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GLOSSARY 

AI Thinker A7: “GSM/GPRS/GPS function module. It supports GSM/GPRS Quad-

Band（850/900/1800/1900) network. Also, it supports voice calls, SMS messages, 

GPRS data service and GPS function. The module is controlled by AT command via 

UART and supports 3.3V and 4.2V logical level.” [1] 

APDS-9960: Digital Proximity, Ambient Light, RGB and Gesture Sensor. “The APDS-

9960 device features advanced Gesture detection, Proximity detection, Digital 

Ambient Light Sense (ALS) and Color Sense (RGBC)”. [2] 

In this report, we are interested in using this sensor as a single-pixel camera only 

(using it is RGB sensors). 

API: Application Programming Interface, is an intermediary software that allows two 

applications to talk to each other. [3] 

AT commands: “AT commands are instructions used to control a modem. AT is the 

abbreviation of ATtention. Every command line starts with "AT" or "at". That's why 

modem commands are called AT commands.” [4] 

Cluster Ambiguous Keyboard: a cluster ambiguous keyboard is a keyboard that 

combines multiple letters in one key. [5] 

GPIO: General Purpose Input/Output, which means a pin can be programmed to act 

as input (e.g. to read values from sensors) or as an output (e.g. To control devices).[6] 

GPRS: General Packet Radio Services, is a wireless communications service that is 

a packet-based, and features data rates between 56 and 114 kbps over a continuous 

Internet connection for mobile devices. [7] 

GPS: Global Positioning System, satellite positioning system that is used for 

determining the geo-location of a receiver with direct line of sight to multiple 

satellites.[8] 
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GSM: Global System for Mobile Communications, is the European standard for 

second generation (2G) digital cellular networks used by mobile devices. [9] 

IC: Integrated Circuit (aka monolithic integrated circuit, chip, and microchip), is a 

collection of electronic components connected together and placed on a chip. [10] 

IoT: Internet of Things, “The Internet of things, or IoT, is a system of interrelated 

computing devices, mechanical and digital machines, objects, animals or people that 

are provided with unique identifiers (UIDs) and the ability to transfer data over a 

network without requiring human-to-human or human-to-computer interaction” [11]. 

Microcontroller: “A microcontroller is a compact integrated circuit designed to govern 

a specific operation in an embedded system. A typical microcontroller includes a 

processor, memory and input/output (I/O) peripherals on a single chip.” [12] 

MQTT: Message Queuing Telemetry Transport, is an extremely lightweight machine-

to-machine connectivity protocol designed with IoT in mind. It features a very small 

footprint and is designed as a publish/subscribe messaging transport. [13] 

NLP: Natural Language Processing, is the field that deals with making computers able 

to process natural human languages. [14] 

NodeJS: Node.js is an open-source, cross-platform JavaScript run-time environment 

that executes JavaScript code outside of a browser. It allows the use of JavaScript for 

server-side scripting [15][16]. Node.js has an event-driven architecture that features 

asynchronous I/O. This helps optimize throughput and scalability in web applications 

with many input/output operations; it is also developed with real-time Web applications 

in mind (e.g., real-time communication programs and browser games). [17] 

Raspberry Pi: is a series of small and cheap computers that are meant for teaching 

kids programming. [18] The raspberry pi became very popular among technology 

tinkerers and enthusiasts because it features a 40-pin GPIO header built in. [19] 

RESTful API: A RESTful API is an API that uses HTTP requests to GET, PUT, POST, 

and DELETE data. It is preferred over other types of APIs since it requires less 

bandwidth. [20] 
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SaaS: Software as a service, is a form of software that is centrally hosted and 

accessed via a subscription rather than being installed on every computer. [21] 

Scanning Grid: A scanning grid is a grid of predefined buttons and layout, where the 

focus is rotated along buttons automatically, thus allowing the choice of any button 

using a single binary input. The grid can be in the form of a keyboard for example. [22] 

TCRT-5000: is a reflectivity sensor that features an infrared emitter and a 

phototransistor, and is used for the detection of reflective material such as paper, IBM 

cards, magnetic tapes etc. [23] In this report, we are interested in the use of this sensor 

for cheek muscle contraction detection. 

TTS: “Text to Speech is used to artificially produce human speech through 

computerized means. Text to speech converts written language in to speech” [24] 

UART: Universal Asynchronous Receiver/Transmitter, is a physical circuit in a 

microcontroller or a stand-alone IC that is responsible for transmitting and receiving 

serial data. [25] 

VOIP: Voice Over Internet Protocol, “is a technology that makes phone calls possible 

from any Internet-connected device with a microphone and speakers” [26]. 

Watchdog: a piece of hardware or software that constantly checks whether a device 

or a function is ready. If the function is not responsive for a specified period of time, 

then the watchdog resets it. [27] 

WebRTC: Web Real-Time Communication, “is a free, open project that provides 

browsers and mobile applications with Real-Time Communications (RTC) capabilities 

via simple APIs” [28]. It is very famous for its capability of audio and video streaming. 
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ABSTRACT 

Neurological disorders such as amyotrophic lateral sclerosis (ALS) can lead to severe 

mobility limitations. ALS has even been described as “locked-in” syndrome, since the 

brain is functional, but the personality is locked in a body with almost no voluntary 

control. The objective is to design, implement, and test a sensor based platform called 

EMPWRD which empowers such users with the ability to speak and express 

themselves using state-of-the-art tools such as an input-adaptive grid scanner and a 

Natural Language Processing (NLP) powered cluster ambiguous keyboard; it also 

helps them control devices in their surroundings. The platform is modular and is 

compatible with any device that supports HTML and Javascript; thus, it can be easily 

customized. We present here the platform in addition to a Text-To-Speech (TTS) and 

a Global System for Mobile Communications (GSM) module that enable users to make 

live phone calls, along with some comparisons and experimental analysis. 
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CHAPTER 1 INTRODUCTION AND OVERVIEW 

1.1 INTRODUCTION 

Since the beginning of time, humans have known the importance of communication. 

Language has allowed us to express our thoughts and live as part of a community. 

Modern communication inventions such as the phone and the Internet have even 

allowed communications beyond the boundaries of land and the limitations of sound 

travel. However, of what importance are these systems for someone who has lost the 

ability to communicate? 

After all, humans are thought-sharing and thought-provoking creatures. There are a 

lot of reasons that may force individuals to change their methods of communication. 

People who lose their ability to speak, whether at birth or due to other causes that 

emerge during one’s lifetime, learn to communicate through other methods such as 

sign language and writing. 

Switching from one communication method to another depends on the available 

methods and the different abilities one possesses. A person who cannot speak using 

their mouth, needs their hands and their fingers to use sign language; similarly, 

someone who’s lost their fingers, won’t be able to write using the traditionally common 

method; they could, for example, use speech to text technologies, which requires them 

to use their mouth and voice, or they may train to use another part of their body to do 

that instead of their fingers. 

When thinking about such circumstances, a very important question comes to mind. 

How can we communicate with people who have lost control over their body? We are 

referring to people who are completely capable of thinking and understanding their 

surroundings but have lost all means of voluntary control over their muscles, a case 

that is becoming more prevalent, unfortunately, due to the increasing cases of 

neurological disorders and other causes such as spinal injuries caused by accidents. 

Such patients may lose control over some body parts or even become completely 
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paralyzed. It is worth mentioning that it has been recently discovered by advances in 

brain scanning and analysis techniques that some coma-state patients are aware of 

their surroundings and should not be deemed almost-dead as previously thought. 

 

1.2 PURPOSE AND INSPIRATION 

As time goes by, miraculous technologies emerge, breaking the boundaries that we 

once thought were unbreakable. One can easily imagine how the story of a scientist 

such as that of Stephen Hawking could have ended, hadn’t it been for the technology 

that empowered him with the ability to share his thoughts. Stephen Hawking was not 

only able to help us understand physics better, he even wrote books and published 

his theories by controlling a single muscle, or a group of muscles that acted as a single 

input method.  

It is both sad and alarming how such cases are becoming more common due to car 

accidents and different neurological disorders; even having a single case like this is 

way too many. This project has been inspired by the likes of Stephen Hawking and 

other human beings who have lost their basic right of expressing themselves and is 

planned to be tested with patients so that the benefit is maximized; we are currently 

in talks to bring this solution to a patient in Nova Scotia for initial testing. And what 

greater purpose can we achieve other than giving those who can’t speak a voice, and 

empower people who have no means of expression or communication with the means 

to “live” and share their thoughts and emotions again? 

While it is true that technology has improved drastically and that now we are able to 

communicate with such cases where only one input method is available, even when 

no muscles can be moved at all (i.e. using brain waves EEG [29]), we are concerned 

with the rate of typing that limits the user’s means of communication. Stephen 

Hawking was able to type at an average rate of one to two word/s per minute until 

2014 where SwiftKey prediction doubled the rate [30], that is a whole five minutes for 

a single short sentence. It is also worth mentioning that Hawking did not actually type 

the whole word; natural language processing algorithms are estimated to have 
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guessed the correct word after the second or third letter. The latest system that he 

used, which was developed by Intel, has been made open source [22]. Imagine how 

much more books and theories Hawking might have been able to potentially produce 

if he had the means to communicate faster. 

 

1.3 OBJECTIVES 

The primary goal of this thesis is to design, implement, and test a sensor network 

platform called EMPWRD. Towards the realization of this goal, we have the following 

objectives. 

First, it presents a framework along with an applicable solution that help users with 

severe motor disabilities express themselves and control devices within their 

surroundings. 

Second, we aim to find an accurate and easy to use sensor that is also comfortable 

to be used for prolonged periods of time and provide a comparison of it alongside the 

existing sensor solutions. 

Third, we attempt to provide a new method for auto-complete suggestions used in 

cluster ambiguous keyboards so that they cater for word corrections as well. 

Fourth, we intend to address an input-adaptive grid scanner that functions differently 

as more inputs are identified. 

Fifth, we present a binary-input calibration method that makes sure that the sensor is 

functioning properly and can be generalized to any binary-input sensor. 

Sixth, we showcase a GSM-enabled module for the system that enables users to 

make phone calls. 

Seventh, we conduct a comparative overview of the proposed framework and of 

“ACAT”, the system that was developed by Intel, and later integrated technologies 

from SwiftKey, specifically to cater for Stephen Hawking’s needs. 



4 
 

Overall, the presented solution integrates multiple innovative concepts and algorithms 

that enhance scanning cluster ambiguous keyboards, and binary-input-device position 

calibration methods. 

1.4 OUTLINE 

Chapter 2 presents a literature review on “Input Methods for Mobility Challenged 

Users” and “Scanning Cluster Ambiguous Keyboards” and highlights the research 

gaps that we intend to address. Chapter 3 introduces our proposed framework 

“EMPWRD” along with a sample system that showcases it. Chapter 4 describes novel 

approaches regarding algorithms used in scanning cluster ambiguous keyboards, 

input-adaptive scanning grids in cluster ambiguous keyboard systems, and a binary-

input calibration technique. A comparison between different cheek-muscle input 

solutions and a new proposed solution are given in Chapter 5 alongside a comparative 

overview of EMPWRD and ACAT systems. Chapter 6 gives the conclusions and 

suggests future work.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 INPUT METHODS FOR MOBILITY CHALLENGED USERS 

HCI (Human Computer Interaction) is the study of methods of interaction between 

humans and computers such that the application is as pleasant and easy to use as 

possible [31]; one very interesting application of HCI, is the recognition of facial 

expressions and hand gestures as a means for data input [32]. Facial expression 

recognition is done by using a camera and implementing computer vision algorithms 

[33]. Such systems usually yield very good and accurate results, exceeding 94% mean 

accuracy when machine learning algorithms are used to detect multiple expressions 

automatically [34]. Other similar used approaches are eye-ball movement tracking 

[35], blink detection [36], and eye-gaze detection [37]. 

As one may imagine however, a camera may pose a huge obstacle in such 

applications as it jeopardizes the user’s privacy, and there could be legal issues 

preventing the use of a body worn camera [38]. 

 

Figure 1 Facial Expression Detection Using a Camera 

Thermal imaging has also been used to detect facial muscle contraction [39]. Although 

it is more secure than facial expression detection, it has still been known to raise some 

privacy concerns [40]. 
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Figure 2 Thermal Image Examples 

Electromyography (EMG) is the technique of measuring the electrical activity of a 

skeletal muscle with respect to a reference [41]. EMG is a hot research topic as well 

when it comes to controlling devices based on HCI such as controlling a wheelchair 

using multichannel forehead bio-signals electromyography [42]. EMG can be used for 

controlling a prosthetic hand [43], for example, and can be used as an input switch by 

detecting facial muscle contractions as well [44]. However, EMG patches can be 

irritating for prolonged use; they also usually require gel and skin preparation before 

being applied [45]. 
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Figure 3 EMG Facial Patches 

It is worth mentioning that one of the most relied on technologies for facial muscle 

contraction and facial expression detection is optical detection and image processing 

[46] [47]; however, optical sensors do not necessarily mean a camera that captures a 

full image in order to be processed; other types of optical sensors include optical 

PANDA type ring resonators [48] and other infrared sensors [49]. 

A PANDA type ring resonator consists of an Add/Drop filter connected to two ring 

resonators, one sensing unit and one reference ring [50]. 

 

Figure 4 PANDA Type Ring Resonator 

EEG (Electro-Encephalogram) and EOG (Electro-Oculogram) are also among the 

leading research topics when it comes to HCI, especially in application for patients 

with complete paralysis. EEG is the use of brainwaves in order to predict a specific 
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thought, a letter, or an action; there also exists solutions that utilize EEG for typing on 

a virtual keyboard [51]. Similar solutions that utilize EOG, which is the measurement 

in the change of electrical potential between the cornea and ocular fundus of the eye 

[52], instead also exist [53]. 

 

Figure 5 EEG Headset 

Although new EEG headsets that do not require gel and that can detect some facial 

expressions as well with a minimal number of nodes are being developed, the 

accuracy and comfort are not the best yet. This is because wireless EEG headsets 

are still a science fiction; EEG also requires the user to train the system on the 

thoughts before it can be used. In addition, the typing rate using EEG only is less than 

a single character per minute which is too slow for users who can move at least one 

muscle [37]. 

The use of piezoelectric sensors has also been suggested in the literature [54]. A 

piezoelectric sensor converts a force to an electric signal [55]; the force may be the 

result of strain or pressure. 



9 
 

 

Figure 6 Sample Piezoelectric Sensor 

Even utilizing breath pressure has recently been utilized, where a text-entry system 

called VIWA was developed to detect patterns in breathing pressure. The study of the 

system reported 99.8% accuracy and a typing rate of up to 7.9 words/minute [56]. 

 

Figure 7 Breathing Pressure Sensors [57] 

It is also important to note that multi-modality systems exist where an integration of 

multiple techniques is used. This typically means that each technique will output a 

quantifiable result, which is processed by a voting system that decides whether the 

final result is a valid voluntary input or not. Such systems include solutions that 

combine EEG and EOG [58], or EEG and Eye Blink Detection [37]. 

Focus 

In this thesis, we focus on the detection of specific facial muscle contractions to 

provide HCI solutions for users who have lost control over their body muscles and can 

only move some specific facial ones instead. Examples include ALS (amyotrophic 

lateral sclerosis), which afflicted Stephen Hawking, botulism, polio, stroke, cerebral 
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palsy, and neuropathy which is increasing in numbers due to diabetes and automobile 

injuries [59]. 

Common solution 

Throughout our research to find suitable sensors that satisfy the aforementioned 

objectives, we found that few papers address this research area. The widely used 

method is to use a reflectivity sensor which is most commonly packaged in what is 

known as TCRT5000 sensor (Figure 8 [23]). A similar sensor is used in the latest 

system that was developed for Stephen Hawking. To the best of our knowledge, the 

exact sensor components used in his solution are not published, but from the pictures 

and videos, such as the one shown in Figure 9 [60], we can speculate that it is a 

smaller version of TCRT5000. 

 

 

 

 

                                       

 

 

 

 

In short, the TCRT 5000 sensor is made up of two simple components, one infrared 

transmitter and one phototransistor in a leaded package that blocks visible light [23]. 

Depending on the surface that the sensor faces, the receiver would read different 

values, thus measuring the reflectivity of the surface. 

 

  

Figure 9 Stephen Hawking and 

Cheek Movement Sensor 

Figure 8 TCRT5000 

Picture and Top View 
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2.2 SCANNING CLUSTER AMBIGUOUS KEYBOARDS 

2.2.1 Introduction to Cluster Ambiguous Keyboards 

Text entry remains an important part of HCI with small devices.  As devices used for 

text entry became smaller - such as the case with mobile phones - the need for smaller 

keyboards arose, and thus, methods for combining multiple letters into a single key 

were created. 

Cluster Ambiguous Keyboards are keyboards that feature clusters of letters. Each 

cluster is associated with one key only. Thus, algorithms to determine which letter is 

intended by pressing a certain key have been well studied. 

A dictionary based predictive disambiguation (DBPD) algorithm is often used for this 

purpose, such as the case of T9™ from Tegic Inc. [61] which groups multiple letters 

into a single key, where a key is pressed once for the desired letter, therefore 

significantly reducing the number of keys needed for typing any desired word. The 

keystroke sequence is matched to words in the dictionary. If there is more than one 

matching word, users will have to cycle through these words by pressing a “next” 

button.  

Higher disambiguation means less “next” button key presses, which translates to less 

keystrokes required and, thus, less fatigue and time spent. Traditional methods only 

used word frequency to solve the problem of ambiguity. Boggess [62] presented two 

simple prediction algorithms, and Masui [63] utilized further developed techniques. 

Inverso et al [64] proposed a context-sensitive algorithm for word suggestions rather 

than mainly depending on the frequency of the word in a dictionary. 
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Figure 10 T9 Keyboard Layout 

An algorithm that makes use of semantic analysis has also been proposed by Li et al. 

[65]. The algorithm suggests future words based on the contextual information of the 

text and is thus desirable for users with motor difficulties since it may save more 

keystrokes. 

Syntactic analysis is also a well-known challenge in the field of natural language 

processing where POS tagging is desired. The Viterbi algorithm [66] is the most 

common n-gram approach for that purpose. For a word w, and a set of possible POS 

tags {t1…tn} the Viterbi algorithm calculates the probability Pi of the word w having 

each POS tag ti. Then the syntactic algorithm can be defined as follows: 

𝑃𝑂𝑆(𝑤) = max(𝑃𝑖)    (1) 

Gong [67] utilized both the semantic and syntactical contexts in the preceding texts 

together for better disambiguation performance. Semantic analysis relies on the co-

occurrence of words where a relatedness model is proposed. The model can be 

derived from a set of training corpora. The algorithm proposed for applying semantic 

analysis is as follows: 

𝑆𝐸𝑀(𝑤) = ∑
𝐶(𝑆𝑡𝑒𝑚(𝑤), 𝑆𝑡𝑒𝑚(𝑤𝑖))

𝐶(𝑆𝑡𝑒𝑚(𝑤𝑖))
𝑖

       (2) 

Where w is a candidate word and wi are those words that precede w. C(Stem(w)) is 

the frequency of the stem of word w in the training corpus. C(Stem(w), Stem(wi)) is 
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the frequency of both stems of words w and wi exist in the same contexts in the training 

corpus. A sentence is an example of a context; hence, SEM(w) may refer to the co-

occurrence relatedness of the word w based on all the preceding words. It is worth 

mentioning that the stem of a word can be derived by a computer stemmer [68]. 

Gong also proposes an improved disambiguation algorithm that orders the list of 

words proposed based on the overall score that is the result of all semantic, syntactic, 

and frequency analyses as follows [67]: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙(𝑤) =  𝛼 ∗ 𝐹𝑟𝑒𝑞(𝑤) +  𝛽 ∗  𝑆𝐸𝑀(𝑤) +  𝛾 ∗ 𝑃𝑂𝑆(𝑤)    (3) 

where Freq(w) is the frequency score achieved from common DBPD methods and 

where 0 ≤ α,β,γ ≤ 1 are the combination variables, whose ideal values can be found 

by incrementally modifying their combinations. 

 

2.2.2 Letter Arrangements in Cluster Ambiguous Keyboards 

A crucial decision in designing a keyboard is the number of keys (NKEY) featured in 

this keyboard, not to be confused with the arrangements of the letters bound to a 

single key [69]. Based on the theoretical model proposed by Soukoreff and MacKenzie 

[70], Fitts' Law [71] can be a good indicator of movement time whereas the Hicke-

Hyman Law [72] can be utilized for predicting the visual scanning time.  

 

 

Figure 11 Full QWERTY Keyboard Next to Three Ambiguous Keyboards  [73] 

As we start grouping multiple letters and binding them to a single key, a very important 

question arises, how do we arrange the letters optimally? 
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Keyboards come in different sizes and may feature different layouts. MacKenzie and 

Tanaka-Ishii [69] categorized keyboard arrangements into three main groups: mobile 

phone keypad variants; QWERTY keypad variants; and fewer key keypad variants. 

Huang and Wu [73] reviewed these categories and optimized them into the following 

categories: optimized; alphabetic-like; and QWERTY-like. 

As for the optimized category, Levine [69] considered the letter arrangements and the 

optimization of disambiguation algorithms using dictionaries and statistics based on 

the size of the keypad. Other researchers proposed arrangements to maximize the 

expected accuracy of the disambiguation algorithm [74]–[76]. 

 

 

Figure 12 QWERTY Layout in a Cluster Ambiguous Keyboard [5] 

Other cluster ambiguous keyboards have been designed based on the alphabet, by 

which the common keypad featured 12 buttons. Foulds et al. [77] proposed the TOC 

layout which switches the placements of three characters (t, o, and c). Less-Tap, the 

keyboard proposed by Pavlovych and Stuerzlinger [78], arranges the letters based on 

each letter’s frequency, which means that the most frequent letter can be accessed 

by one key press, the second frequent letter bound to a key can be accessed by two 

key presses and so on. It is undeniable that the QWERTY layout has become very 

popular, as a result, many researchers have designed various ambiguous keyboards 
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based on the QWERTY arrangement such as EQ3 by Eatoni (www.eatoni.com) and 

the QWERTY phone [69]. QWERTY-like cluster ambiguous keyboards have also been 

researched such as TenGo [79] which features the QWERTY layout over 6 keys only.  

 

Figure 13 Screenshot of OneKey Application with 4 keys [80] 

2.2.3 Scanning Keyboards 

Depending on the severity of motor impairment, the user may not be able to control 

more than a single switch, which translates to binary input; this is where scanning 

keyboards come into the picture. Scanning keyboards cycle through a group of keys 

automatically based on timed interval, which can be as quick as 0.3 milliseconds per 

key [81], and only require the switch to be used once per desired selection. The 

interval can also be adaptive and adjust in runtime according to the user’s 

performance [82]. Once a key is selected, the default action for the scanner is to go 

back to the home position and restart scanning; hence, it makes sense to arrange the 

letters that are most frequently used near the beginning position of the scanner in 

order to optimize the speed and hence the rate of input [83]–[86]. Another optimization 
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suggestion is the use of block scanning, where a bulk of keys is scanned and, once 

selected, individual key scan starts [87]–[89]. 

Since scanning grids are usually meant for people with severe motor impairments, 

they are usually bundled with cluster ambiguous keyboards, thus it is not intuitive how 

non-dictionary words can be formed. Several researchers have addressed this issue 

with potential solutions [81], [85], [88], [90], [91]. 

Figure 14 and Figure 15 show how scanners work as a function of time. 

 

Figure 14 Linear Scanning Ambiguous Keyboard Concept [80] 

 

Figure 15 Row-based Scanning in Ambiguous Keyboard Concept [80] 
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Even though a lot of researchers have found that QWERTY-like keyboards yield better 

results than both optimized and alphabetic-like keyboards [92]–[95], it is worth noting 

that these studies do not refer to scanning keyboards; thus their results should not 

affect the letter arrangement decision of a scanning keyboard, since in such 

keyboards the user is limited to the speed of the scanner and is not affected by the 

size of the space occupied by a button. 

Mackenzie and Felzer [80] presented characteristics and performance measures, as 

well as experimental results among different scanning keyboards. 

It is worth mentioning that the language served by a certain scanning keyboard may 

affect its complexity, such as in the case of a language with too many phenetics (e.g. 

Chinese) [96]. 

 

2.2.4 Keyboards for People with Motor Impairments 

The problem of online communication is even more important for physically 

challenged users, such as motor or visually impaired users, because of their special 

needs. A lot of research have considered methods of text entry for people with motor 

disabilities [97], [98]. Such keyboards are meant to reduce movements required to 

form a word, and to increase the typing rate. It is also worth noting that most 

implementations for such purpose feature word prediction to save time and number of 

keystrokes [81], [90], [91], [99]. 

Dvorak [100], for example, places the vowels and most frequently used consonants in 

the middle row of the keyboard. This unique placement results in simpler finger 

movements and allows more comfortable input while minimizing physical stress.  
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Figure 16 Dvorak Keyboard Layout [101] 

XPeRT [102] is a keyboard that is very similar to the QWERTY layout. The idea is to 

group the most common letters in groups of two so that the distance traveled is smaller 

when typing text. Similar to the Dvorak principle, OPTI and FITALI [103] place the 

most frequent letters used in the middle of the keyboard, with two space bars on the 

sides and a repositioned larger shift bar in the bottom to maximize input rates; this is 

confirmed by Fitt’s law [71] which states that the closer the letters, the faster and less 

tiring the input. Métropolis [104], as the name suggests, is built on the metropolis 

algorithm. This keyboard connects letters that are frequently used together such as 

“t”,”h”, and “e” - which form the word “the” - so that users can swipe through them 

instead of tapping each of them and thus saving time and energy. 
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Figure 17 Metropolis Keyboard [104] 

Sibylle [105] is a scanning keyboard designed specifically for single binary input where 

users cannot control more than a single switch. 

Dasher [106] is a zooming interface where the user controls where they want to zoom 

in and when to click. Visual areas are bounded and divided into rectangles that are 

associated with specific letters so that the user does not have to be very precise about 

when to click. 

 

Figure 18 Dasher: The Zooming Interface [107] 
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KeyGlasses [108] creates four letter glass-like bubbles, based on the most likely 

letters to be desired next, around the selected key to save movement time and shorten 

distance travelled.  

 

Chewing Word [109] is a row-based keyboard where the next letters are rearranged 

automatically based on user’s input according to the maximum probability of 

occurrence. 

Clavicom NG [110] utilizes the azerty layout where suggestions are created based on 

the user input and spaces are automatically inserted once a suggestion has been 

selected. 

 

Figure 19 Clavicom NG: (1) word propositions, (2) AZERTY keyboard [110] 
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K-Hermes [110] is named K for "keyboard" and Hermes after the Greek god for 

sending messages. K-Hermes is T9-like keyboard. It has the advantage of enabling 

entry with only 9 keys, but requires pressing the same key multiple times to cycle 

through the letters associated with that specific key; for example, if the user desires 

to choose letter “b”, they have to click the button labelled “a b c” twice. Propositions 

that are shown to the left are a set of dictionary words that correspond to the user 

input. 

 

Figure 20 K-Hermes: (1) Word proposals, (2) 3-letters-per-key keyboard [110] 

Hence choosing the right keyboard is a crucial element in such systems, especially 

that such movements required for typing can cause muscle stress if repeated several 

hundred times a day. 

Multiple other solutions for people with motor impairment exist [111], [112]. It is also 

worth mentioning that toolkits for designing and evaluating different keyboards also 

exist [113]. 

For purposes of comparison we use ACAT, the system used by Stephen Hawking, 

since it was developed and improved by Intel and their partners over a very long period 

of time, and since Hawking could only control one input switch. Section 5.2 showcases 

ACAT along with a comparative analysis of ACAT and EMPWRD. 
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2.3 RESEARCH GAPS 

Although accessibility-focused solutions and scanning cluster ambiguous keyboards 

have been a hot topic over the past few decades, there is always space for 

improvements and novel approaches. 

First, new sensors are being developed and released at a much faster rate nowadays 

than we used to witness before. Thus, new research regarding potential sensors for 

accessibility applications is required. We address this issue by proposing the use of 

APDS-9960 and providing a comparative analysis between existing sensors that are 

used for cheek muscle movement detection. 

Second, the literature in the field of scanning cluster ambiguous keyboards focuses 

more on the algorithms rather than the usability of the existing solutions. Moreover, 

the literature in this field mainly tackles disambiguation and auto-complete algorithms, 

missing the possibility of integrating auto-correct algorithms as well; thus, we propose 

a method for suggesting corrected words as well as auto-completed ones. 

Third, a lot of research has been conducted on scanning keyboards; however, the 

opportunities of multi-input adaptive scanning have not been tackled sufficiently in the 

literature; hence, we present a customized scanning solution that tackles multi-input 

customization. 

Fourth, most of the literature focuses on sensors functionality after calibration, 

however, there is a need for a framework to calibrate and/or test that a binary-input 

sensor is working properly. We address that by providing a calibration framework that 

caters specifically for binary input methods, keeping in mind non-binary information 

availability such as signal strength. 
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CHAPTER 3 PROPOSED EMPWRD FRAMEWORK AND SYSTEM 

In this chapter, we propose a general framework for systems that address limited- 

input translation into text using a cluster ambiguous keyboard and potentially feature 

different accessibility options such as TTS and GSM phone calling. 

3.1 FRAMEWORK CHARACTERISTICS AND REQUIREMENTS 

One would think that with all the technological advancements that we witness 

today, it would be relatively straightforward to provide a solution that uses some 

sensor data combined with NLP algorithms to cater for mobility challenged 

patients; however, after going through the literature review, and testing the 

different solutions on the market, it became evident that each solution either caters 

for a very specific type of patients, or optimizes a specific feature at the cost of 

missing other essential features. Thus, we have designed a framework that 

combines the essential features with the optimizations we have found either 

through our experimentation, or by going over the existing solutions. The following 

characteristics and requirements are the foundation of our framework: 

a. Online and offline availability of accessibility systems 

The main purpose of accessibility systems is to translate user input to text. The 

system should work offline as well as online (if necessary). The text may then 

be used in different ways such as getting converted to speech by utilizing text 

to speech technologies (TTS) and thus empowering users with a voice. 

b. Powered by N-Grams or AI and an automatic scanning grid 

Such systems should utilize an innovative combination of natural language 

processing algorithms and/or artificial intelligence, an automatic scanning grid 

for limited input(s), a dictionary, and a corpus to potentially speed up the 

average typing rate. 

c. Continuous learning and template updating 
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Such systems should support template updating so that they become “smarter” 

with use and for new sentences to be added to the corpus. The user should 

also be able to add new words to the dictionary so that the user’s vocabulary 

is not limited to the words in the dictionary alone. 

d. Modularity and compatibility 

Such systems should be designed with modularity in mind. This is important so 

that new features can be easily integrated later on. Support of multiple input(s) 

- potentially from multiple types of sensors - is of utmost importance so that the 

same system can support the maximum potential number of users, even when 

their cases are not identical; for the same reason, maximum compatibility 

should be taken into consideration. 

e. On-the-fly real-time configuration 

Input-method-modules should be developed in a way that allows changing their 

configuration - such as thresholds – during runtime without the need to restart 

the module or, even worse, the whole system, just to recalibrate or change the 

settings. 

f. Dynamic module availability and integration 

Device control modules should be developed in a dynamic way where a 

variable number of devices can be used, and where a malfunction in a module 

should not affect the performance of other integrated modules. 

g. Hardware and protocol standards compatibility 

Compatibility may not always seem important, especially when it comes to 

biomedical applications; however, compatibility means easier integration and 

faster improvement of the system. Thus, the appliance-control-hub module for 

example, should be compatible with most if not all appliances and should not 

be limited to a single smart-communication protocol. Such compatibility may 

even be achieved through developing an additional module to translate 
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communications over different protocols. Hence, interconnecting multiple 

appliance control hubs that support different protocols may be possible. 

h. Multi-user collaboration support 

Corpora and dictionaries should be customizable and may be merged from 

different users for better results; this is decided by the remote server (API) and 

can only be done when the system is online. 

i. Sensor criteria 

Since the users are going to be using these sensors most of the time they are 

awake, and even possibly while sleeping to prevent the need for having 

someone help them to wear and recalibrate the sensors, our goal is threefold. 

First, the least intrusive sensors should be selected so that they would not 

jeopardize the user’s privacy, nor cause any known security issues in case they 

get hacked. Second, sensors that do not need additional requirements -such 

as hydration using a saline solution - are preferred in order to prevent having 

to recalibrate them at specific intervals. Sensors that do not need to be in 

contact with the skin are also preferred so as to avoid technical issues 

especially in the cases of sweat, change in temperature, and difference in skin 

color. Third, accuracy should be among the most important aspects in sensor 

selection, and the ability to be calibrated by a caregiver after being worn by the 

user usually has a major impact on the accuracy as well. A sensor that does 

not require any calibration would be optimal. 

 

3.2 EMPWRD SYSTEM COMPONENTS AND DESIGN 

In this section, we present the EMPWRD system that is based on the presented 

framework. As suggested by the framework, the system is designed in a completely 

modular manner where any module is independent of the others. Sample modules 

such as cheek-muscle-movement input and GSM phone calls are presented in this 

thesis. 
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3.2.1 Frontend and UI 

The frontend is the interface that the user deals with and is composed of the following 

components: 

3.2.1.1 Start Screen 

The Start Screen is considered a non-trivial component in the framework since it can 

take different forms. In the case of a paralyzed user who also cannot see clearly, the 

Start Screen may represent information for the caregiver, and audio instructions for 

the user for example. The common example is where the Start Screen serves visual 

purposes for the user directly where the initial page is loaded. 

Figure 21 presents the sample Start Screen intended for users who can see clearly. 

Each device state is represented with an icon and a switch. 

 

Figure 21 Device Control Page and Dock Controller 
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3.2.1.2 Dock Controller 

 

Figure 22 Dock Controller in Start Screen 

The dock controller ensures navigation through all sections of the system and acts as 

the user’s interface for the device control module which empowers the user with the 

ability to control devices in their surroundings. In addition, it provides the caregiver 

with the option to calibrate the sensors. 

3.2.1.3 Scanning Grid 

As this system caters for more than just text entry, a scanning keyboard was not 

enough. The scanning grid is based on a time interval that may be predefined or 

adaptive to user capabilities in runtime (as shown in section 2.2.3), and it scans all 

buttons in the system, except for the sensor calibration button - since that requires 

assistance from another person and cannot be performed by the users themselves. 

The main components of the scanner are the dock and the different pages of the 

system. The scanning grid may also be input-adaptive, as discussed in section 4.2. 

3.2.1.4 Input method(s) 

An input method acts as a binary switch (based on any kind of sensor) and thus it can 

be modular and can be applied to any muscle or even to brain waves (EEG). A sample 

input method using TCRT5000 is shown in Figure 23. 
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Figure 23 Input Sensor TCRT5000 Mounted on an Eye-Glasses Frame 

3.2.1.5 Cluster ambiguous keyboard and word suggestion module 

This is probably the most important part of the system. The text input module is the 

one responsible for utilizing all the other modules to translate user input into text. This 

module utilizes a scanning cluster ambiguous keyboard, and uses the dictionary and 

the corpus to predict desired words with the help of NLP algorithms as well as other 

custom algorithms; it also provides the functionality of text to speech (TTS) which 

actually empowers the user with a voice and is discussed in the following section. The 

letter arrangements of this keyboard as shown in the figures are optimized for bi-gram 

NLP algorithms according to Lesher et al. results [75]. 

3.2.1.6 Text-to-speech (TTS) module 

The TTS module is a component that not only allows text to be read loudly, but also 

represents the voice of the user when in a phone or an online call. This component 

shall be easily customizable, such as changing the volume and switching the voice, 

tone and pitch. 
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3.2.1.7 Phone Calls User Interface 

The integration of the GSM module should be seamless to the user and, since the 

system features a scanning dock that switches between different elements, it is only 

natural that we integrate the GSM capability as an element that can be chosen right 

from the dock. 

As shown in Figure 24, the user has to select the green phone icon from the dock in 

order to access the GSM functionality interface. 

 

Figure 24 Phone Call Interface 

The GSM call interface features three main elements: 

a- Scanning ambiguous keyboard and word suggestion modules with TTS 

These are the same modules presented in sections 3.2.1.5 and 3.2.1.6. 

b- The common phrases component: 

This component features dynamic frequently used phrases that help the user express 

themselves while on a live phone call without the need to type each word from scratch 

using the scanning keyboard. 
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c- The contact list: 

This is the visual component that allows phone calls over GSM to be made. The user 

selects from a predefined list the contact that they wish to call. This selection panel is 

highlighted by the scanning grid as shown in Figure 25. 

 

 

Figure 25 Contact Selection Panel 

Once a contact is selected, the confirmation dialog appears so as to prevent 

accidental call making as shown in Figure 26. 
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Figure 26 Call Initiation Confirmation Dialog 

Once the call is confirmed, a command is sent out to initiate the GSM call. The system 

then waits for the other end of the line to pick up; once the other end joins the call, the 

system starts by greeting the person with:” Hello [Contact Name], this is a pre-

recorded message from [User Name]”. A beep is then heard and the text that is 

previously entered using the cluster ambiguous keyboard is transmitted after TTS is 

applied to it. Once the message is over, another beep is heard, and the system reads 

the following:” [Username] is now listening to you, you can stay on the line and 

communicate with him/her, or you can hang up”. Both ends are then in a live phone 

call where the user can either use the common phrases to express themselves or 

utilize the cluster ambiguous keyboard to speak different sentences using the power 

of TTS. The user can also hang-up on their end using a button that appears under the 

same collection of common phrases but requires confirmation before the call ends. It 

is also worth mentioning that it is possible to cater for voicemails in case the person 

on the other end does not join the call. In this case, a delay is added to the initial dialog 

until the beep is heard. 
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Figure 27 Common Phrases Panel 

The modularity of the system also provides the possibility of choosing the mode of 

operation of the GSM module, or even set up multiple modes simultaneously. We are 

interested in two main modes for GSM operation: self-hosted and SaaS; a 

comparative overview is presented in section 3.3. 

3.2.1.8 Input Calibration Module 

 

Figure 28 Input-Calibration Module Initial Screen 
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Some sensors may require calibration before each use (such as EMG), others may 

require hydration (such as EEG); calibration may also be in the form of optimal 

placement as in the case of TCRT5000 and APDS-9960. This module is meant to 

make sure that the sensor is calibrated and well-placed in such a way that ensures its 

good working condition. The specifics of this component are presented in section 4.3. 

3.2.2 User-side Backend 

3.2.2.1 Dictionary 

This module is used to predict the word that is being typed using the cluster ambiguous 

keyboard. It is hashed when the system initially starts. Typed numbers are then 

compared with the hashes to detect the words that match these numbers. More details 

about this module are presented in section 4.1. 

3.2.2.2 Corpus Controller 

This module is used to predict the next word that the user is going to type before they 

start typing it. The algorithm is developed where it starts with the highest available n-

gram (currently set to 3) and falls back until it reaches 0-gram if necessary (0-gram 

being the 1-gram of the dictionary words). This module also utilizes another algorithm 

that merges results from the predictions of the corpus with those of the dictionary to 

predict the word that is currently being typed. 

The corpus is processed when the system initially starts in order to improve 

processing times in runtime. This module also supports template updating so that it 

can learn from the user as they utilize it more and more. Corpora from different users 

can be merged and used as deemed appropriate by the remote server (API). 

A proposed algorithm is presented in section 4.1. 

3.2.2.3 Device control module 

This module is used to provide control over devices surrounding the user. For 

example, the user can lock/unlock the door, turn on/off the TV or the AC, switch the 

TV channel, sound the emergency alarm, etc. This module may be compatible with 

any number of standard protocols and devices on the market. 
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Figure 29 presents the device control module prototype. 

 

Figure 29 Device Control Module: Microcontroller, and Controlled Socket 

3.2.2.4 Microcontroller (Client) 

The microcontroller on the client side is meant to configure, communicate with, and 

calibrate the methods of input. 

In Figure 30, the client microcontroller is shown connected to the input sensor 

TCRT5000 and mounted on a frame: 
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Figure 30 Microcontroller (Client) Board and TCRT5000 

3.2.2.5 Microcontroller (local server) 

The purpose of this microcontroller is not only to process the data received from the 

input methods and translate them to be used by the frontend, but also to access the 

software as a service (SaaS) in case that is desired, and to connect to an external 

display. This microcontroller can be replaced by a computer, but it is listed as a 

microcontroller since a PC can be an overkill for example. 

3.2.2.6 Transmitter 

The transmitter can be connected to one or more methods of input and can transfer 

their data to a receiver over a communication medium. 
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3.2.2.7 Communication Medium 

The communication medium must necessarily utilize a real-time communication 

protocol. Depending on whether the communication is going to be online or offline, the 

communication medium on the user’s end may differ. For example, if Bluetooth is to 

be used, then the user’s device must support Bluetooth and a Bluetooth-based 

communication module should be used. On the other hand, as in our case, if MQTT 

for example is used, then the user’s device should be connected to the same network 

as the MQTT broker that is hosted in the server-side Backend as shown in section 

3.2.3.1. 

3.2.2.8 Receiver 

The main purpose of the receiver is, as the name suggests, to receive the messages 

from the transmitter and categorize them based on the input method, especially that 

multiple methods of input may be connected to a single transmitter. 

3.2.3 Server-side Backend 

3.2.3.1 Communication medium 

Whether communication is setup over a local network, or even over the Internet, the 

speed shall not affect the user’s concentration or cause any distraction while using the 

system. As EMPWRD was developed with maximum compatibility in mind, we opted 

to use MQTT as our communication protocol. Not having Bluetooth as a requirement 

enabled us to create a portable system that can run on any browser-enabled device 

regardless of the operating system (e.g. Smart TV, Computer, TV Box, Phone, Tablet, 

or even gaming consoles, etc.…). It is worth mentioning that using Bluetooth would 

probably yield better results than MQTT in terms of responsiveness to user input in 

cases of network congestion for example; in that case, a communication protocol on 

the server side is not going to be needed for the transfer of messages between the 

sensor and the system and the sensor must feature Bluetooth as well; however, if 

compatibility is required amidst an unstable Internet connection, then an MQTT broker 

can be setup locally without the need for an Internet connection; this is preferred even 

when an Internet connection is available because users may be relying on the system 
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heavily for everyday tasks, and interrupting the service may pose a huge risk on the 

users’ health since the service is the means for them to ask for help and control their 

surrounding devices. 

3.2.3.2 GSM Module 

It is hard to imagine a life with no telephone or mobile communications in our age. 

However, what value are telecommunications for people who have lost the ability to 

speak or – more generally- to communicate? 

Part of this thesis is aimed at enabling such people with a voice; since the system is 

modular, it is possible to add GSM integration as a separate module. Through this 

module, it is possible to extend the mission to provide such telecommunication ability 

to people who are going to use the system. Section 3.3 presents a self-hosted GSM 

module as well as a quick comparison with SaaS GSM solutions. 

3.2.3.3 Remote Server (API) 

This module is intended to serve as an API that interconnects and enhances 

dictionaries and NLP results by categorizing users and merging their information. It 

acts as a method that enhances AI results by providing additional information based 

on the choices of similar users. 

This module may also collect data anonymously from users to enhance the system 

performance based on their usage. 

 

3.3 SAMPLE INPUT DEVICE: WEBCAM 

As discussed in Chapter 2, there are many sensors that can be used as input devices 

to cater for accessibility needs. One of the most comfortable methods is the use of a 

camera-based solution such as facial expressions recognition [33] or eye-gaze 

detection [37]. 

In order to cater for input devices of different types, the system expects binary input 

states that can be bound to different events. An example of a binary input event is a 
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cheek muscle contraction, where the system receives an event that triggers the action 

bound to that event (e.g. Letter selection); a long-press can be triggered by 

implementing a timer on the input sensor end, where the system only receives the 

event trigger for a long press; this makes integration of any input device seamless 

since even non-binary devices can be used by specifying binary states based on input; 

Event-driven approach also allows the use of multiple sensors simultaneously, 

whether each sensor is responsible for specific triggers, or with multiple sensors 

triggering the same action. 

The goal is for the system to be dynamic and modular enough to cater for each user’s 

specific needs. 

For demo purposes, we have chosen Affectiva’s AFFDEX SDK [114] to integrate with 

the system. Figure 31 presents a sample webpage running the SDK. 

 

Figure 31 Affectiva's AFFDEX SDK Implementation 

Once camera access is granted and processing starts, the SDK finds faces and draws 

markers over the video in real-time. Although Affectiva is famous for emotion detection 

using facial expressions, we are more interested in the facial expressions themselves 

such as “browRaise”, “mouthOpen”, “dimpler”, etc… 
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Since the SDK provides the “strength” of the detected feature, we need to implement 

a converter that triggers system events as if the sensor was binary, hence we apply a 

threshold for each feature depending on the user’s needs. Once the threshold 

requirements are met, we register the even in the system. 

It is important to note that the user does not see what’s shown in Figure 31; instead, 

the user sees the regular frontend as shown in 3.2.1, and all the processing is done 

in the background. 

We provide an overall comparison of different input methods in Chapter 5. 

 

3.4 SAMPLE MODULE: SELF-HOSTED GSM 

Self-hosted GSM can be very expensive depending on the range provided, signal 

strength, hardware use, security measures taken, and maintenance, however, since 

we are only interested in using GSM as a client -initiating and receiving calls using a 

third party GSM provider as opposed to setting our own towers and access points- it 

is relatively cheap. 

We have opted to use Raspberry Pie with AI Thinker A7 module in order to create a 

GSM client. The Raspberry Pi is not only used as a GSM client, but also as a web 

server that features an API which utilizes a real-time communication protocol for 

integration with other modules. The Raspberry Pi server is used so that we can control 

the AI Thinker A7 right from our user interface. However, although controlling the AI 

Thinker A7 board can be achieved without using the Raspberry Pi as a server that 

features an API, we are interested in that capability as it maximizes compatibility and 

modularity; it is also worth mentioning that, since the API is accessible over the web, 

the Raspberry Pi along with the AI Thinker A7 can be placed somewhere separate, 

and potentially far, from all other modules, as long as Internet connectivity is ensured.  

In this thesis, we are using the latest Raspberry Pi as of the writing of this report, 

Raspberry Pi 3 Model B+, not only because we require its fast performance, but also 

because it is equipped with a Wi-Fi module out-of-the-box. This version features a 
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1.4GHz 64-bit quad-core processor, dual-band wireless LAN, Bluetooth 4.2/BLE, 

faster Ethernet, and Power-over-Ethernet support (with separate PoE HAT). 

 

Figure 32 Raspberry Pi 3 Model B+ [115] 

3.4.1 AI Thinker A7 Development Board: 

Although the AI Thinker A7 chip features GPS, GPRS, and GSM, we are only 

interested in it for its GSM capabilities. 

Below is the development board used for the AI Thinker A7 GSM module: 

 

Figure 33 AI Thinker A7 GSM Development Board Used [1] 
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The AI Thinker A7 features a serial API in the form of AT commands. 

Since we are only interested in this chip’s GSM capabilities, we have interfaced the 

AT commands that are respective to GSM, ignoring other commands relative to 

features such as GPS, GPRS, and GSM. 

The following is a list of the AT commands we are most interested in: 

AT: this is the main attention command, returns OK if the device is ready. We also 

use this command to check whether the device has hanged and requires a reset. 

ATD[PhoneNumber]: this is the command that initiates phone calls. It accepts the 

phone number in its international format (including the area code). 

ATH: This is the command to hang up an ongoing call. 

ATA: This is the answer command, where an incoming call in the “ringing” state can 

be answered. 

 

Figure 34 shows some of the commonly used AT commands as well as the result of 

the status command “AT” as sent over the SSCOM Serial port tool: 



42 
 

 

Figure 34 AT Commands for Testing A7 GSM Module Using SSCOM tool 

As we can see in Figure 34, the default baud rate for communicating with the AI 

Thinker A7 is 115200. Although any serial port tool can be used, the SSCOM tool 

features quick commands, where the allowed commands can be loaded for easy 

access. 
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3.4.2 The Communication Protocol and NodeJS API 

In order to achieve the desired module, it is essential to develop an asynchronous 

multi-channel API that can communicate with other modules and, at the same time, 

control the GSM module using GPIO and adjust accordingly to its feedback. Thus, we 

have chosen NodeJS to develop our server which can be accessed by other modules 

over the API that we have developed. Since we need multiple channels (e.g. 2-way 

communication with other modules and 2-way communication with GSM module), and 

since we are already using MQTT to connect different modules, we chose MQTT as 

the communication protocol to integrate this module as well. 

Figure 35 represents the components of the system and shows how modularity is 

achieved: 

 

Figure 35 The Different Modules of The System 

Since we are using NodeJS as our server on the Raspberry Pi, it was easy to mirror 

the AI Thinker’s A7 AT commands API with slight renaming as follows: 
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Table 1 Raspberry Pi NodeJS Server API 

AI Thinker A7 Command NodeJS API Description 

AT at() At, to check if the 
readiness of the 

device 

ATD[PhoneNumber] Call(PhoneNumber) To call a phone 
number 

ATH Hangup() To hang up an 
active call 

ATA Answer() To Answer an 
incoming call 

[CommandWithParameters] Direct(Command) To forward a direct 
command over the 

API to the GSM 
module 

Reset Pin does not work as 
expected when the module 
hangs, so we introduce a 

separate watchdog. 

Reset() To reset the GSM 
module manually or 

by the watchdog 
(more details in part 

D) 

 

3.4.3 Audio Configuration and Streaming (VOIP) 

As shown in Figure 35, all modules are connected through MQTT, except for the AI 

Thinker A7 which is considered part of the same module that includes the Raspberry 

Pi and is connected serially to it; 

Since the Raspberry Pi does not feature a microphone or audio-in out-of-the-box, we 

added an external USB sound card with microphone input to cater for the incoming 

voice from the GSM module (i.e. other end of the phone call). 

The USB sound card that we used in our demo is shown below: 
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Figure 36 External USB Audio Card [116] 

Other USB sound cards of higher quality exist, but we chose this one as it is one of 

the cheapest and does the job with sufficient results. 

The audio configuration is shown in the following diagram: 

 

Figure 37 Audio Connections and Streaming Over the Web 
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With all the configuration done, the hardware setup, and the API ready, we still needed 

a way to transfer audio from the GSM module, over the Internet, to the user's machine. 

Although we’re heavily relying on MQTT, which we are using as a real time 

communication protocol for communication between the different modules, MQTT is 

not a good fit for this purpose since it is optimized for small messages for IoT, not for 

real time audio streams. Our options were to either use a paid service such as Wowza 

Audio Streaming [117] or to use an implementation of the open-source WebRTC. We 

have opted to use WebRTC for this thesis, since it is free and fulfills our requirements 

perfectly. 

We set the Raspberry Pi microphone input as the GSM audio output to be forwarded 

to the user UI; And we set the Raspberry Pi’s AUX as the microphone input of the 

GSM module since AUX is the forwarded audio from the user's machine. Audio is 

transferred between the user’s device and the Raspberry Pi using an implementation 

of WebRTC. In order for TTS to be forwarded from the user’s device to the Raspberry 

Pi, we set the AUX as the microphone; this, however, introduces a new problem, 

where the person on the other end of the call will always hear the echo of their voice, 

since the voice is transferred from their headset to the user’s AUX, which is the 

forwarded back to the other end. Although this is not a deal breaker, we propose two 

main solutions. First, we can programmatically switch the microphone on and off or 

(un)mute it only when TTS is in progress. Second, we can apply audio processing to 

eliminate the echo. We opted for the first approach where we control the sound level 

of the microphone on the user’s device.  

3.4.4 GSM Module Watchdog 

Based on our testing, we have found that the AI Thinker A7 Development board may 

become unresponsive with time, and that resetting it using the built-in reset pin does 

not always yield the desired result. Hence, we have integrated an additional relay in 

the form of an external circuit so that we can control the power flow to the GSM 

module. In addition, we have implemented, as part of the software hosted on the 

Raspberry Pi, a watchdog that controls this relay so that we can ensure continuous 

operation. Figure 38 shows the relay module that we have chosen for our demo, as 
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we needed a 3.3v compatible relay because that’s the power limit of the Raspberry 

Pi’s GPIO pins. Otherwise, we would have needed to integrate more external circuitry 

to cater for that. 

 

 

Figure 38 Relay Module Used for Resetting GSM Module [118] 

Although we have developed an automatic watchdog, we also extended the API that 

we have developed for the GSM module to cater for manually but remotely resetting 

the AI Thinker A7 for maximum compatibility. Figure 39 explains how the manual reset 

command works. 

 

Figure 39 Reset Command from Issuing to Execution 
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3.4.5 Overall System and Integration 

The overall system with the self-hosted GSM module utilizes two main communication 

protocols -namely WebRTC for audio streaming and MQTT for IoT and small 

messages- a computer (the Raspberry Pi ), a relay as an external circuit that acts as 

a watchdog, and a GSM chip – the AI Thinker A7 Development Board in our case. 

Figure 40 shows the overall system components including the communication 

protocols. 

 

 

Figure 40 Overall System Components and Communication Flow 

Although power failure is very rare, we have configured the Raspberry Pi to run the 

relevant services and scripts on startup, just in case any emergency or power outage 

occurs; even though a an uninterruptible power supply (UPS) should be put in place 

so as to cater for that without causing any damage to any component. 

Figure 41 shows the final GSM module -without the power supply- used in our demo. 

We removed the cover of the USB sound card and soldered the audio connections to 
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the PCB directly. We also placed the Raspberry Pi in a transparent Acrylic cover and 

fixed the relay and the AI Thinker A7 Development board on top of it. 

 

Figure 41 Self-Hosted GSM Module Used in Demo 

3.4.6 Other Considerations and SaaS Solutions 

Since the proposed framework is modular, such GSM module can be replaced with a 

SaaS solution instead. While SaaS implementation is going to cost more (usually pay 

per minute as opposed to the local GSM service provider), hardware maintenance is 

almost negligible (based on the service’s reputation and guaranteed uptime) as 

opposed to the self-hosted one. Moreover, signal strength and power considerations 

are not to be taken into consideration in the case of SaaS implementations. However, 

a self-hosted module may improve privacy, as in the case of managed communication 

encryption between the user’s microcontroller and the GSM module. In addition, a 

self-hosted GSM module will work even when an Internet connection is not available 

and will not require changes in terms of software on the long run, whereas the SaaS 

solution provider may require changes due to API updates. 
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Table 2 Comparison Between Self-Hosted and SaaS GSM 

 Self-Hosted SaaS 

Cost (Long-term) Lower Higher  

Setup Hardware and software Only Software 

Maintenance Hardware only Software only 

Signal Strength Must be taken into 
consideration 

Dependent on Internet 
connectivity 

Internet Connection Not required Required 

Power Consumption Low N/A 

Privacy and Encryption In-house encryption Dependent on service 
provider 
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CHAPTER 4 NOVEL ALGORITHMS FOR THE DESIGN 

4.1 AUTO-CORRECT ALGORITHM FOR CLUSTER AMBIGUOUS KEYBOARDS 

In this section, we present our implementation of a scanning cluster ambiguous 

keyboard, along with the methodology used in creating the dictionary, implementing 

the disambiguation algorithm, and creating the list of suggested words. Figure 42 

shows the process of creating a list of suggested words for a simple cluster ambiguous 

keyboard. 

 

Figure 42 Cluster Ambiguous Keyboards’ Hashing Algorithm 

The process starts by reading a dictionary of all words that can be suggested. It is 

worth noting that the dictionary may contain a word in different forms, as opposed to 

the corpus used by the disambiguation algorithm where the stems of the words are 

used. All words in this dictionary are then hashed according to the number of the key 

that each letter is bound to. For example, consider the cluster ambiguous keyboard 

where the first two keys are bound to: {a,b,c} and {d,e,f} respectively. The word “add” 

would be hashed into “122” where 1 is the number of the key that ‘a’ is bound to, and 

2 is the number of key that “d” is bound to. 

Figure 43 presents an example of a hashed dictionary. 
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Figure 43 Hashed Dictionary for Cluster Ambiguous Keyboard 

As we can see in Figure 43, a hash can represent one or more words; this is where 

the disambiguation algorithm comes into the picture. In this section, we are not 

interested in a specific disambiguation algorithm, nor in finding the best NLP solution; 

we are interested in proposing a novel component in scanning cluster ambiguous 

keyboards, which is text correction. 

While the disambiguation algorithm and the models for suggesting the desired words 

accurately are of utmost importance, it is also very important to take into consideration 

the mistakes that a user might make while selecting letters, especially when scanning 

is based on a time interval. 

Since the user selects a button through a binary-input method, it is possible for the 

response to be delayed and, thus, the wrong button to be selected. This kind of 

mistakes does not occur in keyboards where physical contact with a button is 

necessary (e.g. physical and touch-screen keyboards). Such mistakes in text entry 

costs the user a lot of effort and time. And since the user cannot see the portion of the 

word that they have entered, the hash that is not disambiguated yet is of no use to 

them. 
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It is also worth noting that the suggestions present at this step are inaccurate because 

they are the result of the disambiguation of a mistyped hash. A very important question 

comes to mind, how do we fix such mistakes? 

It is not very surprising to find that a lot of scanning ambiguous keyboards in the 

literature do not offer a “backspace” or “delete” button, since most of them are meant 

to test and analyze the results of different optimizations such as enhanced algorithms 

or letter arrangements. Chanti [119] for example, features a button to delete the last 

sequence as shown in Figure 44. We are inclined to follow their example because we 

think that it is not very helpful to delete the last key since the whole word only lives in 

the user’s mind, and it is not possible to show them the portion that they have typed 

so far. We have, however, added comparing these two options to the future work 

suggestions in Chapter 6. 

 

Figure 44 Chanti Software Featuring a Delete Sequence Button 



54 
 

Before we present our suggested method for implementing both, a disambiguation 

algorithm and a text correction algorithm in the same solution, we need to present a 

sample algorithm as an example. This sample algorithm will then be used to showcase 

the full algorithm that combines both disambiguation and text-correction 

functionalities.  

 

Figure 45 3-Gram Dictionary with New Sentence Identifiers 

Figure 45 shows the result of tri-gram NLP algorithm. The simple algorithm without 

smoothing or optimizations [120], [121] can be represented by the following equation 

[122]: 

𝑃(𝑤𝑖|𝑤𝑖−2, 𝑤𝑖−1) =
𝐶𝑜𝑢𝑛𝑡(𝑤𝑖−2, 𝑤𝑖−1, 𝑤𝑖)

𝐶𝑜𝑢𝑛𝑡(𝑤𝑖−2, 𝑤𝑖−1)
   (4) 

Where wi-2 is the word preceding the current word by two positions, wi-1 being the word 

preceding the current one, and wi being the current word. The word with the highest 

probability is suggested first. 

Example: The fox jumped. 

𝑃(𝑤𝑗𝑢𝑚𝑝𝑒𝑑|𝑤𝑡ℎ𝑒 , 𝑤𝑓𝑜𝑥) =  
𝐶𝑜𝑢𝑛𝑡(𝑤𝑡ℎ𝑒 , 𝑤𝑓𝑜𝑥 , 𝑤𝑗𝑢𝑚𝑝𝑒𝑑)

𝐶𝑜𝑢𝑛𝑡(𝑤𝑡ℎ𝑒, 𝑤𝑓𝑜𝑥)
    (5) 
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In our system, we are using tri-grams with fall back to bi-grams and uni-grams; all 

words that exist in the cluster ambiguous keyboard’s dictionary are added to the uni-

gram corpus to avoid the case where words may exist in the former but not the latter. 

We are also using Laplace smoothing which can be represented as follows for trig-

gram smoothing [123]: 

𝑃(𝑤𝑖|𝑤𝑖−2, 𝑤𝑖−1) =  
𝐶𝑜𝑢𝑛𝑡(𝑤𝑖−2, 𝑤𝑖−1, 𝑤𝑖) + 1

𝐶𝑜𝑢𝑛𝑡(𝑤𝑖−2, 𝑤𝑖−1) + 𝑣
    (6) 

Where v stands for vocabulary size and represents all the words considered. 

The flow of such algorithm in traditional systems is shown in Figure 46. 

 

Figure 46 Traditional Flow of NLP in Ambiguous Keyboards 

The user inputs some text (using numbered keys), all candidate words are processed 

according to the NLP algorithms implemented (N-Grams with smoothing and fallback 

in our case), the user then is presented with the most probable words as suggestions. 

We propose a simple text correction algorithm as shown in Figure 47: 
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Figure 47 Text Correction Component 

After getting all the words that are relevant to the hash entered by the user, a list of all 

alternative hashes is created. Alternative hashes are then down-weighted in order to 

keep the actual suggestions on top. All hashes are then processed by N-Grams 

keeping in mind the down-weighted values. Alternative hashes may simply be the 

combination of single decrements of each digit of the hash by one. This is based on 

the assumption that most mistakes are due to the delay in activating the binary input. 

Example: Hash: 234 

Alternative hashes: 134, 224, 233, 124, 223, 133, and 123 

Since this method can add a lot of processing, especially in the case of long words, 

an optimized approach can be used. Suggested computation optimizations are as 

follows: 

1- Setting a mistake-threshold: in this case, the researcher assumes that the 

number of mistakes cannot exceed a specific number so as to limit the 

computation power required according to the microcontroller being used on the 

user’s end. So, for the above example, and for a threshold of 1 mistake, the 

possible alternative hashes become: 134, 224, and 233 only. 

2- Create another dictionary of words and/or keys that the user has deleted 

before. Example: user enters 123, then deletes the word. The word 123 is 

added to the dictionary of mistakes and the last key “3” is added to the corpus 

of mistakes. The most probable keys to be hit by mistake are then considered 
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for alternatives. This is based on the assumption that the source of mistakes is 

actually visual, and probably not reflexive. Even though our intuition says that 

this method is very unlikely to yield good results, only experimental analysis 

(suggested in future work in chapter 6) can prove what works well and what 

does not. 

The overall proposed probabilistic equation may be presented as follows: 

𝑊𝑡  =  𝑊 (∑ 𝛼 ∗ 𝑃(𝑤𝑗|𝑤𝑗−2, 𝑤𝑗−1)

𝑗

) ∪  𝑊 (∑ 𝛽 ∗  𝑃(𝑤𝑖|𝑤𝑖−2, 𝑤𝑖−1)

𝑖

) (7) 

where Wt represents all the resulting suggestions; Wj represents words whose source 

is alternative hashes, whereas Wi represents words whose source is the original input 

hash, and α and β are weights applied to words according to their source. 

Figure 48 presents the overall flow diagram. 

 

Figure 48 Overview of Proposed Text Correction Algorithm 
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4.2 INPUT-ADAPTIVE SCANNING GRID 

ACAT features mapping different input methods to different shortcuts [22]. However, 

the number of inputs cannot be configured to change the flow of the scanner in ACAT.  

The idea is to have a scanner that changes its behavior according to the number of 

inputs in order to maximize the typing rate. 

Auto-pilot mode: 

This mode is intended to be used where only one or two methods of input are 

available. The auto-pilot mode allows a user to select the needed button while the 

system navigates through the different buttons automatically. This mode can also be 

used when more than two input devices are present, where the additional inputs are 

mapped to different shortcuts. 

Figure 49 shows the blocks of the scanner. 

 

Figure 49 Scanner Blocks (1): Suggestions Block, (2) Letters Block 
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The back button is always scanned before the scanner restarts a cycle; however, the 

back button can have different functions depending on the block being scanned. The 

cycle or “next” button replaces the suggestions with the next ones (next words being 

less desirable/probable based on the disambiguation algorithm). The speak button 

activates the TTS module where the contents of the text box are read out loud. 

Single Input Method: 

The user utilizes the input method to select the desired button as the scanner cycles 

through the available buttons. The flow in single-input mode is shown in Figure 50.  

 

Figure 50 Single-Input Behavior in EMPWRD Scanning Grid Algorithm 
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Scanners in the literature reset to the initial state after a letter or a word is entered. 

However, we are proposing a phase of temporary suggestions where the users can 

go directly to that block or wait and be automatically redirected back to the letters 

block, thus saving time and additional keystrokes. 

In our case, the scanner starts by cycling through all blocks. When the letters block is 

selected, the scanner starts cycling through individual letters. If the back button is 

selected, then the scanner goes back to cycling through all blocks; otherwise, once a 

key is selected, then that key is processed by the disambiguation algorithm and the 

scanner goes back to the suggestions block and halts there temporarily. When the 

suggestions block is selected, the scanner starts cycling through the buttons of the 

suggestions block. If the back button is selected, then the scanner goes back to cycling 

through all blocks; otherwise, the selected word is added to the text box, a space is 

added at the end automatically, the disambiguation algorithm is prepared to start 

processing the next word, and the scanner goes back to the suggestions block and 

halts there temporarily. When the scanner halts on the suggestions temporarily, it is 

up to the user to select the suggestions block and continue through the flow normally 

or wait until the scanner exits the temporary state and starts scanning the letters again. 

The flow of a traditional scanning keyboard is shown in Figure 51. 
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Figure 51 Flow of Traditional Scanning Keyboards 

Dual Input Methods: 

The auto-pilot mode in dual input methods acts in a similar way to that described in 

the Single Input Method, but the user can undo the last auto-pilot move by using the 

second input method. 

 

Manual-pilot mode 

The rules of the manual-pilot mode and the way the cursor moves between buttons is 

different from that of the auto-pilot mode to maximize the user comfort and minimize 

the time needed to access the different components of the system. 
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In this mode, the user controls the movement of the selector; one input method is used 

to go forward while the other is used for selecting the desired button; in the case of a 

third input, that input can be used to go one step backwards (reverse scanning step). 

In this mode, there are no temporary suggestions phase, since the user is controlling 

the scanning step as opposed to it being automatic. Figure 52 describes the flow of 

the scanning grid cycle in manual mode. The scanner stays in place after any key is 

selected so as not to surprise the user, especially that the user is controlling the 

scanning speed (manual cycling through buttons and blocks). 

 

Figure 52 Scanning Cycle in Manual Mode 
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4.3 INPUT CALIBRATION MODULE 

Regardless of the sensor used for cheek muscle contraction detection, it still needs to 

be placed in close proximity to the muscle which movement is to be detected. It is 

worth mentioning that since different people have different face shapes and 

proportions, we have opted to model the sensor frame in a flexible way that allows it 

to be adjusted to fit the user’s face. This flexibility, however, raises the question of the 

best location of the sensor in terms of its direction, proximity to the muscle 

(contactless), and stability. Figure 53 shows Stephen Hawking’s sensor mounted on 

his glasses frame [60]. 

                                   

                                           

       

 

 

 

 

 

 

 

 

 

In order to answer this question, we need a framework to evaluate the different factors 

and provide a customizable solution that caters for every user’s needs, the proposed 

calibration framework serves the purpose of verifying whether the position of the 

sensor is suitable for the user using it in terms of comfortability, stability, and signal 

strength. 

The proposed calibration framework is composed of 3 main modules:  

 

 

 

Figure 54 TCRT5000 Picture 

and Top View  

Figure 53 Stephen Hawking and 

Cheek Movement Sensor 
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4.3.1- The initialization tutorial 

In this module the caregiver is familiarized with the different steps of calibration and 

how each step works. It also includes a general guideline on how a sensor frame 

should be initially adjusted before moving to the position examination module. Once 

this module is activated, all other system components are posed to prevent accidental 

clicks. 

 

 

Figure 55 Calibration Initialization Tutorial in Action 

4.3.2- The position examination module 

In this module the user is instructed to tense the muscle and relax it based on 2 main 

states: 

 

The ready state 

In this state, the user is instructed to tense the muscle whenever ready. If a muscle 

tension is detected, the signal strength is shown to the caregiver for reference and the 

state changes to the pause state. If muscle tension occurs but is not detected (false 
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negative), then the sensor positioning should be altered until detection happens, the 

state will not change until then. 

 

 

Figure 56 Ready State Waiting for Input 

In the case of a false positive - where a non-existent tension is detected- the state is 

changed to the pause state indicating an unstable sensor positioning. 

Based on trial and error, the result is almost always a fail in the pause state when a 

false positive occurs. The result cannot be a direct fail in the ready state. 

 

The pause state: 

This state shows the signal strength calculated in the ready state. The signal strength 

indicates the level of reliability of detection; it refers to the signal of the reading itself 

(which is calculated by the microcontroller connected to the sensor) and should not 

be confused with the signal of the Internet connection or the communication channel. 

 



66 
 

 

Figure 57 Signal Indicator Showing Good Signal Strength 

In this state, the user is instructed to relax the muscle for a specified duration of time. 

This is done in order to rule out false positives which indicate instability. If muscle 

tension is detected during this state, the result of calibration is a direct fail because 

that means unstable readings, otherwise it is as success for this trial. 

 

Figure 58 Calibration Fails After a False Positive Occurs 



67 
 

Signal strength is defined in one of three groups: “Excellent”, “Good”, and “Fair”, 

whereas “Weak” denotes a fail. 

 

 

Figure 59 Groups of Signal Strengths 

4.3.3- The results module (Multi-Trial Voting System) 

The purpose of the ready state is to make sure that muscle tension is being detected, 

whereas the purpose of the pause state is to ensure that artifact readings (false 

positives) are ruled out, thus leading to stability in detection. 

These steps - “a” and “b” - are grouped into one trial; multiple trials are required to 

ensure stability; if any single trial fails, then the overall result is a fail and calibration 

must be restarted. Hence, we can say that these steps are repeated for increased 

accuracy. If the failed state is not reached after multiple trials are completed, then 

calibration is considered successful. 

However, a successful calibration does not always mean a stable reading; the overall 

stability is deduced from the total of the signal strengths calculated at the end of each 

trial. 

Based on trial and error, we have found that three trials are a good balance between 

user-friendliness and reading stability, so we are using three trials for calibration in the 

current implementation. 

The calibration process can be summarized as shown in the following diagram: 
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Figure 60 The Process of Sensor Calibration 

For simplicity, and since the period of time by which calibration takes place is not very 

long, we are using the mean of signal strengths as calculated at the end of every 

“ready” state without assigning any weights; the equation is as follows: 

 

𝑆𝑖𝑔𝑛𝑎𝑙 = 𝐸𝑛𝑢𝑚 (𝑃𝑥)     (7) 

𝑃𝑥 =
1

𝑛
∑ (𝑥𝑖)

𝑛

𝑖=1
   (8) 

where x is the signal strength enumerable, and where “Fair”, “Good”, and “Excellent” 

are enumerated by the integers 1, 2, and 3 respectively. 

Example: 
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However, in the case where more trials are required, and the calibration process 

stretches a longer period of time, or in the case of continuous calibration, a weighted 

average algorithm may come in handy. A simple example of a weighted average 

algorithm is as follows: 

 

𝑆𝑖𝑔𝑛𝑎𝑙 = 𝐸𝑛𝑢𝑚 (𝑃𝑥)    (9) 

𝑃𝑥 =  
∑ (𝑖𝑘)𝑥𝑖

𝑛
𝑖=1

∑ 𝑖𝑘𝑛
𝑖=1

     (11) 

 

where x is the signal strength enumerable, and where “Fair”, “Good”, and “Excellent” 

are enumerated by the integers 1, 2, and 3 respectively. K represents a number that 

determines the factor of the weight assigned to individual iteration values as the series 

progresses. The series may be limited to a specific number of latest readings instead 

of taking all readings since the initialization of the system. 

Example: 
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Other algorithms that also feature smoothing exist [124]; the algorithm presented 

above is just a sample as means to show how weights can be added in order to favor 

the latest readings over the older ones. This may specifically prove helpful in the case 

of continuous calibration, which may help predict when the next calibration may be 

required. It is also worth mentioning that continuous calibration may not only yield 

better results, but also be used as a model of biometrics to provide the means for 

authenticating the user. 

 

Figure 61 Final Signal Strength Ruled Out by Multi-Trial Voting System  
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CHAPTER 5 COMPARISONS AND EXPERIMENTAL ANALYSIS 

5.1 CHEEK MUSCLE INPUT METHODS COMPARISON AND APDS-9960 

In chapter 1, we presented a number of methods for detecting voluntary input from 

users with severe motor disabilities. We assess these methods in terms of 

comfortability, privacy, training required, cost, accuracy, and calibration requirement. 

We also propose a new method as a potential sensory measure for detecting voluntary 

input through the measurement of ambient light (ALM) in combination with pattern 

recognition using a one-pixel camera (APDS-9960 sensor). 

After developing our own version of the TCRT5000 based sensor and experimenting 

with different mounting positions and different lighting conditions, we came to the 

conclusion that although it works, it may not be the optimal sensor for our case where 

users have to wear it most of the time. It was obvious that our sensor had to rely on 

waves in order to stay contactless, the sensor also had to be non-intrusive so an image 

producing camera was out of the question; at the same time, the sensor is meant to 

be worn by the user most of the time on the head, so we had to be careful about which 

type of waves we use lest we introduce any side effects or harmful behavior; it was 

clear that we were stuck with light waves, namely visible light and infrared; that is 

when it struck us that if reflectivity works, then ambient light index and/or a single RGB 

pixel may be utilized to detect a cheek muscle contraction as well. 

According to our experimentation, APDS-9960 sensor, which is advertised as a 

gesture sensor, and is less known for its single pixel camera and ambient level sensor, 

ended up to be a much better replacement of the TCRT5000, mainly due the 

difference in how reflectivity index and ambient light value are affected by movement 

of the whole face (that includes involuntary movements of cheek due to other muscle 

contractions such as blinking or even trembling), which leads to noise, and movement 

of the cheek which is our desired signal source. 
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Figure 62 TCRT5000 (left) and APDS-9960 sensor (right) 

We also found out that, in addition to the improvement of the results just by replacing 

the reflectivity sensor with the ambient light sensor, combining the results of the 

ambient light sensor with that of the single pixel camera may potentially improve the 

SNR ratio and thus the APDS-9960 would be a major improvement over the 

TCRT5000. It may also be possible to use the RGB values to aid in calibrating the 

sensor to find the best spot over the cheek once the device is set on the user’s head. 

One of the drawbacks that we faced with APDS-9960 though, is that it needs to be 

reinitialized every time it got disconnected from the microcontroller, where as the 

TCRT did not require initialization in the first place. This should not be of importance 

in the final product for two main reasons: 

1- The headset can be designed in a way that the sensor is never disconnected while 

the microcontroller is collecting data (except in the case of failure of course). 

2- A simple hard reset circuit can be added to the APDS-9960 so that it is restarted 

and reinitialized by the microcontroller in case of disconnection or temporary 

failure. This circuit can be as simple as a transistor, this of course would require 

some minor modification in the software to cater for that as well. 

The following table represents a quick comparison of both sensors according to our 

findings: 
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Table 3 TCRT5000 vs APDS-9960 

 TCRT5000/L APDS-9960 Notes/Conclusion 

Picture 

 

 

APDS-9960 features 
a gesture sensor 
which occupies a lot 
of space. We can 
create our own 
smaller version by 
removing the gesture 
sensor. 

Dimensions (mm) 10.2 x 5.8 x 7 17.8 x 17.8 x 3.2 TCRT5000 needs 
additional circuitry in 
order to be integrated 
with a microcontroller 
so it is actually bigger 
than mentioned in the 
datasheet. 

Cost 0.5USD 7.5 USD Both are considered 
very cheap. 

Sensitivity Type Reflection 1 RGB Pixel, 

Ambient Light 

APDS-9960 provides 
more parameters to 
study 

SNR Good 

• Highly 
susceptible to 
noise due to 
sudden head 
movements 

• Affected by 
Skin color (due 
to different 
reflectance 
ratios) [125] 

• Affected by 
temperature 

Good 
Noise is in the 
form of visible 
light. 

Although both 
sensors are sufficient 
for the task, the type 
of induced noise is 
different. 

Initialization Not required Required Both require 
calibration after being 
placed on the user’s 
cheek 
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The following table summarizes the features of all the solutions that we have 

mentioned in terms of Comfort, Privacy, Training Requirement, Accuracy, Calibration, 

and Cost: 

Table 4 Feature Summary of Different Input Methods 

 
Comfort Privacy Training Accuracy Calibration 

Facial 
Expressions 

(Camera) 
- 

Low Cost 

Contactless, 
very 

comfortable 

Low, users 
and 

surrounding 
may be 

monitored 

Depends 
on 

algorithms 
used 

High, 
affected by 

lighting 
conditions 

Not 
required 

Thermal 
Imaging 

- 
Low to 

moderate 
cost 

Contactless, 
very 

comfortable 

Low, users 
and 

surrounding 
may be 

monitored 

Depends 
on 

algorithms 
used 

High, 
affected by 
temperature 
and infrared 

Not 
required 

EMG 
- 

Low Cost 

In contact 
with muscle, 

irritating, 
may require 

gel 

High Not 

required 

High May be 
required 

PANDA 
Resonator 

- 
Unknown 

Cost 

In contact 
with muscle, 

irritating 

High Not 

required 

Unknown May be 
required 

EEG 
- 

High Cost 

In contact 
with muscle, 

irritating, 
may require 

gel 

High Required Moderate to 

High 

Required, 
usually 

very slow 

Piezoelectric 
Sensors 

- 
Low Cost 

In contact 
with muscle, 

may be 
irritating 

High Depends 
on multiple 
pressure 

levels 
support 

High Usually not 
required 

Breath 
Pressure 
Sensors 

- 
Unknown 

Cost 

In contact 
with nose, 

may be 
irritating 

High Required High Required 
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Comfort Privacy Training Accuracy Calibration 

TCRT5000 
(reflectivity) 

- 
Very Low 

Cost 

Contactless, 
very 

comfortable 

High Not 
Required 

High Required, 
but usually 

quick 

APDS-9960 
(ambient 
light and 

RGB) 
- 

Very Low 
Cost 

Contactless, 
very 

comfortable 

High Not 
Required 

High Required, 
but usually 

quick 

 

Since TCRT5000 and APDS-9960 do not interfere with each other, we propose a 

multi-modality system that utilizes both sensors instead of choosing one solely over 

the other. This is important for getting the best of both worlds, especially that weights 

can be assigned to each sensor’s features and a voting system may be used for the 

final decision on whether the detected input is valid or not. 
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5.2 STEPHEN HAWKING’S SYSTEM: ASSISTIVE CONTEXT-AWARE TOOLKIT 

(ACAT) 

For the purpose of comparison, we are most interested in ACAT: Assistive 

Context-Aware Toolkit which was developed by Intel over the period of 3 years, 

and was the result of research of several years where Hawking was a major 

contributor. The system was developed specifically to help Hawking control his PC, 

check his Email, and edit documents to name a few. The system was released as 

open-source in 2015 and can be found via the Github repository [22]: 

https://github.com/intel/acat 

An FAQ document along with a user’s manual were published, and developers 

were encouraged to add new modules and modify their own versions that suit 

different users. 

Figure 63 shows the default input method of ACAT, which utilizes a camera to 

detect cheek movements. 

 

Figure 63 Facial Expression Detection in ACAT [22] 

https://github.com/intel/acat
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ACAT is a complete PC-control platform for people in need of such accessibility 

capabilities. It does not only provide means for typing text and reading it loudly, but 

also provides the possibility to control the pointer and the mouse buttons using an 

accessibility focused window as shown in Figure 64. 

 

 Figure 64 ACAT’s Scanning Grid Keyboard for Pointer Controls [22] 

ACAT separates between different functionalities as each functionality is provided in 

a separate window. For example, speech synthesis activates its own new window, 

mouse scanner - shown in Figure 64 - activates a new window, and the same is done 

for the other features as well. While this shows reasonable modularity, further 

research is required to determine whether separate windows help the users or add to 

their distractions and pose as a hurdle in their way of getting used to different pages. 

Figure 65 presents a full QWERTY keyboard featured in ACAT that also features 

additional functional buttons. 
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Figure 65 Full Scanning Grid Keyboard With Predicted Words in ACAT [22] 

In Figure 66, the scan speed configuration window is presented. The user is 

requested to type a word and modify the speed of the scanner as desired. 

 

Figure 66 Scan Speed Configuration Window in ACAT [22] 
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As discussed in the literature review, cluster ambiguous keyboards are a good fit for 

applications similar in nature to ACAT; however, ACAT uses a full-blown keyboard 

that supports alphabetically ordered letters and QWERTY layouts. 

The scanner starts by scanning 3 main blocks: the suggestions block, the left side of 

the keyboard, and the right side as shown in Figure 67. 

 

Figure 67 Step 1: Block Selection In ACAT’s Scanning Grid Keyboard [22] 

Once user input is detected, the next step of the scanner is activated. In the next step, 

the scanner starts scanning the rows of the selected block. After that, column scanning 

starts, where each button in the selected row is scanned independently as shown in 

Figures 68, 69, and 70. The user needs three input signals to select a single character; 

in the case of a mistake, the user needs three input signals to reach the backspace 

button which deletes the last character, and - bearing in mind the 3 wasted input 

signals for selecting the wrong character and the time consumed to reach the 

corresponding rows and columns - we can say that a mistake is very time consuming. 

To type the word “hello” assuming that the right word is going to be the first suggestion 

after typing the letter “h”, the user needs 3 input signals to select h and two others to 

select the first suggestion, and that is considered a very optimistic example. 
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Figure 68 Step 2: Row Selection In ACAT’s Scanning Grid Keyboard [22] 

 

Figure 69 Step 3: Column Selection In ACAT’s Scanning Grid Keyboard [22] 
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Figure 70 Alphabetic Layout Scanning Grid Keyboard in ACAT [22] 

ACAT provides different keyboards for different tasks. Some keyboards do not change 

the scanning block until a special key is pressed as shown in Figure 71. 

 

 

Figure 71 ACAT’s Talk Window and Talk-Related Scanning Grid Keyboard [22] 
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ACAT vs EMPWRD Comparative Overview 

ACAT is an open-source tool that provides accessibility tools for users suffering from 

motor impairments. It was developed by Intel and improved over a long period of time 

and was primarily used by one of the greatest theoretical physicists of our age, 

Stephen Hawking. 

However, some of the major downsides of ACAT are that it was developed in C# 

specifically for the Windows operating system, that it uses too many windows, that its 

main dashboard depends on using a mouse before an accessibility window starts, that 

it is resource intensive, and that it does not make use of cluster ambiguous keyboards. 

EMPWRD, on the other hand, is a portable platform that is developed in JavaScript 

and can run on any browser-enabled device regardless of the operating system, does 

not require intensive resources, utilizes a dock to connect different modules instead 

of activating new windows, and the whole platform is directly accessible to the user 

(in case the sensor is already calibrated). 

Moreover, some of the most important features in EMPWRD are the cluster 

ambiguous keyboard that utilizes an enhanced input-adaptive scanner (section 4.2) 

and an improved auto-complete and auto-correct algorithm for cluster ambiguous 

keyboards (section 4.1), the GSM live calling module, and the binary-input calibration 

module which makes sure that the sensor/s is/are working properly. All which are 

features that ACAT lacks. 

To showcase the importance of the cluster ambiguous keyboard along the enhanced 

algorithms, we consider typing the whole word “hello” as an example; each letter 

requires 3 input signal in ACAT, making a total of 18 signal inputs for that word alone 

including the spacebar; whereas the whole word requires only 5 signal inputs for the 

whole word in EMPWRD, and 2 for the selection of the word from among the 

disambiguated ones, making that a total of 7 signal inputs. 

As another example, let’s assume that the word “hello” is suggested after typing the 

second letter; that would take 6 signal inputs in ACAT for the two letters, and 2 for the 

selection of the suggestions, making a total of 8 signal inputs. While it would take 2 
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signal inputs for the letters and 2 for the suggestions in EMPWRD. In both cases, 

EMPWRD requires at most two times fewer signal inputs. Taking into consideration 

the time wasted for every additional signal input, especially for the wait until the 

scanner reaches the desired block, we can say that EMPWRD features a major 

improvement in time and effort over ACAT’s current solution. Figure 72 presents 

EMPWRD’s cluster ambiguous keyboard. 

 

Figure 72 Cluster Ambiguous Keyboard Featured in EMPWRD 

It is also worth mentioning that since ACAT is dependent on the operating system 

because it is a native Windows app, it is more susceptible to errors and may be 

considered less stable than EMPWRD if the latter is provided as a service (online 
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SaaS). It is also worth mentioning that even though EMPWRD doesn’t support mouse 

functionality or native document editing, it is easy to integrate a new module that would 

cater for that. It’s also possible to use ACAT’s own mouse control window (Figure 64) 

to work with EMPWRD. 

The following table presents a quick comparison between ACAT and EMPWRD. 

Table 5 Comparative Overview of ACAT vs EMPWRD 

 ACAT EMPWRD 

Programming Language C# JavaScript 

Compatibility Specific versions of 
Windows only 

Any browser-enabled 
device 

Resource Intensity High Low 

Feature-set 
Extensive, requires 

training, and is not for 
everyday users 

Simple, built for all users 
who may benefit from it 

IoT Control N/A Featured 

Typing rate Slow 

Presumably faster 

(benchmark suggested in 

future work) 

Keyboards Alphabetic and QWERTY Cluster Ambiguous 

Modularity Each module is open in a 
separate window 

All-in-one solution, 
powered by a universal 

dock 

Live calls compatibility 
Can control third party 
modules using mouse 

controls 

Built-in with extended 
features such as common 

phrases 

Native apps control such 
as word editing and file 

browsing 

Built-in Can be added as a 
module 

Software as a service 
(SaaS) 

Needs installation of 
software and its 
dependencies 

Native and SaaS 
compatible 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

Conclusion 

It is amazing how technologically advanced we have become. We have the means to 

empower people in every way possible. Even those who have lost control over their 

whole body and are considered to be in a “locked-in syndrome” - where the brain is 

fully functional and they are aware of their surroundings but are unable to make any 

movement to express themselves - may benefit from the latest solutions meant to 

address these cases. 

Such solutions feature multiple techniques and each technique has its own 

advantages and disadvantages. For example, while breath pressure detection may 

have a higher typing rate than other systems, it may be tiresome to control breath for 

a prolonged time, especially in the case of users with severe motor disabilities. 

Similarly, for other methods such as facial expression recognition, while the technique 

is wireless and comfortable in general, it may pose a threat on privacy. Finding a good 

balance between comfortability, privacy, training required, cost, accuracy, and 

calibration requirement is not an easy task, and while our results show that the use of 

reflectivity index along with ambient light measurement and a single pixel image may 

be optimal, it is still a matter of what the user actually has control over. For example, 

a user who does not have control over any muscles nor control their breath pressure, 

is bound to use EEG as it is the only current solution that relies solely on the brain 

alone.  

Moreover, most common sensors used in such solutions require calibration. Finding 

a good balance between comfort, training required, and accuracy for calibration is not 

an easy task either; each user is different and thus the calibration must be adaptable 

to different needs. In this report, we have presented a calibration framework with 

realistic examples using TCRT5000 to address this issue. In addition, we are 

proposing the use of APDS-9960 alongside TCRT5000 in cases where only 

TCRT5000 is currently being utilized. 
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We have also presented a solution that enables live phone calls by utilizing TTS using 

a self-hosted GSM client. The TTS system works based on the custom keyboard and 

scanning grid developed. Common phrases help save time and make a live call a 

smoother errand, whereas confirmation dialogs prevent accidental calls and actions. 

In order to improve the accuracy of the suggestions, we extended state-of-the-art NLP 

algorithms with a technique for considering typos and automatic correction. In 

addition, we proposed an input-adaptive scanner to improve users’ comfort. 

Finally, we combined all of our work in a modularly scalable framework so as to cater 

for different users’ needs and upcoming technology advancements. This solution 

ensures that people with special needs are not left out when it comes to 

telecommunications. Afterall, finding the best solutions to cater for the different needs 

of challenged people is still a user-by-user situation rather than a one solution fits all 

approach. 

 

Future work 

Multi-user collaboration 

Corpora can be merged from different users. Different corpora can be created and 

grouped based on users’ background, geographic location, culture, and experience. 

Speech to text Module 

In a live phone or online call, speech of the other party can be converted to text, and 

AI/Machine learning can be used to suggest phrases in the “common phrases” 

section. This makes it possible to have a natural conversation rather than one with 

predefined responses. 

Command control in text box 

The current implementation enables controlling nearby devices using the dock (as 

explained in section 3.2.1.2). By enabling commands in the text box right where users 

can express themselves, we can connect the system to voice-based control hubs such 

as Amazon Alexa and Google Home. 
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Long press utilization 

The current solution utilizes the light-based sensors (namely TCRT5000 and 

APDS9960) as single binary inputs. By taking long muscle actions into consideration, 

the same sensor can act as dual binary inputs instead, and thus the user will be able 

to control two switches instead of one using the same setup. 

Internet access, file management, and document editing 

The current system only allows the user to control nearby devices and express 

themselves. It does not allow them to manage files or read emails for example. 

However, as the system is modular, new modules can be developed where control 

over the whole pc, and even the mouse pointer can be granted. 

Benchmarks of the proposed cluster ambiguous keyboard algorithms 

We proposed an algorithm that integrates text correction with word predictions in 

section 4.1. As our proposed solution can be integrated into any existing prediction 

algorithm, a benchmark can showcase the best situations where text correction is 

most relevant. 

Benchmarks of the adaptive scanning grid 

Since we have introduced an input-adaptive scanning grid in section 4.2, different 

scanning orders and multi-input benchmarks can showcase the strengths and 

weaknesses of the proposed solution. 

Re-Calibration Warnings 

It would be helpful to be able to automatically predict when a sensor recalibration is 

needed. That can be done by extending the sensor calibration module. 
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