                                                                   (3.18)  

Optimization of this energy gain function is of crucial importance for foraging 

species to survive and perform various on-going activities. Foraging tasks include 

exploring a patch of food, making a decision to go into and search for food through it and 

finally to determine when it is time for leaving for a richer location. Depending on many 

factors, the nature of foraging differs as the foraging organisms are different. For 

instance, finding food is difficult for some species but at the same time they do not eat 

much. In contrast, others find food easily but they have to eat much because of the low 

energy level they obtain from their food. Other factors that affect foraging include some 

daily activities such as trying to find safer environments and better weather conditions. 

Performing this optimization process- foraging- is, in most cases, neither an easy nor a 

safe assignment. There always exist obstacles and constraints that must be accommodated 

such as rivers, mountains, severe weather conditions, distances between food patches and 

the existence of predators. Furthermore, the nature of the forager itself determines its 

foraging behavior. For instance, some foragers are large in size and others are small, 

some follow specific search rhythms while others search for food only when they need 

it...etc. Foraging could be also affected by the characteristics of the patches of food or 

prey that could naturally appear and disappear or move away from the forager.   

According to optimal foraging theory [233], foraging can be formulated as an 

optimization problem, and hence, an optimal foraging principle can be established to 

explain foraging decision making mechanisms. Although modeling the optimal foraging 

provides an explanation of what the optimal behavior would be like, some biologists 

argue that animals are not able to make optimal decisions. On the other hand, biologists 

reported that animals use foraging decision heuristics extensively and efficiently in 

approximating optimal schemes considering the existence of constraints [233].   
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3.5.1.1  Search Strategies 

The search strategy, which is the major part of foraging, is the optimization process 

executed to find food.  According to some studies of foraging, a typical scenario for 

predation is followed by many foragers as their search strategy [234]. Predators search 

for prey, hit it, and then grip it and ingest it. Depending on the relationship between the 

predator and the prey, one of these steps is more vital than the others. If the predator is 

larger than the prey then the search task is most important as small size is an advantage 

for the prey that makes it difficult to find. On the other hand, if the predator is smaller 

than the prey, then the attack and handling step is most important. In this case the prey is 

easy to find but its size helps it. In most cases such as birds, fish and insects, the central 

part in foraging is the searching behavior. Foragers in general are either cruise or ambush 

searchers. Cruiser foragers move continuously and search constantly while ambush 

searchers sit and wait for prey to come into their strike region. Practically, many species 

perform a “saltatory search strategy”, which is in between the cruise and ambush 

approaches. In this intermediate strategy, foragers perform all possible search activities. 

They cruise, ambush and change direction whenever they need either when they stop or 

while they move. Figure  3.3 shows these foraging search approaches. 

 
Figure  3.3   Foraging search strategies [234]. 

As part of their search, some foragers stop and look around to search for prey during 

the stationary pause between repositioning moves. Repositioning is performed to move 

the forager into unexplored regions. Scanning and repositioning is illustrated in Figure 



 

     68 

 3.4 in which a forager is located in the center of a search circle. This circle represents a 

local scan region. As shown in the figure the forager is assumed to have a pie-shaped 

search region. The size of the repositioning move taken by the forager is to be optimized 

in order to enhance the search performance. As demonstrated in the figure, if the move is 

too large there will be some parts of the search space that are not explored and therefore 

some opportunities will be missed. On the contrary, if the move is too short, then a large 

segment of the search space is searched again which is a waste of resources. 
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Figure  3.4   Repositioning and scanning trade-off [234]. 

Based on their scan information, some foragers use the pauses to orient themselves 

towards prey and change direction accordingly. Obviously, the stop and wait periods are 

shorter when the prey is large and easy to locate. Searching strategies including 

repositioning behavior are also highly affected by other factors such as the risk of the 

encountering predators.  

3.5.1.2  Social Foraging 

It is natural that animals and organisms live in groups and hence, some kind of social 

foraging is performed among these groups. Cooperative foraging provides the individuals 

in a group with effective means for success in their assignments. Sharing information 

among groups is one of the important features of social foraging. Shared information 
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could be in the form of signals or certain movements or dances or a language in the case 

of humans. Through social foraging, an individual can obtain higher per capita rate of 

energetic gain and it can benefit from the information circulated among the group. 

Grouping can also be helpful in handling large prey and in protecting members from 

predators in some cases. Natural world examples of cooperative foraging are many such 

as a pack of wolves, a flock of birds, a school of fish and a colony of ants.  

3.5.2 E. coli Bacterial Foraging 

E. coli bacterium (Escherichia coli bacterium) is perhaps the most studied and 

understood microorganism [235]. It is about 2 μm long and 1 μm wide. An E. coli 

bacterium has a distinctive, capsule shape as shown in Figure  3.5.  It has a wall cell with 

a plasma membrane and an outer wrapper. Inside the cell membrane there is the 

cytoplasm and nucleoid that form a watery fluid. The cell weighs about 1 picogram and is 

mainly composed of the cytoplasm which is about 70-percent water. With the appropriate 

temperature in the environment where the E. coli lives (the human gut for example where 

the temperature is 37ºC) and with enough food it grows and splits into two new copies 

with all cell parts replicated. 

 
Figure  3.5    E. coli bacterium [235] 
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Locomotion, which is defined as the movement of an organism from one place to 

another, is performed using the six flagella that E. coli bacterium has (only one flagellum 

is shown in the figure). Various modes of locomotion are executed through a kind of 

control system which the E. coli has and employs to search for nutrient and avoid noxious 

substances. The motile behavior of the E. coli bacteria, which is known as taxes, can be 

explained with reference to the flagella as an actuator, the decision-making sensors and 

the closed loop motile behavior which is a kind of saltatory search strategy. 

3.5.2.1  Locomotion: Swimming and Tumbling 

The E. coli bacterium rotates its left-hand flagella in anticlockwise direction 

simultaneously in order to move and achieve locomotion [236]. This actuating rotation is 

accomplished at about 100-200 revolutions per second.  Each flagellum can be thought of 

as a kind of propeller that pushes the cell to move it forward. If the rotation is in 

clockwise direction, then a flagellum will pull at the cell. Figure  3.6 shows what 

biologists call a “universal joint” and describe as a biological “motor”. These terms 

portray the characteristics of the rotating shaft at the base of the rigid flagellum and the 

mechanism that enables the flagellum to rotate in either direction relative to the cell. 

Amazingly, E. coli only spends less than 1% of its energy budget on motility as a result 

of the high efficiency of its biological motor.        

 
Figure  3.6   E. coli bacterium flagellum connection and biological motor [236]. 
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E. coli hardly ever stops rotating its flagella and spends its entire lifetime alternating 

between two modes of operation; swimming and tumbling. Tumbling results from 

rotating the flagella clockwise so that each flagellum pulls on the cell independently. 

When the bacterium tumbles about no direction of movement is set and only a little 

displacement is experienced. Swimming is the other operation mode that takes place 

when a bacterium runs for a period of time. Due to its very small size, E. coli stops within 

the diameter of proton without experiencing any inertia but viscosity. This makes 

tumbling after a run easy and smooth when the cell slows down and stops. Following a 

tumble interval, the cell will be pointed towards a random direction with a little tendency 

to be placed in its previous direction in some cases.        

3.5.2.2  Chemotaxis: Hill-Climbing 

Taxes or chemotaxes is the motility behavior of the bacteria in the presence of 

chemical attractants and repellents. E. coli can be attracted by serine or aspartate while its 

repellent responses can result from metal ions Ni and Co in addition to amino acids like 

leucine and organic acids like acetate. 

The basic idea for the behavior of the E. coli bacteria as a group is the attempt to 

search for and locate food avoiding noxious substances. This intelligent-like behavior can 

be sensed when a group of bacteria is viewed under a microscope. Chemotaxis can be 

understood in light of the decisions that E. coli makes such as how it determines how 

long to run, when to stop and tumble and how far it swims in the same direction… etc. 

For instance, when a bacterium is in a neutral environment, where neither food nor 

noxious substances exist, for a relatively long time, then it alternatively runs and tumbles. 

Consequently it will move in random directions and hence, it can search for nutrients. In 

other situations if the bacteria are in a homogeneous and non-gradient concentration of 

nutrient, then as a result, the run length as well as speed will increase while the tumble 

periods will decrease. This situation does not guarantee that the E. coli will stop 

searching in spite of the existence of some food. In fact, the search continues for more 

food. In environments with nutrient gradient, the swimming time is extended while the 

tumbling time is decreased as long as the bacterium climbs a positive concentration 

gradient. In contrast, if the bacterium has to swim into noxious substances with a positive 
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gradient or down a nutrient gradient, then it will try to climb back up the concentration 

gradient or down the noxious one. With these nutrient and noxious gradient changes, the 

run length and tumbling times are adjusted accordingly. It should be noted; however, that 

E. coli is never satisfied and always searches for richer nutrient concentrations. In such 

cases when the bacterium happens to be in a concentration of constant nutrient after 

having been on a positive gradient for some time, it returns, after a short period, to the 

alternation between swimming and tumbling. Experimental studies showed that the 

bacterium compares the concentration observed over the past second with those observed 

in the previous three seconds [237]. Based on this comparison it makes decisions 

regarding how long to swim [238].          

3.5.2.3  Evolution: Reproduction and Elimination/ Dispersion  

E. coli bacteria mutate at a rate of about 10-7 per gene per generation. In addition, 

transformation of genes from one bacterium to another occurs through what is called 

“conjugation”. During this activity, gene sequences carry good fitness characteristics as a 

transmittal of fertility. 

Elimination and dispersal events are components of the overall motility of the 

bacteria. These events could take place as a result of some sudden or gradual changes in 

environment where a population of bacteria lives. The bacteria are exposed to severe 

conditions where the population is killed entirely or partially. This could be a result of 

increases of heat or water floods or any other harsh events. An event could result in 

dispersal of a bacteria group into another remote part of the environment. Elimination and 

dispersal events significantly affect the chemotactic process both positively and 

negatively. They could, for instance, be damaging to the extent that destroys the 

chemotactic progress. However, they can be beneficial to the chemotactic process as 

dispersal events may drive bacteria into rich nutrient concentrations.      

3.5.3 E. coli Bacterial Foraging for Optimization 

The bacterial foraging algorithm is a non-gradient stochastic optimization technique. 

It is non-gradient because it is assumed that no analytical description of the gradient

( )J  exists. Inspired by the foraging behavior of the E. coli bacteria explained in the 
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previous sections, the BFA is designed to solve non-gradient optimization problems. 

Suppose that the function be minimized is ( ), pJ , where  represents the position 

of a bacterium. The function ( )J  is the resultant effect of attractants and repellents from 

the environment surrounding the bacterium. The bacterium at position  is in a nutrient-

rich environment when ( ) 0J , while it is in noxious or neutral environments when 

( ) 0J  or ( ) 0J  respectively. In light of the bacterial foraging behavior as an 

optimization process, bacteria always try to find lower values of ( )J  and avoid getting 

into positions where ( ) 0J . In other words, they try to climb up nutrient 

concentrations and avoid being in noxious substances. 

To build an E. coli bacterial foraging model, a population of bacteria is first defined. 

After that chemotaxis, reproduction and elimination/ dispersal operations are defined and 

described. Let j denote the index for the chemotactic step, k is the index for the 

reproduction step and l is the index for the elimination/ dispersal event. Let the position 

of each bacterium in the population of the size S at the thj chemotactic step, thk

reproduction step, thl elimination/dispersal event is given by:  

( , , ) { ( , , ) | 1,2,..., }iP j k l j k l i S                                             (3.19) 

The cost at the location of the thi bacterium ( , , )i pj k l is denoted as

( , , , )J i j k l . Referring to J as a cost function (or, as we will use, objective function) is 

in accordance with the terminology from the optimization literature while the term 

nutrient surface is in reference to the biological roots of the BFA.    

3.5.3.1  Chemotaxis 

The number of chemotactic steps that bacteria take during their lifetime is denoted 

by CN . The length of steps during the runs is defined as the chemotactic step size and 

denoted as ( ) 0, 1,2,...,C i i S . A tumble is represented by generating a unit length in a 

random direction ( )j . In effect, ( )j specifies the direction of movement after a 

tumble.  In this random direction, a step is taken with the size ( )C i so that the thi

bacterium moves to a new position determined by: 
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1, , , , ( ) ( )i ij k l j k l C i j                                          (3.20) 

If the cost ( , 1, , )J i j k l  at the updated position 1, ,i j k l is lower (better) than 

( , , , )J i j k l at , ,i j k l , then another step is taken in the same direction and same size

( )C i . This swimming continues as long as the bacterium is doing better by obtaining 

lower and lower cost. However, there is a maximum number of steps SN after which 

swimming stops. 

3.5.3.2  Swarming 

The cost function of each bacterium in the population is affected by a kind of 

swarming that is performed by the cell-to-cell signaling released by the bacteria groups to 

form swarm patterns. The cell-to-cell signaling for the thi bacterium is represented by

( , ( , , )), 1, 2,...,i i
CCJ j k l i S . The depth of the attractant released by the cell is denoted 

by attractd and the width of the attractant signal is measured as attractw . On the other hand, a 

repellent signals are also released by the cell with the height of this repellent effect 

repellent attracth d and width repellentw . The combined cell-to-cell attraction and repelling 

effects are expressed as: 

1

2

1 1

2

1 1

, ( , , ) , ( , , )

exp ( )

exp ( )

S
i i

CC CC
i

pS
i

attract attract m m
i m

pS
i

repellant repellant m m
i m

J P j k l J j k l

d

h

               (3.21) 

were 1 2[ , ,... ]p is points on the optimization domain and i
m is the thm component 

of the thi bacterium position i . The cost is now defined as ( , , , ) ( , )CCJ i j k l J P  

instead of ( , , , )J i j k l . This cost describes the swarming effect produced by the members 

of the population. Consequently, bacteria try to move towards each other, but not too 

close while searching for nutrients and trying to avoid noxious substances at the same 

time.  
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3.5.3.3  Reproduction and Elimination/Dispersal Events 

A reproduction step is taken after executing the maximum number of chemotactic 

steps CN . The number of reproduction steps to be taken is defined as reN . A successful 

member of the population who has obtained sufficient nutrients during its lifetime 

reproduces and splits into two cells with no mutation. The number of these successful 

members is given by (assuming, for convenience, that S is a positive even integer):  

2r
SS                                                                                              (3.22) 

To perform the reproduction task, the population is sorted in ascending order of 

accumulated cost. The unhealthy member that did not obtain as many nutrients during its 

lifetime is unlikely to produce. While the healthiest half of the population reproduce and 

split each into two, the other rS least healthy bacteria die as a consequence. This course 

of action will keep the population size constant which is suitable for algorithm coding. 

The number of elimination and dispersal events is denoted by edN . Each bacterium in 

the population is subjected to elimination/dispersal with probability edp  when an event 

takes place. Elimination and dispersal events are assumed to occur less frequently than 

reproduction steps. A bacterium takes many chemotactic steps before reproduction while 

it may experience an elimination/ dispersal event after a number of generations take 

place. 

3.5.3.4  Basic Bacterial Foraging Algorithm 

The various parameters that have been mentioned above must be primarily set in 

order to initialize the execution of the algorithm. Initial values must be chosen for p ,S ,

CN , SN , reN , edN , edp  and ( )C i , 1,2,...,i S . In addition, the parameters of the cell-to 

cell functions have to be chosen if swarming is brought into play. Initial solution points, 

represented by the initial positions for the members of the population, must be specified. 

Principally, initial values could be randomly distributed throughout the search hyper 

space. A good choice for these initial values is to locate them in the visible region where 

the optimal solution could exist. Initially, the indexes for the chemotactic step, the 
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reproduction step and the elimination/ dispersal event are all zeroed ( 0j k l ). It 

should be obviously noted that P  is automatically updated as a result of updating i . The 

basic BFA details are as follows [232]:  

1. Initialization of the parameters 

2. Elimination/ dispersal loop: l=l+1 

3. Reproduction loop: k=k+1 

4. Chemotaxis loop: j=j+1 

(a) For 1,2,...,i S , a chemotactic step to be taken by the thi bacterium 

(b) Compute ( , , , )J i j k l  

 ( , , , ) ( , , , ) ( , )CCJ i j k l J i j k l J P                                            (3.23) 

        (This adds on the cell-to cell attraction effect to the nutrient concentration) 

(c) Let ( , , , )lastJ J i j k l  to save this value, since better cost may be found via a 

run 

(d) Tumble: generate a random vector ( ) pi with each element

( ), 1,2,...,m i m p , a random number on[ 1,1]. 

(e) Move: let 

( )1, , , , ( )
( ) ( )

i i

T

ij k l j k l C i
i i

                             (3.24)  

This results in a step of size ( )C i in the direction of the tumble for 

bacterium i . 

(f) Compute ( , 1, , )J i j k l and let 

( , 1, , ) ( , 1, , ) ( ( 1, , ), ( 1, , ))i
CCJ i j k l J i j k l J j k l P j k l        (3.25) 

(g) Swim: 

 Let 0m (counter for swim length). 

 While Sm N (if have not climbed down too long) 

- Let 1m m . 
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- If ( , 1, , ) lastJ i j k l J let ( , 1, , )lastJ J i j k l and let 

( )1, , 1, , ( )
( ) ( )

i i

T

ij k l j k l C i
i i

                        (3.26) 

and use this 1, ,i j k l to compute the new ( , 1, , )J i j k l the 

same way shown in (f) above. 

- Else, let Sm N . The end of the while statement. 

(h) Go to next bacterium ( 1)i if i S (i.e., go to (b) above to process the next 

bacterium). 

5. If Cj N , go to step 4. In this case, continue chemotaxis, since the life of the 

bacteria is not over. 

6. Reproduction: 

(a) For the given k  and l , and for each 1,2,...,i S , let 

1

1
( , , , )

CN
i
health

j
J J i j k l                                                                   (3.27) 

be the health of bacterium i (a measure of how many nutrients it got over its 

lifetime and how successful it was at avoiding noxious substances). Sort 

bacteria and chemotactic parameters ( )C i in order of ascending cost healthJ  

(higher cost means lower health). 

(b) The rS bacteria with the highest healthJ values die and the other rS bacteria 

with the best values split (and the copies that are made are placed at the same 

location as their mother). 

7. If rek N , go to step 3. In this case, the number of specified reproduction steps 

has not been reached, so the next generation in the chemotactic loop is started. 

8. Elimination/ dispersal: for 1,2,...,i S , with probability edp , eliminate and 

disperse each bacterium (this keeps the number of bacteria in the population 

constant). To do this, if you eliminate a bacterium, simply disperse one to a 

random location on the optimization domain. 

9. If  edl N , then go to step 2; otherwise end. 

The fundamental BFA methodology is summarized in the flowchart of Figure  3.7. 
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Start

Initialization of variables: j=k=l=0

Elimination/ Dispersal Loop: l=l+1

l< NC Terminate

Reproduction Loop: k=k+1

k<Nre

Chemotactic Loop: l=l+1

j<Nc

Compute J (i,j,k,l):
J(i,j,k,l)=J(i,j,k,l)+Jcc(θi(j,k,l),P(j,k,l))

Jlast=J(i,j,k,l)

Compute θi (j+1,k,l): θi (j+1,k,l)=θi (j,k,l)+C(i)ɸ(i)

Compute J (i,j+1,k,l):
J(i,j+1,k,l)=J(i,j+1,k,l)+Jcc(θi(j+1,k,l),P(j+1,k,l))

Swim: m=0 (counter for swim length)

m=m+1

J(i,j+1,k,l)< Jlast

Jlast=J(i,j+1,k,l)

Let θi (j+1,k,l): θi (j+1,k,l)=θi (j+1,k,l)+C(i)ɸ(i)
J(i,j+1,k,l)=J(i,j+1,k,l)+Jcc(θi(j+1,k,l),P(j+1,k,l))

m<Ns

Tumble:
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Figure  3.7   Basic BFA for optimization 
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3.5.3.5  Algorithm Parameter Tuning 

As shown in the previous section, the BFA uses a number of parameters that need to 

be appropriately tuned. The size of the populationS , for instance, can significantly affect 

the computational requirements of the algorithm. Although a large population guarantees 

that initial points are more likely located near optima but, the computational complexity 

will increase by increasing the size of the population. The chemotactic step size ( )C i

should be chosen to fit the nature of the problem. Too large a step makes the algorithm 

overlook local minima by swimming without stopping at them especially when the 

minimum point is located in a valley with steep edges. On the other hand, too small 

values of step size can make the convergence very slow.  

Large values of the number of chemotactic steps CN , reproduction steps reN and 

elimination/ dispersal events edN will result in more complex computations although that 

will also lead to better optimization progress. If CN , for example, is too small then the 

algorithm will rely more on reproduction besides luck. Moreover, it could more likely get 

trapped in local minima. Similarly, if the value of reN  is too small, the algorithm could 

experience a premature convergence. reN , plays an influential role in focusing on good 

regions and ignoring bad ones. Large values of edN help the algorithm find favorable 

regions and look in other parts of the search space. 

Example 3.1 [232]:  

This example is designed to illustrate the performance of the BFA to find the 

minimum of the function shown in Figure  3.8. In the figure, the nutrient landscape, which 

is the optimization domain, is shown with optimum points are represented by valleys. 

These valleys are nutrient rich concentrations while noxious substances are represented 

by peaks. The global minimum for this function is the point[15,5]T .   

The algorithm parameters are chosen as 50S , 100CN , 4SN , 4reN , 2edN ,  

0.25edp and ( ) 0.1, 1,2,...,C i i S . The initial positions of the bacteria are randomly 

distributed all over the search space.  
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Figure  3.8   Optimization domain of the function in Example 3.1  

The motion trajectories of the bacteria are shown in Figure  3.9. The first generation 

started from their initial random positions. It is shown in the figure that the bacteria try to 

avoid peak points and pursue the valleys. In the second generation when reproduction 

takes place, the 25 healthiest bacteria are reproduced. The reproduction occurs again in 

the third and fourth generations.  

In Figure  3.10, an elimination/dispersal event takes place and other four generations 

perform the chemotactic and reproduction steps. It can be seen that the location of some 

bacteria is displaced to explore other parts of the search space.   
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Figure  3.9   Bacterial motion, generations 1-4 
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Figure  3.10   Bacterial motion, generations 1-4, after an elimination/dispersal event  
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3.6 PROPOSED MODIFIED BACTERIAL FORAGING ALGORITHM 

As demonstrated in Example 3.1, BFA has been successfully used to solve 

unconstrained small scale optimization problems. However, simulation results revealed 

that the BFA suffers from poor convergence properties and high computational 

requirements. This poor behavior gets worse in dynamic environments and high 

dimension search spaces associated with complex problems. In addition to the simulation 

results obtained throughout the research efforts conducted in this thesis, the deficiency of 

the basic BFA performance has commonly been reported in the literature [239, 240]. 

Consequently, important and critical adjustments are required to enhance the 

performance of the algorithm and deal with the complexity and high-dimensioned search 

space of constrained large-scale problems. In this work, two major modifications are 

introduced to the original BFA. Firstly, the basic chemotactic step is adjusted to have a 

dynamic behavior in order to improve balancing the global and local search. Secondly, 

the stopping criterion is adapted to fluctuate according to the solution improvement 

instead of the preset maximum number of iterations.  

3.6.1 Adaptive Dynamic Run-Length Unit for Chemotaxis 

The run-length unit, which is the chemotactic step size ( )C i , of the basic BFA is a 

constant parameter that could guarantee good searching results for small optimization 

problems. However, as mentioned earlier, when applied to complex constrained large-

scale problems with high dimensionality it shows poor performance. The run-length 

parameter is the key factor for controlling the local and global search ability of the BFA. 

From this perspective, balancing the exploration and exploitation of the search could be 

achieved by adjusting the run-length unit. If the size of the chemotactic step is too large, 

the bacteria will explore the search space in a wide-ranging manner. On the other hand if 

the size is too short, the search will be limited to local small areas. It should be mentioned 

that several dynamic functions are implemented in other evolutionary algorithms to 

control the local and global search ability of the algorithm [241-243]. In this thesis, two 

adaptive dynamic functions are proposed and applied instead of the preset constant step. 
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The first is a linearly decreasing dynamic function and the second is a nonlinear function. 

The two functions are respectively expressed as follows: 

( , ) ( ) (1) ( ) C
C C

C

N jC i j C N C C N
N

                           (3.28) 

( , ) ( )( , 1)
( )

C
C

C C

C i j C NC i j N j
N C N

                                     (3.29)     

            

where j  is the chemotactic step index and CN is the maximum number of chemotactic 

steps while (1)C  and ( )CC N  are initial predefined parameters. 

3.6.2 Adaptive Stopping Criterion 

The stopping criterion of the original BFA is the predefined maximum number of 

chemotactic steps, reproduction steps and elimination/dispersal events. This criterion 

increases the computation requirements of the algorithm in some cases. In this work, an 

adaptive stopping criterion is applied so that the algorithm adjusts the maximum number 

of iterations depending on the improvement of the cost function. The chemotaxis 

operation stops either when there is no further improvement in the solution after a certain 

number of iterations or when the maximum number of chemotactic steps is reached. 

3.7 CONSTRAINT HANDLING 

A constrained optimization problem can have inequality or equality constraints or 

both as discussed in Section  3.2 earlier.  An inequality constraint is violated when a 

bacterium swims out of the search space boundaries. In this case the corresponding entry 

in the bacteria position vector is relocated into its immediate previous feasible position. 

This, in fact, is the principle of rejecting the infeasible solutions and preserving the 

feasible ones [244]. Such procedure is performed so as to maintain the randomness and 

stochastic features of the algorithm while keeping each bacterium in active mode instead 

of applying the death penalty, even if it moves out of the boundaries.  

The objective function is augmented by the equality constraints using penalty 

factors. The resulting equation is called the evaluation function (Feval).  In the proposed 
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algorithm, the penalty function utilized is formulated as a dynamic nonlinear increasing 

function [245-247]. The proposed evaluation function that would be computed in each 

iteration is mathematically expressed as follows: 

1
( )

m
y z

eval T i
i

F F A j f                                                               (3.30) 

The parameters A , y and z are constants, j is the index for the chemotactic step and m is 

the number of equality constraints. The set of functions (1 )if i m  construct the 

penalty term so that the function if measures the violation of the thi equality constraint. 

The violation function if is computed as follows: 

| ( ) |i if g x                                                                                      (3.31)  

 The function ( )ig x represents the thi equality constraint in accordance to Equation (3.2). 

The formulation of Equation (3.30) shows that the first part of the penalty function, 

( )yA j grows larger as the number of iterations increases. 

To demonstrate the effectiveness and the good performance of the proposed MBFA, 

it is applied to solve several optimization problems.  The following examples are selected 

to show the significant input of the proposed modifications as well as the efficiency of 

the constraint-handling scheme.  The proposed algorithm is implemented in MATLAB 

7.8 and executed on an Intel Core 2 Duo 1.66 GHz personal computer. In each test case, 

50 independent runs were conducted with different random initial solution for each run.  

 Example 3.2:  

In this example the proposed MBFA is employed to find the global solution to the 

following minimization problem [231]: 

1 2 1 2 1 2 1 2 1 2 1 2( , ) 5sin(2 ) cos(3 ) sin( ) cos( )F x x x x x x x x x x x x      (3.32)  

subject to            1 25 , 5x x                                                                                   (3.33) 

The function to be minimized is shown in Figure  3.11. The function has multiple peaks 

and valleys. Minimization of this function is a real challenge for any optimization 

technique although it is much easier for heuristic methods to find the global minimum. 
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The existence of multiple local maxima and minima makes derivative-based deterministic 

methods most likely get trapped in these local optima unless the initial solution was 

luckily located near the global minimum.    

 
Figure  3.11   Multi local optima function of Example 3.2 

The parameters of the algorithm are chosen as 10S , 50CN , 10SN , 4reN ,

2edN , 0.25edp , (1) 1C and ( ) 0.0001CC N . In order to appropriately tune the 

parameters the algorithm was run many times before finally the parameters were selected. 

The proposed MBFA was executed 50 independent runs to proof its effectiveness and 

robustness. In each run, the initial solutions were randomly distributed to maintain the 

stochastic features of the algorithm as a heuristic approach. The results, as shown in 

Table  3.1, reflect the capability of the proposed BFA to find a very near global solution.  

Table  3.1  Results for Example 3.2 
Solution Objective Average time (sec) x1 x2 Min Max Average 

-4.7124 4.7124 -16.4249 -16.4224 -16.4248 0.0702426 

The performance of the proposed MBFA is illustrated in Figure  3.12, Figure  3.13 and 

Figure  3.14. The first two figures show the bacterial trajectories for the four generations 
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in their search for the global minimum before and after the occurrence of the elimination/ 

dispersal event. Figure  3.14 shows the objective function improvement by the increase of 

the chemotactic steps during the reproduction and elimination/ dispersal events. 

 

 
Figure  3.12   Bacterial motion trajectories for Example 3.2 
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Figure  3.13   Motion trajectories on contour plots for Example 3.2 
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Figure  3.14   Objective function vs. iteration number for Example 3.2 
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Example 3.3:  

In this example, the function to be minimized is the Rosenbrock’s banana function. 

The global minimum is known to be * * *
1 2( , ,..., ) 0nf x x x  which occurs at (1,1,...,1) . This 

function is a standard test function and it is a quite tough for almost all of the 

optimization algorithms. This difficulty in finding the global optimum of this function is 

obvious because of the non-convex characteristics that are shown in Figure  3.15 for the 

two-dimensioned function. However, using the MBFA, the global minimum could be 

easily found. The optimization function to be minimized is: 

1
2 2 2

1 2 1
1

( , ,..., ) [(1 ) 100( ) ]
n

n i i i
i

F x x x x x x                            (3.34) 

subject to  1 250 , ,..., 50nx x x                                                                    (3.35) 

The problem space dimension n is chosen as 100n to demonstrate the ability of the 

MBFA to perform effectively in finding the global, or close to global, minimum for 

problems with high dimension search spaces. The parameters of the algorithm are tuned 

to the same values in Example 3.1 except for the maximum number of swimming steps in 

the same direction which is chosen to be 20SN .  

The MBFA is applied and successfully implemented to solve this optimization 

problem and find the global optimal, or near to optimal, solution. The number of runs 

executed in this problem is 50. Results obtained are listed in Table  3.2. 

Table  3.2  Results for Example 3.3(n=100) 
Solution Objective 

Average time (sec) 
x1,x2,…,xn Min Max Average 

1.0000 1.7251e-10 2.02246e-09 8.2324e-10 0.1664537 

In order to visualize the characteristics of the Rosenbrock’s banana function, the 

MBFA is applied to solve this problem considering the two-dimension form of the 

function. The non-convex characteristics and the smooth parabolic valley of the function 

are plotted in Figure  3.15. The function in two-dimension space is expressed as follows: 
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2 2 2
1 2 1 2 1( , ) (1 ) 100( )F x x x x x                                                (3.36) 

subject to   1 210 , 10x x                                                                              (3.37)                         

 
Figure  3.15   Rosenbrock’s banana function of Example 3.3 (n=2) 

The parameters of the algorithm are kept unchanged as above and the results obtained are 

listed in Table  3.3 while the performance of the algorithm is shown by Figure  3.16, 

Figure  3.17 and Figure  3.18. 

Table  3.3  Results for Example 3.3 (n=2) 
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Figure  3.16   Bacterial motion trajectories for Example 3.3 
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Figure  3.17   Motion trajectories on contour plots for Example 3.3 
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Figure  3.18   Objective function vs. iteration number for Example 3.3 
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Example 3.4:  

A more complicated function is used in this example to demonstrate the effectiveness 

of the MBFA. In this example, the function to be minimized is known as the egg crate 

function which is shown in Figure  3.19. 

 
Figure  3.19   Egg crate function for Example 3.4 

The objective function to be minimized is given as: 
2 2 2 2

1 2 1 2 1 2( , ) 25[sin ( ) sin ( )]F x x x x x x                                  (3.38) 

subject to   1 25 , 5x x                                                                                 (3.39) 

The egg crate function is known to have global minimum * *
1 2( , ) 0f x x  at (0,0) . 

Applying the MBFA with the same parameters used in Example 3.2, the solution point 

and the minimized function are shown in Table  3.4. The paths trajectories of the bacteria 

are shown in Figure  3.20, Figure  3.21 and Figure  3.22.  

Table  3.4  Results for Example 3.4 
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Figure  3.20   Bacterial motion trajectories for Example 3.4 
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Figure  3.21   Motion trajectories on contour plots for Example 3.4 
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Figure  3.22   Objective function vs. iteration number for Example 3.4 
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Example 3.5:  

In this example the Schaffer function is implemented and minimized using the 

MBFA. To find the global minimum for this function, the algorithm must have the ability 

to avoid getting trapped in the local minima. The challenge in this optimization problem 

comes from the shape of the function which has multi-minimum points as shown in 

Figure  3.23.  

minimize  
2 2 2

1 2

1 2 22 2
1 2

sin 0.5
( , ) 0.5

1 0.001( )

x x
F x x

x x
                                          (3.40) 

subject to  1 210 , 10x x                                                                              (3.41) 

 
Figure  3.23   Optimization function of Example 3.5 

The solution for the Schaffer function is the global minimum * *
1 2( , ) 0f x x  at (0,0)  

which obtained using the MBFA as shown in Table  3.5. The search operations are 

illustrated in Figure  3.24, Figure  3.25 and Figure  3.26. 
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Table  3.5  Results for Example 3.5 

 

 
Figure  3.24   Bacterial motion trajectories for Example 3.5 
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Solution Objective Average time (sec) x1 x2 Min Max Average 
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Figure  3.25   Motion trajectories on contour plots for Example 3.5 

 (2 elimination/dispersal events) 
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Figure  3.26   Objective function vs. iteration number for Example 3.5 
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Example 3.6:  

To demonstrate the effectiveness of the constraint-handling mechanism of the 

proposed algorithm, it is applied to solve the following constrained optimization problem: 

minimize  4 2 2 2
1 2 1 2 1 1 1 2 1( , ) 2 2 4F x x x x x x x x x                                 (3.42)

subject to: 2 2
1 2 2 0x x                                                                                  (3.43) 

2 2
1 20.25 0.75 1 0x x                                                                     (3.44) 

1 20 , 5x x                                                                                    (3.45) 

 
Figure  3.27   Constrained optimization function of Example 3.6 

The function has both inequality and equality constraints. The function is depicted in 

Figure  3.27.  The proposed algorithm could find the near optimal solution and hence, the 

effectiveness of the used constraint-handling approach is demonstrated. Results obtained 

by applying the proposed algorithm are tabulated in Table  3.6. Figure  3.28, Figure  3.29 

and Figure  3.30 show the trajectories of the algorithm and the search paths. 

Table  3.6 Results for Example 3.6 
Solution Objective 

Average time (sec) 
x1 x2 Min Max Average 

1.0000 1.0000 3.0000 3.0006 3.0001 0.0841742 
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Figure  3.28   Bacterial motion trajectories for Example 3.6 
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Figure  3.29   Motion trajectories on contour plots for Example 3.6 

 (2 elimination/dispersal events) 
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Figure  3.30   Objective function vs. iteration number for Example 3.6 
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Example 3.7:  

This example is devoted to solve a sample multi-objective optimization problem of 

two objective functions presented as follows [248]: 

minimize  
1 1 2 3 4

2
1 2 3 4

200 2 2

2 2 2 2 2 20.01

F x x x x x

F x
x x x x

200x 200200

0 0x 0 0
                                          (3.46) 

subject to: 

1

2

3

4

1 3

2 3

2 3
1 3

x

x

x
x

                                                                                   (3.47) 

The MBFA is applied to solve this multi-objective optimization problem using the 

weighted-sum method described in  3.3.3.1 above. The multi-objective optimization 

problem is converted into a single-objective one by assigning weighting factors to each 

objective function. The parameters of the algorithm are fixed as in the previous example. 

The non-dominated solutions are obtained and presented in Table  3.7. The table also 

shows the weights for each function and the solution computed corresponding to each 

solution. The Pareto optimal trade-off curve, which represents the set of the non-

dominated solutions, is illustrated in Figure  3.31. 

 
Figure  3.31   Pareto optimal front for Example 3.7 
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Table  3.7 Pareto optimal set of solutions for Example 3.7 
Solution Weight Objective Solution 

Number w1 w2 F1 F2 x1 x2 x3 x4 

1 1.00 0.00 1237.763 0.0400 1.000 1.414 1.414 1.000 

2 0.95 0.05 1419.335 0.0340 1.054 1.735 1.641 1.254 

3 0.90 0.10 1428.250 0.0333 1.060 1.739 1.628 1.286 

4 0.85 0.15 1437.343 0.0333 1.086 1.730 1.667 1.277 

5 0.80 0.20 1603.512 0.0246 1.295 2.007 1.455 1.383 

6 0.75 0.25 1765.558 0.0221 1.047 2.422 1.539 2.068 

7 0.70 0.30 1801.969 0.0198 1.401 2.170 1.560 1.890 

8 0.65 0.35 1871.762 0.0196 1.491 2.282 1.663 1.860 

9 0.60 0.40 1935.699 0.0157 1.661 1.946 1.470 2.392 

10 0.55 0.45 2103.569 0.0129 1.713 2.785 1.472 1.940 

11 0.50 0.50 2257.941 0.0091 1.991 2.615 1.415 2.420 

12 0.45 0.55 2305.076 0.0087 1.961 2.797 1.430 2.452 

13 0.40 0.60 2448.745 0.0071 2.434 2.736 1.410 2.319 

14 0.35 0.65 2497.940 0.0066 2.486 2.785 1.414 2.390 

15 0.30 0.70 2517.292 0.0063 2.490 2.657 1.423 2.656 

16 0.25 0.75 2603.557 0.0058 2.758 2.710 1.414 2.480 

17 0.20 0.80 2628.669 0.0050 2.548 2.908 1.421 2.743 

18 0.15 0.85 2689.861 0.0034 2.666 2.918 1.355 2.825 

19 0.10 0.90 2705.069 0.0034 2.755 2.977 1.352 2.642 

20 0.05 0.95 2833.479 0.0029 2.976 2.989 1.389 2.811 

21 0.00 1.00 2886.370 0.0028 3.000 3.000 1.414 3.000 

3.8 SUMMARY 

In this chapter, a brief introduction to optimization theory has been presented. An 

overview of the main concepts of both single-objective and multiple-objective 

optimization has been provided. Various approaches used to solve single and multiple-

objective optimization problems have also been demonstrated in the chapter. 

Classification of various optimization problems and solution methods has been 

highlighted. In addition, major differences between classical and non-classical methods 



 

     109 

have been emphasized. The main subject of the chapter is the BFA as it is the 

optimization methodology used in this work. The various aspects of the basic BFA are 

addressed from both biological and optimization-based perspectives. The modifications 

that are proposed in this thesis to improve the performance of the original algorithm and 

enhance its convergence characteristics have been introduced, discussed and validated. 

The constraint-handling mechanism, which is implemented in this thesis, has been 

demonstrated and discussed since the problems that are tackled in this thesis are multi 

dimension constrained problems. Selected numerical examples have been employed to 

validate the proposed MBFA and to demonstrate its capabilities as a powerful, robust and 

reliable optimization technique. All the problems and case studies in the next chapters are 

solved using the techniques presented in this chapter.   
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CHAPTER 4 ECONOMIC LOAD DISPATCH OF ALL-
THERMAL POWER GENERATION  

 

4.1 INTRODUCTION  

Economic operation and planning of electrical power systems have always been a 

primary concern in the electrical power industry. Optimal economic operation of power 

generation systems is achieved through the efficient use of the available fuel which 

comes mostly from irreplaceable natural resources. An imperative truth that raises the 

importance of the optimal economic operations is that the electrical energy cannot be 

stored in large amounts. In addition, significant reduction in the amount of fuel used and 

hence in the operating costs can be achieved by a small percent of savings in power 

generation systems. Operating costs of different generating units are dissimilar due to 

various reasons such as their characteristics and efficiencies and the distances between 

their locations and load centers. Consequently, an optimal power generation schedule that 

determines the generation level of each of the units is essential to meet the load demand 

at the minimum cost. Furthermore, the operating cost of a specific generating unit is not 

linearly dependent on the power it produces. In fact, this relationship is a nonlinear and 

even non-smooth function as will be shown in the next section. Obtaining the optimal 

economic generation schedule can only be realized by considering various operational 

constraints and limitations. The load demand, for instance, must be satisfied all the time 

while including the system losses that are function of the power generation. Other 

practical issues such as the valve-point effects and reserve margins considered by the 

generation patterns need to be taken into consideration.  

This chapter is devoted to the economic load dispatch of exclusively thermal electric 

power systems. The MBFA presented in  Chapter 3 is applied to solve the ED problem. 

The problem will firstly be assumed as a lossless case where the transmission losses are 

neglected. Subsequently, the power losses are considered in addition to the valve-point 

effects. Several test systems are used to validate the performance of the proposed 

algorithm and to compare the results to those obtained using other well-known 

optimization techniques. 
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4.2 THERMAL GENERATION PLANT: OPERATING COST MODELING 

The total cost of operating thermal plants includes cost of labor and maintenance in 

addition to the costs of fuel and other supplies. In general, the economic dispatch process 

considers the cost of the fuel burnt in the fossil units. This does not mean that the other 

costs are neglected but they are commonly assumed to be a fixed percentage of the 

incoming fuel costs [3]. As a result of a mechanical process, energy is produced and 

transformed into mechanical form through steam or combustion turbines. The electric 

generator is driven by the turbine and hence, energy is finally transformed into electrical 

form. The power output of this system is connected to the electric power load. In 

addition, it supplies the auxiliary power system requirements of the plant itself. Figure 

 4.1 is a schematic illustration of a typical turbine-generator unit. 

Boiler

Auxiliary
Power

System

Turbine Generator

Output

Fuel

 
Figure  4.1   Typical turbine-generator model 

The input to the thermal plant is generally measured in MBtu/h and the output power 

is in MW. Typical net heat rates for various fossil generating unit sizes are given in the 

appendix [3]. The input-output relation of a thermal unit, which is known as “heat-rate” 

curve, is shown in Figure  4.2 [249]. 

 
Figure  4.2   Heat-rate curve 
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The heat-rate curve is converted to the fuel cost curve representing the relationship 

of the operating cost of a fossil-fired thermal unit and its output power as shown in Figure 

 4.3. This cost is usually approximated as a quadratic function of the real power 

generation 

2( )i gi i gi i gi iF P a P b P c                                         (4.1) 

Typical values of the coefficients ,i ia b and ic as well as typical heat rate data for various 

fossil generation units are provided in the appendix [3]. 

 
Figure  4.3   Fuel cost curve 

The lower limit of the output power min
giP  is the minimum economical loading limit 

below which the operation is infeasible technically and/or economically. On the other 

hand,  max
giP  represents the upper limit and the maximum output power. 

The derivative of the fuel cost curve with respect to the active power results in an 

important characteristic which is a measure of the cost of the next increment of power. 

This relationship, which is shown in Figure  4.4, is known as the “incremental fuel-cost” 

curve.  
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Figure  4.4   Incremental fuel-cost curve 

4.3 ECONOMIC DISPATCH PROBLEM 

The economic dispatch problem is designed to determine the optimal loading of all 

committed generating units to minimize the cost function subject to the system 

constraints [2]. These running generating units are assumed to be known in advance. It is 

also assumed that the information about the daily load demand is also available. 

Accordingly, assuming that the number of committed units is Ng and the total load 

demand is PD, then the ED problem can be formulated with the following objective 

function:  

Minimize    
1

( )
gN

T i gi
i

F F P                                                                (4.3)   

This is subject to operational equality and inequality constraints as follows: 

 Load balance equation 

1
0

gN

gi D
i

P P                                                                            (4.4) 

 Generating unit capacity limits 

min max , 1,2,...,gi gi gi gP P P i N                                                        (4.5) 
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( )i giF P  : operating cost for unit i 

Output power, MW 
In

cr
em

en
ta

l F
ue

l c
os

t, 

$/
M

W
h 



 

     114 

giP   : active power generation for unit i 

DP   : total load demand 

gN   : number of thermal generating units 

min
giP   : minimum power generation for unit i 

max
giP   : maximum power generation for unit i 

The formulation expressed above is for the basic model of the conventional ED 

problem. Later in this chapter more practical aspects will be considered such as the 

system losses and the valve-point effects. It should be noted that the results of the ED 

solution of an all-thermal system can be applied to a hydro-thermal system by 

considering an equivalent thermal characteristics [3]. 

The proposed MBFA is implemented to determine the optimal ED of the case studies 

shown in the following sections. Some of these cases represent the ED problem 

considering the system losses and others include the valve-point-effects in their objective 

functions as will be discussed later in this chapter. The algorithm was implemented in 

MATLAB 7.8 and executed on an Intel Core 2 Duo 1.66 GHz personal computer. In 

order to check for consistency, in each test case at least 30 independent runs were 

conducted with different random initial solution for each run. Results obtained for each 

case are compared with those of other methods. The comparison is performed against 

various approaches that include deterministic and heuristic methods. The various MBFA 

parameters are tuned separately as they are problem-dependent. As an attempt to come 

across the optimum parameter combinations, a very large number of preliminary runs 

were executed independently for each case study. The execution time for each run was 

recorded accurately (or at least as accurate as possible). This accuracy was maintained 

through rebooting the machine before each simulation. Furthermore, it should be 

mentioned that the runs were executed in such a way that no other applications were 

running simultaneously on the computer. Regarding the dynamic run-length functions 

discussed in Section  3.6.1, both the linear and nonlinear decreasing functions of 

Equations (3.28) and (3.29)  were separately applied to the algorithm in each case study. 
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To select one of these two functions, the one which gave best results and/or lowest CPU 

computation time was considered.       

4.4 OPTIMAL ECONOMIC DISPATCH: TRANSMISSION LOSSES NEGLECTED 

The ED problem considered in this section deals with thermal generation systems 

where the transmission losses are neglected. In this configuration it is assumed that all the 

generating units are connected to the same bus as shown in Figure  4.5. 

F(Pg1)

Pg1

F(Pg2)

Pg2

F(PgNg)

PgNg

PD

 
Figure  4.5   Ng generating units connected to a common bus to supply a load PD 

4.4.1 Case Study 1: 3-Generator System 

This case study is a 3-generator system and a total load demand of 850 MW [2]. The 

objective in this case is to determine the optimal economic power schedule for the three 

generating units. The fuel cost functions for the units are given as follows: 
2

1 1 1 1( ) 0.001562 7.92 561 $g g gF P P P h                                      (4.6) 

2
2 2 2 2( ) 0.00194 7.85 310 $g g gF P P P h                                      (4.7) 

2
3 3 3 3( ) 0.00482 7.97 78 $g g gF P P P h                                        (4.8) 

The high and low limits of the three units are represented by the following inequalities: 

1150 600gMW P MW                                            (4.9) 

2100 400gMW P MW                                                  (4.10) 

350 200gMW P MW                                          (4.11) 
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The transmission losses of this system are neglected. The MBFA is used to determine the 

optimal load dispatch and the results are shown in Table  4.1. 

Table  4.1   Results of 30 runs (3-generator lossless system 1) 
Power dispatch Cost ($/h) Average time 

(sec) Pg1 (MW) Pg2 (MW) Pg3 (MW) Min Max Average 
392.98 334.42 122.60 8194.36 8196.00 8194.99 0.2523 

Results obtained by the proposed MBFA are compared with those obtained using  the 

Lambda Iteration Method (LIM) [2], Particle Swarm Optimization (PSO) [250] and the 

Pattern Search (PS) approach [251]. The comparison is presented in Table  4.2 which 

shows that the proposed method gives a very close solution or a slightly lower cost than 

those of other methods. 

Table  4.2   Comparison of the results (3-generator losses system 1) 
Power  Method 

dispatch LIM [2] PSO [250] PS [251] MBFA 
Pg1 (MW) 393.20 391.80 393.20 392.98 
Pg2 (MW) 334.60 338.20 334.60 334.42 
Pg3 (MW) 122.20 120.00 122.20 122.60 
Cost ($/h) 8194.36 8194.40 8194.36 8194.36 

4.4.2 Case Study 2: 3-Generator System 

The same system of Case Study 1 is considered with the fuel cost function of the 

generating unit 1 changed due to the decrease of the coal price. The cost function of this 

unit becomes: 
2

1 1 1 1( ) 0.00128 6.48 459 $g g gF P P P h                                      (4.12)                         

The proposed MBFA is applied to this system to find the optimal ED. Table  4.3 and 

Table  4.4 show the solution and the comparison of the results with those obtained by the 

other optimization methods mentioned above. 

Table  4.3   Results of 30 runs (3-generator lossless system 2) 
Power dispatch Cost ($/h) Average time (sec) Pg1 (MW) Pg2 (MW) Pg3 (MW) Min Max Average 

601.83 186.58 61.60 7251.82 7253.79 7252.11 0.2453 
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Table  4.4   Comparison of the results (3-generator losses system 2) 

Power Method 

dispatch LIM [2] PSO [250] PS [251] MBFA 
Pg1 (MW) 600.00 599.90 600.00 600.00 
Pg2 (MW) 187.10 187.40 187.10 186.58 
Pg3 (MW) 62.20 62.70 62.20 61.59 
Cost ($/h) 7252.83 7252.85 7252.83 7251.82 

It can be seen from the tables that the cost obtained using the MBFA is lower than 

those obtained by the other optimization techniques. 

4.5 OPTIMAL ECONOMIC DISPATCH: TRANSMISSION LOSSES CONSIDERED 

In power systems where electrical energy is transmitted using long transmission 

lines, network losses cannot be neglected as they significantly affect the generation 

dispatch. In practical systems, it is estimated that the system power losses can be as much 

as 5% to 10% of the total power generation [252, 253]. To include the transmission 

losses, an all-thermal generation system is configured as shown in Figure  4.6. The 

generating units in this system are connected to an equivalent load bus through a 

transmission network [2]. In the ED problem of this section, the transmission losses are 

included in the load balance Equation (4.4). Accordingly, the objective function 

expressed in Equation (4.3) is to be minimized while satisfying the following active 

power balance equation: 

   
1

0
gN

gi D L
i

P P P                                                                      (4.13) 

where LP is the active power losses as a function of only the real power generation. The 

real power transmission losses in power systems are principally computed using the exact 

power flow equations. However, it is a common practice to express the losses as a 

quadratic function only in terms of real power generation. This function is referred to as 

the loss formula and its simplest form is known as George’s formula [3]: 

1 1

g g

i j

N N

L g ij g
i j

P P B P                                                                        (4.14) 
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The parameters ijB are called the loss coefficients or B-coefficients. In order to obtain a 

more accurate loss formula, a linear term and a constant is added to the expression of 

(4.14) to form what is referred to as Kron’s loss formula [3]:  

0 00
1 1 1

g g g

i j i

N N N

L g ij g i g
i j i

P P B P B P B                                             (4.15) 

This formula can be expressed in a vector notation as the following: 
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                (4.16) 

The B-coefficients mainly depend on the operating condition of the system. They are 

usually assumed to be constant parameters, unless the system operating state of a new 

generation scheduling is significantly different from the base case. 

F(Pg1) F(Pg2) F(PgNg)

Pg1 Pg2 PgNg

PD

Transmission network
with losses Ploss

 
Figure  4.6   Ng generating units supplying load PD through transmission network 
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4.5.1 Case Study 1: 3-Generator System 

The same system with the same generating units and fuel costs of Section  4.4.1 

above is considered in this case study with the following loss expression is included [2]: 
2 2 2
1 2 30.00003 0.00009 0.00012L g g gP P P P MW                        (4.17) 

The losses are included in the active power balance equation (4.13). The optimal power 

dispatch obtained using the proposed MBFA is shown in Table  4.5.  

Table  4.5   Results of 30 runs (3-generator system with losses) 
Power dispatch Ploss Cost ($/h) Average time 

Pg1 (MW) Pg2 (MW) Pg3 (MW) (MW) Min Max Average (sec) 

435.60 299.60 130.60 15.82 8344.59 8346.21 8345.98 0.2426 

Results show that the MBFA is able to determine a close to optimal solution with a good 

robustness and convergence characteristics. These results are compared with those 

obtained by the LIM [2], PSO [250] and the PS approach [251]. Table  4.6 shows that the 

proposed algorithm gives a very close power generation pattern and a little lesser cost 

than those of other methods. 

Table  4.6   Comparison of the results (3-generator system with losses) 
Power Method 

dispatch LIM [2] PSO [250] PS [251] MBFA 
Pg1 (MW) 435.13 435.60 435.10 435.64 
Pg2 (MW) 299.99 298.90 300.00 299.58 
Pg3 (MW) 130.71 131.40 130.73 130.59 
Ploss (MW) 15.83 15.80 15.8300 15.82 
Cost ($/h) 8344.31 8344.36 8344.59 8344.19 

4.5.2 Case Study 2: 6-Generator System 

This case study is the IEEE30-bus system with 6 generators and a total load demand 

of 1800 MW and the fuel cost characteristics are given in Table  4.7 [157, 251]. It should 

be noted here that the upper and lower generation limits were not specified in the 

mentioned references.  



 

     120 

Table  4.7   Data for the 6-generator system of Case Study 2 
Parameter 

Unit i ai bi ci Pgi
min Pgi

max 
$/MW2h $/MWh $/h MW MW 

1 0.002035 8.43205 85.6348 150 600 
2 0.003866 6.41031 303.7780 150 600 
3 0.002182 7.42890 847.1484 150 600 
4 0.001345 8.30154 274.2241 150 600 
5 0.002182 7.42890 847.1484 150 600 
6 0.005963 6.91559 202.0258 150 600 

The system losses are taken into account using the loss formula of Equation (4.16) with 

the following loss coefficients matrix [251]: 

5

20.0 1.0 1.5 0.5 0 3.0

1.0 30.0 2.0 0.1 1.2 1.0

1.5 2.0 10.0 1.0 1.0 0.8
10

0.5 0.1 1.0 15.0 0.6 5.0

0 1.2 1.0 0.6 25.0 2.0

3.0 1.0 0.8 5.0 2.0 21.0

B                                 (4.18) 

Results obtained by the proposed MBFA are compared with those of the Surrogate Worth 

Trade-off with Newton-Raphson (SWT-NR) approach used in [157], the Sequential 

Quadratic Programming (SQP) method and the PS approach proposed in [251]. The 

results and comparison are presented in Table  4.8. This table shows that the proposed 

method gives very close results to those of other methods. 

Table  4.8   Optimal Power dispatch (6-generator system) 
Power Method 

dispatch SWT-NR [157] SQP [251] PS [251] MBFA 
Pg1 (MW) 251.69 251.69 252.24 252.31 
Pg2 (MW) 303.78 303.79 306.70 303.32 
Pg3 (MW) 503.48 503.48 505.38 503.09 
Pg4 (MW) 372.32 372.32 365.13 372.74 
Pg5 (MW) 301.47 301.47 302.32 301.33 
Pg6 (MW) 197.40 197.40 198.53 197.32 
Ploss (MW) 130.15 130.15 130.31 130.12 
Cost ($/h) 18721.39 18721.39 18721.50 18721.39 
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Some statistical figures that illustrate the robustness of 30 runs of the algorithm are 

shown in Table  4.9. The standard deviation from the mean is 1.0987 with a range of 

6.0281 between the minimum and maximum costs. 

Table  4.9   Results of 30 runs (6-generator system) 
Cost ($/h)  Average 

Min Max Average STD  Range time (s) 
18721.40 18727.42 18721.83 1.10 6.00 0.5629 

4.5.3 Case Study 3: 20-Generator System 

This system consists of 20 generators with a total demand of 2500 MW. The system 

data are shown in Table  4.10 and the B-coefficient matrix is as follows [254]: 

Table  4.10   Data for the 20-generator system of Case Study 3 
Parameter 

Unit i 
ai bi ci Pgi

min Pgi
max 

$/MW2h $/MWh $/h MW MW 
1 0.00068 18.19 1000 150 600 
2 0.00071 19.26 970 50 200 
3 0.00650 19.80 600 50 200 
4 0.00500 19.10 700 50 200 
5 0.00738 18.10 420 50 160 
6 0.00612 19.26 360 50 100 
7 0.00790 17.14 490 50 125 
8 0.00813 18.92 660 50 150 
9 0.00522 18.27 765 50 200 
10 0.00873 18.92 770 30 150 
11 0.00480 16.69 800 100 300 
12 0.00310 19.76 970 150 500 
13 0.00850 17.36 900 40 160 
14 0.00511 18.70 700 20 130 
15 0.00398 18.70 450 25 185 
16 0.07120 14.26 370 20 80 
17 0.00890 19.14 480 30 85 
18 0.00713 18.92 680 30 120 
19 0.00622 18.47 700 40 120 
20 0.00773 19.79 850 30 100 
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3

8.70 0.43 4.61 0.36 0.32 0.66 0.96 1.60 0.80 0.10 3.60 0.64 0.79 2.10 1.70 0.80 3.20 0.70 0.48 0.70
0.43 8.30 0.97 0.22 0.75 0.28 5.04 1.70 0.54 7.20 0.28 0.98 0.46 1.30 0.80 0.20 0.52 1.70 0.80 0.20
4.61 0.97 9.00 2.00 0.6

10B

3 3.00 1.70 4.30 3.10 2.00 0.70 0.77 0.93 4.60 0.30 4.20 0.38 0.70 2.00 3.60
0.36 0.22 2.00 5.30 0.47 2.62 1.96 2.10 0.67 1.80 0.45 0.92 2.40 7.60 0.20 0.70 1.00 0.86 1.60 0.87
0.32 0.75 0.63 0.47 8.60 0.80 0.37 0.72 0.90 0.69 1.80 4.30 2.80 0.70 2.30 3.60 0.80 0.20 3.00 0.50
0.66 0.28 3.00 2.62 0.80 11.8 4.90 0.30 3.00 3.00 0.40 0.78 6.40 2.60 0.20 2.10 0.40 2.30 1.60 2.10

0.96 5.04 1.70 1.96 0.37 4.90 8.24 0.90 5.90 0.60 8.50 0.83 7.20 4.80 0.90 0.10 1.30 0.76 1.90 1.30
1.60 1.70 4.30 2.10 0.72 0.30 0.90 1.20 0.96 0.56 1.60 0.80 0.40 0.23 0.75 0.56 0.80 0.30 5.30 0.80

0.80 0.54 3.10 0.67 0.90 3.00 5.90 0.96 0.93 0.30 6.50 2.30 2.60 0.58 0.10 0.23 0.30 1.50 0.74 0.70
0.10 7.20 2.00 1.80 0.69 3.00 0.60 0.56 0.30 0.99 6.60 3.90 2.30 0.30 2.80 0.80 0.38 1.90 0.47 0.26

3.60 0.28 0.70 0.45 1.80 0.40 8.50 1.60 6.50 6.60 10.7 5.30 0.60 0.70 1.90 2.60 0.93 0.60 3.80 1.50
0.64 0.98 0.77 0.92 4.30 0.78 0.83 0.80 2.30 3.90 5.30 8.00 0.90 2.10 0.70 5.70 5.40 1.50 0.70 0.10
0.79 0.46 0.93 2.40 2.80 6.40 7.20 0.40 2.60 2.30 0.60 0.90 11.0 0.87 1.00 3.60 0.46 0.90 0.60 1.50
2.10 1.30 4.60 7.60 0.70 2.60 4.80 0.23 0.58 0.30 0.70 2.10 0.87 3.80 0.50 0.70 1.90 2.30 0.97 0.90
1.70 0.80 0.30 0.20 2.30 0.20 0.90 0.75 0.10 2.80 1.90 0.70 1.00 0.50 11.0 1.90 0.80 2.60 2.30 0.10
0.80 0.20 4.20 0.70 3.60 2.10 0.10 0.56 0.23 0.80 2.60 5.70 3.60 0.70 1.90 10.8 2.50 1.80 0.90 2.60
3.20 0.52 0.38 1.00 0.80 0.40 1.30 0.80 0.30 0.38 0.93 5.40 0.46 1.90 0.80 2.50 8.70 4.20 0.30 0.68

0.70 1.70 0.70 0.68 0.20 2.30 0.76 0.30 1.50 1.90 0.60 1.50 0.90 2.30 2.60 1.80 4.20 2.20 0.16 0.30
0.48 0.80 2.00 1.60 3.00 1.60 1.90 5.30 0.74 0.47 3.80 0.70 0.60 0.97 2.30 0.90 0.30 0.16 7.60 0.69
0.70 0.20 3.60 0.87 0.50 2.10 1.30 0.80 0.70 0.26 1.50 0.10 1.50 0.90 0.10 2.60 0.68 0.30 0.69 7.00
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 The proposed algorithm is applied and the results are compared to those obtained by 

the Hopfield model [254], the LIM and the PS approach [251]. Table  4.11 and Table  4.12 

illustrate the results of the proposed algorithm. Compared to the other methods, the cost 

function achieved by the MBFA is significantly better than those obtained by LIM and 

the Hopfield model and slightly lower than that of the PS approach.  

Table  4.11   Optimal Power dispatch (20-generator system) 

Method 
LIM Hopfield PS 

MBFA 
[251] [254] [251] 

Pg1 (MW) 512.7805 512.7804 501.7882 501.1087 
Pg2 (MW) 169.1033 169.1035 169.1035 169.8707 
Pg3 (MW) 126.8898 126.8897 126.8889 126.7146 
Pg4 (MW) 102.8657 102.8656 102.8684 102.5186 
Pg5 (MW) 113.6836 113.6836 113.6836 113.1788 
Pg6 (MW) 73.5710 73.5709 72.1564 72.3594 
Pg7 (MW) 115.2878 115.2876 116.7870 116.2285 
Pg8 (MW) 116.3994 116.3994 116.3992 116.7992 
Pg9 (MW) 100.4062 100.4063 100.4063 100.4807 
Pg10 (MW) 106.0267 106.0267 106.0242 106.4783 
Pg11 (MW) 150.2394 150.2395 150.2360 150.6603 
Pg12 (MW) 292.7648 292.7647 304.0784 304.0278 
Pg13 (MW) 119.1154 119.1155 119.1147 119.8005 
Pg14 (MW) 30.8340 30.8342 30.8356 30.8067 
Pg15 (MW) 115.8057 115.8056 115.8056 114.8279 
Pg16 (MW) 36.2545 36.2545 36.4883 36.4071 
Pg17 (MW) 66.8590 66.8590 66.8589 65.9225 
Pg18 (MW) 87.9720 87.9720 87.9704 88.9900 
Pg19 (MW) 100.8033 100.8033 100.8033 100.4793 
Pg20 (MW) 54.3050 54.3050 54.3043 54.9011 
Ploss (MW) 91.9671 91.9670 92.6012 92.5608 
Cost ($/h) 62456.6391 62456.6341 62136.6612 62136.6502 

Mean Time 33.7570 6.3550 ---------------- 0.8233 

Table  4.12   Results of 30 runs (20-generator system) 
Cost ($/h)  Average  

Min Max Average STD  Range time (s) 
62136.65 62230.08 62140.00 17.02 93.43 0.8233 
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4.6 OPTIMAL ECONOMIC DISPATCH: VALVE-POINT EFFECTS CONSIDERED 

In the previous sections, the ED problem is approximated by a smooth differentiable 

quadratic or piecewise quadratic objective function, which is the same approach used by 

classical optimization methods. However, due to the valve-point effects, the real input-

output characteristics contain higher order nonlinearity and discontinuity which results in 

a non-convex, non-smooth fuel cost function. These discontinuities in the fuel cost curves 

are caused by sharp increases in throttle losses as a result of the effects of wire drawing at 

valve points. As a consequence of steadily lifting the valve, the losses decrease until the 

valve is fully open [3]. The valve-point effects on the generator fuel cost curve are 

illustrated in Figure  4.7. It is obvious that the incremental fuel cost curve shown in Figure 

 4.4 is also affected by the valve-point effects. 

a
b

c

d

e

Input-Output curve without valve points
Input-output curve with valve points

Output power, MW

 

C
os

t,
$/

h 

a,b,c,d,e: valve points

 
Figure  4.7   Fuel cost curve including valve-point effects 

The valve-point effects are represented using two different approaches [255]. In the 

first, the effects are formulated as inequality constraints that represent them as prohibited 

operating zones [256, 257]. The second approach, which is considered in this section, 

includes a rectified sinusoidal term in the original objective function to model these 

effects [258-261]. Accordingly, the input-output characteristic function of Equation (4.1) 

is modified to obtain an accurate cost function model. The valve-point effects are 

included in the fuel cost function as follows [260, 262]: 
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2 min( ) sin ( )
i i ii g i gi i gi i i i g gF P a P b P c e f P P                        (4.19) 

The coefficients ei and fi are constant fuel cost coefficients for unit i with valve-point 

effects. The total cost function to be minimized can be expressed as follows: 

2 min

1
sin ( )

g

i i

N

T i gi i gi i i i g g
i

F a P b P c e f P P                           (4.20) 

In the following sections, the MBFA is applied to solve the ED problem considering 

the valve-point effects and power losses. The good performance of the proposed 

algorithm is demonstrated using several test systems in spite of the high dimensionality 

of the search hyperspace and the non-smoothness of the objective function due to the 

valve-point effects. Although traditional calculus-based optimization methods may show 

good performance in solving the conventional ED problem, they fail to achieve 

satisfactory results when used to solve ED problems with valve-point effects [263]. 

4.6.1 Case Study 1: 3-Generator System-Lossless Case 

In this problem the system in Section  4.4.1 with 3 generators and a total load demand 

of 850 MW is studied. The test is performed without considering the network losses but 

the valve-point effects are included in the cost function. The coefficients of the system 

input-output characteristics and the valve-point effects are tabulated in Table  4.13 [259]: 

Table  4.13   Data for Case Study 1 considering valve-point effects 
Generating Units 

Parameter Unit 1 Unit 2 Unit 3 
ai  0.001562 0.00194 0.00482 
bi  7.92 7.85 7.97 
ci  561 310 78 
ei 300 200 150 
fi 0.0315 0.042 0.063 

Pgi
min(MW) 100 100 50 

Pgi
max(MW) 600 400 200 

The proposed algorithm is applied and validated by comparing the results with those of 

the SQP, the PS [251] and the GA approach of [259]. The results obtained by proposed 

algorithm along with those of the three methods are shown in Table  4.14.  
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Table  4.14   ED for Case Study 1 (3-generator system with valve-point effects) 

Power Method 
dispatch SQP [251] GA [259] PS [251] MBFA 

Pg1 (MW) 399.200 300.000 300.300 300.161 

Pg2 (MW) 400.000 400.000 400.000 400.000 

Pg3 (MW) 50.800 150.000 149.700 149.801 

Cost ($/h) 8241.60 8237.60 8234.10 8225.36 

Compared to the GA and PS approaches, the cost function achieved by the MBFA is 

relatively lower while it is noticeably lower than that of the SQP deterministic method. 

The best cost obtained is 8225.36 $/h with a standard deviation of 4.53 from the mean 

and 15.96 range between the maximum and minimum costs obtained in 30 runs of the 

algorithm as shown in Table  4.15. 

Table  4.15   Results of 30 runs (3-generator system with valve-point effects) 
Cost ($/h)  Average time 

Min Max Average STD  Range  (sec) 
8225.36 8241.33 8231.03 4.53 15.96 0.2121 

4.6.2 Case Study 2: 3-Generator System-Losses Included 

The same system of Case Study 1 above is considered here with taking into account 

the system losses. The B-coefficients are given in vector notation as follows [251]: 

0.06760 0.00953 0.00507
0.00953 0.05210 0.00901
0.00507 0.00901 0.029400

B                                                (4.21) 

0.07660 0.00342 0.018900B                                             (4.22) 

00 0.040357B                                                                                (4.23) 

The MBFA is successfully applied to solve this ED problem with its results compared to 

those of the methods listed in the last case study. These results and the comparison with 

the solution obtained by the three methods are shown in Table  4.16. Results are 

comparable with a little lower cost function obtained by the proposed MBFA. 
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Table  4.16 ED for Case Study 2 (3-generators with valve-point effects and losses) 
Power Method 

dispatch SQP [251] PS [251] MBFA 
Pg1 (MW) 589.170 598.660 597.051 
Pg2 (MW) 399.200 394.500 395.281 
Pg3 (MW) 199.600 199.600 199.597 
Ploss (MW) 337.966 342.760 341.929 
Cost ($/h) 11471.54 11471.06 11458.01 

The minimum, mean and maximum objective costs are shown in Table  4.17. The 

standard deviation and range between minimum and maximum costs are 6.48 and 25.05 

respectively. 

Table  4.17 Results of 30 runs (3-generators with valve-point effects and losses) 
Cost ($/h)  Average time  

Min Max Average STD  Range (sec) 
11458.01 11483.05 11468.86 6.48 25.05 0.2754 

4.6.3 Case Study 3: 13-Generator System 

This test system consists of 13 generation units with 1800 MW load demand and the 

valve-point effects considered. The system data are shown in Table  4.18 and also 

presented in [264] and [261]. 

Table  4.18   Data for the 13-generator system of Case Study 3 
Parameter 

Unit i ai bi ci ei fi  
Pgi

min Pgi
max 

MW MW 
1 0.00028 8.10 550 300 0.035 0 680 
2 0.00056 8.10 309 200 0.042 0 360 
3 0.00056 8.10 307 150 0.420 0 360 
4 0.00324 7.74 240 150 0.063 60 180 
5 0.00324 7.74 240 150 0.063 60 180 
6 0.00324 7.74 240 150 0.063 60 180 
7 0.00324 7.74 240 150 0.063 60 180 
8 0.00324 7.74 240 150 0.063 60 180 
9 0.00324 7.74 240 150 0.063 60 180 
10 0.00284 8.60 126 100 0.084 40 120 
11 0.00284 8.60 126 100 0.084 40 120 
12 0.00284 8.60 126 100 0.084 55 120 
13 0.00284 8.60 126 100 0.084 55 120 
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According to the results obtained by the proposed MBFA, the optimal power generation 

of the units is as shown in Table  4.19. Convergence statistics are shown in Table  4.20. 

Table  4.19   Optimal generation for the 13-generator system of Case Study 3 

Unit 
Pgi

min Pgi
max Optimal Generation 

MW MW MW 

Pg1 0 680 525.6301 

Pg2 0 360 252.9432 

Pg3 0 360 257.6818 

Pg4 60 180 78.3424 

Pg5 60 180 83.4016 

Pg6 60 180 89.9476 

Pg7 60 180 87.3523 

Pg8 60 180 100.9071 

Pg9 60 180 131.1229 

Pg10 40 120 40.4181 

Pg11 40 120 40.7795 

Pg12 55 120 55.8075 

Pg13 55 120 55.6661 

Table  4.20   Results of 30 runs (13-generator system with valve-point effects) 
Cost ($/h)  Average time 

Min Max Average STD  Range (sec) 
17845.82 17901.02 17865.43 14.00 55.20 0.6361 

Results of the proposed algorithm are compared to other methods’ results. These are, EP 

[264], PSO, Hybrid EP with SQP (HEP-SQP), Hybrid Particle Swarm with SQP (HPSO-

SQP) [263] and Chaotic Differential Evolution with SQP (CED-SQP) [265]. Table  4.21 

shows this comparison. The proposed MBFA significantly outperformed all of the 

compared methods as it achieved a minimum cost of 17845.817 $/h which is a yearly 

saving of 815,818.80 $ compared to the lowest cost obtained by the other methods in the 

table. 
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Table  4.21   Comparison of the results (13-generator system with valve-point effects) 
 Method Total Cost ($/h) Average Time (s) 
 EP [264] 17994.07 157.4300 
 PSO [263] 18030.72 77.3700 
 HEP-SQP [263] 17991.03 121.9300 
 HPSO-SQP [263] 17969.93 33.9700 
 DE [265] 17959.61 2.69 
 DEC [265] 17960.11 2.74 
 CDE-SQP [265] 17938.95 0.5000 
 MBFA 17845.82 0.6361 

4.6.4 Case Study 4: 40-Generator System 

In this case study the number of generation units is 40 with a total demand of 10500 

MW with the valve-point effects considered. The system data is presented in Table  4.22 

and also available in [264]and [266].  

Table  4.22   Data for the 40-generator system of Case Study 4 
Parameter Parameter 

Unit ai bi ci ei fi 
Pgi

min Pgi
max 

Unit ai bi ci ei fi 
Pgi

min Pgi
max 

MW MW MW MW 

1 0.00690 6.73 94.705 100 0.084 36 114 21 0.00298 6.63 785.96 300 0.035 254 550 

2 0.00690 6.73 94.705 100 0.084 36 114 22 0.00298 6.63 785.96 300 0.035 254 550 

3 0.02028 7.07 309.54 100 0.084 60 120 23 0.00284 6.66 794.53 300 0.035 254 550 

4 0.00942 8.18 369.03 150 0.063 80 190 24 0.00284 6.66 794.53 300 0.035 254 550 

5 0.01140 5.35 148.89 120 0.077 47 97 25 0.00277 7.10 801.32 300 0.035 254 550 

6 0.01142 8.05 222.33 100 0.084 68 140 26 0.00277 7.10 801.32 300 0.035 254 550 

7 0.00357 8.03 278.71 200 0.042 110 300 27 0.52124 3.33 1055.10 120 0.077 10 150 

8 0.00492 6.99 391.98 200 0.042 135 300 28 0.52124 3.33 1055.10 120 0.077 10 150 

9 0.00573 6.60 455.76 200 0.042 135 300 29 0.52124 3.33 1055.10 120 0.077 10 150 

10 0.00605 12.90 722.82 200 0.042 130 300 30 0.01140 5.35 148.89 120 0.077 47 97 

11 0.00515 12.90 635.20 200 0.042 94 375 31 0.00160 6.43 222.92 150 0.063 60 190 

12 0.00569 12.80 654.69 200 0.042 94 376 32 0.00160 6.43 222.92 150 0.063 60 190 

13 0.00421 12.50 913.40 300 0.035 125 500 33 0.00160 6.43 222.92 150 0.063 60 190 

14 0.00752 8.84 1760.40 300 0.035 125 500 34 0.00010 8.95 107.87 200 0.042 90 200 

15 0.00708 9.15 1728.30 300 0.035 125 500 35 0.00010 8.62 116.58 200 0.042 90 200 

16 0.00708 9.15 1728.30 300 0.035 125 500 36 0.00010 8.62 116.58 200 0.042 90 200 

17 0.00313 7.97 647.85 300 0.035 220 500 37 0.01610 5.88 307.45 80 0.098 25 110 

18 0.00313 7.95 649.69 300 0.035 220 500 38 0.01610 5.88 307.45 80 0.098 25 110 

19 0.00313 7.97 647.83 300 0.035 242 550 39 0.01610 5.88 307.45 80 0.098 25 110 

20 0.00313 7.97 647.81 300 0.035 242 550 40 0.00313 7.97 647.83 300 0.035 242 550 
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The MBFA is successfully applied to find the optimal power dispatch for this system. 

The optimal generation level of each unit is shown in Table  4.23. 

Table  4.23   Optimal generation for the 40-generator system of Case Study 4 

Unit Pgi
min Pgi

max Optimal Generation Unit Pgi
min Pgi

max Optimal Generation 
MW MW MW MW MW MW 

1  36 114 106.4415 21 254 550 542.9079 

2  36 114 112.2997 22 254 550 521.1754 

3  60 120 91.3844 23 254 550 528.7296 

4 80 190 164.7806 24 254 550 548.4591 

5  47 97 97.0000 25  254 550 512.8029 

6 68 140 140.0000 26  254 550 532.5020 

7  110 300 297.9833 27  10 150 10.0000 

8 135 300 298.7559 28  10 150 10.0000 

9 135 300 298.7681 29  10 150 10.0000 

10  130 300 130.0000 30 47 97 84.4172 

11  94 375 154.8044 31 60 190 180.2997 

12  94 376 94.6298 32 60 190 189.3172 

13  125 500 219.0148 33  60 190 181.2538 

14  125 500 392.8003 34  90 200 178.3303 

15  125 500 307.2984 35  90 200 196.1330 

16 125 500 301.1605 36  90 200 200.0000 

17  220 500 491.4072 37 25 110 110.0000 

18  220 500 498.3393 38  25 110 110.0000 

19 242 550 511.7271 39  25 110 110.0000 

20  242 550 520.2939 40  242 550 514.7826 

Statistical  figures regarding the cost obtained is shown in Table  4.24 and compared to 

those obtained using the methods listed in Case Study 3 above in addition to the Modified 

PSO (MPSO) method presented in [266]. The comparison is illustrated in Table  4.25. The 

minimum cost associated with the proposed MBFA is 119898.197 $/h which is less than 

those given by the other methods shown in Table  4.25. The annual amount of reduction 
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in cost gained by applying the proposed method in this case is 16,151,512.80$. This 

amount is computed based on the difference between the cost achieved by the proposed 

method and the lowest cost given by the other methods shown in the table.   

Table  4.24   Results of 30 runs (40-generator system with valve-point effects) 
Cost ($/h)  Average time 

Min Max Average STD  Range (sec) 

119898.20 121368.13 120294.37 580.16 1469.93 6.4163 

Table  4.25   Comparison of the results (13-generator system with valve-point effects) 
 Method Total Cost ($/h) Average Time (sec) 
 EP [264] 122624.35 1167.35 
 PSO  [263] 122930.45 933.39 
 MPSO [266] 122252.27 -------- 
 HEP-SQP  [263] 122323.97 997.73 
 HPSO-SQP  [263] 122094.67 733.97 
 DE [265] 121900.88 5.12 
 DEC [265] 121815.80 5.01 
 CDE-SQP [265] 121741.98 14.26 
 MBFA 119898.20 6.42 

This case shows that the proposed MBFA performs well in solving the ED problem in 

spite of the high dimensionality of the search hyperspace and the non-smoothness of the 

objective function due to the valve-pint effects. The descriptive statistics of Table  4.24 

show that the standard deviation is 580.16 $/h and the range between the minimum and 

maximum cost is 1469.93 $/h.  

4.7 SUMMARY 

In this chapter the ED problem is discussed and modeled. The MBFA is applied to 

determine the optimal ED for various generation system configurations. The ED problem 

treated in this chapter was initially solved using the simple power balance model which 

neglected transmission losses. Then it was followed by the formulation of the active 

power losses using the transmission loss formula. Valve-point effects were also discussed 

and included in the problem formulation. Simulation results have demonstrated the 
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effectiveness and consistency of the MBFA in finding an optimal or near-optimal 

solution. Comparisons with other deterministic and heuristic methods has shown that the 

proposed algorithm has achieved significantly better results in most of the test cases and 

no less than better in the others. The ED case studies discussed in this chapter are also 

discussed in [267] and [268].  
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CHAPTER 5 SHORT-TERM HYDRO-THERMAL 
GENERATION SCHEDULING 

 

5.1 INTRODUCTION 

The objective of hydro-thermal scheduling is to determine the generation level for 

each committed hydro and thermal unit in such a way that the total operating cost is 

minimized while satisfying various operational constraints [2]. In large-scale hydro-

thermal generation systems, it is indispensable to operate thermal and hydro plants 

integrated in the same grid in order to achieve the optimal economic operation. Although 

the capital cost of hydro-electric plants is high, their operating cost does not depend on 

the output power. In contrast, the capital cost of the thermal plants is lower but their 

operating cost varies with the output power. In addition, while the starting and speed of 

response of thermal units are slow, hydro-electric plants can respond and start quickly 

and can handle fluctuating loads with high reliability. For these complementary 

characteristics of thermal and hydro-electric plants, the integrated operation of these 

plants is both economic and convenient practice. In contrast to thermal power production, 

there is no fuel cost associated with hydro-electric generation. However, fixed charges 

are accounted for regardless of the amount of the hydro power produced. Therefore, it is 

essential to use up the entire amount of water available over a planning period of time. In 

addition to generating electric power, hydro-electric plants must meet certain obligations 

as the reservoirs are multipurpose in most cases. A maximum forebay elevation, for 

instance, must not be exceeded due to the flooding considerations. In addition, to meet 

irrigational and navigational commitments, a minimum reservoir discharge and spillage 

must be observed. Hydro-electric systems can be differentiated depending on various 

aspects such as the number of hydro plants and, their operating characteristics and 

location. The hydro plants located on different streams have quite different characteristics 

from those on the same stream where water transport delay can be an important factor. 

The influence of the upstream reservoir on the operation of the next downstream one is 

greatly significant. On the other hand, the effect of the downstream plant on the tail water 

elevation and net head can also influence the upstream plant [3]. 
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In this chapter, generation scheduling of electrical power systems that contain both 

thermal and hydro plants is studied. The hydro-thermal generation scheduling problem is 

different from the all-thermal one discussed in  Chapter 4. The economic dispatch of all-

thermal generation problem is a static optimization process which allocates generation 

resources on an instantaneous basis [269]. The MBFA presented in  Chapter 3 is applied 

in the present chapter to solve the hydro-thermal generation problem. Both hydraulically 

isolated plants and plants on the same stream are considered. In the first part, fixed-head 

and variable-head plants are treated. Several case studies are presented taking into 

consideration power transmission losses and valve-point effects. In the rest of this 

section, various issues associated with hydro-electric plants are introduced and discussed.    

5.1.1 Hydro-electric Plant Installation Types 

Hydro-electric power plants are classified into two types; pumped storage and 

conventional. The latter is further categorized into storage and run-of-river [3].  

5.1.1.1  Storage Plants 

Storage plants have reservoirs of significant storage capacity. In these plants water is 

stored during low load demand periods and utilized during peak load periods. Generation 

scheduling of hydro-thermal systems with storage plants is the subject of this chapter.   

5.1.1.2  Run-of-River Plants 

This type of plants can only use water when it becomes available because they have 

no or little storage capacity. Consequently, when water is spilled over it is not utilized. 

Run-of-river plants are located in the stream or alongside, and in such case it is referred 

to as canal-type power plant. The output of these plants is modeled as a negative load in 

economic operation studies. 

5.1.1.3  Pumped-Storage Plants 

Pumped-storage plants have upper and lower reservoirs in their models. Water is 

pumped to the upper reservoir when the load demand is low. During high demand 
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periods, water is released to the lower reservoir to be used by the hydro turbine. These 

plants may use independent turbines and pumps or reversible pump-turbine units. The 

operation of the pumped-storage plant continues until the added cost due to pumping 

exceeds the savings in thermal operating costs due to what is known as the peak shaving 

operations [2].   

5.1.2 Plant Location 

Hydro-thermal plants can be classified into three types depending on their location. 

They can be hydraulically isolated as they are located on different streams, hydraulically 

coupled on the same stream or cascaded in a multi-chain plant configuration. The 

following is a brief explanation on each of these three categories. 

5.1.2.1  Hydro Plants on Different Streams 

Hydro plants on different streams are hydraulically isolated as there is no coupling 

between them except through the electric network. Therefore, their operation is 

hydraulically independent as they are not located on the same stream. Figure  5.1 is a 

schematic diagram of typical hydro plants on different streams. 

Water
Storage

Hy
dra

uli
c

Pla
nt

Water
Discharge

Spillage

Inflow

Water
loss

Water
Storage

Hy
dra

uli
c

Pla
nt

Water
Discharge

Spillage

Inflow

Water
loss

Ge
ne

rat
ion

Ge
ne

rat
ion

Load  
Figure  5.1   Hydro plants not on the same stream 
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5.1.2.2  Hydro Plants on the Same Stream 

Hydro plants located on the same stream are also called derail or cascaded plants. In 

this plant arrangement, the downstream plant is significantly influenced by the immediate 

upstream one which in turn is affected by the tail water elevation and effective head of 

the immediate downstream plant. A typical cascaded hydro plant configuration is 

illustrated in Figure  5.2. 
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Figure  5.2   Hydro plants on the same stream 

5.1.2.3  Multi-Chain Hydro Plants 

Hydraulically coupled systems that consist of plants that are located on different 

streams and others that are on the same stream have a multi-chain hydro plant 

arrangement. Figure  5.3 shows a typical configuration of a multi-chain hydro plant 

system. 
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Figure  5.3   Multi-chain hydro plants 

5.1.3 Hydro Turbine Models 

Hydro turbines can be classified into two general types. These are; reaction type and 

impulse type [3]. In the first type, water under pressure enters the turbine after it is partly 

converted into velocity. The most commonly used turbines of this type are the Francis 

wheel, the Kaplan wheel and propeller wheel. In the second type, water under pressure is 

entirely converted into velocity. 
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The output active power of a hydro turbine is expressed in terms of rate of water 

discharge and the effective head as follows: 

( /102)H t GP qh                                                                            (5.1) 

where  HP   : output active hydro power generation ( )MW  

q   : rate of water discharge 3( / sec)m  

 h   : effective water head ( )m  

 t   : turbine efficiency 

  G   : generator efficiency 

Due to the diversity of installation characteristics, there exist several different 

models. All these models are principally based on Equation (5.1). Following are the most 

commonly used models [3].     

5.1.3.1  Glimn-Kirchmayer Model 

This model is the most popular one in which the rate of discharge is mathematically 

expressed as a bi-quadratic function of the active power and net water head. 

( ) ( )Hq K h P                                                                               (5.2) 

2
0 1 2( )h a a h a h                                                                        (5.3) 

2
0 1 2( )H H HP b b P b P                                                                    (5.4) 

where K is a constant of proportionality. 

5.1.3.2  Hildebrand Model 

This model is a more generalized form than the Glimn-Kirchmayer model. The rate 

of discharge of this model is given by: 

0 0

k l
i j

ij H
i i

q C P h                                                                              (5.5) 

where  ijC   : hydro turbine model coefficients 

k   : maximum exponent  

 l   : maximum exponent  
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5.1.3.3  Hamilton-Lamonts Model 

The mathematical representation of rate discharge of this model is given by: 
2 2

0 1 2 0 1 2( )( ) /H Hq a a h a h b b P b P h                                         (5.6) 

5.1.3.4  Arvanitidis-Rosing Model 

Unlike the previous models that describe the rate of water discharge in terms of net 

head and power generation, this model defines the output power as an exponential 

variation of net head and reservoir storage: 
0( )( )R A h h

H RP qh e                                                                   (5.7) 

where  A   : area of the reservoir 2( )m  

0h   : minimum water head ( )m  

 ,R R  : model coefficients 

5.1.4 Long-Term Hydro-Thermal Scheduling Problem 

Long-term hydro-thermal generation scheduling typically ranges from 1 week to 1 

year or several years [2]. This long-term scheduling problem consists of the long-term 

water availability forecasting and the scheduling of water releases from the reservoirs. It 

also involves meteorological and statistical analysis related to the availability of water 

over several seasons. Long-term scheduling also involves the optimization of policies 

regarding various unknowns such as load forecasting, generating unit availability and 

water inflows. In general, the long-term hydro-thermal scheduling problem can be 

classified into three categories depending on the plant location. The hydro plants of the 

first group are located on different streams so that they have separate reservoirs. The 

second category is called the cascaded hydro plants where these plants are located on the 

same stream. Multi-chain systems, which are the third group, have their hydro plants 

located on different streams.  

The long-term hydro-thermal scheduling problem is out of the scope of this thesis 

which only treats the short-term one. A wide range of optimization techniques has been 
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applied to treat the long-term hydro-thermal scheduling and reported in literature [270-

273].  

5.1.5 Short-Term Hydro-Thermal Scheduling Problem 

The scheduling period of the short-term hydro-thermal problem can range from 1 day 

to 1 week [2, 3]. The solution to the short-term problem is to determine the hour-by-hour 

scheduling of all available generation in order to obtain the optimal economic production 

cost over the scheduling period. In this problem, the available generating units and the 

load demand for each scheduling interval as well as the water inflow are assumed known. 

In addition, the information about water availability and reservoir levels at the start and 

end of the scheduling period are known. Depending on the head of the reservoir, the 

short-term problem can be categorized into two main groups which are the fixed-head 

and variable-head. The first group is associated with plants with large capacity reservoirs 

while variable-head reservoirs have limited amounts of water. A comprehensive literature 

review of the various optimization methods applied to solve this problem is presented in 

 Chapter 2 and in [214] as well. The short-term hydro-thermal scheduling problem is 

discussed extensively in the rest of this chapter as it is the main focus of this thesis. 

5.2 SHORT-TERM FIXED-HEAD HYDRO-THERMAL GENERATION 
SCHEDULING 

The problem considered in this section is the short-term optimal economic operation 

of hydro-thermal systems with fixed-head reservoirs. These reservoirs are assumed to be 

large enough so that they have large amounts of water. The generation system treated 

consists of both hydro and thermal generating units. The objective of the short-term 

hydro-thermal optimization problem is to minimize the total operating cost by 

minimizing the fuel cost associated with the thermal electric power generation. This 

minimization of the fuel cost objective function is subject to various operational thermal 

and hydraulic constraints. 

The hydro-thermal generation system consists of gN thermal generating plants and 

HM hydro-electric plants. In particular, the solution to the problem is to determine the 
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active power generation level of each of the hydro and thermal plants over the scheduling 

period T .       

5.2.1 Thermal Model and Objective Function  

As stated above, the short-term hydro-thermal optimization is to minimize the total 

system operating cost represented by the fuel cost of the thermal units.  Mathematically, 

this objective function to be minimized is expressed as follows [2, 3]: 

10

( )
gNT

T i gi
i

F F P t dt                                                                        (5.8) 

where  ( )giP t   : power generation of thermal unit i at time t  

( ( ))i giF P t  : operating cost for thermal unit i  at time t  

 gN   : number of thermal generating units 

 T   : scheduling time period 

The fuel cost function, ( ( ))i giF P t , of the thi  thermal generating unit at time t is 

expressed as the following: 

2( ( )) ( ) ( )i gi i gi i gi iF P t a P t b P t c                                                     (5.9) 

where ,i ia b and ic are the cost coefficients of the thi thermal generating unit. 

5.2.2 Hydro Model 

As mentioned above, there is no fuel cost associated with the hydro power 

generation. The input-output characteristics of a hydro-electric generating unit is 

formulated as a water discharge rate in terms of its reservoir’s effective water head and 

the output active power as defined by the Glimn-Kirchmayer model [269, 274].  

( ) ( ) ( ( ))j j Hjq t K h P t                                                                 (5.10)  

where  ( )jq t   : water discharge rate for the reservoir j at time t  

( )HjP t   : power generation of hydro unit j at time t  
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 ,   : independent functions as defined in Equations (5.3) and (5.4) 

K     : constant of proportionality. 

For a fixed-head reservoir, where the effective net head is assumed constant, the 

function ( )jh is constant and hence, Equation (5.10) becomes as follows: 

'( ) ( ( ))j Hjq t K P t                                                                          (5.11) 

For the scheduling period, the amount of water available for each hydro plant is 

limited by a pre-specified quantity jV : 

0

( )
T

j jq t dt V                                                                                  (5.12) 

5.2.3 Constraints 

The objective function represented by Equation (5.8) is subject to a number of 

constraints as follows: 

- Load balance equation: The total power generation must meet the total load demand 

over the scheduling period ( )DP t including the transmission power losses ( )LP t . This 

is represented by the following equality constraint: 

1 1
( ) ( ) ( ) ( ) 0

g HN M

gi Hj D L
i j

P t P t P t P t                                           (5.13) 

- Thermal and hydro generation capacity limits: The maximum and minimum power 

of the thermal and hydro generating plants are expressed as the following inequality 

boundary constraints: 
min max( ) ( ) ( )gi gi giP t P t P t                                                             (5.14) 

min max( ) ( ) ( )Hj Hj HjP t P t P t                                                            (5.15) 

where  min
giP   : minimum power generation for thermal generating unit i 

max
giP   : maximum power generation for thermal generating unit i 

min
HjP   : minimum power generation for hydro generating unit j 

max
HjP   : maximum power generation for hydro generating unit j 
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5.2.4 Transmission Losses 

The loss formulas defined by Equations (4.14), (4.15) and (4.16) are applied to 

model the transmission network losses. Accordingly, the Kron’s B-coefficients loss 

formula is expressed as follows: 

0 00
1 1 1

( ) ( ) ( ) ( )
g H g H g

i j i

N M N M N

L ij i
i j i

P t P t B P t B P t B                (5.16) 

where ( ), ( )i jP t P t can be either the power generation of hydro or thermo plants and the 

parameters ijB are the loss coefficients or B-coefficients. 

5.2.5 Discrete Formulation of the Problem   

The scheduling time period is divided into a number of scheduling time intervals and 

hence, the objective function of Equation (5.8) is expressed in a discrete form as follows: 

1 1

gk

k

NN

T k i gi
k i

F n F P                                                                     (5.17) 

where  
kgiP   : power generation of thermal unit i at time interval k  

( )
ki giF P  : operating cost for thermal unit i  at time interval k  

 kN   : number scheduling time intervals 

 kn   : number of hours in scheduling time interval k  

Accordingly, the fuel cost function defined by Equation (5.9) is rewritten as follows: 
2( )

k k ki gi i gi i gi iF P a P b P c                                                            (5.18) 

The minimization of this objective function is subject to the following equality and 

inequality constraints that are hydro and thermal: 

- Load balance equation: 

1 1
0

g H

k k k k

N M

gi Hj D L
i j

P P P P                                                       (5.19) 

where  
kHjP   : power generation of hydro unit j at time interval k  

kDP   : total load demand during the time interval k  

kLP   : total transmission power losses during the time interval k  
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The transmission power losses are given by the following redefined loss formula: 

0 00
1 1 1

g H g H g

k k k k

N M N M N

L i ij j i i
i j i

P P B P B P B                                  (5.20) 

- Generation boundary condition: 
min max

k k kgi gi giP P P                                                                             (5.21) 

min max
k k kHj Hj HjP P P                                                                            (5.22) 

- Water availability limits: 

1

k

k

N

k j j
k

n q V                                                                                   (5.23) 

where 
kjq is the water discharge rate of the hydro plant j at the time interval k . The 

characteristic equation of the discharge rate 
kjq can be modeled as follows [275]: 

2
k k kj j Hj j Hj jq P P                                                                (5.24) 

where ,j j jand are the discharge rate coefficients for the thj  hydro plant.   

5.2.6 Case Study 1: One Thermal and One Hydro Plant (1 Day) 

     The system in this case study is a well-known example adapted from [2]. This system 

consists of a hydro plant and an equivalent thermal generating plant with the following 

characteristics for the equivalent thermal system: 

2
1 1 1 1( ( )) 0.00184 ( ) 9.2 ( ) 575 $g g gF P t P t P t h                           (5.25) 

1150 ( ) 1500gMW P t MW                                                         (5.26) 

The water discharge rate is expressed as: 

- 10 ( ) 1000Hfor P t MW  

1 1( ) 330 4.97 ( ) .Hq t P t acre ft h                                                   (5.27) 

- 11000 ( ) 1100Hand for P t MW  

2
1 1 1( ) 5300 12( ( ) 1000) 0.05( ( ) 1000) .H Hq t P t P t acre ft h   (5.28) 
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The thermal plant is close enough to the load center so that the transmission power losses 

are only associated with the hydro plant and expressed as follows: 

2
1( ) 0.00008 ( )L HP t P t                                                                     (5.29) 

The scheduling period is 1 day divided into two intervals of 12 hours each. The total load 

demand to be supplied by the hydro-thermal generation system during the 12-hour 

intervals is as follows: 

12 am-12 pm :  ( ) 1200
12 pm-12 am :  ( ) 1500

D

D

P t MW
P t MW

                                                   (5.30) 

The water reservoir of the hydro plant is limited to a drawdown of 100,000 acre-ft over 

the scheduling period: 

1
0

( ) 100,000 .
T

q t dt acre f                                                             (5.31) 

The proposed MBFA is applied to solve this case problem and results are compared to 

those obtained by the Lambda-Gamma Iteration Method (LGIM) used in [2]. Table  5.1 

and Table  5.2 show the results and the comparison. 

Table  5.1   One thermal and one hydro system (1 day) 
Method 

Interval Variable LGIM [2] MBF 

12am–12pm 
Pg1 (MW) 567.40 565.89 
PH1 (MW) 668.30 670.03 

q1 (acre-ft/h) 3651.50 3660.00 

12pm–12am 
Pg1 (MW) 685.70 687.17 
PH1 (MW) 875.60 873.93 

q1 (acre-ft/h) 4681.70 4673.40 
Total Cost ($) 169,630 169,630 

Table  5.2   Objective function statistical data for Case study 1 (1 day) 
Cost ($) 

Average time (sec) 
Min Max Average 

169630.13 169631.25 169630.90 7.2356 
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5.2.7 Case Study 2: One Thermal and One Hydro Plant (3 Days) 

In this case the same system of the previous case study is considered with a 

scheduling period of three days of two intervals each. The load demand pattern for the six 

intervals is as follows: 

Day 1: 12 am-12 pm :  ( ) 1200
12 pm-12 am :  ( ) 1500

Day 2: 12 am-12 pm :  ( ) 1100
12 pm-12 am :  ( ) 1800

Day 3: 12 am-12 pm :  ( ) 950
12 pm-12 am :  ( ) 1300

D

D

D

D

D

D

P t MW
P t MW
P t MW
P t MW
P t MW
P t MW

                                (5.32) 

The starting volume of the water in the plant reservoir is 100,000 acre·ft and must be 

60.000 acre·ft at the end. The reservoir volume limits are as follows: 

60,000 120,000acre ft V acre ftft V acre ft120,000                                         (5.33) 

The flow rate into the reservoir is constant over the scheduling period and equals to 2000 

acre-ft/h. 

The optimal power generation schedule and the corresponding reservoir volume and 

discharge rates for this system are obtained by the proposed MBFA algorithm as shown 

in Table  5.3. 

Table  5.3   One thermal and one hydro system (3 days) 

Interval PH1 Pg1 Volume V Discharge rate q1 
(MW) (MW) (acre-ft) (acre-ft/h) 

1 897.511 303.967 101917.946 1840.717 
2 897.978 604.388 85805.643 3333.81 
3 894.201 201.555 93207.929 1331.729 
4 897.555 903.962 60029.223 4822.689 
5 782.811 164.573 70670.404 1147.929 
6 792.915 515.237 60080.647 2890.729 

Results show that the proposed algorithm has achieved significantly good results in 

solving the problem. The cost obtained is $709,837.93 as shown in Table  5.4 which also 

presents some statistical data about the algorithm convergence characteristics. 
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Table  5.4   Cost obtained for Case Study 2 (3 days) 
Cost ($) Average time (sec) Min Max Average 

709,837.93 710,113.86 709,877.56 12.654 

The cost obtained by the proposed algorithm is compared with those of the gradient 

search (GS) method [2], improved fast evolutionary programming (IFEP) technique, 

genetic algorithm (GA) [108], simulating annealing (SA) [276] and particle swarm 

optimization (PSO) [97]. Table  5.5 demonstrates this comparison and shows that the 

MBFA outperforms the other deterministic and heuristic methods.  

 Table  5.5   Comparison of the cost obtained Case Study 2 (3 days) 
 Method Cost ($) 
 GS [2] 709,877.38 
 IFEP [108] 709,862.05 
 GA [108] 709,863.56 
 SA [276] 709,874.36 
 PSO [97] 709,862.05 
 MBFA 709,837.93 

5.2.8 Case Study 3: One Thermal and Two Hydro Plants 

This system, which was studied in [275], consists of three generation units; one is 

thermal and two are hydro. The characteristics of the thermal plant are given by: 
2

1 1 1 1( ( )) 0.01 ( ) 3.0 ( ) 15 $g g gF P t P t P t h                                    (5.34) 

The discharge rates of the two reservoirs in terms of the hydro power produced by the 

two plants are as the following: 
2 3

1 1 1( ) 0.00005 ( ) 0.03 ( ) 0.2 .H Hq t P t P t M ft h                           (5.35) 

2 3
2 2 2( ) 0.0001 ( ) 0.06 ( ) 0.4 .H Hq t P t P t M ft h                            (5.36) 

The volume of water available for the first hydro plant is 573.916 3.M ft  and for the 

second is 803.488 3.M ft . 

The loss formula coefficients are given by the following: 

3
00

0.0 0.0 0.0 0.0
10 0.0 1.0 0.0 , 0.0 , 0.0

0.0 0.0 0.5 0.0
B0B B                            (5.37) 
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The scheduling period is 1 day divided into 24 time intervals of 1 hour each. The load 

demand for each period is given by Table  5.6. 

Table  5.6   1 thermal and 2 hydro plants (load demand) 

Hour PD Hour PD Hour PD Hour PD 
(MW) (MW) (MW) (MW) 

1 30 7 50 13 60 19 55 
2 33 8 59 14 61 20 50 
3 35 9 61 15 65 21 43 
4 38 10 58 16 68 22 33 
5 40 11 56 17 71 23 31 
6 45 12 57 18 62 24 30 

 
The MBFA is successfully applied to this problem considering the transmission power 

losses in the load balance equation. The optimal power schedule and the water discharge 

rates over the scheduling period are tabulated in Table  5.7.   

Table  5.7   1 thermal and 2 hydro plants (power and discharge schedule) 
Generation (MW) Discharge rate 

Hour Thermal Hydro PL(t) (M.ft3/h) 
Plant1 Plant2 (MW) Plant1 Plant2 

1 1.2834 20.2272 8.9355 0.4461 19.067900 21.678300 
2 2.0860 21.2321 10.1825 0.5005 19.731800 23.444100 
3 2.6276 21.9053 11.0139 0.5468 20.230400 24.626900 
4 3.4250 22.9147 12.2545 0.5943 20.978700 26.407200 
5 3.9619 23.5910 13.0833 0.6362 21.478900 27.599700 
6 5.3104 25.2776 15.1652 0.7533 22.732300 30.598600 
7 6.6725 26.9518 17.2464 0.8707 23.990500 33.621700 
8 9.1301 29.9701 21.0057 1.1059 26.269400 39.128000 
9 9.6860 30.6418 21.8428 1.1705 26.777700 40.362700 
10 8.8612 29.6443 20.5858 1.0913 26.015600 38.511900 
11 8.3172 28.9731 19.7566 1.0469 25.508100 37.283700 
12 8.5862 29.3017 20.1621 1.0500 25.761900 37.897400 
13 9.4122 30.3160 21.4264 1.1546 26.523100 39.745000 
14 9.6895 30.6455 21.8440 1.1790 26.777700 40.362700 
15 10.7912 31.9826 23.5176 1.2913 27.797600 42.844300 
16 11.6212 32.9949 24.7763 1.3923 28.563700 44.716200 
17 12.4643 33.9942 26.0307 1.4891 29.332200 46.597900 
18 9.9619 30.9844 22.2659 1.2122 27.032200 40.981300 
19 8.0315 28.6362 19.3316 0.9993 25.254400 36.670800 
20 6.6707 26.9503 17.2475 0.8685 23.990500 33.621700 
21 4.7729 24.6075 14.3316 0.7120 22.230400 29.395500 
22 2.0830 21.2381 10.1861 0.5071 19.731800 23.444100 
23 1.5548 20.5550 9.3564 0.4662 19.234900 22.266100 
24 1.2808 20.2231 8.9329 0.4368 18.986800 21.678300 
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The minimum cost obtained is $ 848.25 as shown in Table  5.8. The CPU time required 

for the convergence is 11.9658 seconds as shown in the table. The load demand curve 

and the optimal power generation schedule are illustrated in Figure  5.4. 

Table  5.8   Cost obtained for Case Study 3 (24 hours) 
Cost ($) Average time (sec) Min Max Average 

848.25 849.90 848.85 11.9658 
 

 

Figure  5.4   Load curve and optimal solution for Case Study 3  

5.2.9 Case Study 4: Three Thermal and One Hydro Plants 

The hydro-thermal generation system considered in this study consists of one hydro-

electric plant and three thermal generating units. The characteristic functions of the 

thermal plants are defined as follows [1]: 

2
1 1 1 1( ( )) 0.01 ( ) 0.1 ( ) 100 $g g gF P t P t P t h                                  (5.38) 

2
2 2 2 2( ( )) 0.02 ( ) 0.1 ( ) 120 $g g gF P t P t P t h                                (5.39) 

2
3 3 3 3( ( )) 0.01 ( ) 0.2 ( ) 150 $g g gF P t P t P t h                                 (5.40) 
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The water discharge rate of the hydro plant as a function of the hydro output power is 

given by: 
2

1 1 1( ) 0.00004864 ( ) 0.01621 ( ) 0.1135 .H Hq t P t P t acre ft h        (5.41) 

The boundary condition of the problem is defined by the upper and lower limits of the 

generation capacity of the four plants that are given by: 

150 ( ) 200gMW P t MW                                                             (5.42) 

240 ( ) 170gMW P t MW                                                             (5.43) 

330 ( ) 215gMW P t MW                                                            (5.44) 

110 ( ) 100HMW P t MW                                                             (5.45) 

The B-matrix for the loss coefficients of the transmission system are as follows: 

3

0.50 0.05 0.20 0.03
0.05 0.04 0.18 0.11

10
0.20 0.18 0.50 0.12
0.03 0.11 0.12 0.23

B                                          (5.46) 

The load demand for each scheduling interval is given by Table  5.9. The amount of water 

available in the reservoir is limited to16 200 . .acre ft  

Table  5.9   3 thermal and 1 hydro plants (load demand) 

Hour PD Hour PD Hour PD Hour PD 
(MW) (MW) (MW) (MW) 

1 175 7 390 13 565 19 375 
2 190 8 410 14 540 20 340 
3 220 9 440 15 500 21 300 
4 280 10 475 16 450 22 250 
5 320 11 525 17 425 23 200 
6 360 12 550 18 400 24 180 

 

The resultant optimal power schedule that meets the total load demand for each 

scheduling time interval including the transmission power losses is shown in Table  5.10. 

The table also shows the water discharge rate of the hydro plant over the 24 hour 

scheduling period.  
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Table  5.10   3 thermal and 1 hydro plants (power and discharge schedule) 

Hour Thermal Generation (MW) Hydro Gen. PL(t) Discharge rate 
Plant1 Plant2 Plant3 (MW) (MW) (acre-ft/h) 

1 67.394 40.659 63.893 10.000 6.946 280506.765 
2 76.899 41.481 70.763 10.000 9.143 280506.765 
3 89.211 49.078 83.355 10.000 11.643 280506.765 
4 115.432 66.469 109.262 10.000 21.162 280506.765 
5 133.830 77.125 126.346 10.000 27.301 280506.765 
6 148.413 88.402 140.954 17.576 35.345 418328.008 
7 155.803 94.309 148.155 29.615 37.881 638841.997 
8 160.319 98.585 153.949 37.881 40.734 795309.643 
9 168.177 104.507 161.351 49.552 43.587 1045820.020 
10 177.255 111.248 170.766 64.532 48.800 1361187.452 
11 189.249 122.346 183.783 85.547 55.925 1859046.247 
12 195.388 127.499 190.597 96.380 59.864 2128932.847 
13 199.309 133.160 195.211 99.978 62.658 2298371.904 
14 193.277 125.391 187.318 92.820 58.805 2019486.566 
15 183.692 116.185 177.659 75.449 52.985 1603590.697 
16 170.561 106.568 164.367 54.192 45.688 1133377.045 
17 164.205 101.166 157.563 43.488 41.423 918538.049 
18 158.570 96.239 151.490 33.521 39.820 716670.463 
19 151.070 91.354 144.717 23.628 35.769 526963.576 
20 142.889 84.271 135.922 10.787 33.869 280506.765 
21 124.336 71.534 117.131 10.000 23.001 280506.765 
22 102.597 57.665 96.070 10.000 16.331 280506.765 
23 80.624 44.405 75.518 10.000 10.547 280506.765 
24 72.577 39.292 66.194 10.000 8.063 280506.765 

 

Figure  5.5   Load curve and optimal solution for Case Study 4  
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The best cost function obtained by the algorithm is $24267.41 with an average cost of 

$24268.25 and a range of $4.17 between the minimum and maximum cost. These results 

are shown in Table  5.11. The optimal power schedule and the hourly load demand are 

shown in Figure  5.5. 

Table  5.11   Cost obtained for Case Study 4  
Cost ($) Average time (sec) Min Max Average 

24267.41 24271.58 24268.25 9.961891 

5.3 SHORT-TERM VARIABLE-HEAD HYDRO-THERMAL GENERATION 
SCHEDULING  

In the optimization problem discussed in the previous section, the reservoirs 

associated with the hydro plants were assumed large enough to have large amounts of 

water. Based on this assumption, the effective head was assumed constant and hence, the 

problem was called fixed-head scheduling problem. In the present section, the 

assumption of fixed-head operation for the plant is relaxed. Practically, for the small 

capacity reservoirs, the effective head variations cannot be ignored. The hydro-thermal 

generation system considered for the variable-head scheduling problem consists of gN

thermal generating plants and HM hydro-electric plants. The solution to the problem is to 

find the power generation level of each of the hydro and thermal plants over the 

scheduling period T .       

5.3.1 Thermal Model and Objective Function 

The objective function to be minimized to solve the variable-head optimization 

problem is the total fuel cost of the thermal generating units over the scheduling period. 

The problem is defined as follows [2, 3]: 

10

( )
gNT

T i gi
i

Minimize F F P t dt                                              (5.47) 

where  ( )giP t   : power generation of thermal unit i at time t  

( ( ))i giF P t  : operating cost for thermal unit i  at time t  
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 gN   : number of thermal generating units 

 T   : scheduling time period 

The fuel cost function, ( ( ))i giF P t , of the thi  thermal generating unit at time t is given 

by: 
2( ( )) ( ) ( )i gi i gi i gi iF P t a P t b P t c                                                   (5.48) 

where ,i ia b and ic are the cost coefficients of the thi thermal generating unit. 

5.3.2 Hydro Model 

Glimn-Kirchmayer model, [269, 274], can be used to define the discharge rate as 

follows: 

( ) ( ) ( ( ))j j Hjq t K h P t                                                                 (5.49) 

where  ( )jq t   : water discharge rate for the reservoir j at time t  

( )HjP t   : power generation of hydro unit j at time t  

 ,   : independent functions as defined in Equations (5.3) and (5.4) 

K     : constant of proportionality. 

For the scheduling period, the amount of water available for each hydro plant is 

limited by a pre-specified quantity jV : 

0

( )
T

j jq t dt V                                                                                  (5.50) 

5.3.3 Reservoir Dynamics 

A hydro plant j is assumed to have a small capacity vertical-sided reservoir and the 

water elevation is assumed to be independent of the natural inflow. Considering these 

assumptions, the reservoir hydro dynamics are obtained and the active net head is 

determined as follows [3]: 

0

1( ) (0) [ ( ) ( )]
t

j j j j
j

h t h I t q t dt
S

                                              (5.51) 

where  (0)jh   : initial water head of the reservoir j at time 0t  
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( )jI t   : inflow to the reservoir j at time t  

 jS   : surface area of the assumed vertical-sided reservoir j  

( )jq t     : water discharge rate for the reservoir j at time t  

5.3.4 Constraints 

The objective function expressed in Equation (5.47) is subject to the following 

equality and inequality constraints: 

- Load balance equation: 

1 1
( ) ( ) ( ) ( ) 0

g HN M

gi Hj D L
i j

P t P t P t P t                                          (5.52) 

where  ( )DP t   : total load demand over the scheduling period 

( )LP t   : transmission power losses during the scheduling period 

- Thermal and hydro generation capacity limits: 

min max( ) ( ) ( )gi gi giP t P t P t                                                             (5.53) 

min max( ) ( ) ( )Hj Hj HjP t P t P t                                                            (5.54) 

where  min
giP   : minimum power generation for thermal generating unit i 

max
giP   : maximum power generation for thermal generating unit i 

min
HjP   : minimum power generation for hydro generating unit j 

max
HjP   : maximum power generation for hydro generating unit j 

5.3.5 Transmission Losses 

The transmission power losses are considered by using the Kron’s B-coefficients loss 

formula as follows: 

0 00
1 1 1

( ) ( ) ( ) ( )
g H g H g

i j i

N M N M N

L ij i
i j i

P t P t B P t B P t B                    (5.55) 
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where ( ), ( )i jP t P t can be either the power generation of hydro or thermo plants and the 

parameters ijB are the loss coefficients or B-coefficients. 

5.3.6 Discrete Formulation of the Problem   

The short-term variable-head hydro-thermal generation scheduling problem can be 

formulated as a discrete optimization problem as follows:  

1 1

gk

k

NN

T k i gi
k i

Minimize F n F P                                             (5.56) 

where   
kgiP   : power generation of thermal unit i at time interval k  

( )
ki giF P  : operating cost for thermal unit i  at time interval k  

 kN   : number of scheduling time intervals 

 kn   : number of hours in scheduling time interval k  

The fuel cost function ( )
ki giF P  is given by:  

2( )
k k ki gi i gi i gi iF P a P b P c                                                            (5.57) 

The minimization of this objective function is subject to the following equality and 

inequality constraints that are hydro and thermal: 

- Load balance equation: 

1 1
0

g H

k k k k

N M

gi Hj D L
i j

P P P P                                                       (5.58) 

where  
kHjP   : power generation of hydro unit j at time interval k  

kDP   : total load demand during the time interval k  

kLP   : total transmission power losses during the time interval k  

The transmission power losses are given by the following loss formula: 

0 00
1 1 1

g H g H g

k k k k

N M N M N

L i ij j i i
i j i

P P B P B P B                                  (5.59) 

- Generation boundary condition: 
min max

k k kgi gi giP P P                                                                             (5.60) 
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min max
k k kHj Hj HjP P P                                                                            (5.61) 

- Water availability limits: 

1

k

k

N

k j j
k

n q V                                                                                   (5.62) 

where 
kjq is the water discharge rate of the hydro plant j at the time interval k . Water 

head variation: 

1
[ ]

k k k k

k
j j j j

j

nh h I q
S

                                                               (5.63) 

where  
kjh  : water head of the reservoir j during the time interval k  

kjI  : inflow to the reservoir j during the time interval k  

5.3.7 Case Study 1: Two Thermal and Two Hydro Plants 

The system considered in this case study consists of two thermal generating plants 

and two hydro plants [277]. The characteristics of the thermal plants are given by the 

following fuel cost functions: 

2
1 1 1 1( ) 0.0025 3.20 25.0 $

k k kg g gF P P P h                                  (5.64) 

2
2 2 2 2( ) 0.0008 3.40 30.0 $

k k kg g gF P P P h                                (5.65) 

The rate discharge variations for each reservoir are expressed using two independent bi-

quadratic functions in terms of active generated power and effective net head: 

2
1 1 1( ) 0.000216 0.306 0.198

k k kH H HP P P                                  (5.66) 

2
2 2 2( ) 0.000360 0.612 0.936

k k kH H HP P P                                 (5.67) 

2
1 1 1( ) 0.00001 0.0030 0.90

k k k
h h h                                           (5.68) 

2
2 2 2( ) 0.00002 0.0025 0.95

k k k
h h h                                          (5.69) 

The variable-head characteristics are shown in Table  5.12. 
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Table  5.12   Reservoir data for Case Study 1   

Plant Volume of water (Vj) Surface area (Sj) Initial height (hj0) 
(Mft3) (Mft2) (ft) 

1 2850 1000 300 
2 2450 400 250 

The constant of proportionality, K for the Glimn-Kirchmayer model is 1.0.  The loss 

coefficients are given by the following B-matrix: 

4

1.40 0.10 0.15 0.15
0.10 0.60 0.10 0.13

10
0.15 0.10 0.68 0.65
0.15 0.13 0.65 0.70

B                                                 (5.70) 

The scheduling period is 1 day divided into 24 intervals. The load demand for each time 

interval over the scheduling period is given in Table  5.13. 

Table  5.13   2 thermal and 2 hydro plants (load demand) 

Hour 
PD 

Hour 
PD 

Hour 
PD 

Hour 
PD 

(MW) (MW) (MW) (MW) 

1 800 7 800 13 1300 19 1430 

2 700 8 1000 14 1350 20 1350 

3 600 9 1330 15 1350 21 1270 

4 600 10 1350 16 1370 22 1150 

5 600 11 1450 17 1450 23 1000 

6 650 12 1500 18 1570 24 900 

The MBFA is implemented to find the optimal generation schedule for this test system. 

The resultant power generation schedule for each of the four plants during each time 

interval is shown in Table  5.14. The table also shows the transmission power losses 

computed for each interval as well as the variation of water head in each of the two 

reservoirs. The generation power schedule and the total load demand over the scheduling 

period are also illustrated in Figure  5.6  while Figure  5.7 shows the variations of water 

head. 
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Table  5.14   2 thermal and 2 hydro plants (power and head variations) 

Hour 

Thermal Generation 
(MW) 

Hydro Generation 
(MW) PL 

(MW) 

Net head (ft) 

Plant 1 Plant 2 Plant 1 Plant 2 Reservoir 
1 

Reservoir 
2 

1 148.3546 355.9633 279.9606 38.0552 22.3338 300.0000 250.0000 
2 138.0000 289.8285 262.7690 25.6489 16.2464 299.9122 249.9897 
3 120.5686 239.4195 243.5698 8.4296 11.9874 299.8649 249.9001 
4 120.5689 239.6589 243.6690 8.0998 11.9966 299.7155 249.8547 
5 121.5689 238.8846 243.5240 7.9987 11.9762 299.6649 249.8122 
6 128.2421 266.1986 253.0040 16.5683 14.0130 299.5749 249.8001 
7 151.9147 355.7013 278.3450 35.7443 21.7053 299.4875 249.7899 
8 188.0446 455.7917 318.4062 71.9003 34.1429 299.4124 249.7786 
9 242.3603 632.4225 386.2540 130.2142 61.2511 299.3546 249.6547 
10 243.2540 644.2513 390.2335 135.4017 63.1405 299.3025 249.2356 
11 256.9975 701.1861 410.9667 153.9907 73.1409 299.1453 249.0913 
12 269.6401 723.1259 422.1050 163.5936 78.4646 299.0012 248.7955 
13 237.4763 611.9343 380.8687 128.1829 58.4621 298.8848 248.3215 
14 244.7819 640.1694 390.3917 137.9363 63.2792 298.7846 248.0113 
15 244.7908 639.6128 390.4447 138.2557 63.1040 298.2155 247.8746 
16 247.9560 651.2421 394.2402 142.2351 65.6734 298.1215 247.5486 
17 261.7811 693.0391 410.6297 157.6633 73.1131 298.1015 246.9146 
18 284.3111 754.3922 436.1635 181.2831 86.1499 298.0025 246.4999 
19 255.8406 684.7927 405.1103 155.3212 71.0648 297.8547 246.0126 
20 243.8624 636.7368 389.6489 142.8824 63.1306 297.7654 245.7655 
21 231.8111 592.7259 373.4363 127.7302 55.7036 297.5848 245.0266 
22 209.1116 532.1245 348.1811 106.1380 45.5552 297.4569 244.6326 
23 183.8421 452.3462 318.1907 79.7213 34.1003 297.3486 244.4659 
24 164.4493 402.7413 298.2103 62.1615 27.5624 297.2501 244.1549 

The total operating cost is $ 67847.86 which is shown in Table  5.15 along with the mean 

and worse values obtained for the total cost. The table shows also the average processing 

time. 

Table  5.15   2 thermal and 2 hydro plants (cost and time)  
Cost ($) Average time (sec) Min Max Average 

67847.86 67852.46 67851.47 28.8569745 
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Figure  5.6   Load curve and optimal solution for Case Study 1  

 

Figure  5.7   Water head variations for Case Study 1  
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5.3.8 Case Study 2: Five Thermal and Four Hydro Plants 

In this case study [269], a system of five thermal generating plants and four hydro plants 

supplies power to a load over a transmission network. The characteristics of the thermal 

plants are given by the following fuel cost functions: 

 2
1 1 1 1( ) 0.003 2.7 150 $

k k kg g gF P P P h                                       (5.71) 

2
2 2 2 2( ) 0.003 2.8 150 $

k k kg g gF P P P h                                      (5.72) 

2
3 3 3 3( ) 0.003 3.0 150 $

k k kg g gF P P P h                                      (5.73) 

2
4 4 4 4( ) 0.003 3.1 150 $

k k kg g gF P P P h                                      (5.74) 

2
5 5 5 5( ) 0.003 3.2 150 $

k k kg g gF P P P h                                      (5.75) 

The B-coefficients are given as follows: 

0 0.0 , 0,1,2,...,9mB m                                                              (5.76) 

0.0 , , 1,2,...,9mnB m n m n                                                 (5.77) 

30.143 10 , 1,2,...,9mmB m                                                    (5.78) 

The Hamilton-Lamont models of the hydro plants are defined by Equation (5.6) with the 

hydro model coefficients given as follows: 

1 4 7
0 1 229.46925 10 , 74.96985 10 , 63.54239 10a a a  

2 4 8
0 1 214.42652 10 , 71.43352 10 , 2.11535 10b b b  

The surface area of each reservoir is 7 26.9695 10 ft and the volume of water available 

is 9 31.1678 10 ft . The effective net head and the inflow of water into each of the four 

reservoirs are given in Table  5.16. The load demand for each time interval of the 

scheduling period is given in Table  5.17.  
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Table  5.16   Reservoir data for Case Study 2 

Plant Net initial head, (hj0) Inflow of water (Ij) 
(Mft) (ft3/h) 

1 590 1.80×104 
2 591 2.16×104 
3 592 2.52×104 
4 593 2.88×104 

Table  5.17   5 thermal and 4 hydro plants (load demand) 

Hour PD Hour PD Hour PD Hour PD 
(MW) (MW) (MW) (MW) 

1 5448 7 6088 13 5400 19 3584 
2 5776 8 5856 14 5828 20 3544 
3 5664 9 5480 15 3928 21 3528 
4 5624 10 5464 16 3840 22 3552 
5 5928 11 5728 17 3784 23 3688 
6 6064 12 5536 18 3608 24 3840 

The optimal power generation schedule is obtained for this hydro-thermal system using 

the MBFA. This schedule along with the hourly transmission power losses is presented in 

Table  5.18 and depicted in Figure  5.8. 

Table  5.18   5 thermal and 4 hydro plants (power schedule and losses) 
Hour Thermal Generation (MW) Hydro Generation (MW) PL 

Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 1 Plant 2 Plant 3 Plant 4 (MW) 
1 852.300 859.366 827.387 805.884 794.579 483.279 483.888 482.889 482.476 624.048 
2 898.323 887.701 866.012 855.244 844.707 531.277 531.828 532.563 532.173 703.828 
3 878.685 867.686 845.840 834.774 823.776 520.760 521.108 521.687 522.294 672.609 
4 871.729 860.669 838.609 827.730 816.299 517.228 517.119 518.109 518.218 661.708 
5 925.785 915.207 893.117 882.239 871.619 546.001 546.160 547.438 547.842 747.409 
6 949.673 939.278 918.106 907.182 896.221 559.522 560.182 560.322 561.320 787.808 
7 954.183 943.825 922.618 911.369 901.124 561.666 562.643 562.730 563.043 795.198 
8 912.730 901.687 880.178 869.336 858.139 539.436 539.685 540.438 540.775 726.402 
9 846.248 835.370 813.239 801.575 790.008 503.229 504.240 504.238 505.183 623.327 

10 843.337 832.789 809.628 798.728 787.940 501.618 502.673 502.627 503.830 619.168 
11 889.732 878.284 857.101 846.222 834.321 527.224 527.453 528.861 528.824 690.023 
12 855.664 845.282 822.108 811.148 800.244 509.189 509.330 510.177 510.738 637.880 
13 832.183 821.830 798.127 787.327 775.829 496.163 496.164 497.360 497.633 602.616 
14 907.113 896.274 874.021 863.608 852.731 537.163 537.524 538.160 539.424 718.020 
15 585.683 574.218 549.228 537.101 524.321 362.221 363.123 363.345 364.121 295.361 
16 566.618 559.826 535.994 523.628 512.262 355.563 355.003 355.749 356.248 280.891 
17 563.118 550.107 526.228 513.107 501.587 349.669 350.275 350.774 351.247 272.112 
18 534.668 522.119 497.618 484.667 472.616 334.239 335.279 335.375 336.557 245.137 
19 530.923 518.607 493.700 481.326 468.823 332.563 332.742 333.221 333.733 241.637 
20 524.607 512.207 487.414 474.618 462.224 329.125 329.213 330.200 330.170 235.779 
21 522.116 510.162 484.640 472.183 459.130 327.332 328.226 328.260 329.421 233.470 
22 526.189 513.774 488.116 476.682 463.168 329.178 330.214 330.628 331.023 236.970 
23 547.829 535.188 510.177 497.775 485.062 341.127 342.236 342.567 343.229 257.191 
24 571.568 559.468 534.677 522.338 509.786 354.625 355.578 356.170 356.729 280.938 
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The hourly variation of the net head over the scheduling period is tabulated in Table  5.19 

and illustrated in Figure  5.9. The minimum total fuel cost for this system was computed 

to be $ 467,101 as shown in Table  5.20 which also shows the maximum and average 

computed cost and the processing time for convergence.  

Table  5.19   5 thermal and 4 hydro plants (Net head variations)  

Hour Net head (ft) 
Reservoir1 Reservoir2 Reservoir3 Reservoir4 

1 589.9767 590.9852 591.9774 592.9859 
2 589.1930 590.2015 591.2101 592.2022 
3 588.3251 589.3336 590.3422 591.3507 
4 587.4886 588.4971 589.5007 590.5092 
5 586.6685 587.6770 588.6806 589.6891 
6 585.7478 586.7727 587.7812 588.7898 
7 584.8120 585.8156 586.8405 587.8490 
8 583.8549 584.8749 585.8834 586.9083 
9 582.9556 583.9805 585.0055 586.0304 
10 582.1455 583.1704 584.2118 585.2367 
11 581.3568 582.3817 583.4067 584.4316 
12 580.4889 581.5138 582.5552 583.5801 
13 579.6738 580.6987 581.7401 582.8142 
14 578.8687 579.9100 580.9514 581.9927 
15 577.9858 579.0107 580.0520 581.0934 
16 577.4797 578.5210 579.5624 580.6037 
17 577.0114 578.0528 579.0941 580.1355 
18 576.5318 577.5895 578.6309 579.6722 
19 576.0949 577.1363 578.1940 579.2354 
20 575.6467 576.7044 577.7622 578.8035 
21 575.2148 576.2726 577.3303 578.3881 
22 574.7830 575.8407 576.8985 577.9562 
23 574.3511 575.4089 576.4666 577.5244 
24 573.8929 574.9506 576.0248 577.0825 

Table  5.20   5 thermal and 4 hydro plants (total cost and time)  
Cost ($) Average time (sec) Min Max Average 

467,101.02 467,175.75 467,113.52 69.058282 
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Figure  5.8   Hourly power schedule for Case Study 2  

 

Figure  5.9   Hourly variation of net head for Case Study 2  
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5.4 MULTI-CHAIN HYDRO-THERMAL GENERATION SCHEDULING 

In this section, the hydraulic coupling between hydro plants is considered. As 

mentioned in  5.1.2, hydro plants can be located on the same stream or on different 

streams. Figure  5.10 shows a typical combination of hydro plants on the same stream and 

different streams. In this situation, reservoirs could or could not be dependent of each 

other and several plants may or may not be located in series on the same river. Water 

released from the upstream reservoirs in addition to the stream water put together the 

reservoir inflow. Time delay could also be an important factor which affects the water 

flow from upstream to downstream reservoir. Due to many reasons, some water can be 

lost during its travel to the reservoir.      
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Figure  5.10   Multi-chain hydro plants on the same stream and on different streams  

5.4.1 Thermal Model and Objective Function 

The hydro-thermal generation system considered for this scheduling problem 

consists of gN thermal generating plants and HM hydro plants. The scheduling period T
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is divided into kN time sub-intervals with kn hours each. The objective is to minimize 

the operating cost and use up the entire available amount of water during the scheduling 

period. The optimization problem is expressed in discrete form as follows: 

2

1 1
( )

gk

k k

NN

T k i gi i gi i
k i

Minimize F n a P b P c                           (5.79) 

where  
kgiP   : power generation of thermal unit i at time interval k  

 kN   : number scheduling time intervals 

 kn   : number of hours in scheduling time interval k  

, ,i i ia b c   : cost coefficients of the thi thermal generating unit. 

5.4.2 Hydraulic Continuity Equation 

Taking into consideration the influence of water flow from upstream reservoirs into 

downstream ones and the associated time delay in addition to water losses, the water 

inflow into a reservoir can be modeled as follows: 

1
[ ]

u

k k k k ku u

M

j j u u j
u

I J Q S L                                                    (5.80) 

where  
kjJ            : inflow to the reservoir j during the time interval k  

uM            : number of immediate upstream reservoirs  

k uuQ            : discharge from the thu immediate upstream reservoir during the          

                       time interval k after a time delay u  

k uuS            : spillage from the thu immediate upstream reservoir during the          

                       time interval k after a time delay u  

kjL                 : water losses from the inflow to reservoir j during the interval k  

On the other hand, water could be lost due to various reasons such as irrigation schemes 

and evaporation. In addition to water losses, water overflow and spillage are also 

outflows from the reservoir. These reservoir outflows can be modeled as follows: 

k k k kj j j jO Q S R                                                                       (5.81) 
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where  
kjQ   : water discharge from the reservoir j during the time interval k  

 
kjS   : water spillage from the reservoir j during the time interval k  

 
kjR   : water losses from the reservoir j during the time interval k  

The water storage in the reservoir j at the beginning of the time interval k is modeled as 

the following: 

 1k k k kj j j jX X I O                                                                   (5.82) 

where 
kjX  is the water storage in the reservoir j at the end of time interval k . Equation 

(5.82) can be rewritten as follows after including Equations (5.80) and(5.81): 

 
1

1
[ ] ( )

u

k k k k k k k k ku u

M

j j j j j u u j j
u

X X J Q S Q S L R      (5.83) 

The total volume of water available at the end of the scheduling period can be computed 

using Equation (5.83) so that the following equation is satisfied: 

1 1
1 1

| | [ [ ] ( )]
uk

k k k k k k k k k ku u

MN

j k N j k j j j u u j j
k u

X X J Q S Q S L R       (5.84) 

5.4.3 Hydro Model 

Modeling the generated hydro-electric power depends on the discharge rate and the 

head of water in addition to the efficiency of the hydro plant itself. The active power 

generation produced by the thj hydro plant during the time interval k is given by [3]: 

k k kHj j j jP q h G                                                                              (5.85)  

where jG is the efficiency constant for the hydro plant j . For reservoirs with large 

variations in their head water, the head cannot be considered constant during the sub-

interval. Accordingly, Equation (5.85) is reformulated so that the average hydro power 

during a sub-interval depends on the average head which in turn depends on the capacity 

of the reservoir. The average hydro-electric power generated during the time interval k

can be computed as follows [278, 279]: 

39.81 10 ( )kk k
jHj j jP h Q                                                        (5.86) 
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where  j jQ  : effective discharge rate 

kjh   : average water head in the reservoir j during time interval k  

The average water head kjh is defined by: 

1

0

( )
2

k k
k

j j
j j

T X X
h h

A
                                                          (5.87)  

where  
0jh   : basic initial water head of the reservoir j   

T   : time length 

kjX   : water storage in the reservoir j at the end of time interval k  

A   : area of the reservoir j at the given storage 

Equation (5.86) can be rewritten as follows: 

1

1[1 ( )]( )
2k k k kHj j j j j j jP h g X X Q                                      (5.88) 

where 
0j jg T Ah which is tabulated for various storage values and

0

39.81 10j jh H h . 

5.4.4 Constraints 

The following equality and inequality constraints, that include thermal and hydro 

operational constraints, must be satisfied: 

- Load balance equation: 

1 1
0

g H

k k k k

N M

gi Hj D L
i j

P P P P                                                       (5.89)  

where  
kDP   : total load demand during the time interval k  

kLP   : total transmission power losses during the time interval k  

The transmission power losses are given by the following redefined loss formula: 

0 00
1 1 1

g H g H g

k k k k

N M N M N

L i ij j i i
i j i

P P B P B P B                                 (5.90)                         

- Generation boundary condition: 
min max

k k kgi gi giP P P                                                                             (5.91) 

min max
k k kHj Hj HjP P P                                                                            (5.92) 
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- Water discharge limits: 
min max
k k kj j jQ Q Q                                                                             (5.93) 

- Reservoir forebay limits: 
min max
k k kj j jX X X                                                                          (5.94) 

5.4.5 Case Study 1: One Thermal and Four Hydro Plants 

The hydro-thermal generation system of this case study consists of a multi-chain 

cascade of four hydro plants and an equivalent thermal unit with the following 

characteristics [81]: 
2

1 1 1 1( ) 0.002 19.2 500 $
k k kg g gF P P P h                                      (5.95) 

The scheduling period is 24 hours of 1-hour intervals. The load demand over the 24 hours 

of the scheduling horizon is variable as shown in Table  5.21. 

Table  5.21   Multi-chain 1 thermal and 4 hydro plants (load demand) 

Hour PD Hour PD Hour PD Hour PD 
(MW) (MW) (MW) (MW) 

1 1370 7 1650 13 2230 19 2240 
2 1390 8 2000 14 2200 20 2280 
3 1360 9 2240 15 2130 21 2240 
4 1290 10 2320 16 2070 22 2120 
5 1290 11 2230 17 2130 23 1850 
6 1410 12 2310 18 2140 24 1590 

The characteristics of the hydraulic sub-system are as follows: 

- A multi-chain cascade flow network, with all the plants on one stream 

- River transport delay between successive reservoirs 

- Variable-head hydro plants 

- Variable natural inflow into each reservoir 

The output hydro power is expressed as a function of the water discharge rate and the 

reservoir storage [81]: 

1 2 3 4 5 6

2 2
k j j k k k kk kHj j j j j j j j j j jP C X C Q C X Q C X C Q C                  (5.96) 

where 
1 2 6
, ,...,j j jC C C  the hydro power generation coefficients of the hydro plant j that 

are given in Table  5.23. 
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Table  5.22   Multi-chain Water Time Delays 
Plant 1 2 3 4 

C1 -0.0042 -0.0040 -0.0016 -0.0030 
C2 -0.4200 -0.3000 -0.3000 -0.3100 
C3 0.0300 0.0150 0.0140 0.0270 
C4 0.9000 1.1400 0.5500 1.4400 
C5 10.0000 9.5000 5.5000 14.0000 
C6 -50.0000 -70.0000 -40.0000 -90.0000 

The configuration of the hydraulic sub-system is shown in Figure  5.11 and the water 

time delays are shown in Table  5.23. 

Table  5.23   Multi-chain Water Time Delays 
Plant 1 2 3 4 
Mu 0 0 2 1 
τu 2 3 4 0 

Mu: Number of up-stream plants 
τu: Time delay to immediate down-stream plant 

Reservoir 3

I3

Reservoir 4

I4

Reservoir 1
I1

Reservoir 2
I2

Q1
Q2

Q3

Q4

 
Figure  5.11   Multi-chain hydro sub-system configuration 

The reservoir inflows are shown in Table  5.24 while Table  5.25 shows the reservoir 

storage limits, plant discharge and generation limits as well as reservoir end conditions.  
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Table  5.24   Multi-chain reservoir inflows (×104 m3) 

Hour Reservoir Hour Reservoir Hour Reservoir 
1 2 3 4 1 2 3 4 1 2 3 4 

1 10 8 8.1 2.8 9 10 8 1 0 17 9 7 2 0 
2 9 8 8.2 2.4 10 11 9 1 0 18 8 6 2 0 
3 8 9 4 1.6 11 12 9 1 0 19 7 7 1 0 
4 7 9 2 0 12 10 8 2 0 20 6 8 1 0 
5 6 8 3 0 13 11 8 4 0 21 7 9 2 0 
6 7 7 4 0 14 12 9 3 0 22 8 9 2 0 
7 8 6 3 0 15 11 9 3 0 23 9 8 1 0 
8 9 7 2 0 16 10 8 2 0 24 10 8 0 0 

Table  5.25   Discharge and generation limits and end conditions (×104 m3) 
Plant Vmin Vmax Vini Vend Qmin Qmax Ph

min Ph
max 

1 80 150 100 120 5 15 0 500 
2 60 120 80 70 6 15 0 500 
3 100 240 170 170 10 30 0 500 
4 70 160 120 140 13 25 0 500 

The resultant power generation schedule is illustrated by Table  5.26 and Figure  5.12.  

Figure  5.13 and Table  5.27 show the hourly plant discharge while Figure  5.14 shows the 

hourly reservoirs volume storage. 

 
Figure  5.12   Hourly generation schedule 
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Table  5.26   Hourly generation schedule  

Hour Thermal Gen. Hydro Generation (MW) 
(MW) Plant1 Plant2 Plant3 Plant4 

1 998.1245 70.6318 49.4315 44.6451 207.1672 
2 1074.3854 72.3041 51.1175 0.0000 192.1929 
3 1004.8847 81.3434 57.3801 37.0635 179.3282 
4 969.8519 87.9233 64.5530 0.0000 167.6719 
5 991.2731 85.1440 49.4039 0.0000 164.1790 
6 1050.2135 85.9362 57.4993 40.1884 176.1625 
7 1319.7871 67.4328 66.2426 3.7119 192.8256 
8 1614.4211 82.2345 64.3780 36.3289 202.6375 
9 1840.4474 85.3862 78.2000 17.2705 218.6958 
10 1924.9482 69.6812 63.8037 30.9123 230.6545 
11 1792.2396 77.2081 76.4123 40.3747 243.7654 
12 1862.8032 76.8696 79.5482 40.3443 250.4347 
13 1783.3329 76.0455 66.0873 44.1866 260.3477 
14 1738.9041 95.0695 70.9690 21.3171 273.7403 
15 1698.1514 72.0967 68.2102 22.8079 268.7338 
16 1631.9894 68.9814 74.4922 36.9912 257.5458 
17 1641.7019 87.1597 81.6873 23.2795 296.1717 
18 1645.1942 76.2198 75.4043 45.4671 297.7146 
19 1764.3167 69.4578 68.6507 45.0866 292.4882 
20 1770.7074 89.5220 66.6308 52.4570 300.6828 
21 1747.9577 66.2677 76.5256 52.2151 297.0339 
22 1656.6815 66.5803 46.2813 55.8176 294.6394 
23 1416.8735 64.3999 48.1640 52.1633 268.3995 
24 1107.3584 72.4779 49.7578 56.7251 303.6807 

 
Figure  5.13   Hourly water discharge 
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Table  5.27   Hourly reservoir discharge  

Hour Reservoirs Discharge (× 104 m3) 
Plant1 Plant2 Plant3 Plant4 

1 9.3757 6.9780 26.2410 11.6832 
2 10.7982 10.0199 23.4504 10.6683 
3 8.9383 2.6954 24.9851 15.3918 
4 6.5943 1.3873 25.6105 12.0296 
5 10.2182 7.6720 20.9088 12.4197 
6 11.5530 7.1555 16.3718 10.7886 
7 4.5659 9.7415 27.2808 10.9559 
8 12.4711 4.3637 15.1315 9.3013 
9 14.5999 13.6377 18.1379 10.2765 
10 11.5454 9.8751 18.6653 14.5182 
11 6.8473 8.3285 16.2645 15.4572 
12 7.5493 9.6935 17.4064 10.7986 
13 13.3025 6.7184 14.6434 20.2343 
14 7.2175 10.4517 20.8994 17.1791 
15 7.9352 7.5056 23.4430 12.3776 
16 1.1104 1.2911 23.8760 11.2793 
17 5.1389 5.0775 16.9724 19.0173 
18 3.7883 13.1326 5.2811 17.6216 
19 3.5124 12.4264 16.1591 11.4474 
20 8.4484 15.6424 13.2269 19.1721 
21 4.1504 7.6677 9.3229 19.4667 
22 5.0950 12.7606 7.4049 17.8900 
23 8.8357 9.4926 10.3372 26.0766 
24 8.4111 5.8237 6.2295 24.4613 

 

Figure  5.14   Hourly water volume 
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The cost obtained by the proposed algorithm is compared to those obtained by the 

Genetic Algorithm (GA) applied in [81], Classical, Fast and Improved Fast Evolutionary 

Programming (CEP, FEP and IFEP) techniques proposed in [107] and the Particle Swarm 

Optimization (PSO) of [98].  Table  5.28 shows the comparison of these methods.  

Table  5.28   Comparison of the cost function  
Total Cost ($) Average time 

  Method Min Max Average (sec) 

 GA [81] 942600.00 951087.00 946609.10 1920.00 

 CEP [107] 930166.25 930927.01 930373.23 2292.10 

 FEP [107] 930267.92 931396.81 930897.44 1911.20 

 IFEP [107] 930129.82 930881.92 930290.13 1033.20 

 PSO [98] 925383.80 927240.10 926352.80 82.90 

 MBFA 925060.13 927329.07 926235.24 74.80 

5.4.6 Case Study 2: One Thermal and Four Hydro Plants, Valve-
Point Effects Considered 

In this case the same system of Case Study1 is employed considering the valve-point 

effects [107]. Applying Equation (4.19), the fuel cost function of Equation (5.95) is 

modified as follows: 

1

2
1 1 1 1

min
1

( ) 0.002 19.2 500

700sin 0.085( ) $

k k k

g kk

g g g

g

F P P P

P P h
                               (5.97) 

The proposed MBFA is applied to this system and the resultant power schedule is given 

in Table  5.29 and illustrated in Figure  5.15. Water discharge rates over the scheduling 

period are shown in Table  5.30 and Figure  5.16 while the corresponding water volume is 

shown in Figure  5.17. 

The results are compared to those obtained by Classical, Fast and Improved Fast 

Evolutionary Programming (CEP, FEP and IFEP) techniques proposed in [107]. This 

comparison is reported in Table  5.31. 
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 Table  5.29   Hourly generation schedule  

Hour Thermal Gen. Hydro Generation (MW) 
(MW) Plant1 Plant2 Plant3 Plant4 

1 1016.8556 86.2318 63.3437 0.0000 203.5689 
2 1054.1503 92.8598 55.2978 0.0000 187.6921 
3 1054.0789 81.3289 51.3250 0.0000 173.2672 
4 980.2513 86.6972 66.6742 0.0000 156.3772 
5 943.7891 68.3645 59.1781 40.2948 178.3735 
6 1091.4024 67.0325 53.1121 0.0000 198.4530 
7 1276.3498 53.5479 70.5188 33.5457 216.0378 
8 1609.0910 63.3493 53.5346 41.4126 232.6124 
9 1830.0094 82.9849 52.8488 41.6789 232.4780 
10 1867.6986 85.6139 75.9736 42.5727 248.1413 
11 1793.2735 85.7686 54.5300 44.9789 251.4490 
12 1904.7731 56.0224 55.0025 45.1003 249.1017 
13 1794.2336 87.3779 57.3612 40.6587 250.3686 
14 1793.7513 66.6937 58.8897 33.7885 246.8768 
15 1682.6529 78.2849 71.8563 47.2375 249.9684 
16 1646.1329 69.8793 62.4794 44.8345 246.6740 
17 1645.4773 89.6965 84.8854 40.9452 268.9955 
18 1645.8389 76.1341 82.2342 41.3621 294.4307 
19 1793.6868 87.4519 56.4960 46.8941 255.4712 
20 1792.8884 54.8774 85.7743 51.6855 294.7744 
21 1756.8632 73.7543 84.4430 51.8328 273.1067 
22 1608.5366 73.3026 77.0334 55.6752 305.4522 
23 1349.9287 78.3664 73.1418 56.3548 292.2083 
24 1128.5978 66.5365 45.1128 58.7315 291.0215 
 

 
Figure  5.15   Hourly generation schedule 
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Table  5.30   Hourly reservoir discharge  

Hour Reservoirs Discharge (× 104 m3) 
Plant1 Plant2 Plant3 Plant4 

1 9.9890 8.3123 29.5567 13.6248 
2 11.2823 6.6087 29.6044 13.1602 
3 8.6506 5.5684 29.1149 12.6019 
4 10.3887 7.6187 29.3481 13.3356 
5 7.1505 7.1548 12.7920 12.5452 
6 7.3228 5.6867 29.2273 13.6494 
7 5.0403 9.3703 16.3882 13.5331 
8 7.2793 6.4725 12.4364 13.4143 
9 9.1174 6.5150 11.7273 13.0949 
10 9.9415 10.0151 12.2625 13.1285 
11 9.7253 5.6837 11.7192 12.7448 
12 5.1135 6.0713 13.4792 12.8619 
13 9.7370 6.3442 16.8187 13.2548 
14 6.5773 6.5105 18.6437 12.5715 
15 7.6569 8.4631 14.0430 13.5939 
16 6.2917 6.6623 14.9920 13.0639 
17 9.8471 10.9018 16.7373 15.6732 
18 8.0974 11.0470 16.5795 18.5049 
19 9.0000 6.3832 14.8062 13.7657 
20 4.7275 13.7813 13.1195 18.4163 
21 7.4604 14.5468 9.8415 16.0119 
22 7.6523 11.8695 12.4153 21.4178 
23 8.1335 12.7386 10.4889 20.4729 
24 6.3493 5.5502 14.1375 21.2377 

 
Figure  5.16   Hourly water discharge 
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Figure  5.17   Hourly water volume 

Table  5.31   Comparison of the cost function  

 Total Cost ($) Average time 
 Method Min Max Average (sec) 

 CEP [107] 934713.18 946795.20 938801.47 2790.40 

 FEP [107] 935021.93 951524.37 942262.75 2289.20 

 IFEP [107] 933949.25 942593.02 938508.87 1450.90 

 MBFA 926340.15 926649.73 926488.85 98.27 

5.4.7 Case Study 3: Three Thermal and Four Hydro Plants, 
Valve-Point Effects Considered 

In this case, the system consists of the same four hydro plants of the system of Case 

Study1 in addition to three thermal generating units [129]. The characteristics of the 

hydraulic sub-system are as shown in Case Study1 while the thermal units’ input-output 

characteristics are shown in Table  5.32 and the load demand is shown in Table  5.33. 
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Table  5.32 Coefficients and operating limits of thermal units 

Unit Coefficient and Operating Limits 
a b c e f Psmin Psmax 

1 100 2.45 0.0012 160 0.038 20 175 
2 120 2.32 0.0010 180 0.037 40 300 
3 150 2.10 0.0015 200 0.035 50 500 

Table  5.33   Multi-chain 3 thermal and 4 hydro plants (load demand) 

Hour PD Hour PD Hour PD Hour PD 
(MW) (MW) (MW) (MW) 

1 750 7 950 13 1110 19 1070 
2 780 8 1010 14 1030 20 1050 
3 700 9 1090 15 1010 21 910 
4 650 10 1080 16 1060 22 860 
5 670 11 1100 17 1050 23 850 
6 800 12 1150 18 1120 24 800 

The MBFA is applied to find the optimal generation scheduling for this system which is 

shown in Table  5.34 and Figure  5.18.  Water discharge and volume are shown in Table 

 5.35, Figure  5.19 and Figure  5.20. 

Table  5.34   Hourly generation schedule  
Hour Thermal Generation (MW) Hydro Generation (MW) 

Unit 1 Unit 2 Unit 3 Plant1 Plant2 Plant3 Plant4 
1 104.5349 213.9194 52.5021 78.3884 58.9585 51.5850 190.1116 
2 23.7389 124.8637 229.5241 98.8278 51.5382 35.5494 215.9579 
3 110.5720 126.4874 140.3742 59.1969 62.8926 0.0000 200.4770 
4 20.8734 135.4939 139.7594 73.3007 82.4640 40.7033 157.4052 
5 172.7179 124.8550 116.0016 94.5015 75.1120 0.0000 86.81210 
6 42.1070 47.0501 319.1745 73.2992 57.1331 46.7910 214.4450 
7 28.2881 292.1470 229.5765 53.2235 83.6220 49.0226 214.1202 
8 102.6470 124.9429 408.9367 71.0240 46.8021 36.9300 218.7172 
9 102.6619 209.8197 498.7306 59.9266 55.7711 50.1244 112.9657 
10 102.5673 124.9935 498.6839 57.1097 57.8438 30.6379 208.1638 
11 95.7874 119.2792 497.9670 53.4119 64.7836 43.1469 225.6240 
12 102.5923 295.8326 341.1671 72.2967 65.1688 24.1536 248.7888 
13 102.3479 124.5661 492.3114 70.2848 45.2413 49.9939 225.2545 
14 174.4410 124.4387 317.8619 55.7801 64.3802 39.7841 253.3141 
15 54.5977 212.9493 319.2539 89.6435 48.0449 51.5707 233.9401 
16 174.5429 209.8348 277.1451 56.0091 71.9140 52.7268 217.8273 
17 102.4081 209.9148 319.2779 67.6788 47.9687 48.2456 254.5060 
18 174.9092 144.6462 319.2648 102.5408 52.9085 54.7691 270.9614 
19 106.7570 209.9970 319.2450 77.1980 42.7598 48.5195 265.5237 
20 157.6370 209.3998 229.4919 106.3851 47.4921 25.6605 273.9335 
21 21.5086 209.7533 229.4640 89.2298 43.3937 53.6549 262.9958 
22 102.6628 123.1305 229.6146 72.2401 59.6372 56.4012 216.3137 
23 102.0376 123.4529 229.4981 72.0156 44.0318 53.9239 225.0401 
24 25.2551 40.8884 229.6543 94.0021 73.1011 56.0885 281.0104 
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Figure  5.18   Hourly power generation schedule 

Table  5.35   Hourly reservoir discharge  

Hour Reservoirs Discharge (× 104 m3) 
Plant1 Plant2 Plant3 Plant4 

1 8.4974 7.3604 18.1589 10.8334 
2 14.2864 6.2693 21.3550 14.5779 
3 5.9321 8.0161 28.5289 14.5513 
4 7.7759 11.8850 17.5597 11.2331 
5 12.7994 10.4507 29.3397 6.1233 
6 8.2561 7.2791 12.7418 19.4521 
7 5.3940 13.4994 12.3697 18.8102 
8 7.7939 6.6713 20.0309 17.1621 
9 6.1734 8.0372 16.0064 6.0222 
10 5.6050 8.3884 21.0933 12.3348 
11 5.0331 9.6313 18.3861 14.2389 
12 7.2961 9.8255 21.9724 17.4437 
13 6.8698 6.5041 11.2450 14.0477 
14 5.1814 9.7458 18.8357 17.5242 
15 9.6122 6.8382 13.9019 14.3294 
16 5.1208 11.2094 14.4731 12.1325 
17 6.3842 6.9428 16.6849 15.1208 
18 11.9462 7.6889 11.9248 17.8545 
19 7.5241 6.3290 17.4399 16.7857 
20 13.4538 7.7874 22.6518 18.5983 
21 9.4889 6.2716 10.8879 17.4957 
22 7.1246 8.6802 13.1394 12.1054 
23 7.0030 6.0638 16.8533 13.0765 
24 10.3786 11.1785 10.3259 20.0680 
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Figure  5.19   Hourly water discharge 

 

Figure  5.20   Hourly water volume 
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The value of the minimum cost function obtained is $44736.15 with a standard deviation 

of $2.77 and a range of $20.19 between the minimum and maximum costs obtained. This 

cost is compared to those obtained using the Evolutionary Programming (EP) approach, 

the Simulated Annealing (SA) technique and the Particle Swarm Optimization (PSO) 

method [99]. This comparison is demonstrated in Table  5.36. 

Table  5.36   Comparison of the cost function  
  Method EP [99] SA [99] PSO [99] MBFA 
  Cost ($) 47306.00 45466.00 44740.00 44736.15 
  Average time (s) 9879.45 246.19 232.73 201.42 

5.4.8 Case Study 4: Three Thermal and Four Hydro Plants, 
Valve-Point Effects and losses Considered 

The same system in Case Study 3 is implemented with considering the transmission 

power losses of the system. The B-coefficients are given as follows [129]: 

4

0.34 0.13 0.09 0.01 0.08 0.01 0.02
0.13 0.14 0.10 0.01 0.05 0.02 0.01
0.09 0.10 0.31 0.00 0.11 0.07 0.05

10 0.01 0.01 0.00 0.24 0.08 0.04 0.07
0.08 0.05 0.11 0.08 1.92 0.27 0.02
0.01 0.02 0.07 0.04 0.27 0.32 0.00
0.

B

02 0.01 0.05 0.07 0.02 0.00 1.35

        (5.98) 

6
0010 0.75 0.06 0.70 0.03 0.27 0.77 0.01 , 0.55B0B           (5.99) 

The MBFA is successfully applied to solve this problem considering both the valve-point 

effects and the power losses. The obtained minimum cost is $41848.31 as shown in Table 

 5.37.  

Table  5.37   Total cost and average time  
Cost ($) 

Average time (sec) 
Min Max Average 

41848.31 42877.37 42012.41 228.45 
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The optimal power generation schedule as well as the hourly transmission power losses 

over the scheduling period is shown in Table  5.38. This schedule is also illustrated in 

Figure  5.21. The water discharge rates at the end of each time interval are shown in Table 

 5.39 and Figure  5.22 while Figure  5.23 shows the water storage volume variations over 

the scheduling period. 

Table  5.38   Hourly generation schedule, losses and demand  

Hour 
PD Thermal Generation (MW) Hydro Generation (MW) PL 

(MW) Unit 1 Unit 2 Unit 3 Plant1 Plant2 Plant3 Plant4 (MW) 

1 750 20.0499 219.0654 147.7282 81.5749 80.8289 49.2560 206.5789 55.0822 

2 780 114.6358 226.4757 234.6085 82.6857 55.7456 0.0000 120.9157 55.0670 

3 700 122.0478 234.7859 50.0147 116.2497 53.5183 52.8879 125.5432 55.0475 

4 650 20.5699 227.2668 155.2999 97.5498 49.9734 18.6355 135.7519 55.0473 

5 670 101.4100 76.6057 316.5588 70.1666 51.3131 0.0000 109.0055 55.0597 

6 800 122.0872 213.2243 228.6456 87.6294 52.3461 26.9771 124.1559 55.0657 

7 950 20.5459 296.6149 328.0640 94.2583 64.4223 40.6001 160.5909 55.0963 

8 1010 103.7496 294.6958 247.8988 97.6768 61.7960 35.5585 223.7452 55.1207 

9 1090 122.3309 293.5010 314.7387 70.7943 54.6653 47.1757 241.9418 55.1478 

10 1080 121.3808 291.1188 247.4881 76.9508 53.9797 41.8766 302.3795 55.1743 

11 1100 179.0880 291.3891 229.5320 87.0870 53.3791 33.4045 281.2869 55.1666 

12 1150 52.4206 290.6620 320.8325 104.5772 91.0083 37.6320 308.0555 55.1881 

13 1110 133.3164 206.4808 319.4077 93.8187 69.9316 41.5465 300.6771 55.1788 

14 1030 179.9243 298.3692 234.2755 53.9330 70.0436 25.4944 223.0945 55.1345 

15 1010 20.1425 208.6892 269.6520 183.6714 79.6531 0.0000 303.3518 55.1600 

16 1060 149.0498 289.8256 228.1279 73.4684 93.8126 18.7773 262.0922 55.1538 

17 1050 26.7746 298.0927 319.6868 62.5374 48.9094 44.4621 304.7137 55.1767 

18 1120 134.0383 291.3512 317.2124 58.4072 50.1472 35.7881 288.2364 55.1809 

19 1070 149.5447 293.4723 229.8906 52.9054 61.9889 45.5230 291.8453 55.1702 

20 1050 49.6677 226.5137 322.3287 94.0969 58.8609 50.2351 303.4671 55.1701 

21 910 109.7547 297.0556 69.6688 84.6895 73.9523 50.3847 279.6310 55.1366 

22 860 101.3082 209.0077 95.1199 70.3836 86.4963 54.6910 298.1392 55.1459 

23 850 20.8634 39.5311 316.2778 147.0106 84.2821 51.3121 245.8365 55.1136 

24 800 20.0881 292.0858 78.6654 56.3104 78.6414 57.1856 272.1469 55.1237 
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Figure  5.21   Hourly power generation schedule 

Table  5.39   Hourly reservoir discharge  

Hour Reservoirs Discharge (× 104 m3) 
Plant1 Plant2 Plant3 Plant4 

1 9.5489 9.2315 28.9859 11.2315 
2 6.2315 7.2144 14.2357 12.0215 
3 6.4786 7.8563 26.2357 10.2316 
4 6.0125 6.3322 12.3659 13.5247 
5 6.2549 6.8746 26.3255 11.2326 
6 5.2365 6.2155 15.3659 12.0215 
7 6.2359 7.5649 15.2459 14.8789 
8 7.5487 7.2146 16.3285 10.5466 
9 8.3289 6.2357 15.3549 16.8887 
10 6.2357 7.2146 13.2237 12.3256 
11 5.8565 7.8799 13.0021 14.3257 
12 5.2565 7.2365 17.2104 15.2155 
13 6.9857 8.5699 13.5685 15.2316 
14 7.2154 8.6589 13.0255 13.2356 
15 5.4624 10.2357 18.1443 13.4880 
16 9.3216 12.3257 9.8990 14.5846 
17 8.3265 9.3256 28.1125 17.2385 
18 5.2316 6.2316 28.9659 18.2365 
19 6.2315 8.3256 10.4237 18.3257 
20 12.2316 7.5685 10.2147 18.2315 
21 10.2357 11.2386 11.8795 18.1255 
22 6.3649 12.2326 11.2487 17.2346 
23 12.4124 10.2356 12.8796 19.2352 
24 6.5648 8.9866 25.0002 19.3256 
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Figure  5.22   Hourly water discharge 

 

Figure  5.23   Hourly water volume 
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5.5 SUMMARY 

In this chapter, the MBFA algorithm has been implemented to solve the short-term 

hydro-thermal generation scheduling problem. This economic dispatch problem is a 

dynamic optimization problem. Classifications of the problems in terms of their 

reservoirs and the availability of water has been presented and discussed. Various cases 

of hydro-thermal generation systems on separate streams and on the same streams with 

and without water head variations have been considered. In addition, multi-chains of 

cascaded reservoirs have also been studied. In each of these cases the problem is 

formulated and discussed in details. Various case study systems have been implemented 

considering a wide range of practical aspects such as the valve-point effects, transmission 

power losses and time delays associated with water inflow. Comparison of the obtained 

results with those reported in the literature whenever available has been shown. These 

results have demonstrated the effectiveness and capability of the proposed algorithm to 

solve this nonlinear complex problem in spite of the high dimensional search spaces and 

the non-smoothness of the characteristics.   
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CHAPTER 6 MULTI-OBJECTIVE ECONOMIC-EMISSION 
OPTIMIZATION FOR POWER GENERATION 
SYSTEMS  

 

6.1 INTRODUCTION 

The escalating demand for electric energy worldwide, has led to a significant 

increase in the electric power produced and the number of generation plants world-wide. 

Electrical power is generated using conventional and renewable sources including 

thermal, hydro, nuclear, wind, solar and marine-tidal energy. The major part of electric 

power is produced by thermal plants that use fossil-based fuels such as oil, coal and 

natural gas. Figure  6.1 shows the percentage of each fuel source used for power 

generation in the USA according to the electrical power monthly report issued in October 

2011 [280] by the US Energy Information Administration [281]. 

 
Figure  6.1   USA electrical power generation by energy source (July 2011) 

The nature of thermal power generation plants that burn fossil-based fuel makes 

them among the main sources of gaseous emission and air pollution. Among the harmful 

gaseous emission that are produced by the fossil fuel combustion are; nitrogen oxides 

(NOx), sulphur dioxide (SO2) and carbon dioxide (CO2). The harmful effects of these 

emissions on the environment have been well documented and are increasingly drawing 
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great attention so that we can no longer overlook them. Accordingly, electric power 

generation and operation should be achieved not only at the lowest possible cost but also 

at the minimum feasible emission levels. In order to satisfy this goal, various regulations 

have been issued both nationally and internationally. In particular, the Clean Air 

Amendment of 1990 has become a mandatory operational guideline to control gaseous 

emission [4-8]. To meet these environmental regulations, various efforts have been made 

by applying several operational and planning strategies such as [138]: 

 Treating the gases produced from combustion by applying enhanced design 

techniques to the combustion process furnaces. In addition, the combustion process 

itself is chemically treated so that the production of harmful gases is reduced. 

 Using different types of fuel so that the emissions produced are reduced. 

 Treating the gases produced by the combustion process by the installation of post-

combustion filtering and scrubbing equipment. 

 Considering the emission and environmental aspects as part of the load dispatch 

operations. 

Among the options mentioned earlier, the last one, which is referred to as the 

economic-emission load dispatch, is favoured as there is no extra capital cost required. 

Besides, the economic-emission load dispatch is a short-range operational and planning 

practice that can be applied immediately [231].     

In this chapter, the optimization problem of multi-objective economic-emission load 

dispatch is discussed, formulated and implemented using the proposed MBFA. The 

weighted-sum method, discussed in  Chapter 3, is applied to solve several cases of multi-

objective economic-emission dispatch problem of all-thermal generation systems. The 

short-term hydro-thermal generation scheduling problem is also treated in this chapter 

with the emission minimization objective considered. The proposed MBFA is applied to 

solve these multi-objective optimization problems using various cases and number of 

objectives.    
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6.2 ECONOMIC-EMISSION THERMAL GENERATION DISPATCH 

The economic-emission dispatch for all-thermal power generation systems is 

formulated as a multi-objective optimization problem. As a result, the economic-emission 

dispatch problem considers four conflicting and non-commensurable objectives. Besides 

the fuel cost, these objectives are the 2,xNO SO and 2CO emissions. Mathematically, 

these objective functions are expressed as follows [157]: 

 The first objective, 1F  is the fuel cost function of the thermal generating units as 

expressed in Equations (4.1) and (4.3). This objective function is rewritten as: 

2
1

1
( ) $ /

gN

i gi i gi i
i

F a P b P c h                                                       (6.1) 

The parameters ,i ia b and ic are the cost coefficients and gN is the number of thermal 

generating units. 

 The second objective, 2F  is the amount of xNO emission modeled as a quadratic 

function of the output power of the generating units:  

2
2 1 1 1

1
( ) /

gN

i gi i gi i
i

F d P e P f kg h                                                 (6.2) 

where 1 1,i id e and 1if  are coefficients for the xNO gaseous emission [282].  

 The third objective, 3F  is the amount of 2SO  emission: 

 2
3 2 2 2

1
( ) /

gN

i gi i gi i
i

F d P e P f kg h                                                (6.3) 

where 2 2,i id e and 2if  are coefficients for the 2SO emission [282]. 

 The fourth objective, 4F  is the amount of 2CO  emission: 

2
4 3 3 3

1
( ) /

gN

i gi i gi i
i

F d P e P f kg h                                                 (6.4) 

where 3 3,i id e and 3if  are coefficients for the 2CO emission [172]. 

These objective functions are subject to various equality and inequality constraints as 

follows: 
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 Active power balance equality: 

1
0

gN

gi D L
i

P P P                                                                            (6.5) 

where DP is the total load demand and LP  is the transmission power losses as a 

function of the real power generation. These losses are expressed using the B-coefficients 

[3]: 

0 00
1 1 1

g g g

i j i

N N N

L g ij g i g
i j i

P P B P B P B                                               (6.6) 

 Generation capacity limits: 
min max , 1,2,...,gi gi gi gP P P i N                                                         (6.7) 

Where min
giP and max

giP are the minimum and maximum generation limit of the thi  

generating unit.  

These conflicting and non-commensurable objective functions are minimized 

simultaneously to obtain non-inferior set of solutions to the multi-objective problem. 

Therefore, and according to Equation (3.3), the minimization problem is expressed as 

follows: 

1 2 3 4[ , , , ]Tg g g gmin F (P ) F (P ) F (P ) F (P )                                       (6.8) 

This multi-objective optimization problem is subject to various equality and inequality 

constraints stated above.   

6.2.1 Weighted-Sum Method 

The weighted-sum method [224], introduced in Section  3.3.3.1, is one of the widely 

applied techniques to solve multi-objective optimization problems. In order to apply this 

method, the multi-objective optimization problem is converted to a single one. Weights 

are assigned for each of the objectives according to the decision makers’ preference. The 

values of these weighting factors reflect the relative importance of each of the conflicting 

objectives. The problem is expressed as follows [1]: 

1
( )

M

k k gi
k

min w F P                                                                      (6.9) 
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subject to         
1

0
gN

gi D L
i

P P P                                                                          (6.10) 

 min max , 1,2,...,gi gi gi gP P P i N                                                       (6.11) 

 
1

1 ( 0)
M

k k
k

w w                                                                          (6.12) 

where M is the number of objective functions and kw is the weight assigned to the thk

objective. 

6.2.2 ε–Constraint Method 

In this method, as stated in Section  3.3.3.3, one of the objective functions is 

considered a primary one while the others are treated as constraints. Mathematically, this 

is expressed as follows [157]: 

 1[ ]gmin F (P )                                                                            (6.13) 

subject to             ( ) ( 2,3,4)k g kF P k                                                           (6.14)                

 
1

0
gN

gi D L
i

P P P                                                                          (6.15) 

 min max , 1,2,...,gi gi gi gP P P i N                                                       (6.16) 

where k is the maximum tolerance for the thk objective. The value of k is chosen 

according to the impact of the thk objective on the primary objective function 1 gF (P ) . 

6.2.3 Case Study: 6-Generator System Economic-Emission 
Dispatch 

In this case study, the six-generator system, which was discussed in Section  4.5.2, is 

analyzed considering the four conflicting objectives. The load demand is 1800 MW and 

the coefficients for the fuel cost and emission equations are given in Table  6.1 [157]:       
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Table  6.1 Coefficients for cost and emission equations 
Generator 

Objective Coefficient 1 2 3 4 5 6 
C

os
t 

F 1
($

/h
) a 0.002035 0.003866 0.002182 0.001345 0.002162 0.005963 

b 8.43205 6.41031 7.42890 8.30154 7.42890 6.91559 

c 85.6348 303.7780 847.1484 274.2241 847.1484 202.0258 

N
O

X
 

F 2
(k

g/
h)

 d1 0.006323 0.006483 0.003174 0.006732 0.003174 0.006181 

e1 -0.38128 -0.79027 -1.36061 -2.39928 -1.36061 -0.39077 

f1 80.9019 28.8249 324.1775 610.2535 324.1775 50.3808 

SO
2 

F 3
(k

g/
h)

 d2 0.001206 0.002320 0.001284 0.110813 0.001284 0.003578 

e2 5.05928 3.84624 4.45647 4.97641 4.45647 4.14938 

f2 51.3778 182.2605 508.5207 165.3433 508.5207 121.2133 

C
O

2 

F 4
(k

g/
h )

 d3 0.265110 0.140053 0.105929 0.106409 0.105929 0.403144 

e3 -61.01945 -29.95221 -9.552794 -12.73642 -9.552794 -121.98120 

f3 5080.148 3824.770 1342.851 1819.625 1342.851 11381.070 

The B-coefficients matrix is the following: 

5

20.0 1.0 1.5 0.5 0 3.0

1.0 30.0 2.0 0.1 1.2 1.0

1.5 2.0 10.0 1.0 1.0 0.8
10

0.5 0.1 1.0 15.0 0.6 5.0

0 1.2 1.0 0.6 25.0 2.0

3.0 1.0 0.8 5.0 2.0 21.0

B                                      (6.17) 

The MBFA is implemented to solve this multi-objective problem considering various 

cases and different number of objective functions taking into consideration system losses. 

To generate the non-inferior solution for each case, the weighted-sum method is applied 

and implemented using the MBFA. In each case the Pareto optimal set of non-dominated 

solutions is obtained. The cases considered are as follows: 

Case 1: Optimization of each of the four objectives individually. 

Case 2: Optimization of fuel cost and xNO emission. 

Case 3: Optimization of fuel cost, xNO emission and 2SO emission. 

Case 4: Optimization of fuel cost, xNO emission, 2SO emission and 2CO emission. 
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6.2.3.1 Case 1: Individual Optimization of Cost and Emissions 

In this case, the fuel cost, 2,xNO SO  and 2CO  emissions are minimized separately 

as single objective functions. Minimizing each objective function individually is executed 

by giving full weight to the function to be optimized and neglecting others. As a result, 

the minimum and maximum values for each function are determined. Results obtained 

for minimizing each of the four functions are shown in Table  6.2. The table shows the 

minimum objective function in each of the four individual optimization processes and the 

corresponding power generation dispatch. It also shows the resulting objective functions 

for the other three objectives according to the power generation level obtained by 

optimizing the forth objective.  

Table  6.2 Individual minimization of each objective 
Min F1 ($/h) Min F2 (kg/h) Min F3 (kg/h) Min F4 (kg/h) 

Pg1 (MW) 252.314 198.536 251.830 246.1145927 
Pg2 (MW) 303.320 211.814 303.974 338.3301668 
Pg3 (MW) 503.094 538.274 505.530 379.5915598 
Pg4 (MW) 372.741 327.091 370.075 398.9112072 
Pg5 (MW) 301.329 476.825 302.981 338.3065614 
Pg6 (MW) 197.318 195.130 195.784 241.222651 
Ploss (MW) 130.116 147.670 130.174 142.4767373 

F1 ($/h) 18721.390 18950.609 18721.456 18807.918 
F2 (kg/h) 2298.434 2077.820 2294.712 2424.912 
F3 (kg/h) 11222.989 11356.338 11222.956 11277.212 
F4 (kg/h) 60522.875 66911.032 60576.573 58144.545 

6.2.3.2 Case 2:  Bi-Objective Optimization of Cost and NOx 
Emission 

In this case, for the same system, only the xNO emission is considered in addition to 

the fuel cost objective. The bi-objective optimization problem is converted into a single 

one by using the weighting factors. The non-inferior solution set is obtained using the 

MBFA and presented in Table  6.3. As shown in the table, the maximum and minimum 

values of 1w and 2w  represent the two ends of the Pareto optimal front as illustrated in 

Figure  6.2. The power generation level of each unit corresponding to each of the non-

dominated solutions is shown in Table  6.4. 
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It is clearly noticeable that any decrease in emission results in an increase in the fuel 

cost which is obvious as the two objectives are conflicting and non-commensurable.   

Table  6.3 Non-dominant solutions for cost and NOx objectives 
Solution Weight Objective 
Number w1 w2 F1 ($/h) F2 (kg/h) 

1 1.0 0.0 18721.390 2298.434 
2 0.9 0.1 18723.550 2267.395 
3 0.8 0.2 18729.751 2222.914 
4 0.7 0.3 18738.556 2194.273 
5 0.6 0.4 18751.461 2168.296 
6 0.5 0.5 18779.870 2132.546 
7 0.4 0.6 18805.238 2113.397 
8 0.3 0.7 18826.364 2101.754 
9 0.2 0.8 18865.967 2087.972 
10 0.1 0.9 18914.310 2079.872 
11 0.0 1.0 18950.609 2077.820 

Table  6.4 Power generation dispatch and losses 
Solution Power Generation Dispatch Ploss (MW) Number Pg1 (MW) Pg2 (MW) Pg3 (MW) Pg4 (MW) Pg5 (MW) Pg6 (MW) 

1 252.314 303.320 503.094 372.741 301.329 197.318 130.116 
2 243.861 305.498 501.546 363.872 320.036 196.869 131.683 
3 237.792 286.720 509.591 365.819 334.511 197.182 131.615 
4 233.377 280.940 515.824 356.547 348.851 196.947 132.486 
5 233.171 271.444 515.499 358.361 357.109 197.264 132.848 
6 222.588 256.628 524.778 348.255 387.935 195.363 135.546 
7 220.043 249.337 528.527 338.472 406.637 194.555 137.571 
8 212.001 239.617 531.070 340.540 416.487 199.088 138.804 
9 204.787 233.982 532.202 334.833 441.375 195.100 142.279 

10 203.103 220.270 531.281 334.469 464.235 192.199 145.558 
11 198.536 211.814 538.274 327.091 476.825 195.130 147.670 

 
Figure  6.2   Pareto optimal front for cost and NOx objectives  
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6.2.3.3 Case 3: Optimization of Cost, NOx and SO2 Emission 

A third objective, which is the 2SO emission, is considered in this case in addition to 

the fuel cost and the xNO emission. Three weighting factors are applied to convert this 

multi-objective optimization problem to a single one using the weighted-sum method. 

These weights as well as the set of the non-dominated solutions are shown in Table  6.5 

while the power generation level associated to this set is presented in Table  6.6.  

Table  6.5 Non-dominant solutions for cost, NOx and SO2 objectives 
Solution Weight Objective 

No. w1 w2 w3 F1 ($/h) F2 (kg/h) F3 (kg/h) 
1 1.00 0.00 0.00 18721.390 2298.434 11222.989 
2 0.85 0.15 0.00 18726.186 2240.531 11225.405 
3 0.70 0.30 0.00 18738.556 2194.273 11232.280 
4 0.55 0.45 0.00 18767.061 2146.534 11248.647 
5 0.40 0.60 0.00 18805.238 2113.397 11270.880 
6 0.25 0.75 0.00 18848.252 2094.135 11296.349 
7 0.10 0.90 0.00 18914.310 2079.872 11335.028 
8 0.85 0.00 0.15 18721.541 2297.449 11223.025 
9 0.70 0.15 0.15 18728.486 2227.704 11226.633 
10 0.55 0.30 0.15 18747.226 2175.518 11237.244 
11 0.40 0.45 0.15 18772.099 2140.147 11251.559 
12 0.25 0.60 0.15 18814.925 2107.686 11276.627 
13 0.10 0.75 0.15 18871.341 2086.714 11309.665 
14 0.70 0.00 0.30 18721.727 2287.847 11223.012 
15 0.55 0.15 0.30 18728.728 2226.774 11226.655 
16 0.40 0.30 0.30 18748.066 2173.860 11237.628 
17 0.25 0.45 0.30 18779.070 2133.373 11255.723 
18 0.10 0.60 0.30 18825.309 2102.192 11282.665 
19 0.55 0.00 0.45 18721.489 2290.226 11223.017 
20 0.40 0.15 0.45 18729.263 2224.086 11227.017 
21 0.25 0.30 0.45 18750.146 2170.022 11238.907 
22 0.10 0.45 0.45 18787.209 2126.110 11260.382 
23 0.40 0.00 0.60 18721.751 2290.956 11223.088 
24 0.25 0.15 0.60 18729.389 2223.841 11227.118 
25 0.10 0.30 0.60 18755.842 2161.025 11242.254 
26 0.25 0.00 0.75 18722.732 2286.163 11223.570 
27 0.10 0.15 0.75 18730.660 2219.319 11227.748 
28 0.10 0.00 0.90 18721.478 2299.679 11223.023 
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Table  6.6 Power generation dispatch and losses 

Solution Power Generation Dispatch 
Ploss (MW) No. Pg1 (MW) Pg2 (MW) Pg3 (MW) Pg4 (MW) Pg5 (MW) Pg6 (MW) 

1 252.314 303.320 503.094 372.741 301.329 197.318 130.116 
2 244.135 291.942 506.361 365.768 328.079 195.051 131.337 
3 233.377 280.940 515.824 356.547 348.851 196.947 132.486 
4 230.588 260.812 524.078 344.610 376.416 197.783 134.286 
5 220.043 249.337 528.527 338.472 406.637 194.555 137.571 
6 213.485 236.459 519.684 339.523 434.641 197.540 141.332 
7 203.103 220.270 531.281 334.469 464.235 192.199 145.558 
8 255.921 302.216 504.370 370.226 301.831 195.413 129.978 
9 238.380 289.798 511.716 360.259 331.051 200.241 131.445 
10 230.665 274.264 519.048 349.798 357.857 201.428 133.060 
11 223.103 261.146 526.609 345.751 381.010 197.285 134.904 
12 212.297 242.110 531.128 344.172 408.427 199.682 137.815 
13 207.100 227.099 535.711 337.513 440.553 193.918 141.895 
14 250.915 299.711 510.362 368.561 302.025 198.162 129.735 
15 241.519 288.726 515.617 358.092 330.849 196.377 131.179 
16 229.217 274.541 523.313 350.751 358.597 196.605 133.024 
17 221.499 258.374 521.865 349.210 388.732 196.108 135.787 
18 213.710 240.303 531.352 340.621 416.649 196.111 138.746 
19 250.094 301.461 503.695 372.158 304.190 198.606 130.204 
20 237.982 287.039 514.885 361.047 331.033 199.228 131.213 
21 229.085 270.583 520.672 354.677 360.639 197.465 133.121 
22 221.073 255.418 526.994 340.600 393.141 198.943 136.168 
23 256.765 300.870 504.465 368.325 305.089 194.573 130.086 
24 236.769 286.755 514.210 362.360 331.054 200.103 131.251 
25 229.650 268.680 517.872 349.249 368.115 200.317 133.883 
26 245.125 294.737 515.289 378.048 299.207 196.835 129.241 
27 238.084 283.502 517.945 363.292 332.279 195.927 131.029 
28 251.032 302.371 506.342 373.498 298.663 197.909 129.815 

6.2.3.4 Case 4: Optimization of Four Objectives 

In this final case, the four emission objectives are taken into consideration. These are 

the fuel cost, xNO , 2SO and 2CO emission. A weighting factor is assigned for each 

objective function so that the problem is converted into a single-objective optimization 

one. The obtained non-dominated solutions and the load dispatch are shown in Table  6.7 

and Table  6.8 respectively. 
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 Table  6.7 Non-dominant solutions for cost, NOx, SO2 and CO2 objectives 
Solution Weight Objective 

No. w1 w2 w3 w4 F1 ($/h) F2 (kg/h) F3 (kg/h) F4 (kg/h) 
1 1.00 0.00 0.00 0.00 18721.390 2298.434 11222.989 60522.875 
2 0.70 0.30 0.00 0.00 18738.556 2194.273 11232.280 61044.914 
3 0.40 0.60 0.00 0.00 18805.238 2113.397 11270.880 63019.370 
4 0.10 0.90 0.00 0.00 18914.310 2079.872 11335.028 65842.077 
5 0.70 0.00 0.30 0.00 18721.727 2287.847 11223.012 60687.283 
6 0.40 0.30 0.30 0.00 18748.066 2173.860 11237.628 61497.540 
7 0.10 0.60 0.30 0.00 18825.309 2102.192 11282.665 63579.499 
8 0.40 0.00 0.60 0.00 18721.751 2290.956 11223.088 60624.685 
9 0.10 0.30 0.60 0.00 18755.842 2161.025 11242.254 61395.530 

10 0.10 0.00 0.90 0.00 18721.478 2299.679 11223.023 60581.404 
11 0.70 0.00 0.00 0.30 18778.282 2367.771 11258.867 58088.035 
12 0.40 0.30 0.00 0.30 18778.413 2349.241 11258.758 58100.385 
13 0.10 0.60 0.00 0.30 18777.110 2332.417 11257.871 58128.872 
14 0.40 0.00 0.30 0.30 18778.361 2347.666 11258.745 58108.461 
15 0.10 0.30 0.30 0.30 18781.114 2346.541 11260.403 58098.860 
16 0.10 0.00 0.60 0.30 18780.410 2370.193 11260.182 58081.746 
17 0.40 0.00 0.00 0.60 18783.827 2380.362 11262.304 58075.585 
18 0.10 0.30 0.00 0.60 18788.524 2355.071 11264.929 58082.799 
19 0.10 0.00 0.30 0.60 18782.288 2379.640 11261.375 58080.522 
20 0.10 0.00 0.00 0.90 18786.579 2379.323 11263.916 58073.358 

Table  6.8 Power generation dispatch and losses 
Solution Power Generation Dispatch 

Ploss (MW) No. Pg1 (MW) Pg2 (MW) Pg3 (MW) Pg4 (MW) Pg5 (MW) Pg6 (MW) 
1 252.314 303.320 503.094 372.741 301.329 197.318 130.116 
2 233.377 280.940 515.824 356.547 348.851 196.947 132.486 
3 220.043 249.337 528.527 338.472 406.637 194.555 137.571 
4 203.103 220.270 531.281 334.469 464.235 192.199 145.558 
5 250.915 299.711 510.362 368.561 302.025 198.162 129.735 
6 229.217 274.541 523.313 350.751 358.597 196.605 133.024 
7 213.710 240.303 531.352 340.621 416.649 196.111 138.746 
8 256.765 300.870 504.465 368.325 305.089 194.573 130.086 
9 229.650 268.680 517.872 349.249 368.115 200.317 133.883 

10 251.032 302.371 506.342 373.498 298.663 197.909 129.815 
11 249.000 330.698 404.525 382.039 339.498 234.154 139.914 
12 248.953 328.842 406.068 375.872 347.964 232.598 140.296 
13 249.090 320.897 407.234 377.795 352.072 232.891 139.980 
14 248.772 325.605 403.736 383.157 349.665 229.382 140.317 
15 249.327 324.588 401.978 381.371 351.140 232.091 140.494 
16 250.189 329.609 401.765 383.482 340.073 234.920 140.036 
17 249.641 333.562 398.350 385.521 340.401 233.116 140.590 
18 247.470 328.452 397.653 379.141 352.551 236.031 141.297 
19 252.721 331.476 398.549 384.687 339.152 233.647 140.233 
20 248.807 336.638 397.656 381.381 343.730 232.933 141.145 
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The results obtained from the various cases demonstrated in this section show the 

ability of the MBFA to solve the economic-emission load dispatch as a multi-objective 

optimization problem effectively and obtain the non-inferior solutions. The algorithm is 

successfully applied to capture the shape of the Pareto optimal front for any number of 

objectives and for various fuel qualities.  

6.3 ECONOMIC-EMISSION SHORT-TERM HYDRO-THERMAL GENERATION 
SCHEDULING 

The fixed-head short-term hydro-thermal generation scheduling discussed in Section 

 5.2 as a single objective optimization problem is considered here. This problem is treated 

as a multi-objective problem where emission objectives are optimized along with the cost 

objective function. Operating cost of thermal generating units, 2,xNO SO and 2CO

emissions are minimized over the scheduling period considering various thermal and 

hydraulic constraints.   

6.3.1 Problem Formulation 

The cost and emission objectives of the fixed-head short-term hydro-thermal 

generation scheduling problem are mathematically expressed as follows [128, 283]: 

2
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 min max min max,
k k k k k kgi gi gi Hj Hj HjP P P P P P                                            (6.23) 
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n q V                                                                                    (6.24) 

where   

1F        : cost function of thermal units over the total scheduling time intervals kN  

2F         : xNO emission objective function over the total scheduling time intervals kN  

3F         : 2SO emission objective function over the total scheduling time intervals kN  

4F         : 2CO emission objective function over the total scheduling time intervals kN  

kN       : number scheduling time intervals 

kn        : number of hours in scheduling time interval k  

, ,i i ia b c   : cost coefficients of the thi thermal generating unit  

1 1 1, ,i i id e f : xNO emission coefficients 

2 2 2, ,i i id e f : 2SO emission coefficients 

3 3 3, ,i i id e f : 2CO emission coefficients 

kgiP      : power generation of thermal unit i at time interval k  

kHjP      : power generation of hydro unit j at time interval k  

kDP      : total demand during the time interval k 

kLP  : total transmission power losses during the time interval k 
min

giP  : minimum power generation for thermal generating unit i 

max
giP  : maximum power generation for thermal generating unit i 

min
HjP  : minimum power generation for hydro generating unit j 

max
HjP  : maximum power generation for hydro generating unit j 

 



 

     198 

Applying the weighted-sum method, the Pareto optimal set of solutions is obtained 

by converting the multi-objective optimization problem into a single one. This is 

expressed as follows [128, 283]: 

1
( )

M

k k gi
k

min w F P                                                                    (6.25) 

where M is the number of objective functions and kw is the weight assigned to the thk

objective. In addition to the constraints expressed in Equations (6.22), (6.23) and (6.24), 

this multi-objective problem is subject to: 

1
1 ( 0)

M

k k
k

w w                                                                          (6.26) 

6.3.2 Case Study: Two Thermal and Two Hydro Plants 

A hydro-thermal generation system of two thermal and two hydro plants is 

considered [1, 128, 283]. The characteristics equations for the fuel cost, xNO , 2SO and 

2CO emission of the thermal generating units are given in Table  6.9.  

          Table  6.9 Coefficients for cost and emission equations 
Generator 

Objective Coefficient 1 2 

C
os

t 

F 1
($

/h
) a 0.0025 0.0008 

b 3.20 3.40 
c 25.00 30.00 

N
O

X
 

F 2
(k

g/
h)

 

d1 0.006483 0.006483 
e1 -0.79027 -0.79027 
f1 28.82488 28.82488 

SO
2 

F 3
(k

g/
h)

 

d2 0.00232 0.00232 
e2 3.84632 3.84632 
f2 182.2605 182.2605 

C
O

2 

F 4
(k

g/
h )

 d3 0.084025 0.084025 
e3 -2.944584 -2.944584 
f3 137.7043 137.7043 



 

     199 

The hourly load demand for each time interval over the scheduling period is given in 

Table  6.10, and the B-coefficient matrix is given as: 

4

1.40 0.10 0.15 0.15
0.10 0.60 0.10 0.13

10
0.15 0.10 0.68 0.65
0.15 0.13 0.65 0.70

B                                                 (6.27) 

Table  6.10   Load demand for each scheduling interval 

Hour PD Hour PD Hour PD Hour PD 
(MW) (MW) (MW) (MW) 

1 400 7 450 13 1200 19 1330 
2 300 8 900 14 1250 20 1250 
3 250 9 1230 15 1250 21 1170 
4 250 10 1250 16 1270 22 1050 
5 250 11 1350 17 1350 23 900 
6 300 12 1400 18 1470 24 600 

Water discharge rates of the two hydro plants, as defined in Equation (5.24), are given as: 

6 2 3
1 1 16.1160 10 0.00866494 0.05606727 .

k k kH Hq P P M m h           (6.28) 

5 2 3
2 2 21.0194 10 0.01732988 0.02650452 .

k k kH Hq P P M m h         (6.29) 

The volume of water available for the first hydro plant is 71.0 3.M m  and for the second 

is 60.0 3.M m . 

The MBFA is applied to solve this multi-objective problem considering various 

cases and number of objectives. To obtain the Pareto optimal front for each case, the 

weighted-sum method is applied and implemented. In each case, the non-dominated set 

of solutions is presented. The cases that are considered are as follows: 

Case 1: Optimization of each of the four objectives individually. 

Case 2: Optimization of fuel cost and xNO emission. 

Case 3: Optimization of fuel cost, xNO emission and 2SO emission. 

Case 4: Optimization of fuel cost, xNO emission, 2SO emission and 2CO emission. 
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6.3.2.1 Case 1: Individual Optimization of Cost and Emissions 

In this case, every one of the four objectives; the fuel cost, the 2,xNO SO  and 2CO  

emission, is minimized as a single objective function. Results obtained are shown in 

Table  6.11. The table shows the minimum objective function in each of the four 

individual optimization processes and the resulting objective functions for the other three 

objectives. The corresponding hourly optimal power schedule is presented in Table  6.12.   

Table  6.11 Individual minimization of each objective 
Min F1 ($) Min F2 (kg) Min F3 (kg) Min F4 (kg) 

F1 ($) 52753.291 55828.427 54762.238 55784.252 
F2 (kg) 22803.775 19932.248 20978.468 19987.685 
F3 (kg) 72355.712 72287.658 71988.754 72133.264 
F4 (kg) 383106.467 337846.583 374222.436 334231.219 

Table  6.12   Hourly generation schedule and losses (corresponding to minimizing F1) 

Hour 
Generation (MW) PL Thermal  Hydro  

Plant 1 Plant 2 Plant 1 Plant 2 (MW) 
1 114.6211 92.5124 114.8320 84.3537 6.3192 
2 91.8189 137.1296 64.7878 9.6139 3.3502 
3 90.7484 65.5300 82.4644 13.8041 2.5470 
4 94.2215 64.5400 87.8323 6.0049 2.5988 
5 81.5023 86.7014 76.3111 7.8413 2.3562 
6 102.7642 101.8882 79.6211 19.2108 3.4843 
7 125.0102 195.0400 132.7695 4.4707 7.2905 
8 228.1895 203.1860 241.0032 261.0060 33.3848 
9 278.0181 459.4646 345.6354 203.2548 56.3729 

10 271.4043 463.0400 385.5052 188.2715 58.2210 
11 317.7566 508.8605 412.9773 178.9734 68.5678 
12 317.4754 519.8706 428.8553 207.8804 74.0817 
13 246.1135 412.5979 362.4100 233.2205 54.3419 
14 378.8812 493.5207 272.4080 166.3229 61.1328 
15 291.8768 528.4683 315.4877 171.7760 57.6087 
16 374.7779 424.5901 294.6237 239.9567 63.9484 
17 295.7679 508.8484 405.8898 207.8021 68.3082 
18 348.8727 556.8631 439.4227 206.9816 82.1401 
19 304.4022 484.8203 384.3609 223.2202 66.8037 
20 201.7052 545.2475 411.2643 148.4756 56.6926 
21 271.8560 425.6737 281.0225 242.6899 51.2421 
22 255.2870 413.3101 275.4704 146.4007 40.4683 
23 241.6340 198.4806 347.8077 145.5747 33.4971 
24 161.1801 172.0311 260.2474 20.1665 13.6251 
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6.3.2.2 Case 2:  Bi-Objective Optimization of Cost and NOx   
Emission 

Fuel cost and xNO emission are the two objectives to be minimized simultaneously 

in the bi-objective problem considered in this case. The set of solutions obtained for 

various weighting combinations are tabulated in Table  6.13, and the Pareto optimal front 

is depicted in Figure  6.3.      

Table  6.13 Non-dominant solutions for cost and NOx objectives (case 2) 
Solution Weight Objective 
Number w1 w2 F1 ($) F2 (kg) 

1 1.0 0.0 52753.291 22803.775 
2 0.9 0.1 52791.424 22646.452 
3 0.8 0.2 52864.575 22264.758 
4 0.7 0.3 52997.479 22251.424 
5 0.6 0.4 53674.259 21768.452 
6 0.5 0.5 54011.424 21324.483 
7 0.4 0.6 54876.785 20864.758 
8 0.3 0.7 55137.478 20545.265 
9 0.2 0.8 55335.249 20391.549 
10 0.1 0.9 55642.429 20015.000 
11 0.0 1.0 55828.427 19932.248 

 
Figure  6.3   Pareto optimal front for cost and NOx objectives (case 2) 
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6.3.2.3 Case 3: Optimization of Cost, NOx and SO2 Emission 

Three objectives are treated in this case. These are; xNO and 2SO emission in 

addition to the fuel cost. Non-inferior solutions are obtained using various weight 

combinations. Results are shown in Table  6.14 along with the assigned weighting factors.  

Table  6.14 Non-dominant solutions for cost and NOx objectives (case 3) 
Solution Weight Objective 
Number w1 w2 w3 F1 ($) F2 (kg) F3 (kg) 

1 1.00 0.00 0.00 52753.291 22803.775 72355.712 
2 0.85 0.15 0.00 52823.424 22618.468 72146.476 
3 0.70 0.30 0.00 52997.479 22251.424 72176.488 
4 0.55 0.45 0.00 53998.848 21778.255 72203.348 
5 0.40 0.60 0.00 54876.785 20864.758 72248.424 
6 0.25 0.75 0.00 55113.365 20346.688 72285.424 
7 0.10 0.90 0.00 55642.429 20015.000 72301.548 
8 0.85 0.00 0.15 52411.274 23864.486 72445.739 
9 0.70 0.15 0.15 52594.414 23122.458 72231.877 
10 0.55 0.30 0.15 53617.329 22014.548 72243.466 
11 0.40 0.45 0.15 53875.642 21887.655 72231.678 
12 0.25 0.60 0.15 54822.625 21042.456 72239.146 
13 0.10 0.75 0.15 55408.743 20179.342 72324.856 
14 0.70 0.00 0.30 51878.475 24857.649 72355.145 
15 0.55 0.15 0.30 52665.430 22891.476 72314.445 
16 0.40 0.30 0.30 53295.875 22136.425 72162.315 
17 0.25 0.45 0.30 54569.474 21521.436 72214.322 
18 0.10 0.60 0.30 55224.436 20303.563 72381.413 
19 0.55 0.00 0.45 52464.756 23823.434 72187.657 
20 0.40 0.15 0.45 52621.524 22912.433 722032.459 
21 0.25 0.30 0.45 54371.429 21631.235 72214.375 
22 0.10 0.45 0.45 54741.743 21401.874 72341.285 
23 0.40 0.00 0.60 52522.419 23642.865 72384.762 
24 0.25 0.15 0.60 52587.488 23335.125 72161.225 
25 0.10 0.30 0.60 54774.275 21341.543 72154.412 
26 0.25 0.00 0.75 53807.643 21989.255 72128.548 
27 0.10 0.15 0.75 54773.452 21294.625 72131.463 
28 0.10 0.00 0.90 54811.549 21177.424 72018.488 
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6.3.2.4 Case 4: Optimization of Four Objectives 

The four objectives, which are the fuel cost, xNO , 2SO  and 2CO  emission, are 

considered in this case. A combination of four weights is applied each time to obtain the 

set of non-dominated solutions as shown in Table  6.15.  

Table  6.15 Non-dominant solutions for cost, NOx, SO2 and CO2 objectives 
Solution Weight Objective 

No. w1 w2 w3 w4 F1 ($) F2 (kg) F3 (kg) F4 (kg) 
1 1.00 0.00 0.00 0.00 52753.291 22803.775 72355.712 383106.467 
2 0.70 0.30 0.00 0.00 52997.479 22251.424 72336.488 372854.232 
3 0.40 0.60 0.00 0.00 54876.785 20864.758 72242.424 354512.426 
4 0.10 0.90 0.00 0.00 55642.429 20015.000 72201.548 351444.615 
5 0.70 0.00 0.30 0.00 51878.475 24857.649 72455.145 387506.232 
6 0.40 0.30 0.30 0.00 53295.875 22136.425 72322.315 367475.643 
7 0.10 0.60 0.30 0.00 55224.436 20303.563 72381.413 352245.218 
8 0.40 0.00 0.60 0.00 52522.419 23642.865 72384.762 384542.254 
9 0.10 0.30 0.60 0.00 54774.275 21341.543 72154.412 357577.563 
10 0.10 0.00 0.90 0.00 54811.549 21177.424 72018.488 355214.215 
11 0.70 0.00 0.00 0.30 55037.275 20883.423 72342.514 352242.385 
12 0.40 0.30 0.00 0.30 55163.241 20851.812 72274.414 352111.254 
13 0.10 0.60 0.00 0.30 55296.419 20832.155 72312.546 352223.549 
14 0.40 0.00 0.30 0.30 54974.769 20863.215 72382.215 352256.541 
15 0.10 0.30 0.30 0.30 55263.216 20841.421 72362.215 352238.453 
16 0.10 0.00 0.60 0.30 55214.362 20845.414 72354.142 352214.715 
17 0.40 0.00 0.00 0.60 55198.473 20845.215 72374.235 352224.542 
18 0.10 0.30 0.00 0.60 55232.422 20829.958 72354.242 352214.521 
19 0.10 0.00 0.30 0.60 55250.864 20841.413 72363.241 352265.413 
20 0.10 0.00 0.00 0.90 55244.136 20844.431 72352.125 352278.379 

Results obtained in this case study show the effectiveness of the MBFA in solving 

this large-scale multi-objective optimization problem and finding optimal or close to 

optimal solution. These solutions are represented in the set of non-inferior points on the 

trade-off curve obtained in each case for the assigned weighting factors. 
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6.4 SUMMARY 

The economic-emission load dispatch and short-term hydro-thermal generation 

scheduling problem considering the environmental aspects have been treated in this 

chapter. The air pollution and gaseous emissions produced by electric power plants have 

been attracting more public attention stimulated by the harmful impacts on the 

atmosphere. Moreover, in order to limit the production of theses emissions, various 

environmental regulations have recently been issued and applied.  

The MBFA has been successfully applied to solve these multi-objective optimization 

problems. The weighted-sum method has been implemented for each problem to convert 

the multi-objective problem to a single one. The MBFA has been used to find the optimal 

solution using various well-known test systems. The algorithm’s effectiveness has been 

shown in each case through obtaining optimal or close to optimal solutions. For the 

various cases, the MBFA has successfully captured the shape of the Pareto optimal front 

and the trade-off set of solutions. In each case study, the MBFA has been used to solve 

bi-objective cases and then the number of objectives has been extended to three and four. 

An important advantage of the algorithm is its capability to obtain a well-distributed set 

of solutions on the trade-off curve regardless of the number of objectives.    
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 
 

7.1 CONCLUSIONS AND REMARKS 

The utilization of optimization techniques in the area of power system operation has 

been one of the important and rapidly developing topics. Powerful optimization 

techniques have been extensively employed to achieve better performance of electrical 

power systems with respect to various operational and planning practices. These are not 

only in terms of operational security and reliability but also in terms of economic and 

environmental perspectives. 

In this thesis, the economic and environmental aspects of power generation systems 

are discussed and analyzed in order to accomplish the most optimum operational practice. 

The optimal operation can be defined differently according to various viewpoints. One 

point of view considers the maximization of profit and minimization of production costs 

as priority. In contrast, from an environmental perspective, minimizing the harmful 

impacts of the gaseous emission is an imperative objective. These two conflicting 

objectives in particular are considered in both the single and multi-objective optimization 

of power system operation treated in this thesis.  

In general, optimization methods are classified into two main categories; 

deterministic and heuristic. In this thesis, one of the recently introduced heuristic 

optimization methods, BFA, has been discussed, developed and employed to treat the 

considered economic and environmental optimization problems of power system 

operation.  

A modified bacterial foraging algorithm (MBFA) has been proposed, developed and 

validated using a wide range of well-known benchmark optimization functions. These 

functions are carefully selected to demonstrate the effectiveness of the proposed MBFA. 

The capability of the MBFA in solving various optimization problems with different 

characteristics has been proven. Various types of optimization functions were considered 

including single and multi-objective, constrained and unconstrained functions. 

Nonlinearity, non-smoothness and non-convexity of the targeted objective functions and 

constraints were also taken into consideration. 
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MBFA has been utilized to optimally solve the classical economic dispatch (ED) 

problem considering various practical operational constraints. In this regard, the ED 

problem has been solved considering the transmission power losses in some cases and the 

valve-point effects in others. A wide range of case studies have been selected such that 

various practical aspects are represented and analyzed. 

Unlike the ED, the hydro-thermal generation scheduling problem is a dynamic 

problem where the power schedule is determined over an operational period of time. In 

this thesis, the short-term hydro-thermal scheduling (STHTS) problem has been 

comprehensively discussed and effectively solved using the MBFA. The problem has 

been analyzed and solved considering various hydraulic configurations in terms of 

reservoir location arrangement and water availability and capacity. Hydro-electric plants 

with fixed-head and variable-head reservoirs have been considered. In addition, 

hydraulically isolated plants on different streams as well as hydraulically coupled on the 

same stream or cascaded in a multi-chain plant configuration have also been treated.  A 

considerable number of test systems have been successfully solved using the proposed 

MBFA. These cases have been carefully selected to represent the various practical 

thermal and hydraulic characteristics and operational constraints of the STHTS 

optimization problem. 

Adding the environmental dimension is also one of the issues considered as part of 

the scope of this effort. Both the ED and STHTS problems are subsequently formulated 

as multi-objective optimization functions in order to consider the environmental part of 

the problem. The two multi-objective optimization problems have been efficiently solved 

using the proposed algorithm. The MBFA is adapted to capture the Pareto optimal curve 

of the optimal set of solutions and trade-off relationships of the conflicting objective 

functions.  

 The comprehensive literature review contained in this thesis demonstrates the 

application of optimization methods used to solve various power system optimization 

problems. The focus of this review is the optimization approaches related to the problems 

discussed in this thesis. It considers deterministic and heuristic optimization techniques 

applied for both single and multi-objective optimization problems in power systems. 
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7.2 FUTURE WORK 

The areas of the research and the solution methods presented in this thesis can be 

further explored and extended to wider horizons. The following research points are the 

most promising topics that could be the subject of extended analysis: 

 The problems discussed in this research can be further expanded considering 

additional constraints. These may include minimum up and down times of 

generating units, spinning reserve, ramp rates and prohibited zones of operation. 

 Renewable energy such as wind and tidal energy can be considered in the 

optimization problems discussed in this thesis. Investigating the possibility of the 

wind energy optimization in terms of economic dispatch is an interesting field of 

research. 

 The classic economic-dispatch problem tackled in this work can be reconsidered as a 

dynamic economic-dispatch one. This is to solve the problem over a specific period 

of time.    

 The problems studied in this thesis can be solved using other heuristic optimization 

methods that have been introduced recently. Examples of these methods are artificial 

bee algorithms, shuffled frog-leaping optimization and other heuristic techniques. 

Results obtained using these methods can be compared with those obtained by the 

MBFA presented in this thesis. 

 The multi-objective power system optimization problems discussed in this thesis can 

be reconsidered using other aggregation methods such as ε-constraint and other 

multi-objective solution approaches discussed in  Chapter 3. The performance of the 

MBFA can be compared using these different aggregation methods considering the 

same problem. 

 Incorporating the fuzzy set theory in the field of decision making can be considered 

in order to decide the best-compromised solution among the non-inferior solutions 

for the multi-objective optimization problems. 

 Statistical generalized models can be implemented in order to tune the algorithm 

parameters. This could be a promising research especially when errors are not 

normally distributed. 
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APPENDIX 

Table A.1 Typical Fossil Generation Unit Net Heat Rates* 
Output (MJ/kW hr) 

Fossil Unit 
100% 80% 60% 40% 25% 

fuel rating 

Coal 50 11.59 11.69 12.05 12.82 14.13 

Oil 50 12.12 12.22 12.59 13.41 14.78 

Gas 50 12.33 12.43 12.81 13.64 15.03 

Coal 200 10.01 10.09 10.41 11.07 12.21 

Oil 200 10.43 10.52 10.84 11.54 12.72 

Gas 200 10.59 10.68 11.01 11.72 12.91 

Coal 400 9.49 9.53 9.75 10.31 11.25 

Oil 400 9.91 9.96 10.18 10.77 11.75 

Gas 400 10.01 10.06 10.29 10.88 11.88 

Coal 600 9.38 9.47 9.77 10.37 11.40 

Oil 600 9.80 9.90 10.20 10.84 11.91 

Gas 600 9.91 10.01 10.31 10.96 12.04 

Coal 800/1200 9.22 9.28 9.54 10.14 - 

Oil 800/1201 9.59 9.65 9.92 10.55 - 

Gas 800/1202 9.70 9.75 10.03 10.67 - 

*For Conversion: 1Btu=1054 J 
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Table A.2 Typical Fuel Cost Coefficients 
Coal Oil Gas 

Unit size 
ai bi ci ai bi ci ai bi ci 

(MW) 

50 0.0103 10.06 49.92 0.0116 10.47 52.87 0.0117 10.66 53.62 

200 0.0023 8.67 173.61 0.00238 9.039 180.68 0.00235 9.19 182.62 

400 0.0015 8.14 300.84 0.0015 8.52 312.35 0.0015 8.61 316.45 

600 0.00053 8.28 462.28 0.00056 8.65 483.44 0.00059 8.73 490.02 

800 0.00099 7.48 751.39 0.00107 7.74 793.22 0.00117 7.73 824.40 

1200 0.00067 7.47 1130.80 0.00072 7.72 1194.60 0.00078 7.72 1240.32 

 

 

 


