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Abstract

In research that involves medical records, it is important that patient-identifiable de-

tails are removed before the records are made available for research, a requirement

enforced by the HIPAA Privacy Rule and Public Law 104-191. De-identification is the

redaction or masking of individually identifiable pieces of patient health information

(PHI) from the clinical notes to protect the patient’s identity from being exposed.

With an increasing adoption of electronic health records (EHRs) in healthcare in-

dustries, there is an increasingly large amount of medical information available in

digital format. Performing de-identification on such large collections of records is a

challenging task to complete manually. Automated de-identification systems address

this issue by automatically tagging the free-text medical records.

The primary objective of this research is to explore automated techniques in nat-

ural language processing (NLP) for de-identifying unstructured health records. To

facilitate studies in automatic de-identification using statistical models, my work pro-

vides an overview of the evaluation results of a core NLP based de-identification

model. My thesis describes the complexities in learning the variants of the model

in the parameter space, explains performance metrics (precision, recall, and F1 mea-

sure) of the models, compare results with a rule-based de-identification system and

finally provides directions for future research. The data used for evaluation consisted

of three different types of medical notes: discharge summaries, longitudinal medical

records, and nursing notes. Through model-specific feature engineering and introduc-

tion of hidden neural gates (model parameter) to the core model, a highest tag-level

F1-measure of 0.967 on discharge summaries was achieved. For this task, in cases

where more importance should be given to precision, the F1 measure can over-weight

recall. The performance results from all models are encouraging and provide scope

for future work. Overall this thesis intends to increase practitioners’ understanding

of the nature of de-identification models and how they are trained, to help preserve

medical information while not compromising the privacy of individuals.
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Chapter 1

Introduction

This chapter begins by exploring the motivation of this thesis work from the per-

spective of medical data and privacy, then explains the aim and objectives, scientific

contribution and later discusses the organization of the thesis.

1.1 Motivation

With a massive increase in the number of clinical records generated from healthcare

industries, the scope of text analysis in healthcare data has also increased dramati-

cally. As the complexities in patient disease trajectories increase, it is a challenge for

the physicians to make clinical decisions based on the complexity of patient’s clinical

history. One obvious strength of text analysis in healthcare is that a lot of data,

that might be out of reach for any single practitioner, can be combined to find out

interesting patterns from the clinical notes.

Applying text mining techniques on a huge amount of clinical records help in iden-

tifying the underlying patterns and developing new ideas for enhanced treatments.

Eventually, it improves the healthcare quality and promotes clinical and research

initiatives. Several text mining challenges such as identifying unknown disease corre-

lations and genotype-phenotype relationships [40], text mining techniques in molec-

ular biology and biomedicine to extract bioentities such as chemical compounds and

proteins [45], biomedical text mining and its applications in cancer research [87] and

other major applications emphasize the importance of text mining in healthcare data.

Most of the healthcare data is stored in the form of unstructured free-text notes:

discharge summaries, clinical examination reports, nursing notes and so on. A sig-

nificant amount of clinical data is recorded as narrative text in the clinical notes.

While it is easy to process or analyze structured data as in data formatting and

content requirements [55], it is a tedious task to perform analysis on unstructured

1
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those affected by a non-hacking/IT incident breach. Considering the importance of

sharing EMRs among researchers, only the incidents occurred due to a PHI breach

in EMR are mentioned in Table 1.1.

Table 1.1: Total number of individuals affected by a PHI breach in EMR as mentioned

in [32].

Source of Information 2010 2011 2012 2013 2014 2015

EMR 803600 1720064 136751 40196 121845 3948985

Fig 1.4 shows the trend in the number of individuals affected by a PHI breach

in the U.S. From Table 1.2, the number of reported breaches of electronic medical

records has increased to 16 in 2015 up from 3 in 2010. Similarly in the year 2017,

province of Nova Scotia in Canada encountered the largest privacy breach recorded

ever in the province. A total of 337 patient’s health information has been accessed

inappropriately during a privacy breach. This enforced healthcare industries to follow

strong privacy rules which will protect the PHI. HIPAA introduced the privacy laws

related to healthcare data in the U.S.A. My work is based on the HIPAA regulations.

HIPAA

The Standards for Privacy of Individually Identifiable Health Information (Privacy

Rule) established national standards for preserving electronic health records and the

personally identifiable information in the EHRs [58]. The regulations for usage and

disclosure of the patient’s health information are determined by the Privacy Rule.

It also addresses the standards for individual’s privacy rights in understanding and

controlling the way their health information is used. The main objective of this rule

is to provide proper protection to the patient’s health information while allowing the

flow of information required for promoting high quality health care.

Protected Health Information (PHI)

The privacy rule protects the patient’s individually identifiable (PII) information and

this protected information is called “protected health information”. Patient’s indi-

vidually identifiable health information refers to the data that relates to,
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1. individual’s past, present and future health condition, health care provision

details and payment history for the healthcare provider.

2. data that identifies an individual or that of which can be considered a reasonable

basis for identifying an individual.

PHI is defined in 45 (Code of Federal Regulations) 160.103 and is referenced in Section

13400 of Subtitle D (Privacy) of the HITECH Act [41]. There are two rules under

HIPAA: Privacy Rule protects PHI in any medium and Security Rule protects EHRs.

Table 1.2: Number of reported PHI breaches for 2010-2015 as shown in [32]. The

count specified is the occurrences of breach with respect to the type and source of

information. Occurrences due to EMR is denoted in bold values.

2010 2011 2012 2013 2014 2015

Type of Information Breach

Hacking/IT incident 10 16 16 23 32 57

Improper disposal 10 7 7 13 11 6

Loss 18 17 19 24 28 22

Theft 127 118 117 124 113 80

Unauthorized access/disclosure 7 26 25 63 72 100

Other breach 22 2 18 24 28 0

Source of Information Breach

Desktop computer 28 35 23 39 29 29

Electronic medical record 3 6 6 14 14 16

E-mail 5 2 10 20 36 37

Laptop 50 38 51 67 42 38

Network server 17 16 20 30 46 41

Paper/Film 46 45 47 53 62 67

Portable Electronic Device 6 2 19 20 22 15

Other source 42 50 26 24 34 22

There are 18 categories of PHI as mentioned in Table 1.3, that needs to be redacted

or masked to protect the individually identifiable health information. The standards

for protecting this information is provided under the de-identification standard of the
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HIPAA Privacy Rule [45 CFR 164.514] [41]. The process of identifying and remov-

ing/replacing the PHI terms in the medical notes is known as De-identification. This

is achieved with the help of clinicians, physicians or dedicated medical personnel who

is familiar with medical terminologies. There are automated ways of de-identifying

medical notes and it can be broadly categorized into rule-based systems and statis-

tical models that use machine learning (ML) techniques. The core implementation

of automated de-identification involves Natural Language Processing (NLP) concepts

and techniques.

Table 1.3: PHI Categories

No PHI Category

1 Name

2 Geographic divisions smaller than a state such as address

3 Date elements except year related to individual

4 Age (if over 89)

5 Telephone numbers

6 Fax numbers

7 Electronic mail address

8 Social Security number

9 Medical record number

10 Health plan beneficiary number

11 Account number

12 Certificate/license number

13 Vehicle identifiers, serial numbers or license plate numbers

14 Device identifiers and serial numbers

15 Web Universal Resource Locators (URLs)

16 Internet Protocol (IP) address numbers

17 Biometric identifiers including finger and voice prints

18 Full face photographic images

19 Any other unique identifying number, characteristic or code
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1.2 Objectives and Contribution

Based on the format and structure of the medical records, and the problem definition,

many automated de-identification systems have been implemented. The main aim

of this thesis is to study the nature and behavior of such models and provide an

insight on the performance of statistical models to that of a rule-based system in de-

identifying different types of medical records while retaining the medical information

in the records. To deal with this objective, we first evaluate existing de-identification

models on different types of medical notes, then discuss the challenges and factors

influencing the performance of the model on each data-set and make a comparative

study on performances of ML-based models and rule-based system on the different

data-sets. To meet the research aim, we set the following objectives:

1. Discuss the design, implementation, and training of ML-based and rule-based

de-identification models.

2. Discuss the format, nature of medical records and annotations used in exploring

the de-identification systems.

3. Perform 10-fold cross-validation to evaluate and compare the performance of

the statistical models.

4. Demonstrate the effectiveness of ML-based de-identification models with min-

imal feature engineering for the task of de-identification on different medical

notes.

This thesis work aims at aiding healthcare institutions to choose the best approach

in de-identifying the medical records, based on various factors such as availability of

annotated data for training the models for a better performance and the number of

instances required for each type of PHI category in a given data-set. This thesis

contributes:

1. An exhaustive and comprehensive evaluation of the different variants of CRFs

for a sequence labelling task like de-identification.

2. An approach that can be followed for estimating the performance of a de-

identification system.



10

3. Demonstrate the importance of Artificial Intelligence for de-identification using

Long Short-Term Memory (LSTM) based Recurrent Neural Networks (RNN),

which has already been incredibly successful in applications like speech recogni-

tion, part-of-speech tagging, image classification, language modeling and many

more.

1.3 Thesis Outline

In this thesis, I present a new approach for exploring NLP based free-text analysis

techniques, that uses Conditional Random Fields, by evaluating statistical models

and rule-based system for the task of de-identification on different types of medical

records. The rest of the thesis is organized as follows: Chapter 2, provides a review

of the background and relevant work; in Chapter 3, discuss in detail the design and

implementation of the de-identification models; in Chapter 4, describe the three de-

identified medical data-sets and the annotations used; in Chapter 5, discuss the evalu-

ation experiments and the results of the models on all three data-sets and demonstrate

the importance of deep learning approaches for the task of de-identification through

the experimental results from a bi-directional LSTM based RNN model; finally in

Chapter 6, I conclude with the future directions of this thesis.



Chapter 2

Background and Related Work

In this Chapter, we first describe the task of de-identification, from the perspective

of NLP tasks. We then describe the background of CRFs, from the perspective of

directed and undirected, generative and discriminative models and conclude with a

discussion on CRF variants. Finally, we discuss related models in the task of de-

identification.

2.1 Natural Language Processing

NLP is a branch of computer science, artificial intelligence, and computational linguis-

tics which involves analysis and manipulation of the natural language in the form of

text or speech. As described in [22], it involves computer programs and software that

take natural language data as input and generate natural language data as output.

Some of the major challenges of NLP include speech recognition, language transla-

tion, and text generation. The history of NLP started in the early 1950s with some

interesting experiments like machine translation [39] of Russian sentences into En-

glish. Later in the 1960s, there were some notable NLP systems like ELIZA [81] one

of the first chatterbots and SHRDLU1 is a language parser which parses user instruc-

tions to move various objects in a block world. With improvements in structuring the

real-world information into computer understandable data, many chatterbots were

introduced in the 1970s like PARRY [19], a bot to simulate a person with paranoid

schizophrenia; JABBERWACKY2 simulates natural human chat in a humorous, in-

teresting and entertaining way; and RACTER a bot that generates random English

prose [20].

Most of the NLP systems relied on hand-written rules until the introduction of

machine learning algorithms in the late 1980s. Initial ML algorithms like Decision

1SHRDLU: http://hci.stanford.edu/winograd/shrdlu/
2JABBERWACKY:https://web.archive.org/web/20050411014336/http://jabberwacky.

com/

11
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Trees [74] are rule-based systems, however, NLP tasks like part-of-speech tagging first

used Hidden Markov Models (HMM) [66] which are more suited for the sequential

character of the NLP data. This eventually increased the use of statistical models,

for various NLP tasks, by making probabilistic decisions based on real-valued weights

attached to the features of the input data [22]. Commonly used NLP tasks in real-

world applications are categorized into Syntax (lemmatization, parsing, part-of-speech

tagging, stemming); Semantics (lexical semantics, machine translation, named entity

recognition, natural language generation, sentiment analysis); Discourse (automatic

summarization, coreference resolution and discourse analysis) and Speech (speech

recognition, text-to-speech).

2.1.1 Sequence labeling

Sequence labeling is a pattern recognition task in NLP, that involves recognizing the

pattern of a sequence of class labels ~y = (y1, ..., yn) ε Y
n
for a given input sequence

~x = (x1, ..., xn) ε X
n
. The inputs xj in the sequence labeling task are tokens/words

and the class labels yj can be part-of-speech (POS) tags for a part-of-speech tagging

task [44] or any named entity classes in a named entity recognition (NER) task [28].

In most of the sequence labeling problems, the sequence of tokens is represented in

a specific format, while in certain problems a raw labeling happens. Raw labeling

involves assigning a class label to a given token like in POS tagging, where each

word/token gets a single tag which is the part-of-speech of the particular word.

Tasks like NER requires join segmentation and labeling. For example, in the

sentence “James Cameron directed the movie, Avatar.”, the entire phrase (“James

Cameron”) should be tagged as “PERSON”. It is necessary to know the beginning

and end of the named entity. To achieve this, tokens are labeled in a specific no-

tation like BIO [64], where “B X” marks the beginning of the phrase of a named

entity X, “I X” marks the continuation of the phrase X and “O” specifies other

tokens that are not in the named entity. Therefore the labeling of the sentence

looks like: James/B PERSON, Cameron/I Person, directed/O, the/O, movie/O, ,/O,

Avatar/B MISC. Some of the methods that are already implemented for sequence la-

beling problems include HMM [66] (generative) and Maximum Entropy Markov Model

(MEMM) (discriminative) [53]. This kind of approach is followed in de-identification
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systems. A de-identification system processes a given input sentence into tokens and

assigns labels to each token resulting in a sequence labeling task.

2.1.2 Named Entity Recognition

Named Entity Recognition is a sequence labeling task under the “information extrac-

tion” domain, which involves extracting specific kinds of information, unlike general

classification task, where all of the information from a given document is extracted to

classify a document. Message Understanding Conference (MUC) [28] introduced the

first NER task which studied various information extraction techniques for extracting

a “named entity”: persons, organizations, locations, currency values, and artifacts.

The type of named entities differ based on the problem and domain of the data that

is involved. Evaluations done in MUC used newswire text. De-identification is a

sequence labeling task and is considered as a more specific form of NER [54]. In de-

identification, the inputs are the tokens extracted from the medical records (EHRs)

and the class labels are the PHI annotations from Table 1.3.

Variety of approaches have been employed in implementing NER across various

languages and domains with respect to the trends in implementation of NLP. Ini-

tial approaches are rule-based systems that follow simple pattern matching algo-

rithms/techniques. They rely on manually generated features by using lexical di-

rectories, regular expressions, and hand-written rules. Stanford CoreNLP [52] toolkit

uses annotator tasks to generate annotation information and produces state-of-the-art

results in rule-based systems. Given the limitations like robustness and portability is-

sues in rule-based systems, ML-based NER systems are highly in demand. ML-based

systems involve training a model on a given set of annotated data and evaluating

the performance of the model on new unseen data. For the models to perform well

on unseen data, a huge amount of annotated data with a balanced class distribution

is required for training. That is, in a rule-based system the rules are provided to

the system, while in a machine learning model the rules are to be learned from the

training data.

Some examples are NER using HMM-based chunk-tagger [85] and language in-

dependent NER system [63]. Some applications in medical domain include Power-

BioNE [86] that identifies names in biomedical texts; TEXT2TABLE [14] medical
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set of random variables X = (Xv)vεV , the joint density factorized over the cliques G

(fully connected set of nodes), is given by the equation,

P (X = x) =
∏

Cεcl(G)

φC(xC) (2.3)

where cl(G) represents the set of cliques and the function φC is known as the factor

potential or clique potential. One of the notable variants of Markov random field is

conditional random field. CRFs are undirected graphical models.

2.2.2 Generative and Discriminative models

Directed graphical models are most often used in generative models while CRFs are

a type of discriminative undirected graphical models. This section discusses the basic

understanding of CRFs from the perspective of generative and discriminative mod-

els. Let X = {x1, .., xn} be a set of input observations and Y = {y1, .., yn} be the

output labels that need to be predicted. A generative model learns the joint probabil-

ity distribution p(x, y) that is factorized as p(y, x) = p(y)p(x|y), where p(x|y) is the

class conditional probability and p(y) is the class prior probability [84]. In generative

models, parameter estimation involves estimating the optimal values for the param-

eters, that maximizes the log-likelihood. In a classification task, a generative model

models the p(x, y) and uses Bayesian rules to determine the posterior probabilities.

Directed graphical models like Bayesian Networks, Näıve Bayes and HMMs are gen-

erative models. Discriminative models learn the conditional probability distribution

p(y|x) directly unlike generative models. These models learn the boundaries among

classes by focusing on the differences among the categories in a data-set. Undirected

graphical models, SVMs, Logistic Regression models and CRFs are discriminative

models.

For sequence labeling task, HMMs and stochastic grammars [62] have been suc-

cessfully used and their various applications in NLP were discussed earlier. For every

production P (rewrite rules) for a nonterminal S, in a stochastic context-free gram-

mar, there exists an associated probability such that there is a probability distribution

over a set of productions. The difficulty of generative models like HMMs, in repre-

senting multiple interacting features of the given observations, motivated the usage

of discriminative models like MEMMs [53]. But MEMMs and other non-generative
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Linear CRFs

Linear-chain CRFs are a combination of discriminative modeling and sequence mod-

eling [73]. This kind of CRF uses linear chain factor graphs while a generic CRF

uses more general factor graph. The conditional distribution p(y|x), associated with

the joint probability p(y, x) that is factorized as an HMM, is known as linear-chain

CRF. This type of CRF is considered HMM-like as they impose the dependencies

on previous elements unlike general CRFs, where the dependencies are imposed on

any arbitrary element. In linear-chain CRFs, the input and output sequences are of

the same length. From the chain-structured CRF representation in Fig 2.3 (c) taken

from [47], random variable Y represents the state variable to be inferred and that

Yi is structured to form a chain graph with an edge between Yi−1 and Yi. Then the

conditional dependency of the variable Yi on X is defined with a set of feature func-

tions f(i, Yi−1, Yi, X). For each feature, the model assigns a weight with which the

probability of Yi is determined. The probability distribution p(y|x) of a linear-chain

CRF takes the form,

p(y|x) =
1

Z(x)
exp{

K∑

k=1

λkfk(yt, yt−1, xt)}, (2.4)

where Z(x) is a normalization function and is defined as,

Z(x) =
∑

y

exp{
K∑

k=1

λkfk(yt, yt−1, xt)} (2.5)

From the probability distribution equation (2.4) of linear-chain CRF, the observa-

tion argument xt contains all the components of the global observations x needed

for computing features at time t. This means that linear-chain CRFs are globally

normalized. Thus for example, if a linear-chain CRF uses xt+1 as a feature, then the

assumption is that xt includes the identity of the word xt+1. In a sequence labeling

task, linear-chain graphs are of interest as they overcome the label bias problem men-

tioned in [47]. Linear CRFs are of interest due to their efficiency in sequence labeling

problems.

Semi-Markov CRFs

Semi-Markov CRF (semi-CRFs) is the generalization of sequential CRFs which mod-

els variable length segmentation of labels Y [65]. Label-transitions are not modelled
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by CRFs, but they are modeled by semi-CRFs. A first-order sequential CRF is that

which captures label dependencies between the adjacent sequence elements. The

semi-CRFs are more powerful than first-order sequential CRFs and they are condi-

tionally trained versions of semi-Markov chains [61]. Let s = {s1, ..., sp} denote a

segmentation of input observation x. Each segment contains a start position tj, an

end position uj, and a label yj ε Y . By definition, all xi’s between the positions i

= tj and i = uj have the tag yj. For example, consider the sentence “I am going

to Spain with Anna Morgan.”. For a NER task, the segmentation of the above ex-

ample might be s = {(1, 1, O), (2, 2, O), (3, 3, O), (4, 4, O), (5, 5, I), (6, 6, O), (7, 8, I)},

where (1,1) denotes the start and end positions of a segment. The segmentation is

with respect to the label sequence y = {O,O,O,O, I, O, I, I}, where the label “O”

denotes a word outside the named entity and “I” denotes a word inside the named

entity. Let us consider g denotes the segment feature function where g = {g1, ..., gk}

and gk represents gk(j, x, s) ε R. Then the vector of these measurements is given as

G(x, s) =
∑|s|

j g(j, x, s). A semi-CRF takes the form,

P (s|x,W ) =
1

Z(x)
eW.G(x,s) (2.6)

where W is the weight vector and Z(x) is a normalization function of the form,

Z(x) =
∑

s′ e
W .G(x, s′).

Semi-CRFs capture the label dependencies between adjacent segments while a

first-order CRF captures label dependencies between adjacent sequence elements

alone. This type of CRFs requires different types of features than other standard

sequential CRFs.

Neural CRFs

Neural CRFs extend traditional CRFs by introducing a module based on articial

neural networks [25]. This type of CRF relies on neural networks for learning high-

level features. These learned features can be later used as inputs to a linear CRF. This

module consists of a hidden layer of activation gates between the input/observations

and the states/labels. This layer acts like an auto-encoder and helps accommodate

non-linearities in the sequence data.

Features that are learned by the neural networks are passed through the hidden
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2.2.4 CRF Models and Applications

CRFs are successfully applied in many applications of NLP. Some of them include

a supervised CRF to identify disorder named entities in medical records [16]. CRFs

are also used in context based NER system [54]. In bio-informatics, they are used

in variety of tasks like Critical Assessment of Information Extraction Systems in

Biology (BioCreAtIve) [34] that involves identification of biomedical entities such as

genes and proteins in medical databases like PubMed [6], FlyBase [2], Mouse Genome

Informatics [4], Saccharomyces Genome Database [7], and Swiss-Prot [8].

2.3 De-identification and Related Models

De-identification, as mentioned earlier, involves redacting or masking the PHI data

in a medical record/EHR such that the patient’s identity is protected. Any data

belonging to any of the categories specified in Table 1.3 must be removed or replaced

by annotations/labels. De-identification facilitates research and sharing of medical

records without any compromise to the confidential patient health information. Ini-

tially, de-identification involved human annotators but later with an increase in the

volume of medical records and adoption of EHRs, human annotation has become a

tedious task resulting in automated de-identification systems.

De-identification and its implementation approaches have been an important re-

search topic for over twenty years. Traditional approaches to automated systems are

similar to rule-based NER systems that use dictionaries, gazetteers of names, cities,

and hospitals. In the year 1996, Sweeney et al. proposed the first automated de-

identification system, a rule-based approach, for identifying twenty five types of PHI

entities in EHRs [75]. The algorithms in this model relied on lists, that comprised a

list of first names, area codes, and cities, for identifying the entities assigned to each

algorithm. The system used a scrubbed subset of pediatric medical record system as

its data-set. PhysioNet’s DEID tool [27, 57] is a rule-based de-identification system

which uses dictionaries and regular expressions for de-identifying the records. As a

result of the limitations in a rule-based approach, mentioned in Section 2.1.2, systems

based on machine learning techniques became popular. Many challenges have been

conducted by the informatics and computer science research groups that encouraged
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the usage of ML-based text-processing techniques for implementing de-identification

systems.

The Informatics for Integrating Biology and the Beside (I2b2) conducted its first

de-identification challenge in the year 2006 [79], which marks the first attempt for

de-identifying eight PHI entities (Patients, Doctors, Hospitals, IDs, Dates, Locations,

Phone numbers, and Age). The challenging task reviewed the submitted systems:

Aramaki et al. proposed a CRF based implementation [13] that uses sentential fea-

tures which prove to be more important for categories like dates, IDs, and patients;

Guillen [29] developed a rule-based model which utilizes global features (sentence

positions), local features (lexical cues, special characters and format patterns) and

syntactic features for de-identification; Support Vector Machine (SVM) based imple-

mentation [31] specifying the importance of context-based learning for patient names;

a hybrid system based on rules with SVM [33]; an iterative approach using decision

trees with local features and dictionaries [76]; Wellner [83] proposed three variants

namely Wellner 2 using LingPipe [3] which is based on an implementation of HMM,

Wellner 1 and Wellner 3 using Carafe engine from MITRE Identification Scrubber

Toolkit (MIST) tool [11]. Following this, I2b2 conducted a similar challenge task

in the year 2014 for the de-identification of longitudinal clinical narratives [70, 71].

Following this implementation, a wide range of automated de-identification systems

have been introduced based on the type of medical records to be de-identified like

discharge summaries [50, 78], nursing progress notes [57], pathology reports [77] and

mental health records [26]. This thesis discusses two open source de-identification

systems: MITRE MIST [11] and PhysioNet DE-ID tool [27, 57]. The design, imple-

mentation and training modes of these models are discussed in Chapter 3.



Chapter 3

Models

This thesis reviews the performance of statistical models and rule-based systems for

de-identifying medical records. In my work, I have used a machine learning based

model, from The MITRE Corporation. The model is suitable for research because it

provides a platform for exploring various experimental variants of its core model for

the task of de-identification and it is an open source system. In contrast to a machine

learning model, I have also evaluated a rule-based model from PhysioNet, which is a

popular de-identification tool that has been used by several works for a comparative

study. I present the results and challenges of all mentioned models on three different

types of medical records. The rest of the chapter is organized to discuss the design

and implementation of the models evaluated in my work.

3.1 MITRE MIST

MITRE Identification Scrubber Toolkit (MIST) is a result of combined research

from the MITRE Corporation at the I2b2 medical data de-identification challenge

along with Vanderbilt University Medical Center and the University of Michigan.

Their research focused on lowering the cost of healthcare practitioners to perform

de-identification of medical records. MIST has become a free and open-source tool

which can be used for identifying and redacting PHI information in free-text medical

records. It provides a platform to build tools that can be used to de-identify records.

The MIST toolkit contains five modules. A web-based graphical annotation tool that

provides the user interface to load and hand annotate the records. The second is a

training module which allows training a model on given annotated data. The third

is a tagging module which performs automatic tagging with the help of the trained

model. The fourth module is the redaction and resynthesis module that allows redac-

tion of the annotated files. The fifth module is the experiment engine which evaluates

the model on new data. The workflow in MIST is described in Fig 3.1.

23
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engine for multi-step tagging. MAT accepts input records in XML/SGML format, for

training, where the annotations are represented as XML elements wrapped around

the PHI phrases. In Fig 3.1, the jCarafe Options block describes the step by step

task responsible for de-identification task. The Trained Model initiates the zoning and

tokenize activities. Following this, the Carafe Tagger performs the tagging activity

(annotating the documents). The commonly used step activities in a de-identification

workflow are:

1. zone: it is a concatenation of zoning and tokenizing, in this step the word

boundaries are identified from the region to be processed.

2. tokenize: generate tokens (words) of the documents for the model to annotate.

jCarafe accepts these tokens as features to train the MIST models.

3. tag: add the PHI annotations.

4. nominate: choose appropriate replacements or fillers for the PHI phrases.

5. transform: the transformation of medical records to new de-identified records.

For example, in the sentence, “<PATIENT>John</PATIENT> was admitted

to hospital.”, the XML element <PATIENT> is an annotation that specifies the

PHI category. Once the input files are pre-processed to find the sentence and word

boundaries by zoning, then tokenization produces the tokens to which the tags are

added. The result looks like:

<PATIENT>John</PATIENT><lex>was</lex><lex>admitted</lex>

<lex>in</lex> <lex>hospital</lex>

The input XML files are converted to JavaScript Object Notation (JSON) format

which is depicted in Fig 3.2. The annotations are anchored to a particular span of

the document. That is, annotations are marked in the region of the document to be

de-identified and the region itself is specified as a type of annotation. Each annotation

in the JSON specifies the beginning and ending character position of every token in

the text grouped according to the type of annotation. In the Fig 3.2, the annotation

index value [1, 5] indicates the start and end positions of the token “John” with
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from annotated data, for tasks like entity extraction, de-identification and other text-

processing applications. As seen earlier in Chapter 2, CRFs are particularly well-

suited to de-identification because they can incorporate sequential information when

making decisions about multi-word instances of PHI.

Table 3.1: Default feature functions in AMIA De-identification task

Feature Function Description

wdFn word at a current position

caselessWdFn lowercase word at a current position

prefixFn(integer) prefixes from length 1 to specified range

suffixFn(integer) suffixes from length 1 to specified range

regexpFn(name, regexp) name of the regex which is satisfied by the token

lexFn name of lexicon if the token is present in the lexicon

MIST uses jCarafe1, the latest version of carafe engine which runs on Java Vir-

tual Machine (JVM), for de-identification. The underlying algorithms used in the

jCarafe engine supports a variety of tasks including part-of-speech tagging [44], shal-

low parsing [67], discourse parsing [72], summarization [68] and other text processing

techniques. In the MIST Annotation Toolkit, the carafe engine provides a CRF-

based sequence tagger, which is the default tagging and training module in MIST.

The jCarafe engine can be configured through command line flags to utilize various

training modes supported by MIST. Based on the training mode, jCarafe takes three

different forms. First is the MIST CRF which is the default model that uses the

generic Linear Chain CRFs [47]. Second is the MIST neural-CRF which implements

a neuroCRF [25]. The third is the MIST semi-Markov CRF which implements a

semi-CRF [65]. The training results of the jCarafe are discussed under upcoming

subsections.

3.1.2 Feature Extraction

By default, the tokens with tags <lex> have associated attribute value pair and MIST

uses the attribute value pairs as features for the trainer. The basic input format of

1MITRE jCarafe: http://mist-deid.sourceforge.net/current_docs/html/index.html
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features to the jCarafe is line based. The following is a sample representation of the

attribute value pairs.

<sequence label> <feature1> <feature2>.... <featureN>

where each <feature i> takes the form:<name>:<value>. The <name> denotes the

feature name and <value> is the value associated with the feature. Most often the

values are 1 or 0 based on whether the feature is present or not. If the features are

not binary, a scalar value is supplied to the features. These features are sent to the

CRF learning framework within the jCarafe engine of MIST for training purposes.

Specifying features in the MIST is done manually through a feature specification file

(fspec). The features are often driven by linguistic intuition and domain knowledge.

In the jCarafe engine, the features are extracted by applying each feature specification

at every position within the sequence of text. MIST supports a handpicked list of

built-in feature functions that are responsible for extraction of the features.

MIST provides a default feature specification for each form of the de-identification

task. The default list of feature functions used in AMIA de-identification task is given

in Table 3.1. All the feature functions specified in Table 3.1 are atomic features. These

features provide low-level building blocks for more complicated features. A list of

regular expressions used as feature functions in my work is included in Appendix A.1.

The atomic feature functions can be used along with higher-order feature functions

to provide more features related to the context of a word. Functions like over, ngram

and cross are higher-order feature specifications in MIST. Two higher-order functions

namely over and ngram are used in my work. The over function is specified by passing

the offset values as arguments along with an atomic feature function. In the following

example, the atomic function wdFn is used with a higher-order feature function over.

word unigrams as wdFn over (-1, 1);

The offset values that are passed as arguments specify that the atomic function must

be applied to the previous position -1 and the subsequent position 1. The atomic

feature function wdFn returns all words at the relative positions within the offset

range and uses these values along with the offset as features. The ngram function

conjoins all the features extracted from the relative positions in offsets to form a single

feature. When a wdFn ngram(1, 2) is applied at the position of the word “Scott”
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in the sentence “Audrey Scott said hello”, then the function returns said hello(1, 2)

as the feature. The features specified in the Table 3.1 are common to all variants of

CRF used in jCarafe. There are also feature functions that are specific to particular

variants of CRFs such as semi-CRF and neural features. In every variant of CRF, the

features are explicitly extracted using the feature specification file. The specification

file contains the list of feature functions used for every variant and these functions

extract the list of features for the given input data-set. The extracted features are

temporarily saved as attribute value pairs as discussed earlier. Most of these features

functions were provided by the MIST toolkit.

Semi-CRF Features

Similar to the neural features, semi-CRF features are used in the models in which

the jCarafe engine is trained using the semi-CRF variant. MIST supports only a few

built-in semi-CRF features and they are mentioned in Table 3.2. These features are

experimental in MIST and have not yet been discussed widely. The efficiency of these

features and the performance of the models trained on these features are discussed in

this thesis.

Table 3.2: Semi-CRF feature functions.

Feature Function Description

semiEdgeFn Bias feature for individual segment

semiNodeFn Bias feature for label pair of current and previous segment

phraseFn n-gram/word is added as feature

phraseWds For every term appearing in a current segment, single feature is added

Neural Features

Neural features are used when MIST uses the neural CRF2. Neural features are fed

as input to the hidden nodes and other features are fed to the CRF as standard

features. MIST recommends using of lexical and part-of-speech attributes as neural

features because they tend to be smaller in number and therefore the number of model

2MITRE jCarafe, Neural CRF: http://mist-deid.sourceforge.net/current_docs/html/

index.html
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parameters required is also smaller. The only neural feature used in my experiments is

the lexicon-based feature function and others remain as standard CRF input features

generated by the atomic feature functions. Features are designated as neural by

adding the keyword ’NEURAL’ by the side of every feature function:

word Neural as lexFn NEURAL;

According to the MIST documentation, neural features are experimental and my work

has evaluated models with neural features to demonstrate the importance of Artificial

Neural Network (ANN) layers in a sequence labeling problem like de-identification.

The neural network layers help in discovering the non-linear properties of the input,

unlike traditional CRFs.

3.1.3 Training

As mentioned earlier, MIST provides the platform to train a model using the com-

mand line options. Based on the variant used in jCarafe, MIST models can be trained

to use different variants of CRF, giving new models and new parameters for every

variant. Training a model involves estimating the parameters for their optimal values.

The number of parameters, which can be manually altered, vary based on the variant

of CRF used for training. The list of parameters that can be manually altered in each

variant of CRF is tabulated in Table 3.3.

Table 3.3: Parameters of each variant of CRF.

MIST CRF MIST neural CRF MIST semi-CRF

Learning rate Learning rate Learning rate

No of iterations Hidden gates No of iterations

Hidden learning rate

No of iterations

The default training method in jCarafe tries to maximize the conditional log-

likelihood (CLL) of the data. Gradient-based algorithms are usually used for maxi-

mizing the log-likelihood. MIST uses one of the gradient-based methods, stochastic

gradient descent (SGD) [18] for estimating the parameters. SGD computes gradients

for a small set of training data instead of computing the CLL and its exact gradient
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on the entire data-set. Based on the computed local gradient for a small part of the

training data, the parameters are updated according to a learning rate that decays

over a time. The limitation here is that SGD can take much a longer time to converge

to optimal values with an initial learning rate. MIST overcomes this problem with

the help of Periodic Step-size Adaptation (PSA) [38]. In PSA the learning rates are

adjusted for individual parameters based on the history of updates for each parame-

ter. Adopting SGD with PSA is optional during training. In my work, I used PSA

based SGD training because it speeds up the training and uses fewer iterations for

training a model.

3.1.4 Performance Metrics

MIST provides estimated variants of Precision, Recall and F1-measure to assess the

performance of a trained model. These measures are calculated using the MAT Scorer

which uses a common scoring algorithm. The scoring algorithm in MAT makes use

of similarity profiles to create the metrics for annotations. Similarity profiles are

declarative descriptions on how to compare labels based on the dimensions of the

annotations and the way in which the dimensions are compared. MAT scorer uses

Kuhn-Munkres bipartite set algorithm [51], in a stratified manner to compare and

calculate the similarity score of the annotations. For example, in the reference record,

“Steven was a physician at ABC Hospital.”, there is a DOCTOR annotation over

characters 0 - 6 with nomtype = PRO. But in the corresponding test record it is

labelled as PATIENT over the characters 0 - 5 with nomtype = PRO. Consider the

following is the similarity profile used for calculating the similarity score for the token

“Steven”.

<similarity profile>

<tag profile true labels=“PATIENT,DOCTOR”>

<dimension name=“ label” weight=“2”/>

<dimension name=“ span” method=“overlap” weight=“8” overlap low=“0.8”/>

<dimension name=“nomtype” weight=“1”/>

</tag profile>

</similarity profile>

The dimensions, specified in the similarity profile, are checked for a match and based
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on that the weights are added. In the above example profile, the dimension label

contributes a 0 out of a maximum weight of 2 as the labels don’t match. Similarly,

the span contributes the maximum weight 0.8 as there is a span overlap in 5 out

of 6 characters and the nomtype dimension contributes a 1 out of 1. Based on the

collected weights the similarity score is calculated as (0∗2)+(8∗8)+(1∗1)/(2+8+1),

which equals to 0.59. The default similarity profile used throughout the scoring used

in this thesis is:

<dimension name=” label” weight=”0.1” true residue=”0.5”/>

<dimension name=” span” weight=”0.9”/>

<dimension name=” nonannotation attribute remainder” weight=”0.1”/>

<dimension name=” annotation attribute remainder” weight=”0.1”/>

In MAT Scorer, the true positives or a match is the set of annotations with true

labels whose pairs (occurring in test and reference) have a perfect similarity score

of 1.0. False negatives or clashes are those annotations whose labels do not have a

perfect similarity score or less than 1.0. And any annotations that cannot be paired

are considered missing or spurious. The following measures are reported in this thesis

for every model:

• Precision (P): Number of true positives divided by the number of tokens

labeled;

• Recall (R): Number of true positives divided by the number of true positives

and false negatives;

• F1 Measure: F1 measure is the harmonic mean of precision and recall com-

puted as 2 ∗ ((P ∗R)/(P +R)).

3.2 DE-ID

PhysioNet DE-ID [27, 57] is a rule-based de-identification system, produced as part

of a study at the Harvard-MIT Division of Health Science and Technology. DE-

ID is written in Perl and uses lexical look-up tables, regular expressions, and simple
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heuristics to locate HIPAA-defined PHI terms and other extended PHI instances such

as dates. The software supports de-identification of names, locations, hospital names,

town/city names, street addresses, zip codes, PO Boxes, dates, telephone/fax/pager,

patient and doctor names, identification numbers, email addresses, URLs and ages

above 89 years of age. There are four types of look-up dictionaries in DE-ID [57]:

1. Known PHI look-up tables for known names.

2. Potential PHI look-up table for common names or women and men, last names,

locations, and states.

3. PHI indicator look-up tables which contain terms which are prefixes or suffixes

of PHI terms. Examples include ”Dr.”, ”hospital”, ”age”, ”street” and so on.

4. Non-PHI look-up tables that have common English words which are taken from

Atkinson’s Spell Checking Oriented Word Lists [1] which are non-PHI terms.

Apart from the dictionaries mentioned above, additional dictionaries can be in-

cluded or removed according to the domain of the data-set involved. The list of

regular expressions, look-up tables and their descriptions used in this software are

mentioned under Appendix A.2. DE-ID comes with nursing notes drawn from the

MIMIC II clinical database [49], intensive care unit (ICU) nursing notes for evaluat-

ing the software. The structure and format details about the data-sets are described

in Chapter 4.

3.2.1 Algorithm Overview

The algorithm behind the DE-ID software scans the input records line by line and

then divides them into individual words separated by whitespaces. Then the following

steps are carried out on the words/tokens:

1. The algorithm first performs a lexical match with all the non-numerical tokens

to identify known and potential PHI terms.

2. It performs a pattern match using the regular expressions to find the named

entities.



34

3. It determines the ambiguity in the identified entities using simple heuristics.

4. Finally, the algorithm replaces identified PHI terms with tags that denote the

category of PHI.

3.2.2 Performance Metrics

The performance metrics in DE-ID is calculated by comparing the locations of the

PHI terms in both the test and the PhysioNet documents for the corresponding test

records. The results are reported as the following measures:

• Positive Predictive Value (PPV)/ Precision: Number of true positives divided

by the total number of tokens labeled.

• Sensitivity/Recall: Number of true positives divided by sum of true positives

and false negatives.

The above mentioned standard metrics in NLP: Precision, Recall, and F1 measure are

used to report the statistics of the models at a token level for MIST and DE-ID. In a

problem like de-identification, recall is of more importance. This is because labeling

a PHI term as ’OTHER’ (false negatives) might lead to unauthorized disclosure of

PHI terms. Therefore it is important that a model yields a better recall. On the

other hand, for a medical research, it is important that the model does not label

any medical term as PHI (false positives), in which case there is a loss of medical

information. My work discusses the important aspects in dealing with such models

and their parameters, which is a difficult task from a practitioner’s perspective, to

attain better results that generates de-identified samples that are most suitable for

research purposes.



Chapter 4

Data and Annotations

Data-sets used in this thesis, for evaluation, are manually deidentified samples of

clinical notes, suitable for research. Medical records are available in various formats

based on the type and purpose of the medical records. My work deals with free-text

medical notes. There are different types of medical notes such as discharge summaries,

nursing notes, laboratory reports and physician notes. A sample format of discharge

summary notes is shown in Fig 4.1. It can be observed that these notes follow a

certain template like <Heading>:<Content>. Some clinical notes do not have any

such templates but are simple, continuous free text. In a sequence tagging problem,

each term in the text is considered as a lexical token.

Table 4.1: Distribution of records in the data-sets. A record denotes a single file that

contains medical details of a patient.

Data-set Total Training Test

I2b2 2006 889 668 221

I2b2 2014 1304 790 514

PhysioNet Corpus 2434 1703 731

A de-identification model should be able to perform well on any given type of

medical notes. Evaluating models on different types of clinical notes will help in

analyzing the features required for training models. I have used three types of medical

notes: discharge summaries, longitudinal medical records and nursing notes for the

evaluations. Two data-sets are taken from I2b2 NLP data-sets1. The third data-set

(nursing notes) is from PhysioNet DE-ID2 package. Each data-set contains individual

files of a patient. There are multiple files for each patient that has information about

the patient’s medical history. Records in all three data-sets are divided into training

1I2b2 NLP Data-sets: https://www.I2b2.org/NLP/DataSets/Main.php
2PhysioNet Corpus: https://www.physionet.org/physiotools/deid/#data

35



36

and test subsets. The composition of the subsets from each data-set is tabulated and

shown in Table 4.1. The records have been divided into ten batches of the train (70%)

and test (30%) subsets for performing 10-fold cross-validation3. The revised split up

of training and test subsets (shuffled randomly) is shown in Table 4.2.

Table 4.2: Distribution of PHI and Non-PHI instances across each data-set. Records

are grouped as training and test subsets.

Data-set Training Test

Records PHI Non-PHI Records PHI Non-PHI

I2b2 2006 620 13648 425371 267 5795 176345

I2b2 2014 912 18796 728937 392 8674 311200

PhysioNet Corpus 1703 1243 311541 731 525 131853

4.1 Informatics for Integrating Biology and the Beside (I2b2) Data

As mentioned above, two major data-sets are taken from I2b2 NLP DataSets. I2b2

has provided a number of fully deidentified clinical records from the Research Patient

Data Repository at Partners HealthCare for enhancing the ability of NLP tools to

extract useful information from clinical records. Dr.Ozlem Uzuner [79] conducted

many NLP challenges using a wide range of deidentified medical records and these

deidentified notes are available to the research community for research purposes. The

I2b2 2006 De-identification and Smoking challenge data-set [79] comprises a total of

889 de-identified discharge summaries. Of this total records, two records have been re-

moved due to their inconsistent behaviour during preprocessing. Table 4.2 shows the

training and test split made on these records. The records are XML files with inline at-

tributes, as shown in Fig 4.2, defining the tags (e.g.<PHI TYPE=“PATIENT”>Susan

Smith</PHI>) where PATIENT denotes the annotation class label. Each term in

the name “Susan Smith” is a lexical token. Every such occurrence is marked as a

PHI instance and the total number of PHI instances present in this data-set is shown

in Table 4.2 under the PHI column.

3Cross-validation: https://en.wikipedia.org/w/index.php?title=Cross-validation_

(statistics)&oldid=846520045
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across different categories. The results of training the models on these instances and

the performances of the models on test data are discussed in Chapter 5.



Chapter 5

Experiments and Results

In this chapter, I present experiments and results of evaluating the models on three

different data-sets. The chapter begins with the discussion of what a perfect model

would look like and methods for evaluating models. Later I describe and discuss the

learning trends of training MIST CRF on every data-set followed by the performance

and challenges of the trained models in identifying the true positives (PHI tokens) in

test data. Following this, two other variants of CRFs are discussed. A comparison is

made among the models for each data-set to identify the best performing model in

terms of precision, recall and F1 measure.

5.1 The Approach

Evaluating machine learning model involves assessing the predictive performance of

the trained model on an unobserved data-set otherwise known as test data. Cross-

validation is an evaluation technique by which a model’s predictive performance is

validated. This technique helps in evaluating a model’s performance on new data,

other than the training corpus, in terms of its accuracy in predicting the true labels.

In cross-validation, a model is trained on subsets of input data and validated on the

complementary subset of the input data. The process repeated for k times with k-1

subsets for training and the left-out subset for validation is known as k-fold cross-

validation. I have used 10-fold cross-validation in my work.

It is important to know what contributes to a perfect model and evaluate the

models accordingly. In a sequence labeling task like de-identification, it is important

to look at the perfection of a model in terms of the model’s ability to not mislabel a

PHI term as “OTHER” (false negatives). As discussed earlier in chapter 3 regarding

the performance metrics of a de-identification system, a model’s recall is more im-

portant than precision. But it is to be noted that the trade off between recall and

precision is specific to the application. Therefore defining a perfect model depends

42
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For each run, training and test subset are generated by applying a random split on

the preprocessed input data. The average values of the model’s performance over

10-folds is reported as metrics.

The workflow of my experiment is described in Fig 5.1: the input records are

first preprocessed and then divided into two subsets (training and test). The training

subset is used for building the MIST models during training. The trained models are

made to automatically tag records in the test subset. As a final step, the accuracy

of the model’s performance is calculated by applying a scoring algorithm on the test

documents, annotated by the model, with the ground truth records as the reference.

The procedure is repeated for all ten folds and the average of the accuracy is reported

in terms of the standard metrics mentioned in section 3.1.4.

5.2 Evaluation Criteria

A general evaluation criterion is followed in calculating the performance metrics of all

models. Each model is trained and made to tag records in the test data. The models

are evaluated based on their ability to recognize each PHI category in test records.

Initially, all test records are preprocessed and made into tokens. The jCarafe engine is

responsible for labeling these tokens with suitable PHI categories. MIST determines

the number of true positives, false positives, true negatives and false negatives based

on a similarity score calculated using the default similarity profile mentioned earlier

in Performance Metrics section of chapter 3. Measures like a match, missing and

spurious are calculated as part of the scoring algorithm. A token is considered to be

a match, only if the span (start and end position) of the token matches completely in

both test and reference documents. For example, a HOSPITAL type PHI token in the

sentence, “Dr.Renlan Fyfezeis treated him..”, has a span (248-263) in a test record

of length 3000, then this token is said to be a match, only if there is a corresponding

span (248-263) in the reference document with the same label HOSPITAL. For any

PHI token, in the reference document, that does not have a corresponding entry in the

de-identified test record is known as missing. For any PHI token, in the test record,

does not have a corresponding entry in the reference record is known as spurious.

Based on these counts, precision, recall and F1 measures are recorded and used to

determine the best performing model for a given data-set.
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they are learned by the model. The number of features extracted from the training

sub-sets differ based on the length and count of records involved in each sub-set.

For example, the number of features extracted from the training subset used in the

first run is 287,323 and from second subset it is 292,593 features. The list of feature

functions involved in feature extraction is shown in Table 3.1. The trained models are

then analyzed based on their tagging capabilities and the performance is discussed

under the Performance subsection.

Table 5.1: Metrics of the best performing MIST CRF Model on three data-sets

MIST CRF Model Metrics

I2b2 2006

(Discharge Summaries)

I2b2 2014

(Longitudinal Records)

PhysioNet Corpus

(Nursing Notes)

Training Docs 620 912 1703

Test Docs 267 392 731

MIST CRF - LR Parameter 0.1 0.2 0.5

Precision 0.9659 0.8711 0.7501

Recall 0.9544 0.8036 0.4287

F1 Measure 0.9598 0.835 0.5897

Table 5.2: Average tag-level performance of best performing MIST CRF model on

three data-sets.
I2b2 2006

(Discharge Summaries)

I2b2 2014

(Longitudinal Records)

PhysioNet Corpus

(Nursing Notes)

PHI Type Precision Recall F1 Measure Precision Recall F1 Measure Precision Recall F1 Measure

AGE 1 0.1226 0.1817 NA NA NA 0.75 0.8125 0.5833

DATE 0.9646 0.9807 0.9727 0.8827 0.8148 0.8437 0.7334 0.5169 0.6056

DOCTOR 0.9583 0.9488 0.9536 0.8605 0.8398 0.8501 0.8112 0.4712 0.5953

HOSPITAL 0.9630 0.9312 0.9469 0.869 0.8066 0.8365 NA NA NA

ID 0.9781 0.9826 0.9804 0.8366 0.8194 0.8277 NA NA NA

LOCATION 0.4175 0.2917 0.4175 0.8879 0.7693 0.8236 0.7469 0.4306 0.5453

PATIENT 0.9851 0.9446 0.9643 0.8254 0.7448 0.7826 0.8594 0.1817 0.2962

PHONE 0.7918 0.7061 0.7918 0.9 0.708 0.7897 0.6333 0.0763 0.1176

ALL 0.9659 0.9544 0.9598 0.8711 0.8036 0.8350 0.7695 0.4287 0.5502

In Fig 5.2 (b) the models are trained on the I2b2 2014 training subset (790 records)

for a maximum of 30 iterations. It took an average of 24 minutes to train a model on

I2b2 2014 training subset. Three models (α = 0.1, 0.2 and 0.5) showed a similarity in

converging to the optimal values of negative CLL. The number of features extracted

from the first training subset is 466655 and from the second subset is 484452. In
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the Fig 5.2 (c) the curves represent models trained using PhysioNet corpus. The

models are trained on 1,703 training records for a maximum of 30 iterations. The

average training time taken by the model is 4 minutes. The curves show similar values

beyond the convergence but are different in their initial values. The average number

of features extracted from each training sub-set is 265,400.

In all three data-sets, models with α = 0.1 were consistent with their training

curves. The behavior of models with α = 0.5 showed difference in each data-set. For

I2b2 2006 and PhysioNet corpus, the models reached a similar value at the end of all

iterations. All trained models have been evaluated by making them tag the records

in the test subset and corresponding performances measures (precision, recall, and

F1 measure) have been calculated and analyzed.

Performance

Table 5.3 shows measures of three models trained with learning rates of 0.1, 0.2

and 0.5 respectively, for all three data-sets. Best performing model is chosen by

considering a balanced precision and recall measures. Model α = 0.1 achieved high

precision, recall and F1 measure for I2b2 2006 data-set. In longitudinal records (I2b2

2014), model with α = 0.2 outperformed the other two models α = 0.1 and 0.5.

Model α = 0.2 scored maximum precision values for DATE, DOCTOR, HOSPITAL,

LOCATION and PATIENT categories when compared to other two models α = 0.1

and 0.5. Overall model α = 0.2 recorded highest recall values for all PHI categories.

Performance of MIST CRF on the PhysioNet corpus recorded comparatively lower

F1 score than other data-sets. The reason for this is that the number of PHI categories

are fewer compared to other two data-sets (discharge summaries and longitudinal

records). Model (α = 0.5) scored a maximum precision of 0.769 and model (α = 0.2)

achieved maximum recall of 0.485 and F1 measure of 0.589. This data-set does not

have HOSPITAL nor ID categories. The score for the tag LOCATION is the score for

identifying locations and hospitals in a given text. Metrics of best performing MIST

CRF model is shown in Table 5.1 which also has information about the number of

training and test records used for evaluating the performance of the model on each

type of medical record.
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Table 5.3: Average tag-level performance of MIST CRF models for different learning rate α on all three data-sets. Models

with best scores for each PHI tag is shown in bold.
I2b2 2006 I2b2 2014 PhysioNet Corpus

Metric PHI Type α=0.1 α = 0.2 α = 0.5 α = 0.1 α = 0.2 α = 0.5 α = 0.1 α = 0.2 α = 0.5

Precision

AGE 1 1 1 NA NA NA 0.75 0.75 0.75

DATE 0.9646 0.9654 0.943 0.8674 0.8827 0.8774 0.7047 0.72 0.7334

DOCTOR 0.9583 0.9629 0.9327 0.8487 0.8605 0.8188 0.8011 0.8216 0.8112

HOSPITAL 0.963 0.9629 0.9483 0.8445 0.869 0.8543 NA NA NA

ID 0.9781 0.9721 0.9221 0.7978 0.8366 0.8505 NA NA NA

LOCATION 0.4175 0.6989 0.4533 0.8819 0.8879 0.8734 0.7322 0.751 0.7469

PATIENT 0.9851 0.9834 0.9476 0.8172 0.8254 0.7694 0.8716 0.86 0.8594

PHONE 0.7918 0.918 0.9536 0.934 0.9 0.8745 0.6617 0.52 0.6333

ALL 0.9659 0.9656 0.9348 0.8559 0.8711 0.8547 0.7501 0.7675 0.7695

Recall

AGE 0.1226 0.2276 0.1202 NA NA NA 0.625 0.625 0.8125

DATE 0.9807 0.9817 0.9747 0.808 0.8148 0.8064 0.6081 0.5774 0.5169

DOCTOR 0.9488 0.9525 0.9038 0.8135 0.8398 0.792 0.533 0.5192 0.4712

HOSPITAL 0.9312 0.9323 0.9088 0.7804 0.8066 0.7627 NA NA NA

ID 0.9826 0.9758 0.9274 0.7963 0.8194 0.7912 NA NA NA

LOCATION 0.2917 0.254 0.124 0.7171 0.7693 0.7189 0.444 0.4397 0.4306

PATIENT 0.9446 0.9494 0.849 0.7116 0.7448 0.6717 0.2278 0.2064 0.1817

PHONE 0.7061 0.6407 0.5334 0.6077 0.708 0.689 0.073 0.0525 0.0763

ALL 0.9544 0.9528 0.9181 0.7826 0.8036 0.7747 0.4858 0.4678 0.4287

F1 Measure

AGE 0.1817 0.3106 0.1844 NA NA NA 0.375 0.375 0.583375

DATE 0.9727 0.9737 0.9585 0.8326 0.8437 0.8364 0.6522 0.6404 0.6056

DOCTOR 0.9536 0.9578 0.918 0.8306 0.8501 0.805 0.6399 0.6358 0.5953

HOSPITAL 0.9469 0.9474 0.9283 0.8112 0.8365 0.8061 NA NA NA

ID 0.9804 0.9737 0.9247 0.797 0.8277 0.8198 NA NA NA

LOCATION 0.4175 0.3626 0.1932 0.7906 0.8236 0.7884 0.552 0.5539 0.5453

PATIENT 0.9643 0.9657 0.8955 0.7606 0.7826 0.7169 0.3597 0.33 0.2962

PHONE 0.7918 0.75 0.6813 0.7339 0.7897 0.7693 0.116 0.0882 0.1176

ALL 0.9598 0.9592 0.9262 0.8168 0.835 0.8118 0.5897 0.5811 0.5502
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The tag-level metrics for these models is shown in Table 5.2. It can be seen that

the DATE category shows a high recall score in all three data-sets. From Table 4.4,

the number of training instances for DATE category is higher than other categories

and so the model is well learned for this category. Name-related PHI categories like

DOCTOR and PATIENT show better and consistent results across all data-sets when

compared to other PHI categories. MIST CRF performs poorly in identifying LO-

CATION in discharge summaries (0.4175) compared to that of longitudinal records

(0.889) and nursing notes (0.7469). The model achieved poor performance in identi-

fying PHONE category tokens in nursing notes. From the values in the clinical notes,

it is observed that the PHONE values took different formats (xxx-xxx-xxxx, xxx xxx

xxxx, xxx xxxx, xxx/xxx/xxxx, xxx xxx-xxxx) but did not have sufficient training

instances for each format to make the model to learn. From Table 4.4 the model

had only 36 instances of PHONE category tokens for training. The model fairly per-

formed well on ID category with a precision of 0.9781 in discharge summaries and

0.8366 in longitudinal records. Overall, MIST CRF showed a good performance on

DATE, DOCTOR, PATIENT, HOSPITAL and ID categories in all types of medical

records. The performance on AGE, PHONE and LOCATION seemed to be specific

to the type of input records and the number of training instances involved.

5.4 MIST semi-CRF

Training

In this variant, models are trained as semi-CRF using the semi-CRF training mode.

As specified in Table 3.2, the models extract special features by considering the seg-

ments in the text. For example, a phraseFn extracts a current segment (n-gram) as a

single feature but this type of segment features are not supported by MIST CRF. The

models are trained for different alpha values (0.1, 0.2 and 0.5) like MIST CRFs. The

learning results are surprising for semi-CRF models as the values for each learning

rate are statistically insignificant from each other. The graphs in Fig 5.3 show a single

curve that represents alpha = 0.1 and the same learning rate is used for all data-sets.

The curves show a similarity in the way they converge for all three data-sets. The

number of iterations, required to reach an optimal CLL that yields good performance,
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summaries scoring F1 measure of 0.796 compared to longitudinal records (0.717) and

PhysioNet corpus (0.502). As recorded in Table 5.5, semi-CRF models showed higher

recall for DATE, DOCTOR, HOSPITAL and ID categories in discharge summaries

and longitudinal medical records but performed poorly on PhysioNet corpus. In dis-

charge summaries, the model showed a poor recall for LOCATION and AGE tags.

With the PhysioNet corpus, the model achieved poor recall values for most categories.

Table 5.5: Average tag level metrics of MIST semi-CRF models on all three data-sets

MIST semi-CRF Tag Level Metrics

Metrics Data-set AGE DATE DOCTOR HOSPITAL ID LOCATION PATIENT PHONE ALL

Precision I2b2 2006 1.000 0.819 0.617 0.789 0.883 0.195 0.474 0.893 0.765

I2b2 2014 0 0.803 0.676 0.728 0.772 0.694 0.535 0.791 0.741

PhysioNet Corpus 0.667 0.469 0.758 NA NA 0.773 0.818 0.333 0.648

Recall I2b2 2006 0.014 0.901 0.731 0.826 0.925 0.115 0.492 0.538 0.830

I2b2 2014 0 0.729 0.685 0.736 0.760 0.628 0.539 0.719 0.696

PhysioNet Corpus 0.667 0.377 0.497 NA NA 0.422 0.262 0.167 0.410

F1 Measure I2b2 2006 0.025 0.858 0.669 0.789 0.903 0.130 0.483 0.658 0.796

I2b2 2014 0 0.761 0.681 0.732 0.765 0.659 0.536 0.752 0.717

PhysioNet Corpus 0.333 0.418 0.600 NA NA 0.545 0.396 0.216 0.502

5.5 MIST neural-CRF

Training

Training neural-CRF model involves reaching the optimized values for the model

parameters: the learning rate (α), the hidden learning rate and the number of neu-

ral/hidden gates that should be introduced at each position in a input sequence. In

this training, the features that are allowed to pass through the neural gates are ex-

tracted from the lexicon function. If the word “FIH” in the sentence “admitted in

FIH..” appears in the lexicon category “hospitals”, then the category name “hospi-

tals” is included as a neural feature to the model. This helps the model learn the

non-linear properties of the input. In case of neural models also, the training results

seemed to be statistically insignificant for different hidden learning rates (0.1, 0.2 and

0.5) on all three data-sets. The curves in Fig 5.4 are representations of model with

learning rate α = 0.1, hidden learning rate = 0.1 and number of neural gates = 75.

Same parameter values are used for all three data-sets but the number of iterations

was configured based on the data-set.
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PATIENT categories on all three data-sets. These two PHI tags are considered main

categories that a model needs to identify and neural-CRF performed well in identify-

ing these tokens in all three data-sets. The neural-CRFs scored well on pattern-based

tokens like DATE and PHONE for all three data-sets. It can be seen that the metrics

of the AGE category for longitudinal records and nursing notes are marked 0 as the

model did not encounter enough training exemplars thus failing to identify the tags

in test records. As shown in Table 4.4, the PhysioNet corpus had no separate tags

for HOSPITAL and ID fields in the training records and so the tags are not included

in the metrics.

Table 5.6: Metrics of the best performing MIST neural-CRF model on three data-sets.

MIST neural-CRF Model Metrics

I2b2 2006

(Discharge Summaries)

I2b2 2014

(Longitudinal Records)

PhysioNet Corpus

(Nursing Notes)

Training Docs 620 912 1703

Test Docs 267 392 731

Learning Rate (α) 0.1 0.1 0.1

Hidden Learning Rate 0.1 0.1 0.1

Number of Gates 75 75 75

Precision 0.959 0.747 0.688

Recall 0.956 0.632 0.56

F1 Measure 0.957 0.685 0.617

Table 5.7: Average tag level metrics of MIST neural-CRF models for the optimal

parameter values (α = 0.1, hidden learning rate - 0.1, number of neural gates - 75)

on all three data-sets.

MIST neural - CRF Tag Level Metrics

Metrics Data-set AGE DATE DOCTOR HOSPITAL ID LOCATION PATIENT PHONE ALL

Precision I2b2 2006 1 0.968 0.955 0.94 0.983 0.6 0.969 0.845 0.959

I2b2 2014 0 0.831 0.776 0.68 0.498 0.502 0.645 0.833 0.747

PhysioNet Corpus 0 0.674 0.755 NA NA 0.6 0.731 0.5 0.688

Recall I2b2 2006 0 0.982 0.942 0.918 0.989 0.64 0.899 0.778 0.956

I2b2 2014 0 0.65 0.747 0.63 0.597 0.362 0.618 0.485 0.632

PhysioNet Corpus 0 0.722 0.621 NA NA 0.395 0.279 0.571 0.56

F1 Measure I2b2 2006 0 0.975 0.948 0.929 0.986 0.62 0.932 0.81 0.957

I2b2 2014 0 0.729 0.761 0.654 0.543 0.42 0.631 0.613 0.685

PhysioNet Corpus 0 0.697 0.682 NA NA 0.476 0.404 0.533 0.617
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5.6 PhysioNet DE-ID

Performance

Performance of a rule-based system like PhysioNet DE-ID is based on dictionaries,

patterns and look-up tables used by the system. The system achieved a precision of

96.7 and recall of 74.8 on the PhysioNet corpus. DE-ID identified a total of 1,703 true

positives out of 1,768 total PHI instances. For I2b2 2006 and I2b2 2014, the input

files were converted to fit the model’s format requirements. The performance of the

model as calculated by the tool reported a low precision of 0.092 for I2b2 2014 data-

set. Upon analysis, the spanning of the tokens in the resulting de-identified file did not

fit the spanning of the actual ground-truth files of I2b2 2006 and I2b2 2014. As such,

I used the “Output” mode to run the model for discharge summaries and longitudinal

medical records. Running in this mode does not produce any performance statistics,

but only generates the de-identified file as output, which was then scored manually.

The model showed better results for DATE category and identified holidays (e.g.,

“thanksgiving”) which was a miss in the other two variants.

DE-ID showed surprising results for the AGE tag compared to that of the statis-

tical models which required training instances for learning. But DE-ID performed by

pattern matching technique like in the case where the pattern is an integer value of

age followed by suffix years (e.g., “John is 90y and he is from Rome.”). As DE-ID is

a rule-based system, the performance of this system is restricted to the scope of the

lists, patterns, lexical tokens and dictionaries that are used for the de-identification

task.

5.7 Discussion

In a task like medical record anonymization, it is difficult to achieve a near-perfect

model. From the individual results discussed in previous sections, in most cases, the

models achieved high precision when ran on a default configuration without any bias

parameters for recall. From the combined results of each variant of MIST on three

different data-sets, the 95% confidence intervals are plotted for precision and recall.

They are shown in Fig 5.5 and Fig 5.6 respectively. CRF models from Fig 5.5 (a)

and Fig 5.6 (a) have very smaller intervals making the average values of these models
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Error Analysis

It is important that the models are also assessed based on the errors encountered for

each type of medical record. Confusion matrices for each model are discussed here

along with examples for discharge summaries and PhysioNet corpus. As the list of

tags available in input data is similar in case of I2b2 2006 and I2b2 2014 data-sets,

one of the data-set is ruled out for confusion matrix discussion. The confusion matrix

is designed to list the number of true labels (bold values), missing terms, spurious

terms and type errors for every tag. Table 5.8 refers to the confusion matrix for the

three variants of MIST on I2b2 2006 data-set.

Missing tags are harmful as they denote exposure of a portion of PHI tags in

the de-identified records. Considering the importance of tags like PATIENT, DOC-

TOR, ID, and PHONE, the rest of this section discusses the error analysis of these

tags. From the de-identified samples, it was observed that all three models failed to

identify a set of patient first names (e.g. “Walking” and “Straight”). Upon further

analysis, neural-CRFs seemed to miss only the first names that are mostly ambigu-

ous to generic tokens (e.g. “Walking”) compared to semi-CRFs and traditional CRFs

which missed some unambiguous full names (e.g. “Rora Dose” and “Daie Elms”).

Also, neural-CRF produced only 6 type errors (incorrect labeling) and all six oc-

currences PATIENT names got incorrectly labeled as DOCTOR. Traditional CRF

and semi-CRF produced 17 and 10 type errors (incorrect labels include DOCTOR,

LOCATION, and HOSPITAL).

In the case of DOCTOR category, semi-CRFs showed better results in the count

of true labels (2,551) compared to neural CRF (2,485) and traditional CRF (2,237).

As seen for PATIENT, neural-CRFs produced less number of type errors when com-

pared to the other two models. Traditional CRFs recorded frequent type errors with

label PATIENT in cases where the names of DOCTOR are long and case-sensitive

(e.g. “FIGEBREUNQINKITH , GI” and “GLOMNEBRED , JAHOLL”). Semi-CRF

model showed a large spurious count of 243 tokens for DOCTOR tag which is as

low as 20 by neural CRF and 13 by traditional CRF. Categories like ID and PHONE

showed a less count of spurious tags by neural and semi-CRF, which in most cases

are 2 digit laboratory values with special symbols (e.g. “-20”, “0-24”, “134/12”). But

traditional CRF encountered 0 spurious tags for DOCTOR category. The numerical
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category AGE did not have many training instances for I2b2 2006 data-set and results

reflect the same. Addition of feature functions that extract properties related to AGE

tag is recommended for all models.

Table 5.8: Confusion matrix for all variants of CRF on I2b2 2006 Data-set. The

measures denote count of PHI tokens.
(a) CRF - I2b2 2006

Labels AGE DATE DOCTOR HOSPITAL ID LOCATION PATIENT PHONE MISSING TOTAL

AGE 1 0 0 0 0 0 0 0 3 4

DATE 0 2360 2 2 30 1 0 1 23 2419

DOCTOR 0 3 2237 11 3 7 41 0 30 2332

HOSPITAL 0 5 5 1377 2 10 1 0 28 1428

ID 0 3 1 1 1507 5 0 25 12 1554

LOCATION 0 1 1 3 0 31 0 0 44 80

PATIENT 0 0 14 2 0 1 528 0 13 558

PHONE 0 0 0 0 0 0 0 40 5 45

SPURIOUS 0 54 13 5 16 2 0 0 90

TOTAL 1 4783 2273 1401 1558 57 1140 66 158 8510

(b) semiCRF - I2b2 2006

Labels AGE DATE DOCTOR HOSPITAL ID LOCATION PATIENT PHONE MISSING TOTAL

AGE 1 0 0 0 0 0 0 0 4 5

DATE 0 2498 0 1 11 1 0 1 44 2556

DOCTOR 0 0 2551 14 1 21 4 0 47 2738

HOSPITAL 0 0 1 1454 1 5 0 0 29 1490

ID 0 0 0 1 1507 4 0 11 20 1544

LOCATION 0 0 0 1 0 80 0 0 42 123

PATIENT 0 0 10 0 0 0 676 0 39 725

PHONE 0 0 0 0 0 0 0 56 3 59

SPURIOUS 0 260 243 88 66 10 51 1 719

TOTAL 1 2758 2805 1559 1586 121 731 69 228 9959

(c) neural CRF - I2b2 2006

Labels AGE DATE DOCTOR HOSPITAL ID LOCATION PATIENT PHONE MISSING TOTAL

AGE 0 0 0 0 0 0 0 0 7 7

DATE 0 2696 0 0 0 0 0 0 22 2718

DOCTOR 0 0 2485 5 0 1 32 0 38 2561

HOSPITAL 0 0 4 1575 1 5 0 8 25 1618

ID 0 0 0 4 1514 1 0 4 7 1530

LOCATION 0 9 11 6 0 156 2 0 23 207

PATIENT 0 0 6 0 0 0 590 0 17 613

PHONE 0 0 0 0 0 0 0 74 4 78

SPURIOUS 0 27 20 12 10 18 5 3 95

TOTAL 0 2732 2526 1602 1525 181 629 89 143 9427

Table 5.9 shows the confusion matrix for the PhysioNet corpus (nursing notes). In

this data-set, the concentration of PHI terms is much lower than the other two data-

sets. MIST CRFs showed poor recall for the PATIENT tag in PhysioNet corpus. In

most cases, the model wrongly labeled PATIENT names and missed most occurrences
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of PATIENT names. On exploring the de-identified samples, most of the names that

the model failed to identify seemed to be frequently occurring names (e.g. “John”,

“Emily”, “Charlie”). In some rare cases, the model could not identify capitalized

forms of names that showed up as a match for lower case names (e.g. “Veronica” and

“VERONICA”).

But the model showed a single occurrence of type error, where the sentence

“<PATIENT> John <PATIENT> states, his sister is living in <LOCATION> Rome

<LOCATION>” got de-identified as “<DOCTOR> John <DOCTOR> states his

sister is living in <LOCATION> Rome <LOCATION>”. Semi-CRFs and MIST

CRFs produced similar errors for PATIENT and DOCTOR tags. Semi-CRFs and

MIST CRFs models suffer overmarking errors where the reference content had char-

acters in excess to the documents de-identified. For example, DOCTOR names in

reference had suffix “Dr.” to most DOCTOR names which the model failed to tag

in the test documents. This type of error is more prominent with DOCTOR, LOCA-

TION and DATE tags.

Robustness of De-identification Models

One of the important aspects of a de-identification system is its impact on clinical

information. The impact of a system is assessed manually as in [9], where the impact

of a system is measured using the interpretability score calculated for a subset of input

records. The score determined the percentage of medical information retained in the

de-identified samples. Another approach [23] discusses the impact of the system by

applying information extraction techniques on raw medical notes and compare the

results with those obtained from the de-identified notes. In my work, I followed a

manual approach in which, the de-identified clinical notes resulted from a single run

were assessed for medical terms that were mislabeled as PHI token. Considering

the research motive of dealing with unstructured text, importance is given to non-

numerical medical terms which may be disease names, symptoms of a disease, parts

of human body and drug names. Non-numerical values like laboratory readings were

mostly confused with DATE and PHONE categories. They are already discussed as

part of the missing and spurious tokens.
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Table 5.9: Confusion matrix for all variants of MIST on PhysioNet Corpus. All

measures are count of tokens.

(a) CRF - PhysioNet Corpus

Labels AGE DATE DOCTOR LOCATION PATIENT PHONE MISSING Total

AGE 1 0 0 0 0 0 1 2

DATE 0 9 0 0 0 0 50 82

DOCTOR 0 0 91 0 1 0 70 172

LOCATION 0 0 0 59 0 0 51 110

PATIENT 0 0 1 0 12 0 50 63

PHONE 0 0 0 0 0 1 13 14

SPURIOUS 0 29 13 8 0 1 51

TOTAL 1 38 105 67 13 2 235 494

(b) semi-CRF - PhysioNet Corpus

Labels AGE DATE DOCTOR LOCATION PATIENT PHONE MISSING TOTAL

AGE 1 0 0 0 0 0 1 2

DATE 0 108 0 0 0 0 57 165

DOCTOR 0 0 94 0 5 0 76 175

LOCATION 0 0 0 60 0 0 58 108

PATIENT 0 0 1 0 17 0 42 60

PHONE 0 0 0 0 0 2 6 8

SPURIOUS 0 27 13 6 2 1 49

TOTAL 1 135 108 66 24 3 240 567

(c) neural-CRF - PhysioNet Corpus

Labels AGE DATE DOCTOR LOCATION PATIENT PHONE MISSING TOTAL

AGE 0 0 0 0 0 0 0 0

DATE 0 107 0 0 0 2 36 145

DOCTOR 0 0 66 0 0 0 50 106

LOCATION 0 0 2 52 1 0 54 109

PATIENT 0 0 11 5 16 0 46 78

PHONE 0 0 0 0 0 3 1 4

SPURIOUS 0 47 21 17 1 3 89

TOTAL 0 154 100 74 18 8 187 531

MIST identified a list of spurious tags, which are tokens with PHI labels in the

de-identified notes but these tokens do not bear any PHI labels in the actual refer-

ence documents. Upon analyzing the de-identified samples resulted from the first run

using MIST CRF, 15 occurrences out of a total 118 spurious occurrences (12.7%)
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10 iterations. The values do not change with more iterations. But in the case of

semi-CRF and neural-CRF models, the F1 score showed a steady increase, unlike the

core CRF model which reached optimal performance too early. Though the F1 score

is lower compared to MIST CRF, this steady increase in scores motivated me to test

the efficiency of the two models (neural-CRF and semi-CRF) beyond 60 iterations.

And when tested, the models showed only minor changes in their performance for

I2b2 2006 and I2b2 2014 data-sets. But it is seen in Fig 5.7 that neural-CRF models

showed an increase in the F1 score for all types of medical notes.

From the observations and discussion, the following conclusions are made regard-

ing the model’s performance on each data-set:

1. CRF models showed a consistent behavior by performing well on all three data-

sets compared to semi-CRF and neural-CRF because traditional CRFs learned

the dependencies among the input words in a sequence with the help of the

rich and complex features. This type of model is most suitable for discharge

summaries, as it took minimal effort in tuning the model parameters to achieve

a F1 of 0.96.

2. Semi-CRF model is recommended for discharge summaries. The model in gen-

eral can be recommended to any data-set, as it has the facility to deal with

segment level features unlike the traditional CRF but requires large training

iterations to reach an optimal performance.

3. Neural-CRF is more likely for all types of medical records. The model could

produce better recall (0.56) with the given training exemplars for PhysioNet,

which CRF (0.486) and semi-CRF (0.502) could not produce. The model could

perform better given enough exemplars for each label. Neural-CRF models are

more likely to replace the traditional CRFs because of their neural architecture

which yields better performance.

It is apparent that neural-CRF models could perform well with an increase in the

number of neural features and the number of neural gates for each model. Achieving

such surprising results with an experimental variant of MIST motivates the research

towards using deep learning models for the task of de-identification. There have been

some groundbreaking implementations like LSTM-based NeuroCRFs [60] for NER
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and the use of recurrent neural networks to de-identify medical notes [24]. All these

provide scope for better feature engineering and better results. But in a standard

RNN there are data flexibility issues where the input data is fixed and the input

information for a future state cannot be reached from the current state. An alter

nate to these limitations is Long Short-Term Memory [35] type RNN models. From

the findings, I implemented a bidirectional LSTM based de-identification model. Bi-

directional LSTMs have two hidden layers, in opposite directions, connected to the

output layer that allows information from past and future states. This makes it

more suitable for context based learning. LSTMs have the ability to learn and store

information about input sequences and are good in dealing with sequence labeling

problems. Also they do not require a complex feature extraction system like those

used in a normal CRF based model. The preliminary results from the training and

test run are positive for the de-identification task. A detailed analysis of this model

could be a path for future work.



Chapter 6

Conclusion

In a data-driven era, sharing any form of an individual’s data potentially exposes

them to privacy risks. Within healthcare industries, compromising an individual’s pri-

vacy or exposing an individual’s personal health information may lead to a uniquely

personal kind of privacy breach. To avoid the exposition of patient’s identity, the

patient identifiable information needs to be removed before the medical records are

shared among researchers. Removal / redaction of PHI is one of the important se-

quence labeling task (de-identification) in NLP. Systems that rely only on patterns

and dictionaries, specific to a single domain, lack the ability to perform well on other

data-sets. Machine learning techniques aid in building models that can be trained

and used on any type of data-sets. This motivated the research presented here on

machine learning models for de-identification.

In my thesis, I described an approach to evaluate free-text analysis techniques in

natural language processing to de-identify medical records. For this, I evaluated the

performance of machine learning models and their efficiency. I used MITRE MIST

and its variants: CRF, semi-CRF, and neural-CRF models, for evaluation. The de-

sign and implementations of these machine learning models were described, followed

by a detailed discussion of types of features and tuning of model parameters. The

models were tested on three different types of medical records to assess the consis-

tency in performance. All three data-sets were carefully chosen from de-identification

challenges [79, 27] that produced benchmark results with these data-sets. To evaluate

the predictive ability of the models, I used 10-fold cross-validation technique. All the

data-sets were preprocessed and converted to the format used by the models.

The models were evaluated based on the performance metrics: precision, recall

and F1 measures. For this task, the evaluation criteria is that recall carries more

weight than precision because labeling any PHI token as OTHER token might lead

to a compromise in the patient’s identity. But in cases like medical research where

64
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precision is also important, F1 measure over-weights recall. Results in chapter 5 sug-

gest that the core CRF models showed better performances on discharge summaries

and longitudinal medical records. The semi-CRF variant produced higher recall mea-

sures and lower precision values with the help of segment level features making it a

near-perfect model in terms of evaluation criteria. Having said that, the models took

a large number of iterations of training to achieve that result. Of the three variants,

neural-CRF models showed outstanding results in most cases with fewer training it-

erations compared to semi-CRF models. The performance mostly relied on the count

of training exemplars involved. Though traditional CRFs produced consistent re-

sults, the models reached optimal values very soon and did not show any further

improvements. But semi-CRF and neural-CRF models showed a gradual increase in

the performance, making them suitable for further analysis.

With the exploratory results from various models on different kinds of clinical

records, I found that context-based learning models (MIST variants), with large

training datasets, produced the best results. The design of CRF allows them to

learn the contextual information of a given word from the previous labels, which is

important for a task like de-identification. This underscores the importance of us-

ing model-driven approaches that can accommodate arbitrary (i.e., not pre-defined)

and contextual information. Rule-based models work on the list of rules created by

the user while context-driven models or machine learning models learn the rules au-

tomatically thus making them more suitable for different types of data-sets. These

results help understand various complexities that should be considered when choosing

a de-identification system for a dataset.

Advances in artificial neural networks applied particularly to areas of natural lan-

guage processing might soon take overtake CRFs and related variants in automatic

de-identification. Results from neural-CRF directed my research towards deep learn-

ing models. The limitations in a standard neural network and that of a recurrent

neural network made me choose models that were advanced in overcoming those limi-

tations. Working closely with deep learning models that used long short-term memory

based [35] recurrent neural networks helped deal with complex feature engineering in

CRFs. Bi-directional LSTMs learn the input information from past and future states
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thus improving the context-based learning for a given input sequence. The experi-

mental results produced by the LSTM model on discharge summaries show positive

signs for further improvements and analysis on this model. My findings in this thesis

could be further used to evaluate such new models.
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Appendix A

A.1 Regular Expressions - MIST

Table A.1: Regular expressions in MIST AMIA De-identification Task.

Function Regular Expression

Initials Capital letters ([A-Z].*$)

Starts with Upper case ([A-Z][a-z]*$)

Starts with Upper case and alphanumeric ([A-Z]+$)

Lower and Upper case ([A-Za-z]+$)

Contains Digits (.*[0-9].*$)

Single Digit ([0-9]$)

Double Digit ([0-9][0-9]$)

Four Digits ([0-9][0-9][0-9][0-9]$)

Natural Numbers ([0-9]+$)

Real Numbers ([0-9]\\.[0-9]+$)

Alphanumeric ([0-9A-Za-z]+$)

Roman Numerals ([lcximvLCXIMV]+$)

Contains ’-’ (.*-.*$)

Starts with ’-’ (ˆ-.*$)

Ends with ’-’ (.*-$)

Punctuation (ˆ[ˆA-Za-z0-9]+$)

Capital Letters (ˆ[A-Z].*$)
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A.2 DE-ID Lists and Dictionaries

Table A.2: Dictionaries and lists used in PhysioNet DE-ID system.

Lists & Dictionaries Description

Unambiguous Country names Country names unambiguous to PHI terms

Unambiguous Company names Company/organization names unambiguous to medical terms

Ambiguous Company names Company/organization names ambiguous to medical terms

Unambiguous Ethinicities Ethinicity names ambiguous to medical

Unambiguous Locations Locations unambiguous to medical terms

Ambiguous Locations Locations ambiguous to medical terms

Unambiguous Local places Cities and street names unambiguous to medical terms.

Ambiguous Local places Cities and street names ambiguous to medical terms.

Doctor First names First names of doctor. Two lists for ambiguous names and unambiguous terms.

Doctor Last names Last names of doctor. Two lists for ambiguous and unambiguous terms.

US States List of states in US.

US States Abbreviation Abbreviations of states in US

Female Names Female first and last names. Two files for ambiguous and unambiguous names.

Male Names Male first and last names. Two files for ambiguous and unambiguous names.

Prefixes Unambiguous Unambiguous prefix terms used in notes.

Hospital Names List of hospital names in US.


