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Abstract

The use of rollback is a fundamental flaw in some existing distributed control systems
because the advance in time and in external world situations means that what had
been a correct state in the past may no longer be a correct state in real time and dis-
tributed systems. In such systems rollback is not restoring to a state that is consistent
with the current external environment. Forward error recovery provides a potential
solution to such a situation to handle exception rather than backward recovery. A
contingency is an unusual but anticipated situation for which the normal flow of in-
structions would not produce the appropriate results that should be expected. We
will discuss how to handle contingencies and exceptions in a SCADA (Supervisory
Control and Data Acquisition) system using resumption and termination models of
exception handling.

Contingencies are a consequence of the external world, independent of the program
code. Rather than thinking of contingencies as a possible program error, contingencies
instead consider as a rare but understood external situation which changes what the
software would be expected to do from what is needed in the normal case. A SCADA
system is a computer system sensing and controlling some large physical system and
its environment. We attempted to handle contingencies in a specific SCADA system
at Halifax water plant to modify the SFC (Sequential Flowchart) algorithm of Halifax

Coarse Screen System.
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Chapter 1

Introduction

1.1 Exceptions and Contingencies

An exception is defined as “an event which occurs during the execution of a program
that disrupts the normal flow of the program’s instructions” [1]. It is an unantici-
pated event that occurs during the execution of a program and disrupts the normal
flow of instruction. There is no connotation that “exception” implies “error”. This
definition highlights the arbitrariness of what the designer considers a “normal” or
an “unexceptional” behavior and what is considered “exceptional”.

A contingency is an unusual but anticipated situation for which the normal flow
of instructions would not produce the appropriate results that should be expected,
so the normal flow of instructions must be disrupted in order to instead execute the
relevant instructions. According to Van Ellen et al., “A contingency is an unusual
but anticipated situation for which the normal flow of instructions must be disrupted
because the results (if any) that would be produced by the normal flow of instructions
would not be appropriate to this situation” [2].

Van Ellen and Hasselbring contend that contingencies are expected and unusual
situations, whereas exceptions are unexpected or unanticipated situations. Moreover,
contingencies are not errors because they are not part of a specification violation.
Thus, a situation that is neither an error nor an exception but is unusual, anticipated,
disrupts the normal flow, and prevents the expected operations, is a contingency. The
main distinction is that it arises when the external environment situation is changed.
Examples include paper jamming in a printer, the same value (green or red) being
displayed by a traffic light signal at an intersection, and an outgoing fax encountering
a busy line.

Contingencies were introduced by Van Ellen and Hasselbring[2] as a completely
different perspective on a possible exception. Rather than thinking of contingencies as

a possible program error, Van Ellen and Hasselbring[2] instead consider contingencies
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as a rare but understood external situation which changes what the software should
be expected to do from what is needed in the normal case. This can be expressed in a
richer specification and is not related to any particular code implementation. Indeed,
detection of the contingency need not be by conventional exception mechanisms,
although that may be the most efficient and highest performance implementation.
Goodenough|3] states that the two ways to handle exceptions are forward recovery
and backward recovery. We will explain how the term contingency differentiates from
exception. Goodenough[3] described that exceptions and exceptions handling are
interleaving actions that do not simply deal with errors; rather, they are levels of
abstractions. If a program is not producing the expected results, we can change the
normal flow of control of the program based on another set of instructions defined in
an exception handler block, and make the decision to transfer the control from normal
flow and expected instructions based on the intermediate results, thereby saving the
effort of partial computation using resumption. Goodenoughl[3] states that forward
recovery is the best technique for handling exceptions and contingencies in real time
and distributed systems. In many systems, what had been the correct state in the

past may no longer be a valid state because external conditions have changed.

1.2 Problem Definition

The main problem is how to handle contingencies. The crux of the issue is that
rollback is a fundamentally flawed idea in some existing systems because the advance
in time and in external world situations means that what had been a correct state in
the past may no longer be a valid state. In such systems rollback is not restoring to a
state that is consistent with the current external environment. If servers are subject to
client requests from outside the application being studied, restoring that application
to a previous state generally does not restore it to a correct state because the servers
are outside the control of the application itself and so their state cannot be restored.
Contingencies, as introduced by Van Ellen and Hasselbring [2], can be expressed
in a richer specification and are not related to any particular code implementation.
Resumption means disregarding past history and moving forward to a state which is
known to be safe and from which processing can continue. This safe state depends on

current values but need not be any state previously experienced. Resumption does
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provide a potential solution to such a situation, but there are few detailed examples
of exception handling leading to effective forward error recovery or resumption. Most
papers are general and generic, few deal with resumption, and fewer still give concrete
realistic examples. There are certain conditions that can disrupt the normal flow of
the system, but these conditions can be dealt with at run time. Such conditions are
called contingencies not exceptions.

According to Van Ellen, “ A contingency is a situation that is described within the
specification of a module, and represents a module result where the task or function,
which calling modules depend on, was not performed. Contingencies differ from
normal situations in that normal situations do not represent work refusals and without
additional specific measures do not necessarily run into errors” [2].

In this work we will identify contingencies and handle them by first detecting the
state of variables pertinent to the contingency and then performing either a roll-back

to a safe state or resume the valid state using resumption, as is appropriate.

1.3 Objective

The objective of this thesis is to demonstrate how the contingency concept used
with resumption and termination can effectively address important risks in a SCADA
system, which is a real time and embedded system. Some contingencies, such as those
that can produce damage if left unattended, must be handled. They can be identified
in advance at a specification level or they can be handled at implementation phase if
they are not detected at the specification level [4, 5].

We will demonstrate how to handle contingencies in a SCADA (Supervisory Con-
trol and Data Acquisition) system. A computer system sensing and controlling some
large physical system and its environment is known as SCADA System. We will dis-
cuss to handle contingencies in a specific SCADA at Halifax water plant to modify
the SFC (Sequential Flowchart) algorithm of the “Halifax Coarse Screen” System.

We will deem our contingencies handling attempt as successful if it is able to
convince the staff of the Halifax Water Plant that it is effective. We will detect the
unusual situations that are effected by external environment changes and attempt to
handle them using resumption and termination. We will record the amount of effort

to apply our attempt in order to provide guidance as to what might be involved in



treating other contingencies.

1.4 Thesis Outline

This chapter discussed contingencies and exceptions and presented the objective of
the thesis. In the next chapter, we provide some relevant background on the SCADA
system in question, which is a real-time, embedded distributed system. Furthermore
we review relevant literature on exceptions, termination models, and contingencies.
Chapter 3 describes a SCADA system and its components. Chapter 4 describes the
case study of the “Halifax water plant” where we examine contingencies in Sequential
flowchart of “Coarse Screen” algorithm and handle contingencies using the resumption
and termination and exception handling techniques. The chapter 5 offers summary

and conclusions on the case study and future work.



Chapter 2

Background and Literature Survey

2.1 Background

Contingencies are not exceptions but consequences of external world changes. A con-
tingency is an unusual but anticipated situation. The characteristic of a contingency
is that, when the external environment has changed, no previous state may be valid;
as the world has moved on, previous consistency properties no longer hold [6]. We
also need to look at how contingencies are interrelated with exceptions. Because
exceptions and contingencies are particularly important for embedded and real-time
systems, we first briefly describe them in the background section. This is then fol-
lowed by a literature survey on exceptions, contingencies, and termination models.
We have merely illustrated examples of contingencies and how they could be handled.

We have not intended to address all possible exceptions and contingencies.

2.1.1 Software-Intensive Systems

Systems generally may involve people, hardware, and software. According to Rich
Hilliard, “software-intensive systems are those complex systems where software con-
tributes essential influences to the design, construction, deployment and evolution of

the system as a whole” [7].

In terms of distributed control system, the software components of a software-
intensive system deeply interact with non-software components of the physical world,
which is the environment within which the system operates. Moreover, in “modeling
(and analyzing) a SIS (Software-Intensive Systems), the central role of the environ-
ment constitutes the main concern of the software engineer” [8, p.1]. The majority

of software-intensive systems are embedded [§].
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2.1.2 Embedded Systems

“An embedded system encompasses the CPU as well as many input/output resources
such as memory hierarchy, and a variety of interfaces that enable the system to mea-
sure, manipulate, and otherwise interact with the external environment” [9]. What
matters most for the correctness of an embedded system is that the parameters or
set of attributes in the model of the embedded system represent the physical sys-
tem. The model must maintain accurate correspondence with the physical system.
The parameters often represent real-world quantities such as location, orientation,
velocity, acceleration, temperature, pressure, signal strength and available amount of

consumables.

ACID (Atomicity, Consistency, Isolation and Durability) properties may interfere
with real-time embedded systems, such as SCADA [10]. Atomicity is often referred to
as "all or nothing” semantics, and implies that any values modified while attempting
the transaction be rolled back to their previous values if the transaction fails to com-
plete. The consistency property means that a transaction must transform a database
from one consistent state to another one. Isolation means that the effect of executing
one transaction must not affect the execution of other transactions. Durability is

defined as the effect of the transaction will persist and the transaction will not be
rolled back.

The real-world quantities such as pressure, temperature, acceleration can only be
known inexactly and typically may not be constant. In real time systems it may be
essential that the values and data structures internal to the computer correspond to
the value of the external quantities, which are outside the control of the computer
system. Some may change discontinuously; however, if they are continuous, they may
be predictable only over brief intervals and even then only with limited accuracy.
Many models need to be calibrated with measurements that are not part of the
operational system. By definition, all models are simplifications. They are incomplete
and, for computational reasons, often are at best approximations that fail to predict

unanticipated behavior [10][11][12].

Embedded systems have sensors and actuators. Sensors enable the embedded sys-

tem to be aware of conditions in the external world and, in particular, changes in
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those conditions. Actuators enable the embedded system to attempt to affect con-
ditions in the external world. Both are fallible; sensors sometimes lie and actuators
sometimes are ineffectual - both can fail intermittently or permanently and, of course,
situations can arise which are ambiguous and can only be resolved by sensors and
actuators included in the design. Redundancy is a key consideration in establishing
the embedded system’s awareness of the physical system with which it interacts, re-
solving ambiguity and indicating equipment failure. Because the physical system acts
under the influence of external environment change than just the actuators controlled
by the embedded system, and because the effect of actuators may not be what was

intended, sensors must monitor actuator effects.

In embedded systems, the integrity of computations internal to the embedded sys-
tem (the objective of ACID properties) is secondary to ensuring sufficiently accurate
correspondence between the model and the external world [13]. Basically, atomic-
ity interferes with ensuring sufficiently accurate correspondence between the model
and the external world because of the all-or-nothing criterion of atomicity. The “or
nothing” choice may not be a legitimate option. The passage of time since the initial
attempt that was initiated (passage of external “real” time has certainly happened)
plus any additional changes in values of the external world which may have hap-
pened, meaning that no computation based on the original values can produce the
results that should be expected given the external values that are current now. The
changes occur during the failed attempt is that operation of sensors and actuators,
and even the computer itself, uses up consumable resources such as fuel or battery
charge. In the sense that the original values cannot produce the expected results, the
“or nothing” choice is not legitimate. The nothing choice is inappropriate if any such

attributes are relevant to the state. The basic argument of atomicity is invalid.

Consistency means only valid data is accepted and retained. However, any con-
straint underlying a validity of data rule is either an assumption or an intention - and
(subject to the unreliability of sensors) observed data is what it is. If the observed
data does not satisfy the constraint, it is the rule that has failed, not the data. Mov-
ing on to isolation, it is really a property intended to limit what can be performed
concurrently. However, in the external world things naturally occur concurrently, and

may not be independent. For example, the aforementioned consumable resources can
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result in interactions between apparently independent operations. The transactions
that are normally regarded as isolated, and treated by the software, may not actually
be subtle interactions. Consumable resources are an example of such a subtle inter-
action that is often ignored [13]. The exhaustion of a particular consumable resource
can prevent the use of a sensor, actuator, or the computer itself. Finally durability is
a property intended to ensure computer-initiated updates do not get lost. However,
because the external world is affected by more than just computer-initiated updates,

there is no way to ensure that[13].

Embedded systems are indeed typically dedicated, but not in terms of functional-
ity. They are dedicated in that the hardware, including sensors and actuators, is only
capable of maintaining an accurate correspondence with a particular class of system

in the physical world [14].

2.1.3 Real Time Systems

Real time is a time as measured in the context of the computer system’s external
environment, not within the context of the program. Time is critical in real time
systems. According to Stankovic et al., “A real time system is a system whose
correctness depends not only on the logical results of a computation, but also on
the time at which the results are produced” [15]. Many, but not all, real time systems
are also embedded systems. Many, but not all, embedded systems are also real time

systems.

Real-time systems are commonly characterized as being driven by deadlines on
task execution times [16]. However, this is an inadequate and misleading over sim-
plification notation. There are systems that have no specific deadlines, but for which
jitter, the RMS (Root Mean Square) variation from regularity of a repeating event
that should be precisely periodic is the issue in real time systems. Synchronization
of independent signals is another example of real-time problems that may not in-
volve deadlines. Intercepts represent a class of real-time systems where too early is as
bad as too late: deadlines alone are inadequate. Moreover, intercepts typically have
no rigid deadlines because accurate directions, locations, velocities and accelerations

at precisely known times, together with the ability to schedule actions to occur at
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specific times, may permit planning the interrupt to occur at almost arbitrary subse-
quent times. Real time can be intrinsic because the validity of external data expires
after a well-defined interval, and should not be used in further computation. These
cited examples illustrate only a few ways in which real time is intrinsic and essential
[16, 17].

2.1.4 Distributed Control Systems

A distributed computing system (DCS) is a collection of autonomous computers com-
municating with each other to achieve a common goal. A distributed control system
is used to gather or acquire data from various distributed processes and sends com-
mands (controls) to these processes. The distributed control system is regarded as
a device that issues all commands, gathers all data, stores some information, passes
other information on to associated systems, and interfaces with the people who op-
erate the process. A DCS is used to control the functioning of industrial processes
like environmental control systems, traffic signals, water management systems, and

oil refining plants [16-18].

2.2 Literature Survey

2.2.1 Exception

Goodenough(3, p.684] states that, “In essence, exceptions permit the user of an oper-
ation to extend an operation’s domain (the set of inputs for which effects are defined)
or its range (the effects obtained when certain inputs are processed). Exceptions
permit a user to tailor an operation’s results or effects to his particular purpose in
using the operation. In short, exceptions serve to generalize operations, making them
usable in a wider variety of contexts than would otherwise be the case” [3]. However
an exception is totally arbitrary as Goodenough pointed out, exception handling can
extend that narrow definition’s range and domain of whatever the designer chose as
the normal operation to yield a broader definition, that broader definition too is still
arbitrary as to how broad it is. Choosing a narrow definition for an operation may
make that operation simpler to understand or may make the implementation of that

narrowly defined operation more efficient.
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Van Ellen and Hasselbring [2] states common guidelines: “A common recommen-
dation is to use exceptions only for specification violations, to declare them explicitly
within the interface, and redeclare them within the interface of the caller if they have
not been handled, and to adjust their abstraction to the current interface abstraction”
[2].

In hardware design, there is a distinction between interrupts and exceptions. Both
occur during the execution of a program and disrupt the normal flow of the pro-
gram’s instructions. However, because exceptions are perceived as being triggered by
the instructions being executed whereas interrupts result from external events, most
designers of hardware processors have chosen to distinguish between interrupts and
exceptions. Interrupts must be serviced soon, but handling can be deferred until it is
convenient, a behavior referred to as “masking” the interrupt.

On the other hand, in hardware exceptions (for instance page fault, divide by zero,
bad address, illegal instructions) cannot be masked because subsequent instructions
(or subsequent instructions within the same process or thread, in a multi-process or
multi-thread environment) may depend on the results of the instruction triggering the
exception, so no such subsequent instructions will be executed until the exception has
been handled. Curiously, general purpose programming languages do not seem to have
inherent support to mask or prioritize exceptions, although parts of the mechanism
could and possibly should be deferred, such as recovering resources which are no

longer needed.

2.2.2 Extended Exception - Contingencies Handling

The idea of contingency handling, rather than “errors” or “exceptions” is quite con-
sistent with what is needed for real-time and embedded systems. The best way to
handle real-time and contingency situations calls for forward recovery, i.e., resump-
tion, rather than roll-back or termination. The main focus of Van Ellen[2] is on
single-threaded applications. Van Ellen claims that it is not easy to declare contin-
gencies at development time and handle them without specification violation. It is
true that contingencies cannot completely be determined in specifications but they
can be handled to some extent in the specification level.

The main drawback is that contingencies disclose implementation details, as there
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is no abstraction. Van Ellen and Hasselbring have attempted to handle contingencies
in a single thread; a top-down approach is used to handle contingencies and excep-
tions, and the “continue” keyword is used for resumption [2, 19]. There should be
a method or structure to handle contingencies at a specification level, which is why
contingencies descend from checked exception whereas errors or faults descend from
unchecked exceptions.

Generally, every system has some constraints; thus, different types of contingencies
can occur in a system. There should be the same structure to handle contingencies as
with exceptions or errors. It is a flawed idea to ignore the possibility that an attempt
to handle contingencies in a system and looked after when they actually occur in a
system.

The termination model or the resumption model assumes that there have been
some instructions from the normal flow of control executed before the exception was
raised and the effect of these instructions must be corrected in the exception han-
dling. Avoiding the contingencies can also lead to degradation of system performance,
inconsistency, loss of time and cost effectiveness and maybe even loss of human life

4, 5].

2.2.3 Exception Types

Goodenough’s[3] seminal paper on exception handling observed that exceptions per-
mit the user to extend the operation’s domain or the range of a program. Exceptions
are gencralized and are also used to serve different contexts of operations. Excep-
tion handlers are used to deal with runtime errors or the failure of an operation.
Goodenough describes two types of exceptions - range failure and domain failure -
and states that classification is an opportunity to augment the result with additional

information that might be ignored in the normal case.

Range Exception

Range is the set of values possibly produced by an operation, domain is the set of
values possibly accepted as input to an operation. Range exception deals with failure
of output assertions for specific input or for any input. A range exception occurs

when some output assertion is not satisfied. The author has given the example of a
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parity error, such as when we are trying to read a record from a tape and a parity bit
is not set. If effort is expended to deal with such an exception but the exception is
not handled, then the expended work and time effort used to rectify that exception
would be a type of range failure. The author describes the many ways to deal with

such failures:

e The caller method has the ability to abort the operation, or the operation can
also trigger an event if an exception occurs or aborts the functionality and

undoes all the dependent operations.

e The caller method has the ability to terminate the operation and return some
partial results so that the programmer can change the normal control flow of
the program or deal with range failures to fix up the values of a variable based

on the obtained partial results.

e The program has the ability to follow termination as well as resumption. Some-
times it is necessary to follow some process on the basis of partial results that
are based on resumed values. For example, if a door jams before it is fully
closed (open), it probably has to be opened (closed) again. To do so, however,
requires knowing how far it got before jamming. Unless the door has sensors
to measure how far it got, the only way to know this may be from the local
variables recording the actuator activities. Yet for the termination model with
all or nothing semantics, these are exactly the kind of partial results that are

discarded in order to restore the initial values.

Domain Exception

“Domain exception is a somewhat different type of exception. It occurs when an
operation’s inputs fail to pass certain tests of acceptability” [3, p.2]. Domain exception
deals with the limitation of an operation to accept input that could be valid if the
operation were defined on a broader domain.

A simple example involves saving the results in an integer data type of an arith-
metic operation, when the operand is divided by zero and the output is a “divides
by zero” error. Another example of domain failure involves saving a value of a long

variable to an array of integers, but it will not accept the value due to limited bytes
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are allocated to different data types. The caller function must give the appropriate
information about the failure to deal with domain failure so that the programmer
can perform pre-checks or modify the set of input assertions to deal with domain

exceptions.

Results Classification

Goodenough|3] states that “Result classification is a type of exception that leads nat-
urally to the use of status variables or return codes (i.e. output parameters whose
value designates the type of result produced); there is no need to resume the opera-
tion because a valid result has been produced already”[3]. Result classification is a
type of exception that mainly occurs due to a status variable. Result classification
augments the result by providing a classification for it, but the result itself is needed,
so termination throwing away the result is wasteful, requiring redundant computation

to recompute the result.

Monitoring

Goodenough(3] states that monitoring is the exception condition used to notify an
invoker when some condition occurs. For example, we can perform a set of operations
recursively by setting a variable timer to check the level of water in a tank is not
equal to the expected limit value. If an exception occurs within the process, we can
retain/resume the actual values of the other dependent variables from the recursive
process. Thus, for instance, a binary search tree, we can get intermediate results from

the recursion function without an unwinding process.

In short, the author described that exceptions and exceptions handling are in-
terleaving actions that do not simply deal with errors; rather, these are levels of
abstractions. If a program is not producing the expected results, we can change the
normal control of program based on another set of instructions defined in an excep-
tion handler block, and make the decision based on the intermediate results, thereby

saving the effort of partial computation using resumption.
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2.2.4 Exception Handling Models

Goodenough|3] makes the case that there are indeed situations where the appropriate
action for an exception handler is to give up on the computation that was being
attempted and try something else. However, there are also situations where the
appropriate action for the exception handler is to make changes in the environment
and then resume the computation. The former is called the termination model, and

the latter is called the resumption model.

Goodenough also argues that the exception handler needs to function in the con-
text of the invoker of the operation experiencing the exception in order to have a
broader perspective of what is the appropriate response to the exception. Meanwhile,
the handler typically needs access to the state of execution at the point where the
exception occurred, and especially to partial results within the operator experiencing

the exception, in order to make appropriate repairs[3, 20, 21].

Termination Model

At the programming level, Java and other programming languages follow the termi-
nation model. Java provides strong features to handle exceptions with the help of
try, catch, throw and finally blocks. The termination model suggests that when an
exception occurs in a system, the exception handler should give up on the compu-
tation being attempted and try something else. This implies the previous state was

the correct state. Throw provokes an exception in some other process or some higher
block level.

In Java, the control is transfered to the catch block or finally if there is abrupt
completion of expression. “The code that caused the exception is never resumed”
[22]. But we redirect the control to some other instructions to retain the normal flow
of program [22]. It is useful in real-time and distributed system to retain the value
of a variable because there may be a chance that we can get the expected value of
a variable that is changing periodically due to change in environmental situation. If
it follows all or nothing semantics, these are exactly the kind of partial results that
are discarded in order to restore the initial values. This is known as the rollback or

termination model[6, 23].
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Resumption Model

Resumption means disregarding past history, and moving forward to a state which is
known to be safe and from which processing can continue. While this safe state de-
pends on current values, it does not need to be any state previously experienced[24].
Let us take as an example a transportation system; if a traffic signal cannot function
properly, we cannot cause all the traffic to return to their earlier locations. An auto-
mated system should take the real runtime values from its log and make a decision
to reach a correct state of all variables. This is known as forward recovery or the
resumption model. The resumption model is just an unanticipated procedure invoca-
tion, with access to all inherited values at the point where the exception was raised,

but with control flow continuing as normal when the exception handler returns.

Coordinated Atomic Action Model

The essence of this model is that it rolls back to a previous valid state, upon ex-
ception as if the attempted operations had never been tried. Randell et al.[6] used
the concept atomic action for handling exception. However, when the external en-
vironment has changed, no previous state may be valid, as the world has moved on
previous consistency properties no longer hold[6]. The simplest termination model
is just an unanticipated transfer to an in scope label, changing no values, and pos-
sibly losing dynamically allocated storage and other resources. Termination models,
such as Java’s try-catch mechanism or Coordinated Atomic Actions (CAA) attempt
to avert resource loss and provide predictable execution state for and post exception
handling by copying on entry all values that might change within the exception block,
and restoring those entry values if the exception is raised. This saving and restora-
tion can clearly be unbound time consuming if we consider dynamic data structures.
External state, even just external storage, cannot generally be restored, so CAA are

restricted not to have external effects.

2.2.5 Overview of Other Related Work

Regrettably, many programming languages that have been introduced since Good-

enough’s paper, from Clu (introduced in 1975) to Java (introduced in 1995) have
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chosen to ignore Goodenough’s recommendations. Moreover, the termination model
is supported, while the resumption model is not supported at all. If any part of the
transaction is performed, the transaction is performed in its entirety. This is often
referred to as “all or nothing” semantics, and implies that any values modified while
attempting the transaction be rolled back to their previous values if the transaction

fails to complete.

Transactions can fail because of the transaction explicitly being aborted due to
anomalies during processing, because of unanticipated situations arising during pro-
cessing or because of a system crash. Moreover, the termination model uses only “all
or nothing” semantics, which provides no access to the partial results computed at

the point where the exception occurred [3].

According to Krischer et al. [20], handling exceptions affecting many threads or
many processes in a multi-thread or multi-process program is difficult. The approach
was used by Krischer et al. [20], to add new semantics to an existing syntax such
as entry, monitor, and access. However, the approach complicates the semantics
and the implementation, and makes temporal behavior even harder to predict and to
understand. Krischer et al. [20] present evidence that syntax and semantics of general
purpose programming languages for interacting threads or processes are overly ornate

and need simplification.

Two methods for handling exceptions, contingencies and recovering the system
are forward error recovery (resumption) and backward error recovery (termination).
Gorbenko et al. [19] state that SOA (Service Oriented Architecture) uses resumption
through loosely coupled services. If there are synchronization problems, there may be
propagation delays in transferring messages and exceptions can rise. Gorbenko also
illustrates that developers of WSDK should make some effort to reduce an exception
propagation time used by different WSDK tool-kits [19, 20]. The main key hurdle is
a synchronization problem with other systems in SOA. However, independent SOA
web services kits can be improved. The use of SOA is essential in many situations,
so avoiding it is not an option. This seems an uphill battle to revise the standard of
web services kits because these kits are widely used in the real world and their large
existing customer base, the designer would face challenges to modify web services

toolkit to provide different functionality or semantics [19].
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Romanovsky et al.[17] attempted to describe the different types of exception han-
dling in an executed process. These include: 1) Action level time constraint, means
that the system should trigger an event when a particular action is completed. 2)
Value-based constraint, means that the system should meet the condition of a defined
value of a variable. 3) Time-triggered-based constraint, means that the system should
trigger an event when it reaches a defined time. We will apply these constraints in

modifying the “Halifax Coarse Screen” SFC (sequential flowchart) algorithm.



Chapter 3

Domain: Halifax Water Plant Real Time and Distributed
System

The coarse screen system is used to filter the impure or waste water in Halifax water
plant. The screen is used more in the fall season when more hard material or sludge
comes with water like leaves, sand and rocks. The waste water enters from one side
and filtered water goes out from other side of “coarse screen plant area” as shown in
Figure 4.1. There are two coarse screens; main coarse screen and sub coarse screen
system (located underneath the main coarse screen) as shown in Figure 4.1. The
coarse screen system works automatically. If the main coarse screen is not functioning
properly for any reason such as a hardware fault or more weight on the main coarse
screen then the sub coarse screen should get active automatically. If there is no need
of sub coarse screen then sub coarse screen should stop automatically. We are using
a Delta V process automation product provided by Emerson to control the SCADA

system of the Halifax water plant.

The main control valve, which is an integral part of the coarse screen functionality,
malfunctioned in 2009 when a control system failure caused a severe flood in the plant.
The repair of the plant cost in excess of $11 million and several components, including
the “Coarse Screen” system, needed to be replaced. The plant is a critical system
and it is very important to handle exceptions and contingencies to prevent danger to
the life of the system as well as to human beings. We modified the existing “coarse
screen” algorithm in the Halifax water plant so that the system should make decisions
on the basis of conditions or environment and follow both resumption and termination
models.

An important observation about SCADA systems is that they are loosely coupled
collections of separate software systems. Not only is there no concept of a single
thread of control, but contingencies that occur, affecting computations that may be

in progress, are not necessarily triggered by those computations.

18
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3.1 SCADA System

A computer system sensing and controlling some large physical system and its en-
vironment is known generically as a SCADA system. This is abbreviated from “Su-
pervisory Control and Data Acquisition” system. A SCADA system is a computer
system that monitors and controls an industrial process, infrastructure and facility
process. “The industrial processes include manufacturing, power generation and fab-
rication and refining processes. Infrastructure processes can be public or private, such
as a water treatment and distribution, waste water collection or treatment process.

Facility processes include airports, ships and space stations” [25].

Some SCADA systems focus on the data acquisition aspect and control applies
to the behavior of the sensors only. Other SCADA systems use actuators that affect
the physical system, such as steering radar antennae or changing the vibration char-
acteristics of airframe skin. SCADA is a very versatile monitoring and control tool
that is beneficial when the processes are complex with large number of 1/O points,

especially when these systems are spread over a wide geographical area [26].

3.2 Architecture of SCADA

A SCADA system typically consists of a communications network connecting multi-
ple MTU (Master Terminal Unit), RTUs (Remote Terminal Units), and PLCs (Pro-
grammable Logic Controllers). MTU is the main system of SCADA architecture as
it manages and controls all the operations done by PLCs, RTUs and field devices.

MTU can also reach every point that is connected to it to effect changes.

The master-slave communication method is used by MTUs and other devices of a
SCADA system. The main difference between MTU and RTU is that MTU is capable
of initiating the communication whereas RTU cannot initiate a message. RTU can
only send a message when ordered by MTU. The way of talking to each RTU and
beginning the cycle in the process is called “scanning”. “Polling” is the technique

used to update the MTU data with data from the RTU[26].
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Figure 3.1: SCADA Architecture

As Figure 3.1 shows, the master terminal unit (MTU) is the heart of a SCADA sys-
tem. MTU, human machine interface, historian OPC (OLE Process Control) server,
GUI alarm and PLC devices are connected through Ethernet LAN or radio communi-
cation device. PLCs are connected with the remote field device through input/output

channels. The wireless PLCs can get signals through radio communication.

3.3 Components of SCADA System

3.3.1 Human Machine Interface (HMI)

“The HMI (human machine interface) is intended to present process data to a human
operator, with which he/she can control and monitor the processes” [26]. “Any
popular GUI package, including Wonderware, Intellution, and RSView, can be used
on HMI” [26]. Today’s operator interface is likely to look like process flow diagram
with 3-dimensional graphics, fully animated and interactive with the operator|[26].
The graphics are just pictures and have no meaning until they are linked to the
outside world. The GUI (Graphical User Interface) is configured to establish links
between graphic elements on the screen. The calculations, analog or discrete values
are pulled from RTUs or PLCs or other graphic elements.

The HMI has two types of links: 1) HMI actions and 2) HMI animations. The
graphics with an action link, when actuated by the operator, result in some actions on

the part of the control system. HMI has several types of actions such as navigational
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links used to navigate through the screens, numerical data-entry links used to enter
input parameters values, and local command links such as time scale on trend graphics
display. Remote command links are used to send messages to field devices. The HMI
animation link is widely used to show the actual processing of the system, as are
visual components such as colors, images of SCADA devices and animations. For
example, if the water level is high in a plant area, it will show that area in red, or if a
system is in an idle state, it will show the plant area in a green color. HMI animation

links include numeric analog value displays, status, graphics and alarm displays [26].

3.3.2 Programmable Logic Controller (PLC)

The programmable logic controller is used as a field device. It is more flexible and
configurable than RTUs. A SCADA system consists of one or more PLCs sending
messages to and receiving data from one or more RTUs. All data moved between
MTU and RTU or PLC is in binary form. So, an A to D converter or a modem
device is used for the communication. The data may be a status condition of an
on-off switch or it may have been converted to binary from analog. The two types of
PLCs are analog and digital. The digital PLC is used to monitor discrete signals.

In our case, we used boolean or discrete value for pressure and temperature on
the basis of the operation. If the value of temperature or pressure exceeds a limited
value, the digital PL.C will send “true” values to the MTU. It depends on the designer
of the device control; he can use either analog or discrete signaling for temperature
or other control. The discrete inputs, like levels, pressures, temperatures, flows, valve
positions, and motor status, can be monitored using simple switches. It is also possible
to get the status of combustible gas alarms out of limited pH values. An analog PLC
is used to monitor analog signals. It is important and hard to monitor analog signals
rather than binary signals because binary signals just send one value true or false,
while for analog, specific numeric value is used to control the device. So, for instance,
to calculate the proportion of chemicals in the water, an analog signal is required|[26].
Examples of analog signals are speed of motor, actual height of liquid or water in
tank, strength of chemical component, and sensor values such as current. Suppose
MTU instructed RTU to open valve VA-002 to 50% of its full operating range. This

would be done by an analog signal, depending on what type of signal the designer
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chooses to appoint, whether analog or discrete, in controlling the field devices. The
output from the RTU could control the valve, motor speed and other parameters that

could be used to describe analog values[26].

3.3.3 Supervisory Control System (MTU)

This system is used to gather or acquire data from various processes and send com-
mands (controls) to these processes. The center of cach SCADA system is a device
that issues all commands, gathers all data, stores some information, passes other
information on to associated systems, and interfaces with people who operate the
processes. This is also known as Master Terminal Unit (MTU).

Some manufacturers call it “SCADA Server” or “Host”. The communications in
MTU are initiated by application software. It must also communicate with LCD
(Liquid crystal display) displays used by the operators. It must also pass data to
co-operating business computers, OPC (OLE Process Control) historians, and to
HMI[26].

Most supervisory control systems are graphically configured from pre-existing soft-
ware components and communication facilities in the system. In these, the sensor
data and the actuator actions define the systems. Delta V is typical of programming
facilities used for SCADA[21]. The contingency handling must be expressed using
a graphical view of the system. When all remote devices are functioning normally,
there is no need to assign an operator to inspect the remote locations frequently.

A safety control system should have main design characteristics, such as the ability
to override when an exception occurs. Further, it should have independent compo-
nents that should not affect the normal operation of the other components of the
system. As well, it should be simple, easy to use and understand, have a well-defined
structure, and the safety instruments should be able to be manually or automatically
initiated by the control system.

The radio communication system used in SCADA at Halifax plant consists of one
MTU and many RTUs. The MTU sends a message to its radio to start transmitting
the signal; it then waits until the radio transmitter is ready to send a signal, modulates
the transmitter with a message it wants to send to a particular RTU, turns the radio

transmitter off, turns its receiver on, and waits for the RTU to answer. This is known
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as MTU “turn-on time”, a function of the radio that is generally independent of the
data rate. Thus, reduction of scan interval has no impact on the data rate or on

communication equipment|21].

3.3.4 Radio Communication

Figure 3.1 shows a radio communication system. Some SCADA systems cannot get
a sufficiently short scan interval unless the data rate is pushed very high. When this
situation exists, a medium with a bandwidth greater than a voice grade line will be
required, such as optical fiber cable, microwave radio or a leased phone line on one
or more sophisticated radio systems. “Bridge taps and load coils normally occurring
on voice-grade lines can result in electrical pulses being slightly out of shape”[27].
Thus, radio or telephone cables have been developed specifically for SCADA. These
offer flexibility, low cost, high reliability and better performance than normal wired
system or expensive ultrasonic and supersonic waves. As well, radio signals provide a
high wavelength over a small spectrum and require less frequency compared to high

waves.

The two types of communications commonly used in SCADA systems are one-
way and two-way exchange. In SCADA, data must move in both directions because
telemetry systems gather information from remote sites but do not control the remote
sites. For this reason, telemetry systems can use simplex communication, which
allows messages to travel only one way. However SCADA requires two way (duplex)

communications because it performs operations, monitors and controls[26].

The reliability and maintenance of the radio signal and equipment are the main is-
sues with SCADA because, for instance, antennas loosened by wind must be realigned
or the radio signal can be damaged by lightening. That is why control systems some-
times do not get a signal even on a very clear, calm and sunny day [26]. It could
drift from its location and thus require checking and repair. Nevertheless, these com-
munication systems are much better now than they were in past and are therefore
more popular. Currently, they are used in industries because of their low cost and

comparatively better performance.
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3.3.5 Remote Terminal Units (RTU’s)

The remote terminal units are used to connect sensor signals to digital data. An
RTU gathers data from field devices in the form of analog values, alarm and metered
amounts and status points. RTU keeps this data available until the MTU demands
it through the PLC (Programmable Logic Controller). When the MTU instructs, it
codes and transmits data to the PLC, opens and closes the valves, turns switches ON
or OFF, outputs analog signals that may represent set points. The field devices are
sensors, actuators and other devices in the process.

Certain control calculations require input data from more than one remote site.
These control functions are most logically completed at the MTU. All data moved
between the MTU and the RTU are serial data. A single string of binary characters
are sent one after other, with parallel communication used for short paths. The OSI
(Open System Interface) protocol is used in SCADA systems to communicate digital
bits in serial format. The MTU, RTU, PLC are called “data terminal equipment”
(DTE). Each has the ability to formulate a signal that contains data that must be sent
and can decipher a receiver signal to extract its data. Some RTU or PLC protocols
are emerging as standards in SCADA systems such as MODBUS, DNP (Distributed
Network Protocol), ASCII and IEEE 60870 [26].

3.3.6 OPC (OLE Process Control) Historian Database

A historian computer machine is a part of SCADA. The Object Linking and Em-
bedded (OLE) process control historian database is used for web-based Distributed
Control Systems (DCS), storing log files such as control logs, alarm logs, operator
logs. Any changes in the state of field components are stored in the log files so that
DCS records can be maintained. The HMI also has a database to store operator
records in a local machine; other significant configuration information is typically

stored in the MTU.

3.4 Language: DELTA V Product of Emerson Process Management

The Delta V software product is provided by Emerson for SCADA [28]. It is basically

used to program methods to control the functioning of an automated and distributed
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system. Delta V can be successfully installed on different application processes such
as hydroelectric stations, oil or gas production, gas pipelines, electric transmission

systems, water systems [21, 28].

3.4.1 Subcomponents of language

The Delta V uses different sub languages such as functional blocks, sequential flowcharts,
ladder logic, structured text and instruction lists. These languages are defined by IEC

Standard 61131 [28].

Functional Block

Functional Block is a graphical language, part of IEC 61131, to describe the logic of
the block diagram. It is used to program PLCs (Programmable Logic Control) in
DCS. It has the same features as other languages such as object based and object
oriented and has access to local/global variables and inheritance properties. Pro-
grammers can easily define the logic of complex structures by applying the output of

one block as the input of another[28].

Sequential Flow Chart

Sequential Flow Chart is also a graphical language used to program PLCs. The
sequences of steps are known as actions and are connected to each other by transition
states known as logic conditions. It provides the facility to do multiple transitions in
one step and is mostly used in DCS. A Sequential Flow Chart is used to program a

PLC for running a sequence of processes[28].

Structured Text

The Structured Text provides the textual editor window similar to the IDE environ-
ment for coding PLCs. Global variables, iteration loops and conditional execution

statements can be created and functional blocks defined at one place[28].
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Ladder Logic

A Ladder Logic is a rule-based programming language used to program PLCs. It is a
GUI-based circuit diagram of relay hardware components and operates in conjunction
with HMI, MTU and PLC. The term “ladder” is based on the two vertical rails known
as I/O terminals, and “rungs” or “rules” are the sequential ladders. If any one step
of the ladder condition is true, then it will set at output 1, and a combination of
bits produces one output for RTU. Each “rung” has one coil and a symbol at output
side. These coils are regular coils (meaning, rung close), rung open, regulator contact,
no contact. The limitation of ladder logic is that it is best to control the problems
having binary input/output values. However, interlocking, binary sequencing and
race conditions are the main problems with ladder logic. “Omorn”, a manufacturer
of various field devices, avoids these problems to some extent [29]. While analog
values and arithmetic operations are not easy to define in ladder logic, the language
is nonetheless useful for designing control programs for digital PLCs. The user of
Delta V is expected to handle exceptions and contingencies through ladder logic.
The next chapter discussed contingencies in a SCADA system, case study of ex-

isting coarse screen algorithm and modified coarse screen algorithm.



Chapter 4

Case Study: SCADA for Halifax Water Plant

The functioning of the Halifax water plant is controlled through SCADA written
in Delta V. Generally, a supervisory control system is used for managing typical
signals that include alarms, status indications, analog values, and totalizer meter
values. However, a great amount of information can be collected using the historian

¢

computer, such as ordering a motor to stop and resetting the “set point” values of
valves. The Delta V product is easy to use and understand. The product Delta V by
Emerson has GUI feature and a window for coding editor and also has an integrated

development environment (IDE) to design electronic circuits.

Historian is a part of SCADA architecture. It is a computer machine used to save
and retrieve backup information and the states of field devices. MTU must retain
certain classes of data. A graphical form of analysis such as “trending” is another
feature provided by Delta V. An operator can call on trend data plotted against
time, such as easy-to-visualize data in the form of graphs and charts. Plotting two
or more trends shows interdependence of sets of data that were otherwise difficult
to visualize. An operator can create demand for MTU equipped with large data
historian database to retrieve the stored values of field devices. Most data that is not
critical for operations, such as historical information, should be stored in a central
data store. The data that is vital, such as configuration information, should continue
to be stored in the MTU. The information which is not worth retaining should be

automatically erased after an expiration date is reached.

Figure 4.1 shows the “Coarse Screen” of the sequential flow chart algorithm. This
screen is used to remove the sludge from the waste or storm water. The HX-110-VA-
001 is the main coarse screen device. Initially, water enters from the HX-110-VA-001
door and the water flow takes a turn to the left and crosses to the HX-110-XR-001
door. The main coarse screen filters the sludge from the water, lifts the sludge up to

80 feet, and pours it into the duty screen chamber. The filtered water crosses through
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Figure 4.1: Halifax Coarse Screen!

the 110-XR-003 door and is pumped up by water pumps.

All of these valves and doors work as control devices. If there are excessive loads of
sludge on the coarse screen or some other conditions such as level of safety, differential
levels, or the main coarse screen is not functioning properly for some other reason,
the sub coarse screen should start functioning. When the sub coarse screen starts
functioning, HX-110-VA-002 and HX-110-VA-003 must be open so that the flow of

water can move in its direction.

4.1 Proposed Flowchart

Using Goodenough’s model, which concerns exceptions and contingencies handling
in real time and distributed systems, we modified the sequential flowchart of the

“Halifax Coarse Screen” system for handling exceptions and contingencies in real time

'Halifax Water Plant, Halifax NS
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and distributed systems. The Supervisory Control and Data Acquisition system has
components such as historian log, master terminal unit, programmable logic control,
remote terminal unit. In Figure 4.2, master terminal unit is a emergency response
control system which takes the decision on the basis of resumption and termination

models.

The operator can communicate through the master terminal unit via human ma-
chine interface, also known as emergency command support system. The operator
can control the functioning of distributed control system manually and remotely by
using product application strategy. The operator can send and receive the control
information to field devices such as remote terminal unit (RTU), programmable logic
control (PLC) and save the information to log files and backup information in histo-

rian computer machine.

According to Romanovsky et al.[6], in a real-time system design, recovery from
errors and exceptions is divided into three categories by applying action level timing
constraints, time-triggered coordinated atomic actions, and time-dependent exception
handling. We applied value-based, action level timing constraints and time-triggered
action for tolerating faults and handling exceptions and contingencies in real time

system. We will identify where we have used each of these three categories.

We modified the sequential flowchart algorithm and applied resumption and termi-
nation techniques for handling contingencies on infrastructural real time application

on the Halifax plant that is based on the model defined in Figure 4.2.
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Although we have an object-oriented paradigm and structuring framework, the
real-time aspect and behavior of the system adds more complexity in the design of
this paradigm. That is why it is a challenging technique to develop an exception
handling approach that can efficiently work in structural object-oriented, distributed

and real time environments.

Figure 4.3 shows the proposed flowchart. If exceptions or contingencies occur in
the system, the system should make the decision based on the environment change.
If the environment is changed, we should not restore it to the previous values but
follow the resumption model otherwise follow the termination model.

Forward error recovery (Resumption Model) needs to drive the system from its
current state to one of the safe states. We applied the resumption and termination
techniques on sequential lowchart algorithm of Halifax water plant.

The product Delta V provided by the Emerson has lack of programming constructs
to handle the external world situations. As in general purpose programming languages

used some programming construct to resume the correct state when any error occurs
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but in Delta V, whenever the exception occur or when the system is not behaving
normally, the designer can use the fail block to start the processing again. But we are
checking more conditions to verify the call to fail state is correct or not by comparing
the actual change status of the field effected by the external environment with what
status should be expected by the logic mentioned in engine. So, we matched the
actual and target state of the field devices and if it matches then further functionality

will be perform otherwise rejected.

The actual state is the current state of the field device. The target state is collected
based on facts collected due to environmental change and partial results. We use Fail
block structure defined in Delta V and checked the status of each device by taking
input into a fail block: if it passes this stage then the operator can manually operate

the system, otherwise not.

We demonstrated the external environment change with the help of sensor values
and the fail state sent by the field devices and handle the contingencies. We attempted
to handle the contingencies to resume the correct state and redirect the control to
normal flow. If the system is not able to reach to normal state, we used termination

model to retain the previous correct state of the system.

It was convincing to the Halifax Water Plant staff to handle contingencies and
that illustrated to them how they could handle other contingencies because contin-
gencies and exceptions can occur in very obscure and unimaginable ways. In doing
so, we modified the sequential flow chart of the ”Halifax Course Screen” system for
exceptions and contingencies. The backup coarse screen was tested through all pos-
sible combinations of values of the parameters that cause it to activate. Plus, the
system was evaluated on how it handles exception and contingency situations in the

system and how well it recovers from those conditions.

4.2 Coarse Screen Flow Chart

Figure 4.4 shows the processing steps of the coarse screen. The function and the

control of the operation of “coarse screen” of water plant in Figure 4.1 are done using

this flowchart.
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Figure 4.4: Coarse Screen Sequential Flowchart

4.2.1 Coarse Screen Sequential Flowchart (SFC) Algorithm

The current SFC algorithm is partially automated and contingencies are not handled
in this system. Following are the steps of the previous SFC algorithm:

Step 1:

Set OPEN button to 1 and check Initial conditions:

Read the status of DUTY_SCREEN, VA-002, VA-003

if ((DUTY.SCREEN == 1) and (VA-003 == 32 and VA-003 == 0)

and (VA-002 == 32 and VA-002 == 0)) then

‘ go to next step SO in Fig. 4.4 to check pre-conditions;

end

Step 2:

Check pre-conditions of T1, T1B, T1C, T1D, T1D1:

T1: SA-001/CND/Out.D.CV =1(SA-001 is unavailable)

T1B: LSH-303 is high

T1C: High - High Differential Level

T1D: stop log == closed.

T1D1: Operator Initiated.



33

if ((T1 or T1B or T1C or T1D or T1D1) == 1) then
‘ go to next step S2 in Fig. 4.4 to open the valves VA-002 and VA-003;
else
‘ go to next step SO to check pre-conditions;
end
Step 3:
Set VA -003 to 1 and VA-002 to 1 if (VA -003 ==1 and VA-002 ==1) then
‘ go to next step S4 in Fig. 4.4;
else
‘ wait for opening the valves at this step;
end
Step 4:
T2A: Check the condition either valves are open in AUTO or REM mode
if ((VA-003 == 1 and VA-002 ==1) or
((VA-003 == 1 and VA-003 ==16) and
(VA-002== 1 and VA-002==16))(Remote manual)) then
‘ go to next step to check the post conditions;
end
Step 5:
T2A2: Post Condition: (T1 and T1B and T1C and T1D and T1D1) is false,
close the sub coarse screen
if (T1 and T1B and T1C and T1D and T1D1 == () then
‘ CLOSE_BUTTON = 1 go to next step S5 in Fig.4.4;
end
Step 6:
T5: To set the state of valves in auto mode

if (CLOSE_.BUTTON == 1) then
set VA-003 to 32(AUTO) and VA-003 to 0(CLOSE)

set VA-002 to 32(AUTO) and VA-002 to 0(CLOSE);

end
Algorithm 1: Sequential Flow Chart

(Here, 1 = OPEN or ON, 0= CLOSE or OFF)
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4.3 Contingencies in Coarse Screen Algorithm

As we identified that the damage to the plant occurred due to the deficiencies in
the SFC algorithm, shown in 4.4, we have concentrated on identifying and handling
exceptions and contingencies in it. As it is not possible, even for this isolated algo-
rithm, to identify all possible contingencies arising due to the real-time environment
and the many parameters affecting the plant, we concentrated on those situations
with the corresponding parameters that affect the function of the algorithm and the
(sub)system it controls. Thus we have identified the following contingencies that af-
fect the algorithm and cause the modification of the algorithm which will be provided

later:

1. What if exceptions occur in an exception handler block?

2. If maintenance work is going on at the main coarse screen or it is not functioning
properly and XR-001, XR-002 are opened, then water will pass out from the
system without being filtered. In this case, XR-001, XR-002 should be closed
and VA-002 and VA-003 should be opened automatically.

3. If the operator shuts the doors VA-002 and VA-003 manually, and breaks the
functioning sequence of the chart and these valves, VA-002 and VA-003 are
closed and in REM (Remote Manual) state, then the initial conditions are not
satisfied. The “coarse screen” will not work well the following day. It may or
may not get stuck at any step of the sequence. This kind of contingency usually

occurs when the operator breaks the sequence of flowchart.

4. If there is more sludge in the water, then high differential values or levels of
safety conditions may occur. There may be a high differential value because
the coarse screen has to lift it up 80 feet, which means it takes time. This
may result in a high differential and/or a high level of safety concern. High
differential occurs if the level of water in the “water plant area” is more to the
left side in front of the filter “coarse screen” rather than to its right side behind
the filter. The high level of safety refers to the water level being more than 2.0

meters high in the plant area, as shown in Figure 4.1.
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5. If any of the initial conditions described in 4.4, SFC algorithm, are true, then
VA-002 and VA-003 should be opened automatically. However, what if the
system did not get the feedback? Field devices such as actuators send a radio

wave signal to the system.

The radio wave signal may be lost due to a change in the direction of the radio
wave’s antenna or day-time and night-time lightening effects. Inclement weather
is the main cause of not to getting feedback from the actuators and sensors or
from any control hardware, even if the doors are opened. In this situation, it
can fail or get stuck at the sequence of flowchart because there is no feedback
status from the previous state. Hence, the condition to go to the next sequential
step is not fulfilled.

In handling the above described contingency conditions, the “coarse screen”
system was modified by adding additional functionality, an ESD (Emergency
Shutdown) button at the HMI (Human machine interface) screen to ensure the
safety of the plant. When an abnormal situation occurs in the “coarse screen”
due to an external environment change, the operator clicks on the ESD button.
The structure of the plant has been saved by forcefully shutting down the HX-
110-VA-001.

The operator can click on the ESD if any part or the area of the coarse screen
system is not functioning properly. After shutting down the whole system, an
operator starts to diagnose the fault with the help of historical log information.
The current status of each property value is displayed to the operator on the
HMI screen and he/she inspects the area of the plant and rectify problems
manually, such as forcefully setting the values of each controller at the software

level and repairing at the hardware level.

However, ESD is not the best way to handle exceptions and errors. It may
also affect the functioning of backward pipes and valves as well as forward
components such as Grit handling, the air processor and further connected air

pumps.
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4.4 Modified Coarse Screen SFC

Figure 4.5 shows the modified coarse screen SFC, fault tolerant system. This modified
supervisory control system will automatically handle errors, exceptions and contin-
gencies. The defined contingencies are not errors, as these may occur during the
general operation of the system when the external environment changes and the sys-

tem cannot perform the expected operation.
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Figure 4.5: Modified Coarse Screen Algorithm

The operator has authority to set the system to MAN mode and reset the system
when any exception occur. If the system is not functioning due to contingencies that
occur in the coarse screen system as described above then then operator will have to
contact the programmer to reset the logic forcefully. So, it may take one or two days
to restart the coarse screen system. The advantage of this fully automated system is
that it will save time, prevent faults, handle exceptions, errors and contingencies and
no extra effort of manpower is required to diagnose the system. Further, as it will
prevent flooding and breakage of the system, it will result in cost savings.

As Figure 4.5 shows, SO to S4 are the sequences or steps connected with single

or multiple transitions. Numeric number conventions are used to define the state of
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physical devices. For example, the value of duty screen is “1” when it is active. For
a coding perspective, we are using value “32” for AUTO mode, and “16” for remote
manual mode. VA-002 and VA-003 are in AUTO mode for initial conditions. In this
modified flowchart, we are using target mode value of valves of VA-002 and VA-003

to handle one contingency condition.

4.5 Modified Coarse Screen Algorithm

This algorithm is fully automated. The exceptions and contingencies defined in Figure

4.4 are handled in this system. Following are the steps of the modified SFC algorithm:
Step 1:

Set OPEN button to 1 and check Initial conditions:
Read the status of DUTY_SCREEN, VA-002, VA-003
if ((DUTY_SCREEN == 1) and
((VA-008 == 32 and VA-003 == 0) and
(VA-002 == 32 and VA-002 == 0)) or
((VA-002-TGMODE.CV == 32 and VA-002== 0) and
(VA-003-TGMODE.CV == 32 and VA-003 == 0))) then
‘ go to next step SO to check pre-conditions;
end
Step 2:
Check pre-conditions of T1, T1B, T1C, T1D, T1D1:
T1: SA-001/CND/Out.D.CV =1(SA-001 is unavailable)
T1B: LSH-303 is high
T1C: High - High Differential Level
T1D: stop log == closed.
T1D1: Operator Initiated.
if ((T1 or T1B or T1C or T1D or T1D1) == 1) then
‘ go to next step S2 to open the valves VA-002 and VA-003;
else
‘ go to next step SO to check pre-conditions;

end
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Step 3:
S2: Open the valves: SET VA-003 to 1 and VA-002 to 1
if ( VA-003 == 1 and VA-002 == 1) then
go to next step;
else
if TIME.CV > 800 then
go to next step;

end

end

Step 4:

T2A: Check the condition either valves are open in AUTO or REM mode
T2A.a: if ((VA-003 == 1 and VA-002 ==1) or ((VA-003 == 1 and VA-003

==16) and (VA-002== 1 and VA-002==16))(Remote manual)) then
| go to next step S4 to check the post conditions

else

if (T2A.a == 1 and S4 == 0 and S2/TIME.CV > 800) then
| goto next step S4

else

‘ goto step SO;

end

end

Step 5:

T2A2:

Post Condition: (T1 and T1B and T1C and T1D and T1D1) is false,
close the sub coarse screen

if (T1 and T1B and T1C and T1D and T1D1 == 0) then
| CLOSE_BUTTON = 1 go to next step Sb

else
if (T2A2.a == 1 and CLOSE_BUTTON == 0 and S5/TIME.CV > 800)

then
| goto next step Sb

else

‘ goto step SO ;

end

end



39

Step 6:
T5: To set the state of valves in auto mode

if (CLOSE_.BUTTON == 1) then
sct VA-003 to 32(AUTO) and VA-003 to 0(CLOSE)

set VA-002 to 32(AUTO) and VA-002 to 0(CLOSE)

else
if ((VA-003/DC1/PV_D.CV ==2 and VA-003/CLOSED/Out.D.CV ==
16) or
(VA-002/DC1/PV_D.CV ==2 and VA-002/CLOSED/Out_D.CV == 16)
or

VA-002/CLOSED/Out_D.CV == 1 or
VA-003/CLOSED/Out.D.CV == 1 ) then
goto step SO;

else

T3: if (S5TIME.CV > 800) then

‘ goto step SO;

end

end

end
Algorithm 2: Modified Sequential Flow Chart
(Here, 1 = OPEN or ON, 0= CLOSE or OFF, 16 = REM MODE, 2= REM

MODE CLOSE, 32 = AUTO MODE)

4.5.1 Explanation

If an operator clicks on the open button and the initial conditions are true, such
as a “duty screen” is ON meaning in active mode, then valves 02 and 03 should be
closed and on AUTO mode. These are the initial conditions to start the coarse screen
system. We applied value-based, action level timing constraints and time-triggered
action for tolerating faults and handling exceptions in real time systems. When the
“main coarse screen” is in functional mode, this SFC system will check the defined

six conditions over a period of time, such as:

1. T1: If any system fault occurs in the main coarse screen or it is not functioning

properly. This is a action level timing constraint.
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. T1B: If the level of safety is high. If its set point shows the level of water is

high in the system area. This is a value based constraint.

. T1C: If there is a high-high differential level, it means that the level of water

is higher on the backward side of the coarse rather than on the forward side.
This is calculated as:

110-DLIT-001 = 110-LIT-002 - 110-LIT-001 If DLIT > 1 meter; normal. If
DILT > 2 meter; high differential. If DLIT > 3 meter; high-high differential.

. T1D: If the stop log is closed, that means there is more load on the main coarse

screen.

. T1D1: If the operator gives the command manually to open the valves.

. The main safe state is the initial condition in the described SFC. There is some

safe state for each step. For example, at the second step, if any one of the five
conditions is true and both valves are open, then it will proceed to the next step.
In this case, there are only limited safe states in this chart, as described above:
namely, T1, T1B, T1C, T1D, and T1D1. There are some other variables such as
H,S (Hydrogen sulphide), C'Hy (Methane) as shown in Figure 4.1 While these
are immaterial (as they have no relationship with the contingency), there may
be a dependency if the constrained value of these chemicals is high. In such a
case, high pressured dangerous gasses are released, at which point everyone is

prohibited from going into the plant area.

Contingencies Handling in Coarse Screen System

There is a possibility that when a new operator operates the system in “remote

manual” mode, he will do so erroneously. Sometimes junk material can get stuck in

the coarse screen that is not visible on the HMI screen. When the operator starts the

system and it does not work, and if he is unable to detect any fault in the system,

then he can set it to remote manual mode, forcefully set the values of variables, and

attempt to open the door. However, there is a chance that costly instruments may

be damaged by forcing them, which would be another type of contingency. We can

analyze the contingencies conditions in an automated system when a system behaves
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abnormally and does not produce expected results due to unexpected results. Some
contingency conditions are critical and important to handle as they can result in large-
scale damage, while others are normal and have a negligible effect on the processing
of the system. Thus, it is up to the system designer to assign priorities to contingency
conditions. For example, if a system motor is running continuously for long hours,
the expensive instruments or motor may sustain damage due to high temperatures.
It is up to the designer to define which contingency conditions have high or low
severity. An example of high severity is that if the temperature of motor reached
to its threshold value meaning that high temperature can damage the motor then
running motor should stop functioning until the temperature of the motor is not
reached to normal value or until the motor is cooled down. An example of a less
severe condition is that the functioning of the coarse screen should not be prohibited
even the motor is burnt out. It is up to the designer to define which contingency

conditions should have higher or lower severity.

If any of the above-defined conditions are true, then the valves 002 and 003 should
be opened automatically. However, sometimes the system does not get feedback due
to loss of radio signals. Wireless field devices sends the response to MTU through
radio wave signals, but sometimes the system does not get feedback due to some
reasons such as loss of signal in case of radio communication and lose connection of
wires in case of wire communication. Bad weather is the main reason for not getting
feedback from the actuators, sensors or control hardware. Although the valves are
open, they can fail or get stuck at a sequence in the flowchart because no feedback
status from the previous state was received, thus the condition was not fulfilled to go
to the next sequential step. In such as case, this condition is known as a contingency
and is handled as if any of these above-described initial condition were true and time
is more than 800 second then it should go to next the step. Generally, these valves
or doors take 600 seconds to open or close. We applied time-based constraint. We
are assuming the correct state value of those valves by applying resumption. Even if
the sequences get stuck and are not able to proceed to the next step, the control is

transferred to the termination state.

If all the initial five conditions are false, meaning that the main coarse screen is

working fine, then there is no need to use the sub coarse screen. Valves VA-002 and
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VA-003 should be closed when the main coarse screen is active and the sub coarse
screen is inactive because the impure water should flow in the direction of the main
coarse screen when filtering rather than toward the sub coarse screen. In this case,
VA-002 and VA-003 valves should be closed automatically. The operator also has
the authority to close these valves. In this, he has two options: either to send a
“close” command through HMI or to set to remote manual mode and manually set
the command to shut down the valves. The system is designed such that when the
operator clicks on the “close” button of HMI screen, the system will first set valves
status to auto mode and close it. However, according to the second option, when
the operator forcefully shuts down, the valves retain the status value REM (remote
manual). According to sequential flowchart, while starting the “coarse screen”, the
system checks the initial conditions first. One of the initial conditions states that the
valves should be in auto mode and close. If the operator closes the valves using the
second option via remote manual, the “coarse screen” system will not work next time
due to the violation of pre-conditions. Moreover, when the operator’s shift is over, a
new operator comes on duty; if he shuts down the valves manually and does not press
the close button, he will break the sequence of the flowchart. Thus, while the system
might perform the CLOSE operation well at that time, when the operator starts the
system again the following day, it will not work because the reset conditions are not
fulfilled, meaning that VA-002 and VA-003 are in REM mode and these have a status

value of 1. This is another contingency. It can be handled in three ways:

e If an operator turns the system to ON, the system should ask the running hours
value from the operator. When that time arrives, it should alarm the signal and
automatically turn off the system. However, some operators are not experts and
therefore could not predict how long the system should run, so we could not

apply this technique.

e Another way is that every door or valve has an inbuilt controller and, with the
help of log files, the system can assume the correct state of a particular valve
and make a decision. We have handled this contingency here by placing the
condition in Step 1 in algorithm 2. If the target mode status value of these two
valves is 32, meaning that these valves are in manual mode and closed, it should

check this condition, too, which indicates it is not an exception. This condition
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may or may not occur during the normal functioning of a system. However, this
condition does occur when the operator breaks the sequence of the flowchart
and valves retain the value “16”, which means remote manual. In this situation,
the environmental status of the valves has been changed and initial conditions
will not be fulfilled when the “coarse screen” is restarted. The operator should
have the authority to manually operate these valves; we should not be able to
prohibit them.

e Conditions at HX-110-VA-001: If the “set point” level value of the water flow
rate is “0”, then open the HX110-VA-001 door fully. If its value is “1”7, meaning
there is a high water level in the plant arca, then open the door 50%. If the

“set point” level value is “2”, then close the door.

We have handled some contingencies, exceptions and errors at development time.

4.6.1 Functional Block Diagram of Initial Conditions

SHE110-3A00 1/CND1OUT_DL.CY = 1

SYETEW FAULT

CHHE-T10-LEH-20XK QI 24000UT_DLCY = 1 4840
CHHE-110-KQ 1 21KO-20UT_D.CY = 1

CHHE0-OLIT- 001K - 240 UT_D.CW = 1)

SHPHE-T10-XR-00 1YDCHOUT_D.CW =0

“YOPEN.CV =1

Figure 4.6: Functional Block Diagram of initial conditions

As shown in Figure 4.6, five condition blocks are used to take an input value from
field devices to check five initial conditions as described in Figure 4.5. OR block is

used to take input from condition (CND) block, and if any of the initial conditions
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are true, then VA-002 and VA-003 should be open. It passes the input value BFI

(Boolean Flag Input) block and sends the signal to the output device such as PLC
to control the system.

4.6.2 Functional Block Diagram of HX-110-VA-002, VA-003
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Figure 4.8: Functional Block Diagram of HX-110-VA-003

This functional block is detailed in Figure 4.6. Functional blocks also have an
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inherited feature; thus, there is a possibility that when a new operator operates
the system in “remote manual” mode, he may do so erroneously. Sometimes, junk
material stuck on the coarse screen is not visible on the HMI screen. When the
operator starts this system but it does not work, and he is unable to detect any
fault in the system, he can set it to remote manual mode. In remote manual, he can
forcefully set the values of variables and try to open the door. However, doing so
may damage the costly instruments by forcing them. This can also be another type
of contingency.

We can rectify this situation because each device is a 'smart device’ with sensors,
actuators, alarms, valves and thermostats. These devices have their own inbuilt
control circuit and memory. Different types of failures can occur such as torque trip,
configuration error, phase trip, thermostat trip, based on different alarms such as
valves, control, actuator alarms, etc. If any error occurs in these devices such as valve
fail, alarm fails and whatever is the cause of failure, a signal is sent to the RTUs. We
added a “Fail block” to Figure 4.7 and 4.8 that will take this fail signal as an input
and pass it to the DC block. This will stop the functioning of the system whether
the system is in AUTO or in remote manual mode.

Furthermore, if the operator forcibly resets the conditions and clicks on OK, the
system is protected and will not reset the values and trigger an exception such as
valve alarm fail, causing torque trip, etc. The operator will then physically go into
the plant and remove the stuck material from the coarse screen or cool the motor if its
temperature is too high, and set the values of the valve through a remote device. The
device will send an OK signal to the supervisory control machine and the operator
can set or reset the values through HMI.

The resumption needs to drive the system from its current state to one of the safe
states. We can handle this type of contingency by adding another safe state variable.
Below are defined types of exceptions that are handled by this added “Fail state”
block.

4.7 Fail Block Conditions

The added fail block in Figure 4.7 and 4.8 can take three types of values from sensors,

actuators and other field devices. It is divided into three categories: valve alarm,
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control alarms, and actuator alarms.

4.7.1 Valve Alarms
Torque Trip CL

When an operator clicks on the close button to shut the door VA-002 or VA-003, it
will be tripped off because some material or object is stuck on coarse screen although
this object is not visible on the HMI screen. If the operator forcefully sets the value to
close the door, then the valve’s alarm should trigger the “torque trip CL” exception

signal.

Figure 4.9: Valve Alarms

Torque Trip OP

Torque Trip OP is similar to “Torque Trip CL” but has an open operation rather
than a close one. While moving the door VA-003 in the open direction, it is tripped

off on torque due to some object stuck or by any other reason in the open direction.

Motor Stalled

When sending the request command to open VA-002 and VA-003 manually but motor
is not started. So, it should send the fail signal to VA-002 and VA-003 controller

circuit to stop the functioning of other dependent objects.
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4.7.2 Control Alarms
ESD Active

If any exception occurs in the system area, 110-VA-001 will send a “control fail”
signal so that it will prohibit the functioning of the system, even if the operator
forcefully wants to start the system manually. The system will not work until the
device sends the OK signal to “FAIL block” or to the supervisory control system. We
have demonstrated and tested this functionality in a real time automated system at
the “Halifax water plant”. The “coarse screen” system ran successfully and handled

both contingencies and exceptions.

Figure 4.10: Control Alarms

Interlock Active

When the system is functioning and conditional control is configured, active interlock
will not prohibit local control operation and will send a “control alarm fail” signal.
4.7.3 Actuator Alarms

Thermostat Trip

When a motor is overheated, it will automatically stop the motor until it cools down.
It should send a “thermostat trip” signal as an “actuator alarm fail”.

Phase Lost

The operation of the system is inhibited while phase supply to the actuator is lost

due to any reason. It should send an “actuator alarm fail” signal.
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Figure 4.11: Actuator Alarms

24V Lost

Each field device has a permanent connection with a 24V supply. It resets the fuse
and connection breaks from the 24V power supply automatically for the safety of
expensive instruments. Sometimes, however, the connection can be lost naturally,
even if there is no exception or abnormal situation occurring in the device. In this

case, it should send an “actuator alarm fail signal” to the supervisory control system.

Config Error

When a programmer is configuring the actuator or setting the values, a contradictory
condition can occur. In this situation, it should send a “config error” signal to the

“FAIL STATE” block.

POS Sensor Fail

Sensors are not able to sense the signals due to change in their position. In this case,
it should send a “POS sensor fail signal” to the Fail State block. The Fail State block
will send the interrupt signal to the DC, which will inhibit the functioning of the
system until these exceptions are removed or the OK signal is sent by the affected

device to the fail state block.

4.8 Cause and Effect table of VA-002 and VA-003

The cause and effect table is currently the most popular format in industries to
describe the functionality of field devices[30]. Such tables provide easier training
to new operators, as they enable quick and simple analyzing. While Delta V does

provide ladder logic to describe these tables, it is too elementary.
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Table 4.1: Cause and Effect Table of VA-002 and VA-003

Siemens developed a tool “Simatic safety matrix” to design cause and effect tables.
This tool is used for real-time monitoring, built-in event logs, simplified maintenance
operations, self documenting and safety life cycle integration[30]. We have used two
actions - open and close the valves - but it is casy to describe multiple actions with

the help of a cause and effect table.

4.9 HMI Coarse Screen Controls

In Figure 4.12, the control screen is visible to the operator at the HMI (Human ma-

chine interface) computer. The “first out” is a smart alarm used to trigger exceptions.
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It will trigger a signal if any of the five initial conditions are true. Some exceptions
are not critical and have a low impact; an operator has an authority to bypass these

controls even if the condition fails.

£

X

HX-110-CND-004A
Standby Screen Vatve
Seguence
Inrarlacas OPEM
CLOSE
First
Crurt Condition

SA-NITLNAVAIL AFLE
HiGH LEVEL AFTER 1L EAN
HILEN EREF-. LEWVEL

STOR LOG CLOSED
OPERATOR IHITIATED

Figure 4.12: HMI Screen

The operator should not be authorized to bypass the conditions even it fails. The
automated system should handle the exceptions and contingencies and redirect the

control on other processes to recover it from a fail situation.

4.10 Transitions

These are the transitions of the updated flowchart, also known as condition blocks,

for each step of the coarse screen algorithm.
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Chapter 5

Conclusions

5.1 Conclusions

In this thesis, we attempted to handle exceptions and contingencies using termination
and resumption models. A modification of the sequential flowchart of the “Halifax
Coarse Screen”, which is a real-time and distributed system, was devised to handle
exceptions. This work was applied to an infrastructural real time application at the
Halifax water plant. Real time and distributed systems are extremely complex, so
it was not an easy task to handle exceptions, contingencies and tolerate faults in
such systems. Because humans can operate SCADA systems erroneously, the system
should be programmed to prevent self damage. It is imperative to handle exceptions
and contingencies to prevent risk to the life of the system as well as to human beings.
We modified the algorithm in the Halifax water plant, wherein the modifications
enabled the algorithm it to make decisions based on conditions or environment and
to follow both the resumption and termination models.

In certain situations, particularly in real-time systems, roll-back may be inappro-
priate to apply on a state variable. After an exception occurs, we cannot know the
actual cause of the exception in Delta V because it has limited exception handling
constructs. Instead, we have only partial results. In some cases, we applied both
resumption and termination. The system will try to retain the normal state using
resumption, but if the system fails to recover the normal stage, then it will apply back-
ward recovery to maintain the safe state. De-allocation has some implicit runtime
overhead. During that time, the programmer cannot do anything, so the resultant
performance is degraded in time-critical distributed systems.

Our examination of the water plant identified a manual override that had been
used incorrectly by operators, resulting in significant damage. Through the use of
contingencies to identify the generic failure and then defining a forward recovery for

handling the situation, we applied an automated recovery strategy that could cope

33
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with system and manual errors but not permit operators to override safety rules.

Our principal contribution was that we found a way to produce an exception han-
dling conditions to cope with the contingency that erroneous operator input could
result in an invalid system state that might lead to damage. We handled the contin-
gencies in a sequential flowchart of the “Halifax Coarse Screen” system. The backup
coarse screen was tested through all possible combinations of values of the parame-
ters that cause it to activate. Plus, the system was evaluated on how it would handle
exception and contingency situations in the system and how well it recovered from
those conditions. The system ran successfully and handled all defined contingencies

and exceptions.

We assess the runtime cost of our solution not as a definite cost based on money,
but a cost based on potential downtime and having the plant offline. If this back
up system doesn’t work when needed, the results could be a closure of the main
plant gate that takes the plant offline. If the gate of the coarse screen system in
Halifax water plant is closed for an extended period of time, the potential is that
the collection system cannot handle the wastewater and overflow into the harbor or
plant area. This goes against the plants permit to operate. The amount of effort
was recorded as it involved DCS lead person in plant, plant supervisor and me and a
few days of brainstorming to come up with the idea of how we can operate the fully
automated coarse screen system efficiently. The DCS lead and the plant supervisor

at the Halifax water plant were very happy and satisfied with this idea and solution.

Detection of the contingency need not be by conventional exception mechanisms,
although that may or may not be the most cfficient and highest performance imple-
mentation. The contingency such as junk in the water damming the flow (so that
no water can reach a gate) or a motor burning out and failing (so that the gate
cannot open or close) is a changed environmental condition. We can handle such

contingencies using the termination or resumption model.

Delta V does not have exception handling facilities such as those in Java. The
termination model or the resumption model assumes that there have been some in-
structions from the normal flow of control executed before the exception was raised,
and the effect of these instructions must be corrected in the exception handling. By

handling the contingencies at the specification level, however, we have detected the
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contingency before any inappropriate instructions from the normal flow have been ex-
ecuted, and hence neither termination model nor resumption model recovery need to
be followed to correct them. With forward recovery, once the contingency is detected
it is merely necessary to transfer immediately to the safe state. Each automated sys-
tem has an anticipated but unusual condition that occurs due to external environment
changes. These situations can be detected and handled using the resumption and ter-
mination model so that an automated system should work efficiently and prevent any

damage to itself.

5.2 Future Work

While designing web-based DCS, synchronization and loose coupling are the main is-
sues in SOA (Service Oriented Architecture). Developers of WSDK should therefore
make an effort to reduce exception propagation times required by different WSDK
tool-kits. When a client sends a request to a server, the server performs all authoriza-
tions and other checks. Yet even when there are no pre-check conditions in a specific
application, there is still a time delay. Pre-check conditions that are not necessary in
a specific application should be reduced so there is a comparatively shorter time delay
taken by the server to respond to the client. Additionally, the server can respond to
the client with a specific message as to why the request was not completed, such
as network connection failure, connection pooling delay, etc., rather than sending a
general error message specified in WSDK. Krischer et al.[20] described 18 types of
errors that can occur in a system.

Each distributed control system (DCS) has contingencies at specific levels. Ex-
ceptions and contingencies can be handled in other distributed computing systems,
such as environment control systems, traffic signals, water management systems, oil
refining plants, etc., but contingencies handling in multiple threads are the main issue.

DCS’s main issues involve halting, asynchronous nature and mutual exclusion,
as well as different speeds and configuration of I/O devices. These can be handled
to some extent by using synchronizer and logical blocks and clock synchronization
algorithms. Exceptions can occur in these devices and clock or devices can give
inaccurate values.

Inconsistency is the main issue when exceptions occur in a distributed control
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system, resulting in ACID properties forming the wrong base. Still, there is currently
no widely accepted model that handles contingencies and exceptions in a real world
environment. Sun Micro Systems and Microsoft could modify their toolkits to pro-
vide the same structure to handle both contingencies and exceptions. Likewise, the
graphics featured in Delta V could also be improved.

In the Halifax water plant, the operator has to go to one GUI (graphical user
interface) screen to set the values at different parameters and then switch to an HMI
animation link screen to see the updated changes. In the future, it should be possible
to provide a picture of the process just as it appears to the operator and to animate

that picture to reflect process conditions simultaneously on one screen.
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