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Abstract

For many years, engineers have designed foundations, wallsand culverts for highway and

other geotechnical applications using allowable stress design (ASD) methods. In ASD, all

uncertainties in the load and resistance are combined into aglobal factor of safety which,

unfortunately, leads to uncertain safety margins in the design. The determination of system

failure probability requires a coherent method of design for the geotechnical system. The

Load and Resistance Factor Design (LRFD) approach allows designs to be targeted to

acceptable failure probability levels, which depend on thelimit state being avoided.

This research proposes Load and Resistance Factor Design provisions for the ultimate limit

state punching shear failure of deep foundations. The load factors currently used are as

specified by the National Building Code of Canada. The geotechnical resistance factors

required to achieve a certain acceptable failure probability are estimated as a function of the

spatial variability of the soil and of the degree of site understanding. A mathematical theory

is developed to analytically estimate the failure probability of deep foundations in which

the spatially random soil field is modeled using random field theory. The analytical results

are validated by simulation and then used to estimate failure probabilities and geotechnical

resistance factors required for design.
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Chapter 1: Introduction

1.1 General

Deep foundations will be hereafter collectively referred to aspiles for simplicity in this

thesis. Piles are designed to transfer load to the surrounding soil and/or to a firmer stratum,

thereby providing vertical and lateral load bearing capacity to a supported structure. In

this thesis, the random behavior of a pile subjected to a vertical load and supported by a

spatially variable soil is investigated.

The geotechnical resistance, or bearing capacity, of a pilearises as a combination of side

friction, where load is transmitted to the soil through friction along the sides of the pile,

and end bearing, where load is transmitted to the soil (or rock) through the tip of the pile.

If soil-boring records establish the presence of bedrock orrocklike material at a site within

a reasonable depth, piles can be extended to the rock surface. In this case, the ultimate

capacity of the piles depends primarily on the load bearing capacity of the underlying

material; these piles are calledend bearing piles. When piles become very long, they

are referred to as friction piles because most of the resistance is drived from skin friction

(Fenton and Griffiths, 2008).

The required length of a friction pile depends on the soil characteristics, the applied load,

and the pile size. To determine the necessary length of thesepiles, an engineer needs a

good understanding of soil-pile interaction, good judgment, and experience. Theoretical

procedures for calculating the load-bearing capacity of piles for soils under effective and

total stress conditions are presented in Chapters 2 and 3.

Pile foundations are needed in a variety of circumstances. The following are some situations

in which piles may be considered for the construction of a foundation.

1) When the upper soil layers are highly compressible and tooweak to support the load

transmitted by the superstructure, piles are used to transmit the load to underlying

bedrock or a stronger soil layer. When bedrock is not encountered at a reasonable depth

below the ground surface, piles are used to transmit the structural load to the soil. The

resistance to the applied structural load is derived mainlyfrom the effective and/or total

stress resistance developed at the soil-pile interface.
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2) When subjected to horizontal forces, pile foundations resist by bending while still

supporting the vertical load transmitted by the superstructure. This situation is generally

encountered in the design and construction of earth retaining structures and foundations

of tall structures that are subjected to strong wind and/or earthquake forces.

3) In many cases, the soils at the site of a proposed structuremaybe expansive and col-

lapsible. These soils may extend to a great depth below the ground surface. Expansive

soils swell and shrink as the moisture content increases anddecreases, respectively,

and the swelling pressure of such soils can be considerable.In the extreme case, soils

such as loess are collapsible. When the moisture content of these soils increases, their

structures may break down. In such cases, pile foundations may be used, in which piles

are extended into stable soil layers beyond the zone of possible moisture change.

4) The foundations of some structures, such as transmissiontowers, offshore platforms,

and basement mats below the water table, may be subjected to uplifting forces. Piles

are sometimes used for these foundations to resist uplifting forces.

5) Bridge abutments and piers are usually constructed over pile foundations to avoid the

possible loss of bearing capacity that a shallow foundationmight suffer because of soil

erosion at the ground surface (Fenton and Griffiths, 2008).

1.2 Reliability-Based Design

Before talking about reliability-based design in geotechnical engineering, it is worth inves-

tigating the levels of risk that a reliability-based designis aiming to achieve. In many areas

of design, particularly in Civil Engineering, the design isevaluated strictly in terms of the

probability of failure, rather than by assessing both the probability of failure and the cost

or consequences of failure. This is probably mostly due to the fact that the value of human

life is largely undefined and a subject of considerable political and social controversy.

Most civil engineering structures are currently designed so that individual elements making

up the structure have a “nominal” probability of failure of about one in one thousand and

the same might be said about an individual geotechnical element such as a footing or pile.

More specifically, we say that for a random load,F , on an element with resistance,R, we

design such that

P[F > R] ' 1
1000

In fact, building codes are a bit vague on the issue of acceptable risk, partly because of

2



the difficulty in assessing overall failure probabilities for systems as complex as entire

buildings. The above failure probability is based on the loss of load carrying capacity of a

single building element, such as a beam or pile, but the codesalso strive to achieve a much

lower probability of collapse by

1) ensuring that the system has many redundancies (if one element fails, its load is picked

up by other elements),

2) erring on the safe side in parameter estimates entering the probability estimate,

So, in general, the number of failures resulting in loss of life is a good deal less than one

in a thousand (perhaps ignoring those failures caused by deliberate sabotage or acts of war

which buildings are not generally designed against).

1.2.1 Background to Design Methodologies

For over 100 years,working stress design(WSD), also referred to asallowable stress

design(ASD), has been the traditional basis for geotechnical design relating to settlements

or failure conditions. Essentially, WSD ensures that thecharacteristic loadacting on a

foundation or structure does not exceed some allowable limit. Characteristic values of

either loads or soil properties are also commonly referred to asnominal, working, ordesign

values. The word “characteristic” will be used to avoid confusion.

In WSD, the allowable limit is often based on serviceabilitylimit state. Uncertainty in

loads, soil strength, construction quality, and model accuracy is taken into account through

a nominal global factor of safety, Fs, defined as the ratio of the characteristic resistance to

the characteristic load,

Fs =
characteristic resistance

characteristic load
=

R̂

F̂
=

R̂Pn
i=1 F̂i

(1.1)

In general, thecharacteristic resistance, R̂, is computed by geotechnical relationships using

conservative estimates of the soil properties while thecharacteristic load, F̂ , is the sum of

conservative unfactored estimates of characteristic loadactions,F̂i, acting on the system.

F̂ is sometimes taken as an upper percentile (i.e. a load only exceeded by a certain small

percentage of loads in any one year), as illustrated in Figure 1.1, whileR̂ is sometimes

taken as a cautious estimate of the mean resistance.
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Figure 1.1 Load and resistance distributions.

A geotechnical design proceeds by solving Eq. (1.1) for the characteristic resistance, leading

to the following design requirement,

R̂ = Fs

X
i

F̂i (1.2)

whereF̂i is theith characteristic load effect. For example,F̂1 might be the characteristic

dead load,F̂2 might be the characteristic live load,F̂3 might be the characteristic earthquake

load, and so on. Although Eq. (1.1) is the formal definition ofFs, Fs is typically selected

using engineering judgment and experience and then used in Eq. (1.2) to determine the

required characteristic resistance.

Although WSD is simple and useful, it is also accompanied by difficulties and ambiguities.

First, the traditional argument made against the use of a single factor of safety is that

two soils with the same characteristic strength and characteristic load will have the same

Fs value regardless of the actual variabilities in load and strength. This is true when the

characteristic values are equal to the means, i.e. when the factor of safety is defined in terms

of the means, e.g.

Fs =
mean resistance

mean load
(1.3)
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as it commonly is. The meanFs was illustrated in Figure 1.1. Figure 1.2 shows how

different geotechnical systems, having the same mean factor of safety, can have vastly

different probabilities of failure. In other words, the mean factor of safety does not

adequately reflect the actual design safety. The probability of failure, pf , is computed

as the probability that load exceeds resistance,

pf = P[F > R] = P
�
R/F < 1

�
= P[ln R� ln F < 0] (1.4)

where, if it is assumed thatR andF are lognormally distributed, then (lnR � lnF ) is

normally distributed. If we letM = R/F , whereM is called thesafety margin(M is less

than one if the load exceeds the resistance so that failure occurs), then

ln M = lnR� ln F (1.5)

which is normally distributed with parameters

µln M = µln R � µln F (1.6a)

σ2
ln M = σ2

ln R + σ2
ln F (1.6b)

where it is assumedR andF are independent. Now we find that

P[F > R] = P[lnM < 0] = P

�
Z <

0� µln M

σln M

�
= P

"
Z <

0� (µln R � µln F )p
σ2

ln R + σ2
ln F

#
= Φ

 � µln R � µln Fp
σ2

ln R + σ2
ln F

!
(1.7)

whereZ = (lnM � µln M )/σln M has a standard normal distribution, andΦ is the standard

normal cumulative distribution function. We can now define thereliability index, β, to be

β =
µln R � µln Fp
σ2

ln R + σ2
ln F

(1.8)

which represents the number of standard deviations that (lnR � lnF ) is away from the

"failure" region (i.e. 0). Asβ becomes smaller, the probability of failure increases.

Typically, aβ value of 3.0 to 3.5 is aimed for in structural engineering.

Another key problem with WSD is that it does not explicitly differentiate between the

behavior of the structure under ultimate and serviceability limit states. However, as will

5



be discussed follows, when we combine Limit States Design (LSD) with Load and Resis-

tance Factor Design (LRFD), we can both consider different modes of failure and achieve

appropriate levels of safety for each failure mode.

It should be noted that the evolution from WSD to more advanced reliability-based design

methodologies is entirely natural. For at least the first half of the 20th century little

was understood about geotechnical loads and resistances beyond their most important

characteristics; their means. So it was appropriate to define a design code largely in

terms of means and some single global factor of safety. In more recent years, as our

understanding of the load and resistance distributions improve, it makes sense to turn our

attention to somewhat more sophisticated design methodologies which incorporate these

distributions.

The working stress approach to geotechnical design has nevertheless been quite successful

and has led to many years of empirical experience. The primary impetus to moving away

from working stress design towards reliability-based design is to allow a better feel for

the actual reliability of a system and to harmonize with structural codes which have been

reliability-based for some time now.

Most current reliability-based design codes start with an approach calledLimit States

Design. The ‘Limit States’ are those conditions in which the systemceases to fulfill the

function for which it was designed. Those states concerningsafety are calledultimate limit

states, which include exceeding the load carrying capacity (e.g.,bearing failure),
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Figure 1.2 Three geotechnical problems can have precisely the same mean
factor of safety and yet different probabilities of failure, P[F > R].
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overturning, sliding, and loss of stability. Those states which restrict the intended use

of the system are calledserviceability limit states, which include deflection, permanent

deformation, and cracking.

1.2.2 Load and Resistance Factor Design

Once the limit states have been defined for a particular problem, the next step is to develop

design relationships for each of the limit states. The selected relationships should yield a

constructed system having a target reliability or, conversely, an acceptably low probability

of failure. A methodology which at least approximately accomplishes this goal and which

has gained acceptance amongst the engineering community isthe Load and Resistance

Factor Design(LRFD) approach. In its simplest form, the load and resistance factor design

for any limit state can be expressed as follows: design the system such that its characteristic

resistance,̂R, satisfies the following inequality

ϕguR̂ � αF̂ (1.9)

whereϕgu is a geotechnical resistance factor acting on the (geotechnical) characteristic

resistance,R̂, andα is a load factor acting on the characteristic load,F̂ . Typically the

resistance factor,ϕgu, is less than 1.0 – it acts to reduce the characteristic resistance to a

less likely factored resistance, having a suitably small probability of occurrence. Since,

due to uncertainty, this smaller resistance may nevertheless occur in some small fraction

of all similar design situations, it is the resistance assumed to exist in the design process.

Similarly, the load factor,α, is typically greater than 1.0 (unless the load acts in favorof

the resistance). It increases the characteristic load to afactored loadwhich may occur in

some (very) small fraction of similar design situations. Itis this higher, albeit unlikely, load

which must be designed against.

A somewhat more general form for the LRFD relationship appears as follows;

ϕguR̂ � mX
i=1

IiαiF̂i (1.10)

where we apply separate load factors,αi, to each ofm types of characteristic loads,̂Fi.

For example,F̂1 might be the sustained ordeadload, F̂2 might be the maximum lifetime

dynamic orlive load,F̂3 might be a load due to thermal expansion, and so on. Each of these

load types will have their own distribution, and so their corresponding load factors can be

adjusted to match their variability. The parameterIi is an importance factor corresponding

to each load which is greater than 1.0 for important structures (e.g. structures which provide
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essential services after a disaster, such as hospitals) andless than 1.0 for structures whose

failure is unlikely to threaten safety (eg. storage sheds).Most typical structures have an

importance factor of 1.0. Some building codes, such as the National Building Code of

Canada (National Research Council, 2005) adjust the load factors individually to reflect

building importance, rather than use a single global importance factor.

LRFD is currently being used in many structural design codesand reports, such as the

National Building Code of Canada (NBCC, 2005), American Association of State Highway

and Transportation Officials (AASHTO, 2007), Canadian Highway Bridge Design Code

(CHBDC, 2006), the National Cooperative Highway Research Program (NCHRP) Report

343 (Barker et al., 1991) and the Federal Highway Administration (FHWA) Load and

Resistance Factor Design (LRFD) for Highway Bridge Substructures (FHWA, 2001).

In general, LRFD replaces single factor of safety on the ratio of total resistance to total load

with a set of partial safety factors on individual components of resistance and load, and

uses limit states as the checking points for design. The design loads are typically increased

and design resistances are reduced through multiplicationby partial safety factors that are

greater than one and less than one, respectively, as discussed above. There are advantages

and disadvantages associated with use of LRFD for geotechnical aspects of foundation

design, the advantages are as follow;

1) The use of separate load and resistance factors is logicaland realistic because loads and

resistance have separate and unrelated sources of uncertainty. Using separate factors is

a convenient and rational way of accounting for the sources of uncertainty in design.

In addition, soil can act either as a load or as a resistance orboth. For example, the soil

behind a retaining wall acts as a load while soil in front of the retaining wall may act

as a resistance. It would be better to factor these actions separately.

2) The application of LRFD to geotechnical design helps harmonize with the structural

community and minimize any incompatibility between structural and foundation en-

gineers. This leads to a consistent design approach/philosophy orchestrated by the

structural and geotechnical engineers.

3) Finally, the fact that all components of the structural system, including the foundation,

are designed to a consistent and appropriate level of safetyor reliability leads to a more

economical design.

The disadvantage of using LRFD can be stated as follow;

1) The random characteristics of loads and strength (resistance) in structural engineering

are fairly well known and reasonably well established (Allen, 1975, MacGregor, 1976).
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This is because, for structural material such as concrete, steel, and wood, representative

testing can easily be performed so that distributions are relatively easily estimated.

Because structural materials are typically quality controlled, their distributions remain

relatively constant at any building site. Thus, it is typically only necessary to take a

few samples of the building material at the site to ensure that design criteria are met.

The difficulty with geotechnical engineering in terms of LRFD is that geotechnical

materials, e.g. soil or rocks, are not manufactured to specified criteria, as is the case

for most structural materials. In order to have a reasonablyaccurate estimation of

soil variability we must conduct intensive site investigations. It is also hard to deliver

undisturbed soil samples to test facilities to accurately determine their properties. In

other words, to capture the variability of soil accurately many carefully taken samples

would be required to estimate both mean and variance values,which adds expense and

difficulties to foundation design.

2) Another difficulty with geotechnical engineering is the determination of spatial ran-

domness of soil and its effect on the design reliability. Soil properties often vary

dramatically from point to point within the same site and a thorough awareness of this

inherent variability can be vital to the success of the design. Because soil properties

vary from point to point soils should be modeled using randomfield theory (Vanmarcke,

1984).

Even though the evolution from WSD to Load and Resistance Factor Design (LRFD) in the

geotechnical engineering community is entirely natural with the development of the public

awareness of the benefits, there is some concerns about the position of engineering judgment

and experience. It should be pointed out that engineering judgment and experience are,

and always will be, an essential part of geotechnical engineering, especially for the design

aspects that are beyond the scope of mathematical analysis.For example, the selection

of characteristic values for any given limit state will involve engineering judgment and

experience.

1.3 Research Objectives

Early use of LSD for geotechnical applications was examinedby the Danish Geotechnical

Institute (Hansen 1953, 1956) and later formulated into code (Hansen, 1966). Independent

load and resistance factors were used, with the resistance factors applied directly to the soil

properties rather than to the characteristic resistance.

Considerable effort has been directed over the past decade to the application of LRFD in

10



geotechnical engineering. LRFD approaches have been developed in offshore engineering

(e.g., Tang, 1993; Hamilton and Murff, 1992), general foundation design (e.g., Kulhawy

and Phoon, 1996), and pile design for transportation structures (Barker et al., 1991; ONeill,

1995).

In geotechnical practice, uncertainties concerning resistance principally manifest them-

selves in design methodology, site characterization, soilbehavior, and construction quality.

The uncertainties have to do with the formulation of the physical problem, interpreting

site conditions, understanding soil behavior (e.g., its representation in property values), and

accounting for construction effects. Uncertainties in external loads are small compared with

uncertainties in soil and the strength-deformation behaviors of soils. The applied loads,

however, are traditionally based on superstructure analysis, whereas actual load transfer to

substructures is poorly researched.

This research considers an individual pile placed in a spatially varying random soil. In

general, the soil will vary in three dimensions, but there islittle advantage in considering

the 3rd dimension since piles are essentially one-dimensional and only the 2nd dimension

is needed to provide distance from the pile location. Hence,this study considers a two-

dimensional random field in which the pile is place vertically at a certain position and

soil samples are take vertically at some possibly differentposition (as in a CPT or STP

sounding).

A random fieldX(t
∼

) is a collection of random variables,X1 = X(t
∼1), X2 = X(t

∼2), ..., whose

values are mapped onto a space (of n dimensions), one for eachpoint in the field. Values in

a random field are usually spatially correlated in one way or another.

In the present study three parameters are considered to describe the random soil model,

the mean,µ, the standard deviation,σ, and the correlation length,θ. Frequently, it is

more convenient to express standard deviation (or variance) as a coefficient of variation,v,

defined as the ratio of standard deviation,σ, to the mean,µ, v = σ/µ.

A convenient measure of the variability of a random field is the correlation length, θ, also

sometimes referred to as thescale of fluctuation. Loosely speaking,θ is the distance within

which points are significantly correlated. Conversely, twopoints separated by a distance

more thanθ will be largely uncorrelated. Mathematically,θ is defined here as the area under

the correlation function (Vanmarcke, 1984),

θ =
Z

∞

−∞

ρ(t) dt (1.11)

Fields with smallθ tend to be ‘rough’, while fields with largerθ are usually smoother.
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Figure 1.3 shows two random field realizations. The field on the left has a small correlation

length (θ = 0.04) and can be seen to be quite rough. The field on the right has alarge

correlation length (θ = 2) and can be seen to be more slowly varying. (Fenton et al., 2008)
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Figure 1.3 Sample realizations ofX(t) for two different correlation lengths.

In random fields a correlation coefficient can be used to characterize the spatial dependence

of the fields. The correlation coefficient will be given by correlation function parameterized

by the correlation length,θ. There are several commonly used correlation functions, inthis

research the Markov correlation function,ρ(t), is used. It is because of its simplicity and

because, in one-dimension, it is a memoryless process. Thismeans for a stochastic process

the future of the random process only directly depends on thepresent and not on the past.

The Markov correlation function has the form

ρ(t) = exp

��2jtj
θ

�
(1.12)

wheret = z1� z2 is the distance between two points andθ is the correlation length (Fenton

and Griffiths, 2008).

This study proposes a reliability-based design methodology for piles, with the aim of

reducing cost without compromising safety. For deep foundation design, this will be

accomplished by assessing the probability of failure of piles under effective stress and total

stress conditions.

The final goal is to investigate the effect of a soil’s spatialvariability and site investigation

intensity on the resistance factors via theory and via simulation, the latter using Monte

Carlo simulation.

It seems reasonable to assume that if the spatial correlation structure of a soil is caused by

changes in the constitutive nature of the soil over space, then both cohesion and friction
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angle would have similar correlation lengths. Thus, friction angle,φ is assumed to have the

same correlation structure as cohesion,c, i.e.,ρ(t). Both correlation lengths will be referred

to generically from now on simply asθ, and both correlation functions asρ(t).

The two random fields,c andφ, are assumed to be independent. Non-zero correlations

betweenc andφ were found by Fenton and Griffiths (2003) to have only a minor influence

on the estimated probabilities of bearing capacity failure. Since the general consensus is

thatc andφ are negatively correlated (Cherubini, 2000) and the mean bearing capacity for

independentc andφ was slightly lower than for the negatively correlated case (Fenton and

Griffiths, 2003), the assumption of independence betweenc andφ is slightly conservative.

1.4 Scope of Work

This study concentrates on the determination of geotechnical resistance factors for use

in the design of a pile in soils under effective stress and total stress conditions, using

reliability-based design methodology. An introduction ofdeep foundations and the history

of geotechnical designs are outlined in Chapter 1.

Chapter 2 presents an analytical solution to estimating thefailure probability of deep

foundation in soils under total stress condition. Chapter 2also describes the Monte Carlo

simulations used in this thesis to validate the analytical solution.

The results of the simulation are then compared to the analytical results. Recommended

resistance factors for four different maximum acceptable failure probabilities are shown in

Chapter 2 and a comparison is made between these recommendedvalues and the values

recommended in existing LRFD codes.

Chapter 3 is similar to Chapter 2, except to determine the required resistance factors for

piles founded in effective stress soils.

Finally, the limitations of overall results and recommendations are discussed, and conclu-

sions are drawn in Chapter 4. Suggestions for future research are also provided.
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Chapter 2: Geotechnical Resistance Factors for Total Stress
Limit State Design of Deep Foundations

2.1 General

Deep foundations, or piles, may fail through a punching shear failure, an ultimate limit

state (ULS), where the load applied to the pile exceeds the shear strength of the surrounding

soil (Fenton and Griffiths, 2007). The soil supports the pilethrough a combination of

end-bearing and friction and/or cohesion between the soil and the pile sides. In this chapter,

only total stress resistance is considered, as would typically be found in a soil under total

stress condition, and end-bearing is ignored.

As the load on the pile is increased, the bond between the soiland the pile surface will

break down and the pile will slip through the surrounding soil. At this point, the ultimate

geotechnical resistance of the pile has been reached. The ultimate geotechnical resistance

of a pile due to cohesion,c, between the pile surface and its surrounding soil is given by ,

Ru =
Z H

0
pτ (z) dz (2.1)

wherep is the effective perimeter length of the pile section andτ (z) is the ultimate shear

stress acting on the surface of the pile at depthz.

The ultimate shear stress acting between the soil and the pile under total stress condition

can be obtained by several methods. One commonly accepted procedure, theα method,

is described briefly by Das (2000). According to theα method, the unit surface shear

resistance in soils under total stress condition can be represented by the equation,

τ (z) = αc(z) (2.2)

wherec(z) is the average soil cohesion around the pile perimeter at depth z, andα is an

empirical adhesion factor, typically in the range of 0.3 to 1, as specified by the Canadian

Foundation Engineering Manual (CFEM, 2006). For a normallyconsolidated clay with

cohesion,c, less than about 33 kPa, the adhesion factor suggested by Das(2000) is 1.0. The

14



adhesion coefficient can be also written as a function of the cohesion over the pile length

as (CFEM, 2006),

α =

(
0.21 + 0.26Pa

µc
if µc � 33 kPa

1 if µc < 33 kPa
(2.3)

wherePa is the standard atmosphere (101.325 kPa).

In this research the average cohesion,µc, is assumed to be 50 kPa and so its corresponding

adhesion coefficient,α, by using Eq. (2.3) can be estimated to beα = 0.74. The simulations

and analytical results presented in this research are basedon average values of cohesion,

µc = 50kPa, and adhesion factorµα = 0.74. With this information, the true ultimate total

stress resistance of a pile with lengthH and perimeterp, can be estimated to be,

Ru =
Z H

0
pαc(z) dz (2.4)

In the design of a pile, geotechnical engineers must find the effective perimeter,p, and

length,H, required to avoid a total stress resistance failure. In this research, it is assumed

that the pile type is already known, so thatp is known and the design involves determining

H. To find H, ultimate limit state (ULS) conditions are checked using separate factors

on loads and on ultimate geotechnical resistance. This leads to the load and resistance

factor design (LRFD) methodology, collectively referred to as Limit States Design (LSD)

in Canada, which requires that the factored geotechnical resistance exceed the factored load

at each limit state. At the ultimate limit state, the design requirement is

ϕguR̂u �X
i

IiαiF̂i (2.5)

whereϕgu is the ultimate geotechnical resistance factor,R̂u is the characteristic (design)

ultimate geotechnical resistance,Ii is an importance factor corresponding to thei’th char-

acteristic load effect,̂Fi, andαi is thei’th load factor.

The importance factor,Ii, reflects the severity of the failure consequences and may belarger

than 1.0 for important structures, such as hospitals, whosefailure consequences are severe

and whose target probabilities of failure are less than those for typical structures. Typical

structures are usually designed usingIi = 1, which will be assumed in this research. Struc-

tures with low failure consequences (minimal risk of loss oflife, injury, and/or economic

impact) may haveIi < 1.

Only one load combination will be considered in this research,

α̂T F̂ = αLF̂L + αDF̂D (2.6)
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whereα̂T is the total load factor,̂F is combination of characteristic live and dead loads,F̂L

is the characteristic live load,̂FD is the characteristic dead load, andαL andαD are the live

and dead load factors, respectively. The load factors used in this study will be as specified

by the National Building Code of Canada (NBCC; NRC, 2005);αL = 1.5 andαD = 1.25.

The theory presented here, however, is easily extended to other load combinations and

factors, as long as their (possibly time-dependent) distributions are known.

In any reliability-based design, uncertain quantities such as load and resistance are repre-

sented by random variables having some distribution. Distributions are usually character-

ized by their mean, standard deviation, and some shape (e.g.normal or lognormal). In some

cases, the characteristic load values used in design are defined to be the means, but they can

be more generally defined in terms of the means as

F̂L = kLµL (2.7a)

F̂D = kDµD (2.7b)

whereµL andµD are the means of the live and dead loads, andkL andkD are live and

dead load bias factors, respectively (Fenton and Griffiths,2008). For typical multi-storey

office buildings, Allen (1975) estimateskL = 1.41, based on a 30 year lifetime. Becker

(1996) estimateskD to be 1.18. The characteristic loads,F̂L andF̂D, are thus obtained as:

F̂L = 1.41µL andF̂D = 1.18µD (Fenton et al., 2008).

The characteristic ultimate geotechnical resistance,R̂u, is determined using characteristic

soil properties, in this case characteristic values of the soil’s cohesion,c. To obtain the

characteristic soil properties, the soil is assumed to be sampled over a single column

somewhere in the vicinity of the pile, for example by a singleCPT sounding near or field

vane test taken the pile. The sample is assumed to yield a sequence ofm observed cohesion

values, ˆc1, ĉ2, . . . , ĉm. The characteristic value of the cohesion, ˆc, is defined in this chapter

as an arithmetic average of the sampled observations, ˆci, which, can be computed as,

ĉ =
1
m

mX
i=1

ĉi (2.8)

The characteristic ultimate geotechnical resistance,R̂u, can now be obtained from Eq. (2.4)

to be

R̂u = pHαĉ (2.9)

In order to determine the geotechnical resistance factor,ϕgu, required to achieve a certain

acceptable reliability, the failure probability of the pile must be estimated. This probability
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will depend on the load distribution, the load factors selected, and the resistance distribution.

The resistance distribution is discussed in Sections 2.2 and the load distribution is discussed

in Section 2.3. Sections 2.4 and 2.5 develop the analytical framework and simulation

algorithm for the failure probability estimate, and illustrate how the theoretical estimates

agree with simulation.

The Load and Resistance Factor Design (LRFD) approach involves selecting a maximum

acceptable failure probability level,pm. The choice ofpm derives from a consideration of

acceptable risk and directly influences the value ofϕgu. Different levels ofpm may be

considered to reflect the “importance” of the supported structure –pm may be much smaller

for a hospital than for an uninhabited storage warehouse.

The choice of a maximum acceptable failure probability,pm, should consider the margin

of safety implicit in current foundation designs and the levels of reliability for geotechnical

design as reported in the literature. The values ofpm for foundation designs should be nearly

the same or somewhat less than that of the supported structure because of the difficulties

and high expense of foundation repairs. A literature reviewof the suggested maximum

acceptable failure probability for foundations is listed in Table 2.1.

Table 2.1 Literature review of lifetime probabilities of failure of foundations.

Source pm

Meyerhof (1970, 1993, 1995) 10−2� 10−4

Simpson et al. (1981) 10−3

NCHRP (1991) 10−2� 10−4

Becker (1996) 10−3� 10−4

Meyerhof (1995) suggests that a typical lifetime failure probability for a foundation is

around 10−4 and so the numbers in Table 2.1, range on the high side of that suggested by

Meyerhof. However, foundations are normally supported by more than a single pile, and

multiple piles provide at least some degree of system redundancy which serves to reduce

the system failure probability. If it is assumed that Meyerhof’s 1995 estimate is for the

entire foundation system, then the required failure probability for a single pile would be

greater than the system failure probability of 10−4. Although more research is required to

determine the failure levels appropriate for redundant pile systems, the National Cooperative

Highway Research Program (NCHRP) reports (Barker et al., 1991, and Paikowsky, 2004)

are based on a lifetime failure probability of about 10−3 for an individual pile which

suggests that NCHRP is considering pile redundancy. In thisresearch, four maximum

acceptable failure probabilities, 10−2, 10−3, 10−4 and 10−5, will be considered. The failure
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probabilities, 10−3, 10−4, and 10−5, might be appropriate for designs involving low (e.g.

storage facilities), medium (typical structures), and high (e.g. hospitals and schools)

failure consequence structures, respectively. The geotechnical resistance factors required

to achieve these maximum acceptable failure probabilitieswill be recommended in Section

2.6.

2.2 The Random Soil Model

The soil cohesion,c, is assumed to be lognormally distributed with mean,µc, standard

deviation,σc, and some spatial correlation structure (Fenton et al., 2008). The lognormal

distribution is selected because it is commonly used to represent non-negative soil properties

and has a simple relationship with the normal. A lognormallydistributed random field can

be obtained from a normally distributed random field,Gln c(z), having zero mean, unit

variance, and spatial correlation length,θ, through the transformation

c(z) = expfµln c + σln cGln c(z)g (2.10)

wherez is the spatial position at whichc is desired. The mean and variance of lnc are

obtained from the specified mean and variance of cohesion using the transformations

σ2
ln c = ln

�
1 + v2

c

�
, µln c = ln(µc)� 1

2
σ2

ln c (2.11)

wherevc is the coefficient of variation of the cohesion, defined byvc = σc/µc.

The correlation coefficient between the log-cohesion at a point z1 and a second pointz2,

is specified by a correlation function,ρ. In this study, a simple exponentially decaying

(Markovian) correlation function will be assumed, having the form

ρ(t) = exp

��2jtj
θ

�
(2.12)

wheret = z1� z2 is the distance between the two points.

The spatial correlation length,θ, appearing in Eq. (2.12), is loosely defined as the separation

distance within which two values of lnc are significantly correlated. Mathematically,θ is

defined as the area under the correlation function,ρ(t) (Vanmarcke,1984). The spatial

correlation function,ρ(t), has a corresponding variance reduction function,γ(H), which

specifies how the variance is reduced upon local averaging ofln c over some lengthH and

is defined by,

γ(H) =
1

H2

Z H

0

Z H

0
ρ(z1 � z2) dz1 dz2 (2.13)
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It should be noted that the correlation function selected above acts between values of lnc.

This is because lnc is normally distributed, and a normally distributed randomfield is

simply defined by its mean and covariance structure. In practice the correlation lengthθ

can be estimated by evaluating spatial statistics of the log-cohesion data directly (see, e.g.,

Fenton 1999).

2.3 The Random Load Model

The load acting on a foundation is typically composed of deadloads, which are largely

static, and live loads, which are largely dynamic. Dead loads are relatively well defined

and can be computed by multiplying volumes by characteristic unit weights. The mean

and variance of dead loads are reasonably well known. On the other hand, live loads are

more difficult to characterize probabilistically. A typical definition of a live load is the

extreme dynamic load (e.g., wind load, vehicle loads, bookshelves etc.) that a structure

will experience during its design life. In other words, the distribution of live load really

depends on the design life. Dead and live loads will be denoted as,FD andFL, respectively.

Assuming that the total load,F is equal to the sum of the maximum lifetime live load,FL,

and the static dead load,FD, i.e,

F = FL + FD (2.14)

then mean and variance ofF , assuming dead and live loads are independent, are given by,

µF = µL + µD (2.15a)

σ2
F = σ2

L + σ2
D (2.15b)

The total load,F = FL + FD, is assumed to be lognormally distributed. This assumption

was found to be reasonable by Fenton et al. (2008).

The total load distribution has parameters,

µln F = ln(µF )� 1
2σ

2
ln F (2.16a)

σ2
ln F = ln

�
1 +

σ2
F

µ2
F

�
(2.16b)

The design problem considered in this study involves a pile supporting loads having means

and standard deviations shown in Table 2.2. The values in Table 2.2 used for mean loads

to ensure that the designed pile length,H, doesn’t exceed simulation depth, but results are

scalable so the detailed means have little or no influence on final results.
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Table 2.2 Load distribution parameters.

Parameters µL µD σL σD µF σF µln F σln F

Values 20 kN 60 kN 6 kN 9 kN 80 kN 10.82 kN 4.4 0.14

Assuming bias factorskD = 1.18 (Becker, 1996) and,kL = 1.41 (Allen, 1975) and im-

portance factor,Ii = 1.0, gives the characteristic live load,̂FL = 1.41µL = 28.2 kN,

dead load,F̂D = 1.18µD = 70.8 kN, and characteristic total design load,αLF̂L + αDF̂D =

1.5F̂L + 1.25F̂D = (1.5� 28.2) + (1.25� 70.8) = 130.8 kN.

2.4 Analytical Approach to Estimating the Probability of Failure

In order to estimate the probability of failure of a pile, thesoil should first be modeled as

a spatially varying random field. In general, cohesion will vary in all three dimensions,

but there is little advantage in considering the 3rd dimension since piles are essentially

one-dimensional and only the 2nd dimension is needed to consider distance between a

sample and the pile location. Hence, this study considers a two-dimensional random field

in which the pile is placed vertically at a certain position and soil samples, as in CPT or

SPT sounding, are taken vertically at some, possibly different, position. The analytical

approximation to the probability of pile failure in soils under total stress condition will be

explained as follows.

When the soil properties are spatially variable, as they arein reality, then, Eq. (2.9) can be

replaced by

Ru = pHαc̄ (2.17)

where ¯c is the equivalent cohesion, defined as the uniform cohesion value which leads to

the same ultimate strength as observed in the spatially varying soil over a pile of length,

H. It is hypothesized here that ¯c is the arithmetic average of the spatially variable cohesion

over the pile lengthH,

c̄ =
1
H

Z H

0
c(z) dz ' 1

n

nX
i=1

c̄i (2.18)

wherec(z) is interpreted as an average cohesion around the pile perimeter at depthz. If the

pile is broken up into a series ofn elements (as will be done in the simulation), the average

is determined using the sum at the right of Eq. (2.18), where ¯ci is the local average ofc(z)

over theith element, fori = 1, ..., n.

The required minimum design pile length,H, can be obtained by substituting Eq. (2.9) into
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Eq. (2.5) (takingIi = 1.0),

ϕgupHαĉ = αLF̂L + αDF̂D ! H =
αLF̂L + αDF̂D

ϕgupαĉ
(2.19)

By further substituting Eq. (2.19) into Eq. (2.17), the ultimate resistance,Ru, can be

estimated as,

Ru =

 
αLF̂L + αDF̂D

ϕgu

!�
c̄

ĉ

�
(2.20)

The reliability-based design goal in this study is to find therequired lengthH such that

the probability of the actual load,F , exceeding the actual resistance,Ru, is less than some

maximum acceptable failure probability,pm. The actual failure probability,pf , is

pf = P[F > Ru] (2.21)

and a successful design methodology will havepf � pm. Substituting Eq. (2.20) into

Eq. (2.21) leads to

pf = P

"
F >

 
αLF̂L + αDF̂D

ϕgu

!�
c̄

ĉ

�#
= P

"
F ĉ

c̄
>

αLF̂L + αDF̂D

ϕgu

#
(2.22)

Letting

W =
F ĉ

c̄
(2.23a)

q = αLF̂L + αDF̂D (2.23b)

means that

pf = P

�
W >

q

ϕgu

�
(2.24)

The computation of the probability in Eq. (2.24) involves the determination of the distri-

bution of W . If the random load,F , and cohesion values, ˆc and c̄, are all assumed to

be lognormally distributed, which is a reasonable assumption (Fenton and Griffiths, 2008,

and Fenton et al., 2008), then the term,W will also be lognormally distributed and its

parameters can be determined by considering the individualdistributions ofF , ln ĉ , and

ln c̄.

If W is lognormally distributed, then

ln W = lnF + ln ĉ� ln c̄ (2.25)
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is normally distributed andpf can be found from

pf = P
�
W > q/ϕgu

�
= P

�
ln W > ln

�
q/ϕgu

��
= 1�Φ

�
ln
�
q/ϕgu

�� µln W

σln W

�
(2.26)

whereΦ is the standard normal cumulative distribution function.

The failure probabilitypf in Eq. (2.26) can be estimated once the mean and variance of

ln W are determined. The mean and variance of lnW are

µln W = µln F + µln ĉ � µln c̄ (2.27a)

σ2
ln W = σ2

ln F + σ2
ln ĉ + σ2

ln c̄ � 2Cov[ln c̄, ln ĉ] (2.27b)

where the total load,F , and cohesion,c, are assumed to be independent. By applying

first-order Taylor series approximations to the means, variances and covariance of ln ˆc and

ln c̄, the components of Eq. (2.27) can be computed as follows ;

1) As discussed in section 2.3, the total load,F, is equal to the sum of the live load,FL,

and the static dead load,FD, i.e. F = FL + FD, and the mean and variance of lnF can

be evaluated using Eq’s. (2.15) and (2.16).

2) With reference to Eq. (2.8),

µln ĉ = E[ln ĉ] = E

"
ln

 
1
m

mX
i=1

ĉi

!# ' ln(µc) (2.28a)

σ2
ln ĉ ' σ2

ln c

m2

mX
i=1

mX
j=1

ρ(zo
i � zo

j ) (2.28b)

In Eq. (2.28b),zo
i is the spatial location of the center of thei’th soil sample (i = 1, 2, . . . ,m)

andρ is the correlation function defined by Eq. (2.12). Both equations make use of first-order

Taylor series approximations (see Appendix A for more details). A further approximation

occurs in the variance (Eq. (2.28b)) because of the fact thatcorrelation coefficients between

the local averages associated with observations are approximated by correlation coefficients

between the local average centers. Assuming that ln ˆc actually represents a local average of

ln c over the sample domain of size,D, thenσ2
ln ĉ is probably more accurately computed as

σ2
ln ĉ = σ2

ln cγ(D) (2.29)

whereγ(D), is the variance reduction function that measures the reduction in variance due

to local averaging over the sample domainD given by Eq. (2.13). In this research the
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sample domainD, is assumed to be,D = ∆z �m, wherem is the number of observations

over sample domailD and∆z is the vertical dimention of a soil sample.

3) With reference to Eq. (2.18) and using many of the same arguments as in previous item,

(see Appendix A for details)

µln c̄ = E

�
ln

�
1
H

Z H

0
c(z) dz

�� ' ln (µc) (2.30a)

σ2
ln c̄ ' σ2

ln cγ(H) (2.30b)

whereγ(H) is defined by eq (2.13).

4) The covariance between the arithmetic average of the observed cohesion values over

sample domain,D = ∆z �m, and the equivalent cohesion along the pile length,H, in

Eq. (2.27) is obtained as follows (see Appendix A for details)

Cov[ln c̄, ln ĉ] ' σ2
ln c

mH

mX
i=1

Z H

0
ρ
�p

r2 + (z � zo
i )2
�

dz' σ2
ln cγHD (2.31)

whereγHD is the average correlation coefficient between the cohesionsamples over

domainD and the cohesion along the pile of lengthH, andρ is the correlation function

between lnc(zo
i ) and lnc(z). In detail,γHD is defined by,

γHD ' 1
mH

mX
i=1

Z H

0
ρ
�p

r2 + (z � zo
i )2
�

dz (2.32)

wherer is the horizontal distance between the pile centerline and the centerline of the

soil sample column as shown in Figure 2.1. The approximationin the covariance arises

both because the first-order Taylor series approximation and because of correlation

coefficients between local averages associated with observations are approximated by

correlation coefficients between the local average centers.

23



F(kN)

H

r

∆z

D

ground level

soil sample
pile

Figure 2.1 Relative locations of pile and soil sample.

Substituting Eq’s (2.16), (2.28), (2.29), (2.30) and (2.31) into Eq. (2.27), leads to

µln W = µln F (2.33a)

σ2
ln W ' σ2

ln F + σ2
ln c [γ(D) + γ(H)� 2γHD] (2.33b)

which allows the probability of failure to be expressed as

pf = 1�Φ

�
ln
�
q/ϕgu

�� µln W

σln W

�
(2.34)

The argument toΦ is the reliability index,

β =
ln q � lnϕgu � µln W

σln W

(2.35)

If the reliability index is specified through knowledge ofpm, for example, then the geotech-

nical resistance factor is determined by

ϕgu = exp (lnq � µln W � βσln W ) . (2.36)
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2.5 Simulation Results and Comparison with Predictions

In this section, probabilistic analyses of piles using Monte Carlo simulation are performed.

The objective is to investigate the failure probability of apile in soil under total stress

condition with spatially varying cohesion field,c, via simulation in order to validate the

theory developed in the previous section. Simulation essentially proceeds by carrying out a

series of hypothetical designs on a series of simulated soilfields and checking to see what

fraction of the designs fail.

In practice, the accuracy of the Monte Carlo method depends on how well the assumed

probability distribution fits the real stochastic process.If the fit is reasonable, the accuracy

increases with the number of simulation runs, i.e., better results will be obtained as the

number of simulation realizations increases. In detail, the steps involved in the Monte

Carlo simulation are as follows;

1) The cohesion,c, of a soil mass is simulated as a spatially variable random field using the

Local Average Subdivision (LAS) method (Fenton and Vanmarcke, 1990). Cohesion

is assumed to be lognormally distributed with mean 50 kPa andcoefficient of variation,

vc, ranging from 0.1 to 0.5. The correlation length is varied from 0 to 50 m.

2) The simulated soil is sampled along a vertical line through the soil at some distance,r,

from the pile. These virtually sampled soil properties are used to estimate the charac-

teristic cohesion, ˆc, according to Eq. (2.8). Three sampling distances are considered:

the first is atr = 0 m which means that the samples are taken at the pile location. In

this case, uncertainty about the pile resistance only arises if the pile extends below the

sampling depth. Typically, probabilities of failure whenr = 0 m are very small. The

other two sample distances considered arer = 4.5 m andr = 9.0 m, corresponding to

reducing understanding of the soil conditions at the pile location. These rather arbi-

trary distances were based on preliminary random field simulations, which happened

to involve fields 9 m in width. However, it is really the ratio,r/θ, which governs the

failure probability.

3) The required design pile length,H, is calculated using Eq. (2.19).

4) Dead and live loads,FD andFL, are simulated as independent lognormally distributed

random variables and then added to produce the actual total load on the pile,F = FL+FD.

The means and standard deviations of the dead and live loads are assumed to be

µD = 60kN,σD = 9kN andµL = 20kN,σL = 6kN, respectively.

5) The true ultimate pile resistance,Ru, is computed using Eq. (2.4).
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6) The ultimate resistance,Ru, and total loadF are compared. IfF > Ru, then the pile,

as designed, is assumed to have failed.

7) The entire process from step 1 to step 6 is repeatednsim times (nsim = 10000 in the

present study). Ifnf of these repetitions result in a pile failure, then an estimate of the

probability of failure ispf = nf/nsim.

8) Repeating steps 1 through 7 using various values ofϕgu in the design step allows plots

of failure probability vs. geotechnical resistance factorto be produced for the various

sampling distances, coefficient of variation of the cohesion, and correlation length.

The analytically estimated failure probabilities can be superimposed on the simulation-

based failure probability plots, allowing a direct comparison of the methods. Figure 2.2

illustrates the agreement between failure probabilities estimated via simulation and those

computed analytically using Eq. (2.34). Given all the approximations made in the theory,

the agreement is considered to be excellent, allowing the geotechnical resistance factors to

be computed analytically with reasonable confidence even atprobability levels which the

simulation cannot estimate – the simulation involved only 10000 realizations and so cannot

properly resolve probabilities to less than about 10−4.

It is immediately clear from Figure 2.2 that the probabilityof failure,pf , increases with soil

variability, vc which is to be expected. Also, as expected, the probabilities of failure are

smaller when the soil is sampled directly at the pile than when sampled some distance away

from the pile centerline. This means that considerable construction savings can be achieved

by improving the sampling scheme, especially when significant soil variability exists.

The failure probabilities are well predicted by the analytical technique when the sam-

pling point is at the pile location (r = 0 m). There are some discrepancies for very

small probabilities, but this maybe largely due to estimator error in the simulations. For

example, if a simulation has 17 failures out of 10000, as in the highest point in Fig-

ure 2.2 a, the estimated probability of failure ispf = 0.0017, which has standard error,

σp̂f
=
p

(0.0017)(0.9983)/10000' 0.0004. and the 95% confidence interval onpf is

0.0017�1.96(0.0004) = [0.0009, 0.0025] which is quite wide. In fact, if only 5 failures are

observed, then the 95% confidence interval onpf is [0.0001, 0.0009]. In the other words,

the simulation results cannot be trusted forpf values less than about 0.001.

The good agreement between simulation and theory implies that the theory can be used

to reliably estimate the pile failure probabilities. The theory will be used in the following

section to provide recommendations regarding required geotechnical resistance factors for

certain target probabilities of failure.
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Figure 2.2 Comparison of failure probabilities estimated by simulation (10000
realizations) and analytical results for geotechnical resistance factor,
ϕgu = 0.8, and three sampling locations.
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2.6 Geotechnical Resistance Factors

In this section, the geotechnical resistance factors,ϕgu, required to achieve four maxi-

mum acceptable failure probability levels (10−2, 10−3, 10−4 and 10−5) are theoretically

investigated. The corresponding reliability indices of these four target probabilities are

approximately 2.3, 3.1, 3.7, and 4.3, respectively.

Figures 2.3, 2.4, and 2.5 show the geotechnical resistance factors required for the cases

where the soil is sampled at the pile location, at a distance of 4.5 m and at a distance of 9

m from the pile centerline, respectively.

Figure 2.3 corresponds to sampling at the pile location where the design conditions are so

well understood that the geotechnical resistance factor exceeds 1.0 whenpm � 10−3 (these

cases are not shown).

The worse case geotechnical resistance factors occurs whenthe correlation length,θ is

between about 1 and 10 m. This worst case is important, since the correlation length is

very hard to estimate and will be unknown for most sites. In other words, in the absence of

knowledge about the correlation length, the lowest geotechnical resistance factor in these

plots, at the worst case correlation length, should be used.

To explain why a worst case exists, the nature of the correlation length must be considered.

The correlation length,θ, measures the distance within which soil properties are significantly

correlated. Low values ofθ lead to soil properties which vary rapidly in space, while high

values mean that the soil properties vary only slowly with position. A large correlation

length, of sayθ = 50 m, means that soil samples taken well within 50 m from the pile

location (e.g. at 10 m) will be quite representative of the soil properties at the pile location.

In other words, lower failure probabilities are expected when the soil is sampled well within

the distanceθ from the pile (see Appendix B for more details).

Interestingly, whenθ is very small (say, 0.01 m), then the soil sample will consist of an

large number of independent ‘observations’ whose average tends to be equal to the true

mean. Since the pile also averages the soil properties, the pile ‘sees’ the same true mean

value predicted by the soil sample. Therefore, the sample will accurately reflect the average

conditions along the pile and in this case the failure probability is again low.

At intermediate correlation lengths, soil samples become imperfect estimators of conditions

along the pile, and so the probability of failure increases,or conversely, the required

geotechnical resistance factor decreases. Thus, the minimum required resistance factor will

occur at some correlation length between 0.0 and infinity.
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It is expected that the worst case correlation length will occur whenθ is approximately

equal to the distance from the pile to the sampling location.Notice in Figures 2.3, 2.4, and

2.5 that the worst case correlation length does show some increase as the distance to the

sample location,r, increases.

As shown in Figure 2.5, the smallest geotechnical resistance factors correspond to the

smallest acceptable failure probability shown,pm = 10−5, when the soil is sampled 9 m

away from the pile centerline. When the cohesion coefficientof variation is relatively large,

vc = 0.5 the worst case values ofϕgu dip down to 0.15 in order to achievepm = 10−5.

In other words, there will be a significant construction costpenalty if a highly reliability

pile is to be designed using a site investigation which is insufficient to reduce the residual

variability to less thanvc = 0.5.
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b) r = 0 m, pm = 10-5

Figure 2.3 Geotechnical resistance factors when the soil has been sampled at
the pile location (r = 0 m) (note the reduced vertical scale).
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Figure 2.4 Geotechnical resistance factors when the soil has been sampled
r = 4.5 m from the pile centerline.
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Figure 2.5 Geotechnical resistance factors when the soil has been sampled
r = 9 m from the pile centerline
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The worst case geotechnical resistance factors required toachieve the indicated maximum

acceptable failure probabilities, as seen in Figures 2.3 through 2.5, are summarized in Table

2.3. Some of the geotechnical resistance factors recommendedin this study forpm = 10−2

are greater than 1.0, which may be because the load factors provide too much safetyfor the

larger acceptable failure probabilities when the site is well understood.

Due to redundancy it is reasonable to use a lower reliability(largerpm) for a single pile in

pile groups. For example, if a single pile in a group has the smallest resistance and begins

to fail, the load is transferred to other piles in the group with greater resistance and the

overall foundation is less likely to fail. A reasonable value of maximum acceptable failure

probability for single driven piles within a redundant group may be in the range of 10−2

and 10−3 (FHWA, 2005).

Table 2.3 Worst case geotechnical resistance factors for various coefficients
of variation,vc, distance to sampling location,r, and acceptable
failure probabilities,pm.

r (m) vc Geotechnical Resistance Factor
pm = 10−2 pm = 10−3 pm = 10−4 pm = 10−5

0.0 0.1 1.20 1.08 0.99 0.92
0.0 0.2 1.17 1.05 0.95 0.88
0.0 0.3 1.13 1.00 0.91 0.83
0.0 0.5 1.04 0.90 0.79 0.71
4.5 0.1 1.15 0.98 0.88 0.80
4.5 0.2 0.94 0.78 0.66 0.58
4.5 0.3 0.78 0.60 0.49 0.41
4.5 0.5 0.51 0.35 0.25 0.20
9.0 0.1 1.09 0.95 0.85 0.77
9.0 0.2 0.89 0.73 0.61 0.53
9.0 0.3 0.70 0.53 0.42 0.36
9.0 0.5 0.43 0.29 0.20 0.15

Table 2.4 compares the resistance factors recommended in this studywith those recom-

mended by other sources. The resistance factors recommended in the current study (first

three rows of Table 2.4), correspond to the case wherevc = 0.5 andr = 4.5 m for maximum

acceptable failure probabilities,pm = 10−3, 10−4 and 10−5.

To compare the recommended resistance factors,ϕgu, with values in other codes and the

literature, the total load factor, ˆαT , and the ratio of the resistance factor to the total load
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factor ,ϕgu/α̂T , which is the real measure of the overall "safety factor" used by each code,

must be considered. According to Eq. (2.5), by increasing the value of the total load factor,

α̂T , the required resistance factor,ϕgu, increases. The dead load factor,αD = 1.25, and live

load factor,αL = 1.5, are used in this study, as specified by the National Building Code

of Canada (2005). The bias factors ofkD = 1.18 (Becker,1996),kL = 1.41 (Allen, 1975)

and the ratio of dead to live loadµD/µL = 3.0 are chosen in this rsearch. Using these

assumptions the characteristic dead to live load ratio,R̂D/L, and the total load factor, ˆαT ,

can be approximated by

R̂D/L =
F̂D

F̂D

=
kDµD

kLµL

=
1.18(3µL)

1.41µL

=
1.18(3)

1.41
= 2.5 (2.37a)

α̂T =
αLF̂L + αDF̂D

F̂
=

αLF̂L + αDF̂D

F̂L + F̂D

=
αL + αD(F̂D/F̂L)

1 + (F̂D/F̂L)
=

1.5 + 1.25(2.5)
1 + 2.5

= 1.32 (2.37b)

The total load factors used in CFEM (2006), CHBDC (2006), andNBCC(2005) are all

very close to the total load factor used in the current study and differ only because of a

slight difference in the characteristic dead to live ratio,R̂D/L. The recommended ratios of

the resistance factor to the total load factor,ϕgu/α̂T , in CFEM(2006), CHBDC (2006), and

NBCC (2005) are all very close to the recommended value in this study forr = 9 m and

pm = 10−4.

As can be seen in Table 2.4, the total load factor used in Australian Standard, AS5100.3

(2004) is very close to the total load factor used in the current study. The recommended

value for the ratio of the resistance factor to the total loadfactor, ϕgu/α̂T , by Australian

Standard, AS5100.3 (2004) is also very close to the recommended values in the current

study for the maximum acceptable failure probabilitypm = 10−3 and both sample locations

r = 4.5 m andr = 9 m.

The ratios of the resistance factor to the total load factor recommended by NCHRP 343

(Barker et al., 1991) and NCHRP 507 (Paikowsky, 2004) are based on a reliability index

of 3.0 (pm = 0.0013). The total load factor, ˆαT , considered in NCHRP 507 is close to

the value used in this research and the recommended ratio of the resistance factor to the

total load factor by NCHRP 507 is very close to the recommended value forr = 9 m and

pm = 10−3. The recommended ratio of the resistance factor to the totalload factor ,ϕgu/α̂T ,

by NCHRP343 tend to be in the range suggested in this researchfor maximum accaptable

failure probabiliespm = 10−4 and 10−5, despite its larger total load factor. Similarly,
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recommended ratios of the resistance factor to the total load factor in ASSHTO (2002,

2004, and 2007) are very close to the range suggested in this research forpm = 10−5, which

might be becasue of the larger total load factors used in AASHTO codes.

An explanation that the ratio of resistance factors to the total load factors proposed in the

current study may be higher than the values from the codes in Table 2.4, is that the current

study neglects measurement and model errors and so should beviewed as upper bounds to

the resistance factors.

However, the code values correspond very well to those recommended in this research when

samples are taken some distance away from the pile centerline, which may also be what the

codes are assuming.

Table 2.4 Comparison of geotechnical resistance factors recommended in this
study (first 6 lines) to those recommended by other sources, where
R̂D/L is the characteristic dead to live load ratio.

Source Load Factors α̂T ϕgu ϕgu/α̂T

r = 4.5 m,pm = 10−3 R̂D/L = 2.5, αL = 1.50, αD = 1.25 1.32 0.60 0.45
r = 4.5 m,pm = 10−4 R̂D/L = 2.5, αL = 1.50, αD = 1.25 1.32 0.49 0.37
r = 4.5 m,pm = 10−5 R̂D/L = 2.5, αL = 1.50, αD = 1.25 1.32 0.41 0.31
r = 9.0 m,pm = 10−3 R̂D/L = 2.5, αL = 1.50, αD = 1.25 1.32 0.53 0.40
r = 9.0 m,pm = 10−4 R̂D/L = 2.5, αL = 1.50, αD = 1.25 1.32 0.42 0.32
r = 9.0 m,pm = 10−5 R̂D/L = 2.5, αL = 1.50, αD = 1.25 1.32 0.36 0.27

CFEM (2006) R̂D/L = 3.0, αL = 1.50, αD = 1.25 1.31 0.40 0.31
NBCC (2005) R̂D/L = 3.0, αL = 1.50, αD = 1.25 1.31 0.40 0.31

CHBDC (2006) R̂D/L = 3.0, αL = 1.70, αD = 1.20 1.33 0.40 0.30
AS 5100.3 (2004) R̂D/L = 3.0, αL = 1.80, αD = 1.20 1.35 0.55 0.41
AASHTO (2004) R̂D/L = 3.7, αL = 1.75, αD = 1.25 1.36 0.39 0.29

NCHRP 507(2004) R̂D/L = 3.0, αL = 1.70, αD = 1.25 1.36 0.50 0.37
AASHTO (2007) R̂D/L = 3.0, αL = 1.75, αD = 1.25 1.38 0.40 0.29
AASHTO (2002) R̂D/L = 3.7, αL = 2.17, αD = 1.30 1.49 0.48 0.32

NCHRP 343 (1991) R̂D/L = 2.0, αL = 2.17, αD = 1.30 1.59 0.55 0.31
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Chapter 3: Geotechnical Resistance Factors for Effective Stress
Limit State Design of Deep Foundations

3.1 General

The soil supports the pile through a combination of end-bearing, and side friction and/or

cohesion between the soil and pile. This chapter only examines effective stress resistance

of piles (i.e. end-bearing is ignored). A mathematical theory is developed to analytically

estimate the failure probability of deep foundations in soils under effective stress condi-

tion. The theoretical results are validated by simulation and then used to estimate failure

probabilities and resistance factors required for design.

The ultimate geotechnical resistance of a pileRu, due to effective stress resistance,δ,

between the pile and its surrounding soil is approximated by,

Ru =
Z H

0
pτ (z) dz (3.1)

wherep is the effective perimeter length of the pile section,τ (z) is the average ultimate

shear stress acting on the perimeter of the pile at depthz, andH is the embedded depth of

the pile. The unit surface shear resistance in soils under effective stress condition can be

represented by the equation,

τ (z) = K(z)σ′

o(z) tanδ(z) (3.2)

whereK(z) is the coefficient of lateral earth pressure at depthz, σ′

o(z) is the effective

vertical stress at depthz andδ(z) is the average interface friction angle between the soil and

the pile perimeter at depthz. The effective vertical stressσ′

o(z) and friction angleδ(z) can

be written as,

σ′

o(z) = γz (3.3a)

δ(z) = bφ(z) (3.3b)

whereγ is the effective unit weight of soil,b is a reduction factor which from various

investigations appears to be in the range of 0.5 to 0.8 (Das, 2000), andφ(z) is the average

effective angle of internal friction of the soil around the pile perimeter at depthz.
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The value ofK(z) is influenced by the friction angle, the method of pile installation, the

compressibility and the degree of over consolidation as well as the material, size and shape

of the pile. The value ofK(z) has been found to be approximately equal to the Rankine

passive earth pressure coefficient,Kp(z), at the top of the pile and may be less than the

at-rest earth pressure coefficient,Ko(z), at the pile tip (Das, 2000).

For coarse-grained soils, the coefficient of earth pressureat-rest can be estimated by the

empirical relationship (Jaky, 1994)

Ko(z) = 1� sinφ(z) (3.4)

Based on presently available results, the following average values ofK(z) are recommended

by Das (2000) for use in Eq. (3.2),

Table 3.1 Lateral earth pressure recommendations

Pile type K(z)

Bored or jetted ' Ko(z) = 1� sinφ(z)
Low-displacement driven ' Ko(z) = 1� sinφ(z) to 1.4Ko(z) = 1.4(1� sinφ(z))
High-displacement driven' Ko(z) = 1� sinφ(z) to 1.8Ko(z) = 1.8(1� sinφ(z))

In this research the earth pressure coefficient is assumed tobe

K(z) = a(1� sinφ(z)) (3.5)

wherea is in the range of 1< a < 1.8. According to Table 1, in this study three different

values ofa, namelya = 1.0, 1.2 and 1.4, are considered for bored, low-displacement and

high-displacement driven piles, respectively (which are the midpoints of the ranges given

in the Table 3.1).

Using the above information, the true ultimate effective stress resistance of a pile with

lengthH and perimeterp, can be estimated to be,

Ru =
Z H

0
pγza (1� sinφ(z)) tanbφ(z) dz (3.6)

The Limit Sate Design (LSD) framework basically involves identifying possible failure

modes (e.g. punching shear failure, and excessive settlement) and then ensuring that the

factored geotechnical resistance at each limit state exceed the factored load. At the ultimate

limit state, the design requirement is

ϕguR̂u �X
i

IiαiF̂i (3.7)
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whereϕgu is the ultimate geotechnical resistance factor,R̂u is the characteristic (design)

ultimate geotechnical resistance,Ii is an importance factor corresponding to thei’th char-

acteristic load effect,̂Fi, andαi is thei’th load factor.

The characteristic ultimate geotechnical resistance,R̂u, is determined using characteristic

soil properties, in this case characteristic values of the soil’s friction angle,φ. To obtain

the characteristic soil properties, the soil is assumed to be sampled over a single column

somewhere in the vicinity of the pile, for example by a CPT or SPT sounding near the

pile. The sample is assumed to yield a sequence ofm observed friction angle values,

φ̂1, φ̂2, . . . , φ̂m. The characteristic value of the friction angle,φ̂, is defined in this research

as an arithmetic average of the sampled observations,φ̂i, which, can be computed as,

φ̂ =
1
m

mX
i=1

φ̂i (3.8)

The characteristic ultimate geotechnical resistance,R̂u, is obtained by using the character-

istic friction angle in Eq. (3.6),

R̂u =
1
2
paγH2(1� sinφ̂) tan(bφ̂) (3.9)

In order to determine the geotechnical resistance factor,ϕgu, required to achieve a certain

acceptable reliability, the failure probability of the pile must be estimated. This probability

will depend on the load distribution, the load and resistance factors selected, and the

resistance distribution. The resistance and load distributions are discussed in Sections 3.2

and 2.3.

Section 3.3 develops the analytical framework and simulation algorithm for the failure

probability estimate, and illustrates how the theoreticalestimates agree with simulation.

The Load and Resistance Factor Design (LRFD) approach involves selecting a one or more

maximum acceptable failure probability levels,pm. The choice ofpm derives from a con-

sideration of acceptable risk and directly influences the size ofϕgu. In this research, four

maximum acceptable failure probabilities, 10−2, 10−3, 10−4 and 10−5, will be considered,

as discussed in chapter 2. Some of these failure probabilities, i.e 10−3, 10−4, and 10−5,

might be appropriate for designs involving low (e.g. storage facilities), medium (typical

structures), and high (e.g. hospitals and schools) failureconsequence structures, respec-

tively. The geotechnical resistance factors required to achieve these maximum acceptable

failure probabilities will be recommended in Section 3.4.

37



3.2 The Random Soil Model

The friction angle,φ, is assumed to be bounded both above and below,φmax = 0.7 radians

andφmin = 0.175 radians, so that neither normal nor lognormal distributions are appropriate.

While a beta distribution is often used for bounded random variables, a beta distributed

random field has a complex joint distribution and simulationis cumbersome and numerically

difficult. To keep things simple, a bounded distribution is selected which resembles a beta

distribution but which arises as a simple transformation ofa standard normal random field,

Gφ(z), according to

φ(z) = φmin + 1
2(φmax � φmin)

�
1 + tanh

�
sGφ(z)

2π

��
(3.10)

whereφmin andφmax are the minimum and maximum friction angles in radians, respectively,

ands is a scale factor which governs the friction angle variability between its two bounds

(see Fenton and Griffiths, 2008, for more details). Figure 3.2 shows how the distribution

of φ changes ass changes, going from an almost uniform distribution ats = 5 to a very

normal looking distribution for smallers. Thus, varyings between about 0.1 and 5.0 leads

to a wide range in the stochastic behaviour ofφ. In all cases, the distribution is assumed to

be symmetric so that the midpoint betweenφmin andφmax is the mean. Values ofs greater

than about 5 lead to a U-shaped distributions (higher at the boundaries), which are deemed

to be unrealistic.

10 15 20 25 30 35 40

φ

0
0.

1
0.

2
0.

3

f φ
(φ

)

s =  0.1
s =  0.2
s =  1.0
s =  2.0
s =  5.0

Figure 3.1 Bounded distribution of friction angle forφmin = 10◦(0.175 radians)
andφmax = 40◦(0.70 radians)
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The following relationship betweens and the variance ofφ derives from a third-order Taylor

series approximation to tanh and a first-order approximation to the final expectation (Fenton

and Griffiths, 2008),

σφ ' 0.46(φmax � φmin)sp
4π2 + s2

(3.11)

whereφmin and φmax are in radians. Equation (3.11) can be generalized to yield the

covariance betweenφ(zi) andφ(zj), for any two spatial pointszi andzj as follows,

Cov
�
φ(zi), φ(zj)

� ' (0.46)2(φmax � φmin)2s2ρ(zi � zj)
4π2 + s2 ' σ2

φρ(zi � zj) (3.12)

whereρ is the correlation function between the friction angle at a pointGφ(zi) and a second

point Gφ(zj). In this study, a simple exponentially decaying (Markovian) correlation

function will be assumed, of the form

ρ(t) = exp

��2jtj
θ

�
(3.13)

wheret = zi � zj is the distance between the two points. Note that the correlation function

reflects the correlation between points in the underlying normally distributed random field,

Gφ(z), and not directly between points in the friction field (although the correlation lengths

in the different spaces are quite similar).

Two other results needed in the next section are as follows:

First, the variance reduction function,γ(H), which specifies how the variance is reduced

upon local averaging ofφ over some depthH, is defined by,

γ(H) =
1

H2

Z H

0

Z H

0
ρ(z1 � z2) dz1 dz2 (3.14)

Second, the relationship between the coefficient of variation of the friction angle ,vφ =

σφ/µφ, ands can be obtained by using Eq. (3.11) (see Appendix C for details)

s ' 2πvφµφp
(0.46)2(φmax � φmin)2� (vφµφ)2

(3.15)

By using Eq. (3.15) the friction angle coefficient of variationsvφ and their correspondings

values, forφmin = 0.175 radians andφmax = 0.70 radians, are given in Table 3.2.

Table 3.2 Coefficient of variations of friction angle and corresponding s val-
ues, forφmin = 0.175 radians andφmax = 0.70 radians.

vφ 0.1 0.2 0.3 0.344
s 1.16 2.44 4.07 5
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3.3 Analytical Estimation of Failure Probability

In order to estimate the probability of failure of a pile, thesoil is first modeled as a spatially

varying random field. This study considers a two-dimensional random field in which the

pile is placed vertically at a certain position and soil samples as in a CPT or SPT sounding,

are taken vertically at some, possibly different, position. The analytical approximation to

estimate the failure probability of a pile in soils under effective stress condition can be

explained as follows. When the soil properties are spatially variable, as they are in reality,

then, Eq. (3.6) can be replaced by

Ru =
1
2
paγH2(1� sinφ̄) tan(bφ̄) (3.16)

whereφ̄ is the equivalent friction angle of the soil, defined as the uniform (constant) soil

parameter which leads to the same resistance as observed in the spatially varying soil over

the entire pile length,H. It is assumed here that̄φ is the arithmetic average of the spatially

variable friction angle over the pile lengthH,

φ̄ =
1
H

Z H

0
φ(z) dz ' 1

n

nX
i=1

φ̄i (3.17)

whereφ(z) is interpreted as an average friction angle of the soil around the perimeter of

the pile at depthz. If the pile is broken up into a series of elements (as will be done in the

simulation),φ̄ is determined using the sum at the right of Eq. (3.17), in which φ̄i is the local

average ofφ(z) over theith element, fori = 1, ..., n.

The required minimum design pile length,H, can be obtained by substituting Eq. (3.9) into

Eq. (3.7) (takingIi = 1.0),

ϕgu

�
1
2
paγH2(1� sinφ̂) tan(bφ̂)

�
= αLL̂L + αDL̂D (3.18)

therefore

H =

s
2
�
αLL̂L + αDL̂D

�
ϕgupaγ(1� sinφ̂) tan(bφ̂)

(3.19)

By substituting Eq. (3.19) into Eq. (3.16), the ultimate geotechnical resistance,Ru, can be

written as,

Ru =

 
αLL̂L + αDL̂D

ϕgu

!
(1� sinφ̄) tan(bφ̄)

(1� sinφ̂) tan(bφ̂)
(3.20)
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The reliability-based design goal in this study is to find therequired lengthH such that

the probability that the actual load,F , exceeds the actual resistance,Ru, is less than some

small acceptable failure probability,pm. The actual failure probability,pf , is

pf = P[F > Ru] (3.21)

and a successful design methodology will havepf � pm. Substituting Eq. (3.20) into

Eq. (3.21) leads to

pf = P

"
F >

αLL̂L + αDL̂D

ϕgu

�
(1� sinφ̄) tan(bφ̄)

(1� sinφ̂) tan(bφ̂)

�#
= P

"
F (1� sinφ̂) tan(bφ̂)

(1� sinφ̄) tan(bφ̄)
>

αLL̂L + αDL̂D

ϕgu

#
(3.22)

Letting

X̂ = (1� sinφ̂) tan(bφ̂) (3.23a)

X̄ = (1� sinφ̄) tan(bφ̄) (3.23b)

q = αLF̂L + αDF̂D (3.23c)

Y =
FX̂

X̄
(3.23d)

means that,

pf = P
�
Y > q/ϕgu

�
(3.24)

The computation of the probability in Eq. (3.24) involves the determination of the distribu-

tion of Y . Assuming thatY is lognormally distributed (an assumption that is supported to

some extent by the central limit theorem) then

lnY = lnF + ln X̂ � ln X̄ (3.25)

is normally distributed andpf can be found from

pf = P
�
Y > q/ϕgu

�
= P

�
ln Y > ln

�
q/ϕgu

��
= 1� Φ

�
ln
�
q/ϕgu

�� µln Y

σln Y

�
(3.26)

whereΦ is the standard normal cumulative distribution function.
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The failure probabilitypf in Eq. (3.26) can be estimated once the mean and variance of

ln Y are determined. These are

µln Y = µln F + µln X̂ � µln X̄ (3.27a)

σ2
ln Y = σ2

ln F + σ2
ln X̂ + σ2

ln X̄ � 2Cov
�
ln X̄, ln X̂

�
(3.27b)

where the total load,F , and friction angle,φ, are assumed to be independent. By applying

third-order Taylor series approximations to the means, variances and covariance of ln̂X

and lnX̄, the components of Eq. (3.27) can be computed as follows ;

1) Assuming that the total loadF is equal to the sum of the maximum live load,FL, acting

over the lifetime of the structure and the static dead load,FD, i.e. F = FL + FD, both of

which are random, then

µln F = ln(µF )� 1
2σ

2
ln F (3.28a)

σ2
ln F = ln

�
1 +

σ2
F

µ2
F

�
(3.28b)

whereµF = µL + µD is the sum of the mean live and dead loads, andσ2
F is the variance

of the total load defined by

σ2
F = σ2

L + σ2
D (3.29)

assuming dead and live loads to be independent.

2) With reference to Eq. (3.8) and the fact that the friction angle is assumed to be stationary,

µφ̂ = E

"
1
m

mX
i=1

φ̂i

#
=

1
m

mX
i=1

µφ = µφ (3.30)

The mean and variance of ln̂X, can be obtained by using Eq. (3.30) and a third-order

Taylor series approximation to the expectation of Eq. (3.23a) as follows (see Appendix

E for details)

µln X̂ ' ln
�
(1� sinµφ) tan(bµφ)

�
+

σ2
φ̂
d2

2
(3.31a)

σ2
ln X̂ ' d2

1σ
2
φ̂ +

�
d2

2

2
+ d1d3

�
σ4

φ̂ +
5d2

3σ
6
φ̂

12
(3.31b)

whered1, d2 andd3 are given in Eq. (C.2). The variance ofφ̂ can be obtained from,

σ2
φ̂ ' σ2

φ

m2

mX
i=1

mX
j=1

ρ(zo
i � zo

j ) (3.32)
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whereσφ is given by Eq. (3.11),zo
i is the spatial location of the center of thei’th soil

sample (i = 1, 2, . . . ,m) andρ is the correlation function defined by Eq. (3.13). The

approximation in eq (3.32) arises because correlation coefficients between the local

averages associated with observations are approximated bycorrelation coefficients

between the local average centers. Assuming thatφ̂ actually represents a local average

of φ over a sample length of size,D = ∆z �m, whereD is the depth over which the

samples are taken,m is the number of observations over sample depthD and∆z is the

vertical dimension of the soil sample then,σ2
φ̂

is probably more accurately computed as

σ2
φ̂ = σ2

φγ(D) (3.33)

whereγ(D), is the variance reduction function that measures the reduction in variance

due to local averaging over the sample lengthD, as given by Eq. (3.14). All angles are

measured in radians, including those used in Eq’s (3.11) and(3.12).

3) With reference to Eq. (3.17),

µφ̄ = E

��
1
H

Z H

0
φ(z) dz

��
=

1
H

Z H

0
µφ dz = µφ (3.34)

By applying Eq’s (3.34) and (3.23b), the mean and variance ofln X̄ can be obtained in

the same fashion as for ln̂X (in fact, they only differ due to differing local averaging

in the variance calculation).

µln X̄ ' ln
�
(1� sinµφ) tan(bµφ)

�
+

σ2
φ̄d2

2
(3.35a)

σ2
ln X̄ ' d2

1σ
2
φ̄ +

�
d2

2

2
+ d1d3

�
σ4

φ̄ +
5d2

3σ
6
φ̄

12
(3.35b)

σ2
φ̄ ' σ2

φγ(H) (3.35c)

whered1, d2, d3 andγ(H) are defined by eq’s (C.2) and (3.14), respectively.

4) The covariance between ln̂X over sample depth,D = ∆z�m, and lnX̄ along the pile

length,H, in Eq. (3.27) is approximated by

Cov
�
ln X̄, ln X̂

� ' d2
1σ

2
φγHD + σ2

φγHD

�
d1d3

2
(σ2

φ̂ + σ2
φ̄) +

d2
3

4
σ2

φ̂σ
2
φ̄

�
+

d2
2

2

�
σ2

φγHD

�2
+

d2
3

6

�
σ2

φγHD

�3
(3.36)

whereγHD is the average correlation coefficient between the sample lengthD and pile

lengthH. In detail,γHD is defined by,

γHD ' 1
mH

mX
i=1

Z H

0
ρ
�p

r2 + (z � zo
i )2
�

dz (3.37)
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wherer is the horizontal distance between the pile centerline and the centerline of

the soil sample column andρ is the correlation coefficient betweenφ(zo
i ) andφ(z), as

illustrated in Figure 3.3.

z

sample location

pile location

r

dz z

t

∆zzi

o

Figure 3.2 Correlation between local averages is approximated by the correla-
tion function,ρ(t), between centers.

The approximation in the covariance (Eq. (3.36)) arises both because of the use of a

third-order Taylor series approximation and because correlation coefficients between local

averages associated with observations are approximated bycorrelation coefficients between

the local average centers.

Substituting Eq’s (3.28), (3.31), (3.35) and (3.36) into Eq. (3.27), leads to

µln Y ' µln F +
d2

2
(σ2

φ̂ � σ2
φ̄) (3.38a)

σ2
ln Y ' σ2

ln F + d2
1(σ

2
φ̄ + σ2

φ̂) +

�
d2

2

2
+ d1d3

�
(σ4

φ̄ + σ4
φ̂)

+
5d2

3

12
(σ6

φ̄ + σ6
φ̂)� 2Cov

�
ln X̄, ln X̂

�
(3.38b)
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which allows the probability of failure to be expressed as

pf = 1� Φ

�
ln
�
q/ϕgu

�� µln Y

σln Y

�
(3.39)

whereΦ is the standard normal cumulative distribution function. The argument toΦ is the

reliability index,

β =
ln q � ln ϕgu � µln Y

σln Y

(3.40)

If the reliability index is specified through knowledge ofpm, for example, then the geotech-

nical resistance factor is determined by

ϕgu = exp (lnq � µln Y � βσln Y ) . (3.41)

3.4 Comparison of Analytical Estimation of Failure Probability with
Simulation

To test the proposed analytical results, a series ofnsim = 10000 realizations of a pile are

simulated for each of a range of soil variability parametersand sampling distances. The

resulting Monte Carlo simulation-based failure probability estimates are then compared to

the analytical results presented in section 3.3.

In detail the Monte Carlo simulation proceeds as follows;

1) The friction angle,φ, of a soil mass is simulated as a spatially variable random field

using the Local Average Subdivision (LAS) method (Fenton and Vanmarcke, 1990).

The number of soil cells in X and Y directions are assumed to be128� 128 and each

cell size dimentions are taken to be 0.1� 0.1. The correlation length is varied from 0

to 50 m, and two coefficients of variation of friction angle,vφ, are considered:vφ = 0.2

(s = 2.44) andvφ = 0.3 (s = 4.07). The friction angle is assumed to range from

φmin = 0.175 radians (10◦) andφmax = 0.70 radians (40◦).

2) The simulated soil is sampled along a vertical line through the soil at some distance,

r, from the pile. These virtually sampled soil properties areused to estimate the

characteristic friction angle,̂φ, according to Eq. (3.8). Three sampling distances are

considered: the first is atr = 0 m which means that the samples are taken at the

pile location. In this case, uncertainty about the pile resistance only arises if the pile

extends below the sampling depth. Typically, probabilities of failure whenr = 0 m are

very small. The other two sample distances considered arer = 4.5 m andr = 9.0 m,

corresponding to reduced understanding of the soil conditions at the pile location (see
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Figure 3.4). These rather arbitrary distances were based onpreliminary random field

simulations, which happened to involve fields 9 m in width. However, it is really the

ratio, r/θ, which governs the failure probability. No attempt is made here to include

the effects of measurement error nor of errors in mapping actual observations, e.g.

CPT values, to engineering properties such as friction angle. Thus the predicted failure

probability (either from theory or simulation) will be somewhat unconservative (failure

probability increases as measurement error increases). However both the analytical

technique and the simulation treat measurement errors in the same way, allowing a

consistent comparison between the two.

F(kN)

H

r

∆z

D

ground level

soil sample
pile

Figure 3.3 Relative locations of pile and soil sample.

3) The required design pile length,H, is calculated using Eq. (3.19).

4) Dead and live loads,FD andFL, are simulated as independent lognormally distributed

random variables and then added to produce the actual total load on the pile,F = FL+FD.

The means and standard deviations of the dead and live loads are assumed to be

µD = 60kN,σD = 9kN andµL = 20kN,σL = 6kN, respectively.

5) The true ultimate pile resistance,Ru, is computed using Eq. (3.6).

6) The ultimate resistance,Ru, and total loadF are compared. IfF > Ru, then the pile,

as designed, is assumed to have failed.
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7) The entire process from step 1 to step 6 is repeatednsim times (nsim = 10000 in the

present study). Ifnf of these repetitions result in a pile failure, then an estimate of the

probability of failure ispf ' nf/nsim.

8) Repeating steps 1 through 7 using various values ofϕgu in the design step allows plots

of failure probability vs. geotechnical resistance factorto be produced for the various

sampling distances, coefficients of variation of the friction angle, and correlation length.

The comparison between the probabilistic analyses of pilesusing Monte Carlo simulation

based on 10000 realizations with those computed analytically by Eq. (3.39) for the values of

the pile interface friction angle coefficient,b = 0.8 and coefficient of earth pressurea = 1.2,

are illustrated in Figure 3.5 (see Appendix F for more figures).

It can be seen from Figure 3.5 that the agreement between theory and simulations, is good

and theory can be used to produce the required geotechnical resistance factors to achieve

the maximum acceptable failure probabilities 10−2, 10−3, 10−4 and 10−5.

It is immediately clear in Figure 3.5 that the probability offailure, pf , increases with soil

variability, vφ which is to be expected. Also, as expected, the probabilities of failure are

smaller when the soil is sampled directly at the pile than when sampled some distance away

from the pile centerline. This means that considerable construction savings can be achieved

by improving the sampling scheme, especially when significant soil variability exists.

As seen in Appendix F (Figures F.1, F.2 and F.3) , when the soilis sampled atr = 4.5 m

andr = 9 m, the probability of failure slightly increases with pile interface friction angle

coefficient,b, and earth pressure coefficient,a. According to Eq. (3.19), The design pile

length,H, depends on the values ofb anda, and decreases with increasing values ofb and

a. By decreasing theH, covariance functionsγ(H) andγHD increase (Eq’s. (3.37) and

(3.14)). Also, first, second and third order derivatives,d1, d2 andd3 increase byb. This

implies thatσln Y , also increases withb anda, which means increasing probability of failure

in Eq. (3.39).

When the samples are taken at the pile location (r = 0 m), γ(H) ' γHD (Eq. (3.37)). By

increasing the values ofa andb, bothγ(H) andγHD increase butγ(H) ' γHD. This implies

that σ2
ln X̄ ' Cov

�
ln X̂, ln X̄

�
(Eq’s (3.35) and (3.36)) which means that by increasinga

andb the variance of lnY and therefore failure probabilitypf , decreases.

The failure probabilities are well predicted by the analytical technique when the sampling

point is at the pile location (r = 0 m). There are some discrepancies for very small

probabilities, but this maybe largely due to estimator error in the simulations. In fact, for

those simulations having 1 failures out of 10000, the estimated probability of failure is
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pf = 10−4, which has standard error,σp̂f
=
p

(10−4)(0.9999)/10000' 10−4. This means

that the simulation cannot be used to validate small probabilities, i.e. probabilities less than

about 10−4, so the location of the points with failure probability lessthan 10−4 is highly

uncertain. The potential for large estimator error is seen in both Figure 3.5 (a) where most

failure probability estimates are zero, except for those "worst" cases where 1 in 10000

realizations failed.

Overall, however, the agreement between simulation and theory is good, implying that

the theory can be used to reliably estimate the pile failure probabilities. The analytical

results will be used in the following section to provide recommendations regarding required

geotechnical resistance factors for certain target probabilities of failure.
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Figure 3.4 Comparison of failure probabilities estimated by simulation (10000
realizations) and analytical results for geotechnical resistance factor,
ϕgu = 0.9, b = 0.8, a = 1.2 and three sampling locations.
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3.5 Geotechnical Resistance Factors

In this section, the geotechnical resistance factor,ϕgu, required to achieve four maximum

acceptable failure probability levels (10−2, 10−3, 10−4 and 10−5) will be investigated. The

corresponding reliability indices of these four target probabilities are approximately 2.3,

3.1, 3.7, and 4.3, respectively.

Figures 3.7 through 3.9 show the geotechnical resistance factors required for the cases

where the soil is sampled at the pile location, at a distance of r = 4.5 m and at a distance

of r = 9 m from the pile centerline for the pile interface frictionangle coefficient,b = 0.8

and earth pressure coefficienta = 1.2. Four coefficient of variations,vφ = 0.1 (s = 1.16),

vφ = 0.2 (s = 2.44),vφ = 0.3 (s = 4.07 ) andvφ = 0.344 (s = 5) are considered for the three

sampling locations.

In the cases where the samples are taken at the pile location and the design conditions are

well understood, the geotechnical resistance factor exceeds 1.0 whenpm � 10−3. In the

cases where the samples are taken 4.5 m and 9 m from pile centerline, the geotechnical

resistance factor exceeds 1.0 whenpm � 10−2. The cases whereϕgu > 1.0 are not shown.

The worse case geotechnical resistance factors occurs whenthe correlation length,θ is

between about 1 and 10 m. This worst case is important, since the correlation length is very

hard to estimate and will be unknown for most sites, as was discussed in Chapter 2.

As seen in Figure 3.9, the smallest geotechnical resistancefactors correspond to the smallest

acceptable failure probability considered,pm = 10−5, when the soil is sampled 9 m away

from the pile centerline, as expected. When the friction angle coefficient of variation,vφ,

are relatively large (vφ = 0.344) the worst case values ofϕgu dip down to 0.57 in order to

achievepm = 10−5. In other words, there will be a significant construction cost penalty if

a highly reliability pile is to be designed using a site investigation which is insufficient to

reduce the residual variability to less thanvφ = 0.344.
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Figure 3.5 Geotechnical resistance factors when the soil has been sampled at
the pile location (r = 0 m) (note the reduced vertical scale).
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Figure 3.6 Geotechnical resistance factors when the soil has been sampled
r = 4.5 m from the pile centerline.
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Figure 3.7 Geotechnical resistance factors when the soil has been sampled
r = 9 m from the pile centerline

The worst case geotechnical resistance factors required toachieve the indicated maximum

acceptable failure probabilities, as seen in Figure 3.7 through 3.9, is summarized in Table
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3.3. Some of the geotechnical resistance factors recommended in this study forpm = 10−2

andpm = 10−3 are greater than 1.0, which may be because the load factors provide too

much safety for the larger acceptable failure probabilities when the site is well understood.

A reasonable value of maximum acceptable failure probability for single driven piles within

a redundant group may be in the range of 10−2 to 10−3 (FHWA, 2005).

Table 3.3 Worst case geotechnical resistance factors for pile interface friction
angle coefficient,b = 0.8, earth pressure coefficienta = 1.2, various
coefficients of variation,vφ, distance to sampling location,r, and
acceptable failure probabilities,pm.

r (m) vφ Geotechnical Resistance Factor
pm = 10−2 pm = 10−3 pm = 10−4 pm = 10−5

0.0 0.1 1.21 1.09 1.00 0.93
0.0 0.2 1.20 1.08 0.99 0.93
0.0 0.3 1.19 1.06 0.99 0.92
0.0 0.344 1.17 1.04 0.98 0.91
4.5 0.1 1.19 1.08 0.98 0.91
4.5 0.2 1.15 1.02 0.92 0.84
4.5 0.3 1.06 0.90 0.80 0.71
4.5 0.344 1.00 0.85 0.72 0.64
9.0 0.1 1.19 1.07 0.98 0.90
9.0 0.2 1.13 0.99 0.89 0.81
9.0 0.3 1.02 0.85 0.74 0.65
9.0 0.344 0.93 0.77 0.65 0.57

Table 3.4 compares the geotechnical resistance factors recommended in this study with

those recommended by other sources. The geotechnical resistance factors recommended in

the current study occupy the first six rows of Table 3.4 and correspond to the cases where

vφ = 0.344 and samples are taken 4.5 m and 9 m from the pile centerline for maximum

acceptable failure probabilities,pm = 10−3, 10−4 and 10−5.

To compare the recommended geotechnical resistance factors, ϕgu, with values in other

codes and the literature, the total load factor, ˆαT , and the ratio of the geotechnical resistance

factor to the total load factor ,ϕgu/α̂T , which is the real measure of the overall "safety

factor" used by each code, must be considered. According to Eq. (3.7), by increasing the

value of the total load factor, ˆαT , the required geotechnical resistance factor,ϕgu, increases.

The dead load factor,αD = 1.25, and live load factor,αL = 1.5, are used in this study, as
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specified by the National Building Code of Canada (2005). Thetotal load factors ˆαT given

in Table 3.4, are computed by using Eq. (2.37).

It can be seen from Table 3.4 that the ratio of the geotechnical resistance factor to the total

load factor,ϕgu/α̂T , recommended in this research when the soil is sampled 9 m from

the pile centerline forpm = 10−4, 0.49, is close to those given by AASHTO (2004). The

recommendedϕgu/α̂T ratio given by AASHTO (2004) is reasonably close the recommended

ratios in this research whenr = 4.5 m andpm = 10−4 and also whenr = 9 m andpm = 10−3.

The reason that the geotechnical resistance factors proposed in the current study are gener-

ally higher than the values from the other codes in Table 3.4 might be because measurement

and model errors have been included in the other codes when estimating the geotechnical

resistance factors. For example, CPT tests were used for theestimation of the geotechnical

resistance factors suggested by the Australian Standard Bridge Design Code (2004), which

presumably include measurement errors as part of the overall estimation process.

Table 3.4 Comparison of geotechnical resistance factors recommended in this
study (first six lines) to those recommended by other sourcesfor
pile interface friction angle coefficient,b = 0.8, earth pressure
coefficienta = 1.2 and characteristic dead to live load ratioR̂D/L.

Source Load Factors α̂T ϕgu ϕgu/α̂T

r = 4.5 m, pm = 10−3 R̂D/L = 2.5, αL = 1.50, αD = 1.25 1.32 0.85 0.64
r = 4.5 m, pm = 10−4 R̂D/L = 2.5, αL = 1.50, αD = 1.25 1.32 0.72 0.55
r = 4.5 m, pm = 10−5 R̂D/L = 2.5, αL = 1.50, αD = 1.25 1.32 0.64 0.48
r = 9.0 m, pm = 10−3 R̂D/L = 2.5, αL = 1.50, αD = 1.25 1.32 0.77 0.58
r = 9.0 m, pm = 10−4 R̂D/L = 2.5, αL = 1.50, αD = 1.25 1.32 0.65 0.49
r = 9.0 m, pm = 10−5 R̂D/L = 2.5, αL = 1.50, αD = 1.25 1.32 0.57 0.43

CFEM (2006) R̂D/L = 3.0, αL = 1.50, αD = 1.25 1.31 0.40 0.31
NBCC (2005) R̂D/L = 3.0, αL = 1.50, αD = 1.25 1.31 0.40 0.31

CHBDC (2006) R̂D/L = 3.0, αL = 1.70, αD = 1.20 1.33 0.40 0.30
AS5100.3 (2004) R̂D/L = 3.0, αL = 1.80, αD = 1.20 1.35 0.55 0.41
AASHTO (2004) R̂D/L = 3.7, αL = 1.75, αD = 1.25 1.36 0.70 0.50

NCHRP507 (2004) R̂D/L = 3.0, αL = 1.70, αD = 1.25 1.36 0.50 0.37
AASHTO (2007) R̂D/L = 3.0, αL = 1.75, αD = 1.25 1.38 0.40 0.29
AASHTO (2002) R̂D/L = 3.7, αL = 2.17, αD = 1.30 1.49 0.48 0.32

NCHRP343 (1991) R̂D/L = 2.0, αL = 2.17, αD = 1.30 1.59 0.55 0.35
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Chapter 4: Conclusion

4.1 Summary and Conclusions

This study proposes reliability-based design provisions for the Load and Resistance Factor

Design (LRFD) of ultimate limit state design of deep foundations under axial compression

loading in soils under effective stress and total stress conditions. The load factors are as

used in the National Building Code of Canada (NRC, 2005). A mathematical theory was

developed to analytically estimate the probability of pilefailure. The analytical model

assumes a statistically random soil with lognormally distributed cohesion,c, for soils

under total stress condition and tanh distributed frictionangle,φ, for soils under effective

stress condition. The effect of the soil’s spatial variability and site underestanding on

the geotechnical resistance factor has been investigated via simulation and theory, by

considering various soil statistics and sampling locations. The simulation involved 10000

realizations for each set of parameters and the results of the Monte Carlo simulation

were compared to the proposed theory. Optimal geotechnicalresistance factors were

recommended for the design of deep foundations for four target probability of failures

(10−2, 10−3, 10−4 and 10−5).

The suggested design procedure using the proposal Load and Resistance Factor De-

sign(LRFD) method is summarized as follows:

1) decide on a maximum acceptable failure probability,pm for the pile. The choice of

pm depends on the severity of failure consequences;

2) sample the soil and estimate the characteristic soil property using Eq’s (2.8) or (3.8).

The characteristic ultimate resistance is calculated using Eq’s (2.9) or (3.9);

3) determine load factors from structural design codes as described in section 2.3;

4) select an upper bound geotechnical resistance factor forthe maximum acceptable

failure probability,pm, and sampling location from Table 2.3. The actual geotech-

nical resistance factor used in design maybe reduced somewhat, depending on the

magnitude of model and measurement errors;
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5) estimate the required pile length given load factors,αL andαD, geotechnical resis-

tance factor,ϕgu and the effective pile perimeter,p, using LRFD as described in

Eq’s (2.19) and (3.19).

No attempt is made here to include the effects of measurementerror nor of errors in

mapping actual observations, e.g. CPT values, to engineering properties such as friction

angle. Thus the predicted failure probability (either fromtheory or simulation) will be

somewhat unconservative (failure probability increases as measurement error increases).

However both the analytical technique and the simulation treat measurement errors in the

same way, allowing a consistent comparison between two. Also, this can be accomodated

to some extent by using aσ2
c or vφ value larger than the actual value.

The recommended geotechnical resistance factors for ultimate limit state design of deep

foundations should be considered to be upper bounds becausethe measurement and model

errors are not considered in this study. The statistics of measurement errors are very difficult

to determine, since the true values need to be known. Similarly, model errors, which relate

both the errors associated with translating measured values (e.g. CPT measurements to

friction angle values) and the errors associated with predicting effective stress and total

stress resistance by equations, such as Eq’s (2.2) and (3.2), to the actual effective stress and

total stress resistance are extremely difficult to measure simply because the true effective

stress - total stress resistance along with the true soil properties, are rarely, if ever, known.

When confidence in the measured soil properties or in the model used is low, the results

presented here can still be employed by assuming that the soil samples were taken further

away from the the pile centerline than they actually were (e.g. if low-quality soil samples

are taken at the pile location,r = 0, the geotechnical resistance factor corresponding to a

larger value ofr, sayr = 4.5 m should be used), or by using a larger variance.

The evaluation of geotechnical resistance factors for piledesign involves the soil field’s

uncertainty level (e.g. coefficient of variations of cohesion, vc and friction angle,vφ), the

pile interface friction angle coefficients,b, (soils under effective stress condition) correlation

level (e.g. correlation length,θ) and sampling locations. Since coefficients of variation,vc

andvφ, the pile interface friction angle coefficient,b, and correlation length,θ, are usually

unknown for a given site, various values forvc, vφ andb are considered in this study for

deep foundation limit state design, along with a worse case value ofθ, i.e. the intermediate

value ofθ corresponding to the higher probabilities of failure.

Three sampling schemes have been considered in this study. Better estimates of conditions

at the pile can be obtained when samples are taken at the pile location (r = 0 m). Specifically,

lower probability of failures and larger geotechnical resistance factor values are obtained
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by sampling at the pile location.

Both the theory and the simulation demonstrates that a worstcase correlation length exists.

The good agreement between the geotechnical resistance factors based on this worst case,

shown in Tables 2.4 and 3.4, and current literature and LRFD code recommendations,

suggests that the theory is in reasonable agreement with past experience.

The overall agreement between the analytically derived geotechnical resistance factors

proposed in this study and those currently used in other codes, as shown in Tables 2.4 and

3.4, is encouraging. The current study now provides a rigorous basis for the determination

of upper bound geotechnical resistance factors in pile design in soils under effective and total

stress conditions and the theory provides a framework to extend code provisions beyond

calibration with the past.

4.2 Future Work

Additional areas in need of additional research are as follows;

1) This research concentrates on reliability-based designof a single pile. Similar re-

search is also needed on the reliability-based design of pile groups taking redundancy

into account.

2) In this research interpretation and model errors are not included. Further study

should be carried out to consider these errors and also include the assesment of load

tests on full scale productive piles.

3) There are two soil parameters considered random in this research,c andφ. They

were studied separately, additional study are required to the more general case of

c � φ. The unit weight of soilγ, also needed to be considered as random field for

future work.
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Appendix A

Estimation of Means, Variances and Covariance ofln ĉ and ln c̄
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If Y is an arbitrary function of several variables,Y = g(X1,X2, ...,Xn), then the corre-

sponding first order Taylor’s series ofY expansion is

Y = g(µX1
, µX2

, ..., µXn
) +

nX
i=1

(Xi � µXi
)

dg

dXi

���
µ

(A.1)

Assuming that ˆc and c̄ represent the local averages ofc over the sample length of size,

D = ∆z � m and pile lengthH = ∆z � n, respectively, the first-order Taylor series

approximations of ln ˆc and lnc̄ can be written as

ln ĉ ' ln µc +
mX
i=1

(ĉi � µc)

�
d ln ĉ

dĉi

���
µc

�
(A.2a)

ln c̄ ' ln µc +
mX
i=1

(c̄i � µc)

�
d ln c̄

dc̄i

���
µc

�
(A.2b)

Sinceµln ĉ = µln ĉ = µc, then

ln c̄� µln ĉ ' nX
j=1

(c̄j � µc)

�
d ln c̄

dc̄j

���
µc

�
(A.3a)

ln ĉ� µln ĉ ' mX
i=1

(ĉi � µc)

�
d ln ĉ

dĉi

���
µc

�
(A.3b)

By applying Eq’s (A.2) and (A.3), the variance and covariance of lnĉ and lnc̄, using

first-order Taylor series approximation, can be determinedas follows;

σ2
ln ĉ = Var[ln ĉ] = E

�
(ln ĉ� µln ĉ)

2
�' E

24 mX
i=1

(ĉi � µc)

�
d ln ĉ

dĉi

���
µc

�!2
35' mX

i=1

mX
j=1

�
d ln ĉ

dĉi

���
µc

��
d ln ĉ

dĉj

���
µc

�
E
�
(ĉi � µc)(ĉj � µc)

�' mX
i=1

mX
j=1

�
d ln ĉ
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1
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In the same fashionσ2
ln c̄, can be obtained by

σ2
ln c̄ = Var[ln c̄] ' v2

c

n2

nX
i=1

nX
j=1

ρ(zi � zj)' v2
c

H2

Z H

0

Z H

0
ρ(z1� z2) dz1 dz2 (A.5)

The covariance of ln ˆc and lnc̄, by applying Eq. (A.3) is

Cov[ln c̄, ln ĉ] = E[(ln c̄� µln ĉ)(ln ĉ� µln ĉ)]' E

" 
mX
i=1

(ĉi � µc)

�
d ln ĉ
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���
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d ln c̄

dc̄j

���
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���
µc

��
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���
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�
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�
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�
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���
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��
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���
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i )2
�' v2

c

mn

mX
i=1

nX
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c

mH

nX
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0
ρ
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The Taylor series expression of the variance of lnc can be expressed in the form

σ2
ln c = ln(1 +v2

c ) ' v2
c +

v4
c

2
+ O(v6

c ) (A.6)

Substituting Eq. (A.6) in Eq’s. (A.4), (A.5) and (A.6) provides

σ2
ln ĉ ' σ2

ln c

m2

mX
i=1

mX
j=1

ρ(zo
i � zo

j ) (A.6a)

σ2
ln c̄ ' σ2

ln c

H2

Z H

0

Z H

0
ρ(z1 � z2) dz1 dz2 (A.6b)

Cov[ln c̄, ln ĉ] ' σ2
ln c

mH

mX
i=1

Z H

0
ρ
�p

r2 + (z � zo
i )2
�

dz (A.6c)



Appendix B

Probability of Failure for θ ! 0 and θ !1
The analysis of accuracy of the theory developed by estimation of the failure probability of

deep foundations for zero and infinity scale of fluctuations is as follows;

The variance reduction functionsγ(H), γ(D) and γHD, using first-order Taylor series

approximation, can be estimated as

γ(H) =
1

H2

Z H

0

Z H

0
ρ(z1 � z2) dz1 dz2 ' θ

H
(B.1a)

γ(D) =
1

m2

mX
i=1

mX
j=1

ρ(zo
i � zo

j ) ' θ

D
(B.1b)

γHD =
1

mH

mX
i=1

Z H

0
ρ(z, zo

i ) dz ' θjH �Dj (B.1c)

when the scale of fluctuationθ ! 0, the variance reduction of any local average goes to

zero. The variance and covariance terms also become zero. Inthe other words, asθ ! 0,

σ2
ln ĉ ! 0 (B.2a)

σ2
ln c̄ ! 0 (B.2b)

Cov[ln ĉ, ln c̄] ! 0 (B.2c)

In this case, Eq. (2.28) turns out to be

µln W = µln F (B.3a)

σln W = σln F (B.3b)

and the failure probability of Eq. (2.28) for zero correlation length becomes

pf = 1�Φ

�
ln q � lnϕgu � µln F

σln F

�
(B.4)
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This implies that for zero correlation length the probability of failure of deep foundations

only depends on the load and resistance factors and the load distribution. This is obviously

true because of the fact that if there is no effective variability in the averaged soil properties,

the failure of the pile involves only load variability.

When the scale of fluctuationθ !1, all soil points in the field become perfectly correlated.

The field becomes a uniform field. The analysis becomes dependent on a single random

variable. This means all correlation coefficient terms and variance reduction functions are

one, and since ˆc = c̄ = c.

σln ĉ = σln c̄ = σln c (B.5a)

Cov[ln ĉ, ln c̄] = σ2
ln c (B.5b)

and

µln W = µln F (B.6a)

σln W = σln F (B.6b)

pf = 1�Φ

�
ln q � lnϕgu � µln F

σln F

�
(B.6c)

This means that the same probability of failure can be estimated for zero and infinity

correlation length, involving only load and resistance factors.



Appendix C

Relationship betweens and the Friction angle’s Coefficient of Variation

The following relationship betweens and the friction angle’s coefficient of variation can be

obtained from

vφ =
σφ

µφ
' 2(0.46) (φmax � φmin) sp

4π2 + s2 (φmax + φmin)
(C.1)! v2

φ ' 4(0.46)2 (φmax � φmin)2 s2

(4π2 + s2) (φmax + φmin)2

Therefore

s2 ' 4π2v2
φ(φmax + φmin)2

4(0.46)2(φmax � φmin)2 � v2
φ(φmax + φmin)2

(C.2)' 16π2v2
φµ

2
φ

4(0.46)2(φmax � φmin)2 � 4v2
φµ

2
φ

and

s ' 2πvφµφq
(0.46)2(φmax � φmin)2� v2

φµ
2
φ

(C.3)
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Appendix D

The Multivariate Gaussian Distribution
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The joint characteristic function ofn random variablesX1,X2, ...,X2M is defined as,

Ψ12...2M = E
�
(X1� µX1

)(X2 � µX2
)...(X2M � µX2M

)
�

(D.1)

All central moments of odd orders are zero (Vanmarcke, 1984), the central moments of

even orders can be evaluated using the following procedure.Assume we have 2M random

variablesX1,X2, ...,X2M jointly distributed and bounded. According to the transformation,

Xi = φmin + 1
2(φmax � φmin)

�
1 + tanh

�
sGi

2π

��
, (i = 1, 2, ..., 2M) (D.2)

sinceGi is standard normal (having zero mean and unit variance) then,

µXi
= E[Xi] = (φmin + φmax)/2, (i = 1, 2, ..., 2M) (D.3)

and this provides,

Xi � µXi
=

1
2

(φmax � φmin)

�
tanh

�
sGi

2π

��
, (i = 1, 2, ..., 2M) (D.4)

From a third-order Taylor series approximation to tanh and afirst-order approximation to

the expectation, and applying Eq. (D.4) the moment of ordern, can be expressed as follows,

Ψ12...2M = E
�
(X1� µX1

)(X2 � µX2
)...(X2M � µX2M

)
�

= (0.5)2M (φmax � φmin)2ME

"
2MY
i=1

tanh

�
sGi

2π

�#
' (0.5)2M (φmax � φmin)2ME

266664 2MY
i=1

�
sGi

2π

�
1 + (1/2)

nP2M
i=1

�
sGi

2π

�2o377775
' (0.5)2M (φmax � φmin)2M � 2MY

i=1

E

�
sGi

2π

�
1 + (1/2)

nP2M
i=1 E

h�
sGi

2π

�2
io' (0.46)2M (φmax � φmin)2M � � s

2π

�2M
E[G1G2...G2M ]

1 +M
�

s
2π

�2 (D.5)
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where the moment of order 2M of G1, G2, ..., G2M (2M random variables which are jointly
normally distributed having zero mean and unit variance) can be expressed as a sum of
products of covariances (Vanmarcke, 1984),

E[G1G2...G2M ] =
X

E
�
Gk1

Gk2

�
E
�
Gk1

Gk2

�
...E

�
Gk2M−1

Gk2M

�
(D.6)

where the summation is over all possible arrangements of theindexes 1, 2, ..., 2M into
exactlyM pairs. The number of such arrangements is 1.3.5...(2M�1). Applying Eq. (D.6)
leads immediately to the following results for the second, forth and sixth order joint central
moments ofGi’s:

E
�
GjGj

�
= Bij (D.7a)

E
�
GiGjGkGh

�
= BijBjh + BikBjh + BihBjk (D.7b)

E
�
GiGjGkGhGlGs

�
= BijBkhBls + BijBklBhs + BijBksBhl

+ BikBjhBls + BikBjlBhs + BikBjsBhl

+ BihBjkBls + BihBjlBks + BihBjsBkl

+ BilBjkBhs + BilBjhBks + BilBjsBkh

+ BisBjkBhl + BisBjhBkl + BisBjsBkh (D.7c)

whereBkl = Cov[Gk, Gl] = ρkl. Letting,

Ψ
X
ij = E

�
(Xi � µXi

)(Xj � µXj
)
�

(D.8a)

Ψ
X
ijkh = E

�
(Xi � µXi

)(Xj � µXj
)(Xk � µXk

)(Xh � µXh
)
�

(D.8b)

Ψ
X
ijkhls = E

�
(Xi � µXi

)(Xj � µXj
)(Xk � µXk

)(Xh � µXh
)(Xl � µXl

)(Xs � µXs
)
�

(D.8c)

and

σ2
X ' (0.46)2(φmax � φmin)2

�
s

2π

�2

1 +
�

s
2π

�2 (D.9a)

σ4
X ' (0.46)4(φmax � φmin)4

�
s

2π

�4

1 + 2
�

s
2π

�2 (D.9b)

σ6
X ' (0.46)6(φmax � φmin)6

�
s

2π

�6

1 + 3
�

s
2π

�2 (D.9c)

the second, forth and sixth order joint central moments ofX1,X2, ...,X2M , by using Eq’s
(D.5) through (D.9) can be written as,

Ψ
X
ij ' σ2

Xρij (D.10a)

Ψ
X
ijkh ' σ4

XE
�
GiGjGkGh

�
(D.10b)

Ψ
X
ijkhls ' σ6

XE
�
GiGjGkGhGlGs

�
(D.10c)
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Estimation of Means, Variances and Covariance ofln X̂ and ln X̄
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E.1 Third Order Taylor Series Approximation

If Y is an arbitrary function of several variables,Y = g(X1,X2, ...,Xn), then the corre-

sponding Taylor’s series expansion is

Y = g(µX1
, µX2

, ..., µXn
) +

nX
i=1

(Xi � µXi
)

dg

dXi

���
µ

+
1
2

nX
i=1

nX
j=1

(Xi � µXi
)(Xj � µXj

)
d2g

dXidXj

���
µ

+
1
6

nX
i=1

nX
j=1

nX
k=1

(Xi � µXi
)(Xj � µXj

)(Xk � µXi
)

d3g

dXidXjdXk

���
µ

+ ... (E.1)

Assuming thatφ̂ and φ̄ represent the local averages ofφ over the sample length of size,

D = ∆z �m and pile lengthH = ∆z � n, respectively, and letting,

d1 =
d ln X̂

dφ̂

���
µφ

=
d ln X̄

dφ̄

���
µφ

(E.2a)

d2 =
d2 ln X̂

dφ̂2

���
µφ

=
d2 ln X̄

dφ̄2

���
µφ

(E.2b)

d3 =
d3 ln X̂

dφ̂3

���
µφ

=
d3 ln X̄

dφ̄3

���
µφ

(E.2c)

means that,

d ln X̂

dφ̂i

���
µφ

=
d1

m
,

d ln X̄

dφ̄i

���
µφ

=
d1

n
(E.3a)

d2 ln X̂

dφ̂idφ̂j

���
µφ

=
d2

m2 ,
d2 ln X̄

dφ̄idφ̄j

���
µφ

=
d2

n2 (E.3b)

d3 ln X̂

dφ̂idφ̂jdφ̂k

���
µφ

=
d3

m3 ,
d3 ln X̄

dφ̄idφ̄jdφ̄k

���
µφ

=
d3

n3 (E.3c)

where,

d1 =
cos(φ)

(sin(φ)� 1)
+

2b

sin(2bφ)
(E.4a)

d2 =
1

(sin(φ)� 1)
� 4b2 cos(2bφ)

sin2(2bφ)
(E.4b)
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d3 =
� cos(φ)

(1� sin(φ))2 +
8b3

sin(2bφ)
+

2 cos2(2bφ)
sin3(2bφ)

(E.4c)

By using the information in Eq’s (E.1) through (E.4), the third-order Taylor series approxi-

mations of lnX̂ and lnX̄ are

ln X̂ ' ln X̂
���
µφ

+
d1

m

mX
i=1

(φ̂i � µφ)

+
d2

2m2

mX
i=1

mX
j=1

(φ̂i � µφ)(φ̂j � µφ)

+
d3

6m3

mX
i=1

mX
j=1

mX
k=1

(φ̂i � µφ)(φ̂j � µφ)(φ̂k � µφ) (E.5a)

ln X̄ ' ln X̄
���
µφ

+
d1

n

nX
i=1

(φ̄i � µφ)

+
d2

2n2

nX
i=1

nX
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(φ̄i � µφ)(φ̄j � µφ)

+
d3

6n3

nX
i=1

nX
j=1

nX
k=1

(φ̄i � µφ)(φ̄j � µφ)(φ̄k � µφ) (E.5b)

E.2 Means ofln X̂ and ln X̄

The means of third-order Taylor series approximations of lnX̂ and lnX̄ then, can be written

as

µln X̂ = E
�
ln X̂

� ' ln X̂
���
µφ

+
d1

m

mX
i=1

E
h
(φ̂i � µφ)

i
+
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E
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(φ̂i � µφ)(φ̂j � µφ)

i
+

d3

6m3
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mX
j=1

mX
k=1

E
h
(φ̂i � µφ)(φ̂j � µφ)(φ̂k � µφ)

i
(E.6a)

µln X̄ = E
�
ln X̄

� ' ln X̄
���
µφ

+
d1

n

nX
i=1

E
�
(φ̄i � µφ)

�
+

d2

2n2
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i=1
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j=1

E
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+
d3

6n3

nX
i=1

nX
j=1

nX
k=1

E
�
(φ̄i � µφ)(φ̄j � µφ)(φ̄k � µφ)

�
(E.6b)

By using Eq’s (D.8) through (D.10), the means of lnX̂ and lnX̄, can be describe by

µln X̂ = E
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ln X̂

� ' ln X̂
���
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2
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(E.7a)

µln X̄ = E
�
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� ' ln X̄
���
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2
(E.7b)

E.3 Variances and covariance ofln X̂ and ln X̄

In order to estimate the third-order Taylor series approximations of variances and covariance

of ln X̂ and lnX̄, the expressions , ln̂X � µln X̂ and lnX̄ � µln X̄ , by using Eq. (E.7), can

be obtained by

ln X̂ � µln X̂ ' d1

m

mX
i=1

(φ̂i � µφ) +
d2

2m2

mX
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(E.8a)

ln X̄ � µln X̄ ' d1
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(φ̄i � µφ) +
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j=1
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(E.8b)

By applying Eq’s (D.8) and (E.8), variance of ln̂X can be written as
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(E.9)

and applying Eq’s (D.5) through (D.10) into Eq. (E.9) leads to,
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(E.10)

In the fashion, the third-order Taylor series approximation of variance of lnX̄ can be

estimated to be
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The covariance of ln̂X and lnX̄, by using Eq. (E.8) is
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by making a use of Eq. (D.10), the covariance of lnX̂ and lnX̄, can be written as
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Figure F.1 Comparison of failure probabilities estimated by simulation (10000
realizations) and analytical results for resistance factor, ϕgu = 0.9,
b = 0.5, a = 1.2 and three sampling locations.
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Figure F.2 Resistance factors when the soil has been sampled at the pilelocation
(r = 0 m), forb = 0.5 anda = 1.2 (note the reduced vertical scale).
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Figure F.3 Resistance factors when the soil has been sampledr = 4.5 m from
the pile centerline , forb = 0.5 anda = 1.2.
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Figure F.4 Resistance factors when the soil has been sampledr = 9 m from the
pile centerline , forb = 0.5 anda = 1.2.
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Table F.1 Worst case resistance factors for pile interface friction angle coeffi-
cient,b = 0.5, earth pressure coefficienta = 1.2, various coefficients
of variation,vφ, distance to sampling location,r, and acceptable
failure probabilities,pm.

r (m) vφ Resistance Factor
pm = 10−2 pm = 10−3 pm = 10−4 pm = 10−5

0.0 0.1 1.20 1.09 1.00 0.93
0.0 0.2 1.19 1.07 0.99 0.92
0.0 0.3 1.17 1.04 0.97 0.90
0.0 0.344 1.15 1.02 0.95 0.88
4.5 0.1 1.20 1.07 0.99 0.92
4.5 0.2 1.16 1.03 0.94 0.86
4.5 0.3 1.09 0.93 0.83 0.75
4.5 0.344 1.04 0.87 0.77 0.68
9.0 0.1 1.19 1.07 0.98 0.91
9.0 0.2 1.14 1.01 0.91 0.84
9.0 0.3 1.03 0.88 0.78 0.69
9.0 0.344 0.97 0.81 0.70 0.61
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Figure F.5 Comparison of failure probabilities estimated by simulation (10000
realizations) and analytical results for resistance factor, ϕgu = 0.9,
b = 0.7, a = 1.2 and three sampling locations.
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Figure F.6 Resistance factor when the soil has been sampled at the pile location
(r = 0 m), forb = 0.7 anda = 1.2 (note the reduced vertical scale).
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Figure F.7 Resistance factors when the soil has been sampledr = 4.5 m from
the pile centerline , forb = 0.7 anda = 1.2.
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Figure F.8 Resistance factors when the soil has been sampledr = 9 m from the
pile centerline , forb = 0.7 anda = 1.2.
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Table F.2 Worst case resistance factors for pile interface friction angle coeffi-
cient,b = 0.7, earth pressure coefficienta = 1.2, various coefficients
of variation,vφ, distance to sampling location,r, and acceptable
failure probabilities,pm.

r (m) vφ Resistance Factor
pm = 10−2 pm = 10−3 pm = 10−4 pm = 10−5

0.0 0.1 1.21 1.09 1.00 0.93
0.0 0.2 1.20 1.08 0.99 0.92
0.0 0.3 1.19 1.06 0.98 0.91
0.0 0.344 1.17 1.04 0.97 0.90
4.5 0.1 1.19 1.08 0.98 0.92
4.5 0.2 1.15 1.02 0.93 0.86
4.5 0.3 1.06 0.92 0.81 0.74
4.5 0.344 1.00 0.86 0.74 0.67
9.0 0.1 1.19 1.07 0.98 0.91
9.0 0.2 1.13 1.00 0.90 0.82
9.0 0.3 1.02 0.86 0.75 0.67
9.0 0.344 0.94 0.78 0.67 0.59


