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ABSTRACT 

 

Inertial sensors such as Gyroscope and Accelerometer show systematic as well as random 

errors in the measurement. Furthermore, double integration method shows accumulation 

of error in position estimation due to inherent accelerometer bias drift. The primary 

objective of this research was to evaluate ADXL 335 acceleration sensor for better 

position estimation using acceleration bias drift error model. In addition, measurement 

data was recorded with four point rotation test for investigation of error characteristics.  

The fitted model was validated by using nonlinear regression analysis. The secondary 

objective was to examine the effect of bias drift and scale factor errors by introducing 

error model in Kalman Filter smoothing algorithm. The study showed that the 

accelerometer may be used for short distance mobile robot position estimation. This 

research would also help to establish a generalized test procedure for evaluation of 

accelerometer in terms of sensitivity, accuracy and data reliability. 
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CHAPTER 1  

 

Introduction 

 

Mobile Robotics is one of the fastest growing technologies in today‟s world. In recent 

decades, mobile robotics has undergone significant technological advancements. With the 

development of nanotechnology, size of the robot has reduced considerably. Robotics 

Institute of America defines the term Robot as, “A reprogrammable, multifunctional 

manipulator designed to move material, parts, tools, or specialized devices through 

various programmed motions for the performance of a variety of tasks”. The word Robot 

was derived from Czech word, “Robota” meaning forced labor. It was introduced by 

Czech play writer Karel Capek for the first time. Furthermore, Isaac Asimov used the 

word, Robotics in his short story about a robotherapist [1][2]. Since then, the term 

“Robotics” was commonly used to describe this technology.  

 

The development started in 20
th

 century when Dr. W.Grey Walter invented tortoise-

shaped robot which was controlled by simple DC motors and vacuum tubes. In fact, the 

first industrial robot was installed by General Motors called as Unimate. This robot was 

designed for material handling tasks such as lifting and stacking hot iron parts at 

appropriate locations. However, the major milestone in robotics was the development of 

“Shakey” by Stanford Research institute with computer vision, laser range finder and 

inertial sensors. The robotic arm developed by Stanford University in 1969 was used as a 

standard for robotic arm in research and education purposes. Presently, applications of 

robot are not only limited to industrial uses but also in service and entertainment areas. 

Autonomous robots are manufactured for navigating themselves in hostile environment. 

Use of autonomous robots in adverse environment has a greater benefit for application 

areas such as military, space, and research. In addition, autonomous under water vehicles 

are used for marine biology study, inspection, maintenance and cleaning operations. 
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Underwater robots are of biologically inspired shape used to collect the data from 

underwater surface. Robot manipulators designed with movable arm are used for space 

exploration missions in the form of planetary rover, landers and pathfinders to gather data 

and explore the surface planet. Furthermore, robots are widely used in hospitals for 

transporting medical supplies and distribution of goods. Intelligent wheel chair assists 

handicap persons in mobility on unequal terrain or even use to climb stairs. Additionally, 

Transportation in warehouses made easy with the help of intelligent robots for material 

handling, lifting heavy loads and distribution. Robots such as Roomba proved an 

effective vacuum cleaner which senses the size of the room and changes the algorithm 

accordingly for maximum coverage. Robots are widely used in gaming applications as a 

toy with various sensors and wheels for locomotion. A tour-guide robot such as RoboX 

[3] is developed for museum, parks, exhibitions and other events to guide the visitors. 

Navigating mobile robots for such complex tasks, precise modelling and intelligent 

control is very important.  

 

Navigation Problem: 

To navigate a mobile robot in an environment, it must have a model which includes 

knowledge about its surroundings. Also, it has to analyze and distinguish the 

surroundings to find its position co-ordinates. Based on map matching it should perform 

appropriate action.  

Thus, for determining position, a robot has to do the following tasks [4]; 

 Self-Localisation: The robot must know its current position before start to 

navigate in its surroundings. 

 Goal Recognition: Robot must know where it is going. In other words, it should 

set the goal and move in appropriate direction. 

 Path planning: after setting the goal, robot must know how to get there. This is 

known as path planning. 

The main two tasks in mobile robot navigation are to acquire data from various sensors 

and interpreting the data by using behaviour based and map based techniques. The 
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primary issues in robot navigation are computational power, failure to recognize objects, 

and failure to interpret data obtained from sensors [5]. Following points briefly discuss 

these issues. 

 Computational Complexity:  Computational burden increases depending upon the 

robotic applications. For real time systems, processing unit has to perform tedious 

calculations within a second which further needs computational power.  

 Landmark Recognition:  Without object information, it becomes hard to process 

the available information to estimate the position. It also takes more time to 

realise the environment in absence of landmarks.  For outdoor applications, 

Object recognition may not be possible every time because of wind, fog, 

lightening etc. Furthermore, detailed knowledge of structures in the database is 

inevitable. Matching the objects with stored information is again a difficult job. 

 Obstacle avoidance: Path planning technique is used to reach the goal in a 

collision free manner. Dynamic obstacles such as moving vehicles demands prior 

knowledge of moving obstacles and their trajectories [5]. 

 Sensor Fusion: Sensor fusion is to combine the data from different sensor for 

precise estimation. There is a possibility that the information coming from one of 

the sensor is not correct which needs to be resolved by perfect modelling.  

 Sensor Failure: Sensors often fail to perform satisfactorily under real 

measurement conditions. Sensor output is degraded by internal as well as external 

error sources. Thus, for reliable sensor operation, sensor error sources should be 

minimised.  
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1.1 Measurement Uncertainty and Sensor Error Sources 

 

Determining the current position of the mobile platform by using previous position along 

with heading information over given time is called as dead reckoning. The most common 

dead reckoning sensors used for navigation are Odometry and inertial sensors. Odometry 

measures the wheel rotations by using sensors such as encoders to calculate position and 

direction. In addition to unrestrained accumulation of errors observed in Odometry, 

sources of errors can be categorized into two groups, systematic and random errors [6]. 

Systematic errors such as unequal wheel diameter, wheel misalignment and finite 

resolution of encoders and random errors such as long uneven trajectories, wheel spillage, 

accelerated sudden turns cause large position errors. Reference [7] focused on 

minimizing these errors by methods such as frequent calibration, and correction 

algorithms. Nevertheless, reduction of these types of errors is a challenging process since 

most of the errors cannot be predicted. By using external guiding sensors such as GPS, 

radar, active beacons and computer vision, unbounded odometry error can be minimised. 

By using the information obtained by additional sensors, the errors in odometry can be 

identified and corrected. However, additional sensors also show their own drawbacks. 

GPS and other wireless techniques faces some challenges such as signal blockage 

problems when came across tall buildings, military jamming place, radar or other radio 

frequency signals. Image distortion, failure in landmark recognition can cause errors in 

determining position. 

 

The primary sensors used in mobile robot navigation are gyroscope and accelerometer. 

Integration of tilt or angular data from gyroscope gives the angular velocity while 

position can be roughly estimated by double integration of the acceleration data. The 

prominent disadvantage of using integration on these inertial sensors shows accumulation 

of errors and in long term duration the estimated position would be incorrect as compared 

to true position. In order to fuse the inertial sensor data with GPS, complete 

understanding of these errors is necessary [8]. Modelling the error sources in filter-
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processing algorithm is more efficient since low cost MEMS sensors show poor 

repeatability and need frequent calibration procedure[9] [10].  

 

1.2 Research Motivation  

 

The above discussion indicates that accuracy can be increased through frequent 

calibration of sensors and by using proper error compensation techniques. It drives a need 

of developing a calibration procedure and including errors in the process model when 

dealing with real time robot navigation. 

 

Efficient state estimation is very crucial for computing robot‟s current location based on 

the previous location. The popular technique to integrate the inertial sensors information 

for position estimation is Kalman filter. Kalman filter is an optimal data processing 

algorithm with recursive characteristics [11] [12]. The algorithm uses all the available 

information about the measurement and based on system knowledge it provides the best 

possible solution. If the information obtained by sensors is poor or untrustworthy, it 

becomes difficult to rely on acquired data to predict the position. Thus, in-depth 

knowledge of sensor error contribution is required for building appropriate error models. 

This drives an essential need to develop reliable, error compensated model which is 

capable of providing low cost, short duration, and precise position data.  

 

1.3 Research Contribution  

 

The prime objective of this research was to obtain a comprehensive evaluation of 

accelerometer sensor errors for better position estimation. It was expected that the 

proposed research program would provide valuable results that will not only reduce 

accelerometer error contribution in position estimation but also provide a thorough 

understanding of MEMS accelerometer as an effective, low cost inertial sensor. 
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 The research project was elaborated to incorporate the following objectives: 

 

 Determination of the effect of various error sources on Analog Device‟s ADXL 

335 accelerometer sensor performance. 

 Development of error models that describe behaviour of ADXL 335 

accelerometer sensor by testing and calibrating the sensor on a mechanical 

rotation platform. 

 Development and evaluation of the Kalman filter algorithm in MATLAB 

simulations as well as on the hardware set up to test the performance of error 

compensated accelerometer model.  

 Model tuning by adjusting random noise parameters such as process noise 

covariance and measurement noise covariance matrix. Accelerometer sensor 

fusion in the Extended Kalman Filter for determination of position error. 

 Incorporation of RTS smoothing algorithm for improved position estimation. 

 Evaluation of testing parameters that affect the error reduction performance of 

ADXL 335 sensor in an effort to develop recommendations to standardize the 

error reduction testing and calibrating procedures. 

 

1.4 Research Significance 

 

This research was conducted on a commercially available ADXL 335 accelerometer 

sensor manufactured by Analog Devices which is used extensively in many robotics 

applications. In addition to the evaluation of error characteristics of accelerometer sensor, 

many other aspects of Kalman filtering algorithm have also been examined. 

Contributions of significance are summarized below: 

 This study evaluated the effect of bias drift error and scale factor error on the 

performance of ADXL 335 sensor in terms of sensitivity, accuracy and data 

reliability.  
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 Bias drift error model established through this research will allow the design and 

calibration of accelerometer sensor for applications such as aircraft roll and pitch 

measurement, mobile robot platform position estimation etc. 

 The research will verify whether error model will significantly improve position 

estimation using acceleration sensor. 

 The design parameters used for fitting bias accelerometer data exposed to rotation 

platform testing will be used as a deterministic input in Kalman filter algorithm.  

 Mechanical Test rig designed for calibrating and testing ADXL 335 will help to 

establish a standard, generalised test procedure for evaluation of inertial sensors.  

 

1.5 Outline of Thesis: 

 

Thesis is arranged in the following sequence. Chapter 2 describes the concept of dead 

reckoning and sensor errors contribution. It also discusses sensor fusion technique used in 

inertial navigation. Furthermore, the chapter presents a literature review of basic error 

compensation techniques used in state estimation of mobile platforms and concludes with 

the proposed method for the same. Chapter 3 evaluates accelerometer for error 

characteristics. Additionally, there is a discussion about accelerometer principle and 

sensor mounting as well as description about the mechanical design system aspects. 

Chapter 4 provides an overview of the software system design used to implement the 

proposed system. The Kalman filter algorithm is discussed in detail along with bias error 

drift model. In Chapter 5, simulation results are included in first section followed by 

results obtained using proposed method on linear and angular acceleration measurement 

performed on hardware setup. Finally, in chapter 6, the effectiveness of accelerometer for 

short distance measurement is discussed along with future scope of work. Appendix 

contains pin configuration of acceleration sensor, NiDAQ card configuration and DC 

motor speed adjustments along with Dayton motor product data sheets. 
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CHAPTER 2 

 

Robot Localization 

 

This chapter outlines a review of established research literature on accelerometer error 

reduction and position estimation methods used. First, positioning techniques and its 

classification is discussed. This is followed by a description of inertial sensor fusion and 

data fusion algorithm used. An overview of various error parameters that affect the 

performance of inertial sensors is also presented. Furthermore, a description of statistical 

error analysis used to “fit” the bias measurement data is also provided. Lastly, the chapter 

highlights published research work on the evaluation of accelerometer sensor, with an 

emphasis on error reduction techniques and calibration procedure used by previous 

researchers.  

 

2.1 Positioning Techniques 

 

Navigation is an important and critical topic of discussion in the field of mobile robotics. 

Locating current position compared with earlier position by means of various sensory 

data is evaluated in inertial navigation systems. Navigation can be described as, “The 

ability to establish its own position and orientation within a frame of reference” [13]. 

Starting with positioning of galaxy to very sophisticated intelligent systems, navigation 

methods have developed considerably in last five decades. Positioning techniques can be 

broadly categorized as, absolute positioning and relative positioning [14] [15] as 

discussed below; 
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2.1.1 Relative Positioning 

 

The position can be predicted by using the knowledge of past and present co-ordinates of 

the system. This method is commonly known as dead reckoning and the group it covers is 

called as relative position measurement [16]. Relative position measurement can be 

further classified into two groups; Odometry and Inertial navigation. Odometry contains 

different types of encoders are used to measure wheel rotation. In turn, encoders convert 

wheel rotation into linear displacement. Conversely, inertial navigation system is an 

integral part of the position estimation from 19
th

 century and now it is used in almost 

every tracking application such as missile control, spacecraft, marine navigation and 

underwater vehicle control. It consists of minimum three accelerometers and three 

gyroscopes collectively called as inertial measurement unit (IMU) to estimate position 

coordinates. 

 

 

 

 

Figure 2.1 Classification of Mobile Robot Positioning Techniques 
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2.1.2 Absolute Positioning  

 

Absolute positioning covers landmark based and map based measurements such as active 

beacons, artificial and natural landmark recognition and model matching. GPS uses the 

model matching technique in which sensory data is compared with the global co-ordinate 

system for position estimation. The advantage of using this technique is that there is no 

accumulation of errors. Active beacon technique uses three or more transmitters and a 

rotary sensor to determine angle between the transmitters and mobile platform‟s axis. 

This method is called as triangulation. Landmark based absolute positioning can be 

further subdivided into Natural and Artificial landmark navigation. Computer vision 

technique is used to recognise a landmark. In model matching, the raw data obtained 

from sensors is interpreted for building local map. Furthermore, the map is matched with 

the database containing the global map. By combining sensors from both the methods, 

optimal position estimation can be achieved.  

 

2.2 Inertial Sensor Fusion 

 

In the last two decades there has been considerable development in the field of navigation 

especially when MEMS technology was introduced. Necessity of robust, autonomous and 

accurate tracking in military services such as missile control, marine war ships and 

aircrafts was the prime factor in the development of inertial navigation system. Collecting 

data from more than one sensor greatly increases the accuracy of the measurement. 

Integrating data from sensor of same kind or different types of sensors is called as 

“Sensor Fusion”. Previous research [17] identifies three levels of sensor fusion models, 

data level, feature level and decision level as shown in figure 2.2. Data level combines 

sensory information and performs data adaptation. It contains probabilistic models for 

unit adjustments and batch estimation [18]. Kalman filter algorithm is used at data level 

to combine sensory information for further processing. Feature level performs feature 

extraction of each sensory measurement. The data is classified and stored in a cluster set 



  11 

 

based on pattern recognition and neural networks techniques. Decision level uses 

intelligent systems such as artificial intelligent and expert systems to fuse independent, 

pre-processed sensory data. 

 

             

            Figure 2.2 Sensor Fusion Classification 

 

A more sophisticated inertial navigation system can be designed with the help of multiple 

sensors for determining the locations such as encoders for positioning, gyrocompass for 

orientation, tactile sensors to avoid obstacles, and accelerometers for measuring 

acceleration. Most of the dead reckoning systems use inertial sensors such as gyroscope 

accelerometer and magnetometer as a primary measurement along with external reference 

sensors such as GPS [14] for complete, accurate position estimation. Inertial 

Measurement unit (IMU) consists of at least three gyroscopes and three accelerometer 

sensors to completely define the three dimensional environment. IMU system has its own 

position errors that grow with time and trajectory.  

 

2.3 Accelerometer as an Inertial Navigation Sensor 

 

Acceleration sensing is an essential part of any Inertial Navigation system. 

Accelerometers are considered as one of the most important device in vibration and 
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seismic load measurements as well as tilt and impact measurements. Accelerometers are 

comparatively low cost, easy mounting than the encoders and gyroscopes.  

 

Newton laws of motion states the relationship between position, velocity and acceleration 

by following equations, 

 

2/)( 2

111 dtadtvxx kkkk    

dtavv kkk 11    

1 kk aa                                                                                                                    

(2.1)

 

Position is obtained by double integrating accelerometer sensor data. kx  represents 

position at time index k , kv  represents velocity and ka  as acceleration.  Accumulation of 

error has been observed due to inherent accelerometer bias drift. In position estimation 

and tracking, use of accelerometer has been suggested by many researchers. Research 

[19-26] suggests that accelerometer can be used for estimating position for short duration 

and with low frequency operation. Accelerometer also shows major contribution in 

incorrect position estimation due to integral sources of errors such as mechanical 

imperfections, bias drifts, cross axis sensitivity etc. As wireless sensors are not available 

continuously as external reference sensor, error modeling of these sensors is inevitable.  

 

2.4 Factors Affecting Performance of Accelerometer Sensor 

 

The MEMS accelerometer has many advantages as compared to earlier accelerometers. 

These advantages include low cost, better performance, compact, and multi axis sensing 

on the same silicon wafer with inbuilt signal conditioning electronics. However, the 

sensor shows some errors in the measurement such as dynamic and static errors. Dynamic 

errors include measurement noise. Measurement noise has high frequency content and 

shows more peaks in power spectral density. To block such high frequency content, the 
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bandwidth of acceleration sensor was set at 50 Hz. Static errors include error 

characteristics within the sensor. As referenced in IEEE–STD-1293-1998, the prominent 

errors in accelerometer such as scale factor error, bias drift, mechanical vibrations, setup 

misalignment, cross axis sensitivity, material defects and environment conditions have 

been shown to affect the performance of accelerometer sensor. Researchers have 

employed many different types of accelerometer testing procedures depending upon the 

application area. Therefore, it is important to understand variety of procedures that has 

been used and their respective impact on overall performance of accelerometer sensor. 

 

2.4.1 Bias Drift/Offset Error 

 

The majority of past researchers have focused on the calibration of accelerometer sensor 

by testing the sensor on a perfectly horizontal platform with zero „g‟ acceleration. Bias is 

defined as the non-zero voltage output when only earth gravity vector, zero g is acting on 

the acceleration sensor. With a constant zero g acceleration acting on the sensor, also 

known as static acceleration, the bias should remain constant during the static testing. 

Conversely in dynamic testing, bias drift is seen during the calibration testing. Bias 

depends upon many factors such as thermal changes, stresses, and self heating. Liu and 

pang [1] evaluated accelerometer sensor by manually calibrating sensor thermal-bias 

drift. The performance of accelerometer was tested by making horizontal forward and 

backward movement with the help of Sony robotic arm. A similar type of research was 

performed by S. Nikhbakt [24] to compensate bias drift errors in accelerometer sensor 

using statistical techniques. The performance was tested by moving the sensor platform 

horizontally to check the position errors. Minha Park and Yang Gao [8] studied error 

analysis of MEMS, ADXL202JC Accelerometer sensor by evaluating the sensor with 360 

degree rotation testing for bias drift errors and scale factor variations. Appropriate error 

models have been derived by using Auto regressive models. In reference [27] researchers 

tested RGA300CA system for multi-position testing using a rotary plate. Carver and 

Looney [28] discussed bias drift calibration depending upon needed performance level. 
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Sensitivity analysis is done for 1 % bias correction goal. Acar and Cenk [29] studied the 

complete analysis of commercially available capacitive type accelerometers based on 

resolution, frequency response, nonlinearity and transverse response. The experiments 

were performed on low and high frequency shaking machines, transverse sensitivity 

testing machine and centrifuge testing. Reported error for ADXL210 was -0.3% at 100 

Hz. It was observed that the error was least among other commercially available sensors. 

Researchers [30] have reported the bias error observed for inertial sensors with different 

grades. Table 2.1 shows the comparison between each grade. Reddy[31] discussed 

different models and evaluation techniques used in determining drift errors in 

accelerometer and gyroscope. He reported that Kalman filter can be used to compensate 

random drift errors. 

 

Table 2.1 Accelerometer Bias Error Comparison [30] 

Grade 

 

Accelerometer bias 

     Error (mg) 

 

Horizontal position error 

(meters) 

1 sec  10 sec 1 min 1 hr. 

 Navigation  0.025 0.13 mm 12 mm 0.44 m 1.6 km 

Tactical 0.3 1.5 mm 150 mm 5.3 m 19 km 

 Industrial 3.0 015 mm 1.5 m 53 m  190 km 

 Automotive 125 620 mm  60 m 2.2 km 7900 km 

 

2.4.2 Scale Factor Error  

 

Scale factor is the change in output voltage depending on change in input acceleration at 

nominal supply voltage and temperature. It is measured in mV/g. Scale factor reflects the 

sensitivity of the acceleration sensor. Scale factor error is observed when there is a linear 

deviation from the true scale rate. Scale factor error greatly depends on thermal hysteresis 

and aging.  Most of the researchers used IEEE–STD-1293-1998 recommended four-point 

or six-point tumble test to calculate scale factor errors. Researchers [8]used rotation panel 
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connected to SmartMotor for testing ADXL202JC accelerometer. The sensor was placed 

at the center of the rotating panel and scale factor error of 0.00667 % was observed for X 

axis and error of -0.03415 was reported for Y axis.  

 

2.4.3 Mechanical Vibrations and Initial Misalignment Error  

 

Mechanical vibrations are reflected in the acceleration measurement. It becomes difficult 

to differentiate between acceleration caused by vibration and by actual motion. 

Mechanical vibrations introduce errors in the calibration which can be minimised by 

installing the setup on rigid, mechanically isolated, vibration resistant structure. 

Researchers [28] suggested that for performance goal of 1 %, initial alignment error must 

not exceed by 8º. The error at 0º itself can cause bias in the measurement. The advantage 

is measuring acceleration at 0º and 180º will have an equal and opposite effect on 

measurement thus, error will not affect bias drift. By aligning rotator wheel perfectly 

vertical, misalignment errors can be minimized. 

 

2.4.4 Cross Axis Sensitivity Error  

For multi axis accelerometer sensors, perfect orthogonal alignment between axes is 

necessary. Due to mechanical imperfections, inaccurate placement on the testing setup, 

measurement of one axis can influence by other axis resulting in axis misalignment error. 

Again by using multi position testing, these errors can be minimised.   This error can be 

explained by general formula, 

100

22





x

zy

crossaxis
S

SS
ysensitivit        (2.2) 

 

H. Seidel et.al [32] reported maximum error of 2.5 % for z axis and concluded that set up 

misalignment error also contributed in overall error percentage. 180 º rotation test was 

performed to see the effect of cross axis on Z axis of an accelerometer sensor. Research 

[33] reported that the cross axis misalignment error can cause the change in the hysteresis 
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characteristic of acceleration sensor. The experiments were performed on ADXL 210 

sensor for evaluating effect of hysteresis, nonlinearity, scale factor and bias. The 

combined effect of any axis measurement was contributed by bias, scale factor and cross 

axis misalignment. In addition, for capacitive type of accelerometer sensor, proof mass 

deflection is transformed using capacitive plate arrangement causing minimum cross axis 

sensitivity error than pendulous design. In fact, Research [34] revealed that for MEMS 

capacitive type of design, cross axis sensitivity had minimal effect on the measurement. 

 

2.4.5 Power Supply Variation 

 

If the sensor output depends on power supply extra care should be taken in providing 

regulated power supply. Such characteristic is known as” Ratiometricity”. Fluctuations in 

power supply reflect as a spike in output voltage. The calibration can be done at different 

power supplies to see the effect on collected fitted data [28]. 

 

The above mentioned parameters affect the overall performance of accelerometer sensor. 

Many Researchers considered bias drift and scale factor as prominent error contributors 

for accelerometer sensor.  

 

2.5 Acceleration Error Modeling 

 

Sensor error model can be used at different application stages. These models have proved 

to be helpful in design, control, calibration and error compensation in real time 

navigation. The complete error model for pendulous type accelerometer sensor is 

explained by IEEE-1293-1998 as follows; 
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    (2.3) 

Where,  

1/ KE   = accelerometer voltage output divided by scale factor 1K  

opi aaa ,, = applied accelerations along Input Axis (IA), Pendulous Axis (PA) and output 

axis (OA) 

0K = bias, expressed in g 

'

0K = bias asymmetry in g, 

2K = nonlinearity, expressed in g/g² 

3K = nonlinearity expressed in g/g³ 

po  , = IA misalignment with respect to the OA and PA 

ioip KK , = cross coupling coefficients, expressed in g/g² 

oopp KK , =cross coupling nonlinearity coefficients expressed as g/cross-g² 

spinK = as spin correction factor expressed as g/(rad/s)² 

accelangK . = is angular acceleration coefficient expressed in g/(rad/s²) 

opi www = angular velocity components along IA,PA and OA expressed in rad/s 

opi www  =angular acceleration components along IA,PA and OA expressed in rad/s². 

 

ADXL335 sensor uses same assembly for mounting X, Y and Z axes, the sensing 

direction are highly orthogonal [35]. Thus, to build an error model for tri axial MEMS 

accelerometer sensor, the effect of cross coupling can be ignored [8] [34]. For non-

pendulous design, respective error terms would be insignificant [8]. The major error 

contributor terms were reported by previous researchers are bias drift and scale factor 

errors. Thus reduced order error equation for single axis accelerometer sensor can be 

given as; 

 011 KAKKE x                        (2.4) 

Where,  
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xA  is x axis acceleration measurement. 1K  and 0K  as defined in equation 2.1.  

Depending upon the bias characteristics, an error model is fitted and tested for residuals 

[14]. The bias error and scale factor error can be modelled as deterministic input to the 

Kalman filter to minimize effect of both.  

 

 

2.6 Previous Work 

 

Previous research has considered number of factors that affects performance of 

accelerometer sensor. Different calibration techniques have been used to overcome with 

inbuilt sensor errors. Liu and pang [1] evaluated accelerometer sensor for position 

estimation by double integration of sensor output. Acceleration bias drift was measured 

by moving robotic arm back and forth at a distance of 40 cm. The measured drift was 

manually calibrated. Kalman filter was used to combine and process the acceleration 

data. Joshua Ian and Christian [2] used accelerometer along with low cost potentiometer 

to estimate automobile hand wheel position and corresponding velocity. Instead of using 

conventional steering system, they used steer by wire concept that required force 

feedback. Hand wheel position, velocity, acceleration states were considered for giving 

this force feedback and corresponding inertia and damping. The results were tested in 

stationary state as well as moving state of the vehicle. Bouten et.al [36] evaluated triaxial 

accelerometer for assessment of daily physical activity. In order to imitate the human 

movements, a laboratory set up was build and tested. The rotary motion was generated 

with the help of electric motor of lathe. The output was processed with bridge amplifiers 

and analysed by running ANOVA and Schiff F tests. Reference [14] suggested an error 

compensation technique for gyro drift errors. The bias drift error model was incorporated 

in Kalman filter algorithm to estimate the states. The results compared with 

uncompensated gyro measurements which show drastic improvement with error 

compensation. The sufficiency of error model was examined by running fitness test for 

evaluation of orientation estimation. The smoothing algorithm was also developed to 

increase accuracy of Kalman filter algorithm. Stakkeland et.al [37] tested accelerometer 
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performance based on modeling. They built linear acceleration model with acceleration 

as control input. A separate nonlinear model called continuous Wiener-process 

acceleration model was also studied. They concluded that the acceleration modeled as a 

control input give better results than the wiener process model, especially on the vibration 

and noise related errors. Reference [6] velocity estimation was accomplished using 

acceleration measurement as input to kinematic Kalman filter (KKF). A comparative 

study of velocity estimation based on models and KKF was studied. Reference [38] 

described Position of the prism estimated on a moving base and Kalman filter was used 

for processing the geodetic movements. Furthermore, Electronic tachometer was used to 

compare the results. Reference [39] presented a research on an inertial positioning system 

for a parallel kinematic machine. Experiments were performed with a single parallel 

kinematic machine test bed.  Kalman filter technique was used for Stewart platform PKM 

application. Thus, inertial sensor based PKM-TCP positioning system was established to 

measure the pose of TCP. An interesting application of Kalman filter is described in 

model based tracking of moving object [3] using camera and a servo device. 

Furthermore, model matching was accomplished using Kalman filter technique. J Gao, P 

Webb and N Gindy [40] proposed error analysis technique to calibrate inertial sensors for 

machine tool applications. They reported position error of 0.07 mm in one axis strut 

movement. It was also concluded that vibrational motion captured by inertial system was 

more accurate than encoder system.  

 

Most of the research work accomplished in acceleration error analysis have used 

horizontal platform for evaluating performance of calibrated sensor with different data 

processing algorithms and techniques. Furthermore, sensors were mounted on mobile 

platform rather than on the wheel itself for investigating the acceleration measurement. 

There is no standard method to incorporate error model in a system for calibration of 

these sensors.  IEEE Gyro-Acceleration panel is currently preparing document P1554 for 

recommended practice of inertial sensor test equipment, instrumentation, data acquisition 

system and analysis. The limited results on accelerometer error compensation in inertial 
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sensor fusion suggest that in order to determine position under various conditions, 

experimental testing and calibration of inertial sensors should be performed. In our 

approach, ADXL 335 by Analog Devices [35] was mounted on rotary wheel at different 

rotational speed to calibrate and evaluate the sensor. Fitted data is used to incorporate 

bias drift error as a deterministic input to Kalman filter for short distance position 

estimation in absence of external reference sensor.  
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CHAPTER 3 

 

Testing Program, Methods and Procedures 

 

This chapter is divided into two sections. The first section describes ADXL335 

accelerometer IC used in this study and its principle, properties and sensor mounting 

technique used in this program. The second section details the testing procedure used to 

evaluate the error sources, mechanical design components and NiDAQ USB 6009 data 

acquisition card functionality.   

 

3.1 Evaluation of MEMS Accelerometer Sensor 

 

With modern nanotechnology, it is now possible to bring sensors, their signal 

conditioning and processing circuits on a single silicon based platform. The technology 

used for this purpose is called as micro electro mechanical (MEMS) system [41]. Due to 

its small size and ease of operation, MEMS accelerometer sensor is commonly used in 

gaming applications to enhance the effect, mobile handsets, even implemented on human 

body to analyse tremors and other physical activities.   

 

3.1.1 Principle of MEMS Accelerometer Sensors 

 

Figure 3.1 shows basic principle of accelerometer sensor. The sensor is made of spring 

loaded, micro machined structure, mounted on silicon base. Force on the structure 

changes the position of seismic mass attached on the spring. This deflection is measured 

using fixed plate capacitor sensors. The change in acceleration unbalances capacitor plate 

distance, observed by modulation/demodulation circuits and thus, resulted in output 

proportional to acceleration. The sensing can be static (gravity) or dynamic (forced 

acceleration) [42].  
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                              Figure 3.1 Accelerometer Sensing Principle  

 

3.1.2 Acceleration Sensor Mounting 

 

The two acceleration sensors were mounted on a vertical rotating panel for testing the 

sensor. The distance between center of the shaft and acceleration sensor is set at R= 0.1m. 

When sensors 1A  and 2A  are aligned to horizontal axis, the only force acting on the 

sensor is gravity. Thus expected output is zero. The sensor is then oriented at 90º, 180º 

and 270º along the horizontal axis and the acceleration data is recorded for both the axes. 

Z axis is perpendicular to the vertical rotation panel as shown in the figure 3.2. 

The relation between angle and acceleration is given by, 

)sin( xxa          (3.1) 

Differentiating, 

)cos( x
x

x

d

da



        (3.2) 
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                         Figure 3.2: Accelerometer Sensors Mounting 

 

 

Thus at 90 degrees, the acceleration sensitivity decreases to zero. In order to measure 

complete 360 degree rotation, two axis sensors were chosen. It was observed that the 

decrease in the sensitivity of one axis causes an increase in the other axis as both the axes 

are orthogonal to horizon [43].  

 

3.2 Mechanical System Design  

 

To test the simulations, a hardware set up was built which consists of a rotating Plywood 

wheel. Figure 3.3 shows hardware setup block diagram. The acceleration sensors were 

mounted on the wheel which is driven by Dayton‟s DC motor. The controller controls the 

speed of DC motor for testing calibration. ADXL 335 mounted on wheel, gives output 

voltage proportional to measured acceleration. Spark fun‟s ADXL 335 breakout board 

has inbuilt capacitors for filtering the data coming from sensor as a first stage of 

processing. In turn, National Instrument‟s USB 6009 data acquisition card converts this 

data by using successive approximation 16 bit ADC converter. 
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                            Figure 3.3 Hardware Setup Block Diagram  

 

The interfacing of this data acquisition card to computer is performed by using 

Measurement and Automation explorer and NiDAQmx device drivers. Figure 3.6 shows 

the interfacing VI. LabVIEW software is used to log the data on the disk. This raw data is 

filtered with the help of Kalman filter algorithm. The position status is evaluated based 

on filtered data.  
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Figure 3.4 NiDAQ USB 6009 LabVIEW Interfacing. 

 

3.2.1 Accelerometer Evaluation ADXL 335 

 

A number of factors was considered for acceleration sensor selection. Sensor with small 

measurement range was selected as resolution degrades with increase in the sensing 

capability. Additionally, power supply and thermal stability with optimum bias were the 

important parameters to be considered for the experiment. The accelerometer used for the 

research is ADXL335 from Analog Devices. ADXL 335 is tri axial accelerometer sensor 

with built-in amplifiers and demodulator. ADXL335 has a range of  3g in each axis. 

The output shows ratiometric characteristics thus, output voltage changes depending on 

the change in supply voltage. Nominally, at zero g, output voltage is half of the supply 

voltage. Each axis has a separate bandwidth adjustments. The capacitor in series with 

output decides the bandwidth of each axis. The accelerometer can be used for measuring 

dynamic acceleration such as vibration as well as static motion e.g. gravity. Bandwidth 

range of 200 Hz to 1 KHz is used depending on the rotational speed. This research used 

two, three axis accelerometer sensors as illustrated in figure 3.5. The analog voltage 
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output from three different axes is fed to NiDAQ USB 6009 for sampling and signal 

conditioning. 

 

Figure 3.5 shows basic block diagram of ADXL 335 as mentioned in the data sheet. The 

chip has in-built coupling capacitor between supply voltage and ground; thus reducing 

the noise at the power supply line. It contains micro machined three axis sensor along 

with signal conditioning circuitry.  

 

 

Figure 3.5 ADXL 335 block diagram [35] 

 

The sensor output data is acquired using LabVIEW and DAQ card and processing is 

completed with MATLAB called through LabVIEW for optimum filtering. The capacitor 

value is selected as 0.1 µF for sensor frequency of 50 Hz. 

 

3.2.2 NiDAQ – USB 6009 

 

N Series data acquisition card NiDAQ USB-6009 by National Instruments is used to 

acquire voltage output signals. The data card provides support with LabVIEW for device 
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configuration. Figure 3.5 shows basic electronics used in National Instrument‟s USB 

6009 data acquisition card. The card consists of eight analog inputs and two analog 

outputs in addition to 12 digital I/O lines. Furthermore, it has 14 bit ADC resolution with 

a sampling rate of 48 KHz per channel. 

 

                     

                      Figure 3.6 National Instrument‟s USB 6009 block diagram 

 

The device comes with NiDAQmx drivers which are compatible with LabVIEW and 

windows for processing. Serial communication on PC is established through USB 

interface. 
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LabVIEW is good for Data acquisition with user friendly interfacing.  MATLAB has in-

built mathematical functions for better signal processing. The figure 3.7 shows execution 

of MATLAB program from LabVIEW to get benefit of both softwares. 

 

 

               Figure 3.7 MATLAB Functions Call from LabVIEW 
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3.2.3 Rotating Wheel Arrangement 

 

The wheel attached to DC motor shaft simulates the rotary motion. The orthogonality can 

be tested between the base of motor and vertical shaft to ensure perfect vertical position 

of the wheel. The system provides fairly accurate servo table system. The arrangement is 

maintained in a lab with moderately constant temperature to ensure minimum thermal 

bias drift. The data obtained from the sensors is directly and accurately fed into laptop for 

further processing. The tests are repeated several times to find the residuals. The test 

setup consists of rigid mounting circular plate with acceleration sensors attached at the 

radius of 0.1m from the center shaft. The setup is tested at various constant speeds. The 

system is as shown in the figure 3.8. 

 

            

Figure 3.8 Hardware Test Set Up 

The circular motion is transferred from DC motor to rotating hollow shaft. Coupling is 

used to join Dayton DC motor to shaft. The sensors mounted on plywood wheel and 
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output wires taken inside the shaft and through slip ring to the stationary end for 

connection with NiDAQ USB card.  

 

3.2.4 Slip Ring Arrangement 

 

Sensory data is transferred to NiDAQ device through serial connection. The rotary 

motion causes wires to get twisted around the shaft. The electromechanical connector 

such as slip ring is used to run the data and power lines through the shaft to minimize 

twisting.  

 

 

Figure 3.9 Mercotac Inc.‟s Electrical Connector [44] 

 

Slip ring is used to transfer data and power lines from the sensors mounted on rotary 

platform to data acquisition unit. For the evaluation of accelerometer sensor it is very 

necessary to extract the noise. Traditional brush type slip ring assembly would cause 

considerable resistance in the measurement. Therefore, Liquid metal rotating electrical 

connector from “Mercotac” [45] is used instead of traditional brush type slip ring to avoid 

transmission noise. The new electrical connector is used liquid mercury instead of brush 

type arrangement which greatly reduces resistance through the rotating contact points. 
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Additionally, durable and maintenance free continuous operation was an advantage for 

selecting serial communication using connectors over the wireless communication. 

 

3.3 Four Point Tumble Test 

 

For evaluating bias error characteristics, the sensors were mounted on rotating wheel that 

is firmly attached to a rotating shaft with fixed supports. Testing wheel was carefully 

levelled with gravity vector so that x and y axis are orthogonal to gravity. For static 

testing, data was reported by titling accelerometer position at various angles. As 

described in IEEE-1293-1998 standard, the four point tumble test is performed to 

calibrate the sensor on a vertical platform to see the bias error effect in rotation. The 

sensor placement is as shown in the figure 3.10. Error parameters were estimated with lab 

testing of wheel with known rotation angles. The experiment was performed for a  

number of consecutive rotations and repeated for several times to observe the error 

fluctuations. The bias drift and sensitivity analysis was performed by calculating the 

mean at 0º and 180º degree for ideal measurement and real time data. 

                                            

Figure 3.10 Four-Point Tumble Test Illustration 

                                           



  32 

 

 

CHAPTER 4 

 

Software System Design 

 

In this chapter, brief introduction to basic Kalman filter is provided and implementation 

for position estimation is presented. The algorithm was developed for calculating 

acceleration bias error and scale factor error using acceleration error model [12][46]. 

Additional algorithm was developed for data acquisition and processing of three axis 

accelerometer using Kalman filter techniques.  

 

4.1 Theory and Implementation of Kalman filter 

 

The Kalman filtering method for noise reduction was first proposed by R.E Kalman as an 

alternate solution to Wiener‟s minimum mean squared error filtering method. As this 

filter worked in frequency domain, storing the entire measurement data was required. The 

advantage of Kalman filter over wiener is its recursive property thus, very popular in 

applications such as inertial navigation system, missile control and marine applications. 

Kalman filtering algorithm is developed from least square estimation technique, which is 

used in determining states of vector, time varying signals. The function of Kalman filter 

is explained in depth in references [11][47]. 

 

Kalman filter is a recursive algorithm for data processing primarily for linear systems. 

Dynamic system‟s state can be estimated by Kalman filtering. Kalman filter takes noisy 

dynamic measurements as input and estimate the states.  

It consists of the following; 

a) Process model 

b) Measurement model 
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a) Process model  

It uses knowledge of the system, sensor dynamics such as error covariance and initial 

condition, in our case, initial position, velocity and acceleration. General linear stochastic 

equation can be represented as, 

111   kkkk wBuAxx Where,
nRx                                                                        (4.1) 

 

Kalman filter solves the state estimation problem of a discrete time process [11].The 

subscript 1k  is the time step when measurement y is not considered for estimation. k  

is the predicted time step using measurement y. kx  is state of the system with matrix 

dimensions 1n  where  represents number of states. A posteriori state 

kx̂
 
depends 

upon a priori state, 

kx  and the process noise kw . A  is state transition matrix contains 

equation of the system in matrix form. ku  represents known control input also termed as 

deterministic input which is related by matrix )1( nB . 

State transition matrix nn  transforms the state kx  from time index 1k  to k . The 

process noise )1( nwk  is assumed to be Gaussian distributed white noise and the 

covariance or deviation in process noise is denoted by Q.   

k

T

jk QwwE ][   When,  kj   

0][ T

jk wwE      When, kj               (4.2) 

 E is the expected value of kw when multiply by its transpose
T

jw .  

 

b) Measurement Model 

The measurement model is given by, 

 

              (4.3) 

 

kkk vCxy 
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ky  represents actual measurement )1( m  which is a function of kx . Kalman filter uses 

available measured value to estimate the state of the system kx  which is corrupted by 

measurement noise, )1( mvk  with covariance R. 

k

T

jk RvvE ][  When, kj   

0][ T

jk vvE  When, kj   

E is the expectation of kv  when multiply by its transpose T

jv . 

We also assume that kv and kw  have no correlation expressed in mathematical term as, 

jkvwE
T

jk ,,0][   .             (4.4) 

Thus vectors kv   and kw  are independent random variables.  

Matrix C is called as observation matrix which relates to the state of system to actual 

measurement with dimensions nm . 

 

4.1.1 Kalman Filter Algorithm 

 

The algorithm can be divided into two parts 

a) Prediction stage 

b) Correction stage 

 

a) Prediction stage uses the initial conditions and system model to predict the future state. 

The prediction state consists of process model; 

                          11
ˆˆ







  kkk BuxAx                                          (4.5) 

A is state transition matrix contains the equations of the system in matrix form. 



kx̂
  

is a priori state with minus sign and hat  indicates it‟s the estimate before including 

actual measurements at time index k. the error between a priori estimate and the actual 

state is given by [48],     
 

                    (4.6)  
kkk xxe ˆ
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the estimated error covariance (mean squared error) associated with 

kx̂  [48] is given by 

equation, 

])ˆ)(ˆ[(][ T

kkkk

T

kkk xxxxEeeEP
   

 

               

                Figure 4.1 Kalman Filter Block Diagram 

 

Error covariance matrix is calculated by, 

QAAPP T

kk  





1                                    (4.7) 

P, error covariance matrix, predicts a priori state kx̂  by using state transition matrix A. 

Covariance matrix represents correlation between states kx̂ .From equation (4.5) and (4.7) 

it is observed that, prediction is made after adding process noise covariance error in the 

measurement. Thus, the error was added in the prediction. 

 

b) To correct the prediction according to current measurement, Correction stage is added 

as a feedback as shown in figure 4.1. It consists of three equations. Each contributes to 

correct the estimation depending upon the actual measurement and gain.  
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A new measurement ky  is introduced to a priori state 

kx̂   to get better a posteriori state 

estimate kx̂   and a posteriori estimate kP  using equation, 

       )ˆ(ˆˆ   kkkkk xCyKxx
        (4.8)                         

 

Where, 

kx̂  is a posteriori state estimate also known as corrected state. The term ,  

)ˆ(  kk xCy  is called as residual error or innovation vector and kK  is a multiplying factor 

also called as Kalman gain, Kalman gain decides if the measurement is trustworthy or 

not. 

Kalman gain is calculated by the equation, 

 

        (4.9) 

 

Kalman gain value decides error covariance matrix kP  by equation, 

 kkk PCKIP )(             (4.10) 

 

Depending upon the occurrence of correcting the estimation, process covariance reduces 

and stabilises at a minimum value where there is a little need to correct the predictions 

further. This is called as filter convergence. 

 

4.1.2 Kalman Gain 

 

From equation (4.9) it can be concluded that Kalman gain is inversely proportional to 

measurement noise covariance R. With less noise in the measurement, gain value 

increases resulted in more confidence in actual measurement than the prediction. Kalman 

gain is based on matrices A, kP  and R thus, the calculation was performed offline for 

linear systems to save computational burden.  

 

1)( 
 RCCPCAPK T

k

T
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When the current measurement is not trustworthy, 

kP value tends to become zero and the 

filter takes the predicted value over noise measurements which can be described as, 

 

1
ˆˆ,0  kkk xxK           (4.11) 

 

And conversely, when the measurement is within the expectable range, matrix R  tends to 

zero and the prediction is neglected as explained by the equation,     

      

kkk yHxHK 11 ˆ,             (4.12) 

 The whole process can be summarized as shown in figure 4.2.  

 

4.1.3 Kalman Filter Extension  

 

The previous Kalman filter equations are valid for linear systems. For highly nonlinear 

measurements there is a need to focus on nonlinear Kalman filtering extensions such as 

extended Kalman filter, and particle Kalman filter. For nonlinear applications initial 

guess of trajectory is unpredictable and most of the cases it is unknown thus, Kalman 

filter‟s a priori estimate is taken as nominal trajectory for prediction. Filter assumes that 

the probability distribution function is gaussian and has an approximate linear 

relationship with input and output thus the covariance matrix changes as time change. 

Extended Kalman filter linearizes nonlinear functions with the help of first order Taylor 

series expansion [49].  
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                             Figure 4.2 Kalman Filter Algorithm 

 

The linearization is performed by representing states as deviation from mean value of 

Taylor approximation. The a priori state 

kx̂  is used to set up predetermined trajectory. In 

extended Kalman filter process model and observation model can be described as 

follows; 

),(

),,( 111

kkk

kkkk

vxhy

wuxfx



 

                                                       (4.13)
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Where kw  and kv  are process and measurement noises with Covariances Q and R 

respectively which represents Gaussian white noise characteristics. Taylor series 

expansion of the state equation 4.13 around 

1
ˆ

kx  is given by [49]  
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     (4.14)
 

After solving above equation we get, 

1111
~~

  kkkkk wuxFx           (4.15) 

The deterministic signal ku~  and process noise kw~  is given by 

 

  kkkkkk xFuxfu ˆ)0,,ˆ(~
          (4.16) 

 

),0(~ T

kkkk LQLw             (4.17) 

In extended version of Kalman filtering, transition matrix and the observation matrix 

changes with respect to time about the measurement instant, 

1
ˆ

kx . Thus, 
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Thus, states and measurement equations can be stated as; 

),,( 1111  kkkkk wuxfx           (4.19) 

),( kkkk vxhy             (4.20) 

Where,  

),0( kk Qw               (4.21) 

),0( kk Rv              (4.22) 

For extended Kalman filter state transition matrix varies as time updates.  

The time update equations states for EKF are given by; 
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With the partial derivative matrices around 

kx̂  as, 
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Measurement update equations are given by[49]: 

1)(   T

kkk

T

kkk

T

kkk MRMHPHHPK  

)]0,ˆ([ˆˆ   kkkkkk xhyKxx  

  kkkk PHKIP )(  

             (4.25)

 

The main difficulties in implementation of extended Kalman filter is the difference 

between the predicted state and true state. As the difference increases, filter becomes non 

stable and fails to linearize the equations. Since transition matrix and covariance matrix 

changes with time, all the calculation is performed online and thus increases the 

complexity of the algorithm. 

 

4.1.4 Noise Covariance Tuning 

 

Performance of Kalman filter is largely dependent upon noise uncertainty matrices Q and 

R. Adjusting the diagonal matrix values of Q to give optimum Kalman solution is called 

as tuning. These tuning parameters reflect white noise associated with process model 

errors. Parameter evaluation is done by starting with maximum known error values 

prediction for the states and the values are later adjusted by observing best possible 

filtering solution by trial and error.  
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For one dimensional PVA model, the Q matrix for one dimensional PVA measurement is 

given by, 

)( T

kk xxEQ   

Q matrix is formed by considering variance of all states of the measurement. Off diagonal 

states represents Covariances as explained by equation, 
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              (4.26)

 

We assume that the noise sources are not correlated, thus, off diagonal elements can be 

taken as zero. A priori estimation error 

kP  is used to calculate Kalman gain along with 

the measurement uncertainty R. 

11 )(   RCCPCAPK T

k

T

kk                     (4.27) 

 

By observing   the equation (4.27), we know that Q governs P which ultimately affects 

the Kalman gain K. Thus, Kalman gain changes in proportion to the process noise 

covariance Q, When Q is large, P and K will be large and filter responds to the changes 

quickly. When Q is small, latency in the filter convergence is seen. Q also depends upon 

the step size as shown in the figure 4.4. As the step size increases, covariance decreases 

and settles at the value less than 10 within 20 steps. The initial guess of P is large which 

reflect less confidence on the measurement and as time progress, depending upon the P, 

Q and gain value, covariance decreases over the time. 
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                                      Figure 4.3 Covariance Time Dependencies 

. 

It is observed that Kalman gain is inversely proportional to measurement uncertainty R. 

when R is small, Kalman gain value increases giving fairly accurate parameter estimation 

at correction stage. It uses the current observation to predict next estimation.  

 

The accelerometer sensor measurement uncertainty can be modelled as, 

 

][ 2

onacceleratik diagR             (4.28) 

 

Where R is the measurement uncertainty associated with measurement model. The 

measurement uncertainty is usually provided by manufacturer in the data sheet as 

standard deviation. The tuning of R and Q is performed such that error covariance P and 

Kalman gain K converges quickly to give optimum solution.  
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4.1.5 Kalman Filter Smoothing 

 

Smoothing technique is used to improve predictions made by Kalman filter and it uses all 

the observations till N. Figure 4.5 shows three subdivisions of optimal estimation [50]. 

The hatched block represents measurement data which includes future as well as past 

measurement estimates predicted by Kalman filter algorithm. We have the system model 

as described in equation (4.1), (4.3) with kw  and kv  as process noise and measurement 

noise of covariance vectors Q and   R.   

 

Figure 4.4 Optimal Estimation Characteristics [50]  

 

The process noise covariance present and past data is stored to use for calculating 

smoothed data points. 

Thus,  

111,1, 





  k

T

kkfkkf QFPFP            (4.29) 

Where 


kfP ,  
is the covariance vector‟s updated value and 



kfP ,  is the predicted value.  

 

 

 



  44 

 

The forward Kalman gain can be calculated as, 

T

k

T

kkfkf RHPK  ,,                                      (4.30)
 

 

The update and predicted state vector values can be calculated as, 

111,1,
ˆˆ
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  kkkfkkf uGxFx
          (4.31)
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         (4.32)

 

Thus,  

  kfkkfkf PHKIP ,,, )(
          (4.33) 

 

There are three prominent smoothers based on observed time constraints, 

 

A) Fixed Lag smoothers: It is used for real time application with latency in the 

estimation. The performance depends upon the lag time. 

B) Fixed Interval Smoothers: It uses entire time period with the cost of offline 

processing. It runs in forward backward two filter configuration. It estimates each state 

 with all measurements for time index, .,2,1,0 Nk    

C) Fixed point Smoothers used if the estimate needed for particular time instant rather 

than the whole interval. 

 

The well-known fixed interval smoother, called as RTS smoother presented by Rauch 

et.al [51] is used in this work.  RTS smoother uses the co variances calculated by Kalman 

filter in its forward pass as an input to the smoothing algorithm and algorithm is run from 

N-1 to 0 time index in backwards. 

For smoothing update, the filter is initialized with the last updated values of 


kfx ,
ˆ  and 



kfP ,  

 kfs xx ,
ˆˆ

               (4.34)
 

Where sx̂  is the smoothed state derived from Kalman estimate.  

 kfs Pp ,             (4.35)
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The smoothed covariance estimate is calculated for values of k ranging from 

 .0,2,1  NNk , 

T
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            (4.36)  

 

Thus, Kalman gain is calculated by equation, 
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 Finally, the smoothed process noise covariance and smoothed estimate is given by  

 

T
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         (4.38)

 

 

T

kkfkskkfks KxxKxx )ˆˆ( 1,1,,,





 
         (4.39)

  

 

4.2 Sensor Fusion Using Kalman Filter 

 

For reliable position estimation, it is necessary to combine the data from different sensors 

with the used of software techniques such as fuzzy logic, neural networks, autoregressive 

models and high power filters. The information received from each sensor must be 

interpreted properly for optimum estimation. The model used in this research for 

determining position is known is PVA – Position Velocity Acceleration model. 

 

4.2.1 Position Velocity Acceleration Model 

 

Position was obtained by double integrating acceleration data. Newton laws of motion 

states the relationship between position, velocity and acceleration as, 
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The system states represent the measurement under consideration. Position, velocity and 

acceleration are concluded as states of the system and can be written in one-dimensional 

case as, 
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Similar equations can be written for angular acceleration measurement as, 
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With states, 
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The measurement and process model for angular acceleration in discrete form can be 

written as, 
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Equation (4.40) can be represented in matrix form as, 
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Since bias drift error is one of the main contributors in acceleration sensor, process model 

was built by using acceleration bias as random walk process [21]. Random walk process 

can be represented by differentiating acceleration signal as,

 
1 kk rwa             (4.46) 

Where rw  is a white noise with variance rw . Power spectral density, W is derived by 

considering variance of equation (4.46) as, 

)( kaW              (4.47) 

Variance in terms of power spectral density for each state can be obtained by integrating 

equation (4.47) as, 
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          Where, T  is the total time.  

 

The equation is further reduced to, 
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From equation (4.49) we can conclude that variance increases as a cubic function of time. 
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Similarly process noise covariance matrix given by equation (4.26) can be modified for 

all three states, in terms of integrated white noise density function with variance 2

ka  and 

spectral density function as W. as, 
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For simplicity, all the equations are stated in one-dimensional format. A similar model is 

built for two-dimensional measurement with all 14 states explained in appendix A.1. 

    

4.3 Bias Drift Error Model Using Kalman Filter 

 

Accelerometer bias is defined as output of acceleration sensor when no acceleration input 

is present. Bias can be negative or positive depending upon the manufacturing 

characteristics. It is presented in g units. Bias drift is one of the critical parameter to 

control in case of acceleration sensor. This error is again accumulated when we integrate 

acceleration reading for distance measurement. 

 

This can be explained by equation, 

2**
2

1
timeBiasPosition Drifterror           (4.51) 

            

At 100
th

 sec, with bias error of 0.1m/s
2
, the expected position error would be 500m. The 

condition gets worse as the bias error and time increases. Thus, compensation for bias 

drift is essential. A stationary, Gauss-Markov process was used to examine the 
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acceleration bias drift. A deterministic, nonlinear parametric model was used to analyse 

the accelerometer data based on Levenberg Marquardt iterative least square fitted method 

[52] as,  

 

2

/

1mod )1()( aeat Tt

el            (4.52) 

 

)(mod tel  is the fitted bias drift error model for acceleration sensor. 1a  , 2a  and T are the 

parameters to be tuned. Single Y axis acceleration data was recorded over period of two 

hours. The above model was validated with Levenberg Marquardt fit test by using 

LabVIEW programming on acquired data.  Figure 4.5 shows acceleration bias data and 

Levenberg Marquardt fitted curve. The model parameters were selected according to best 

fit. The validity of model was checked by applying autocorrelation function on residuals. 

Figure 4.6 shows that 97 % of the sample data falls within the error bounds. From the 

autocorrelation function, it was observed that the residuals of fitted error model passed 

whiteness test with average variance value approximate to unity. The power spectral 

density W, was set to one. Table 4.1 shows tuned parameter values of equation 4.52. 
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Figure 4.5  Acceleration Bias Data with Levenberg Marquardt Fitted Curve 

 

 

Table 4.1 Levenberg Marquardt Fitted Parameters 

Parameter Fitted Value 

1a  0.25 

2a  -0.21 

T  70 
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Figure 4.6 Autocorrelation of Residuals  

 

System states are modified by including bias error state in the matrix given by equation 

(4.53) as, 
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Deterministic input, also known as control input is set as fitted error equation, 
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State transition matrix can be stated as, 
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 And finally, observation matrix contain acceleration measurement as, 

 

]0100[C           (4.56) 

 

Each row relates to the states of the system. For measuring acceleration, matrix value was 

set to 1. Thus the update will be done for acceleration and state transition matrix predicts 

the position and velocity accordingly.  

 

4.4 Angular Acceleration Measurement 

 

Angular acceleration is measured by linear acceleration sensors by following equations 

[36] 

)]cos([)]sin([1  gRKgGa  + )(mod tel
      (4.57) 

)]cos([)]sin([2  gRKgGa  + )(mod tel
      (4.58) 

 

G is the sensitivity along the main axis,   represents angle between radius R and earth 

gravity component, ‟g‟.  The gravity component in equation 4.58, gcos( ) results from 

earth‟s gravitational force and is depend upon orientation of acceleration sensor with 

respect to earth gravitational force. If the acceleration sensing axis placed in opposite 

direction the gravity factor can be minimised since it‟s not possible to completely 

eliminate the effect of gravity on the sensor. The sensitivity term will affect both the 
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accelerometer sensors equally in opposite direction thus the term was ignored. The 

simplified equations can be written as: 
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          (4.59)

 

The sensor ADXL335 measures linear acceleration. From the basic laws of physics we 

know: 

Angular acceleration= Radius * Linear Acceleration.  

Thus, angular acceleration is directly proportional to the distance from the axial. Since 

linear accelerometers are of small size and easily available they can be used for sensing 

angular acceleration [14] the rotational kinematics doesn‟t allow to reset the 

measurement after every 360 degrees thus, the angles where recorded without subtracting 

360 after each rotation.  

 

The state space representation for angular acceleration measurement is as shown; 
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With observation matrix as, 

]1100[c             (4.61) 

Bias drift error variance is added in uncertainty as explained by process covariance 

matrix, Q. Thus matrix Q can be expressed as, 
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The RMS acceleration noise can be calculated by multiplying power spectrum density by 

bandwidth. It provides noise as a function of frequency. Spectral power density for white 

noise is nearly constant within a fixed bandwidth. The value was assumed as one rad per 

second. The Kalman filter algorithm was implemented with bias error drift model and 

RTS smoothing technique using above equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  55 

 

CHAPTER 5 

 

Results and Discussion 

 

This chapter begins with the evaluation of the accelerometer bias observed for error 

compensation modelling. Furthermore, the position estimation was calculated based on 

bias drift readings. The chapter further discusses results of rotational measurement and 

the effect of different rotational speeds on error characteristics.  

 

5.1 Accelerometer Bias Test for Error Compensation 

 

To evaluate the performance of acceleration sensor, it is necessary to check the drift error 

pattern in stationary state. The small random output changes observed in the reading is 

due to instability inside the acceleration sensor. The random error is also characterized by 

noise power spectrum density.   

 

5.1.1 Static Bias Test 

 

To observe the bias drift when sensor is not rotating, static bias test was performed. As 

shown in the figure 5.1, the sensor was kept steady at 0º orientation for two hours to 

observe the bias drift error. X axis data was acquired at the sampling rate of 1 KHz. Bias 

error is dependent on the temperature and it also has variable output with power supply.. 

Figure 5.2 shows acceleration drift for sensor A1-X axis measurement. 
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                    Figure 5.1 Mechanical Design 
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                 Figure 5.2 Static Bias Test- (Data Down Sampled by 25) 
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When the sensor is static, data is recorded for two hours and down sampled by 25 for 

plotting. Similar test was performed for both the axes of acceleration sensor A1 and A2. 

Figure 5.3 shows the bias error drift for all the axes estimated by Kalman filter error 

model.  

 

         

            Figure 5.3 Bias Drift Estimated by Kalman Filtering 

 

As shown in the figure 5.2, the bias stabilises after few seconds and filter provides fairly 

good noise reduction. The output was recorded for 2 hours with steady state, and only 

gravity acting on the sensor. The recorded data for 2x  axis is as shown in the figure 5.2. 

The standard deviation obtained is the accelerometer bias drift. Fitted data equation 

(4.42) is used to set the bias drift error model as explained in Chapter 4.  

 

5.1.2 Angular Bias Test 

 

Angular bias test is performed with acceleration sensor mounted on a rotating platform as 

shown in the figure 5.1. Earth‟s gravity is taken as a measurement for calibrating 

accelerometer. The test is also known as 4 point tumble test [53]. ADXL335 has a ratio 
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metric characteristic. It means that the output changes depending upon the supply 

voltage. The supply voltage provided for this project is 3.3 volts thus, for 0g acceleration, 

expected voltage output is 3.3/2= 1.65 volts. Bias is calculated by taking the difference 

between ideal curve and measured data curve at 0  and 180º [19] [28].  

 

Figure 5.4 Output Response Vs. Orientation [35] 

 

Thus, for every 1g change the change in the voltage is 0.33 V. As shown in the adxl data 

sheet, for power supply of 3.3 volts, the change in output for 1 g is nearly 0.33 volts. At 

0º, x axis = 0 g and y axis= -1g. Thus, voltages levels would be x_voltage= 1.65 volts or 

0g, y_voltage= 1.65+0.33 = 1.98 volts. Four angles were selected such as 0, 90,180,270 

and 360 to test the bias effect when accelerometer sensor is rotating on the wheel. 

Readings were taken for x and y axes of the adxl 335 accelerometer sensor. Figure 5.5 

shows raw data of both the axes for complete 360 degree rotation with readings taken at 

the intervals of 90º. 
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      Figure 5.5 Ideal and Measured Waveform of X axis with Power Supply of 3.3 Volts. 

 

            

Figure 5.6 Ideal and Measured Waveform of Y axis with Power Supply of 3.3 Volts 
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To observe the effect of bias drift, data was collected for several rotations on different 

days.  

The table 5.1 summarizes the bias drift observed in both axes of ADXL 335 sensor.  

2

00 1800
onAccelerationAccelerati

biasdrift


       (5.1) 

Thus, 

2

)22057.0(17517.0 
driftbias  

 

78.19driftbias  

Thus, correction factor for offset= -19.78 mg  

Similar experiment was performed for A2 sensor. The bias drift observed was 19.56 mg. 

 

For y axis, 

2

)0330.1(58541.0 
driftbias  

 

38.22driftbias  

Offset correction of 22.38 mg was observed with A2 sensor. 

 

Similarly, Scale factor can be calculated as, 

2
1

00 27090
onAccelerationAccelerati

m


  

                                             (5.2) 

 

And correction factor for scale error Ks: 

               
1m

m
K s    Where, m= Ideal Sensitivity. 

Bias drift error and scale factor error values were used for calibration. 

 



  61 

 

 

 

                               Table 5.1 ADXL335- Bias and Scale Factor Error 

 

 

 

 

 

5.2 Simulation Model 

 

The rotation test generates sinusoidal function for x axis and cosine function for y axis as 

shown in figure 5.5 and figure 5.6. The Position-Velocity-Acceleration three dimensional 

model was simulated in MATLAB. Measurement was added with random noise for 

simulations and compared with true data. The acceleration was simulated by using sin 

and cosine function as, )sin( kx ta   and )cos( ky ta  .Measurement noise and 

acceleration process noise deviation settings were changed to observe the effect of Q and 

R. Total simulation time duration was set to 100 seconds with time step of 0.2 second. 

 

5.3 Effect of Q and R 

 

By changing the process noise covariance and measurement noise covariance matrix, 

effects of Q and R has been observed on the Kalman estimation. The setting was used to 

tune the filter for real time measurements. Initially value of error covariance matrix P is 

set high such as 100.  R and Q values where selected as four and one respectively. The 

graph shows simulated acceleration measurement and Kalman estimation by red line. 

Corresponding Kalman gain and error covariance convergence graphs are as shown in 

Figure 5.8 and Figure 5.10 respectively. It is observed that, when Q > R, Filter detects 

frequent changes in measurement more accurately than setting Q smaller than 

Measurement Uncertainty R. If the measurement uncertainty is large, Kalman estimate 

X axis (mean) Y axis(mean) 

Bias(mg) S.F.(%) Bias(mg) S.F.(%) 

19.68 0.0041 22.29 0.0869 
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doesn‟t rely on measured data. Instead it uses error covariance to correct the 

measurement. To evaluate this assumption, R and Q values were set to four and one 

respectively. The simulation confirmed that filter did not follow the simulated 

acceleration when R > Q as shown in figure 5.9.  
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Figure 5.7 Simulated Acceleration data, Q>R 
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Figure 5.8 Kalman gain and Error Covariance when Q > R 
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Figure 5.9 Simulated Acceleration Data Q<R 
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Figure 5.10 Error Noise Covariance and Kalman Gain Q<R 

 

Figure 5.10 suggests disordered response of filter to rapid changes in the measurement 

for first ten seconds. It takes approximately eight seconds to settle the error in the 

measurement which reflects measurement uncertainty. On the other hand, with large Q 

value, the error settles within two seconds and filter converges quickly.  

 

5.4 Linear Acceleration Measurement 

 

The data was collected from USB 6009 data acquisition card and stored in the file for 

further processing. The mechanical test ring used is as shown in the figure 5.11 
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                         Figure 5.11 Rotating Wheel with Electrical Connector 

 

5.4.1 Roll Measurement 

 

With sampling rate of 200 Hz, y axis raw acceleration data for 1A and 2A  was recorded 

and fused as shown in the figure 5.12. 
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Figure 5.12 1y  and 2y  fused raw data 

 

It was observed that the raw data contain evident white noise at low frequency of 200 Hz. 

Kalman filter error model reduces this noise as shown by red solid line. By fusing raw 

acceleration data, position was predicted as shown in the figure 5.13. 

 

When the wheel completes one revolution the calculated true position would be (R=10 

thus 2*pi*R= 62.83cm = 0.62m for first five seconds. The data was recorded with 

frequency of 200 Hz. Figure 5.13 shows position estimation comparison between double 

integration method, Kalman estimation method and Kalman-Smoother estimation. With 

Kalman filter the error observed at 2 seconds, was 3.58 meters as compared to error of 

6.88 meters by double integration.  
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Figure 5.13 Position Estimation by fusing 1y  and 2y  data 

 

The best position estimation was obtained by introducing smoother algorithm in the 

Kalman filter estimation. As shown in figure 5.13 with smoothing technique, error was 

reduced to six meter. 
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5.4.2 Pitch Measurement 
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                           Figure 5.14 X Axis Acceleration Measurement 

 

To estimate position, data was fused from both the x axes, for one revolution at 200 Hz as 

shown in the figure 5.14. A low sampling rate was chosen for rotational speed of 11rpm. 

The true position was 0.62 meter. With double integration, unbounded error of nine meter 

was seen at half interval time. Kalman estimated the position as six meter. By using 

smoothing algorithm this error was reduced almost by four meters as shown by blue 

smoothed data in figure 5.15. 
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Figure 5.15 Position Estimation - 1x  and 2x  Data Fusion 

 

Figure 5.16 shows the respective Kalman filter gain. As the filter converges to true value, 

Kalman gain decreases from 1 to 0.1 within first few seconds. By fusing all 4 axes data 

with Kalman filtering, estimated position and smoothed output was recorded at variable 

speed of 14, 16, 18 and 21 rpm. Figure 5.17 shows position error at different speeds after 

and before filtering at the end of one revolution. 
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                                                          Figure 5.16 Kalman Gain  

 

       

Figure 5.17 Unbounded Integrated Error and Smoothed Estimated Error at Different 

Speeds. 
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5.5 Tilt Measurement 

 

As explained in the previous section, angular acceleration can be recorded by gathering y 

axis data from each sensor. Angular acceleration was calculated by using equation 4.55. 

Figure 5.18 shows raw noisy angular acceleration measurement and Kalman estimation at 

11 rpm and 200Hz sampling rate.  
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             Figure 5.18 Acceleration and Kalman Estimation at Speed of 11 rpm 

 

5.6 Angular Position Estimation 

 

The angle can be determined by integrating angular velocity as given by the equation, 
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)( 1tti   Where it  is the instantaneous time and 1t  is time recorded at first +g 

acceleration. Smoothed estimate showed an error of -10º in the angular measurement. 
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Figure 5.19 Angular Estimation 

 

5.7 Summary of Results 

 

It was observed that the integrated position error increases over time and the output was 

unacceptable for estimating correct position. In addition, it was noted that the Kalman 

filter successfully minimizes this error by combining all available sensory data and 

predicted position with the help of proposed bias drift error model. RTS smoother 

algorithm considerably reduces the position error by running the Kalman filter in 

backward direction. Similar behaviour was observed in angular acceleration 

measurement. 
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CHAPTER 6 

 

Conclusion and Recommendations 

 

In this thesis, accelerometer error model was developed for testing, calibrating and 

evaluating performance of acceleration sensors for short term distance measurements. 

High Accuracy at low speed was achieved by using Kalman filter algorithm and it was 

further enhanced by using smoothing technique. Furthermore, the experimental results 

showed accelerometer as an effective, low cost, secondary sensor for short distance 

estimation in absence of other guided sensors. 

 

6.1 Conclusion 

 

This thesis work was primarily focused on understanding error sources in accelerometer 

sensor, calibrating and building proper error model scheme for optimum position 

estimation. This work was an attempt towards reducing sensor errors for more accurate 

navigation system. The contribution includes complete mechanical design for testing and 

calibrating adxl 335 accelerometer sensor using appropriate error model scheme. Tuning 

of Kalman filter by selecting optimum values of process noise covariance and 

measurement noise covariance played an important role in rapid estimation of angular 

velocity and position.  As the process covariance value increases, prediction improves but 

at the cost of increase in error. The algorithm was verified and tested for several constant 

speed rotations.  
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Various experiments were performed to validate error model for calibration. An average 

position error of 0.10 m had been seen after applying the error model in the Kalman 

algorithm. RTS algorithm was executed on the filtered data in offline mode.RTS 

smoother algorithm was introduced in the Kalman filter estimation for precise position 

estimation. It is observed that smoothing algorithm is more efficient than Kalman filter 

alone. It minimizes the mean square error at faster rate than the extended Kalman filter. 

The computational complexity of Kalman–smoother algorithm increases with increase in 

number of sensors used in data fusion. The smoothed output shows reduction in position 

error by 72 %. Accuracy could be further increased by including all the accelerometer 

error sources in an improved error model scheme.  

 

6.2 Recommendations 

 

In future research work, the smoothed output obtained by Kalman filter may be used to 

control DC motor speed as desired, with the use of force feedback. In that case, Kalman 

filter can be modeled as a controller for motor. A similar concept had been developed by 

[25] for controlling steering wheel. The nonlinear factors such as backlash and friction 

associated with motor can be modeled in the Extended Kalman Filter (EKF) for better 

prediction.  

 

The calibration was performed specifically for ADXL 335 sensor. A parallel error model 

may be used for other manufacturers ICs as well. Calibration was performed on serial 

link with the help of rotary electrical connector to eliminate communication errors 

associated with wireless link. Wireless sensing techniques may be used to acquire data 

from sensors for real time applications. Furthermore, calibration and testing of other 

sensors such as gyro or optical encoders can be accomplished by using appropriate error 

modelling. Additionally, GPS and gyroscope sensors may be used along with 

accelerometer sensor by sensor fusion method to increase accuracy in the position 

estimation for various robotics and navigation applications. 
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Appendices 

 

A.1. Sensor Fusion Two Dimensional Error Model 

The complete states of the system considering both the 2D axes, the number of states 

would be 14 as shown by equation,  
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Where, 
1xP is x axis position state, xV  is the velocity, assumed to be nearly constant and 

xa  is the x axis acceleration for sensor 1A . Similar set of states are mentioned for 

sensor 2A . The transition matrix for above model can be written as, 
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The deterministic input will control the error model depending upon bias drift.

 

Observation matrix contains acceleration measurement as,

 

]00100100100100[C   

 

It takes all the acceleration measurement into consideration. 

The process covariance matrix Q can be expressed as, 
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With spectral power density, W= 1rad/sec. 
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Thus the complete process model can be represented as, 
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A.2. Motor Speed Estimation 

To determine position of the rotating wheel, it‟s important to look at the basic equations. 

Distance travelled per revolution: 

Wheel diameter = 30 cm  

Perimeter value gives the distance traveled per revolution of wheel.  

Perimeter = pi* diameter = 3.14 * 30 cm =   94.2 cm/rev 

Angular Velocity= rotation* perimeter of rotating wheel 

Thus at constant rotational speed of 11 rpm (11/60=0.1833), 

        W = 0.1833* 94.2 

      =17.26 Cm/sec 

      =17.26/100=0.1726 m/s 

 

There are 2 π (pi) radians (about 6.283185) in a complete circle. 

 1 rad = 360
o
 / 2 π =~ 57.29578

o        
 

The radian is defined as the angle subtended at the center of a circle by an arc of 

circumference equal in length to the radius of the circle. 

Converting angular velocity to other units 

 1 rad/s = 9.55 r/min (rpm) = 0.159 r/s (rps)      

Power= dW/dt  which is , rate of doing work. 

     Thus, Power= τ* ω where ω is the rotational Velocity.  

Motor Torque τ stall is the maximum torque at 0 rpm. And ωn  is the maximum speed 

when torque is 0 also known as no load speed.  
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As we observe the equations we realised that the torque and rotational speed is inversely 

proportional to each other. 

Power Requirements 

Pout= Force*Distance/ Time 

= Force* Velocity 

= Torque* Angular Velocity 

 

Torque = 0.32 Nm 

Expected velocity = 3 m/sec=0.066 m/sec 

Thus Pout= 0.32 *0.066= 0.0211 watts 

Table A.1 shows DC controller current settings and corresponding constant speed in 

RPM. 

 

Table A.1    Motor controller RPM setting 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

DC controller Current  

settings(A) 

RPM 

2   8 

3 11 

4 14 

5 16 

6 18 

7 21 
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A.2.1 Technical Specifications 

 Item: Dayton DC gear motor  

 Type: Permanent Magnet 

 Shaft Orientation: Parallel 

 Nameplate RPM: 31 

 Full Load Torque (In.-Lbs.): 220 

 Voltage Rating: 90 VDC 

 Overhung Load (Lb.): 150 

 Input HP: 1/8 

 Gear Ratio: 58:1 

 Full Load Amps: 1.27 

 Enclosure: TENV 

 Thermal Protection: None 

 Ambient (C): 40 

 Rotation: Reversible 

 Mounting: All Position 

 Length Less Shaft (In.): 10-1/8 

 Shaft Dimensions (In.): 5/8 x 1 1/2 

 Bearings: Needle Roller and Thrust Balls on Case, Ball on Motor 

 Lubrication: Permanent Heavy Fluid Gear Oil 

 Brushes: Externally Replaceable 

 Gear Case: Die Cast Aluminum 

 Gears: Hardened Steel 

 Seals: On Input and Output Shaft 
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Gear Motor DC Speed Control 

Brand: Dayton, Model: 6A191SKU: 59093 

Tech Specs 

 HP: 1/35 to 1/6 

 Voltage Output: 90 

 Input Voltage: 115 

 Speed Range: 15:1 

 Speed Regulation: 10 to 30% 

 Mount Type: Direct, Eliminates Need to Run Long Wires from Control to 

Gearmotor, Offering a Streamlined, Compact Drive 

 Includes: Convenient Speed Adjustment Right at the Gearmotor 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.drillspot.com/brand/Dayton
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A.3 Mechanical Design  

 

 

 

 

 

 

 

 

 



  83 

 

 

Bibliography 

[1] U. Nehmzow "Mobile Robotics: A Practical Introduction" Springer-Verlag London 

Ltd.,pp 8-15, 2003.  

[2] Robotics Research Group, "History of Robotics", Texas University, 2003, [Online].  

Available: Robotics, http://www.robotics.utexas.edu/rrg/learn_more/history/ [Accessed: 

22/8/2010] 

[3] Bluebotics,"roboX, Interactive Tour Guide Robot" RoboX, 2001, [Online].Available: 

http://www.bluebotics.com/entertainment/RoboX/. [Accessed: 22/8/2010] 

[4] J. Leonard and H. Durrant-Whyte. "Mobile robot localization by tracking geometric 

beacons". IEEE Tranactions on robot automation ,vol 7(3), pp. 376-382, 1991.  

[5] A.Singhal. "Issues in autonomous mobile robot navigation", Report, University of 

Rochester, pp. 3-12, 1997. 

[6] J. Borenstein and L. Feng. "Measurement and correction of systematic odometry 

errors in mobile robots". IEEE Transactions on Robotics and Automation : A Publication 

of the IEEE Robotics and Automation Society. 12(6), pp. 869, 1996.  

[7] L. Ojeda and J. Borenstein. "Methods for the reduction of odometry errors in over-

constrained mobile robots." Autonomous Robots 16(3), pp. 273-286, 2004. 

[8] M. Park and Y. Gao. "Error analysis and stochastic modeling of low-cost MEMS 

accelerometer." Journal of Intelligent and Robotic Systems: Theory and Applications 

46(1), pp. 27-41, 2006.  



  84 

 

[9] P. Aggarwal. "A standard testing and calibration procedure for low cost MEMS 

inertial sensors and units." The Journal of Navigation, vol 61(02), pp. 323, 2008.  

[10] M El-Diasty, A El-Rabbany and S Pagiatakis. " Temperature variation effects on 

stochastic characteristics for low-cost MEMS-based inertial sensor error" Measurement 

Scienct and Technology, vol 18, no. 11, 2007.  

[11] G. Welch and G. Bishop. "An introduction to the Kalman filter" UNC-Chapel Hill, 

TR 95-041, July 24, 2006. 

[12] M. S. Grewal and A. P. Andrews." Kalman Filtering: Theory and Practice using 

MATLAB  John Wiley and Sons ,Inc. pp 457-470, 2008. 

[13] D. Jonathan and H. Oliver, "Mobile Robot Navigation", surprise journal, 1997, 

[Online].Available:http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol4/jmd/.[Accessed

:3/7/2010] 

[14] B. Barshan." Evaluation of a solid-state gyroscope for robotics applications." IEEE 

Transactions on Instrumentation and Measurement 44(1), pp. 61-67, 1995. 

[15] B. Barshan, H. F. Durrant-Whyte "An inertial navigation system for a mobile robot." 

proceeding of 1993 IEEE International conference on intelligent robots and systems, pp 

2244-2247, 1993. 

[16] J. Borenstein, H. R. Everett and L. Feng. " Navigating Mobile Robots , Systems and 

Techniques, A.K .Peters Ltd.,Wellesley,MA,pp. 23-26, 1996. 

[17] C. L. Nelson and D. S. Fitzgerald. "Sensor fusion for intelligent alarm analysis." 

Security Technology, 30th Annual 1996 International Carnahan Conference., pp 1143-

145, 1996.  



  85 

 

[18] J. Z. Sasiadek." Sensor fusion." Annual Reviews in Control ,vol 26(2), pp. 203-228, 

2002. 

[19] J. Bergeron and M. Looney. "Making MEMS accelerometers work in motion 

control" EETimes-Asia, pp 13-15, 2007. 

[20] S. Jeon." Benefits of acceleration measurement in velocity estimation and motion 

control "Control Eng. Pract. vol 15(3), pp. 325, 2007.  

[21] H. H. S. Liu and G. K. H. Pang. "Accelerometer for mobile robot positioning." 

Industry Applications, IEEE ,pp. 812-819, 2001.  

[22] M. S. Miah, W. Gueaieb, M. A. Rahman and A. El Saddik." Autonomous dead-

reckoning mobile robot navigation system with intelligent precision calibration." 

Instrumentation and Measurement Technology Conference Proceedings. IMTC IEEE,  

pp. 5-9, 2007. 

[23] K. S. Mostov, A. Soloviev and T. J. Koo. "Accelerometer based gyro-free multi-

sensor generic inertial device for automotive applications." Intelligent Transportation 

System, ITSC 97. IEEE Conference on pp. 1047-1052, 1997. 

[24] S. Nikbakht, M. Mazlom and A. Khayatian. "Evaluation of solid-state accelerometer 

for positioning of vehicle." Industrial Technology, ICIT IEEE International Conference 

pp. 729-733, 2005. 

[25] J. Switkes " Using MEMS accelerometers to improve automobile handwheel state 

estimation for force feedback." American Society of Mechanical Engineers, Dynamic 

Systems and Control Division (Publication) DSC 73(2), pp. 1271-1278, 2004. 

[26] Y. K. Thong, M. S. Woolfson, J. A. Crowe, B. Hayes-Gill and R. E. Challis. 

"Dependence of inertial measurements of distance on accelerometer noise." Measurement 

Science and Technology 13(8), pp. 1163-1172, 2002.  



  86 

 

[27] M. Park, "Error Analysis and Stochastic Modeling of MEMS based Inertial Sensors 

for Land Vehicle Navigation Applications" sensors, MDPI org ,pp 2240-2261, 2004. 

[28] R. Carver and M. Looney. "Calibrate accelerometers for industrial applications."EE 

Times-Asia, pp. 1-4, 2008. 

[29] C. Acar and A. M. Shkel." Experimental evaluation and comparative analysis of 

commercial vaiable capacitance MEMS accelerometers" J Micromech Microengineering 

13(5), pp. 634-645, 2003. 

[30] Vector Nav "Inertial measurement unit and inertial navigation" 2009, [Online] 

Available:  http:www.vectornav.com ,[Accessed: 30/6/2010].  

[31] P. B. Reddy. "On stationary and nonstationary models of long term random errors of 

gyroscopes and accelerometers in an inertial navigation system." Presented at Decision 

and Control Including the 16th Symposium on Adaptive Processes and A Special 

Symposium on Fuzzy Set Theory and Applications, 1977. 

[32] H. Seidel, R. Burghardt, B. Hartmann, R. Gottinger, M. Aikele, K. Kapser, W. 

Gessner and J. Valldorf, "A Low-g Accelerometer for Inertial Measurement Units," VDI-

Buch, Springer Berlin Heidelberg, vol. 978-3-540-76988-0, pp. 349-358, 2003.  

[33] W. T. Ang, P. K. Khosla and C. N. Riviere." Nonlinear regression model of aLow-g 

MEMS accelerometer". Sensors Journal, IEEE 7(1), pp. 81-88, 2008.  

[34] G. Aslan and A. Saranli, "CHARACTERIZATION AND CALIBRATION OF 

MEMS INERTIAL MEASUREMENT UNITS,"16
th

 European Signal Processing 

Conference,  Lausanne, Switzerland,pp 1-5, 2008. 

[35] Analog devices,"ADXL335", 2008, [Online]. Available: http://www.analog.com 

/static/importedfiles/data_sheets/ADXL335.pdf. [Accessed:16/2/2010]. 



  87 

 

[36] C. Bouten "Triaxial accelerometer and portable data processing unit for the 

assessment of daily physical activity." IEEE Trans. Biomed. Eng. 44(3), pp. 136-137, 

1997. 

[37] M. Stakkeland, G. Prytz, W. E. Booij and S. T. Pedersen. "Characterization of 

accelerometers using nonlinear kalman filters and position feedback." IEEE Transactions 

on Instrumentation and Measurement 56(6), pp. 2698-2704, 2007.  

[38] S. Bogatin."Evaluation of linear kalman filter processing geodetic kinematic 

measurements. Measurement 41(5), pp. 561-568, 2008.  

[39] J. Gao." Research on an inertial positioning system for a parallel kinematic 

machine." Mechatronics vol 15(1), pp. 1-7, 2005.  

[40] J. Gao, P. Webb and N. Gindy." Evaluation of a low-cost inertial dynamic 

measurement system " Robotics, Automation and Mechatronics, pp. 5-10, 2008. 

[41] The MEMS and Nanotechnology Exchange Organization. "What is MEMS "2001, 

[Online].Available: http://www.mems-exchange.org/MEMS/what is MEMS [Accessed: 

3/12/2009]. 

[42] Clare, "What is MEMS accelerometer" Nano glass 2001, [Online]. Available: 

http://nanogloss.com/category/mems. [Accessed: 15/9/2009]. 

[43] IEEE Aerospace and Electronic Systems Society. Gyro and Accelerometer Panel. 

and Institute of Electrical and Electronics Engineers. 1999, IEEE Standard Specification 

Format Guide and Test Procedure for Linear, Single-Axis, Nongyroscopic 

Accelerometers .  

[44] D.W.Marquardt "An algorithm for least-squares estimation of nonlinear parameters" 

Journal of the Society for Industrial and Applied Mathematics, vol 11,no.2, pp431-441, 

1963. 



  88 

 

[45] Mercotac Inc."Electrical Connectors" 2001, [Online]. Available:http:www.mercotac. 

com /html/technicalinfo.html. [Accessed: 29/2/2009]. 

[46] X. FANG, J. ZHAO and Y. HU. " Tests and error analysis of a self-positioning 

shearer operating at a man less working face. "Mining Science and Technology (China) 

20(1), pp. 53-58, 2010.  

[47] G. Welch and G. Bishop. "An introduction to the Kalman filter" UNC-Chapel 

Hill,TR 95-041,July 24, 2006.  

[48] H. Symon , "Kalman filtering and neural networks," John Wiley & Sons, Inc., 2001, 

pp. 1-20, 2001.  

[49] S. Dan, "Optimal state estimation" NewJersy: John Wiley & Sons, Inc., 2006, pp. 

123, 2006.  

[50] A. Gelb, J. Kasper, R. Nash, C. Price and A. Sutherland."Applied Optimal 

Estimation" The Analytic Sciences Corporation, pp156-167, 1974.  

[51] H. E. Rauch, F. Tung and C. T. Striebel. "Maximum likelihood estimates of linear 

dynamic systems", AIAA J. 3, pp. 1445-1450, 1965. 

 

 

 

 

 

 

 

 


