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Abstract

Radial visualization methods have been used frequently in the field of information

visualization due to their compact design and aesthetic layout of data items that can

often aid in the communication of relationships between them. Published methods

offer varying levels of effectiveness however, due to restrictions in design, data and

interactivity. Their use is often restricted to particular data types, perspectives and

interfaces that may not completely match the needs of the analysis, facilitate detailed

data investigation or allow for knowledge discovery outside of what was originally

intended when the visualization was developed. We therefore present DataBurst,

an open, flexible data visualization that extends traditional concentric radial space-

filling diagrams using two methods of Focus+Context (Hyperbolic Distortion and

TearAway Subdiagrams) and uniquely leveraging three radial diagram characteristics.

DataBurst’s effectiveness with varying volumes and types of data is then shown with

case studies in two active areas of research (network security and bioinformatics) and

show that insight can be quickly gained by interactively viewing up to three attributes

of data at once in the context of the hierarchy of the data.
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Chapter 1

Introduction

Data visualization seeks to present large volumes of data in a manner that can be

easily navigated and investigated, and can effectively offer a level of insight that is

not immediately clear when analyzing the underlying data. Growing sources of data

are natural occurrences in many fields due to the need to store historical data, larger

disk or communication capacity, enhanced data collection techniques, or growth in

an organization or customer base.

The first task often employed when dealing with large amounts of data is data

summary, where we aim to reduce the volume and complexity of a large dataset such

that we do not remove information relevant to the analysis at hand. While correct

data aggregation can be difficult in some cases, it allows one to obtain a unique high-

level view of large datasets, making their usage tractable while still conveying enough

relevant information.

Reducing input data size and complexity has the additional benefit of producing

simpler and less confusing visualizations that are then easier to work with as well. But

visualizations that are attractive and easy to use are not by themselves useful. They

should facilitate insight into the data and support decision making that leverages

human logic and intuition, attributes that are not easily reproduced by computer

code.

There are many instances where human knowledge proves useful, especially so

when large quantities of noise data are present, as in the realm of computer networks

security where a very small quantity of intrusive network activity may be present

among a large amount of benign activity. Here we use the signal detection analogy

of [23], with intrusive activity as the signal, and the benign activity as the noise which

makes the former difficult to detect. It is also useful in cases where several very similar

entities need to be differentiated, as in the realm of bioinformatics, where amino acids

at particular positions of an influenza virus’ protein sequence confer resistance to

1
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particular antiviral drugs.

Described in this thesis, is DataBurst - a novel extension of radial space-filling

(RSF) diagrams that allows users to obtain a high-level view of hierarchical data,

employ two focus + context techniques 1 to investigate interesting subsets of data in

greater detail, and compare up to three numerical attributes simultaneously. We will

show, using two case studies, that these novel techniques allow analysts to flexibly

gain useful insight from their datasets.

This thesis is arranged as follows. A list of related visualizations and their short-

comings are surveyed and discussed in Chapter 2. As these cover a wide range of

visualization techniques often seen in various other implementations and academic

disciplines, we focus only on those that best represent the particular techniques and

are most related to the chosen case studies i.e. those related to general computer

science and computer network security.

Chapter 3 focuses on the diagram implementation, where we discuss the motiva-

tion for DataBurst’s creation and design (due to the previously identified shortcom-

ings), and present an example based on census data that showcases basic usage, input

data, radial attribute assignment and the two focus + context techniques.

Chapters 4 and 5 discuss an evaluation of DataBurst in two case studies, where

we discuss general aspects of analysts’ workflows in the fields of network security and

bioinformatics, and how insight can be gained from either sets of related data.

We end our discussions in Chapter 6 by summarizing all key contributions and

observations, and highlight useful suggestions for future work.

1Focus + context refers to a visualization technique that focuses on an area of higher detail
within the original diagram, much like viewing a document with a magnifying glass, which allows
the viewer to retain overall context [58].



Chapter 2

Background

This chapter introduces the necessary concepts and background knowledge used in

this thesis. We begin by describing the origins and general structural properties of

the Radial Space-Filling diagram used in this visualization. We then review previous

research efforts related to DataBurst and the network security case study performed,

focusing not only on their contributions, but their shortcomings that we believe are

addressed with DataBurst.

2.1 Radial Space-Filling Diagrams

Radial Space-Filling (RSF) diagrams are examples of space-filling diagrams in that

they maximally make use of a pre-defined and usually constant area of screen space.

Diagram components are scaled appropriately such that their relative sizes remain

the same, in much the same way as treemaps [62]. RSF diagrams were developed

from the need to visualize and interact with large data hierarchies, and the term was

first formally described by Yang et al. in their presentation of InterRing [74], even

though examples could be found in numerous research efforts that predate it.

Parent-child relationships among nodes may be expressed in the diagram - a parent

contains the child in a treemap, and in the case of RSF diagrams the hierarchy of

nodes is visualized using concentric rings. Each ring is divided into a number of

segments each representing a node, where parents are closer to the diagram centre

than their children, and the immediate children of an individual parent are adjacent

to it and occupy the same sector as the parent.

The basic structure of an RSF diagram can be seen in a simple genealogical fan

chart discussed in [21] and shown in Figure 2.1. The input data of this diagram is a

simple binary tree where each parent has two children (both genealogically and liter-

ally) and the great grandparent or root node, John McKay Baker, has 4 grandchildren

and 8 great grandchildren.

3
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Figure 2.1: Sample RSF diagram - Genealogical fan chart, reproduced from [21].

With respect to the radial diagram, nodes in the higher levels of the data hierarchy

are closer to the radial center, while those at the lowest level (the grandchildren or

leaf nodes) are located at the outermost ring. Additionally, a parent node has a radial

angle equal to the sum of those of its child nodes, and is positioned immediately next

to their children in the inner adjacent ring. The children of a node at level i then

would be located at level i+1, and would be in the outer adjacent ring.

The diagram structure in this way inherently describes the hierarchical relation-

ships between nodes being rendered.

We formally use the term radial angle as an angular measurement around the dia-

gram centre. We will later use the term radial size, which is a distance measurement

from the diagram centre. In Figure 2.1 the node representing Samuel Beckham has
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a radial angle of 45 degrees, and Esther Beckham’s radial size is roughly the same as

all others.

While formal evaluations that highlight radial space-filling diagrams’ effectiveness

over other types of visualizations are difficult to find (one can argue, due to the

many associated difficulties [57], that few such comprehensive evaluations exist for

many well known visualizations), Stask empirically showed that a circular space-

filling diagram is often preferred over a rectangular equivalent in particular search

and analysis tasks [64]. When study participants were asked to identify or compare

files or directories by the name, type or size (e.g. the largest file, deepest subdirectory,

duplicates etc), using both visualizations and the same dataset, higher performance,

both in correctness and time, was observed with the radial diagram.

Participants drew particular attention to the utility of having the structure and

hierarchy available when investigating the individual nodes with the radial diagram,

and having directories shown separately from their constituent files (in contrast to

the rectangular approach that placed files within directories). We agree that it is

this context and explicit separation of hierarchy levels that make radial space-filling

diagrams useful when visualizing many types of data.

However, participants of that study also noted that with large volumes of data,

leaf nodes became small enough that labels were difficult to see in the radial repre-

sentation. It is important then that useful visualization and interactive techniques

are present to assist users in identifying these nodes when necessary. Yang et al. also

cited this need in [74].

2.2 Related Work

We present a historical overview of a subset of those visualizations that are related

to DataBurst in varying degrees; listing their features and introducing necessary

terminology and ideas.

Note that for more recent solutions for complex datasets, multiple linked visual-

izations may be presented to the user at once on the same screen. We focus in those

cases on the subvisualizations that are most related.
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2.2.1 RSF Diagrams

Early forms of radial space-filling diagrams have predated InterRing [74], and bore

many similarities both in terms of presentation and interaction. These included the

cascading, semi-circular discs and information slices of Andrews et al. [4] as seen in

Figure 2.2, which presented one or more static half discs each showing 5 levels of a

local hard disk directory structure.

Each node on the semi-circular disc was sized to give an indication of the storage

space it consumes, and colour-coded based on file types present. Clicking on a sub-

directory in the outermost ring of one diagram would retrieve the following 5 levels

of directories (if present) in another diagram immediately to its right.

While this was a practical solution to the problem of large visualizations based on

deep data hierarchies, overall context could be lost when progressively traveling to

lower directory levels, and information of nodes in different discs could not be directly

compared.

Figure 2.2: Cascading, semi-circular discs, showing disk contents, reproduced from [4].
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(a) Basic SolarPlot with focus area. (b) SolarPlot and aggregate
treemap.

Figure 2.3: SolarPlot showing sales data over time, reproduced from [13].

Chuah’s SolarPlot [13] (Figure 2.3(a)) aggregated histogram data into bins that

were radially aligned around a centre point and employed varying types of automatic

and user-controlled aggregation techniques to reduce complexity. Focus + context

was employed by allowing a region of interest to be displayed within a sector of the

same diagram, while the remainder of the data display remains unchanged.

SolarPlots could be merged with aggregate treemaps to produce circular aggregate

treemaps (Figure 2.3(b)), which share several properties with RSF diagrams. The

author noted that some information loss is normally expected due to data aggregation,

which we surmise may hinder data exploration, as data bin components are not listed.

The goal with DataBurst is to ultimately show all input data, allowing the user to

view any data element present.

Stasko and Zhang’s Sunburst [65] (Figure 2.4(a)) also leveraged focus + context

by allowing either the global view to be scaled down while rendering a detail view of

select leaf nodes in a new ring surrounding it (called angular detail and detail outside,

shown in Figures 2.4(b) and 2.4(c)), or reducing the thickness of the circles in the

global view to render the detail view in the empty central area within it (referred to as

detail inside, shown in Figure 2.4(d)). This was done using transitions which helped
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(a) Initial view. (b) Angular detail.

(c) Detail outside. (d) Detail inside.

Figure 2.4: Sunburst showing disk contents and focus + context techniques, repro-
duced from [65].

the user track changes in focus, and kept the total amount of space used relatively

constant. Sunburst’s area of focus was however limited to the leaf level and could

potentially make it difficult to relate emphasized leaf nodes with their non-emphasized

parents and grandparents, leading to a loss of a valuable dimension of data.

InterRing’s main contribution were two distortion techniques, which both involved

the dragging of node edges. They were circular and radial distortion, which enabled

the user to enlarge a node’s radial angle and size respectively, by pinning one edge of

the node (so that it remains stationary), and dragging the opposite edge to shrink or

enlarge a node. Multiple selection, highlighting and hierarchy modification techniques

were proposed and adapted from other non-radial implementations e.g. structure-

aware brushing.
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Figure 2.5: InterRing showing 8 variables related to cars (e.g. MPG, horsepower etc.)
and circular (in a, b and c) and ring (in d, e, and f) distortions, reproduced from [74].

These two distortions are demonstrated in Figure 2.5, where a node with two

siblings (highlighted in Figure 2.5(a)) is expanded into the space held by either sibling

in Figures 2.5(b) and 2.5(c) using circular distortion, and a ring distortion is used to

increase the radial sizes of different nodes in the final two subdiagrams.

While this technique can powerfully create multiple focus areas within a single

diagram, we contend that interacting with individual diagram nodes can be difficult

(especially so with tiny nodes with short edges), and manipulating a group of con-

tiguous nodes individually may become tedious if their parent has many additional

children. We argue that a simpler distortion technique would suffice.

Ankerst, Keim et al. [5] presented one of the earliest variants of RSF diagrams,

Circle Segments, which was the first use of RSF diagrams to show evolution in time

for multi-dimensional data. A circle was split into a number of equally sized sectors,

which were each assigned to individual attributes. Each sector was subdivided equally

into time bins where earlier times were either closer to the circle centre or to the outer

edge, and node colours represented attribute values at that point in time.
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(a) CircleView and interface. (b) Radial Traffic Analyzer.

Figure 2.6: Two RSF diagrams by Keim (showing stock prices for 30 stocks from the
S&P 500 index and network communications) reproduced from [36] and [37].

Keim, whose primary work focuses on interactive visualization of large volumes of

multi-dimensional data, later augmented this technique with CircleView [36], which

enabled dynamic control of time ranges such that the user could examine different

periods of time, as shown in Figure 2.6(a)).

While these two visualizations can show multiple attributes at once and continuous

changes in their data streams over time, it would be difficult to do this for more than

a handful of objects and would not facilitate the comparison of attributes among

multiple objects. Keim addressed this problem by extending the concept in the Radial

Traffic Analyzer [37], and used the attributes of network communications to define a

data hierarchy which was then used to create an RSF with each attribute occupying

a separate ring. However, this diagram could only express attribute values through

the diagram structure, as seen in Figure 2.6(b) where source and destination IP

addresses and ports involved in network communications are individually shown in

the four concentric rings. No further information was available from this diagram e.g.

communication time stamps, volume of data transferred.

Collins’ DocuBurst [15], which serves as partial inspiration for this project, visu-

alized document content using language structure, allowing users to glean the general



11

Figure 2.7: DocuBurst and interface summarizing the content of a science textbook,
reproduced from [15].

idea of the content of a document by using word frequencies and lexical structures to

visualize semantic content. This is shown in Figure 2.7, where all concepts in a doc-

ument related to physical phenomena are shown, and searching for a particular word

causes it to be highlighted in orange in the radial diagram, the text segment browser,

and the fisheye distorted word browser to the right. This shows that while the word

‘electricity’ is not frequently mentioned directly, it is mentioned often toward the end

of the document.

Collins argues that, in this context, frequently occurring stemmed words (the base

or root word) are what most define a document’s semantic content and DocuBurst

therefore communicates word counts with node colour, opacity and size. This may

not be suitable in all cases, especially so for larger documents having rarely occurring

yet highly meaningful terms that cannot be navigated to in this radial diagram.
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2.2.2 Radial Diagrams

To an extent the hyperbolic browser of Lamping et al. [41] and bifocal tree of Cava

et al. [10] are examples loosely related to RSF diagrams, but are both simple graphs

(node-edge diagrams). The former visualization placed the nodes on a hyperbolic

plane and transformed this to a Euclidean circle, allowing for a considerably large

volume of data to be rendered while keeping the few nodes of interest at the centre

of the diagram. It is however, possible to lose overall context with a large enough

data hierarchy when the focus is near the leaf nodes causing the many higher nodes

to become compressed into one portion of the diagram.

(a) The hyperbolic browser. (b) The bifocal tree.

Figure 2.8: Two node-edge diagrams showing links between pages on Xerox’s web
server and disk contents respectively, reproduced from [41] and [10].

The bifocal tree bore some similarity to the hyperbolic browser, but rendered the

single data hierarchy in two intersecting circular areas. The nodes at the point of

interest and below were rendered in the rightmost circular sector, and the remaining

nodes were rendered in the leftmost sector. This provided for clear and informative

global and detail views, but could lead to a confusing loss of context when a distant

node of interest was chosen in the global view due to the lack of transition animations.

Heer et al. argued in [30] that transitions are necessary to help users track nodes and

better understand the relationship between different views.

It should be noted that item layout, overlapping and occlusion are common issues

with node-edge diagrams, as described by [19] and [35], especially with a large number
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of nodes with long labels. Radial space-filling methods do not suffer from these

drawbacks and have the ability to show significantly more information.

2.2.3 Network Security Visualizations

When displaying a scalar attribute over time, a line graph would suffice. Generally

speaking, most network security analyses investigate many attributes related to com-

munications between interconnected computer hosts, which cannot easily be done

with collections of line graphs, or graphs with a large number of overlapping lines.

These attributes describing communications include IP addresses (that uniquely iden-

tify computers on a network e.g. 192.168.0.1), ports used (software constructs through

which network services are provided e.g. FTP services are provided through port 21),

timestamps and duration of communication, number of bytes and packets transferred

(long bit streams are usually split into well-defined packets when transmitted), or may

be application specific (e.g. those derived from packet content or country of origin

across the World Wide Web). Many network security visualizations have investigated

this high-dimension and volume problem and a subset are categorized below.

Parallel coordinate plot visualizations project each vector data point as a polyline

passing through a set of parallel coordinates, one for each vector component which

equates to the each attribute to be visualized. With VisFlowConnect [75], authors

Yin et al. used source and destination IP addresses and ports as coordinate systems

to show that many network attacks such as virus outbreaks and denials of service,

can be easily seen when multiple lines intersect one or more points on particular axes.

A slider facilitates playback of historical communications, as seen in Figure 2.9(a).

Lee et al.’s Visual Firewall [44] followed a similar approach by rendering a large

box with edges representing coordinate systems, and showed data points having com-

ponent lines that join pairs of adjacent box edges. An example of this is shown in

Figure 2.9(b) where alarms produced by various intrusive activities are linked to for-

eign host subnets (subnets represent a group of computers e.g. the 192.168.0.0/16

subnet is made up of hosts 192.168.0.1 to 192.168.255.255) and victims (local subnet

IP addresses) in the context of time. It is this aspect that can make visualizations

of this type both useful and confusing, as a large dataset can produce a confusing

diagram having indistinguishable sets of overlapping lines.
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(a) VisFlowConnect and interface. (b) Visual Firewall.

(c) VISUAL and interface.

Figure 2.9: Two parallel coordinate visualizations and VISUAL, all showing network
communications over time, reproduced from [75], [44] and [6].
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In the second category, Scatterplots render attributes in two-dimensional (2D)

or three-dimensional (3D) space using points and/or connecting lines. Ball et al.’s

VISUAL [6] incorporated these by placing up to 2500 internal hosts in a grid (hosts

within the local area network), up to 10,000 external hosts around the grid (computers

on the internet) and connecting lines representing host to host communication in 2D

space. Boxes represented external host nodes, which were scaled based on their

volume of communication, and grid cells represented internal nodes arranged so that

hosts in a subnet occupied the same vertical line. Even with automatic external node

positioning, line colours showing traffic direction, interactive filtering and the ability

to view different time intervals, produced diagrams can be potentially confusing with

connecting lines overlapping external nodes and other lines. We see in Figure 2.9(c)

that communications between 1020 internal nodes and 183 external nodes over 80

hours has almost reached a level at which individual lines cannot be discerned.

Lakkaraju at al.’s NVisionIP [40] and McPherson et al.’s Portvis [50] were similar

in that they position points in 2D space, colour-coded to an attribute or change in

attribute, with the former using host number on the vertical axis and subnet number

on the horizontal, and the latter using the high order port and low order port on

the horizontal and vertical axes. Both can be seen in Figures 2.10(a) and 2.10(b) to

offer varying levels of detail and aggregation over time in multiple windows to help

preserve context, and are effective at identifying anomalous activities that produce

clusters of points or points that follow regular patterns e.g. lines with sequential port

or host scans. Scatterplots however in general perform poorly with low activity (that

produce little or no clustering) or covert attacks that follow irregular patterns, and

are limited by the number of attributes they can display simultaneously [50].

The third dimension was leveraged in Lau’s Spinning Cube of Potential Doom [43]

where coloured dots representing IDS alerts were placed in 3D space. It was also well

suited to showing similar types of attacks as NVisionIP and PortVis e.g. the straight

line produced by a scanning attempt when source and destination IP and destination

ports are mapped to the three axes in Figure 2.10(c). There is an added level of

complexity though, as with most 3D visualizations an ideal location for the camera

in 3D space must first be sought in order to see particular attacks, especially when

numerous clustered alerts cause occlusion or ambiguity.
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(a) NVisionIP and interface. (b) PortVis and interface.

(c) Spinning Cube of Potential Doom.

Figure 2.10: NVisionIP, PortVis and the Spinning Cube of Potential Doom, all show-
ing network communications over time, reproduced from [40], [50] and [43].
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In the third category, Glyph-based (informative icons or graphics) visualizations

extend scatterplots by mapping multivariable entities to glyphs placed in 2D or 3D

space. Koike et al.’s SnortView [38] arranged IDS alerts (which describe abnormal

network activity) on a 2D graph by IP address and time, where the shape represented

the type of attack and colour represented attack severity. We see a number of severe

attacks in red in Figure 2.11(a) over several protocols. Erbacher utilized thick, double,

cross hashed or dotted coloured arrows to represent multiple types of communication

between hosts e.g. unauthenticated connections, failed password attempts, privileged

FTP connections and possible attacks in [24]. The arrows can be thought of as glyphs

themselves. Glyphs representing servers were circular, but could show mail activity,

system load, disk usage and number of users using multiple concentric circles of vary-

ing thickness and radiating spokes. While these glyph diagrams can certainly contain

a large quantity of helpful information, we surmise that they could be unnecessarily

complex for most users and would require a comprehensive legend and some time to

fully understand, as seen in Erbacher’s multiple network communications to a single

server over time in Figure 2.16(b).

Network security visualizations have also leveraged space-filling techniques. Mans-

mann’s Hierarchical Network Map (HNMap) [48] showed aggregated network traffic

entering a host or gateway for a data hierarchy of Continent, Country, Autonomous

Systems (AS) and Network, based on the IP addresses of incoming communications in

a rectangular interactive treemap. Rendered boxes represented nodes at a particular

level in the hierarchy, and children nodes were placed inside the parent boxes. Nodes

physically close to each other were rendered closer (e.g. neighbouring countries were

adjacent in the diagram), and nodes were sized proportionally to the number of IP

addresses contained, with node colour representing any attribute of communication

e.g. bytes transferred in all autonomous systems in Figure 2.11(c). As one can move

up or down the hierarchy easily, HNMap can effectively show worm propagation or

high-activity nodes of interest at any level of the hierarchy, though the amount of

information displayed can be overwhelming.

Hilbert Curves are an example of space-filling curves, that were used in [34] to

create well defined clusters of similar IP addresses as points, and visualized aggregate

communication between them as a continuous fractal space-filling curve.
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(a) SnortView showing alarms generated over
time from multiple hosts.

(b) Erbacher’s glyphs showing communi-
cations to a server over time.

(c) Hierarchical network map showing bytes transferred from external networks.

Figure 2.11: SnortView, Erbacher’s Glyphs and the Hierarchical Network Map, re-
produced from [38], [24] and [48].



19

Figure 2.12: TNV showing communicating hosts over time with associated packet
details, reproduced from [27].

Many visualizations focus on communication changes over time. Goodall et al.’s

Time-based Network traffic Visualizer (TNV) [27], rendered network packets as blocks

by IP address and timestamp (on the x- and y-axes respectively), colour-coded by

number of packets transmitted, and showed communication between hosts as lines

(web traffic in Figure 2.12). It supported the focus + context technique of widening

nodes at the time period of interest (near the centre column) and multiple levels

of detail (including port activity to the right, and individual packet details to the

bottom) for selected hosts and intervals. This allowed for viewing communications in

their historical context (via the histogram showing all communications that facilitates

navigation to different time periods) and assisted in identifying abnormal activity.

However, comparing attributes of multiple hosts in different time periods was not

possible.
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Figure 2.13: ISIS showing multiple stages of an investigation and the resulting event
plot of communication over time, reproduced from [55].

Phan et al.’s ISIS [55] also highlighted temporal relationships by using progressive

multiples of timelines and event plots, where analysts progressively viewed timelines

of network activity for hosts that were related in some way to an individual focus IP

(75.64.71.22 in the example given in Figure 2.13 with five timelines in two queries).

Timelines showed packets transferred against time, and all timelines were visible at

once to provide historical context.

The event plots were scatterplots with glyphs for different events, and allowed the

analyst to determine activity patterns across hosts and how they changed over time.

The event plot in Figure 2.13 shows communications from the compromised focus IP

where the intruder logged in via SSH (the traffic represented in blue in the first two

rows) and installed an unauthorized IRC server which became active soon after (the

large volume of traffic in red).

As ISIS could only render single attributes over time per host, multiple attribute

comparison from a host e.g. comparing activity on different ports, was not possible.
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Figure 2.14: Spiralview showing a number of alarms generated over time together
with associated data, reproduced from [9].

Bertini et al.’s SpiralView [9] emphasized not only how IDS alarms were generated

over time, but how they were related to network resources (users, hosts or services).

Its primary goal was visualizing the evolution of a changing network and assisting in

network administration. Alarms within a 24 hour period were rendered in a circle

(those occurring at midnight at the topmost point, and 6pm at the lowermost), and

time periods were placed in chronological order, with older periods being closer to

the diagram centre and newer periods closer to the outer diameter. This allowed for

periodic behaviour to be seen in circle sectors, which is useful for alarms happening

at particular times of day.

Alarm type and severity were communicated with node colour and size respec-

tively, and the visualization allowed for zooming, dynamic alarm filtering and selec-

tion of visible alarms. A subdiagram showed relationships between any pair of users,

hosts and applications, and highlighting a group of alarms updated related histograms
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Figure 2.15: Edge bundles where connecting lines represent procedure calls between
modules, reproduced from [32].

and user, host, or application pairs.

We see in the SpiralView of Figure 2.14 a large number of alarms characterized

by the many gray dots, and a particular alarm type occurring frequently, and at

particular times in a day (shown in yellow with the spikes around 9am and 9:30pm).

Related categories for this alarm type are also shown in the histograms to the right in

yellow. Highlighting the subset recurring at 9:30pm shows that they were all generated

by the same user and application (denoted by the single red line in the user-application

line graph). Alarm occlusion was unfortunately possible in this spiral diagram.

Many visualizations display entity relationships using connected lines, a process

that has been shown to produce confusing results when multiple lines overlap, espe-

cially with basic parallel coordinate plot visualizations e.g. Ball et al.’s VISUAL [6].

Holten’s edge bundling [32] solved this problem by modeling B-spline curves on the

polylines produced by the vector data points. This resulted in lines connected to sim-

ilar entities being bundled together, in the same manner as cable ties. Visual clutter

then can be substantially reduced while emphasizing relationships between groups of

related nodes. Bundling lines representing function calls between software modules

highlight those modules that are called most often, as seen in Figure 2.15.

This technique has been used to great effect in many visualizations where rela-

tionships are overlaid onto existing diagrams (e.g. Mansmann et al.’s HNMap was
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augmented to show host communications between continents, countries, autonomous

systems (AS) and networks [47] as shown in Figure 2.16(a) where high volume AS

to AS communications are highlighted), and where hosts in two groups were aligned

around the half-circumferences of a circle and network flows between the groups were

represented as edge-bundled lines in Taylor et al.’s FlowBundle [69] (line thickness

and colour were used here to represent activity volume and direction, and nodes were

arranged on the edge of the circle, as seen in Figure 2.16(b)).

(a) Hierarchical network maps showing host communication without and with edge bundling.

(b) FlowBundle showing host communication with and without edge bundling.

Figure 2.16: Two examples showing edge-bundled network communications, repro-
duced from [69] and [47].
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2.3 Limitations of Prior Approaches

We have seen how many research efforts solve specific analysis problems using various

visualization techniques. In conducting this survey, it became apparent that some

shortcomings were not sufficiently addressed, which could possibly hinder the use of

those visualizations in other areas, or force analysts to use third-party or in-house

tools to preprocess their data before it is visualized.

While it is difficult to say whether the surveyed visualizations are generalizable

beyond a particular intended purpose, we surmise that it would be mentioned if such

were the case (either explicitly by describing them as generalized tools, or implicitly

in discussing their use with other types of data).

We have also seen instances where limited drill-down abilities are available and

analysts may not have access to base data that would offer insight into a group of

aggregate data. Content layout and label readability are often areas of concern as

well, where item occlusion and incorrect sizing can severely reduce the effectiveness

of the visualization.

Multiple focus + context techniques were also described, ranging from the simplest

(SolarPlot’s sector zooming) to the more complex (multiple regions of interest via

edge dragging with InterRing), with one focusing strictly on leaf nodes of interest

(Sunburst). A simpler mechanism requiring fewer mouse clicks should suffice in most

cases, such that the RSF diagram properties and context are preserved.

And finally, the majority of visualizations surveyed are limited to showing just

two attributes at a time (with attempts at showing a third in the Spinning Cube of

Potential Doom unnecessarily increasing the amount of interaction required), and in

those cases did not incorporate any present data hierarchy. Concurrent visualization

of up to three attributes in the context of the data hierarchy would enable greater

insight to be obtained in a shorter period of time.



Chapter 3

DataBurst

The DataBurst visualization builds on traditional radial space-filling diagrams by

facilitating novel methods of data exploration and providing not only a high-level

view of all input data at once, but the relationships between up to three associated

numeric attributes. It was developed in C++ as a plugin to the open source FloVis

framework [69] using freely available libraries including wxWidgets, OpenGL and

FreeType 1.

This chapter describes the DataBurst visualization pipeline in depth, beginning

with the input data format, followed by a discussion on how data attributes can be

visually represented and compared, and ending with descriptions of available methods

of working with large volumes of data.

3.1 Motivation

Three main issues have motivated the development of DataBurst from the shortcom-

ings observed in the literature review.

The first is the need for new interactive techniques when working with large vol-

umes of data such that an analyst can move smoothly from an overview of all data to

a more detailed view of a subset of the data, without losing overall context in a radial

space-filling diagram. This will be accomplished through the novel implementation

of Hyperbolic Distortion and TearAway subdiagrams.

The second issue is the fragmented and highly specialized visualizations available

for data analyses thus far, which have been created for specific problem areas and

make use of particular datasets. A flexible and extensible tool is therefore needed,

which can visualize potentially any constant-depth hierarchical data for the purposes

of analysis.

1www.wxwidgets.org, www.opengl.org and www.freetype.org respectively
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The third and final issue is the need to view three numeric data attributes simul-

taneously in the context of the data hierarchy - a limitation that forces the analyst

to visually and mentally compare multiple visualization instances (or worse yet, from

memory) in order to investigate more than two attributes.

3.2 Input Data Format

The underlying input data rendered by DataBurst takes the form of the classic tree

structure representation, which contains a single root, and all nodes are the parent

of one or more child nodes (except the leaf nodes at the lowest level). Using graph

theory terminology, it is a connected and directed graph where all nodes save the root

have one in-edge, and all nodes save the leaves have one or more out-edges.

Only constant depth trees are currently considered, as these constitute the major-

ity of use cases where we would like to compare and contrast a number of leaf edges

that are all at the same level i.e. they are all related to the same constant number of

parents. It should be noted that a variable depth tree can be simulated by assigning

a number of dummy parent nodes to all leaf nodes not at the lowest level until all

leaves are at the same level.

Currently, input data is submitted via flat, pipe-delimited text files, where each

line contains a fixed number of alphanumeric elements. If any one line of data contains

more or fewer elements, this would produce a variable depth tree, which is not natively

handled by DataBurst. It is up to the user to ensure that the datatypes of the elements

in each column are all the same type.

The example data used in this section originated from census data of three major

english speaking countries - Canada, United States of America and the United King-

dom, and were sourced from the freely available online resources: Statistics Canada,

the US FBI’s Uniform Crime Reporting Program and the UK’s Office of National

Statistics 2. The data chosen in this example contain the unemployment rates, popu-

lation densities (per square kilometer) and crime rates (per 100,000 persons) in major

areas of those countries.

One would be motivated to capture data of this kind in order to compare different

statistics at both the country and area levels, and in this case we are interested in

2www.statcan.gc.ca, www.fbi.gov/ucr/ucr.htm and www.statistics.gov.uk respectively
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any relationships between unemployment and crime. Other interesting statistics like

household income, education level and economic activity would be useful ones to

include here, but are not easily included for several reasons (listed below).

It should be noted that an analysis of this kind should not be taken lightly as

only like statistics should be compared e.g. crimes considered should all be of the

same type (all recorded violent non-household-related crimes in this case), and record-

ing practices, sampling frequencies and classification schemes may vary greatly from

country to country and even area to area within a country. The unemployment or

crime rate may also be more indicative of the population in an area than the number

of unemployed or crimes committed there e.g. one area’s crime rate can be 10 times

lower than another if they both have the same level of criminal activity and the former

is 10 times more populous.

These reasons, together with the fact that some data were only available for 2008

while others only for 2009, allow this data to be useful in demonstrating the visual-

ization, but not accurate or complete enough for a case study and thorough analysis.

We make the assumption that statistical changes between the two consecutive years

are not drastic.

We aggregate some areas only to ensure that nodes are large enough to produce

legible labels in the sample diagrams solely for the purposes of demonstration e.g.

averaging the results of North East and North West England into a single North

England entry, and doing the same for all 50 of the United States into the four

geographic regions used by the United States Census Bureau 3. One may potentially

not want to lose such detail in a real-world analysis.

A sample of the census input data is included below:

Canada|Atlantic|11.4|13.615|887.25

|Quebec|8.5|5.76|756

|Ontario|9.0|14.29|756

USA|Midwest|5.14|40.2|343.1

|Northeast|5.47|200.41|282.4

|South|5.5|281.9|565.53

|West|5.23|23.05|394.08

3http://www.census.gov/geo/www/us_regdiv.pdf
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Figure 3.1: DataBurst’s file input specification dialog.

Elements in each line of input data are categorized as hierarchy elements or data

attributes. The former are used to place the node represented by that line of input,

within the defined hierarchy, while the latter are positive numbers associated with

that node. Empty elements in a particular line of input are interpreted as a repeated

value from the last entered element in a previous line (in this case, the Canada value

would be carried down to the following two lines). This reduces the size of input data

files with complex hierarchies, and speeds the loading of this data at startup.

The column labels and data hierarchy are defined when the user first loads the

input data into the visualization, using the dialog shown in Figure 3.1. The user

provides column labels, selects the columns that are to be included in the hierarchy

or as data attributes and enters lower limits of numeric values to be visualized in the

Data Columns section e.g. to only show unemployment rates above 5%. Different

lines of input data can be viewed in the Example Value column using the Start From

Line spinner at the top of the dialog. The unique list of non-alphanumeric characters

in the first line of input data are presented to the user in the Data Separator combo

box, so that any one can be selected if the default pipe-separator was not used.

Selected hierarchy columns can then be dynamically reordered to produce the
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desired hierarchy in the Hierarchy Columns section. In Figure 3.1 we see the first two

columns are included as hierarchy elements, as we would like to see all areas within

each country. The remaining elements are included as data attribute elements, and

are listed in the Attribute Columns section. The data hierarchy and data attribute

definition are collectively referred to as metadata.

As in most instances a large volume of data would be present in the input file, the

metadata is maintained by DataBurst and stored in a separate file (with the same

name and the extension txt meta) so that it can be dynamically updated from the

interface without having to reprocess the input data in any way. An update that is

often performed is the reorganizing of the defined data hierarchy e.g. visualizing the

data grouped by country and then year to see individual changes over time, or by

year and then country to see aggregate changes over time.

In instances where summary data are visualized, the detailed data can be stored in

another file (again with the same name but with the extension txt detail), such that

the component elements of particular groups of interest identified in the visualization

can be retrieved e.g. clicking on the Yorkshire node could load statistics for Yorkshire

cities into the clipboard if present. This can be critically important in many analyses

where certain groups of data are outliers and analysts need to investigate the base

data to determine the cause.

3.3 Basic Radial Structure and Interface

The default rendering of a DataBurst places all leaf nodes on the outermost ring.

Leaf nodes are assigned the same radial angle (equal to 360/n, where n is the number

of leaf nodes, such that they completely fill the outermost ring), and the same radial

size (100 pixels in this case). The former is an angular measurement around the

diagram centre, and the latter is a distance measurement from the diagram centre.

Parent nodes are then rendered such that their radial angle is equal to the sum of the

radial angles of their children, and their radial size is the average of the radial sizes of

their children, and they are one level above their children (and therefore closer to the

diagram centre). Note that the default colour scheme simply differentiates diagram

nodes and does not initially communicate any meaning.

Render order takes place counterclockwise, starting by default from the zero degree
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Figure 3.2: DataBurst interface and diagram for given sample data. Saskatchewan
highlighted.

angle (the horizontal line that moves to the cardinal direction east from the diagram

centre, or the positive x-axis using graph terminology). Figure 3.2 shows the rendered

output of the example census data described in the previous section, where the N.

England and West USA nodes are first and last nodes rendered in the outer ring.

The user can move the mouse cursor over any node and receive pertinent metadata,

input data values and individual or aggregate attribute values. The first describes the

type of data at the particular level (depending on the defined hierarchy, Area in the

highlighted case above), and the last is either the list of all attribute values for a leaf

node, or the total of all attribute values for a group of related nodes. The former is

shown in Figure 3.2 while the latter would be seen for any parent node (statistics at

the country level). The first attribute is always the total group count for parent nodes

(USA would have a group count of 4), while the remainder are the data attributes

selected by the user (the three statistics in this case).
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Figure 3.3: Rendering labels of nodes with differing radial angles (using hyperbolic
distortion in this case).

Node labels are rendered character by character as textures, always along the

length of the node and are scaled down when their width exceeds their node’s width.

As texture operations are the most time consuming stage in the rendering process, a

node label is only rendered if its width is 1/4 or more of its original value (ensuring

that only readable labels are rendered). A node label’s opacity is also reduced when

its size is reduced, allowing it to progressively fade out the more it is deemphasized,

until it eventually disappears. Node labels are also flipped if their centres are in the

upper half of the diagram to increase readability.

These rendering techniques are shown in Figure 3.3 using hyperbolic distortion

(formally defined in the Focus and Context section) which allows us in this case to

increase the number of nodes within one particular area. Aliasing issues with clusters

of node edges are handled by making those edges of nodes having a radial angle of

less than 0.5 degrees transparent.
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3.4 Leveraging Radial Attributes

While RSFs show parent-child relationships effectively, many analyses require the

comparison of particular attributes of data in the context of the data hierarchy. Using

the census data example, we may not only want to quickly compare the crime rates

between areas, but also between countries.

Data attributes can be individually assigned to any of the three available radial

attributes (radial size, radial angle and node colour). Assignments are made from

any of the three respective combo boxes in the Radial Attributes section of the main

interface (see Figure 3.2).

3.4.1 Radial Size

When attribute values are assigned to radial size, their relative differences are visual-

ized by scaling node radial sizes (the pixel distance between the closest edges to and

furthest edges from the diagram centre) based on their attribute values. This is done

in two passes, where the radial sizes of all leaf nodes are set to their attribute values,

and then scaled such that the lowest value becomes 50 and the largest becomes 150

(ensuring that text is not clipped within smaller sized node).

The radial sizes of all parent nodes are then calculated as the average of the radial

sizes of their immediate children. This assignment increases the prominence of nodes

with larger attributes, as those nodes are pushed towards the outer diameter of the

diagram and become more separated from the other nodes closer to the centre.

Unemployment rate is assigned to radial size in Figure 3.4(a), and we see that

Atlantic Canada has the highest unemployment rate, followed closely by the Canadian

territories and many parts of the UK. Many areas appear to have low scores including

Saskatchewan and Manitoba in Canada, and all areas of USA.

The low USA per-region unemployment statistics here however have arisen from

the aggregation practice used to reduce the number of nodes in that country from 50

to 4. On checking the per state USA statistics, we see several with high unemployment

rates (e.g. Michigan stands at 8.3% in the Midwest, which has 5.1% overall), but they

are grouped with other states having sufficiently low unemployment rates (e.g. South

Dakota, also in the Midwest, at 3.0%).
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(a) Radial size showing unemployment rate. (b) Radial angle showing crime rate.

(c) Both radial size and angle showing unemployment rate and crime
rate respectively.

Figure 3.4: DataBurst diagrams for given sample data when assigning data attributes
to radial size and angle.
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3.4.2 Radial Angle

When attribute values are assigned to radial angle, their relative differences are vi-

sualized by scaling node radial angles based on their attribute values. This is done

in two passes, where the base radial angles of all leaf nodes are incremented by their

attribute values, and then scaled such that their sum equals 360. The latter process

can be thought of as a type of angular normalization that ensures the radial structure

is preserved. The radial angles of all parent nodes are then calculated as the sum of

their children radial angles, which can be thought of as rolling the attribute values

up the hierarchy (effective at increasing the label readability of nodes of interest).

Crime rates are assigned to radial angle in Figure 3.4(b), and we see they are

consistently high in all areas of the UK, peaking in London with over 11,000 crimes

committed per 100,000 persons. The Canadian Territories have the highest crime

rates in that country, and the four US areas rank the lowest overall and are barely

visible. This result is verified as per state crime rates in the US are all below 1,000.

We see that leaf nodes having large radial angles emphasize those leaf nodes in

addition to their parents i.e. the overall ranking of the 3 countries can be quickly

done. Note that while this notion supports many types of analysis (where we want

to visually identify nodes with large values and can safely ignore low values), it is

currently not possible to do the converse, where small values produce large nodes

and vice versa. We can still view these small nodes with the interactive techniques

discussed in the next section, but this can be emulated by inverting the numerical

data in the data preprocessing stage before visualization. Measures to handle this

within the visualization will be considered in future work.

Nodes having both large radial sizes and angles are then doubly emphasized, as

the area they occupy can be larger than through any single data attribute assignment

(larger area here implies a node with two large data attributes). Figure 3.4(c) shows

the two previous assignments simultaneously and highlight that unemployment and

crime rates can be quite high in some areas e.g. London UK and Canadian Territories

dominate the smaller nodes of lesser interest, while some places suffer only high

unemployment (e.g. Ontario, Quebec and Atlantic Canada).

Interestingly we see several areas with low amounts of each rate (e.g. the four US

regions), and no instances where crime rates are high while unemployment rates are
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low. Looking strictly at these two statistics then would not allow reliable identification

of any causal relationship between them - we would like a way to visualize all three

statistics simultaneously (or perform a quantitative analysis such as linear regression).

3.4.3 Node Colour

DataBurst initially assigns node colours so that they are different shades of blue and

red depending on the ring the node is in, and its position within the ring. Colours are

simply chosen such that nodes can be more easily differentiated from their neighbours

and do not connote any meaning with respect to the input data.

When attribute values are assigned to radial colour, their relative differences are

visualized by scaling node colours based on their attribute values. This is done in

two passes, where the blue opacity for all nodes is set to their attribute values, and

then scaled such that for the maximum value the opacity is highest (darkest blue),

and lowest for the minimum value (no node colour). Note that this is done at all

levels such that it is possible for the darkest nodes at the leaf level to have parents

that are not the darkest at the next level. This assignment is particularly effective at

identifying parent nodes of interest (those parent nodes having larger attribute values

than their siblings at that level).

Leveraging all three radial attributes enables the comparison of three data at-

tributes simultaneously, such that relationships between any pair or all three can be

visualized. Figure 3.5 shows how crime rates, unemployment rates and population

densities are related after they have been assigned to radial size, radial angle and

node colour respectively (note that we swapped crime rates and unemployment rates

from Figure 3.4(c) to produce a diagram where nodes in the USA are more visible).

We see that population densities are highest in the UK (peaking in London)

and the South and North East regions of the USA (all above 200), with Canadian

population densities being quite low in comparison (peaking at 14.3 in Ontario). In

the absence of any other data, this may lead one to conclude that there exists a

relationship between higher population densities and higher crime rates, and that

unemployment rates do not affect crime. A more exhaustive investigation into other

measurable statistics for additional time periods would be necessary to draw any

reasonably accurate conclusions.
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Figure 3.5: DataBurst diagram for given sample data when assigning crime rates,
unemployment rates and population densities are assigned to radial size, radial angle
and node colour. UK and London have the highest population densities in their
respective rings, and have the highest opacities.

3.5 Focus and Context

When working with large volumes of data, the ability to focus on smaller groups of

data without losing overall context is essential. To this end we provide two novel

means of interaction that are simple to perform and allow analysts to look more

closely at the parts of the diagram of interest, while maintaining context within the

original hierarchy. The first makes use of hyperbolic distortion, which can informally

be described as an interactive fisheye lens technique [59], and the second allows the

user to partition input data while still preserving radial attribute assignments. Note

that both interactions are independent in this implementation and currently cannot

be performed at the same time.

3.5.1 Hyperbolic Distortion

Hyperbolic distortion is done through the physical movement of dragging the diagram

centre away from the nodes of interest, which visually emphasizes the nodes of interest

(the nodes furthest from the diagram centre have their radial angles increased), while



37

Figure 3.6: DataBurst diagram for given sample data using hyperbolic distortion to
emphasize areas within Canada.
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the nodes now closest to the diagram centre are deemphasized (their radial angles are

reduced). Figure 3.6 shows this with the radial centre being moved progressively to-

wards the node representing London, UK, allowing the nodes representing the various

regions of Canada (and USA to some degree) to be examined.

Mathematically this effect is produced by adding the values of a Gaussian curve

to the base radial angles of the leaf nodes, where the node (or two nodes) of highest

interest take on the peak value, the resulting radial angles are scaled to sum to 360,

and parent angles are recalculated. The start angle of the diagram, α in Figure 3.7, is

also updated to seamlessly produce the desired effect (Figure 3.6 shows the diagram’s

start angle being progressively increased).

The displacement of the diagram centre controls the intensity of the hyperbolic

distortion i.e. the height of the Gaussian. Maximum distortion is obtained when the

diagram centre is moved to the outermost ring (the limit of allowed movement, as

seen in the last subdiagram of Figure 3.6).

This focus method does not preserve radial angle assignments as distortion is

increased i.e. when the centre is half displaced, the radial angle assignments are

accounted by their base angles and the hyperbolic distortion amount equally, while

at maximum distortion radial angles take their values completely from the Gaussian.

This ensures that nodes of interest that dominate all others due to a radial angle

assignment can be investigated together with their neighbours of lower interest when

distorted i.e. that smaller nodes can still be investigated.

As high magnification can negatively impact a user’s ability to track fast moving

nodes [29], this distortion also ensures that focus-targeting is not diminished as a user

can drag the diagram centre along the circumference to quickly browse through all

nodes, but can reduce the speed of movement by moving the diagram centre inwards.

Note that radial size and node colour assignments are preserved during hyperbolic

distortion, and this focus method offers the inherent ability of increasing readability

of nodes of interest.

Informally, the application of the Gaussian and determination of the start angle

of the diagram is given by the following C-like pseudocode, where

� x and y are the coordinates of points along the Gaussian curve (the value of

x is between 0 and 1 and the peak value of y occurs at x=0.5 and is mostly
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determined by the displacement of the diagram centre during distortion i.e. the

variable centre displacement),

� zoom allows for fine control of the distortion without moving the diagram centre

(ranges between 1, the default value and lowest zoom, and 100), and is controlled

by a slider in the Radial Attributes section of the main interface,

� the base angle is the non hyperbolic-distorted angle of a node (equal to the

normalized sum of 360/n and the radial angle attribute, if any, where n is the

number of nodes in the diagram) while the node angle is the distorted value,

� the angle of the diagram centre is the angle between the positive x-axis and the

line, l, joining the original diagram centre to the new diagram centre,

� min emphasis node is the node closest to the new diagram centre, and

� all angular calculations take place counterclockwise from the positive x-axis,

and the last function call splits min emphasis node into two by the line l, with

the angle representing the portion closest to the x-axis being returned.

fish_eye(){

x = base_angle_of_mid_point_of(the_first_leaf_node)/360

+ angle_of_diagram_centre()/360;

for all leaf nodes n {

y = gaussian(x, zoom) * centre_displacement;

n.setangle (n.baseangle + y);

x += base_angle_of_mid_point_of(n)/360

+ base_angle_of_mid_point_of(n.next)/360;

if (n is closest to the diagram centre)

min_emphasis_node = n;

}

normalize_leaf_angles(); // so that they all sum to 360

diagram_start_angle = angle_of_diagram_centre()

- fraction_of_node_closest_to_x_axis(min_emphasis_node)

- min_emphasis_node.start_angle;

}
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The gaussian function is defined with the variance (which controls the width of

the bell portion of the Gaussian), σ2=0.0025 as

The simple example illustrated in Figure 3.7 demonstrates the algorithm given,

with the line, l, described previously, seen in the DataBurst diagram on the left. We

add the calculated Gaussian values to the radial angles of each of the four nodes based

on the angle and displacement of the hyperbolic distortion. After normalization, the

resulting distorted angles of the nodes 1 through 4 are roughly 54, 52, 56 and 198 in

that order. We see that the emphasis node, node 4, has the largest angle, while the

node on the opposite side of the diagram, node 2, is assigned the least.

Figure 3.7: Calculations involved in performing hyperbolic distortion.
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The choice of x values in the algorithm can be viewed as one that keeps the

relative horizontal distances between nodes along the x-axis of the Gaussian graph

proportional to the nodes’ base radial angles, with the position of the 1st node being

influenced by its radial angle and the distortion angle (120◦ in this case).

The diagram start angle is α = 120 − 30 ∗ (52/90) − 54 in this example.

3.5.2 TearAway SubDiagrams

In instances where particular groups of data are to be handled separately from others,

a typical analysis may involve producing sets of input data and visualizing each sepa-

rately. This may lead to unintentional issues such as delays in regenerating data based

on multiple partitioning strategies, missing or repeated data if partitioned/merged in-

correctly, and the loss of important relationships between the data across multiple

partitions.

DataBurst allows analysts to work on their single, large dataset, and dynamically

tear off groups of data that are not required for a particular analysis or stage of an

analysis, or to increase node visibility with multiple diagrams. This increases node

label readability and allows particular subgroups to become the focus of an analysis,

while still enabling relative data attributes to be visualized across the complete input

data through the radial diagram attributes.

The TearAway procedure is performed in real-time by clicking on any node of a

diagram, and dragging away from that diagram’s centre. The new torn away node or

nodes are then radially expanded to create a new DataBurst subdiagram. The original

diagram is radially expanded as well. This animated transition occurs gradually as

the new subdiagram is moved away from the original, and both expansions continue

until the new subdiagram is sufficiently far away such that no overlapping occurs and

the openings in each diagram are closed.

This is demonstrated in Figure 3.8, where nodes representing USA’s four regions

are removed from the main diagram. It should be noted that the three radial at-

tributes are preserved at all times in this process, and the relative sort order of nodes

within a subdiagrams is the same as the original diagram.
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Figure 3.8: DataBurst diagram where the four nodes representing USA regions are
progressively torn away from the main diagram.



Chapter 4

Case Study - Visualizing Network Flow Data

In this chapter we present detailed investigations into flow data in the area of net-

work security, where security analysts are tasked with identifying network attacks (as

they happen or in a forensics analysis) or precursor activity that may indicate an im-

pending attack - necessary activities due to the rising cost incurred from increasingly

complex intrusions. We will introduce some network security basics, discuss associ-

ated problems, and investigate how the DataBurst diagram facilitates data analysis.

4.1 Network Security

The need for continuous vigilance in the realm of computer security was noted by

many, including Denning [18] who observed that numerous security flaws exist in sys-

tems that cannot all be easily identified or rectified, relying on less secure systems

may be easier and less costly than updating to more secure ones, and insider infor-

mation can often enable the misuse of even the most secure system. As the creation

of a completely secure system is not achievable, we then look to local and network

usage patterns to identify abnormal and malicious activity.

Attack identification can be generally done in either of two ways. The first involves

creating a model of normal network activity such that anomalous activity falls outside

that model, and the second maintains signatures of all known network intrusions and

attacks, and flags any activity that matches, or is closely related. Unfortunately, both

methods suffer from low accuracy as some normal activity can be flagged as intrusive,

and direct attacks may go undetected due to their similarity to normal activity or

dissimilarity to known attacks [3].

For further details, the background, advantages and shortcomings of many past

intrusion detection systems (IDS) are discussed by McHugh in [49] and more recently

in the comprehensive discussion on intrusion detection and prevention systems (IDPS)

by Scarfone and Mell in [60].

43
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4.2 Network Flow Data

We examine network flow data as input data in this case study, or more commonly,

netflow data. Netflow refers to the proprietary Cisco network protocol which enables

the collection of IP traffic information at the router level 1. Netflows offer an effec-

tive means of monitoring network activity for the purposes of network security and

management, which often cover the needs of most security analyses. Netflow records,

or flows, are by default stored in binary data files (not human readable) to facilitate

quick storage and retrieval.

Netflow data are typically retrieved by selecting the desired flows (using the rw-

filter program), aggregating them if necessary (using the myriad available tools e.g.

rwuniq, rwgroup, rwcount, rwsort) and returning the data in delimited, columnar

text format, which can be stored in flat files, spreadsheets or uploaded to databases

for future or continuing analysis. These programs are part of the SiLK 2 (System for

Internet-Level Knowledge) toolset developed by CERT Network Situational Aware-

ness Team (CERT NetSA). More detailed descriptions of these tools are given by

Gates in [26].

Some sample data are listed in Table 4.1, which were generated by filtering the

communications between two anonymized IP addresses for a particular date and time,

collected in a live network. The final listing was produced using multiple calls to the

rwfilter and rwsort programs, and using rwmatch to pair query flows to response flows

i.e. to determine conversations between these hosts.

A single netflow record represents a unidirectional sequence of IP packets that

share the same source and destination IP address and port (the first four columns), IP

protocol (the 5th column, which differentiates TCP, UDP and ICMP protocols among

others), ingress interface and IP type of service within a particular time period.

Associated with each netflow are a number of flow attributes, including the number

of bytes and packets transmitted (columns 6 and 7), TCP flags (column 8) and

timestamps (start time and duration in seconds or milliseconds). Different router

manufacturers may choose to include these and other attributes based on the router’s

intended use.

1http://www.cisco.com/web/go/netflow
2http://tools.netsa.cert.org/silk/
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sIP dIP sPort dPort Pro Pkts Byts Flags Start Time Dur
IP1 IP2 1719 3306 6 3 128 FSA 2006/06/29 20:03:20 1
IP2 IP1 3306 1719 6 4 242 FSPA 2006/06/29 20:03:20 4
IP1 IP2 137 137 17 158 4629 2006/06/29 20:03:21 924
IP2 IP1 137 137 17 181 1411 2006/06/29 20:03:21 924
IP1 IP2 4892 3306 6 4 168 FSA 2006/06/29 20:03:23 3
IP2 IP1 3306 4892 6 4 242 FSPA 2006/06/29 20:03:23 3
IP1 IP2 1719 3306 6 2 80 R 2006/06/29 20:03:24 0
IP1 IP2 2485 3306 6 4 168 FSA 2006/06/29 20:03:29 6
IP2 IP1 3306 2485 6 3 202 FSPA 2006/06/29 20:03:29 3
IP2 IP1 3306 2485 6 2 154 FPA 2006/06/29 20:03:35 0

Table 4.1: Sample netflows between two hosts showing source and destination IP and
ports, protocol, packets and bytes transmitted, TCP flags, start time and duration.

Important uses of netflow attributes are in identifying hosts involved in commu-

nications (using columns 1 and 2), quickly determining the type of communication

(using columns 3, 4 and 5 e.g. web traffic is typically transmitted via port 80) and

overall behaviour of the communication (using the remainder columns). Note that

user-generated data within the conversation is not specifically tracked within a netflow

as this would involve full packet capture (packets however can be captured separately

and linked to related netflows if necessary).

Capturing netflows at ingress and egress points in a network is then an effective

means of monitoring network activity, while ensuring privacy is maintained. This

is analogous to examining the frequency, source and destination addresses of emails

passing through an email server during an investigation, where the email contents

need not be analyzed. By aggregating netflows between hosts (both internally and

externally) one can gain an understanding of communications. Numerous research

efforts have examined netflow usage patterns to identify both known and previously

unseen network attacks.

Some issues are inherently associated with netflow data, primarily stemming from

the large volume of network data that can pass through a single collection point in

a particular time interval. Network communication speed increases have historically

exceeded processing and storage speed increases, where the latter is described by
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the ubiquitous Moore’s law (processing speed and memory capacities double approx-

imately every two years) and the former by Butters’ Law of Photonics 3 (where the

cost of transmitting a bit over fiber optics is halved every nine months). This causes

two issues to arise, the first being the router sampling data and the second being a

separation of collection, storage and analysis.

Sampling occurs when the router is under heavy load, and passes on incoming

packets without processing them, allowing overflow attacks to be possible (where the

router does not record enough of the attack to identify it). The modular design of a

typical system using netflows also may not have the infrastructure required to allow

real-time monitoring, as the processing and transferring of data from the collection

point for analysis can take some time due to the volume of data. This could translate

into security reports being updated in particular time intervals (e.g. every 15 or 30

minutes), during which a network intrusion could be well underway.

As these reports can be strongly time-oriented, their data can be easily communi-

cated using line graphs, which can sometimes be difficult to accurately read for long

periods of time due to compression along the time axis, and is of course limited to

two or three dimensions. We argue that radial visualizations are a good fit in this

instance as they can communicate multiple attributes simultaneously in addition to

relationships between groups of data.

4.3 The Problem

Network flows arguably capture the minimum amount of the most important aspects

of network communications. A detailed analysis of netflows can identify numerous

instances of anomalous activities, and many commercially successful intrusion detec-

tion systems (IDS), e.g. Snort [39] and Bro [54], leverage this protocol in identifying

a wide range of attacks, including those seeking to obfuscate their presence (e.g. by

taking place over a sufficiently long enough period of time).

Network administrators therefore depend heavily on tools developed by experi-

enced third-party network security companies. While this may appear to reduce the

workload of the network administrators in an enterprise environment, updated at-

tack signatures may not be received quickly enough with fast-spreading worms, and

3http://www.tmcnet.com/articles/comsol/0100/0100pubout.htm
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an IDS may produce a prohibitively large list of suspected attacks (most of which

may be false positives due to incorrectly identified normal activity) that make routine

exhaustive investigation impossible.

A network administrator then is often tasked with the role of a security analyst,

where a complete understanding of hardware and software available on the network

is not only required, but a competent understanding of basic network attacks and

best practices to perform during anomalous activities e.g. denial of service attacks,

is also necessary. Network security analysts may then build islands of knowledge

particular to their environment and specific tools that enable required analyses based

on their experience [49]. These tools usually take as input heavily processed data

that originated from netflow data.

The problem then is that with a wide range of tools existing for multiple environ-

ments, and the varying knowledge level of security analysts, it is difficult to produce a

single tool with specific functionalities that satisfy all possible needs in any situation.

A modular, general purpose approach is therefore necessary.

4.4 The Solution

Given the varying needs and knowledge levels of security analysts, one solution is to

provide an intuitive data visualization and flexible interface that allows any type of

problem to be formally defined, data extracted and processed using available tools at

hand, and the results interpreted in the context of the analysts knowledge base. We

propose that the combination of DataBurst and the SiLK tools can enable network

security analysts to leverage their knowledge to search for and identify anomalous

activities and attacks.

A complete DataBurst solution may entail a Unix server that stores all netflow

data captured at a router, which are then processed at intervals by custom SiLK

scripts on an analysis server, which would upload all aggregate data to a database.

The analyst would then render numerous DataBurst diagrams from his terminal based

on previously developed data extraction scripts, which would describe the current

state of all network traffic or highlight particular instances of anomalous activity.

Once potentially suspect hosts are identified, analysts would retrieve relevant his-

torical data in another DataBurst diagram and draw their own conclusions. With
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minor modifications, DataBurst can be modified to automatically update itself con-

tinuously for a defined period of time from an input data stream.

The cases described in the following two sections do not cover the gamut of re-

sponsibilities of network security analysts, but deal with many of the activities that

may be performed in a typical analysis. In both cases, a single netflow repository

serves as the source from which input data are initially obtained, and contains flows

captured from a live /22 network (the first 22 bits of each IP address describes the

network number, and the remaining 10 bits describe the host number, allowing for

210 hosts in this network) with internet connectivity over a period of several months.

The SiLK tool suite was used to retrieve and aggregate all netflow data such that

external IP addresses are anonymized for privacy reasons (using SiLK’s rwrandom-

izeip tool, which ensures that every individual external IP address is replaced with

the same randomly generated IP address), and the total number of bytes, packets

and flows were calculated for each tuple of source and destination IP and port (and

protocol when necessary).

4.5 Example 1 - Network Overview

We first demonstrate DataBurst’s ability to present an overview of a large amount of

netflow data, by investigating one hour’s worth of network activity. This subset of

data, shown in Figure 4.1, shows outgoing communications from nine internal hosts to

several external hosts over a wide range of ports and protocols. As this is a complete

overview, this input data shows the bytes, packets and flows transferred between

each 5-tuple of source IP, protocol, destination port, destination IP and source port,

resulting in about 12,500 lines of input data. When searching for specific behaviour,

an analyst may only need to visualize the flows of a particular protocol e.g. only TCP

flows.

One may be tempted to initially conclude that a single particular host (192.168.20.

203, referred to here as host A) dominates all communication in the data rendered,

but this would be misleading as the diagram simply says that in this case host A

communicates with a number of other hosts (about 300). This by itself does not

indicate anomalous activity and we can use the diagram to further investigate this

host.
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(a) Network overview (b) With radial size showing bytes transferred

Figure 4.1: DataBurst diagrams showing one hour’s worth of netflow data aggregated
by source IP, protocol, destination port, destination IP and source port with about
12,500 leaf nodes.

We then note that the majority of outgoing flows from host A are through four

TCP ports. Two of them (80 and 443) indicate general web browsing activity 4

with approximately 21 hosts. This activity does not appear to be anomalous as the

outgoing requests for web services are all roughly the same size (indicative of normal

browser activity), though a security analyst should ensure that users on host A have

permission to access web resources and that incoming web activity to this host are

within normal parameters.

Of the remaining high-activity destination ports, we note that many flows are

transmitted to port 25 to 42 hosts (upper portion of the diagram) and from port 25

to approximately 260 hosts (between destination ports 443 and 110 in the lower right

of the diagram, which could be emphasized using hyperbolic distortion). This tells us

that this host also functions as an SMTP mail server which is communicating both

to other email servers (the first group of flows) and email clients (the second larger

group of flows). This is verified with the outgoing port 110 flows, indicating POP3

4http://www.iana.org/assignments/port-numbers



50

activity. The activity again is most likely normal as well due to its uniformity.

We also see that the majority of UDP traffic consists of single flow communications

to and from port 123 to a limited number of external hosts. Further investigation into

the source flows shows that these are generated at regular time intervals. Researching

the Network Time Protocol (NTP) shows that this server is likely either updating its

system clock with that of external time servers or is responsible for synchronizing the

clocks of other external hosts. While the anonymized external IP addresses makes

this difficult to verify, the low volume and frequency of activity suggests it is normal.

At this point experienced security analysts would then modify their SiLK scripts

to filter off normal outgoing flows e.g. web requests, NTP or email activity of a certain

size, so that they can focus on those things that do not immediately appear normal.

We emulate this by tearing away those nodes that we assume to be normal, which

results in Figure 4.2.

Having removed many flows from the original listing, we have a better view of

activity in remaining hosts. Expected amounts of low volume activity are present e.g.

additional web and email activity (192.168.20.69 appears to be another multipurpose

server), general network management activity (several hosts on this network offer

domain name and NetBios services) and SSH and Microsoft SQL services.

The large quantity (in terms of bytes, packets and flows transferred, shown in

Figure 4.3) of ICMP activity may give the impression that anomalous activity is

occurring, but the subset of ping requests (ICMP port 2048 5) are seen to be going

to the list of external time servers previously communicated with. This is not a

documented feature of the protocol, but it is likely that they represent application-

specific service-availability checks, and we may safely ignore them.

A number of ICMP replies however indicate that some external hosts were repeat-

edly attempting to connect to hosts or ports that were either unreachable (ICMP port

771) or prohibited (ICMP port 781). The DataBurst diagram in Figure 4.3 highlights

these in blue as its radial colour is assigned to flows transferred.

One would expect that an unauthorized external user would not continue to at-

tempt to access resources when the correct privileges are not had or the resources do

not exist. This was indeed true for many external hosts, but several were found that

5http://www.iana.org/assignments/icmp-parameters
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Figure 4.2: DataBurst diagram showing one hour’s worth of netflow data aggregated
by source and destination IP and port, and protocol excluding some identified normal
activity and mapping radial size to bytes transferred.

attempted this many times within the hour (e.g. XXX.YYY.174.20, examined using

hyperbolic distortion in Figure 4.3, did this several hundred times).

As the activity of these hosts is clearly not normal, these hosts are likely not

legitimate users. A security analyst’s next step may involve rendering DataBurst

diagrams for previously captured flows of outgoing communications to these external

hosts (possibly indicating compromised internal hosts) and blocking all future incom-

ing communications from them. Behaviour and usage patterns could also be gleaned

such that future or similar activity could be identified before security breaches occur.

Finally, both Figures 4.2 and 4.3 highlight that two internal hosts are commu-

nicating with external hosts via the Encapsulating Security Payload (ESP) protocol



52

Figure 4.3: DataBurst diagrams showing one hour’s worth of netflow data aggregated
by source and destination IP and port, and protocol excluding some identified normal
activity, and a closer view of a node of interest using hyperbolic distortion. Radial
size, angle and colour are assigned to bytes, packets and flows transferred.

which is a component of the IPSec protocol suite 6 facilitating the authentication and

encrypting of individual IP packets, usually in Virtual Private Networks (VPNs). It

is difficult to accurately say if communications on this protocol are normal or not (due

to their use of encrypted packets and dynamic ports), but the security analyst can

keep a list of the IP addresses of known VPN clients and servers and investigate those

hosts communicating on this protocol that are not on the list. Note that the observed

outgoing web traffic from host A could be generated by the many VPN clients.

4.6 Example 2 - Game Server

In this example, we investigate the behaviour of a legitimate server based on a 3 hour

period of outgoing flows from the first day of flow capture, February 2nd 2006, and

6http://www.ietf.org/rfc/rfc2401.txt
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show how DataBurst can quickly communicate particular network events to analysts.

In hindsight we note that the server was compromised before capture began, but

include related findings as a good example of an analysis of a network intrusion

resulting in unauthorized modification of at least one server.

A sample of initial outgoing netflows is visualized in Figure 4.4, where radial size,

angle and colour are assigned to packet counts, flow duration and bytes transferred.

Some regular web activity is seen on several clients, but two hosts are seen to have

sent a large number of packets, with one doing so for the majority of the time period

being analyzed.

The first, 192.168.22.73, has several outgoing flows with high numbers of packets

sent in small periods of time, and others where few packets are sent in longer time

periods. As the outgoing ports are non-standard, the security analyst should investi-

gate the running processes on this host to determine what exactly is generating the

activity.

The internal host of interest in this example though, is 192.168.20.165. It trans-

mits a large volume of data through port 27015, a well known port through which

dedicated servers are run for the video game Half Life. This was confirmed as network

game activity is known to be bursty (generating a large number of packets) and can

lead to lengthy flows being logged for communications between hosts (seen with long

durations).

In such situations, a network security analyst would check to ensure that no other

internal hosts are displaying similar behaviour (no other hosts generating large num-

bers of packets from or to similar ports), and would also delve into the log of previous

flows captured, to determine exactly how the internal host was compromised e.g. a

high level of FTP activity from an unauthorized external host. The particular infor-

mation, the vulnerability that was exploited, was unfortunately not made available.

On February 25th after several weeks of investigation, the game server was per-

manently removed and the host was secured. In looking at daily activity over time,

we create a hierarchy of source IP, date and source port, and assign radial size to

bytes transferred by the compromised server (see Figure 4.5). We see that outgoing

traffic steadily increases at the beginning of the investigation, and stops abruptly on

February 25th. The single large node in each day represents port 27015, indicating
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Figure 4.4: DataBurst diagram showing six hour’s worth of netflow data aggregated
by source IP, source and destination port, and destination IP and mapping radial
size, angle and colour to packet counts, flow duration and bytes transferred.
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Figure 4.5: DataBurst diagram showing six hour’s worth of netflow data aggregated
by source IP, date, and source port and mapping radial size to bytes transferred.

that it is the highest activity port.

An interesting observation is the dip in outgoing activity on the 12th and 13th

(from 2.3TB to 0.2GB) while the corresponding incoming activity (not visualized)

did not change. This may represent an attempt to disable the game server or some

hardware event that slowed its ability to respond to incoming traffic.



Chapter 5

Case Study - Visualizing Genetic Data

In this chapter we present detailed investigations into genotype data pertaining to

two proteins of the Influenza A virus and their relationships to two phenotypes (any

observed characteristics or traits). The DataBurst visualization facilitates analyses

of this type as they typically involve hierarchical data and a handful of key attributes

that are to be compared. We will begin by defining necessary concepts and termi-

nology used in this chapter, then discuss associated problems, and show how the

DataBurst diagram facilitates data analysis.

5.1 Background

Bioinformatics, the application of statistics and computer science within biology, is

used to investigate many complex biological interactions at the molecular level up to

the ecological level. An organism’s genome is what defines its properties and gov-

erns related biological interactions, and its constituent genes are inherited from its

ancestors. A cell’s genes are made from a DNA molecule containing genetic infor-

mation made up of 4 nucleotide bases (Adenine, Cytosine, Thymine or Guanine),

representing the cell’s genotype, and are responsible for creating protein molecules in

the cell.

Proteins typically perform a single job, e.g. in cell division, defence, movement,

which together all generate the organism’s phenotypes. Proteins are chains of amino

acid monomers that fold into complex structures based on the amino acid sequence,

where the structure determines the job performed. Different parts of the protein can

also perform unique roles e.g. identifying and binding with another protein through

intermolecular forces, or overall molecular stability.

Replication is an important process that occurs at the molecular levels in cells,

where a copy of the original DNA is passed on, and errors can randomly occur pro-

ducing genetic variations, or mutations, that may be successfully carried on in future

56
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cell divisions. They can be categorized as insertions, deletions, or point mutations

(where for example an A changes to a G). These mutations can result in the new

cells having altered genes (or alleles) which produce proteins that could be very func-

tionally different from those of the parent, giving rise to the genetic diversity seen

throughout evolution. Genetic changes produced can be advantageous (where the

organisms gain a competitive advantage allowing them to proliferate in a particular

environment, a process known as natural selection), deleterious (where the changes

remove a beneficial attribute or make the organism more susceptible to negative in-

fluences, reducing its fitness if inherited) or neutral (the organism is unaffected, and

the change may be perpetuated or not).

Varying amounts of genetic change can give rise to a range of genes (called alleles

of the original gene) and we can define evolutionary relationships between gene se-

quences by their relationships with ancestors and past genetic variations. Homologs

are descended from a common ancestor e.g. the four limbs of tetrapods, and those that

are separated by speciation events are of particular interest as they help us to identify

patterns of genetic divergence and determine similarities between organisms [2].

We obtain the one-dimensional sequences of biological molecules through gene

sequencing, which produces a string representation of that gene (with alphabet A,

C, T and G) and the corresponding encoded protein (with a 20 character alphabet).

This allows us to classify and compare homologous genes and proteins from separate

individuals such that functional, structural and evolutionary relationships between

them can be gleaned from regions of similarity. As we have seen above, homologous

sequences can differ due to point mutations and can be of varying lengths due to in-

sertions and deletions, so sequence alignment is used to introduce gaps into sequences

such that homologous characters are aligned vertically within the produced tabular

listing [31].

A sample of five protein sequences were aligned using ClustalW 1, which is based

on [42], and the results are presented in Figure 5.1 . It shows the first thirty and last

twenty residues with conserved gap characters removed, where amino acids are highly

conserved at a position in an alignment if they have similar biochemical properties.

Gap characters are shown here by empty spaces, and particular amino acids of a

1http://www.ebi.ac.uk/clustalw
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Figure 5.1: Aligned sequences visualized using ClustalW. High (above 90%) and low
(below 50%) consensus colours are shown in red and blue respectively, with conserved
gap characters removed. The ’+’ consensus character at position 16 indicates that
more than one amino acid has the highest observed frequency.

column are colour-coded if the column meets minimum criteria (defined in [42]). The

three histograms measure, from top to bottom, the conservation of physicochemical

properties, the alignment quality based on observed substitutions, and the amino acid

most frequently observed (together with the frequency at which it was seen) at each

column of the alignment.

Sequence alignment therefore shows which residues are homologous between se-

quences, which is difficult to deduce given the numerous known and unknown genetic

changes (e.g. mutations) that relate them to their common ancestors. Relating

homologous genes helps to infer evolutionary relationships between species and is

the basis for the field of phylogenetics, where closely related sequences have a much

smaller evolutionary distance between them (fewer genetic changes separate the se-

quences). We can also assess whether a given trait has emerged multiple times in the

evolution of a group, or can be traced back to a single common ancestor.

A phylogenetic tree for the sample sequences, generated using on online imple-

mentation of PhyML and TreeDyn 2 is shown in Figure 5.2, where the third and

fourth sequences (J02144.1 and J04572.1) are the most closely related, followed by

the first and second (X59778.1 and X17221.1), with these two groups together being

more closely related to each other than the fifth sequence (K00992.1). Note that the

2http://www.phylogeny.fr/version2_cgi/simple_phylogeny.cgi
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Figure 5.2: A phylogenetic tree produced from the sample sequences shown in Fig-
ure 5.1.

leaves of a phylogenetic tree represent observed sequences while ancestral nodes are

typically not represented by observed individuals e.g. prehistoric man.

Biologists are interested in knowing phylogenetic signals affect shared genes i.e.

whether similarity is due to genetic makeup or phenotypic traits. We use the following

example with the sequences in Figure 5.2 to describe this, where in the first case a

phenotype is observed in the first pair of sequences, and in the second case it is

observed in the first and last sequences. The first case is in itself not necessarily

interesting as phenotypic similarity is generally expected in the presence of genetic

similarity, as the common ancestor of the first pair of sequences would be responsible

for obtaining and passing on the phenotype. The second case however is less expected,

and much more interesting, as no single common ancestor could have been responsible,

and the single phenotype’s multiple origins are independent.

The emergence of particular phenotypes cannot be easily discerned as the complete

list of evolutionary ancestry between sequences is not known. Examining genotype-

phenotype relationships helps answer this question.

5.2 The Problem

The rapidly dispersing 2009 influenza pandemic [51] forced the scientific community

to look closely at the constantly mutating annual seasonal flu virus and the pandemic

H1N1 influenza A virus. The latter is likely a result of genetic re-assortments between

human, avian and swine influenza viruses [76], to which little to no pre-existing im-

munity exists in humans. With this lack of immunity, its resistance to adamantane

drugs, and a high infection rate, the pandemic virus spread quickly, resulting in hun-

dreds of deaths worldwide. Costly and slow production of effective vaccines further

compounded this problem [14].

As the pandemic and seasonal flu viruses are genetically and antigenically quite
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different [25] (immune response with the latter), it is expected that their phenotypes

would differ (which manifest as differing symptom patterns [68] and antiviral resis-

tances). Many research efforts focused on the resistance of the new pandemic strains

to existing antiviral drugs, together with the search for novel, effective therapeutics.

Particularly, relationships between amino acids at one or more particular positions

in the influenza protein sequences and the strains’ observed phenotypes was sought,

the most important of which are resistances to antiviral drugs e.g. the zanamivir

drug has historically been effective against pandemic influenza, but some resistant

strains have been recently identified with a novel mutation in their neuraminidase

protein [33].

This is not a trivial problem however as the solution is based on protein sequences

captured over time that only represent a subset of all genetic variations that occurred,

some of which are only partially sequenced, and is compounded by the fact that the

number of sites contributing to the observed phenotype is unknown. Uncontrolled

random factors, bias and unknown variables arising from differing experimental pro-

cedures, human error and environmental influences further impact this analysis.

We therefore need a method of identifying those amino acids and their positions

that are most highly correlated with the observed phenotype, and an interactive way

of choosing the best candidates when a large number of similar sites are identified.

We use mutual information [16] to identify the desired sequence positions. We also

perform this analysis by reducing the effect of phylogenetic signals (as discussed in

Section 5.1) by investigating two distinct strain groups in a phylogenetic tree of

influenza strains.

5.3 Data Acquisition and Preprocessing

The data used in this analysis were originally obtained from the open access Influenza

Virus Resource at the National Center for Biotechnology Information’s (NCBI) web-

site3 which is built from direct submissions from individual laboratories and bulk

submissions from larger sequencing centres. Our data are comprised of aligned H1N1

human-host influenza A sequences of the two surface proteins, hemagglutinin (HA)

and neuraminidase (NA). Note that the influenza A genome contains eleven genes in

3http://www.ncbi.nlm.nih.gov/genomes/FLU/SwineFlu.html
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total (HA, NA, NP, M1, M2, NS1, NS2, PA, PB1, PB1-F2 and PB2) in eight RNA

segments (which have a total length of 14,000 nucleotides) [52]. As the HA and NA

proteins enable the influenza virus to invade and reproduce in living cells, inhibiting

these proteins can potentially curtail its spread. These data were processed and up-

loaded to the data warehouse and web application, SeqMonitor [45] where 4,723 HA

and 3,618 NA records are available as of April 14th, 2010.

SeqMonitor can incrementally accept sequence data and isolate metadata through

an automated pipeline, where new data is parsed to obtain geographic, temporal and

antiviral resistance information (whether user-verified, explicitly stated, or inferred

from context e.g. the isolate name), and multiple sequence alignment is performed

using Muscle version 3.7 [22]. Detailed information on the dataset can be found in

the original authors’ papers in [53] and [45].

Note that gaps occur often near the start and end of aligned sequences as many

strains are only partially sequenced, due to cost or time constraints, such that their

sequence lengths are much shorter than their alignment lengths.

The input data, obtained from SeqMonitor, to be visualized in DataBurst take

the form of aligned H1N1 human-host influenza protein sequences of the HA and NA

genes, together with metadata associated with each sequence. These are obtained in

flat CSV-type files, with the former in the popular FASTA format (with key infor-

mation on a line prefixed with ”>”, and one or more subsequent lines containing the

protein sequence) and the latter containing tabular data (where the first line contains

header information, one column contains the key information - accession number in

this case, and any of the other columns containing categorical data to be used as

candidate phenotypes).

The metadata describes whether the strain is of swine origin or not (2009 pan-

demic or not), together with the sample’s location, from the continent to the geo-

graphic coordinate level. The two classes of antiviral resistances considered here are

adamantane and oseltamivir, where the former refers to a pair of drugs (amantadine

and rimantadine) having the same active ingredient that interfere with the function

of the M2 protein, and the latter is a neuraminidase (NA) inhibitor that slows the

spread of the influenza virus by preventing it from leaving its host cell. The HA and

NA sequences have alignment lengths of 568 and 470 positions respectively.
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The unrooted, bifurcating phylogenetic tree was then inferred using the aligned

data and RAxML version 7.0.4 [63] and takes the form of hierarchically nested

”Accession:Branch Length” tuples which associates nested pairs of sequences, with

each sequence placed at the leaf level. The tree was visualized using the external

application FigTree4, which facilitates selection of sequence groups with common

ancestory.

5.4 Mutual Information

We use mutual information to determine the degree of association between individual

amino acids and the observed phenotypes (the two classes of antiviral resistances).

Numerous instances of prior work have been performed by other authors on H1N1

data (e.g. [25], [67], [11]), with the most well documented observation, the mutation

of the H amino acid at position 275 to Y (or H275Y) in the NA protein conferring

resistance to oseltamivir, being used to verify one of the analyses conducted here. It

should be noted that no other widely known and accepted mutations are attributed

to antiviral resistance in the HA and NA genes of H1N1. This is the first application

of mutual information in exploring this particular dataset to this author’s knowledge,

as well as the first visual analysis of this nature.

Numerous similar methods exist and have been widely used in the literature. One

such group of methods involves supervised machine learning, which includes support

vector machines [7], artificial neural networks [70], and decision trees [8] and are useful

in the presence of high-dimensional data and/or noisy data. Another popular group

is the regression analysis (e.g. linear regression) and variance analysis (e.g. ANOVA)

methods, which are tailored for continuous or numerical variables. Statistical correla-

tion tests are also used e.g. t-test, Pearson’s chi-square test, Fisher’s exact test etc.,

but are not generally flexible enough to be used in this context as they are essen-

tially linear distance measures between like entities, and are sensitive to outliers [17].

Methods based on categorical variables have also been used e.g. discriminant analysis

(requires normally distributed independent numeric variables) and logistic regression.

No literature was found comparing/contrasting the effectiveness of these techniques

with genetic data.

4http://tree.bio.ed.ac.uk/software/figtree/
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Mutual information is ideal in this context in that it is more applicable to the

data being analyzed i.e. it makes no assumption of data distribution or dependence,

can be used for both categorical and numerical data (using various binning or integral

techniques), and does not require large samples of data to produce reliable results yet

can still be calculated quickly and efficiently with large datasets. It has been used

often within the literature, primarily in investigating the relationships between genes

(e.g. within a genome as in [66] and [17]), and between sites in a group of DNA,

RNA or protein sequences (e.g. in ribosomal RNA with [12] and [28], and the proteins

of related types of influenza viruses [73]). The method used here differs from these

approaches as the dependence of individual amino acids of aligned protein sequences

will be calculated against known phenotype data, as was similarly done in several

papers investigating drug resistances (e.g. [7] and [71], but only at particular sites

and not across the entire sequence).

Mutual information is an information theoretic measure that describes the mutual

dependence between two discrete random variables, as described by [61] and [16].

More generally, it is the amount by which we have reduced uncertainty in a variable

having known about another. Shannon’s similar and more efficient interpretation is

more widely utilized, and makes use of Shannon entropy.

The Shannon entropy H(X) is defined as

H(X) = −Σp(xi)log(p(xi)) (5.1)

where xi is the ith possible state in a system X, p(xi) represents the probability of the

occurrence of state xi, and the summation is done across all states in the system. The

joint entropy, H(X,Y) is calculated in the same way using joint probabilities p(xi, yj)

for all pairs of states in the system. Shannon entropy measures state distribution

in a system and lies between 0 and 1 inclusively (0 when X and Y are completely

conserved, and 1 when all states are equally distributed). Mutual information is

then calculated as I(X;Y) = H(X) + H(Y) - H(X,Y), and can vary between 0 and

1 inclusively (a value of 1 is possible, though often unlikely with real-world data as

mutual information is capped at the minimum entropy of either variable).
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5.5 The Solution

Using the data sourced from SeqMonitor (as described in detail in the previous sec-

tion), the analysis performed consisted of the following steps:

1. Merge the protein sequences with the metadata (by the accession key) to obtain

the required sets of protein sequences and phenotype pairs. The calculations

described below are run for each attribute of the metadata chosen as a phe-

notype in a single pass through the data files. Protein sequences having null

phenotypes (where antiviral resistance or sensitivity is unknown) are ignored.

2. For each sequence,

� Determine the counts of each phenotype in the dataset, Pk (where k repre-

sents each phenotype value) e.g. for oseltamivir resistance, Presistant is the

count of resistant sequences, and Psensitive the count of sensitive sequences.

� For each site in the sequence, determine (a) the count of each amino acid,

Ai,j, and (b) the count of each combination of amino acid and phenotype,

APi,j,k (where i represents the amino acid character in the jth site, and k

represents the phenotype value).

3. Calculate the mutual information score at each site using equation 4.1 as follows:

� Define X as the random variable amino acid and Y as the random variable

phenotype, and H(Xj) as the Shannon entropy of X at the jth site, using

equation 5.1,

� H(Xj) = Σ p(Xi,j)log(p(Xi,j)), for all i amino acids at the jth site, where

p(Xi,j)=Ai,j/Ns and Ns is the total number of sequences,

� H(Y) = Σ p(Yk)log(p(Yk)), for all k phenotypes, where p(Yk)=Pk/Ns,

� H(Xj,Y) = Σ p(Xi,j,Yk)log(p(Xi,j,Yk)), for all i amino acids at the jth site

for all k phenotypes, where p(Xi,j,Yk)=APi,j,k/Ns,

� MIj = H(Xj) + H(Y) - H(Xj,Y)

4. Return a list of sites sorted by mutual information in descending order. Al-

low the user to select a subset (usually the top n) of sites to be rendered in

DataBurst.
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5. Render the n sites in the order selected in DataBurst (i.e. sites are placed

higher than other sites in the hierarchy if their mutual information score is

higher, such that any particular level in the hierarchy has a lower score than

the one immediately above). Allow the user to bring in additional metadata

columns (e.g. year and location) into the hierarchy, depending on the analysis

being performed.

Important points to note with this approach are that all mutual information scores

are calculated in a single pass prior to each analysis. Multiple lists of mutual infor-

mation scores can be kept for each identified phenotype for the single pair of input

files, through which an analyst can select different single sites or combination of sites

(from a single list) for visualization with DataBurst.

The choice of the highest-scoring n sites can be thought of as a measure of statis-

tical filtering, where we look at the fraction of the many hundreds of available sites

that are most responsible for an antiviral resistance.

Visualization of individual phylogenetic groups is currently accomplished by fil-

tering those sequences into another input file, which is then used as input into Step

1 above in a subsequent iteration. As Figtree does not support exporting of group

selections, the filtering process involves highlighting the subtree made up of those

sequences within Figtree to determine the size of that group, n, then using an ex-

ternal custom C++ application to process the tree and output the n-1 neighbouring

sequences of any member of the group.

5.6 Results

Of the 3,618 NA and 4,723 HA records available, counts of strains’ resistances are

listed in Table 5.1 and computed mutual information scores are listed in Table 5.2.

NA HA
Adamantane Oseltamivir Adamantane Oseltamivir

Resistant 348 282 349 270
Sensitive 397 429 476 421
Unknown 2,873 2,907 3,898 4,032

Table 5.1: Strain counts by adamantane and oseltamivir phenotypes.
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NA HA
Oseltamivir Adamantane Oseltamivir Adamantane

MI Pos MI Pos MI Pos MI Pos
1 0.654886 275 0.649080 267 0.669077 558 0.613226 206
2 0.346510 432 0.645588 188 0.538634 147 0.606886 147
3 0.317056 393 0.641962 367 0.401988 207 0.600325 146
4 0.313543 188 0.638242 393 0.365123 146 0.599973 53
5 0.313447 367 0.591308 287 0.362411 210 0.591358 211
6 0.312938 267 0.588178 45 0.328808 203 0.570764 163
7 0.308960 78 0.585631 78 0.319040 201 0.548393 526
8 0.308204 45 0.567161 331 0.316505 206 0.547727 421

Table 5.2: The top 8 mutual information scores (MI) of positions (Pos) in the NA
and HA sequences for oseltamivir and adamantane resistances, in descending order.

Table 5.1 shows that of all tested strains, the ratio of sensitive to resistant strains is

far greater with respsect to oseltamivir than adamantane (implying that more strains

may be resistant to adamantane), and the resistances of a large number of strains are

not known (their proteins were sequenced, but the originating strains were not tested

for antiviral resistance). Table 5.2 lists the top eight mutual information scores for

the NA and HA protein sequences compared against the adamantane and oseltamivir

resistance phenotypes. Further scores were not included as they differ by less than

0.01 to their next highest or lowest score.

While it is immediately clear that one or two sites of both proteins are highly

correlated to oseltamivir phenotype, the scores obtained with the adamantane phe-

notype do not paint as clear a picture. With adamantane scores and the NA protein,

about 18% of sites generate a mutual information score of 0.5 or greater and the

remaining positions average approximately 0.02 (standard deviation 0.03). A similar

distribution is seen with the HA protein against adamantane resistance, where 18%

of sites score 0.5 or greater, and the remaining positions average about 0.05 (standard

deviation 0.08).

To gain insight from the genotype data present, we can visualize selected amino

acids at the sites of interest, together with other available metadata, in the Ranking

Options panel of the DataBurst diagram.

Figure 5.3 represents the collection of all NA protein sequences grouped by os-

eltamivir resistance, source (swine origin or s-oiv, and non-swine origin or non-soiv),
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Figure 5.3: DataBurst of all NA sequences grouped by oseltamivir resistance, source,
year, and amino acid at position 275, generated from the Ranking Options panel.

year collected, and amino acid at position 275, rendered with the default DataBurst

settings. It is immediately apparent that the majority of strains that are resistant

to oseltamivir have a Y at position 275, and all swine-origin strains are sensitive to

oseltamivir when the amino acid at that position is H, and resistant when this amino

acid is Y. This insight however is not enough to conclude that particular mutations

confer the resistance in question. We next continue the analysis by incorporating

resistance counts.

In assigning the counts of oseltamivir-resistant (Figure 5.4(a)) and sensitive (Fig-

ure 5.4(b)) strains to radial size, we see that Y275 non-swine-origin oseltamivir-

resistant strains and H275 swine-origin oseltamivir-sensitive strains dominate all other

samples. The association however, is not perfect, as we also see the presence of an
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X275 non-swine oseltamivir-resistant strain (recorded during sequencing to show that

an amino acid exists at that position, but it was not identified) and two single Y275

non-swine oseltamivir-sensitive strains (possibly due to genetic variation at other

sites). The former may be excluded from this analysis if desired.

The picture becomes clearer then, as we now see that:

1. There is a strong association between amino acids at position 275 and os-

eltamivir resistance, and the former may likely be responsible for conferring

this resistance (the vast majority of H275 strains are sensitive while the vast

majority of Y275 strains are resistant),

2. The majority of non-swine-origin influenza strains are resistant to oseltamivir

(this resistance increased markedly in 2008, and then decreased in 2009, possibly

around the time of swine outbreak, with a decrease in the number of sensitive

strains from 2007 to 2009), and

3. The vast majority of swine-origin influenza strains are sensitive to oseltamivir

(with seven swine-origin Y275 resistant strains in 2009 otherwise).

By leveraging the final radial attribute, radial colour, we can compare up to

three data attributes simultaneously. When assigning counts of adamantane-sensitive

strains, oseltamivir-sensitive strains and total group counts to radial size, angle and

colour respectively in Figure 5.4(c), we can quickly identify those groups that are

sensitive to both antiviral drugs in the overall context - two groups totalling 86 strains

in this case. Further exploring the diagram shows 11 swine-origin strains sensitive to

both antiviral vaccines.

In contrast, the HA protein shows a shortcoming of the mutual information score

calculation against oseltamivir resistance, and the sequence alignment used. Posi-

tion 558 should provide better correlation to the HA protein than position 275 with

the NA protein given that its score is slightly higher (0.669077 vs. 0.654886), but

when investigated it was found that of the 691 HA sequences that were assigned an

oseltamivir resistance, only one had an amino acid of G at position 558, while the

remainder were gap characters. This is mostly expected due to its proximity to the

end of the aligned sequence (where there would be more gap characters due to par-

tial sequences), but highlights the possible need for additional heuristics in selecting



69

(a) Counts of oseltamivir-resistant
strains assigned to radial size.

(b) Counts of oseltamivir-sensitive strains as-
signed to radial size.

(c) Counts of adamantane- and oseltamivir-sensitive strains assigned to
radial size and angle respectively with group counts assigned to colour.

Figure 5.4: DataBurst diagrams showing relationships between counts of strains’
resistances at amino acid position 275 of the NA protein.
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appropriate sites to be scored. Using the next highest-scoring position in the HA

protein, we again see a clear separation as the amino acids at position 147 are either

K for swine-origin strains, or either T or a gap character for non-swine origin, with

the oseltamivir-sensitive swine-origin group dominating all other groups.

We continue the analysis by next looking at adamantane resistance. The mutual

information scores with both proteins do not clearly identify agreement between a

small number of sites and this resistance. As such, the analyst can interactively

investigate which sites are relevant with the DataBurst diagram.

Figure 5.5: Top-ranking residues in strains of the NA protein that are sensitive (shown
with radial angle) and resistant (shown with radial size) to adamantane.

The results shown in Figure 5.5 are for the 4 highest-ranking positions in the NA

protein (sites 267, 188, 367 and 393) with respect to adamantane resistance, where

the hierarchy is defined similarly to previous examples, and radial angle and size are

mapped to counts of adamantane-sensitive and resistant strains respectively.

Many observations can be made. The sequence groups with amino acids IMLV (in

the order of sites given above) dominate the adamantane-sensitive data, increasing

in size up to 2008 and then decreasing in 2009 (similarly with oseltamivir-sensitive

non-swine data in the NA protein sequences), but the presence of other amino acid

combinations (not currently visible e.g. IMIV, IKLV, TMLV) indicate that some

point mutations occurred for strains at these sites without changing their phenotype.

With the resistant sequences there is a dominant combination (VISI) together
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with 5 IMLV sequences (one in 2006, remainder in 2009), and 25 MIII sequences over

2007, 2008 and 2009. It is unclear whether the non-VISI sequences that correspond

to a resistant phenotype represent stages in mutation that led up to the presence of

resistant sequences, or otherwise. The diverse geographic locations of these sequences

does not make the picture any clearer. This diagram also shows that all swine-origin

sequences are resistant to adamantane.

Even though these high scoring sites in the NA protein, with respect to adaman-

tane resistance, may appear to be randomly dispersed along the protein sequence, it

may well be possible that their positions in the protein’s three-dimensional structure

are quite close to each other. The required data and software to investigate this

however, was not available to us during the analysis.

We note as well that as adamantane antivirals are purposed to interfere with the

function of the M2 gene [56], the possibility exists that the genetic composition of the

NA and HA genes may not directly affect adamantane resistance.

Comparing group counts of sequences that are both adamantane-sensitive and

oseltamivir-sensitive (by assigning both to radial size and angle respectively), we

see in Figure 5.6 that only IMLV sequence groups in 2007 and 2008 show high

counts of both. In 2009, the adamantane-sensitive count fell somewhat, and only

one oseltamivir-sensitive sequence was present. Comparing counts of adamantane-

resistant and oseltamivir-resistant groups showed that the two are independent.

When looking at distantly related groups of NA protein sequences within the

phylogenetic tree (visualized in Figure 5.7 using FigTree, and annotated in an image

editor), we obtain the mutual information scores in Table 5.3 based on the two selected

groups (1,677 strains in Group 1, in red, and 1,711 strains, in Group 2, in blue). Group

membership was chosen such that the evolutionary distance between groups is large,

the evolutionary distances between sequences within a group are minimized, and all

strains tested for resistance to either or both drugs are present.

Note that in Figure 5.7 the common ancestor of each group is highlighted with a

circle in the respective group colour, and all counts of resistant and sensitive strains

given are for those assessed strains (i.e. the statement ”318 strains resistant to adama-

ntane” does not imply that the remainder are sensitive).

The metadata statistics are interesting in their own right. We see that while
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Figure 5.6: Top-ranking residues in strains of the NA protein sensitive to adamantane
and oseltamivir.
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Figure 5.7: Phylogenetic tree of the NA proteins of all strains, with two distinct
groups highlighted in red and blue, with appropriate metadata statistics given.

Group 1 comprises very closely related sequences, with 22 non-swine sequences in

this group, and conversely the distinct set of sequences in Group 2 are all of non-

swine origin. Unfortunately, the 22 non-pandemic sequences in Group 1 were not

tested for either resistance, though we believe that this group is characterized by

having more sequences resistant to adamantane and sensitive to oseltamivir, based

on the converse resistance ratio of Group 2, which has more sequences sensitive to

adamantane and resistant to oseltamivir.

As the Group 1 sequences tested for adamantane are all resistant, the first column

of mutual information scores in Table 5.3 tells us nothing. The 8 oseltamivir-resistant

strains do not affect the low mutual information scores by much, but the impact of

the H275Y mutation is still seen where the score at that position is ten times the next

highest. Group 2 sequences show a better separation of oseltamivir-related scores, due

to the greater number of oseltamivir-resistant and sensitive strains present, reiterating

that position 275 is highly correlated to the oseltamivir resistance phenotype.

Interestingly, position 275’s score is lower in this group than overall (either due
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Group 1 Group 2
Adamantane Oseltamivir Adamantane Oseltamivir
MI Pos MI Pos MI Pos MI Pos
0 470 0.116337 275 0.18146 267 0.576679 275
0 469 0.011673 336 0.18146 188 0.330728 354
0 468 0.011673 257 0.18143 453 0.101199 28
0 467 0.011673 127 0.18140 130 0.059102 453
0 466 0.005881 82 0.17469 82 0.058287 393

Table 5.3: The top 5 mutual information scores for the two distantly related strain
groups against adamantane and oseltamivir resistances.

to the majority of oseltamivir-sensitive sequences being separated into Group 1 or

the minimum entropy of the variables has been lowered), and the 2nd runner up in

this list (position 354) is 93rd in the previous overall listing (with a score of 0.0477),

implying that much genetic variation may be present in these sequences in positions

other than 275.

Adamantane-related Group 2 scores are much lower (again possibly due to the

two reasons given above), and we still see positions 267 and 188 at the top of this

list, but only by a marginal amount.

Interpreting these results from an evolutionary standpoint, we can see that swine-

origin strains have diverged considerably from the majority of the non-swine strains

with respect to the NA gene. We also see that all tested pandemic samples are

resistant to adamantane and most are sensitive to oseltamivir, and that the converse

is true for most of the non-swine strains. We therefore see the phenotype information

mostly matching up with the phylogenetic data (produced from the genotypic data)

at hand.

Mutual information scoring emphasizes that changes at position 275 of the protein

sequences of the NA gene are highly associated with changes in the oseltamivir-

resistance phenotype even after removing phenotypic signals. These scores may have

also shortlisted a number of sites that may be similarly associated to the adamantane-

resistance phenotype, though further statistical analysis is required to say with surety.



Chapter 6

Conclusion

Few visualization tools offer the ability to analyze and investigate large volumes of

multi-dimensional, constant-depth hierarchical data, flexibly defined according to the

varying needs of the analysis. Of the many interesting approaches to doing so, radial

space-filling diagrams are effective in rendering a data hierarchy such that parent-child

relationships can be easily gleaned.

There are also few interactive methods available for working with large volumes

of data in an RSF that are simple to use and maintain context when performed.

And finally, the majority of research efforts are limited to comparing two attributes

simultaneously forcing manual comparisons to be done when investigating more than

two attributes.

DataBurst was developed to address these shortcomings, and renders any given

constant-depth hierarchy of data according to the needs of the analyst in an RSF

diagram. Its contributions are the two unique methods of focus + context in Hy-

perbolic Distortion, where we drag the diagram centre to emphasize some nodes and

deemphasize others, and TearAway subdiagrams, where we can create subdiagrams

having nodes whose attributes can still be compared across multiple diagrams.

Another key contribution is DataBurst’s leveraging of the radial attributes of

node size, node angle and colour, in order to effectively compare up to three numeric

attributes associated with the data hierarchy. This dynamic assignment of data at-

tributes to radial attributes, and the ability to dynamically reorder the data hierarchy,

allows analysts to view their data from multiple perspectives. The focus + context

methods further enable data exploration without losing overall context.

We have shown that DataBurst is a useful tool in exploring both network security

data and protein sequences, and highlighting particular network events and genotype

and phenotype relationships. In the first case study, an overview of network activity

was quickly gleaned and further detailed investigations were performed on individual
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nodes and their component flows. DataBurst assisted the identification and filtering

out of benign activity as dictated by the analyst’s knowledge, and the growth and

subsequent deactivation of a game server was visualized.

In the second case study, DataBurst supported the identification of sites highly

associated with known phenotypes and gave the quantitative insight allowing such

assertions to be made with confidence by mapping appropriate counts to radial at-

tributes and bringing large outliers immediately to an analyst’s attention while fil-

tering out infrequently occurring data (useful when working with large amounts of

data).

The H275Y mutation which confers oseltamivir resistance to swine-origin influenza

strains was effectively highlighted by the DataBurst diagram, both when looking at

all sequences at once, and looking at two groups of sequences that were sufficiently

distant from each other, yet contained highly related sequences (identified using the

phylogenetic tree).

In the other instances where mutations are not exactly clear, DataBurst helps to

identify relevant data that would suggest how a particular phenotype is related. This

was seen in the adamantane resistance analysis on the NA protein (with very similar

results obtained using the HA protein), where some strains with sequences containing

a particular combination of amino acids (amino acid combination IMLV at positions

267, 188, 367 and 393 in the example) appear to be sensitive to adamantane, while

others having another combination of amino acids are resistant.

We are aware that adamantane’s function is most predominantly seen in the M2

protein, but the evidence presented here shows that some relationship exists between

these two proteins and the adamantane phenotype - the cause of which is difficult to

deduce from the data at hand. This relationship is therefore not a causative one.

We have established DataBurst’s utility through these case studies, indicating

that the DataBurst visualization will prove helpful to future analyses involving large

volumes of hierarchical data.

6.1 Future Work

In the limited time frame available for implementation of the visualization and ex-

ecution of the case studies, some improvements were identified that could further
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enhance the DataBurst interface and others that would produce better results in the

case studies.

6.1.1 On the DataBurst Diagram

The DataBurst interface can be augmented to allow for runtime changes to be made

to the data e.g. interactively hiding, permanently removing or sorting nodes within

the hierarchy, so that changes to the input data file can be effected from within

the visualization’s interface. Allowing for non-numeric attributes (where interactive

transformation, of text data for example, to numeric data is allowed) and aggregate

attributes (where a pseudo numeric attribute can be created as the sum of other

numeric attributes for example, or multiple single amino acids can be concatenated

into a single attribute) could also reduce the work involved in data preparation prior

to each analysis.

More complex node selection techniques would also assist in allowing data analysts

to obtain custom lists of nodes of interest from the visualization. Currently individ-

ual selection is allowed, but more complex structure-aware brushing, rectangular or

polygonal selection capabilities could prove useful.

It was hoped that the area within each individual node could be leveraged, by

producing rectangular visualizations within them such that nodes of interest (those

that are wider or longer) could show additional information when expanded. One

possible use would have been a line graph that shows the distribution of a particular

data attribute over time e.g. bytes transferred per minute within an hour of netflows

for each quartet of source and destination IP and port. This would have had the

unique effect of aggregating graph values for parent nodes e.g. total bytes transferred

per minute within an hour between two IP addresses across all ports. An efficient

and real-time implementation of this would be challenging.

As most analyses are never conducted solely by one individual [72], collaborative

techniques would greatly assist in allowing the analyst to quickly markup a diagram

(to say highlight nodes of interest with questions or comments), save the state of his

analysis (the degree and direction of hyperbolic distortion, any torn away subdiagrams

and radial attribute assignments), and forward this to a colleague for assistance and

feedback. A web-based interface and storage solution for this information would
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greatly enhance a collaborative workflow of this type.

6.1.2 On the Network Security Case Study

As a lot of the network security data were not filtered initially, many of the produced

DataBurst diagrams contained various degrees of normal benign data that could have

been safely ignored. It is safe to assume that network security analysts would have

sufficient knowledge to remove the majority of such data so that any netflow data

that is chosen to be visualized would be questionably anomalous or unknown data.

Future research work in this area would therefore involve more intimate knowledge

of all allowed services in netflows captured within a particular network, such that we

can enforce filters that are known to reduce the amount of normal data netflow to be

rendered.

6.1.3 On the Genetic Data Study

A conditionally weighted mutual information score, as proposed by MacDonald and

Beiko in [46], may assist in reducing the list of highly scoring sites to investigate

(from the 86 NA sequences and 102 HA sequences having a score above 0.5 with

respect to adamantane resistance). This incorporates phenotype and taxonomic in-

formation, and would lower scores where the confounding effect of common ancestry

is present. Another optional scoring method is Minimum Redundancy Maximum Rel-

evance (mRMR [20]), which chooses sites that are mutually distant from each other

while still being highly correlated to a chosen phenotype.

Further analysis would involve the implementation of the above and any other

scoring options that can better clarify results obtained. Further investigating the

phylogenetic trees of both proteins may also uncover additional insights. The un-

explained interesting observations made in the analysis (e.g. the increased score of

position 354, and the lower score of position 275 when incorporating phylogenetic

data with the NA protein and oseltamivir resistance) will also be investigated.

Another investigation that could be performed would be comparison, possibly

using mutual information again, of sites with other sites (as opposed to sites with

phenotypes). This may shed some light on why there are Y275 non-swine-origin NA

proteins that were sensitive to oseltamivir, given that the H275Y mutation was seen
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to confer resistance. It will also give a better indication how changes in any of the

high scoring positions with respect to adamantane resistance in both the NA and HA

proteins are related to each other.

And finally, future analyses could be performed on other proteins of the influenza

A virus (multiple substitutions in the transmembrane domain of the M2 protein have

made some strains resistant to adamantane [1]) and on the NA and HA proteins with

other drugs (while zanamivir has proven highly effective in the past, the World Health

Organization has acknowledged unique mutations in the NA gene that have produced

zanamivir resistance [33]).
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