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ABSTRACT

Hearing loss effects millions of people of all ages and is commonly treated with hearing

aids and prostheses. Bone anchored hearing prostheses use bone conduction to transmit

sound through the skull bone to the functioning inner ear and cochlea, bypassing the outer

and middle ear. A challenge associated with these prostheses is optimizing the location

of the surgical implant. A better understanding of how vibrations travel through the skull

bone will be beneficial in the improvement of current prostheses and the development of

new bone conduction technologies.

Using laser Doppler vibrometry, vibration characteristics of dry human skulls were investi-

gated. Three-dimensional vibration patterns were obtained at several frequencies and the

dispersion relationship was determined. A closed-spherical shell model proved to be a

good indicator of the frequency response of a dry human skull in the frequency range of

normal human hearing.
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CHAPTER 1

INTRODUCTION

Hearing impairment is caused by a variety of congenital and environmental factors and,

though more prevalent in the elderly population, affects people of all ages (Figure 1.1).

Figure 1.1: Prevalence of hearing loss by age group and gender. Adapted from O’Neill
et al. (1999).
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There are two fundamental types of hearing loss. Sensorineural hearing loss is caused

by defects in the inner ear or acoustic nerve, while conductive hearing loss occurs when

defects are present in the outer or middle ear. A third type of hearing impairment is a

combination of sensorineural and conductive hearing loss and is referred to as mixed

hearing loss. Figure 1.2 is an illustration of the gross anatomy of the ear and indicates

the outer, middle and inner ear regions. Often, hearing aids (amplification of sound) and

prostheses (transmission of sound) are effective treatments for these conditions.

Figure 1.2: Gross anatomy of the human ear including the outer, middle and inner ear.

People with normal auditory function perceive sound primarily through air conduction,

where sound pressures propagate through the air in the external auditory canal and vibrate

the ear drum or tympanic membrane. This in turns causes motion of the malleus, the

incus and, eventually, the stapes, which ultimately creates pressure waves in the cochlear

fluid. Figure 1.3 illustrates how a bone conducted sound ultimately reaches the inner ear.

Mechanical vibrations generated by a bone anchored hearing prostheses embedded in the

temporal bone of the skull are transmitted through the skull bone directly to the cochlea,

bypassing the outer and middle ear.
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Figure 1.3: Schematic of bone conducted sound transmission through the skull bone to the
cochlea. The outer and middle ear are bypassed. Picture taken from Cochlear Ltd. (2011).

An example of a bone conducted sound is the psychoacoustic perception of ones voice

when the ear is occluded. Bone anchored hearing prostheses utilize bone conduction

to treat conductive hearing loss, mixed hearing loss and single-sided deafness, where

conventional hearing aids may not be effective. These prostheses are a successful and

widely used treatment with more than 50,000 prostheses implanted world wide (Cochlear

Ltd., 2011) in both children and adult patients since they were first invented in 1977

(Tjellström et al., 1983). Two examples of commercially available bone anchored hearing

prostheses are Cochlear Limited’s Baha® and Oticon Medical’s Ponto™. Figure 1.4 is an

exploded view of a Baha®, indicating the three major components; (1) sound processor,

(2) external abutment and (3) titanium implant.

Sound waves are picked up by a microphone and converted into an electrical signal, which

is filtered and amplified by the sound processor. A vibrating transducer converts this

electrical signal into a mechanical vibration, which is transmitted through the external

abutment to the titanium implant, and ultimately to the skull bone. The titanium implant is

surgically embedded behind the ear in the temporal bone of the skull. Figure 1.5 shows

the external abutment protruding out from the skin. The sound processor is not attached

until 3–4 months after the initial surgery to ensure the skull bone has fully osseointegrated

with the titanium implant (Tjellström et al., 2001). The inset in Figure 1.5 shows a fully

functioning Baha® with the sound processor attached.

The placement of bone anchored hearing prostheses are surgically limited by the thickness

of the temporal bone (Tjellström et al., 2001). Future bone conducted hearing technologies

that do not suffer from this surgical limitation may realize improved sound quality with
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Figure 1.4: Exploded view of Cochlear Limited’s Baha®. Three major components; (1)
sound processor, (2) external abutment and (3) titanium implant. Picture taken from
Cochlear Ltd. (2011).

Figure 1.5: Illustration of the surgical placement of a Baha®. The external abutment can
be seen protruding out from the skin. The inset figure shows the fully functioning Baha®

with the sound processor attached. Picture taken from Cochlear Ltd. (2011).
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the optimization of device location on the skull. Thus, a thorough understanding of bone

conduction mechanisms is required, however this has yet to be achieved (Stenfelt et al.,

2000; Eeg-Olofsson et al., 2008). In terms of wave propagation in the skull, there is

significant debate in the literature (Stenfelt & Goode, 2005a), which centers around two

major theories; Lamb plate waves and spherical shell models. These theories are discussed

in detail in Chapter 2. The purpose of this work is to study the vibratory response of human

skull bone through experimental testing in order to gain a better understanding of bone

conduction. Understanding the transmission mechanisms of bone conducted sound will

ultimately aid in making improvements to current prostheses and developing new bone

conduction hearing technologies.

A review of the literature will follow in Chapter 2. Chapter 3 will discuss the experimental

methods used. The results and a discussion of the findings is given in Chapter 4. Conclud-

ing remarks and recommendations will presented in Chapter 5. A full list of symbols used

is included on page xi for the reader’s convenience.



CHAPTER 2

LITERATURE REVIEW

The following chapter first provides a review of the literature on bone conduction. Lamb

plate theory and a closed spherical shell model are then discussed. Finally, an outline of

measurement techniques is given with an extensive discussion on laser Doppler vibrometry.

2.1 Bone Conduction

2.1.1 Air Conducted Sound versus Bone Conducted Sound

One of the first questions to be addressed concerning bone conducted sound was whether or

not the cochlea was the organ being stimulated. The first to investigate this was von Békésy,

who endeavoured to subjectively cancel a bone conducted sound with an air conducted

sound (source: Stenfelt & Goode (2005a)). If a bone conducted sound stimulates the

cochlea, then a air conducted sound of the same signal and amplitude but 180◦ out phase

should cancel out the bone conducted sound resulting in no sound perception. Von Békésy

sucessfully cancelled a bone conducted stimulus with an air conducted stimulus in one

subject at a single frequency (source: Stenfelt & Goode (2005a)). Following this finding,

several studies measured the cochlear microphonic in cats (source: Stenfelt & Goode

(2005a)). The cochlear microphonic is an electrical potential generated by the hair cells

in the cochlea in response to an acoustic stimulus. The signals from the air and bone

stimuli were found to be similar giving further credence to von Békésy’s initial hypothesis.

Later experiments by Khanna et al. (1976) subjectively cancelled an air conducted sound

6
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with a bone conducted sound at a single frequency over a range of hearing levels. The

physical vibration of the basilar membrane was found to be similar for air and bone

conducted sounds by von Békésy (1955), who showed that waves travel from the base

of the basilar membrane to the apex, regardless of the stimulation location of the bone

conducted stimulus on the cochlea. Furthermore, laser Doppler vibrometry experiments

conducted by Stenfelt et al. (2003) on the basilar membrane showed similar vibratory

responses. This ample experimental evidence proves that on the cochlear level, there is

no perceived difference between an air conducted sound and a bone conducted sound.

Therefore, the mechanisms by which vibrations reach the cochlea are of interest when

considering bone conducted sound.

2.1.2 Conventional Bone Conduction versus Direct Bone Conduction

The distinction between conventional bone conduction and direct bone conduction is that

conventional bone conduction stimulates the skull via the skin and subcutaneous soft

tissues, whereas direct bone conduction stimulates the skull directly. Conventional bone

conduction was used in early bone conduction hearing prostheses. However, since the mid

to late 1980s, direct bone conduction hearing prostheses, such as Cochlear Limited’s Baha®

and Oticon Medical’s Ponto™, have been the preferred clinical treatment for conductive

hearing loss, mixed hearing loss and single-sided deafness.

Håkansson et al. (1984) conducted hearing threshold experiments on subjects fitted with

direct bone conduction hearing prostheses and compared these thresholds with those of

conventional bone conduction hearing prostheses. Their study found hearing thresholds to

be considerably lower, approximately 10–20 dB for a frequency range of 600–6000 Hz,

when using direct bone conduction as opposed to conventional (Håkansson et al., 1984).

These findings were confirmed by a later study that found in order to produce an equivalent

hearing sensation, a lower stimulation velocity is required for vibrators that penetrate the

skin and are rigidly fix to the skull, than for those that are coupled to the skin (Håkansson

et al., 1986). These results demonstrated the many benefits of the, then new, Baha® hearing

prosthesis. Among these benefits are less distortions and lower power consumption, which

allows for all the electronics to be contained in a single, small housing (Håkansson et al.,

1984, 1986).
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Håkansson et al. (1986) compared the differences between mechanical point impedances

in vivo for both conventional and direct BC stimulation. They concluded that previous me-

chanical point impedances of the human head that had been measured using conventional

bone conduction were in fact a measurement of both the skin and subcutaneous soft tissues

that cover the skull (Håkansson et al., 1986). This skin impedance is not only dependent

on the properties of the skin and subcutaneous soft tissues but also of the coupling between

the skin and the impedance head (Håkansson et al., 1986).

2.1.3 Linearity

A cancellation study conducted by Khanna et al. (1976) that used a conventional bone

conduction stimulus found distortions in the form of a second harmonic at frequencies

below 2000 Hz. They proposed that this distortion was caused by either an imperfect

elastic coupling between the vibrator and the skin or by the asymmetric nature of the

cochlear response (Khanna et al., 1976). These findings are consistent with those of a later

study conducted by Arlinger et al. (1978) who also utilized conventional bone conduction.

They found the propagation of bone conducted sound to be of a non-linear nature and

attributed this finding to the non-linear behaviour of the bone tissue of the human skull

(Arlinger et al., 1978).

Håkansson et al. (1996) conducted in vivo experiments on a subject with bilateral abut-

ments implanted into the skull bone to test for non-linearities in sound transmission. No

indications of non-linear behaviour were reported. They suggested that differences between

their study, and the findings of Khanna et al. (1976) and Arlinger et al. (1978) were due to

the methodology used. Since conventional bone conduction was used as a stimulus in the

latter two studies, the result was an indirect measurement of the input signal onto the skull

bone (Håkansson et al., 1996). This is consistent with previous work discussed earlier

that suggests mechanical point impedance measurements taken using conventional bone

conduction is actually a measure of the skin impedance and not of the skull (Håkansson

et al., 1986). The skin between the device and the skull acts as a spring and ultimately

dominates the measured signal (Stenfelt & Goode, 2005b).
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2.1.4 Resonant Frequencies

It is generally accepted that the skull behaves as a rigid body at low frequencies (Håkansson

et al., 1986, 1994) with resonances occurring at higher frequencies, however the exact

frequency of the first resonance varies widely within the literature. Kirikae (1959) found

the first skull resonance to occur between 1700 and 1800 Hz for three dry human skulls, a

skull filled with water or jelly, and a cadaver head. The values reported from this study

are significantly higher than others reported in the literature and this invariability across

different experimental conditions is also not supported. For instance, Franke (1956) found

the first resonant frequency of a dry human skull and a cadaver head to be 820 Hz and

600 Hz, respectively. When the dry skull was filled with gelatin to better simulate the

damping effects of the brain and cerebrospinal fluid, the first resonance was reduced to

approximately 500 Hz. The first resonance reported by Stenfelt et al. (2000) for a dry

human skull equipped with viscous damping material to better simulate a real human

head was 1200 Hz. Khalil et al. (1979) obtained the resonant frequencies of two dry

human skulls, one male and one female, up to 5000 Hz. They reported a total of 11

resonant frequencies for the male skull with the first occurring at 1385 Hz and six resonant

frequencies for the female skull with the first occurring at 1641 Hz. Håkansson et al. (1986)

obtained an average first resonance of 1000 Hz with a standard deviation of 200 Hz from

the mechanical impedance measurements of seven patients with skin penetrating titanium

abutments embedded into the skull bone. A later study conducted by Håkansson et al.

(1994) on six patients with bilateral titanium abutments, found 14–19 resonant frequencies

within the frequency range 500–7500 Hz. The average first resonance was at 971 Hz with

a standard deviation of 119 Hz. The significant variation in reported values along with the

relatively large standard deviations found in the latter two studies suggest the resonant

frequencies of the human skull vary widely from subject to subject and may depend on a

number of factors including skull size, thickness, and mechanical properties (Håkansson

et al., 1986).

2.1.5 Lateralization

Sound lateralization occurs when the response of one cochlea is of greater magnitude or

ahead in phase of the other. This effect is independent of the location of the stimulation
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point, in other words, the response of the contralateral cochlea (opposite side of stimulus)

may be of greater magnitude than that of the ipsilateral (same side as stimulus) cochlea

as seen in the study conducted by Stenfelt et al. (2000). They observed similar levels

and phases for frequencies below the first free resonance of the skull (1200 Hz in this

study) for both the ipsilateral and contralateral cochleae responses, indicating rigid body

behaviour. However, at approximately 800 Hz they noted a large antiresonance in the

ipsilateral response, which was not observed in the contralateral response. This effect was

also psychoacoustically confirmed in this study, indicating a lateralization effect towards

the contralateral side at 800 Hz (Stenfelt et al., 2000). Similar findings to this work were

reported by Eeg-Olofsson et al. (2008) in cadaver heads where the same antiresonance was

observed in the ipsilateral response below the first resonance. This was the only resonance

or antiresonance that remained visible and was not smoothed out after the results were

averaged across all seven of the cadaver heads measured (Eeg-Olofsson et al., 2008).

2.1.6 Transcranial Attenuation

Stenfelt et al. (2000) found at frequencies above the first resonance, the level of the

contralateral response is lower with a pronounced time delay when compared with the

ipsilateral response indicating more complex, non-rigid body motion to be taking place.

Similarly, Stenfelt & Goode (2005b) found that the greatest difference in responses in

terms of level and phase between the two cochleae was observed when the excitation

site was nearest to the cochlea. The ipsilateral response level became greater with less

time delay as the stimulation site neared the cochlea (Stenfelt & Goode, 2005b). This

result is consistent with Eeg-Olofsson et al. (2008) findings that showed an increase in the

velocity of the cochlea for positions closer to the cochlea than the conventional location

of a Baha®, with the greatest response observed when excitation was in the proximity of

the otic capsule. Stenfelt & Goode (2005b) concluded that the lowest response level was

generated when the stimulation position was on the mid-sagittal plane of the skull.

Given their findings, Eeg-Olofsson et al. (2008) suggest that bone conduction transmission

is most efficient when the stimulation site is on the mastoid surface that attaches to the

petrous part of the temporal bone than if it was outside this area. Eeg-Olofsson et al.

(2008) also investigated the effects of the squamosal suture on sound transmission via bone
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conduction, however no conclusive findings on whether this suture is detrimental or not

were found.

2.1.7 Wave Propagation in Skull Bone

The dispersion relationship, which indicates how frequency changes with wave number,

can be used to determine the type of wave propagating through the skull bone. From the

dispersion relationship, two wave velocities can be calculated; the phase velocity, vp and

the group velocity, vg, which are given by:

vp =
f

k
(2.1a)

vg =
∂f

∂k
(2.1b)

where f is the frequency and k is the wave number. The phase velocity is the velocity at

which the phase of a single frequency component in the overall wave travels. The group

velocity is the velocity at which the envelope of the wave, or overall shape of the wave’s

magnitudes, travels. Non-dispersive behaviour is characterized by a linear dispersion

relationship, where the phase and group velocities are equivalent and constant over all

frequencies. For dispersive behaviour the dispersion relationship is non-linear, and the

phase and group velocities are frequency dependent.

There have been many investigations of wave propagation in the human skull albeit

with differing results and conclusions. Tonndorf (1966) initially proposed that waves

propagate through the cranial bone as bending or flexural waves in plates. This type of

wave is dispersive, and both the phase and group velocity must depend on the square-root

of frequency (see Section 2.2 for further details). Zwislocki (1953) investigated this

hypothesis up to 2600 Hz but found the phase velocity to be independent of frequency with

a constant value of 260 m/s. Franke (1956) also studied this theory and found evidence of

dispersion, however not the square root dependence indicative of flexural waves. Instead,

the group velocity was found to be approximately linear with respect to frequency between

500 and 1000 Hz. Below and above this region, up to 1600 Hz, the group velocity was

constant.

With no indication of flexural waves found in these studies, Tonndorf & Jahn (1981) revised
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the initial hypothesis to “plate” waves, which are characterized by a frequency-independent

phase velocity. Tonndorf & Jahn (1981) conducted a similar experiment to Zwislocki

(1953) with comparable results, finding a constant phase velocity of 330 m/s up to 4000

Hz.

A more recent study by Stenfelt & Goode (2005b) found the phase velocity to depend on

frequency in the cranial bone, however less dispersion was observed at frequencies about

2000 Hz. With excitation closer to the cochlea, where the waves were thought to transmit

primarily through the skull base, phase velocity was near constant above 2000 Hz (Stenfelt

& Goode, 2005b). It was suggested that wave propagation in the thicker bone of the base

of the skull is primarily in the form of longitudinal waves, while in the cranial bone more

complex waves may exist, including flexural waves.

The term ”plate” waves used by some in the literature refers to extensional waves in plates.

Extensional and flexural waves are the two types of Lamb waves that can exist in solid

plates. Further explanation of Lamb waves can be found in Section 2.2. The skull can only

be modeled as a plate at the high frequencies of human hearing, where the wavelength

is much smaller than the radius of curvature resulting in relatively uniform material and

geometric properties over one wavelength.

If, instead, a human skull can be modeled as a spherical shell, then perhaps this model can

be applicable over the entire hearing range. Von Békésy compared the modes of vibration

of the human skull to those of a spherical shell and found them to be similar (source:

Stenfelt & Goode (2005a)). At 200 Hz the skull behaves as a rigid body. At 800 Hz the

forehead and occiput vibrate with opposite phase with a nodal line between them. At

16000 Hz the skull is separated into four quadrants by nodal lines. The top and bottom

of the skull vibrate with opposite phases as do the two temporal bones. Kirikae (1959)

observed similar modes of vibration. Franke (1956) also considered a closed spherical

shell to be a suitable model for vibrations in a skull after comparing their mode shapes,

specifically the nodal lines.

It is evident that there are conflicting findings in the literature surrounding wave propagation

in the skull. Some researchers have found evidence of extensional plate waves, while

others have found spherical shell models better represent the wave behaviour in the
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skull. Understanding how waves propagate in the skull is fundamental in gaining a better

appreciation for the mechanisms of bone conducted sound. This proves to be an active

area of research that warrants further study.

2.2 Lamb Waves

Sir Horace Lamb was one of the first to study waves in an infinite uniform plate (Lamb,

1917). The following section will derive the Lamb frequency equations for a thin isotropic

plate of thickness 2h. The reader is referred to the work of Amirkulova (2011) for a

thorough derivation.

A coordinate system is defined with the x and z axes lying on the midsurface of the plate

and the y axis perpendicular to this plane. Figure 2.1 show this coordinate system with the

z axis pointing out of the page.

Figure 2.1: Plate of thickness 2h in plane strain. The z axis points out of the page.

Assuming plane strain, particle motion is limited to the x and y directions only, therefore

the displacement components u and v are

u = u(x, y, t) (2.2a)

v = v(x, y, t) (2.2b)
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where t is time. Neglecting body forces, the equations of motion are

∂σxx

∂x
+

∂σxy

∂y
= ρ

∂2u

∂t2
(2.3a)

∂σxy

∂x
+

∂σyy

∂y
= ρ

∂2v

∂t2
(2.3b)

where σij are the stress tensors and ρ is the density of the plate. Hooke’s law equations are

σxx = λl

(
∂u

∂x
+

∂v

∂y

)
+ 2μl

∂u

∂x
(2.4a)

σyy = λl

(
∂u

∂x
+

∂v

∂y

)
+ 2μl

∂v

∂y
(2.4b)

σxy = μl

(
∂u

∂y
+

∂v

∂x

)
(2.4c)

where μl and λl are the Lamé elastic coefficients that are related to the material properties

of the plate by:

μl = G =
E

2(1 + ν)
(2.5a)

λl =
2Gν

1− 2ν
(2.5b)

where E is the Young’s modulus, G is the shear modulus, and ν is the Poisson’s ratio.

Substituting (2.5) into (2.4) and then substituting into (2.3) gives

∂2u

∂x2
+

1

1− ν

∂2v

∂x∂y
+

1− 2ν

2(1− ν)

∂2u

∂y2
=

1

c21

∂2u

∂t2
(2.6a)

∂2v

∂y2
+

1

1− ν

∂2u

∂x∂y
+

1− 2ν

2(1− ν)

∂2v

∂x2
=

1

c22

∂2v

∂t2
(2.6b)

where c1 and c2 are the longitudinal and transverse wave velocities, respectively, and can

be written in terms of the Lamé elastic coefficients and density:

c21 =
λl + 2μl

ρ
(2.7a)

c22 =
μl

ρ
(2.7b)

(2.7c)
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and

κ2 =
c21
c22

=
λl + 2μl

μl

(2.7d)

Since particle motion is limited to the xy plane, the Helmholtz displacement decomposition

is simplifed to

u =
∂ϕ

∂x
+

∂ψz

∂y
(2.8a)

v =
∂ϕ

∂y
− ∂ψz

∂x
(2.8b)

where ϕ is a scalar potential function and ψz is a vector potential function, which satisfy

the 2D wave equations:

∂2ϕ

∂x2
+

∂2ϕ

∂y2
=

1

c21

∂2ϕ

∂t2
(2.9a)

∂2ψz

∂x2
+

∂2ψz

∂y2
=

1

c22

∂2ψz

∂t2
(2.9b)

Assuming traveling waves in the x direction and standing waves in the y gives the solutions

to (2.9) in the form

ϕ = Φ(y)ei(kx−ωt) (2.10a)

ψz = iΨ(y)ei(kx−ωt) (2.10b)

where ω is the angular frequency. Substituting (2.10) into (2.8) gives

u = i

(
kΦ +

dΨ

dy

)
ei(kx−ωt) (2.11a)

v =

(
dΦ

dy
− ikΨ

)
ei(kx−ωt) (2.11b)

and subsequent substitution into (2.9) gives the Helmholtz equations

d2Φ

dy2
+ α2Φ = 0 (2.12a)

d2Ψ

dy2
+ β2Ψ = 0 (2.12b)



16

where α and β are the longitudinal and transverse wave numbers, respectively, given by

α2 =
ω2

c21 − k2
(2.13a)

β2 =
ω2

c22 − k2
(2.13b)

The solutions to (2.12) are

Φ(y) = A sinαy +B cosαy (2.14a)

Ψ(y) = C sin βy +D cos βy (2.14b)

Substituting (2.14) into (2.10) and (2.11) gives the following potentials and displacement

equations:

ϕ = (A sinαy +B cosαy)ei(kx−ωt) (2.15a)

ψz = C sin βy +D cos βy)ei(kx−ωt) (2.15b)

u = i [k(A sinαy +B cosαy) + β(C sin βy −D cos βy)] ei(kx−ωt) (2.15c)

v = [α(A sinαy − B cosαy)− ik(C sin βy +D cos βy)] ei(kx−ωt) (2.15d)

Rewritting (2.4) in terms of the potentials ϕ and ψz, and substituting in (2.15) gives

following expressions for the stresses:

σxx = μl

[[
2α2 − κ2(k2 + α2)

]
(A sinαy +B cosαy) (2.16a)

−2kβ(C cos βy −D sin βy)] ei(kx−ωt)

σyy = μl

[[
2k2 − κ2(k2 + α2)

]
(A sinαy +B cosαy) (2.16b)

+ 2kβ(C cos βy −D sin βy)] ei(kx−ωt)

σxy = iμl

[
2αk(A cosαy − B sinαy)− 2(β2 − k2) (2.16c)

(C sin βy +D cos βy)] ei(kx−ωt)

The ei(kx−ωt) term is omitted for the remainder of this derivation as it does not affect the

frequency equation. Using symmetry in the yz plane, u and v are symmetric about y = 0

if they contain cosines and sines, respectively, and conversely, u and v are antisymmetric

about y = 0 if they contain sines and cosines, respectively. Thus, by inspection of (2.16) it
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is apparent that the wave motion can be separated into symmetric modes of vibration:

σxx = μl

[[
2α2 − κ2(k2 + α2)

]
B cosαy − 2kβC cos βy

]
(2.17a)

σyy = μl

[[
2k2 − κ2(k2 + α2)

]
B cosαy + 2kβC cos βy

]
(2.17b)

σxy = −iμl

[
2αkB sinαy + (β2 − k2)C sin βy

]
(2.17c)

and antisymmetric modes of vibration:

σxx = μl

[[
2α2 − κ2(k2 + α2)

]
A sinαy + 2kβD sin βy

]
(2.18a)

σyy = μl

[[
2k2 − κ2(k2 + α2)

]
A sinαy − 2kβD sin βy

]
(2.18b)

σxy = iμl

[
2αkA cosαy − 2(β2 − k2)D cos βy

]
(2.18c)

with respect to the y = 0 plane resulting in two infinite sets of modes. Assuming traction

free boundaries, the boundary conditions are

σyy = σxy = σzy = 0, at y = ±h (2.19)

Substituting (2.17b) and (2.17c) into (2.19) gives a homogeneous system of equations in

terms of the coefficients B and C:

(k2 − β2)B cosαh+ 2βkC cos βh = 0 (2.20a)

∓ [
2kαB sinαh+ (k2 − β2)C sin βh

]
= 0 (2.20b)

Taking the determinant of (2.20) gives the Lamb frequency equation for the symmetric

mode:
tan βh

tanαh
= − 4k2αβ

(k2 − β2)2
(2.21)

Similarly, substituting (2.18a) and (2.18c) into (2.19) gives a homogeneous system of

equations in temrs of the coefficients A and D:

± [
(k2 − β2)A sinαh− 2βkD sin βh

]
= 0 (2.22a)

2kαA cosαh− (k2 − β2)D cos βh = 0 (2.22b)

Taking the determinant of (2.22) gives the Lamb frequency equation for the antisymmetric
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mode:
tan βh

tanαh
= −(k2 − β2)2

4k2αβ
(2.23)

Solving (2.21) and (2.23) to obtain a relationship between frequency and wave number

over all frequencies is not possible analytically, however numerical solutions have been

obtained in the literature (Amirkulova, 2011) but are omitted here for brevity. Of interest

here are the two zero-order modes of vibration that occur at low frequencies where the

wavelength is much larger than the thickness of the plate. These fundamental modes are

the only modes that are present over the full frequency spectrum. Figure 2.2 illustrates

the symmetric and antisymmetric Lamb wave modes. The symmetric mode is called

the extensional mode as the majority of particle motion, indicated by blue arrows in

Figure 2.2a, occurs in the x-direction, i.e. direction of wave propagation. By contrast, the

antisymmetric mode is referred to as the bending or flexural mode since the particle motion,

indicated by blue arrows in Figure 2.2b, is predominately in the direction perpendicular to

the plane of the plate. For both types of Lamb waves, the individual particles travel in an

elliptical orbit.

In the large wavelength (or low frequency) limit where the zero-order modes exist the rela-

tionship between phase velocity and frequency can be obtained from the Lamb frequency

equations by taking kh, αh, and βh to be small and applying a Taylor series expansion to

(2.21). For the symmetric mode, this expansion is limited to the first order terms

tanαh = αh (2.24a)

tan βh = βh (2.24b)

and (2.21) becomes

(k2 − β2)2 = −4k2α2 (2.25)

Substituting (2.7d) and (2.13) into (2.25) and rearranging gives the phase velocity of the
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(a) Symmetric Mode

(b) Antisymmetric Mode

Figure 2.2: The two zero-order Lamb wave modes of vibration. Vibrations in the y
direction are (a) symmetric and (b) antisymmetric about the y = 0 plane. The blue arrows
represent the local particle motion.

symmetric zero-order mode vp,s:

v2p,s =
ω2

k2
= 4c22

(
1− 1

κ2

)

vp,s = 2

√
μl

ρ

(
λl + μl

λl + 2μl

)
(2.26)

For the antisymmetric mode (2.23) must be expanded to the second order terms in the

Taylor series in order to retain the α term in the solution. Therefore,

tanαh = αh

(
1− 1

3
α2h2

)
(2.27a)

tan βh = βh

(
1− 1

3
β2h2

)
(2.27b)
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and (2.23) becomes

4k2β2

(
1 +

β2h2

3

)
= −(k2 − β2)2

(
1 +

α2h2

3

)
(2.28)

Substituting (2.13) into (2.28) and simplifying gives

3k2h2

(
ω2

k2c22

)2

− 4k2h2

(
ω2

k2c22

)
= −k2h2

(
ω2

k2c21

)(
ω2

k2c22

)2

+ (2.29)

4k2h2

(
ω2

k2c21

)(
ω2

k2c22

)
− 4k2h2

(
ω2

k2c21

)
− 3

(
ω2

k2c22

)

It is reasonable to assume that the terms ω2/k2c21 and ω2/k2c22 are small (Lamb, 1917).

Thus, simplifying (2.2) and substituting in (2.7d) results in the phase velocity of the

antisymmetric zero-order mode vp,a:

v2p,a =
ω2

k2
=

4

3
k2h2

(
1− 1

κ2

)

vp,a = 2kh

√
1

3

μl

ρ

(
λl + μl

λl + 2μl

)
(2.30)

The symmetric mode is non-dispersive in the zero-order limit since (2.26) does not depend

on frequency. Conversely, the antisymmetric mode is dispersive in the zero-order limit

since (2.30) depends on the wave number and, subsequently, the frequency. Specifically,

the phase velocity is linearly dependent on the wave number or, equivalently, dependent

on the square root of frequency.

2.3 Spherical Shells

Many solutions to the vibration problem of spherical shells exist in the literature but

with minor variations that are primarily due to differences in the strain-displacement

relationships used (Junger & Feit, 1972). The comparison of the strain energy due to

stretching and bending of the shell is used to distinguish between the two infinite sets of

modes that exist in the frequency spectrum; membrane modes and bending or flexural

modes (Kalnins, 1964). The upper branch consisting of the membrane modes can be
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obtained by using either membrane or bending theories, however the lower branch of

bending modes cannot be accurately predicted by the membrane theory (Kalnins, 1964).

Membrane theory does not account for bending, which causes the lower branch solution to

approach a frequency limit thereby causing the intervals between natural frequencies to

approach zero (Baker, 1961).

The following section will consider the solution presented by Junger & Feit (1972) to

the free axisymmetric non-torsional vibrations of a closed, thin spherical shell with mean

radius r and thickness h. A linear formulation is assumed since the deformations are small

with respect to the thickness of the shell, and, in turn, the thickness of the shell is small

with respect to the radius of curvature of the shell. The Kirchhoff-Love theory assumption

reduces the formulation to deformations of the shell’s midsurface only. The solution

employs the Hamilton’s variational principle, which uses kinetic and strain energies to

obtain the spherical shell equations of motion. Bending stresses are taken into account in

the strain energy term. From the equations of motion the following frequency equation for

free axisymmetric vibrations of a spherical shell is obtained:

Ω4 − [1 + 3ν + λn − β2(1− ν − λ2
n − νλn)]Ω

2 + (λn − 2)(1− ν2)

+ β2[λ3
n − 4λ2

n + λn(5− ν2)− 2(1− ν2)] = 0 (2.31)

where ν is the Poisson’s ratio, β2 = h2

12r2
, and λn = n(n+1), where n is the mode number.

The dimensionless frequency Ω is given by:

Ω =
ωr

vp
(2.32)

where ω is the angular frequency and the phase velocity of compressional waves in an

elastic plate vp is given by:

vp =

√
E

ρ(1− ν2)
(2.33)

where E is the Young’s modulus and ρ is the volumetric density of the shell. This solution

is consistent with other formulations in the literature that employ bending theory in order

to accurately predict the bending modes (Kalnins, 1964; McIvor & Sonstegard, 1966;

Engin & Liu, 1970).
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Using the quadratic equation to solve for the roots of (2.31) in terms of Ω yields two

frequency equations; the membrane solution and the flexural solution. Figure 2.3 plots the

two branches using parameters consistent with human cranial bone listed in Table 2.1.

Figure 2.3: Spherical shell model with average skull parameters given in Table 2.1

Table 2.1: Average skull parameters used to generate Figure 2.3

Parameter Symbol Value Reference

Young’s modulus E 5.5 GPa (McElhaney et al., 1970)
Poisson’s ratio ν 0.2 (McElhaney et al., 1970)

density ρ 1400 kg/m3 (McElhaney et al., 1970)
thickness h 7 mm (McElhaney et al., 1970)

radius r 90 m
Back calculated from circumference

of young adult (Eichorn & Bayley, 1962)
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2.4 Measurement Techniques

A number of measurement techniques have been used to study the vibratory response of

human skulls and cadaver heads. Generally, these techniques can be separated into contact

and non-contact measurement devices.

2.4.1 Contact Measurement Devices

Contact measurement devices, such as accelerometers and impedance heads, have been

used extensively to measure various vibratory characteristics of human skulls and cadaver

heads (Håkansson et al., 1986, 1996; Stenfelt et al., 2000). Contact devices are rigidly

fixed to the measurement object and collect discrete point measurements. They are capable

of acquiring 3D data but are a physical mass that must be moved from site to site across

the head. This is additional mass to the system must be accounted for when interpreting

the results. Attaching contact devices may be problematic if the measurement object is

small or hot, or if the surface to be measured is difficult to access.

2.4.2 Non-Contact Measurement Devices

Non-contact measurements include holography and laser Doppler vibrometry. The major

benefit to these techniques over contact devices is there is no mass-loading of the system.

Holography acquires a time averaged hologram of the vibrating surface and has been

used by Hoyer & Dörheide (1983) to study the response of cadaver heads. Laser Doppler

vibrometers (LDVs) have become an increasingly popular vibration measurement device,

especially when the surface is small and difficult to reach. A number of researchers have

used laser Doppler vibrometry to study the vibratory response of the stapes (Huber et al.,

2008; Sim et al., 2010), cochlea (Eeg-Olofsson et al., 2008) and human skull (Trnka et al.,

2004). The following section will give an in depth overview of laser Doppler vibrometry.

2.4.3 Laser Doppler Vibrometry

Laser Doppler vibrometry is a non-contact measurement technique used to measure

the vibratory response of a surface. There are several different types of laser Doppler

vibrometers (LDVs), including single-point, scanning and 3D LDVs. Figure 2.4 shows a

schematic of the general principle behind a LDV.
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Figure 2.4: Schematic of a laser Doppler vibrometer (LDV) (Adapted from Polytec GmbH
(2012)

A helium neon laser beam, with a frequency f = 4.74×1014 Hz and a wavelength λ = 633

nm), is split by a beam splitter (BS1) into two separate beams, a measurement beam and a

reference beam. The measurement beam passes through a second beam splitter (BS2) and

is focused by a lens to a point on the surface of the measurement object. Movement of the

object parallel to the laser beam will cause a shift in the frequency of the incident beam.

This shift is called the Doppler frequency shift fd and is proportional to the velocity of the

object by:

fd ∝ 2vs
λ

(2.34)

where vs is the surface velocity and λ is the wavelength of the laser beam. The backscat-

tered light from the measurement object is then deflected by BS2 to a third beam splitter

(BS3), where it is combined with the reference beam. This merged beam is then directed

to the photodetector, where an interference pattern is generated. The LDV can obtain

the displacement data by counting the dark-bright fringes on the detector. One complete

dark-bright cycle corresponds to the measurement surface displacing exactly half the

wavelength of the incident helium neon laser beam (316 nm). By applying interpolation

techniques a displacement resolution of 2 nm can be obtained (Polytec GmbH, 2012).
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The LDV can also obtain velocity data from the interference pattern. The difference

in frequency between the reference and measurement beams appears as an intensity

modulation in the interference signal. By demodulating this signal, the Doppler frequency

shift and, subsequently, the velocity of the object can be determined.

The interference pattern for a surface moving towards the laser head will be the same as that

for a surface moving away from the laser head. In order to distinguish between these two

interference patterns, a heterodyne interferometer regime is employed by introducing an

acousto-optic modulator, or Bragg cell, that statically shifts the frequency of the reference

beam by fb = 40 MHz (Polytec GmbH, 2012). The initial frequency of the laser beam is

significantly higher than fb and cannot be measured by the photodetector. However, the

beat frequency fb + fd generated by combining the reference and measurement beams is

detectable. Thus, the modulation frequency of the fringe pattern is 40 MHz when the object

is stationary, less than 40 MHz when the object is moving towards the interferometer, and

greater than 40 MHz when the object is moving away, thereby allowing the direction of

vibration to be detected.

As discussed above, an LDV can either use displacement demodulation, where the dark-

bright fringes of the interference pattern are counted, or velocity demodulation, where

the Doppler shift is given as a voltage that is proportional to the velocity of the vibrating

surface (Polytec GmbH, 2012). At low frequencies, the amplitudes of vibration are larger,

and thus displacement demodulation is preferred. At high frequencies, the vibrations have

significantly smaller amplitudes but larger velocities, and thus velocity demodulation is

preferred.

The following subsections discuss two types of three-dimensoinal (3D) LDVs manufac-

tured by Polytec (Waldbronne, DE) that were used to conduct two different experiments

on dry human skulls. These experiments are discussed in detail in Chapter 3.

2.4.3.1 Single-Point 3D LDV

The single-point 3D LDV consists of three separate laser beams originating from one

laser head that is mounted on a tripod. The three laser beams, whose axes are oriented in

three non-collinear directions, are manually focused to a single point on the measurement

surface as shown in Figure 2.5.
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Figure 2.5: Polytec’s 3D single point laser Doppler vibrometer (LDV) mounted on a tripod.

The velocity is measured parallel to each of the three laser beam axes, giving the 3D

vibratory response of the measurement surface at a given point. Since the laser beams are

housed in one laser head, the focal length is relatively short, thereby giving a comparably

higher signal-to-noise ratio (SNR) to the system.

2.4.3.2 Scanning 3D LDV

The scanning 3D LDV consists of three laser heads each containing a single laser beam as

shown in Figure 2.6. The laser heads are mounted on a custom tripod and oriented in a

triangular formation with an 85 cm separation between adjacent laser heads. The tripod is

seated on an isolated vibration platform. The three laser beams converge to a single laser

spot on the measurement surface by the use of two galvanometric mirrors contained in

each laser head. These mirrors also allow the laser spot to be scanned through a virtual

grid of scan points that is defined over the video image of the measurement surface. The

velocity of the surface is measured parallel to each of the three laser beams resulting in the
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3D vibratory response at each scan point.

Figure 2.6: Polytec’s 3D scanning laser Doppler vibrometer (LDV). The three laser heads
are mounted on a custom tripod, which is seated on an isolated vibration platform.

The center laser head (referred to as the Top laser for the remainder of this document)

contains a geometry scan unit which measures the distance to each scan point. This is

used to determine the coordinates of all the scan points in the grid and effectively captures

the geometry of the measurement surface. Only one side of the measurement object can

be scanned at one time, however a coordinate system can be defined using the geometry

scan unit and, if applied to subsequent scans, allows multiple measurements views to be

stitched together in post-processing of the data.



CHAPTER 3

EXPERIMENTATION

Three experiments, Experiment 1, Experiment 2 and Experiment 3, were used to investigate

the vibratory response of dry human skulls. Experiment 1 and Experiment 2 tested the

same two dry human skulls shown in Figure 3.1 that were purchased from SawBone®

(Pacific Research Laboratories, Inc., Vashon, WA). Skull A and Skull B had masses of

440.27 g and 651.78 g, respectively. Skull A’s mandible was attached to the rest of the skull

by two linear springs. Skull B’s mandible was detached from the rest of the skull and was

not included in the experimental measurements. Experiment 3 only used Skull B. During

(a) Skull A (b) Skull B

Figure 3.1: The two dry human skulls used in Experiments 1 - 3.

all experiments the skulls were suspended using an elastic suspension system which was

rigidly mounted onto an isolated vibration table as shown in Figure 3.2. The resonance

28
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of the suspension system was less than 2 Hz, which was well below the frequency range

of interest in both experiments. This section outlines the skull preparation, experimental

setup and preliminary data processing for each experiment.

Figure 3.2: Skull A mounted in left-view orientation on the elastic suspension system. The
bone vibrator from a Baha® Divino™(gold and white box) is attached to the left temporal
bone via an implanted abutment. All four coordinate system markers are visible.

3.1 Experiment 1

Experiment 1 investigates the vibratory response of a skull over all frequencies within a

range by obtaining spectrally high resolution data.

3.1.1 Skull Prep

Four small screws with fitted hooks were drilled into each skull to be used as mounting

points for the elastic suspension system. The skulls were coated in one layer of retroreflec-

tive spray paint (US Reflector, Worcester, MA) to increase the reflectivity of the surface.
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A Baha® abutment was implanted in the left temporal bone of each skull via a 4 mm

self-tapping screw that once implanted was able to withstand a minimum of 40 N·cm of

torque. The recommended surgical location was used; 55 mm from the ear canal centre at

36◦ from the Frankfurt line (Tjellström et al., 2001), which connects the base of the eye

socket to the top of the ear canal. A bone vibrator taken from a Baha® Divino™hearing

aid was then attached to the implanted abutment.

3.1.2 Setup

In order to obtain data over all frequencies within a range a swept sine input was used,

which required a relatively high signal to noise ratio (SNR). For this reason, the single-

point 3D LDV was used to acquire the vibratory response of the skull due to it’s relatively

short focal length. Polytec Vibrometer Software (VibSoft 4.5) was used to interface with

the LDV as per the manufacturer’s recommendation. The Baha® was excited with a burst

chirp signal generated by the PSV software and amplified by an external audio amplifier.

The total frequency range, 0.1 - 20 kHz, was tested in three smaller ranges to ensure

appropriate settings were being used for each frequency level. Table 3.1 summarizes the

software acquisition settings used for each frequency range. The settings were chosen for

each frequency range such that the frequency response of the input signal was flat and the

coherence signal was as close to unity as possible. The frequency range of interest lies

within the start and end frequencies of the burst chirp signal to ensure the desired data was

acquired during the cleanest segment of the input signal. Therefore, in each of the three

ranges, the data was truncated at the start and end frequencies of interest before being

processed.

Table 3.1: Experiment 1: Acquisition settings

Frequency
Complex
Averages

Bandwidth FFT
Lines

Burst Chirp Signal
Range Amp. Start Freq. End Freq.
(kHz) (kHz) (V) (Hz) (Hz)

Low: 0.1–5 100 8 12,800 0.1 10 7,000
Mid: 5–10 100 12.5 12,800 0.2 4,000 12,000

High: 10–20 100 25 12,800 0.7 9,000 24,000
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Four separate channels were used to acquire data. The vibrometer channel, Vib 3D,

recorded the amplified input signal while the three reference channels, Ref1, Ref2 and

Ref3, recorded the three non-collinear velocity components, respectively. The generated

input signal was used as a trigger to ensure meaningful phase data was acquired and to

allow multiple measurements from one site to be averaged together. Table 3.2 gives the

software settings used for each acquisition channel. Note that the range of each channel is

dependent on the frequency range being measured.

Table 3.2: Experiment 1: Channel settings

Channel Direction Quantity
Sensitivity Range (V)
(mm/s/V) Low Mid High

Vib 3D +z Voltage 1 1 1 3.162
Ref1 +x Velocity 0.005 1 3.162 3.162
Ref2 +y Velocity 0.005 1 3.162 3.162
Ref3 +z Velocity 0.005 1 3.162 3.162

The surface velocity was measured at five discrete locations spaced out over the cranium

of a dry human skull prepared as per section 3.1.1. The LDV was manually focused to

each measurement point and aligned such that the laser head axis was perpendicular with

the skull surface. The complex average of 100 data acquisitions was performed in the time

domain by the PSV software for each of the five locations. The multiple experimentation

sites and complex averaging further increased the SNR of the system and produced data

which better represented the skull as a whole. In order to obtain the admittance data of

the system, the input force was required. The motion of the motor creates an equal and

opposite reaction force on the skull due to the conservation of momentum. Thus, the

force was calculated by measuring the acceleration of the Baha® casing parallel to the

abutment axis then multiplying this data by the effective mass of the Baha®. The range

for the software channel settings for the acceleration measurement were changed since

the motion of the motor casing was greater than the motion of the skull surface. The

ranges for the acceleration measurement are listed in Table 3.3 for each channel at each

frequency range, respectively. All other settings remained unchanged from the surface

velocity measurements.
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Table 3.3: Experiment 1: Channel range settings for acceleration measurement

Channel
Range (V)

Low Mid High

Vib 3D 1 1 3.162
Ref1 1 3.162 3.162
Ref2 1 3.162 3.162
Ref3 1 3.162 3.162

3.1.3 Preliminary Post-Processing

The measured vibratory response is recorded as a time signal, which is converted into the

frequency spectrum by the PSV software (Polytec GmbH, n.d.b). Since all frequencies

from 100–20000 Hz were excited in Experiment 1, the frequency response function could

be obtained. The frequency response function of a system is a measure of the magnitude

and phase of the output with respect to the input as a function of frequency. There are

three different frequency response functions calculated by the PSV software; FRF, H1 and

H2. Without averaging, FRF is calculated. With averaging, the user can chose between

H1 or H2, which are estimators of the system’s frequency response function FRFsys. H1 is

sensitive to noise in the reference channels while H2 is sensitive to noise in the vibrometer

channel. Since there is minimal noise in the input signal (recorded by the Vib 3D channel),

the H2 frequency response function was used. The PSV software calculates the H1 and H2

frequency response functions as per the following equations

H1V Ri
=

CPRV

APRRi

(3.1)

H2V Ri
=

APV V

CPV Ri

(3.2)

where AP is the auto power spectra and CP is the cross power spectra. The subscripts V ,

R1, R2 and R3 refer to the Vib 3D, Ref1, Ref2 and Ref3 channels, respectively. The auto

power spectra AP is given by
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APV V = S�
V SV (3.3)

where the � represents the complex conjugate and S is the spectrum calculated by taking

the fast Fourier transform (FFT) of the corresponding channel. The cross power spectra

CP is given by

CPV Ri
= S�

V SRi
(3.4)

The magnitude (dB) and phase (◦) of the H2V R1 , H2V R2 and H2V R3 frequency response

functions were exported from the PSV software to ASCII files and used in the MATLAB®

code in Appendix A to calculate the admittance for each skull. This code is discussed in

greater detail in Section 4.2.

3.2 Experiment 2

Experiment 2 examines the 3D spatial response over the entire surface of the skull at

discrete frequencies. Since only one side of the skull could be captured during a given

scan, six views of data were collected for each frequency measured. The measurement

views were labelled top, bottom, right, left, anterior and posterior, from the perspective of

the skull and are shown in Figure 3.3 for Skull B.

3.2.1 Skull Prep

The same skulls prepared as per the procedure in section 3.1.1 were used in Experiment 2

with one minor modification. Experiment 2 requires that a 3D global coordinate system be

applied to the skull in order to render the six separate views of data in 3D space. Therefore,

four spatial markers were attached to the skull using epoxy in such a way that all four

markers were visible in a single view and a minimum of three markers were visible in the

remaining five views.
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(a) Top View (b) Bottom View (c) Right View

(d) Left View (e) Anterior View (f) Posterior View

Figure 3.3: The six measurement views used in Experiment 2.

3.2.2 Setup

A scanning 3D LDV was used with PSV 8.6 software (Polytec GmbH, n.d.a) to acquire

the three-dimensional vibratory response of the skull. The preliminary setup of this

experiment is shown in the wiring diagram in Figure 3.4. The input signal was generated

in the software and used as a trigger for data acquisition. This signal was amplified by

an external audio amplifier then used to drive the Baha®. The signal was recorded by an

analog input reference channel, REF21.

The following are the steps used to set up the software and were conducted for all six

measurement views. The first view measured was of importance, however, as it was used

to define the coordinate system to be used in the remaining five measurement views. This

first view required all four spatial markers to be visible in the video image in the software.

The following explains the software setup procedure in detail.



35

Figure 3.4: Experiment 2: Wiring diagram

All three lasers were turned on before starting the PSV software. The software was then

set to ”Acquisition Mode” where the live image from the camera could be viewed. The

scanning head preferences in the Setup menu had to be updated to ensure the angle of each

laser head in the software correctly corresponded with the actual orientation of the laser

heads on the custom mounting block shown in Figure 2.6. The head angle of the top, left

and right laser heads were set to 0◦, 299.5◦ and 61.5◦, respectively. The camera and each

of the three lasers were autofocused, upon which each laser’s optical signal level meter

was reading close to maximum.

Next, a 2D alignment was performed on each laser, which aligns the video image with the

position of each laser on the surface to be measured. Each laser requires a minimum of

two points with different horizontal and vertical locations for a successful 2D alignment,

however the more points used, the more precise the software positions each laser. Therefore,

50–70 alignment points (dependent on size of measurement surface) spread out over the

entire skull surface in the given measurement view were found to be adequate. Each

alignment point was generated by positioning the laser with the mouse and clicking on the

laser spot in the video image. As more alignment points were defined the laser followed

the cursor in the software more precisely.
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Following the 2D alignment, a 3D coordinate system was defined for the given measure-

ment view via the 3D alignment in the software. Extreme care must be taken in the 3D

alignment to ensure the coordinate system is precise and consistent as possible. This will

greatly simplify stitching of the measurement views in post-processing of the data, which

will be described in detail in Section 3.2.3. The coordinate units were set to mm and the

target quality to 1 mm. Firstly, the top laser was aligned separately. This process was

different for the first measurement view since this is the step which defines the global

coordinate system to be used in the remaining five measurement views. The first view

measured required all four spatial markers to be visible in the video image and thereby

the top laser beam was able to reach the target on each marker. The ”Set New Alignment

Point at Laser Spot/Assign Laser Spot to Point” option was selected and the ”Auto” box

checked. The latter option assigned coordinates to each alignment point automatically via

the geometry scan unit located in the middle or top laser head. The ”Coordinate Definition

Mode” was set to ”Origin, Axis, Plane”. The top laser was moved to the target on the first

spatial marker using the mouse, then the cursor was positioned over the laser spot on the

video image, and the left mouse button was clicked to define an alignment point at this

location. The right mouse button was clicked on this alignment point and ”Origin” was

selected. The top laser was then moved to the next spatial marker target, an alignment

point defined and assigned ”+z-axis”. The same procedure was followed for the third

spatial marker and assigned ”z/+x-plane”. For the fourth spatial marker an alignment point

was defined but no designation assigned, simply an alignment point. The alignment was

calculated. Upon a successful 3D alignment of the top laser, the LED ”Status” turned green.

If the LED ”Status” turned red the alignment of the top laser exceeded the target quality. To

improve the alignment quality, new laser positions were assigned to the alignment points

that failed and the alignment was recalculated. The coordinates of these four alignment

points for the top laser were recorded and used to define the global coordinate system

in the remaining five measurement views. Again, diligence must be taken in this step to

ensure the coordinate system used is consistent over all measurement views. The top laser

alignment for these views was conducted as follows. The ”Auto” box was unchecked and

the ”Assign Coordinates to Point” option was selected. The ”Coordinate Definition Mode”

was set to ”Origin, Axis, Plane”. The top laser spot was dragged to the target on the first

spatial marker and an alignment point was defined at that location. The coordinate values
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for the corresponding spatial marker were then assigned to that alignment point. This was

repeated for at least two additional spatial markers. The alignment was then calculated. If

the alignment failed, new laser positions were defined for the alignment points that did not

meet the target quality and the alignment was recalculated.

The 3D alignment was completed by defining alignment points for the left and right laser

heads on the skull surface, using the top laser head to define coordinates to each point with

the ”Coordinate Definition Mode” set to ”Points with Free Coordinates”. This process

was the same for all six measurement views. For each alignment point the top laser was

dragged to the desired location, the cursor was positioned over the laser spot, and the left

mouse button was clicked to assign an alignment point to the location. The left laser was

then dragged to the same location and the left mouse button was clicked, this time on

the existing alignment point. The same procedure was repeated with the right laser head.

At least four alignment points, spread out over the measurement surface, were defined.

The alignment was then calculated. As with the top laser head alignment, if the LED

”Status” turned green for a given laser head, the alignment met the target quality for that

laser. However, if the LED ”Status” turned red, the alignment failed for that laser and the

following adjustments were made. Either new laser positions were assigned to existing

alignment points as was done with the top laser alignment, or alignment points were either

added or taken away ensuring at least four and no more than seven were present upon

recalculation. This was an iterative process and continued until all three laser heads met the

target quality. Table 3.4 and Table 3.5 show the top, left and right laser alignment qualities

attained for each of the six measurement views for Skull A and Skull B, respectively. All

alignment qualities met or exceeded the 1.0 mm target quality and an alignment quality of

less than 0.5 mm was achieved for all lasers in all six views for Skull B.

Following the 3D alignment, a grid of scan points was defined. The polygon drawing tool

in the ”Standard Mode” was used to trace the perimeter of the skull surface in the video

image. A hexagonal grid was fit onto the image to fill the measurement surface mapped

out by the polygon trace. The density of this grid of trias was set to 40, which produced

550–900 scan points over the surface depending on the measurement view. A geometry

scan was then performed using the geometry laser. The geometry laser measured the

distance from the laser head to each scan point and calculated the x-, y- and z-coordinates
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Table 3.4: Experiment 2: 3D alignment quality for Skull A (� measurement view used to
define global 3D coordinate system)

Measurement Alignment Quality (mm)
View Top Laser Left Laser Right Laser

Top (�) 0 0.7 0.4
Bottom 0.9 0.3 0.5
Right 0.8 0.5 0.7
Left 1.0 0.6 0.5

Anterior 0.9 0.6 0.6
Posterior 0.9 0.3 0.6

Table 3.5: Experiment 2: 3D alignment quality for Skull B (� measurement view used to
define global 3D coordinate system)

Measurement Alignment Quality (mm)
View Top Laser Left Laser Right Laser

Top 0.1 0.2 0.3
Bottom 0.3 0.3 0.4
Right 0.3 0.3 0.3
Left 0.3 0.2 0.3

Anterior (�) 0 0.1 0.4
Posterior 0.4 0.3 0.4

using this measurement and the current mirror angles. Scan points covering areas with

large curvatures or detailed features were inspected to ensure convergence of all three

lasers. If the three lasers did not converge to the given scan point that point was disabled

and not included in the data acquisition scan.

This experiment used a sinusoidal function as an input signal, which allowed the vibration

pattern over the entire surface of the skull to be visualized at discrete frequencies. A total

of 13 frequencies were measured within the frequency range of 100–20000 Hz. Similar to

Experiment 1 in Section 3.1, different acquisition settings were used for three different

ranges of frequencies. The frequency ranges and the corresponding acquisition and channel

settings are listed in Table 3.6 and Table 3.7, respectively, for both Skull A and Skull
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B. The number of FFT lines for Skull A were chosen such that the acquisition time for

each scan point remained the same. Due to minor hardware limitations, the maximum

number of FFT lines across all three frequency ranges was limited to an adequate value

of 51200 for the Skull B experiment. Using the first measurement view, the generator

and channel settings were determined for each frequency range such that a balance was

achieved between a high generator signal to increase SNR and low channel ranges to

increase signal resolution.

Table 3.6: Experiment 2: Acquisition settings

Skull
Frequency

Bandwidth
FFT Sample

Sensitivity
Generator

Range Lines Time Amplitude
(kHz) (kHz) (s) (mm/s/V) (V)

A
Low: 0.1–5 5 51,200 10.24 0.2 0.1
Mid: 5–10 10 102,400 10.24 1 0.2

High: 10–20 20 204,800 10.24 5 0.3

B
Low: 0.1–5 5 51,200 10.24 0.2 0.075
Mid: 5–10 10 51,200 5.12 1 0.15

High: 10–20 20 51,200 2.56 2 0.2

Table 3.7: Experiment 2: Channel settings

Skull Channel Quantity
Range (V)

Low Mid High

A
Vib 3D Velocity 10 10 10
Ref21 Voltage 10 10 10
Ref22 - - - -

B
Vib 3D Velocity 10 10 10
Ref21 Voltage 1 1 1
Ref22 Force 1 1 1
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Before beginning data acquisition in each of the subsequent measurement views, the signal-

to-noise ratio (SNR) was verified using the same acquisition settings for each frequency

range. The SNR for each measurement view and at each frequency range were found

to be within 20–60 dB. All 13 scans, one for each frequency measured, were ran in the

same measurement view before reorienting the skull and aligning the next view. The data

for each scan was saved in the proprietary binary format Scan Data (∗.svd file) resulting

in a total of 13 ∗.svd files for each measurement view. An additional 41 frequencies

were measured in the posterior measurement view using the same acquisition and channel

settings listed in Table 3.6 and Table 3.7, respectively. The 41 frequencies were evenly

spaced from 6–20 kHz (a 350 Hz spacing).

A custom Visual Basic® macro was developed that greatly reduced the time to run multiple

scans by eliminating the need for the user to manually step through each frequency. For

every frequency measured, the macro loaded a proprietary binary format Settings File

(∗.set file) into the PSV software, ran a complete scan of all active scan points in the grid,

and saved the data to an ∗.svd file. Included in these settings files were the 2D and 3D

alignment, the grid of scan points including the coordinate values associated with each

point, and the acquisition and channel settings. A second Visual Basic® macro was created

that automated the generation of the settings files in each frequency range. The settings

and scan macros are included in Appendix B

3.2.3 Preliminary Data Post-Processing

To view and manipulate the data the PSV 8.6 software was set to ”Presentation Mode”. For

each of the 13 frequencies measured, the 3D geometry and vibratory response contained

in the ∗.svd files of the six individual measurement views were stitched together in a

combined file. This was a straightforward process since the same, carefully predefined

coordinate system was applied to all the measurement views, and the same acquisition and

channel settings were used in each measurement view at a given frequency. Since many of

the scan points in the individual measurements shared the same indices, new values were

assigned to ensure all scan points in the combined file had unique indices. The combined

files were saved in the same format as the individual measurements, i.e. ∗.svd.

A frequency band corresponding to the measurement frequency was defined for each
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combined file. Since the skull was driven with a pure sine wave, the start and end frequen-

cies for the band definition were simply the measurement frequency of the combined file,

resulting in a bandwidth of 0 Hz. By applying a band definition, the magnitude and phase

data for each scan point was extracted from the FFT of the recorded time signal at the

measurement frequency. Since the driving signal was also used as a trigger signal, the

phase relationship between all scan points was well defined and thus is was possible to

animate the vibration pattern over the entire surface of the skull using this extracted data.

The software calculated the phase-dependent instantaneous magnitude at each scan point

from the following equation

A(φ) = Aosin(φ+ φo) (3.5)

where Ao is the peak amplitude and φo is the phase offset (Polytec GmbH, n.d.b; Osten,

2007). The animation for a complete period was created in the software by cycling the

phase φ from -180◦–180◦, calculating the instantaneous magnitude of vibration at 10◦

intervals.

3.3 Experiment 3

The third experiment compared the vibration of the outer surface of the skull to the inner

surface at high frequencies.

3.3.1 Skull Prep

Skull B prepared as per sections 3.1.1 and 3.2.1 was used for this experiment. Retroreflec-

tive tape was applied to the measurement surfaces to increase the optical signal level of the

vibrometer controller (Figure 3.3a and Figure 3.3b).

3.3.2 Setup

The inner and outer surfaces were measured at the same location on the skull. The inner

surface was measured through the foramen magnum (the opening in the occipital bone at
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the base of the skull allowing passage of the spinal cord, shown in Figure 3.3b), which

limited the measurement area to the top of the skull. This was adequate since the cranial

vault was the region of interest. The scanning 3D LDV used in Experiment 2 was used,

since the focal length of this laser was not fixed and could be focused to the inner surface

through the foramen magnum. The PSV 8.6 software laser was used to interface with the

LDV, and to acquire and interpret the data. The LDV was set to 1D mode, thereby only

using the top or central laser head. Since only the magnitude and phase of the surface

velocity perpendicular to the surface was required, this mode was adequate. The skull

was mounted on the elastic suspension system in Figure 3.2 in such a way that at the

measurement point the surface was as perpendicular to the laser beam as possible. The

measurement point on the outer surface was measured first. The inner measurement point

was located by using the mounting screw shown in Figure 3.3a as a reference point. The

skull was driven with a burst chirp signal from 10–20 kHz that was generated in the PSV

software and amplified by an external audio amplifier. The generated signal was used as a

trigger for data acquisition. Table 3.8 lists the software settings used for data acquisition.

Since only the high frequencies were of interest for this measurement only one frequency

range was required.

Table 3.8: Experiment 3: Settings

Settings Value Units

Frequency Range 10–20 kHz
Complex Averages 100 -

Bandwidth 25 kHz
FFT Lines 12800 -

Channels:

Vib Top Range 3.162 V
Ref 21 Range 3.162 V

Burst Chirp Signal:

Amplitude 0.2 V
Start Frequency 8 kHz
End Frequency 22 kHz
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3.3.3 Preliminary Post-Processing

The H2 frequency response functions for the inner and outer measurements were exported

from the PSV software to an ASCII file. An explanation of how the software calculates the

H2 frequency response is given in section 3.1.3. The coherence was also exported from

the PSV software to an ASCII file (Polytec GmbH, n.d.b). The software calculates the

coherence function COH using the H1 and H2 frequency response functions given by (3.1)

and (3.1), respectively, as per the following equation

COHV Ri
=

H1V R

H2V R

(3.6)

This provides a measure of the power of the output signal generated by the input signal. If

(3.6) is 1, then the output signal is generated entirely by the input signal. If (3.6) is 0, then

none of the output signal is generated by the input signal.



CHAPTER 4

RESULTS AND DISCUSSION

The following section presents the results of the experiments outlined in Chapter 3 and

gives a discussion of the findings. The 3D vibration patterns obtained using the 3D

scanning LDV are discussed first, followed by the findings on wave propagation in the

skull.

4.1 3D Vibration Patterns

The vibration pattern over the 3D surface of the skull was animated using the combined
∗.svd files generated as per Section 3.2.3. Figure 4.1 and Figure 4.2 show screenshots from

the animated 3D velocity field of surface vibrations of Skull A and Skull B, respectively,

for three representative frequencies of the thirteen measured. A wireframe of the unde-

formed skull is included in each figure for reference. The deformations of the triangular

surface meshes are proportional to the measured vibratory response of the skull in terms

of magnitude and direction at the individual scan points, though the magnitude of the

displayed deformations are greatly exaggerated for visualization purposes.

At 500 Hz there is little deformation and the skull moves nearly as one mass, displaying

quasi-rigid body motion. The term ”quasi” is used here as there are small localized

deformations at the excitation site. At 3000 Hz distinct deformations are observed with

major structures of the skull moving out of phase with one another. Only three or four

wavelengths are present over the entire surface of the skull, which implies that below 3000

44
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Hz the number of free resonances is on the same order. At 16000 Hz significantly more

deformations are present with many wavelengths covering the surface of the skull. A

distinct ”egg-carton” pattern is observed along the cranial vault of the skull, which implies

a uniform wavelength in this region. Figure 4.3 illustrates the wave pattern in 2D at 16000

Hz for the posterior view of the skull. Again, even spacing between peaks and troughs is

apparent with wavefronts propagating away from the excitation site (the Baha® is located

on the left side of the skull). A uniform wavelength implies relatively consistent material

and geometric properties within the posterior region of the skull.

(a) 500 Hz (b) 3000 Hz

(c) 16000 Hz

Figure 4.1: 3D velocity fields for Skull A at three representative frequencies. The unde-
formed skull is given by the wireframe mesh.
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(a) 500 Hz (b) 3000 Hz

(c) 16000 Hz

Figure 4.2: 3D velocity fields for Skull B at three representative frequencies. The unde-
formed skull is given by the wireframe mesh.
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(a) Skull A

(b) Skull B

Figure 4.3: 2D Velocity Field at 16000 Hz.

4.2 Wave Propagation in Skull Bone

The magnitude of the surface velocity at each experimental site in Experiment 1 was

calculated by taking the root sum square of the three non-collinear velocity components.

These surface velocity magnitudes were then averaged over the five experimental sites.

The admittance was calculated by normalizing the average surface velocity to the input

force. The force was obtained by multiplying the acceleration of the Baha® casing

with the effective mass of the Baha® motor. This method of measuring input force was

validated previously by Dr. Robert B. Adamson in the S.E.N.S.E. Laboratory at Dalhousie
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University using a TU1000 skull simulator (Håkansson & Carlsson, 1989). A Baha®

motor was attached to the simulator and driven with a swept sinusoidal function from

100–30000 Hz. The velocity of the Baha® casing was measured with an LDV and the

force F calculated from the following equation

F = 2πfvlmb (4.1)

where f is the frequency, vl is the linear velocity, and mb is the effective mass of the

Baha® motor. This calculated force was compared with the measured force from the skull

simulator. The effective mass mb was used as a fitting parameter and found to be 5.53 g.

Figure 4.4 shows the measured skull simulator force and the calculated LDV force with

a 5.53 g effective mass. The discrepancy at high frequency is expected since the skull

simulator is only reliable up to 10 kHz (Håkansson & Carlsson, 1989). Using this validated

effective mass and the LDV acceleration data, the input force for Skull A and Skull B were

calculated and are shown in Figure 4.5.

Figure 4.4: TU1000 skull simulator force data compared force calculated from LDV
velocity data. The effective mass mb was used as a fitting parameter and found to be 5.53
g.
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(a) Skull A

(b) Skull B

Figure 4.5: Input forces calculated using a 5.53 g effective mass.
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Figure 4.6 shows the admittance plots in log-log scale for (a) Skull A and (b) Skull B

(solid-lines). The MATLAB® code used to calculate the force and admittance are given in

Appendix A.

Below 1000 Hz, the admittance of each skull appears to follow a power law with an

exponent of negative one, which is indicative of a point-mass. The admittance of a

point-mass is derived by first considering the equation for force:

F = mvω (4.2)

= mv(2πf)

where m is the point-mass and ω is the angular velocity. Rearranging (4.2) gives

Admittance =
v

F
(4.3)

=
1

2πmf

Admittance (dB) = 20 log
1

2πmf
(4.4)

The point-mass behaviour observed in Figure 4.6 is confirmed by the dotted-line in each

plot, which is the point-mass admittance given by (4.4) with m equal to the measured mass

of the respective skull. The measured masses of Skull A and Skull B were 440.27 g and

651.78 g, respectively. This behaviour is also observed at low frequencies in Figure 4.1a

and Figure 4.2a. These findings confirm that at low frequencies the skull can be treated

as a quasi-rigid body, which is consistent with other studies in the literature (Håkansson

et al., 1986, 1994).

Above 1000 Hz, distinct resonant peaks are observed in the admittance data, which is

consistent with the vibratory patterns at 3000 Hz shown in Figure 4.1b and Figure 4.2b,

where large wavelength deformations are present. The averaging over the five experimental

sites accentuates these resonances while reducing the antiresonances. The average quality

(Q) factors associated with the resonant peaks were 17.8 and 14.0 for Skull A and Skull B,

respectively. The resonances were identified and enumerated for each data set to obtain a

coarse relationship between mode number and frequency.
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(a) Skull A

(b) Skull B

Figure 4.6: The admittance of (a) Skull A and (b) Skull B (solid-lines), and the admittance
of a point-mass of (a) 440 g and (b) 651 g (dotted-line), which are equivalent to the
measured masses of the respective skulls.



52

It should be noted that the distinct peak observed at approximately 380 Hz in Figure

4.6a was not included in the identification of resonant frequencies as it was attributed to

the resonance of the linear spring securing the mandible to the rest of Skull A. This is

confirmed in Figure 4.7, which shows the admittance for a burst chirp from 100 - 5000

Hz with the mandible attached (blue line) and without the mandible attached (green line).

When the mandible is removed the resonance at 380 Hz is no longer present.

Figure 4.7: The admittance for Skull A from 100 - 5000 Hz with the mandible attached
(blue line) and without the mandible attached (red line). The resonance observed with the
mandible attached at approximately 380 Hz is a result of the two linear springs securing
the mandible to the rest of the skull.

Figure 4.8 plots mode number versus resonant frequency. At high frequencies, above 6000

Hz, both resonance data agreed well with linear fits (solid-lines). The R2 values associated

with the linear fits to data from Skull A and Skull B were 0.995 and 0.99999, respectively.

These results indicate that at high frequencies, above 6000 Hz, frequency is linearly

dependent on mode number. Since the identified resonant frequencies were assigned

increasing numbers in the order which they appeared, the mode number is inversely

proportional to the wavelength. Consequently, the mode number is proportional to the

wave number and has the same functional dependence on frequency, in other words, the

dispersion relationship. A linear dispersion relationship, or non-dispersive behaviour,
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(a) Skull A

(b) Skull B

Figure 4.8: Increasing mode number plotted against the corresponding resonant frequencies.
The solid lines show the linear fits with R2 values of 0.995 and 0.99999 for Skull A and
Skull B, respectively.
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is indicative of the extensional zero-order Lamb wave mode that occurs in plates. The

skull can be treated as a plate only at the high frequencies of human hearing where the

wavelength is much smaller than the radius of curvature. Additionally, the zero-order

Lamb wave modes only exist when the dimensionless quantity ωh
c2

is much less than one.

For the upper frequency limit of human hearing (20000 Hz) and reasonable parameters of

a human skull (Table 2.1), the dimensionless quantity is 0.1, and thus it is reasonable to

assume that Lamb waves exist in the skull at high frequencies but within the zero-order

limit.

Experiment 1 gives a relatively coarse measure of the dispersion since resonant peaks

were manually identified and it is possible that degenerate modes were included. A higher

fidelity measure of the dispersion relationship was obtained from the additional data set

from Experiment 2 that measured a total of 41 frequencies between 6–20 kHz in the

posterior view (see section 3.2). The posterior view included the occipital bone and the

posterior regions of the left and right parietal bones. The following data manipulation was

conducted by Dr. Robert B. Adamson in the S.E.N.S.E. Laboratory at Dalhousie University.

Additional details of this analysis than those given here are provided in Appendix C.

The posterior region was chosen for this analysis since the wave patterns observed at high

frequencies showed a relatively consistent wavelength within this region (Figure 4.3). Thus

it is reasonable to assume that each vibration pattern was generated by the interference

of many waves, traveling in different directions around the skull but all having the same

wavelength. The wave number k, given by the magnitude of the wave vector k = |�k| = 2π
λ

,

would also be the same for each propagating wave. A numerical optimization routine

discussed in Appendix C was used to determine the wave number that best recreated the

velocity field at each frequency. The resulting dispersion relationship is shown in Figure

4.9 for each skull. A linear regression fit yields R2 values of 0.9999 and 0.9996 for Skull

A and Skull B, respectively, indicating non-dispersive behaviour. This result is indicative

of the extensional zero-order Lamb wave mode, where particle motion is symmetric about

the midplane of the plate.

A 3D vectorial representation of the velocity field at a representative frequency of 10550

Hz is shown in Figure 4.10. Distinct regions of normal displacement surrounded by regions

of tangential displacement are observed, with the tangential vectors pointing to regions
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(a) Skull A

(b) Skull B

Figure 4.9: The dispersion relationship from Experiment 2. The solid-lines show the linear
fits with R2 values of 0.9999 and 0.9996 for Skull A and Skull B, respectively.
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of outward normal displacement. When the normal component is at a maximum, the

tangential component is at a minimum, and vice versa. As illustrated by the particle

motion depicted in Figure 2.2, this behaviour is also indicative of Lamb waves, however

is characteristic of surface plate waves as well, where the particle motion also follows an

elliptical path.

Figure 4.10: The 3D velocity field at 10550 Hz in the posterior view of the skull. The
vectors indicate direction and relative magnitude of the surface velocity.

To rule out surface waves and confirm the presence of extensional zero-order Lamb waves,

the displacement of the outer and inner surface of the skull must be of similar magnitudes

and symmetrical about the midsurface of the skull as shown in Figure 2.2a. Figure 4.11

shows the absolute value of the phase difference between the inner and outer surfaces

of a point on the skull obtained in Experiment 3. The majority of points center around

180◦. The large deviations from 180◦ that occur mainly at the low end of the frequency

range correspond to troughs in the coherence (Figure 4.12), which in turn correspond to

resonances and antiresonances in the H2 frequency response function (Figure 4.13). These

common peaks and troughs are indicated by numbered boxes in each of the figures and

occur at (1) 11340 Hz, (2) 11540 Hz and (3) 12850 Hz.

Figure 4.11 indicates that the inside and outside surfaces of the skull are moving anti-

symmetrically to one another about the midplane of the skull. This suggests the flexural

zero-order Lamb wave mode, which cannot be the case since the wave number would have

to depend on the square-root of frequency. The results from Experiment 3 also rule out

surface waves in plates (i.e. Rayleigh or Love waves) since the motion of the inner and

outer surfaces are of comparable magnitudes (Figure 4.13).

Instead, a spherical shell model was considered to describe the wave propagation in the
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Figure 4.11: The absolute value of the phase difference between the inner and outer surface
of the skull.

Figure 4.12: Coherence for the inner (red line) and outer (blue line) surfaces. Troughs
correspond to deviations in the phase difference from 180◦

.
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Figure 4.13: The H2 frequency response function for the inner (red line) and outer (blue
line) surfaces. Resonances and antiresonances correspond to deviations in the phase
difference from 180◦.

skull. The data from Experiment 2 was compared with the solution to the vibration problem

of spherical shells presented in section 2.3. The dimensionless frequency Ω was converted

to real frequencies as per equation 2.32. The wave numbers from the experimental results

were converted to mode numbers by calculating the number of wavelengths that fit into

the circumference of the respective skull. The radius of the spherical surface fit to each

skull’s data was used to calculate the frequencies and circumference of the respective

skull. A constrained, non-linear least squares optimization scheme included in Appendix

D was used to determine the remaining geometric and material parameters that best fit the

model to the experimental data of Experiment 2. The Young’s modulus, Poisson’s ratio,

density and thickness were all varied within reasonable limits for a human cranial bone

(McElhaney et al., 1970). Figure 4.14 shows the flexural branch of the spherical shell

model fit to the data from Experiment 2. The fitted geometric and material parameters are

listed in Table 4.1. The spherical shell model gives a good approximation of the frequency

response of the skull between 6000 and 20000 Hz.
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(a) Skull A

(b) Skull B

Figure 4.14: Dispersion relationship from Experiment 2 fit to flexural branch spherical
shell model using a non-linear least squares optimization.
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Table 4.1: Geometric and material parameters used to fit Experiment 2 data to flexural
branch of spherical shell model.

(a) Skull A

Parameter Symbol Value

Young’s
E 5.5 GPa

modulus
Poisson’s

ν 0.31
ratio

density ρ 1506 kg/m3

thickness h 5 mm

(b) Skull B

Parameter Symbol Value

Young’s
E 5.5 GPa

modulus
Poisson’s

ν 0.33
ratio

density ρ 1600 kg/m3

thickness h 7.9 mm



CHAPTER 5

CONCLUSIONS

The vibratory response of dry human skulls was investigated through three experiments

using laser Doppler vibrometry to better understand the mechanisms of bone conduction.

Two wave theories were considered to model the behaviour observed in the experimental

results; Lamb plate waves and a spherical shell model.

First, the admittance of two skulls was obtained using a high spectral density experiment.

At low frequencies the admittance followed that of a point-mass, indicating rigid body

behaviour. Above 900 Hz, distinct resonances and antiresonances were observed. These

results were consistent across the two skulls and were confirmed by a second experiment

that measured the surface velocity of the same two skulls at 13 discrete frequencies. The

result was a 3D animation of the vibratory pattern over the entire surface of the skull at

each of the 13 frequencies.

An additional dataset that measured the velocity field at 41 frequencies in the posterior

region of the skull was used to determine the dispersion relationship for each skull.

The results indicated non-dispersive behaviour, which is consistent with extensional

Lamb waves in a plate. However, this result was not confirmed by Experiment 3, which

measured the vibratory response of the inner and outer surface at a single point on the

skull. The results showed instead that movement of the inner and outer surfaces was

antisymmetric about the midplane of the skull. If a Lamb plate wave theory is considered,

this result eliminates the presence of the extensional mode and instead suggests the

flexural mode. However, since the dispersion relationship was not dependent on the

61
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square-root of frequency, flexural Lamb plate waves also did not describe this behaviour.

Antisymmetric motion of the inner and outer surfaces of the skull with respect to the

midplane is consistent with a closed spherical shell model. Upon fitting the spherical shell

model to the experimental dispersion relationship, the flexural branch of the spherical shell

model proved to be a reasonable indicator of the frequency response of the human skull

within the range of human hearing.

Therefore, the Lamb plate wave theory cannot be used to describe wave propagation in the

posterior region of the skull at high frequencies. The implication of this finding is signifi-

cant given that the type of wave heavily influences the wave propagation characteristics. A

spherical shell model, on the other hand, showed better agreement with the experimental

results. Through the 3D vibratory responses and dispersion relationships obtained from

this work, further insight into the propagation of waves in the skull was achieved. A better

understanding of wave propagation and other mechanisms of bone conduction will aid in

improving existing bone anchored hearing prostheses and greatly benefit the advancement

of new bone conduction hearing devices.

A recommendation for generating 3D vibration patterns in the future is to measure more

than six views. Due to the complex topography of the skull, many of the outer most

grid points in a view were removed from the dataset since all three laser beams were

unable to converge to a single a point at these locations. This created small gaps between

the measurement views after stitching the velocity fields together. Acquiring data from

additional measurement views would recreate a smoother geometry of the skull, albeit at

greater experimental effort.

Another recommendation for future work is to obtain high spectral density datasets from

additional regions of the skull to determine if the dispersion relationship changes with

location. The motion of the inner surface with respect to the outer surface should also

be investigated at these locations to gain a more thorough understanding of the wave

propagation in these regions. Accessing the inner surface of the skull at these additional

locations will not be possible through the foramen magnum. A possible alternative would

be to drill a small hole on the opposite side of the skull to the region being investigated.
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APPENDIX A

FORCE AND ADMITTANCE

CALCULATION - MATLAB® CODE

The MATLAB® code that calculates the force and admittance of Skull A using data from

Experiment 1. A similar code is used to calculate the force and admittance of Skull B.

Force Calculation

1 %% CALCULATE FORCE

2 % Force data computed using F = m * a

3 % F = force applied to abutment

4 % m = mass of counter weight in Baha; fitting parameter ...

determined from

5 % LDV vs Simulator experiment (5.5 g)

6 % a = acceleration data of Baha in z-direction

7

8 clear; clc;

9

10 %read in LDV force data

11 fid = fopen('Force Calc - Accel\baha_low_ref3.txt', 'r');

12 ForceData1 = textscan(fid, '%f %f %*f', 'headerlines', 5);

13 fclose(fid);

14
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15 fid = fopen('Force Calc - Accel\baha_mid_ref3.txt', 'r');

16 ForceData2 = textscan(fid, '%f %f %*f', 'headerlines', 5);

17 fclose(fid);

18

19 fid = fopen('Force Calc - Accel\baha_high_ref3.txt', 'r');

20 ForceData3 = textscan(fid, '%f %f %*f', 'headerlines', 5);

21 fclose(fid);

22

23 fid = fopen('Force Calc - Accel\baha_low_vib.txt', 'r');

24 VibData1 = textscan(fid, '%*f %f %*f', 'headerlines', 5);

25 fclose(fid);

26

27 fid = fopen('Force Calc - Accel\baha_mid_vib.txt', 'r');

28 VibData2 = textscan(fid, '%*f %f %*f', 'headerlines', 5);

29 fclose(fid);

30

31 fid = fopen('Force Calc - Accel\baha_high_vib.txt', 'r');

32 VibData3 = textscan(fid, '%*f %f %*f', 'headerlines', 5);

33 fclose(fid);

34

35 %remove low frequencies (out of measured range)

36 i=1;

37 while ForceData1{1,1}(i,1) < 100

38 ForceData1{1,1}(i,:) = [];

39 ForceData1{1,2}(i,:) = [];

40 VibData1{1,1}(i,:) = [];

41 end

42

43 while ForceData2{1,1}(i,1) < 5500

44 ForceData2{1,1}(i,:) = [];

45 ForceData2{1,2}(i,:) = [];

46 VibData2{1,1}(i,:) = [];

47 end

48

49 while ForceData3{1,1}(i,1) < 10000

50 ForceData3{1,1}(i,:) = [];

51 ForceData3{1,2}(i,:) = [];

52 VibData3{1,1}(i,:) = [];

53 end
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54

55 %remove high frequencies (out of measured range)

56 i = size(ForceData1{1,1},1);

57 while ForceData1{1,1}(i,1) ≥ 5500

58 ForceData1{1,1}(i,:) = [];

59 ForceData1{1,2}(i,:) = [];

60 VibData1{1,1}(i,:) = [];

61 i=size(ForceData1{1,1},1);

62 end

63

64 j = size(ForceData2{1,1},1);

65 while ForceData2{1,1}(j,1) ≥ 10000

66 ForceData2{1,1}(j,:) = [];

67 ForceData2{1,2}(j,:) = [];

68 VibData2{1,1}(j,:) = [];

69 j=size(ForceData2{1,1},1);

70 end

71

72 k = size(ForceData3{1,1},1);

73 while ForceData3{1,1}(k,1) > 20000

74 ForceData3{1,1}(k,:) = [];

75 ForceData3{1,2}(k,:) = [];

76 VibData3{1,1}(k,:) = [];

77 k=size(ForceData3{1,1},1);

78 end

79

80 Freq = [ForceData1{1,1};ForceData2{1,1};ForceData3{1,1}];

81 Accel = [ForceData1{1,2};ForceData2{1,2};ForceData3{1,2}];

82 Vib = [VibData1{1,1};VibData2{1,1};VibData3{1,1}];

83

84 %calculate force

85 m = 5.5 * 10 ˆ (-3); %kg

86 TF_Accel = Accel - Vib; %0dB = m/sˆ2 / V

87 Accel_Linear = 10 .ˆ (TF_Accel ./ 20);

88 Force_Linear = m .* Accel_Linear;

89 %calculate force/voltage data for admittance calculation

90 Force = 20 .* log10(Force_Linear); %0dB = N / V

91

92 %plot force
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93 figure

94 loglog(Freq,Force_Linear)

95 xhandle = xlabel('Frequency (Hz)','FontSize',11, 'FontWeight', 'bold');

96 yhandle = ylabel('Force/Voltage (N/V)','FontSize',11, 'FontWeight', ...

'bold');

97 set(xhandle,'FontName', 'Calibri')

98 set(yhandle,'FontName', 'Calibri')

99 v = axis;

100 axis([100 20000 v(3) v(4)])

101

102 %write force/voltage data to file

103 fid = fopen('input_force_data.txt', 'wt');

104 headerlines1 = ['Force/Voltage Baha Input Data'];

105 headerlines2 = ['100 - 20000 Hz'];

106 headerlines3 = ['0dB = 1 N/V'];

107 headerlines4 = ['Frequency (Hz) Force/Voltage (dB)'];

108 Data = [Freq, Force];

109 fprintf(fid,'%s \n%s \n%s \n%s \n', headerlines1, headerlines2, ...

headerlines3, headerlines4);

110 fprintf(fid,'%f \t %f\n', Data');

111 fclose(fid);

Admittance Calculation

1 %% FINAL PROCESSED DATA

2 % Inverse --> Root sum square --> Average

3 % X, Y, Z data

4 % 5 sites

5 % Full frequency range (100 - 20000 Hz)

6 % Force data calculated in "Final_Force.m" file

7 % Use 'input_force_data.txt'

8

9 clear; clc;

10

11 %read in files

12 %site data

13 freq_range = cellstr({'low';'mid';'high'});

14 for i = 1 : 5 %5 sites
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15 for j = 1 : 3 %x,y,z

16 for k = 1 : 3 %frequency range

17 fid = fopen(sprintf('Site ...

%d\\site%d_%s_ref%d_H2.txt',i,i,freq_range{k},j));

18 eval(['Data = textscan(fid, ''%f %f'', ''headerlines'', 5);']);

19 eval(['Site' num2str(i) '{j,k}(:,1) = Data{1,1};']); ...

%frequency

20 eval(['Site' num2str(i) '{j,k}(:,2) = Data{1,2};']); ...

%velocity

21 Data = 0;

22 end

23 end

24 end

25 Freq_Low(:,1) = Site1{1,1}(:,1);

26 Freq_Mid(:,1) = Site1{1,2}(:,1);

27 Freq_High(:,1) = Site1{1,3}(:,1);

28

29 %force data

30 fid = fopen('input_force_data.txt', 'r');

31 ForceData = textscan(fid, '%f %f', 'headerlines', 4);

32 fclose(fid);

33 Force(:,1) = ForceData{1,2};

34

35 %remove low frequency noise

36 i=1;

37 while Freq_Low(i,1) < 100

38 Freq_Low(i,:) = [];

39 for j = 1 : 5 %5 sites

40 for k = 1 : 3 %x,y,z

41 eval(['Site' num2str(j) '{k,1}(i,:) = [];']);

42 end

43 end

44 end

45

46 while Freq_Mid(i,1) < 5500

47 Freq_Mid(i,:) = [];

48 for j = 1 : 5

49 for k = 1 : 3

50 eval(['Site' num2str(j) '{k,2}(i,:) = [];']);
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51 end

52 end

53 end

54

55 while Freq_High(i,1) < 10000

56 Freq_High(i,:) = [];

57 for j = 1 : 5

58 for k = 1 : 3

59 eval(['Site' num2str(j) '{k,3}(i,:) = [];']);

60 end

61 end

62 end

63

64 %remove high frequencies (out of measured range)

65 i=size(Freq_Low,1);

66 while Freq_Low(i,1) ≥ 5500

67 Freq_Low(i,:) = [];

68 for j = 1 : 5

69 for k = 1 : 3

70 eval(['Site' num2str(j) '{k,1}(i,:) = [];']);

71 end

72 end

73 i=size(Freq_Low,1);

74 end

75

76 i=size(Freq_Mid,1);

77 while Freq_Mid(i,1) ≥ 10000

78 Freq_Mid(i,:) = [];

79 for j = 1 : 5

80 for k = 1 : 3

81 eval(['Site' num2str(j) '{k,2}(i,:) = [];']);

82 end

83 end

84 i=size(Freq_Mid,1);

85 end

86

87 i=size(Freq_High,1);

88 while Freq_High(i,1) > 20000

89 Freq_High(i,:) = [];
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90 for j = 1 : 5

91 for k = 1 : 3

92 eval(['Site' num2str(j) '{k,3}(i,:) = [];']);

93 end

94 end

95 i=size(Freq_High,1);

96 end

97

98 Freq = [Freq_Low;Freq_Mid;Freq_High];

99 for i = 1 : 5 %sites

100 for j = 1 : 3 %x,y,z

101 eval(['Site' num2str(i) '{j,1} = [Site' num2str(i) ...

'{j,1}(:,2);Site' num2str(i) '{j,2}(:,2);Site' ...

num2str(i) '{j,3}(:,2)];']);

102 eval(['Site' num2str(i) '{j,2} = [];']);

103 eval(['Site' num2str(i) '{j,3} = [];']);

104 end

105 end

106

107 %inverse, RSS, average

108 Average_Linear = zeros(size(Freq,1),1);

109 Average = zeros(size(Freq,1),1);

110 for i = 1 : 5

111 eval(['Site' num2str(i) '_RSS = zeros(size(Freq,1),1);']);

112 end

113

114 for i = 1 : size(Freq,1)

115 for j = 1 : 5 %sites

116 for k = 1 : 3 %x,y,z

117 eval(['Linear = 10 ˆ (-Site' num2str(j) '{k,1}(i) / ...

20);']); %convert x,y,z to linear

118 eval(['Site' num2str(j) '_RSS(i) = Site' num2str(j) ...

'_RSS(i) + Linear ˆ 2;']); %sum the squares of the ...

linear terms

119 Linear = [];

120 end

121 eval(['Average_Linear(i) = Average_Linear(i) + sqrt(Site' ...

num2str(j) '_RSS(i));']); %root the sum of the squares ...

and add all sites together
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122 end

123 Average(i) = 20 * log10((Average_Linear(i))/5) - Force(i); ...

%complete average of sites by dividing by 5 --> convert ...

back to dB --> divide by force

124 end

125

126 while Freq_Low(size(Freq_Low,1),1) > 1000

127 Freq_Low(size(Freq_Low,1),:) = [];

128 end

129

130 % To save data to text file

131 % fid = fopen('skull1_admittance.txt', 'wt');

132 % headerlines1 = ['Skull 1 Admittance'];

133 % headerlines2 = ['100 - 20000 Hz'];

134 % headerlines3 = ['0dB = m/s / N'];

135 % headerlines4 = ['Frequency (Hz) Admittance (dB)'];

136 % Data = [Freq, Average];

137 % fprintf(fid,'%s \n%s \n%s \n%s \n', headerlines1, headerlines2, ...

headerlines3, headerlines4);

138 % fprintf(fid,'%f \t \t %f\n', Data');

139 % fclose(fid);

140

141 %plot FFT and indicate peaks

142 figure

143 loglog(Freq,Average,Freq_Low, 20 .* log10(1 ./ Freq_Low) + 20 * ...

log10(1/(2 * pi() * 0.440)), 'r-.')

144 xhandle = xlabel('Frequency (Hz)','FontSize',11, 'FontWeight', 'bold');

145 yhandle = ylabel('Admittance (dB rel m/s / N)','FontSize',11, ...

'FontWeight', 'bold');

146 lhandle = legend('Experiment #1 - Skull A','440g Point Mass');

147 set(xhandle,'FontName', 'Calibri')

148 set(yhandle,'FontName', 'Calibri')

149 set(lhandle,'FontSize',11,'FontName', 'Calibri')

150 %title({['Magnitude Averaged over All 5 Experimental Sites on a Dry ...

Human Skull']})

151 v = axis;

152 axis([100 20000 v(3) -10ˆ1.5])



APPENDIX B

VISUAL BASIC
® MACROS

Visual Basic® Macros were developed to automate processes in the PSV software.

Settings Macro

This macro loads an ”original” settings file, changes the frequency and saves as a new

settings files. The ”original” settings file is generated manually in the PSV software prior

to running this macro and contains the channel and acquisition settings for the desired

frequency range. For this reason the channel and acquisition settings must be the same

for all files generated as the macro will only change the frequency. The macro given here

saves the first 11 settings files for the 41 frequency dataset obtained in Experiment 2. The

remaining 30 settings files were generated by saving a new ”original” settings file in the

PSV software with the appropriate channel and acquisition settings for the high frequency

range.

1 '#Uses "SwitchToAcquisitionMode.bas" '

2

3 Option Explicit

4

5 ' Original Settings File '

6 Const C_Settings = "Settings.set"

7

74
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8 ' Path of Settings File '

9 Const C_Path = "G:\Carmen\Skull 2\Settings\"

10

11

12 Sub Main

13 ' ------------------------------------------------------------------'

14 ' Main procedure. '

15 ' ------------------------------------------------------------------'

16 If Not SwitchToAcquisitionMode() Then

17 MsgBox "Switch to acquisition mode failed."

18 End

19 End If

20

21 Dim i As Integer

22 Dim sFile As String

23 Dim sNewFile As String

24 Dim Doc As Settings

25 sFile = C_Path + C_Settings

26

27 For i% = 0 To 11

28 Settings.Load(sFile, ptcSettingsAcquisition)

29 Dim Sine As New WaveformSine

30 Sine.Frequency=6000+(i)*350

31

32 Application.Acquisition.Mode =ptcAcqModeFft

33

34 Dim gen As GeneratorAcqProperties

35 Set gen = Application.Acquisition.ActiveProperties ...

36 .Item(ptcAcqPropertiesTypeGenerators)(1)

37 gen.Waveform=Sine

38

39 sNewFile="Settings" + CStr(i+6) +".set"

40 Settings.Save(sNewFile)

41 Next i%

42

43 MsgBox("Macro has finished.", vbOkOnly)

44 End Sub
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1 Attribute VB_Name = "SwitchToAcquisitionMode"

2 ' POLYTEC CODE MODULE '

3 ' ------------------------------------------------------------------'

4 ' PSV: This code module switches the application to the '

5 ' acquisition mode. '

6 ' This code module cannot be executed directly, it is used by other '

7 ' macros. '

8 ' ------------------------------------------------------------------'

9 ' '

10 ' Return values: '

11 ' True: Application is in acquisition mode after execution '

12 ' False: Application is in presentation mode after execution '

13 ' '

14 Public Function SwitchToAcquisitionMode() As Boolean

15

16 If Application.Mode = ptcApplicationModeNormal Then

17 ' VibSoft is running, there is only one ApplicationMode '

18 SwitchToAcquisitionMode = True

19 Else

20 ' PSV is running '

21 If Application.Mode = ptcApplicationModePresentation Then

22 ' Switch to Acquisition Mode '

23 Application.Mode = ptcApplicationModeAcquisition

24 End If

25

26 ' Check if Application is switched to Acquisition Mode '

27 If Application.Mode = ptcApplicationModePresentation Then

28 Beep

29 MsgBox "Cannot switch to Acquisition Mode"

30 SwitchToAcquisitionMode = False

31 Else

32 SwitchToAcquisitionMode = True

33 End If

34 End If

35

36 End Function
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Scan Macro

This macro loads settings files, either generated manually or using the settings macro, runs

a full scan and saves the data in an ∗.svd file for each settings file. The macro given here

acquires data for all frequencies in the 41 frequency dataset obtained in Experiment 2.

1 '#Uses "SwitchToAcquisitionMode.bas" '

2

3 Option Explicit

4

5 ' Path with settings files '

6 Const C_Path = "G:\Carmen\Skull 2\Settings\"

7

8 ' Directory for saving the scans '

9 Const C_Directory = "G:\Carmen\Skull 2\BackView\ScanFiles\"

10

11 Sub Main

12 ' ------------------------------------------------------------------'

13 ' Main procedure. '

14 ' ------------------------------------------------------------------'

15 ' Switch to Acquisition Mode '

16 If Not SwitchToAcquisitionMode() Then

17 MsgBox "Switch to acquisition mode failed."

18 End

19 End If

20

21 Dim i As Integer

22 Dim freq As Double ' Frequency

23 Dim sFile As String ' Settings file

24 Dim sNewFile As String ' SVD file

25

26 For i% = 1 To 41

27

28 ' Load AD-settings and point definitions and camera '

29 ' settings (note: use 'Or' to combine flags) '

30 On Error GoTo SettingsNotAvailable

31 sFile = C_Path + "Settings" + CStr(i) +".set"

32 Settings.Load sFile, ptcSettingsAcquisition Or ...
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33 ptcSettingsAPS Or ptcSettingsCamera Or ptcSettingsWindows

34

35 On Error GoTo 0 ' Stop macro on Error

36

37 Dim gen As GeneratorAcqProperties

38

39 ' this sets the acquisition type to SINE '

40 Set gen = Application.Acquisition.ActiveProperties ...

41 .Item(ptcAcqPropertiesTypeGenerators)(1)

42

43 ' Get frequency from settings file '

44 Dim wave As WaveformSine

45

46 Set wave = gen.Waveform

47

48 freq = wave.Frequency

49

50 ' Start scan '

51 sNewFile=C_Directory + "SkullB.Posterior." + CStr(freq) ...

52 + "Hz" + ".svd"

53 Acquisition.ScanFileName = sNewFile

54 Acquisition.Scan ptcScanAll

55

56 ' Wait until scan finished '

57 While Acquisition.State <> ptcAcqStateStopped

58 Wait 1

59 Wend

60

61 GoTo NoError

62

63 SettingsNotAvailable:

64 If Err.Number <> 0 Then

65 MsgBox "Settings " + "Settings" + CStr(i) +".set" + ...

66 " not found."

67 End If

68

69 NoError:

70 Next i%

71
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72 MsgBox("Macro has finished.", vbOkOnly)

73 End Sub

1 Attribute VB_Name = "SwitchToAcquisitionMode"

2 ' POLYTEC CODE MODULE '

3 ' ------------------------------------------------------------------'

4 ' PSV: This code module switches the application to the '

5 ' acquisition mode. '

6 ' This code module cannot be executed directly, it is used by other '

7 ' macros. '

8 ' ------------------------------------------------------------------'

9 ' '

10 ' Return values: '

11 ' True: Application is in acquisition mode after execution '

12 ' False: Application is in presentation mode after execution '

13 ' '

14 Public Function SwitchToAcquisitionMode() As Boolean

15

16 If Application.Mode = ptcApplicationModeNormal Then

17 ' VibSoft is running, there is only one ApplicationMode '

18 SwitchToAcquisitionMode = True

19 Else

20 ' PSV is running '

21 If Application.Mode = ptcApplicationModePresentation Then

22 ' Switch to Acquisition Mode '

23 Application.Mode = ptcApplicationModeAcquisition

24 End If

25

26 ' Check if Application is switched to Acquisition Mode '

27 If Application.Mode = ptcApplicationModePresentation Then

28 Beep

29 MsgBox "Cannot switch to Acquisition Mode"

30 SwitchToAcquisitionMode = False

31 Else

32 SwitchToAcquisitionMode = True

33 End If

34 End If

35
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36 End Function



APPENDIX C

EXPERIMENT 2 DATA ANALYSIS

The following is a detailed description of the data analysis performed by Dr. Robert B.

Adamson in the S.E.N.S.E. Laboratory at Dalhousie University on the 41 frequency dataset

acquired from Experiment 2.

In the posterior view encompassing the left parietal and occipital bones, the skull thickness

and curvature were relatively uniform, and so it was felt that the wave number at a given

frequency was most likely to be spatially uniform as compared to the other views. If the

wave number was indeed spatially uniform over the measured region, then the dependence

of wave number on frequency could be determined by extracting the wave number from

the measured velocity field. The velocity fields at 41 different frequencies ranging from

6000 Hz to 20000 Hz at 350 Hz spacings were measured in this view. A 3D vectorial

representation of the velocity field can be seen in Figure C.1 for a representative frequency,

10550 Hz. The velocity field is typified by regions where the velocity is normal to the

surface surrounded by regions where the velocity vector is tangential to the surface and

pointing towards the region of outward normal deflection. While characteristic of plate

waves generally, such behaviour is common to flexural and extensional waves as well as

to surface or Rayleigh waves, and so does not help to distinguish between them. It is

therefore not possible to distinguish the different types of waves using this observation

alone.

Figure C.2 shows the normal and tangential components of the velocity for an arc along the

skull surface at a frequency of 10550 Hz. The tangential component of the velocity is taken
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Figure C.1: Plot showing the 3D velocity field on the surface of the anterior portion of the
skull. Arrows show the direction of surface motion and arrow length indicates the velocity
magnitude

Figure C.2: Plot showing the normal and tangential components of the velocity vector
along an arc on the surface roughly parallel to the wave vector with excitation at 10550 Hz.
The tangential component of the velocity is the projection of the velocity vector along the
arc and the normal component is the projection normal to the surface. The inset shows the
arc on a 2D contour plot of normal velocity.
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parallel to the arc, which, for this frequency, was a good approximation to the wave vector

direction. While there are some additional components to the tangential velocity, it is

clear that both the normal and tangential components exhibit roughly sinusoidal oscillation

with angle and that the normal and tangential components are 90◦ out of phase with each

other. Again, these are generic features of plate and surface waves and so do not help

to distinguish them, but they do provide clear evidence for wavelike distortions at these

frequencies.

In order to determine the dispersion relationship, the 3D grid points were projected onto a

spherical surface obtained from a least-squares fit so that grid points could be identified by

elevation and azimuthal angles. The RMS deviation from sphericity for grid points was

11% of the radius, so the spherical approximation was reasonable. The velocity vector was

then projected onto the surface normal of the sphere at each point and the normal velocity

plotted for each frequency. The measured data were linearly interpolated onto a finer

grid created with the Delauney triangulation algorithm (using matplotlib’s griddata

function) and contours of the interpolated data were generated to aid visualization. The

measured grid points are depicted by black circles in the plots. The tangential projection

of the velocity at each grid point is depicted as a vector field overlaid on the plot. Figure

C.3 shows the normal velocity over the surface at four representative frequencies, 6700

Hz, 10550 Hz, 15100 Hz and 19300 Hz.

Visual inspection of the velocity fields shows that at each frequency there is a characteristic

length scale to variations in the patterns, indicating a wavelength that is reasonably constant

over the measured surface. Furthermore, this length scale becomes noticeably shorter as

the excitation frequency is increased. To obtain a quantitative estimate of this wavelength,

the normal velocity field at each frequency was assumed to be a weighted sum of sine

waves propagating from different directions but all having the same wave number (i.e. the

same magnitude of the wave vector k = |�k| = 2π
λ

where the units for k are inverse radians

since the grid point coordinates are angles). The normal velocity amplitude V at each
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Figure C.3: Contour plots showing the normal component of the surface velocity as a
function of angle for the projection of the skull surface onto a sphere at four representative
frequencies (a) 6700 Hz, (b) 10550 Hz, (c) 15100 Hz and (d) 19300 Hz. The arrows on
the surface show the direction and relative magnitude of the tangential component of the
velocity.

frequency was expressed as

V (θ, φ) =
N∑

n=1

[
An cos

(
k(ω)

[
θ cos

2πn

N
+ φ sin

2πn

N

])
+ (C.1)

Bn sin

(
k(ω)

[
θ cos

2πn

N
+ φ sin

2πn

N

])]
(C.2)

where An and Bn are weighting constants, θ and φ are the two angular directions, N is the

number of different directions being considered, and k(ω) = 2π
λ(ω)

is the wave number of a

wave of wavelength λ(ω) at frequency ω.

For a given wave number the constants Ai and Bi can be obtained from the normal velocity
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field by making use of orthonormality of the sine and cosine functions,

An =

∫∫
Ω

V (θ, φ) cos

[
k

(
θ cos

2πn

N
+ φ sin

2πn

N

)]
dΩ (C.3)

Bn =

∫∫
Ω

V (θ, φ) sin

[
k

(
θ cos

2πn

N
+ φ sin

2πn

N

)]
dΩ (C.4)

A numerical optimization routine was used to select the value of k that provided the best

estimate of the velocity field for each frequency. The optimization made use of the numpy

implementation of Brent’s method for root-finding on a bounded interval (Brent, 1973).



APPENDIX D

CONSTRAINED, NON-LINEAR LEAST

SQUARES OPTIMIZATION SCHEME

The MATLAB® code used to perform a constrained, non-linear least squares optimization

to determine the geometric and material parameters that best fit a spherical shell model

to the dispersion relationship in the skull. The parameters were varied within reasonable

limits for human skull bone.

1 clc; clear;

2 % Skull 1

3 % starting guesses

4 E0 = 7 * 10 ˆ 9;

5 ro0 = 1820;

6 nu0 = 0.3;

7 h0 = 0.0065;

8

9 x0 = [E0 ro0 nu0 h0];

10

11 % optimmization

12 options = optimset('Disp','iter');

13 [x,resnorm,F] = lsqnonlin(@myfun1,x0,[3*10ˆ9 1000 0.15 ...

5*10ˆ(-3)],[8*10ˆ9 2000 0.33 9*10ˆ(-3)],options);

14

15 % plot optimization

16 a = 0.072; % mean radius (m) for Skull 1 from shell fit

86
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17 n = [1:1:20]; % mode number

18 lambda = n .* (n + 1);

19

20 % read in experimental data

21 file = fopen('skull1_freqs_and_m.txt');

22 data = textscan(file, '%f %f');

23 fclose(file);

24

25 % experimental data calculations

26 freq_exp(:,1) = data{1,1};

27 mode_exp(:,1) = data{1,2};

28 cp = sqrt(x(1) / (x(2) * (1 - x(3)ˆ2)));

29 omega_exp = 2 .* pi() .* freq_exp .* a ./ cp;

30

31 % model

32 beta_sq = x(4) ˆ 2 / (12 * a ˆ2);

33 lambda = n .* (n + 1);

34 c1 = 1 + 3 * x(3) + lambda - beta_sq * (1 - x(3) - lambda .ˆ 2 - ...

x(3) .* lambda);

35 c2 = (lambda - 2) .* (1 - x(3) ˆ 2) + beta_sq * (lambda .ˆ 3 - 4 .* ...

lambda .ˆ2 + lambda .* (5 - x(3) ˆ 2) - 2 * (1 - x(3) ˆ 2));

36 omega_model = sqrt((c1 - sqrt(c1 .ˆ 2 - 4 .* c2)) ./ 2);

37

38 % plotting

39 figure

40 plot(mode_exp,omega_exp,'r',n,omega_model,'b')

41 xhandle = xlabel('Mode Number','FontSize',11, 'FontWeight', 'bold');

42 yhandle = ylabel('Frequency (Hz)','FontSize',11, 'FontWeight', 'bold');

43 lhandle = legend('Experiment 2 Results - Skull A','Spherical Shell ...

Model - Lower Branch','Location','NorthWest'); %

44 set(xhandle,'FontName', 'Calibri')

45 set(yhandle,'FontName', 'Calibri')

46 set(lhandle,'FontSize',11,'FontName', 'Calibri')

47

48

49 function F = myfun1(x)

50 %Skull 1

51 a = 0.072; % radius of curvature

52
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53 % read in experimental data

54 file = fopen('skull1_freqs_and_m.txt');

55 data = textscan(file, '%f %f');

56 fclose(file);

57

58 % experimental data calculations

59 freq_exp(:,1) = data{1,1};

60 mode_exp(:,1) = data{1,2};

61 cp = sqrt(x(1) / (x(2) * (1 - x(3)ˆ2)));

62 omega_exp = 2 .* pi() .* freq_exp .* a ./ cp;

63

64 % model

65 beta_sq = x(4) ˆ 2 / (12 * a ˆ2);

66 lambda = mode_exp .* (mode_exp + 1);

67 c1 = 1 + 3 * x(3) + lambda - beta_sq * (1 - x(3) - lambda .ˆ 2 - ...

x(3) .* lambda);

68 c2 = (lambda - 2) .* (1 - x(3) ˆ 2) + beta_sq * (lambda .ˆ 3 - 4 .* ...

lambda .ˆ2 + lambda .* (5 - x(3) ˆ 2) - 2 * (1 - x(3) ˆ 2));

69 omega_model = sqrt((c1 - sqrt(c1 .ˆ 2 - 4 .* c2)) ./ 2);

70

71 %optimization

72 F = omega_exp - omega_model;


