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adiabatic curve V0 of Figure 3.2 at 0.8V/Å. . . . . . . . . . . . . . . . . . . . 32

3.4 Morse fit to the region {0 ≤ z ≤ z0 |E ≤ 0} of the potential energy curve for the

field evaporation of the terminal CF3 group leaving the remaining perfluoro-

decanethiolate polymer adsorbed on Cu, applied fields of (0.0, 0.8, 1.0, 1.2)V/Å.
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F = qẼ, q = 1.0e at 0.8 (left) and 1.0V/Å (right). . . . . . . . . . . . . . . . 48

vii



Abstract

Field Evaporation, the physical phenomenon harnessed in the atom probe microscope,

describes the breaking apart of molecules in an electric field. Interest has shifted away from

the well understood field evaporation of metals and towards a variety of semiconducting and

insulating materials for which less is known. One such material commanding current interest

is that of polymer self assembled monolayers due to their ability to provide coatings to

arbitrary materials giving them novel chemical properties. Stoffers, Oberdorfer and Schmitz

in [1] studied experimentally the field evaporation of both amino-undecanethiol and perfluoro-

decanethiol SAMs which are the focus of this theoretical investigation.

Density functional theory is used to study the process of field evaporation itself along

with trends such as electrostriction, charge transfer, polarizability and HOMO/LUMO gap

leading up to the point of evaporation. Applying this theory to structures in electric fields on

the order of volts per angstrom has given results that form the cornerstone of our theoretical

understanding and investigation in this area.

For further understanding, a complementary kinetic theory of field evaporation [2] first

developed for metals is also implemented which provides both time and temperature de-

pendence. A better understanding of the ion yield is reached with the comparison between

possible field evaporated species.
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Ĥ total Hamiltonian
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ĤT thermal Hamiltonian

J [ρ] classical potential energy of electrons

nph Boes-Einstein occupation function for phonons

p dipole moment

q charge

r electron position

R nuclear position

R(μ, ν) phonon transition rate

tflight time of flight

T (μ, ν) transition rate

Ts[ρ] classical kinetic energy of electrons

ix



T̂el electron kinetic energy operator

T̂ion ion kinetic energy operator

uJ normal phonon mode

veff effective potential energy for electrons

vxc exchange-correlation potential energy

V0 adiabatic potential energy curve

V1 adiabatic potential energy curve of first electronically excited state

V̂ion−ion ion-ion potential energy operator

V̂ion−el ion-electron potential energy operator

V̂el−el electron-electron potential energy operator

W diabatic interaction matrix

W00 diabatic potential energy curve of a neutral species

W11 diabatic potential energy curve of a singly charged species

W10 diabatic transition potential energy

Y ion yield

α electric polarizability

βi ith zero of the Airy function

Γ width of bound state level

ε dielectric constant

ε0 Hartree-Fock energy

ζi(r;R) adiabatic many electron wave function

ηiν(R) diabatic wave functions of adparticle nucleus

η0iν(R) uncoupled diabatic wave functions of adparticle nucleus

ξi(r;R) diabatic many electron wave functions

ρ(r) electron density

τBL Buttiker-Landauer time

Φ electric potential

Φ Airy function

χiα(R) adiabatic wave function of adparticle nucleus

Ψα(r;R) eigenfunction of Ĥa
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1. Introduction

Field evaporation, the physical phenomenon harnessed in the atom probe microscope, de-

scribes the breaking apart of molecules and solids in an electric field. The atom probe,

composed of a metallic tip on the order of 100 nm apex diameter and position-sensitive de-

tector, evaporates the surface atoms of the tip by applying a constant voltage in the region

of kilovolts between the tip and detector. This voltage difference creates an electrostatic field

on the order of volts per angstrom in the direction of the detector. Electrons in the tip are

displaced by the applied field exposing positively charged ions. If the field is strong enough

the positive ions are pulled from the surface and accelerated towards the detector where they

are recorded, Figure 1.1.

To gain a more accurate understanding of the rate of this process, field evaporation can be

initiated by pulsing the tip with a femtosecond laser. This provides a kick either as a thermal

or electronic excitation to the already polarized surface atoms and serves as a precise starting

point for a time of flight measurement. Using this pulsing technique, both the position and

the time of flight of the ions are known.

+

+

(t1) (X,Y, t2)

Figure 1.1: Simplified cartoon of the atom probe setup. Edge atoms, highlighted in red, are
the first to field evaporate from the probe tip with initiation coming from a pulsed laser.

From the recorded data and knowledge of the field evaporation process a three dimensional

layer-by-layer reconstruction of the tip with atomic resolution is possible. Common, recon-

struction techniques rely on a projection model where by the field-evaporated ions recorded

at a position (X,Y ) on the detector are projected back along modelled electric field lines to a

layer in the sample corresponding to the order of detection [3]. Along side the reconstruction

of the sample, the time of flight measurements allow for a generation of a mass spectrum
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for the field evaporated ions. At the point of ionization the evaporated ion has zero kinetic

energy, it then increases due to acceleration by the electric field. The change in kinetic energy

T = mv2/2 is equal to the change in potential energy V = neΦ giving the mass to charge

ratio as

m

n
= 2eΦ

(
tflight
L

)2

(1.0.1)

where m is the mass of the ion, ne the ion charge, Φ the applied voltage difference and L

the distance between source and detector. The time of flight is given by tflight = t2 − t1

where t1 is the time ionization occurs, corresponding to the laser pulse, and t2 is the time of

ion detection. Plotting the intensity or ion count versus mass to charge ratio allows for an

analysis of the dominant field evaporated species. Spatial reconstruction and modelling of

the imaging process is still a strong focus in current research [4–7] and is further developed

through theoretical research of field evaporation.

The atom probe was first developed for use with metallic tips and as such a generalized

theory for their evaporation based on quantum mechanics soon followed [8–13]. These results

can be understood from a simple classical model posed in the popular book by Jackson [14],

the scenario:

A large parallel plate capacitor is made up of two plane conducting sheets with

separation D, one of which has a small hemispherical boss of radius a on its

inner surface D >> a. The conductor with the boss is kept at zero potential, and

the other conductor is at a potential such that far from the boss the electric field

between the plates is Ẽ0.

Solving for the potential in the region of a conducting surface with a hemispherical protrusion

was shown to represent a lone atom adsorbed to a conducting surface in an applied electric

field well [11]. The solution

Φ = −Ẽ0

(
r − a3

r2

)
cos θ. (1.0.2)

is plotted in Figure 1.2 where Ẽ0a is a unit of potential and a a unit of length, i.e Φ→ Φ/Ẽ0a

and r → r/a giving Φ = −z (1− 1/r3
)
.

Solving for the electric field, Ẽ = −∇Φ, in the region of the hemisphere gives

Ẽr = −∂Φ

∂r

∣∣∣∣
r=a

= 3Ẽ0 cos θ (1.0.3)

where the field at the top of the hemisphere, Ẽr = 3Ẽ0, is larger than the static field, Ẽ0, far

from the boss. The force, given by F = qẼ, is directed away from the surface for positive

charges and is largest in this field enhanced region. Hence, exposed atoms protruding from a

conducting material create a local field enhancement leading to their preferential evaporation.

2



−2 −1 0 1 2

0

1

−0.1

−0.5

x
z

Figure 1.2: Lines of constant potential in the region of a conducting surface with hemi-
spherical boss at zero potential. Axis values are in units of hemisphere radius a, and
lines of constant potential are −0.1, −0.2, −0.3, −0.4, −0.5 in units of Ẽ0a where Φ =
−z (1− 1/(x2 + z2)3/2

)
.

Due to this field enhancement caused by the shielding of the electric field, field evaporation

of metals occurs in an orderly fashion atom-by-atom evolving from edges, kink sites and

protrusions from the conducting surface.

Interest has since shifted to the analysis of semiconductors and insulators. However, a

strong theoretical understanding of their evaporation is in general still lacking. Although the

phenomenon of field enhancement still plays an important role, the applied electric fields can

penetrate insulating materials affecting the complete structure. This results in evaporation

of not only single ions but clusters or molecules from the surface, whose composition depend

on the field strength. As such the interpretation of the recorded data is difficult leading to

poorer reconstructions of non-metallic samples.

Research continues in the areas of oxides, such as the experimental study of MgO both as

a bulk structure and as inclusions in Fe using laser assisted atom probe tomography (APT)

[15]. Theoretical studies [16, 17] were conducted to follow up on this work which confirmed

the possible evaporated species successfully using density functional methods. Also more

recent work has been done on ZnO [18, 19] and the phenomenon of metallization [20].

Self-assembled monolayers (SAMs) of polymer molecules have attracted much attention

due to their ability to alter the surface properties of bulk materials. This feature allows

for modification of existing structures as well as construction of surfaces with novel chemi-

cal properties. Areas of application include nanotechnology and organic electronics such as

transistors.

Analysis of SAMs with the atom probe is still a new concept and comes with its own

difficulties. Before recording data with the atom probe several layers are evaporated from the

tip to remove any surface contamination. Unlike bulk structures or thick oxide layers studied

previously in atom probe experiments, SAMs exist as a single layer on the surface of the

emission tip making them more vulnerable to this cleaning process if employed. Furthermore,

SAMs can be made of a variety of polymers composed of several different elements with vastly

3



different evaporation fields. This makes their analysis increasingly difficult as compared to

simple crystalline structures containing one to three elements.

Few experimental studies of SAMs using the atom probe have been completed. Nishikawa

and Taniguchi [21] used the scanning atom probe to analyze polythiophene by field evapo-

ration. The dominant fragments as well as further analysis of the HOMO/LUMO gap and

charge transfer was correctly determined using density functional methods by Wang, Kreuzer

and Nishikawa [22]. Gault et al. [23] reported reconstruction of decanethiol SAMs; but some

geometrical assumptions had to be made. Zhang and Hillier [24] considered evaporation

of hexanethiolate SAMs for which they identified the dominant evaporated species showing

a clear distinction between the SAM and the adsorbing gold surface. Stoffers, Oberdor-

fer and Schmitz [1] experimentally studied the evaporation of both amino-undecanethiol and

perfluoro-decanethiol SAMs. The evaporated species in the case of perfluoro-decanethiol were

identified as well as their evaporation field strength. Still the authors noted that the “present

understanding of evaporation . . . must be decisively improved before a spatial reconstruction

of the evaporated volume becomes possible.”

The objective of the following work is to develop a theoretical understanding of the evapo-

ration of such SAMs. Two methods will be employed. Firstly, ground state density functional

calculations will be used to find the evaporation field strength for the given structures as well

as to study changes in physical properties with increasing field strength. To gain an under-

standing past the static, zero-Kelvin, ground-state calculations provided by density functional

theory, a second method, first developed to look at the field evaporation of metals [2], will

be used to consider the kinetics and temperature effects of field evaporation.

4



2. A ground state understanding

Density functional theory (DFT) is an inclusive term given to a set of methods used to

calculate the ground state properties of materials. The premise is to consider the electron

density ρ(r) of the system and not the many-body Schrödinger equation. For a given sys-

tem of N electrons the many-body wave function Ψ would depend on 3N spatial variables.

However, the electron density will only ever depend on 3 spatial variables thus making its

implementation faster than directly solving the Schrödinger equation.

DFT relies on the two Hohenberg-Kohn theorems which take advantage of the variational

principle1. They state [27, p.51]: (1) the electron density ρ(r) determines the number of

electrons N and the external potential hence the ground-state wave function Ψ0 and all other

ground state properties of the system; (2) there exists a variational principle that states for

a trial density ρ̃(r), such that ρ̃(r) ≥ 0 and
∫
dr ρ̃(r) = N ,

E0 ≤ E[ρ̃]

where E0 is the ground state energy and E[ρ̃] is the energy functional of trial electron density

ρ̃. Levy [28] first showed that the variational principle could be written in terms of functionals

of electron density, see also [27, p.56-60] for further explanation and other references of

relevant works.

2.1 Background theory: Hartree equations and beyond

The problem of finding the ground state electronic structure of a system is simplified by

the Born-Oppenheimer approximation also known as the adiabatic approximation [29, p.7].

This allows us to separate the total Hamiltonian into nuclear and electronic components by

assuming their independence. Physically this is interpreted as a system of electrons moving

in the potential created by fixed atomic nuclei. This defines the electronic Hamiltonian as

Ĥe = T̂el + V̂ion−ion + V̂ion−el + V̂el−el (2.1.1)

where Tel is the kinetic energy of the electrons and Vion−ion, Vion−el, and Vel−el are the inter-

action potential energies between the ions (nuclei-nuclei), ion-electron and electron-electron

1The variational principle of quantum mechanics can be used to guess the ground state energy of a system
based on a guess of the wave function [25, §20] [26, p.33ff.]. Given a normalized wave function Ψ such that∫
dqΨ∗Ψ = 0 then, ∫

dqΨ∗ĤΨ ≥ E0

where E0 is the ground state energy. The ground state is not degenerate thus the equality only holds for
Ψ = Ψ0 the ground state wave function.
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respectively2. Vion−ion is a constant for a fixed arrangement of nuclei and is thus usually

ignored. Here the only difference between Ĥ and Ĥel is the omission of the kinetic energy of

the atomic nuclei.

2.1.1 The Hartree equations

A common starting point in the explanation of DFT methods are the Hartree equations which

can be found in every book on the topic including popular books by Parr and Yang or by

Ashcroft and Mermin[27, 30].

To solve a quantummechanical problem involving many particles the many-body Schrödinger

equation must be solved. The Hartree equations assume (1) that all particles (electrons)

are independent or non-interacting other than through an averaged coulomb style potential.

Therefore we can write the total wave function as a product of single electron wave functions

Ψ(r1, . . . , rN ) = ψ(r1) . . . ψ(rN ) (2.1.2)

(2) ions are heavy and as such look fixed from the point of view of the electrons, hence, the

kinetic energy of the ions is ignored and the ion-ion potential is said to be constant thus also

ignored (Born-Oppenheimer). This simplifies the problem to a set of one electron Schrödinger

equations called the Hartree equations(
− �

2

2m
∇2 + Vion−el + Vel−el

)
ψi(r) = εiψi(r). (2.1.3)

2In a simplistic sense we can write classical forms

T̂ion = −�
2

2

∑
I

∇2
I

MI

T̂el = − �
2

2m

∑
i

∇2
i

V̂ion−ion = − 1

8πε0

∑
I �=J

ZIZJ

|RI −RJ |

V̂ion−el = − 1

4πε0

∑
i,I

ZIe

|ri −RI |

V̂el−el =
1

8πε0

∑
i �=j

e2

|ri − rj |

= = −e

∫
dr′ρ(r′)

1

|r − r′|
ρi(r) = −e|ψi(r)|2

However, this ignores the quantum phenomena of exchange and correlation. They are implicitly part of the
Hamiltonian, but the exact functional form is not known. Hence the equalities above are approximations that
must be supplemented.
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2.1.2 The Hartree-Fock equations

Classically the motions of electrons are not correlated. However in reality electrons, having

half-integer spin, are fermions and as such must obey Pauli’s principle: in a system consisting

of identical fermions, no two or more particles can be in the same state at the same time.

Consequently, the motions are correlated in quantum mechanics.

Schrödinger’s equation and hence the Hamiltonian do not account for the spin of particles

because the spin does not affect their electrical interaction. We know however from Pauli’s

principle that electrons cannot occupy the same energy level unless their spins are antiparallel.

Therefore the possible energy values of the system of electrons depends on their total spin.

This is bizarrely reflected in the energy values given by Schrödinger’s equation even though

it does not directly consider the spin [25, p.227-233].

Pauli’s principle requires that the electronic wave function be anti-symmetric upon ex-

change of any two electrons, i.e,

Ψ(r1, . . . , ri, . . . , rj , . . . , rN ) = −Ψ(r1, . . . , rj , . . . , ri, . . . , rN ). (2.1.4)

This phenomenon is not satisfied by the independent electron approximation of the Hartree

equations (2.1.2). The simplest wave function that will satisfy Pauli’s principle can be written

in the form of a Slater determinant of one electron wave functions,

Ψ(r1s1, . . . , rNsN ) =

∣∣∣∣∣∣∣∣∣∣
ψ1(r1s1) ψ1(r2s2) . . . ψ1(rNsN )

ψ2(r1s1) ψ2(r2s2) . . . ψ2(rNsN )
...

...
...

ψN (r1s1) ψN (r2s2) . . . ψN (rNsN )

∣∣∣∣∣∣∣∣∣∣
(2.1.5)

From the variational principle ε0 ≡ 〈Ψ|Ĥ|Ψ〉 ≡ (Ψ,ĤΨ)
(Ψ,Ψ) ≥ E0 the expectation value of the

Hamiltonian will always be larger or equal to the true ground state energy. Using this wave

function, and the original Hamiltonian a similar set of one electron Schrödinger equations

can be found, called the Hartree-Fock equations,(
− �

2

2m
∇2 + Vion−el + Vel−el

)
ψi(r)−

∑
j

∫
dr′

e2

|r − r′|ψ
∗
j (r

′)ψi(r
′)ψj(r)δsisj = εiψi(r).

(2.1.6)

The last term is the result of exchange which is simply the correlation of parallel spin electrons

given by Pauli’s principle.

2.1.3 Beyond Hartree-Fock equations

The exact wave function can usually not be expressed as a single Slater determinant, therefore

the resultant energy from Hartree-Fock, ε0 is larger than the exact amount, E0. The difference

is termed the correlation energy Ecorr. = ε0−E0. This energy is the result of the correlation
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between electrons that is not considered in Hartree-Fock, such as correlation between electrons

of opposite spin.

Kohn-Sham equations

Kohn and Sham [31] developed the so-called Kohn-Sham (KS) equations as a method to

solve the system of interacting fermions in a potential. This was done by the construct of

an effective potential that acts on a system of non-interacting particles which generates the

same density as the interacting system. The KS equations are listed here3

Ts[ρ] =

N∑
i=1

∑
s

ψ∗i (r)
(
1

2
∇2

)
ψi(r) (2.1.9)

veff (r) = v(r) +
δJ [ρ]

δρ(r)
+

δExc[ρ]

δρ(r)

= v(r) +

∫
dr′

ρ(r′)
|r − r′| + vxc(r) (2.1.10)

vxc(r) =
δExc[ρ]

δρ(r)
(2.1.11)

[
−1

2
∇2 + veff (r)

]
ψi = εiψi (2.1.12)

ρ(r) =

N∑
i=1

∑
s

|ψi(r, s)|2 (2.1.13)

where Ts is the KS kinetic energy, veff is the constructed KS effective potential, vxc is

the exchange-correlation potential and ψi and εi are the N lowest eigenstates and energy

eigenvalues of the Schrödinger equation for a single electron moving in veff and s is the spin

orientation (↑, ↓).
The KS equations are solved self-consistently by making an initial guess of ρ(r) from

3Notation here follows Parr [27]: The total energy of the system can be written as

E[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] +

∫
dr ρ(r)v(r) (2.1.7)

where v(r) is the potential due to the placement of the atomic nuclei and any applied external field. Exc[ρ] is
the exchange-correlation energy and is defined by

Exc[ρ] ≡ T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ] (2.1.8)

where T and Vee are the kinetic and potential energies of the interacting electrons and Ts and J are the
classical or non-interacting components.
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which veff is found via (2.1.10) and then a new ρ(r) is found from (2.1.12) and (2.1.13).

Once the difference in density between iterations converges to within some tolerance the

ground state is said to be found. The total energy for a given density is calculated from

(2.1.7).

In the Kohn-Sham construction the only approximation required is in the exchange-

correlation functional as it is not known precisely. If Exc and therefore vxc were known

the KS equations would yield ρ exactly, unlike Hartree-Fock which is approximate by na-

ture. The approximation of Exc is a subject of continuous research and experimentation [27,

p.142-148].

The popular exchange-correlation functional B3LY P is used in the following report [32–

35].

2.1.4 Basis sets

The basis set is a set of orthonormal functions that are used to describe the shape of the

atomic orbitals, i.e single electron wave functions. A linear combination of these atomic

orbitals form the molecular orbitals. There are various ways to construct the desired basis

set, as an example from [36, p.208] a minimal basis set can be constructed for the Hydrogen

molecule ion H+
2 by using a single 1s orbital centred on each H nuclei. A minimal basis

set uses only atomic orbitals that are occupied in the separated atoms prior to molecular

bonding.

For this project, polarizable orbitals 6 − 311G∗∗ have been employed. The name is an

acronym for the 6 Gaussian type orbitals used to represent the core electrons and the valence

is split into three, one and one Gaussian type orbitals respectively. Broader Gaussians are

then used to allow for further interaction and polarization denoted by the ∗∗ [35]. This

basis set is used for three reasons. Firstly, as bonds are formed or as other atoms approach,

the shape of atomic orbitals can be altered such as stretching, compressing, shifting etc.

Secondly, with increasing applied field one would expect a distortion or further polarization

of the atomic orbitals. Thirdly, this is a common basis set that has been used with success

when dealing with the process of field evaporation.

For computational speed a pseudopotential basis set LANL2DZ was also used both as

a check and initial exploration of desired structures. It should be clear that the final energy

calculated via DFT is completely dependent on the basis set employed. The interest here is

not necessarily in absolute energy but changes in energy along with other features of the field

evaporation process. With these features in mind there is strong agreement between trends

seen using these two basis sets for our given models. Elaboration on the use of basis sets in

computational chemistry can be found in [35, ch.5] and [37, ch.6].
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2.1.5 Geometry optimization

The commercial software package Gaussian09 [38] is used for all density functional calcula-

tions. For a given structure, or input of nuclear positions Gaussian calculates the electron

density and thus the energy self-consistently using DFT. However to find the the ground state

structure not only the electron density but the position of the nuclei must be varied, this is

the optimization process.

To begin optimization an initial guess of the structure is made. Gaussian calculates the

energy of the structure then shifts the positions of the nuclei and recalculates the energy. At

each iteration, the choice of which atoms to shift and in what manner is not done randomly.

Both the gradient and Hessian of the energy are considered to make a next guess of step size

and direction. The gradient gives the rate of change of the energy surface and the Hessian

is a matrix of second order partial derivatives giving information of the concavity. This can

be understood as the second and third terms in a Taylor expansion of the energy in many

variables [39, p 162],

E(x) = E(x0) +
∑
i

∂E

∂xi
(xi − xi0) +

1

2

∑
i

∑
j

∂2E

∂xi∂xj
(xi − xi0)(xj − xj0) + . . . (2.1.14)

The optimization will step along the energy surface until convergence based on some

tolerance is reached. The convergence criteria are the maximum force on a given nuclei

F = −∇E, root-mean-squared (RMS) force |F | =
√∑n

i F
2
i /n, max displacement of an

atom computed for the next iteration (ri+1−ri) and RMS displacement |ri+1−ri|/
√
n. Once

all of these computed values are less than the given thresholds the optimization is said to

have converged. Standard values for these convergence criteria are: 0.00045 Ha/Bohr, 0.0003

Ha/Bohr, 0.0018 Å and 0.0012 Å respectively, which can be adjusted as required. Further

information on the optimization process can be found on the Gaussian web page.

The geometry optimization is heavily dependent on the initial input structure. As such

it may converge in a local minimum on the PE surface. This defines a conformer of the

structure with higher energy than the global minimum.

2.2 Field evaporation of polymers

The SAMs of interest in the experimental study by Stoffers, Oberdorfer and Schmitz [1]

were made from either perfluoro-decanethiol CF3(CF2)7(CH2)2SH or amino-undecanethiol

NH3(CH2)11SH
4. The focus here is on the fluorinated SAM as the experimental results

were more reliable as noted by the authors.

This is a somewhat ambitious starting point both for the experimentalist and theorist

as polymers can be made up of several different elements all with different evaporation field

4Hydrogen cleaves from the thiol group so that a strong thiolate (S−metal) bond can form, as such thiolate
is addressed here.
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A B

Figure 2.1: Zero field structures for (A) helical perfluoro-decanethiolate and (B) all-trans
amino-undecanethiolate adsorbed on Cu. Colouring of atoms, F= light blue, C= grey, H=
white, S= yellow, Cu= red, N= dark blue.

strengths. Furthermore, due to the variety of elements there is an increased number of

possible molecular fractions that have some probability of evaporating, as compared to a

single- or two-element system.

The model studied here is that of a single polymer adsorbed to either a single copper atom

or three copper atoms. The larger base provides more space for electrons conducted down

the polymer at the point of field evaporation. In this study first the ground state structure

in zero applied electric field is found. Then the applied electric field is increased and the

geometry optimization is continued until field evaporation sets in. When the applied field

pulls a positive ion from the polymer the remaining structure is left with a negative charge.

This negative charge is neutralized and the ion removed from subsequent calculations. This is

done manually in our calculations or in the form of a current in the experiment. The process

is then continued to find the next field evaporated species. As with all simulations a larger

more realistic sample is desired. This work should provide the desired jumping off point for

future studies using more accurate and intensive models.

2.2.1 Perfluoro-decanethiolate in an applied electric field

DFT calculations were carried out using exchange correlation potential and basis set B3LYP/6-

311G**. A metal atom is required in these calculations as an electron sink, for this purpose

copper was chosen. The copper atoms in these calculations were held fixed to prevent the

structure from drifting in the applied electric field.
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1.2V/Å

1.4V/Å

< 5V/Å

1.0V/Å

1.5V/Å

1.5V/Å

1.8V/Å

2.2V/Å

Cu Cu3

Figure 2.2: Evaporated species from perfluoro-

decanethiolate. Applied electric field values

are quoted for the model using a single cop-

per base (Cu) and a three copper base (Cu3).

Perfluoro-decanethiolate as a single chain

attached to a copper atom was found to be

helical in its lowest energy state, shown in

Figure 2.1. As an initial guess for the nuclear

positions an all-trans structure was chosen,

i.e. no rotation in the polymer components.

This structure remains stable in fields up

to 1V/Å at which point evaporation sets

in. Head group evaporation occurs at 1V/Å

with the removal of CF+
3 . Next, at 1.5V/Å

two groups of (CF2)
2+
2 are removed, one

after the other. Then at 1.8V/Å another

(CF2)
2+
2 is field evaporated followed by the

remaining CF2(CH2)2 before 2.5V/Å. The

sulphur requires fields close to 5V/Å to be

pulled from the fixed three copper atoms.

The first two field evaporated species and

field evaporation of sulphur were tested us-

ing the larger Cu3 base model and show the

same trend, Figure 2.2.

Three main structural changes occur be-

fore evaporation: (1) decrease in polymer

tilt angle with respect to the field axis, (2)

electrostriction (compression and stretching)

along the field axis and (3) a decrease in the

coil of the helical structure.

When a field is applied to a SAM the

induced polarization causes a torque on the

tilted polymers which aligns them with the

field. At the same time the polymers are

stretched allowing sufficient space for the

atoms in this vertical configuration.

Using only a single copper atom, there

is neither surface nor neighbouring polymer

interactions, this is not sufficient to study

the effect of an applied field on the angle

the polymer makes with the adsorbing metal

surface. Because of this, the change in angle with increasing applied field is only few degrees

which corresponds to how far the polymer is from the field axis when no field is applied.

Using three copper atoms as an electron sink at the base, the polymer is attracted to the

12
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Figure 2.3: Effect of applying a field to a tilted polymer. The polymer here is perfluoro-
decanethiolate adsorbed to a three copper base (Cu3).

surface thus showing a strong tilt in small fields. The polymer is however easily aligned with

the applied field before evaporation, Figure 2.3.

If we think of an idealized monolayer with no imperfections in zero applied electric field,

then in the central region the polymers will be packed, all executing the same angle with

the adsorbing surface. At the edge of the monolayer the angle the polymers make with the

adsorbing surface will change, due to the strong repulsion between like charges. As such

the polymers at the edge of the monolayer will lean outward from the bulk with the last

row of edge polymers laying flat on the metal surface with the head group pointing away

from the monolayer. Now taking this system and applying an electric field perpendicular and

away from the metal surface, electrons in the polymers are pulled towards the metal surface.

At fields of the order of volts per angstrom this transfer of charge is significant making the

head groups positively charged. This causes a torque that acts to align the polymers with

the field axis. Because of this, at these extreme electric fields the edge polymers lift off of

the metal surface and attempt to align with the field axis. Even still the strong repulsion

of like charges, mostly due to the electron pairs of the electronegative fluorine in our case,

prevents the edge polymers from aligning perfectly with the field axis. As such the edge

polymers standing away from the monolayer, unshielded by the bulk, are the location of first

evaporation. This of course agrees with the known trends of field evaporation happening first

at protrusions and imperfections sites on the surface. This straightening is seen in calculations

using three polymers with nine copper atoms in a (111) lattice. Given here are results for

the field evaporation on perfluoro-decanethiolate studied as a single polymer standing alone.

Due to the above argument and the favourable agreement between initial field evaporation

given here and in the experiment, this model well represents the lone polymers at the edge

or imperfection sites standing away from the bulk where field evaporation begins.

Electrostriction was seen leading up to the point of field evaporation. Before evaporation

of the terminal CF3 the distance between the copper and terminal carbon atom is first
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compressed by 0.2 Å then stretched by nearly 0.7 Å before evaporation, as seen in Figure

2.4. The initial compression of the chain is an interesting phenomenon that is due to the

electronegativity of the fluorine groups. Fluorine, being unwilling to give up electrons holds

them near at fields below 0.6V/Å. This causes the electric field to push the fluorine and the

polymer as a whole towards the surface. Higher fields cause charge transfer to occur leading

to stretching before evaporation. An extreme case of initial compression was observed by

Wang et al. [40] in the study of ethylene glycol.
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Figure 2.4: Electrostriction experienced by perfluoro-decanethiolate. Length is between ter-
minal carbon and the copper base atom.

As one complete rotation of the helical structure is not achieved over the length of the

chain, we can define an angle θ between the two lines connecting Cu − S and the terminal

C−C in the x-y plane. This angle is zero for an all-trans structure. The decrease in θ leading

up to field evaporation, i.e. from 0− 0.9V/Å, was 18◦.
To better understand the movement of charge in the chain, the dipole moment, electric

polarizability and dielectric constant have been studied. The single and three copper base is

a limitation of this model as it provides a minimal sink for electrons pushed down the chain.

As a result, unwanted Coulomb repulsion forces exist in the lower end of the chain at the

point of evaporation, i.e. electrons accumulate at the base of the structure. This could act to

decrease the dipole moment as a function of the field as it becomes increasingly difficult for

charge to transfer down the chain. It is clear from the increasing dipole moment that these

effects are not dominant in the single polymer model for perfluoro-decanethiolate, see Figure

2.5.

Fluorine being highly electronegative causes a negative dipole moment at fields below

0.4V/Å. The dipole moment is however reversed at higher fields. There appears to exist two

regimes, (1) below 0.6V/Å minimal charge transfer is accomplished by the field, (2) above

0.6V/Å the electric field overcomes the electronegativity of the chain pulling charge down

the chain until evaporation at > 0.9V/Å. Region (1) and (2) correspond to the compression
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Figure 2.5: Solid circle: dipole moment p [eÅ] along the field axis (+z) of perfluoro-

decanethiolate. Dashed triangle: electric polarizability α [eÅ
2
/V]. Dotted square: dielectric

constant ε.

and stretching stages respectively. This is also reflected in the trend of induced electric

polarizability α = p/E and dielectric constant given by ε = 1 + α/(ε0V ), where V is the

volume occupied by the chain given by a cylinder around the polymer of length and width

given by the nuclear positions plus the Bohr radius. We note that the dielectric constant

ε = 2.3 from this calculation is close to that expected for alkane-like chains. These trends

agree with the electrostriction mentioned above.

Given the length of the polymer d and the dipole moment p we can calculate the effective

charge q = p/d transferred over the length of the chain, which is on the order of 0.6 e before

evaporation.
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Figure 2.6: HOMO/LUMO gap of perfluoro-decanethiolate in an applied electric field until
evaporation.
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Plotted in Figure 2.6 is the HOMO/LUMO gap for perfluoro-decanethiolate showing the

expected decrease before evaporation [16–20], eventually becoming zero. We expect evapora-

tion to coincide with this drop in the HOMO/LUMO gap energy as this would correspond to

the most vulnerable state at which the applied field can most easily create charge separation

within the polymer, this is of course confirmed with the increased polarizability.

2.2.2 Amino-undecanethiolate in an applied electric field
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Å
],

α
[e

Å
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Figure 2.7: Solid circle: dipole moment p [eÅ] along the field axis (+z) of amino-

undecanethiolate. Dashed triangle: electric polarizability α [eÅ
2
/V]. Dotted square: di-

electric constant ε.

A similar analysis was carried out for amino-undecanethiolate on a Cu atom, which was

found to be an all-trans structure in its ground-state, seen in Figure 2.1. The dipole moment

in Figure 2.7, shows a diminishing positive slope with increasing field. Charge transfer was

on the order of e over the length of the chain before head group evaporation. The polymer

did not experience any compression before it stretched 1.1 Å towards evaporation. The angle

with the field axis decreased by 2◦ before evaporation of NH3(CH2)
2+
3 at 1.1V/Å. Next

evaporation occurred at 1.5V/Å with the removal of two groups of (CH2)
2+
2 , Figure 2.8.

The evaporated species found in the three copper base model were NH3(CH2)
2+
2 at 1.2V/Å.

Next evaporation occurred at 1.4V/Å with the removal of (CH2)
2+
3 and then (CH2)

2+
4 and

(CH2)2 at 1.6V/Å. The sulphur again required fields close to 5V/Å, Figure 2.8.

Under experimental conditions the polymer is adsorbed on a metal surface, i.e the atom

probe tip. When evaporation occurs the positive evaporated ion is pulled towards the detector

as the equivalent charge in electrons is conducted down the circuit to recombine. Before

evaporation no current flows down the atom probe tip. Electrons transferred to the metal

surface by the field are distributed over the conductor in the region of the polymer forming

a surface charge, equivalent to the image charge of the polymer.

With the single copper atom at the base, the amino-undecanethiolate model shows a
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Figure 2.8: Evaporated species from amino-

undecanethiolate. Applied electric field values

are quoted for the model using a single copper

base (Cu) and a three copper base (Cu3).

decreasing positive slope in dipole moment

with increasing applied field. In part, this is

a result of charge accumulation in the base

of the polymer before field evaporation as

mentioned above and is reflected in Figure

2.7 by the decreasing slope of dipole moment

with increasing field. Allowing the electrons

to move away from the base of the chain,

as would be the case in experiment, will al-

low further electron transfer to occur. A

larger electron sink is incorporated by the

model with a three copper atom base. The

dipole moment in this case was indeed in-

creased. Although this model allowed for

further electron transfer, the polarizability

and dielectric constant showed similar de-

creasing trends suggesting that charge accu-

mulation is not a dominant factor.

Unlike perfluoro-decanethiolate, amino-

undecanethiolate is polarized at low applied

fields. The polymer becomes increasingly

difficult to further polarize due to (1) elec-

tronegativity of the amino group and (2)

the charge separation that has already oc-

curred at lower applied fields, Figure 2.7.

As mentioned earlier the electronegativity in

the case of perfluoro-decanethiolate is only

overcome at high fields thus the trends in α

are completely different.

2.2.3 Comparison with Experiment

For the evaporation of perfluoro-decanethiolate

given in [1] CF+
3 (and C2F

+
4 ), F+, SC9F

+
4

evaporate at 1.0 − 1.2, 2.0 − 3.0, and 3.5 −
4.0V/Å respectively. As shown in the above

results there is agreement for the field re-

quired to evaporate the first CF3 group and

the following C2F4 groups. There was no in-

dication in these calculations that the large SC9F
+
4 group field evaporates. Field evaporation
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is a time dependent process, and the use of a laser to initiate field evaporation is not included

in these calculations. As such the evaporation fractions seen in this time independent DFT

model are not the only possibilities. Even still it is surprising that SC9F
+
4 is seen as a domi-

nant fraction as opposed to the small fluorocarbon fractions in this study. It is possible that

as the length of the polymers decrease the single polymer model becomes less representative

of the evaporation process. As noted earlier, the evaporation process starts at edges and

imperfections where polymers are more exposed to the electric field. As the length of the

polymers decrease the head groups at edges are less exposed to the field, hence, the effect of

the bulk becomes more important. Further theoretical and experimental testing is required

to understand the evaporation process of this SAM.

In [1] it is noted that the amino-undecanethiol data is less convincing due to the presence

of excess hydrogen and oxygen in the atom probe chamber leading to larger error in the

mass spectrum analysis. From the single polymer model presented here, evaporation of

NH3(CH2)
2+
3 was found to be at 1.1V/Å. Stoffers analysis shows only groups of the form

OHx appearing at such low voltages. There should be a difference between the theoretical

single polymer in a uniform field and the experimental dense dielectric. In a dielectric, such as

a SAM, the field is reduced in the interior and enhanced at the surface. Thus the field strength

to break internal bonds should be larger for the experimental SAM when comparing with our

single polymer model. Considering the strong agreement between the model and experiment

for initial evaporation of perfluoro-decanethiolate, it is surprising that the evaporation field

strength for amino-decanethiolate is so high compared to its single polymer model. With

the contrasting trends in charge transfer between these polymers we should not necessarily

expect similar results. Further research in this area is definitely of interest.

2.3 Summary

This DFT study was able to successfully reproduce initial field evaporation of the fluorinated

polymer perfluoro-decanethiolate. Expected trends that agree with current literature, such

as that seen for the HOMO/LUMO gap were observed. Other trends such as electrostriction

and charge transfer where studied showing the interesting compression characteristic of poly-

mers with electronegative groups. This offers the major contrasting point between the two

polymers, perfluoro-decanethiolate being dominated by the electronegative fluorine groups

causing compression and amino-undecanethiolate not experiencing any compression.
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3. Kinetics of field evaporation

Density functional theory has become the standard method of studying physical systems at

the atomic and molecular level. Applying this theory to structures in electric fields on the

order of volts per angstrom has given results that form the cornerstone of our theoretical

understanding and investigation in the area of field evaporation. Even though it is well

established DFT is still an area of intense research making its use more widely applicable.

The issue with density functional theory is that it is fundamentally a ground state theory and

therein lies its limitations. When studying field evaporation we would like to know not only

the most probable evaporation species but a comparison between a variety of species at the

same applied electric field. Furthermore, the relevance of time cannot be understood with

the current time independent models. For this we must employ other methods of calculation.

To study the kinetics of the field evaporation process we consider a model system of a

protruding atom from an otherwise smooth surface. The bulk is assumed to be made up

of a statistical size sample of particles such that we can define a temperature [41]. Due to

the finite temperature of the system there are thermal vibrations, or phonon modes that

are set up in the bulk, these phonons are available to transfer thermal vibrational energy to

the surface atom. Therefore, the phonons allow for the surface atom to randomly sample

all of the possible vibrational bound states allowed by the finite temperature of the bulk.

Occupation of such vibrational levels is thus given by the Boltzmann factor.

In a most general form, we would like to know the rate of field evaporation of this surface

atom or molecule under the influence of an applied electric field. For this we first look at the

cause of field evaporation from the view point of the electron.

0 r0
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0.0V/Å

1.0V/Å

2.0V/Å3.0V/Å
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Figure 3.1: Coulomb style potential with applied homogeneous electric field for an atom of
radius r0 showing the electron tunnelling out of the atom from the highest occupied level EH .

For field evaporation to occur, surface atoms must become ionized. Once ionized, the
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force away from the surface due to the electric field is so great that field evaporation takes

place. Ionization of surface atoms is the result of electron tunnelling. In an applied electric

field, electrons move with a potential energy of the form

V ≈ − 1

4πε0

Qe

z
+ eẼz (3.0.1)

which is the sum of terms relating to the coulomb atomic potential and linear applied potential

where Q is the effective ionic charge and Ẽ is the applied electric field. Plotting this for a

range of electric fields, Figure 3.1, it is clear that the barrier to the left decreases with

increasing field. As a result electrons can tunnel out of the atomic potential easier at higher

applied electric fields.

Calculating the rate of field evaporation in this electron focused picture amounts to cal-

culating the time it takes for an electron in the highest occupied orbital of the atom to tunnel

into the bulk. There are several common approximations1 for this, the most simplistic being

the Buttiker-Landauer time [46]

t =

∫
dz

1

v
=

∫
dz

m

p

=

∫
dz

m√
2m(E − V (z))

τBL =

∫
dz

√
m

2(E − V (z))
(3.0.2)

where integration is over the barrier region where E < V (z). Regardless of the approximation

used for the tunnelling time this is the crudest approximation to the rate of field evapora-

tion. The reason for this is we can only calculate ground state information using density

functional theory. As such, if an atom is in some excited vibrational state we do not know

how the potential energy, V (z), the electron sees is affected2. Hence we can only calculate

an approximation to the tunnelling time using a calculation of the ground state potential

energy.

Alternatively, we can look at this problem from the perspective of the nucleus, where we

are interested in making a transition from an initial bound state to a final free ionic state.

The solution to this problem can be formulated in terms of transition rates with the use of

Fermi’s Golden Rule [25, ch.6][47, ch.7]. The probability of making a transition per unit time

between some initial state with wave function ψi and some final state with ψf connected by

1Electron tunnelling time has been and is still the centre of much debate, τBL is an imaginary time for
example, see [42–45] for some past and current reviews of competing theories and recent experimental efforts
with attoclock measurements. Also [25, p.295] for the solution to the hydrogen atom.

2With nonzero motion of the atom with respect to the surface the tunnelling barrier fluctuates in size and
shape.
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an interaction potential energy Vfi is given to be3

Tfi =
2π

�

∣∣∣∣∫ drψ∗f (r)Vfi(r)ψi(r)

∣∣∣∣2 δ(Ef − Ei − Et) (3.0.3)

where Ei, Ef are the energies of initial and final states, Et is some externally supplied energy.

If there is no source of energy Et to make a transition from ψi → ψf than the transition will

only happen if the initial energy is equal to the final energy, hence, the delta function is the

result of conservation of energy4.

To find the total transition rate from a group of initial states ψiν to a group of final states

ψfμ we sum the contributions of each transition weighed by the probability that the initial

state is occupied and the final state is not.

In this picture, the rate of field evaporation can be calculated including temperature

effects unlike the previous case. Density functional theory provides a method to calculate the

surface potential that the atom exists in and all excited vibrational states can be found from

this. This is all that is required to pursue the rate of field evaporation in this nuclear picture.

The derivation for transitions leading to field evaporation in this picture will be developed in

the following sections culminating in the finial equation for the rate of field evaporation of a

given species.

3.1 Theoretical construction

We wish to understand the field evaporation of surface particles, both atomic and molecular.

In atom probe experiments the evaporated particles are those at edges, protruding in someway

from the surface. As a model we assume a flat surface with a particle sitting on top. Note

this surface particle can be of any form, atomic or molecular, and represents the species that

will be field evaporated. This general surface particle will be referred to as the adparticle,

and due to a lack of nomenclature, the sum of the nuclei making up the adparticle will be

referred to as the adparticle nucleus. This section follows closely with [2], more detail will be

shown in relevant sections and citations given.

To start we will only consider the energy levels in which the adparticle can exist, no

kinetics such as rate of change of occupation of these levels. As such, for the moment we

neglect energy transfer from phonons of the bulk to the adparticle, hence, we ignore the

kinetic energy of the bulk atoms by keeping them fixed. The Hamiltonian of this system is

3Here, wave functions ψi, ψf are assumed to be bound and therefore normalized by
∫
drψ∗ψ = 1. Hence,

the units of the wave functions are [r]−1/2 giving the units of T as [s]−1. In the case of transitions between (1)
bound and un-bound or continuous states and (2) between continuous states, this equation cannot be directly
interpreted as a rate as the dimensions of T will depend on the normalization of the continuum wave functions
[25, §43].

4It must be understood that this delta function representation (3.0.3) only holds meaning if there is a
dense set of final states to transition into. The delta function is thus lost upon integration over the final
states,

∫
df gfTfi, introducing the density of states function gf of the final states. If the final states are not

degenerate than df gf → dE gf (E).
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then given by

Ĥa = T̂N + Ĥe(r1, r2, . . . ;R) (3.1.1)

where rn and R are the positions of the electrons and adparticle nucleus respectively,

T̂N = − �
2

2M
∇2

R (3.1.2)

is the kinetic energy of the adparticle nucleus

Ĥe = − �

2m

∑
n

∇2
n + Ve(r1, r2, . . . ;R) (3.1.3)

is the electronic Hamiltonian where Ve includes Coulomb interactions between electrons,

electrons and the adparticle nuclei, and between all nuclei (adparticle and surface), hence

this includes any applied potential.

3.1.1 Adiabatic states

Adiabatic states are given by the Born-Oppenheimer approximation, where it is assumed that

R, the position of the adparticle nucleus, is slowly varying in comparison to the electrons

positions, r. In such a case the electrons have time to adjust to changes in nuclear geometry.

These states can be calculated using density functional theory.

The many electron eigenfunctions ζi(r;R) of the electronic Hamiltonian represent adia-

batic states

Ĥe(r;R)ζi(r;R) = Vi(R)ζi(r;R). (3.1.4)

where r represents the N electron coordinates r1, r2, . . . , rN and eigenvalues Vi are the po-

tential energy states where V0 and V1 are the ground state and first electronically excited

adiabatic state respectively.

Operator matrices are put in diagonal form if expanded using their eigenfunctions5. Eigen-

functions of Ĥa have the property

ĤaΨα = EαΨα (3.1.5)

5Landau §11: Dirac notation for matrix element

fnm ≡ 〈n|f |m〉 =
∫

ψ∗
nfψmdq

〈n|m〉 =
∫

ψ∗
nψmdq
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we attempt a solution in the form of a linear combination of adiabatic eigenfunctions

Ψα(r;R) =
∑
i

ζi(r;R)χiα(R) (3.1.6)

where χiα(R) is the adiabatic eigenfunction of the adparticle nucleus. Looking first at the

LHS of (3.1.5) after multiplying by ζ∗i (r;R) and integrating over all electron coordinates,∫
r
drζ∗i (r;R)ĤaΨα(r;R) =

∫
r
drζ∗i (r;R)T̂NΨα(r;R) +

∫
r
drζ∗i (r;R)ĤeΨα(r;R).

(3.1.7)

Considering the first term,

T̂NΨα(r;R) = − �
2

2M

[
2
∑
i

∂ζi(r;R)

∂R

∂χiα(R)

∂R

+
∑
i

∂2ζi(r;R)

∂R2
χiα(R)

+
∑
i

ζi(r;R)
∂2χiα(R)

∂R2

]
, (3.1.8)

∫
r
drζ∗i (r;R)T̂NΨα(r;R) = − �

2

2M

⎡⎣2 ∫
r
drζ∗i (r;R)

∑
j

∂ζj(r;R)

∂R

∂χjα(R)

∂R

+

∫
r
drζ∗i (r;R)

∑
j

∂2ζj(r;R)

∂R2
χjα(R)

+

∫
r
drζ∗i (r;R)

∑
j

ζj(r;R)
∂2χjα(R)

∂R2

⎤⎦ (3.1.9)

= − �
2

2M

⎡⎣2∑
j

D
(1)
ij

∂χjα(R)

∂R

+
∑
j

D
(2)
ij χjα(R) +

∂2χiα(R)

∂R2

⎤⎦ (3.1.10)

D
(1)
ij (R) =

∫
r
drζ∗i (r;R)

∂ζj(r;R)

∂R
(3.1.11)

D
(2)
ij (R) =

∫
r
drζ∗i (r;R)

∂2ζj(r;R)

∂R2
. (3.1.12)
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Considering the second term6,∫
r
drζ∗i (r;R)ĤeΨα(r;R) =

∫
r
drζ∗i (r;R)

∑
j

Vj(R)ζj(r;R)χjα(R)

= Vi(R)χiα(R). (3.1.13)

Now for the RHS of (3.1.5)∫
r
drζi(r;R)∗Eα

∑
j

ζj(r;R)χjα(R) = Eαχiα (3.1.14)

which results in a coupled set of equations(
− �

2

2M

∂2

∂R2
+ Vi(R)− Eα

)
χiα(R) =

�
2

2M

∑
j

(
D

(2)
ij + 2D

(1)
ij

∂

∂R

)
χjα. (3.1.15)

3.1.2 Diabatic states

Diabatic states are states in which the nuclear positions vary rapidly such that the electrons

of a given atom do not have the time to adjust to changes in nuclear position. As such, a

diabatic state is a state in which the charge does not change as a function of nuclear position.

We are interested in making a transition between adparticle states of different charge, each of

these states is given by its own diabatic potential energy function which can be constructed

using the adiabatic states.

For this we introduce a set of new diabatic nuclear states η which relate to the adiabatic

nuclear states, χT = (χ1, χ2, . . .), via unitary transformation A [25, §12],

χ = Aη (3.1.16)

A is an explicit function of the nuclear position. Substituting χiα(R) = Aηiα(R) into (3.1.15)

results in,(
− �

2

2M

∂2

∂R2
+ Vi(R)− Eα

)
Aηiα(R) =

�
2

2M

∑
j

(
D

(2)
ij + 2D

(1)
ij

∂

∂R

)
Aηjα. (3.1.17)

A must satisfy (
∂

∂R
+D(1)

)
A = 0 (3.1.18)

to eliminate any coupling between the adiabatic and diabatic states in the final solution [48–

6Using again the orthogonality of the wave functions∫
r

dr ζ∗i ζj = δij

where r is dependent on 3N spatial variables where N is the number of electrons and dr = dr1 dr2 . . . drN .
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50], hence giving a strictly diabatic solution. Taking the derivative of (3.1.18) with respect

to R gives

∂2A

∂R2
+

∂D(1)

∂R
A+D(1) ∂A

∂R
= 0 (3.1.19)

The term ∂D(1)/∂R can be re-expressed as7

∂D(1)

∂R
=

∂

∂R
〈ζi| ∂

∂R
ζj〉

= 〈 ∂

∂R
ζi| ∂

∂R
ζj〉+ 〈ζi| ∂2

∂R2
ζj〉

=
∑
n

〈 ∂

∂R
ζi|ζn〉〈ζn| ∂

∂R
ζj〉+ 〈ζi| ∂2

∂R2
ζj〉

= D̃(1)∗D(1) +D(2) (3.1.20)

where D̃(1)∗ denotes the complex conjugate of the transpose of D(1).8 The electronic wave

functions are assumed to be real thus D̃(1)∗ = D̃(1), and by definition the derivative operator

is and antisymmetric matrix giving D̃(1) = −D(1) [47, p.125]. Finally,

∂D(1)

∂R
= D(2) −D(1)D(1) (3.1.23)

and simplifying (3.1.19) using (3.1.18) and (3.1.23),

∂2A

∂R2
+ 2D(1) ∂A

∂R
+D(2)A = 0 (3.1.24)

7By definition
〈φ|f̂ |ψ〉 ≡ 〈φ|f̂ψ〉

as the operator acts to the right. Here the extra bar is left out for clarity.
8Further points in the notation of Dirac

〈ψn|f̂ψm〉 =
∫

dq ψ∗
n(f̂ψm) =

∫
dq ψm(f̂†ψn)

∗ = 〈f̂†ψn|ψm〉 (3.1.21)

If the operator f̂ corresponds to values f than the operator f̂† ≡ ˜̂
f∗ called the Hermitian conjugate or

conjugate transpose of f̂ corresponds to values f∗,

fnm =
∫
dq ψ∗

nf̂ψm = 〈ψn|f̂ |ψm〉
(f∗)nm =

∫
dq ψ∗

nf̂
†ψm =

∫
dq ψ∗

n
˜̂
f∗ψm =

∫
dq ψmf̂∗ψ∗

n = (fmn)
∗ = 〈ψn|f̂†|ψm〉

(3.1.22)
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Rearranging (3.1.17),

− �
2

2M

⎛⎝ ∂2

∂R2
Aηiα +

∑
j

(
D

(2)
ij + 2D

(1)
ij

∂

∂R

)
Aηjα

⎞⎠+ (Vi − Eα)Aηiα = 0

(3.1.25)

and expanding results in

− �
2

2M

⎛⎝ ∂2A

∂R2
ηiα +

∑
j

(
2D

(1)
ij

∂A

∂R
ηjα +D

(2)
ij Aηjα

)

+2

⎛⎝ ∂A

∂R

∂ηiα
∂R

+
∑
j

D
(1)
ij A

∂ηjα
∂R

⎞⎠+A
∂2ηiα
∂R2

⎞⎠+ (Vi − Eα)Aηiα = 0. (3.1.26)

This can then be simplified using matrix notation9 and imposing the conditions (3.1.18) and

(3.1.24),

− �
2

2M
A
∂2ηiα
∂R2

+ (Vi − Eα)Aηiα = 0. (3.1.27)

Finally, multiplying through on the left with the Hermitian conjugate of A, A† gives,(
− �

2

2M
I

∂2

∂R2
+W − EI

)
η = 0 (3.1.28)

where I is the identity matrix and W = A†V A is the diabatic interaction matrix. The

uncoupled diabatic states are therefore given by the diagonal elements of the interaction

matrix W (
− �

2

2M

∂2

∂R2
+Wii − Eiν

)
η0iν = 0 (3.1.29)

where η0iν is the νth eigenstate with energy Eiν of the ith diabatic potential energy curve

Wii(R). E.g. W00 would be the potential energy of a neutral atom approaching a surface,

and W11 that of an ion. The off-diagonal terms Wij couple these states together; in the above

example, W10 is responsible for ionization or neutralization.

9Where D(1), D(2) and A are matrices

(DA)ij =
∑
k

DikAkj

hence, terms such as ∑
j

D
(1)
ij

∂A

∂R
ηjα =

(
D(1) ∂A

∂R
η

)
iα

simplify.
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We can at this point rewrite the total wave function as

Ψα(r;R) =
∑
i

ζi(r;R)χiα(R)

=
∑
i

ζi(r;R)Aij(R)ηjα(R)

=
∑
j

ξj(r;R)ηjα(R) (3.1.30)

where ξj(r;R) is the diabatic many-electron wave function.

3.1.3 Two state system

Now that the relations between adiabatic and diabatic states have been developed, we would

like to study the adiabatic process of field ionization from the point of view of diabatic states.

We consider a situation where a transition is made between two given diabatic states. More

explicitly we are interested in the transition between a particle in a bound state to that of a

free ionized particle. The unitary transformation A for a two state system can in general be

stated as10

A =

(
cos θ sin θ

− sin θ cos θ

)
(3.1.31)

here we let θ be a function of R and find its dependence by imposing the condition (3.1.18)

where we know from earlier that D(1) is antisymmetric,

∂

∂R

(
cos θ sin θ

− sin θ cos θ

)
+

(
0 D

(1)
01

−D(1)
01 0

)(
cos θ sin θ

− sin θ cos θ

)
= 0⎛⎝− sin θ

(
∂θ
∂R +D

(1)
01

)
cos θ

(
∂θ
∂R +D

(1)
01

)
− cos θ

(
∂θ
∂R +D

(1)
01

)
− sin θ

(
∂θ
∂R +D

(1)
01

)⎞⎠ = 0 (3.1.32)

hence we must have

∂θ

∂R
= −D(1)

01 (3.1.33)

∂θ

∂R
= −

∫
r
drζ∗0 (r;R)

∂ζ1(r;R)

∂R
(3.1.34)

which can be solved as a line integral

θ(R) = −
∫ R

R0

dR 〈ζ0| ∂

∂R
|ζ1〉 (3.1.35)

10AÃ = ÃA = I
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where we choose a point R0 such that θ(R0) = 0 which implies that A(R0) = I and thus

that at R0, diabatic and adiabatic states coincide which is the case far from the surface. The

diabatic interaction matrix is thus

W = A†V A =

(
W00 W01

W10 W11

)
(3.1.36)

W00(R) = cos2 θ(R)V0(R) + sin2 θ(R)V1(R) (3.1.37)

W11(R) = cos2 θ(R)V1(R) + sin2 θ(R)V0(R) (3.1.38)

W01,10(R) =
1

2
sin 2θ(R)(V0(R)− V1(R)) (3.1.39)

The adiabatic to diabatic transformation is now finished for the two state system. Transitions

that involve more that two states can be calculated using this method, however, the calcu-

lation must be broken down into a set of transitions between two states, which is inefficient.

The more elegant way to do such a calculation would be to derive a new unitary transforma-

tion for an N -state system. This is done for a three state system in [2], further information

on the adiabatic-diabatic representation can be found in a variety of papers including [48–50].

3.1.4 Kinetics

Thermal interaction between the bulk and the adparticle causes a kinetic process to evolve,

where by energy is transferred from the bulk to the adparticle causing vibrational excitations

which aid in the field evaporation process. At this point we have only considered the systems

Hamiltonian excluding these thermal effects which gave us the possible energy levels, vibra-

tional and electronic, available to the adparticle. Now we wish to understand the probability

of occupation of these various levels which is impacted by the phonons of the bulk.

We now consider the interaction between the adparticle and phonons in the bulk. For

this we introduce a Hamiltonian, ĤT and Ĥ ′
T describing the thermal vibrations in the bulk

and the coupling term respectively,

Ĥ = Ĥa + ĤT + Ĥ ′
T . (3.1.40)

Creation and annihilation operators, â†iν and âiν respectively, are used here to consider the

change in occupation of different vibrational and electronic levels. The annihilation operator

âiν destroys a particle of type i (neutral or ionized) in state ν of Wii. Using this formulation11

we can rewrite the Hamiltonian in terms of creation and annihilation operators.

Ĥa = Ĥ0
a + Ĥ ′

a =
∑
i,ν

Eiν â
†
iν âiν +

∑
i,j,ν,μ

〈jμ|Wji|iν〉â†jμâiν (3.1.41)

11Second quantization [25, §64-65]
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and assuming harmonic phonons [51, §2.5],

ĤT =
∑
J

�ωJ b̂
†
J b̂J , (3.1.42)

where b̂J annihilates a phonon in normal mode uJ with frequency ωJ . The coupling term,

Ĥ ′
T =

∑
i,μ,ν,J

Xi(μ, ν; J)â
†
iμ(b̂

†
J + b̂J)âiν , (3.1.43)

provides the mechanism for the adparticle to make vibrational transitions from state ν → μ

by the absorption or emission of phonons of mode J , where

Xi(μ, ν, J) = −
√

�

2ρ0ωJ

∫
dR η0∗iμ (R)uJ

∂Wii(R)

∂R
η0iν(R) (3.1.44)

ρ0 is the solid density, ωJ is the phonon frequency of normal mode uJ and η0iν is the νth bound

state wave function for the adparticle moving in the static surface potential with potential

energy Wii. See [51] for detailed description.

3.1.5 The master equation

The kinetic process of field evaporation can be described generally by a master equation

dniν

dt
=

∑
μ

(Ri(ν, μ)niμ −Ri(μ, ν)niν) +
∑
μ,j

(Tij(ν, μ)njμ − Tji(μ, ν)niν) (3.1.45)

where niν is the occupation probability of a particle of type i in state ν. Ri(μ, ν) is the

probability per unit time that a particle of type i in state ν will make a transition to the

state μ and Tji(μ, ν) is probability per unit time that a particle of type i in state ν will

convert to a particle of type j and make a transition to the state μ.

This equation is general indeed and could be applied to many different processes provided

the definition of R, T, n include contributions from all of the relevant physical phenomenon.

In the case of field evaporation processes we must include contributions from the applied

electric field and any thermal vibrations in the bulk12.

12In modern atom probe tomography, field evaporation is mediated with the use of a laser. The laser pulse
aids in the evaporation process. Thus in future work, terms relating to laser interaction will be explicitly
added. Here the applied electric field is the static applied field, and we can think of the laser interaction as
providing some sort of thermal excitation. Indeed, this cannot account for and more intrinsic phenomenon
related to the laser such as electronic excitation. See Photodesorption by resonant infrared laser-adsorbate
coupling, A review of the theoretical approaches by P. Piercy, Z.W. Gortel and H.J. Kreuzer [52, ch.2] for
more information on laser interaction.
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Phonon transition rates Ri(μ, ν), given in the one-phonon approximation [51, p.105], are

Ri(μ, ν) =
2π

�

∑
J

1

ωJ
|Xi(μ, ν; J)|2 ×

[
n(ph)(ωJ)δ(Eiμ − Eiν − �ωJ)

+(n(ph)(ωJ) + 1)δ(Eiμ − Eiν + �ωJ)
]

(3.1.46)

where the phonon occupation function is given by the Bose-Einstein function,

n(ph)(ω) =
1

e�ω/kBT − 1
. (3.1.47)

Due to phonon transitions there exists a finite width to each vibrational level that the

adparticle can exist in [51, p.96]. In such a case we do not have levels of definite energy, thus

we replace the delta function of (3.0.3) with a Lorentzian as follows

Tfi =
2π

�

∣∣∣∣∫ drψ∗f (r)Vfi(r)ψi(r)

∣∣∣∣2Δ(Ef − Ei,Γi) (3.1.48)

Δ(ε,Γ) =
1

2π

Γ

ε2 + Γ2/4
(3.1.49)∫ ∞

−∞
dεΔ(ε,Γ) = 1. (3.1.50)

where δ(ε) = limΓ→0Δ(ε,Γ). The width13 of the νth level of Wii due to phonon transitions

is given by

Γiν = �

∑
μ

Ri(μ, ν). (3.1.51)

The transition terms T rewritten in our current notation for the transition from bound

state η0iν of Wii to continuum ionic state η0jμ of Wjj is thus

Tji(μ, ν) =
2π

�

∣∣∣∣∫ dR η0∗jμ(R)Wji(R)η0iν(R)

∣∣∣∣2Δ(Ejμ − Eiν ,Γiν). (3.1.52)

The transition studied here is that of ionization, whereby a neutral atom is pulled from

the surface as an ion. In this case we can calculate the total rate of formation of type j from

type i particles as

Yji =

∑
μ,ν Tji(μ, ν) exp(−Eiν/kBT )∑

ν exp(−Eiν/kBT )
(3.1.53)

13This comes directly from the uncertainty relation for energy [25, §44] [51, p.96]

Γ ≈ �/τ

where τ is the lifetime of the level. In this case, Ri(ν, μ) is the probabilities per unit time that the particle of
type i will transition out of the level μ into the level ν. Hence, the life time is the inverse of the sum of all
possible transition rates out of the level in question.
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which is a sum of the probability Tji(μ, ν) that the particle j in state μ is created from

particle i in state ν weighted by the probability that particles i occupies state ν, via the

Boltzmann-factor. In the case of ionization of neutral 0→ 1+ than i = 0 and j = 1+.

For total rate of formation Yj of particles of type j we would sum over i. In the language

of ionization, if we consider the rate of production of 2+ ions we would consider both direct

transitions and post ionization, 0→ 2+ and 0→ 1+→ 2+ respectively.

3.2 Implementation

3.2.1 The ground state adiabatic potential energy V0
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Figure 3.2: Adiabatic potential energy curves, V0, for the field evaporation of the terminal
CF3 group leaving the remaining perfluoro-decanethiolate polymer adsorbed on Cu, applied
fields of (0.0, 0.8, 1.0, 1.2)V/Å.

The adiabatic potential energy V0 describes the evolution of the field evaporation process.

The species (neutral) sits at its equilibrium distance in the potential well until given enough

energy to jump over the potential energy barrier ionizing along the way. V0 is found using

DFT by calculating the energy of the system as the adparticle is moved away from the

remaining structure. The electronic structure of the system is recalculated for each step the

adparticle makes along the reaction path in an applied electric field. In the region of the bulk

the adparticle is neutrally charged, and far from the bulk is a positively charged ion.

The polymer of interest here is perfluoro-decanethiolate given by CF3(CF2)7(CH2)2S−.
Evaporation was first observed experimentally with the removal of CF+

3 at 1V/Å, this was

also seen in the ground state DFT calculations shown in earlier sections. Applying this kinetic

theory we can study the rate of field evaporation for this ion. The adiabatic potential energy

curves V0 for a variety of applied electric fields were calculated for the removal of CF3 from

the remaining polymer, seen in Figure 3.2, where the distance is between the carbon of the

evaporating CF3 and the plane normal to the reaction path, intersecting the terminal carbon
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of the remaining chain.

To proceed with the formalism presented above we must also calculate the first electron-

ically excited adiabatic state V1 and make use of the numeric solutions to wave functions of

the constructed diabatic states. Instead, to simplify the numerics W00 and W11 are found by

fitting a Morse potential and linear potential respectively to V0, seen in Figure 3.3. In doing

so the wave functions of both diabatic potentials are known analytically. The transition of
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Figure 3.3: Diabatic potential energy functions W00 and W11 found through fitting the adi-
abatic curve V0 of Figure 3.2 at 0.8V/Å.

interest for field evaporation is then from a given bound state of W00 to a free state of W11.

3.2.2 The potential energy of a neutral species W00

For a neutral species to evaporate from a surface in an applied field it must overcome its

own potential energy barrier given by W00. The species remains neutral before, during and

after field evaporation from this potential. On first glance, we would expect the depth of

the potential well seen by a neutral species in an applied field to become even deeper with

increasing applied field. This is because it becomes less likely for a neutral atom to evaporate,

as an ion would be favoured with increasing field strength. This is indeed a general trend,

however, under specific circumstances the reverse is true! A discussion of this will be given

in later pages, however, the expected trends are seen in Figure 3.4.

W00 is approximated as a Morse potential [25, p.73] [51, p.41,115],

W00(z) = A(e−2γ(z−z0) − 2e−γ(z−z0)) (3.2.1)

where the bound state wave functions ψn, normalized in position space
∫∞
−∞ dz ψ∗nψm = δnm,
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Figure 3.4: Morse fit to the region {0 ≤ z ≤ z0 |E ≤ 0} of the potential energy curve for the
field evaporation of the terminal CF3 group leaving the remaining perfluoro-decanethiolate
polymer adsorbed on Cu, applied fields of (0.0, 0.8, 1.0, 1.2)V/Å. Note the curve for 0.8V/Å
lay nearly atop that of 0.0V/Å.

are given analytically in terms of Generalized Laguerre polynomials14 Lα
n

ψn(z) =
√
γfn(ξ − ξ0), (3.2.2)

fn(ξ) =

√
n!(2σ0 − 2n− 1)

Γ(2σ0 − n)
(2σ0e

−ξ)σ0−n−1/2e−σ0e−ξ
L2σ0−2n−1
n (2σ0e

−ξ) (3.2.3)

σ2
0 =

2mA

�2γ2
(3.2.4)

with energies

En = −�
2γ2

2m
(σ0 − n− 1/2)2 (3.2.5)

14Laguerre polynomials are in general defined in terms of confluent hypergeometric function of the first kind
[53, p.509]

Lα
n =

(α+ 1)n
n!

M(−n, α+ 1, x)

=
Γ(n+ α+ 1)

Γ(α+ 1)n!
M(−n, α+ 1, x).

The explicit expression is given by [53, p.775],

Lα
n =

n∑
m=0

(−1)m
(n+ α)!

(n−m)!(α+m)!m!
xm, α > −1

which we can extend for non-integer α by introducing the gamma function which states for positive integer n,
Γ(n+ 1) = n!, hence

Lα
n =

n∑
m=0

(−1)m
Γ(n+ α+ 1)

(n−m)!Γ(α+m+ 1)m!
xm, α > −1.
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where {n = 0, 1, 2, . . . , Nmax| Nmax < σ0 − 1/2}, ξ = γz, ξ0 = γz0, z0 is the position of the

minimum of the potential well, A is the depth of the well and m is the adparticles mass.
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Figure 3.5: Bound state wave functions of W00, fit to the region {0 ≤ z ≤ z0 |E ≤ 0}
of V0, for the field evaporation of the terminal CF3 group leaving the remaining perfluoro-
decanethiolate polymer adsorbed on Cu at 0.8V/Å. The insert shows the wave functions for
the first five levels. The adiabatic potential energy V0 is shown as a dashed line, and W00 as
dash-dot line.

To fit the calculated adiabatic potential energy, V0, with a Morse potential we consider

only the section from z = 0 to z = z0. Doing a minimum search of V0, z0 and A are found,

then in the region 0 ≤ z ≤ z0 the error is minimized between V0 and the Morse potential to

find γ. For a single atom adsorbed on a surface, the location z = 0 represents the surface

plane and z = z0 the equilibrium distance. It is not essential to fit the Morse potential to

this entire range, in fact because we only wish to describe bound states we can simply fit the

range {0 ≤ z ≤ z0|E < 0}. The Morse potential fit to the adiabatic potential energy for the

field evaporation of the terminal CF3 group, leaving the remaining perfluoro-decanethiolate

polymer at 0.8V/Å, along with the bound state wave functions are shown in Figure 3.5.

3.2.3 The potential energy of ionic species Wnn, n > 0

The potential energy curve for a singly charged ion W11 and all diabatic potential energies

for ions of higher charge15 are given by the solution to a charged particle in a homogeneous

electric field Ẽ [25, p.74][47, p.45ff.]

Wnn(z) = −Fnz + c (3.2.6)

Fn = neẼ (3.2.7)

15W22,W33, . . .
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where Fn is the electric force on the ion of charge q = ne. The wave functions ψn, normalized

such that
∫∞
−∞ dz ψ∗nψm = δ(En − Em), are given in terms of Airy functions Φ

ψn(z) =
(2m)1/3

π1/2F
1/6
n �2/3

Φ(−ξ) (3.2.8)

Φ(ξ) =
1√
π

∫ ∞

0
cos

(
1

3
u3 + uξ

)
du (3.2.9)

ξ = (z + (E − c)/Fn)(2mFn/�
2)1/2 (3.2.10)

where m is the mass of the ion and E is its potential energy16. This is fit to the asymptotic

slope of the adiabatic potential energy V0. The charge of the evaporated ion is found by

inverting Fn where the electric field, an input for the calculation of V0, is known
17. Continuing

with the same data series as before, the linear potential fit for CF3 and ionic wave function

are given in Figure 3.6.
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Figure 3.6: Continuum wave function with energy −2.5 eV of the potential energy W11, fit to
the asymptotic slope of V0, for a singly charged CF3 group leaving the remaining perfluoro-
decanethiolate polymer adsorbed on Cu with an applied field of 0.8V/Å. The adiabatic
potential energy V0 is shown as a dashed line, and W11 as dash-dot line.

In the case, for example, where the evaporated species has a charge 2+, then the asymp-

totic slope will yield W22. W11 can still be found by letting F1 = eẼ, and fitting for c, this

can be seen in Figure 3.7.

The kinetic energy of the field evaporated ion is of interest when dealing with time of

flight spectrum. With the wave function of the field evaporated ion known the kinetic energy

is easily found, Tion = −�2∇2ψ/2m ∝ ∇2Φ(−ξ). Taking the second derivative in terms of z

16Not to be confused with the applied electric field Ẽ.
17The asymptotic slope should give a charge within 10% of an integer value, otherwise the calculation of V0

is either (1) suffering from some numerical issues or (2) V0 needs to be calculated at larger distances.
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Figure 3.7: Linear fit for both W11 where F1 = eẼ, and W22 given by the asymptotic slope.

we have

Tion ∝ zΦ(−ξ). (3.2.11)

At the point of field evaporation the neutral atom sitting in W00 is excited to a point on

the potential energy curve given by Wnn, hence z = (c − E)/Fn giving ξ = 0. Therefore, at

the point of field evaporation the escaping ion starts with zero kinetic energy, Φ(0) = 0, and

gains kinetic energy with time due to the acceleration by the applied electric field.

3.2.4 Diabatic transition potential energyW01, transformation angle θ, first

excited adiabatic state V1

Once V0 is calculated and both W00 and W11 are given through fitting all other requirements

can be found through simple algebraic manipulation. From the elements of (3.1.36) we can

solve for,

cos2(θ) =
W11(z)− V0(z)

W00(z) +W11(z)− 2V0(z)
(3.2.12)

V1(z) = W00(z) +W11(z)− V0(z) (3.2.13)

W10 = −[(W00 − V0)(W11 − V0)]
1/2. (3.2.14)

By definition in the limit of small distances (z → 0) V0 = W00, and in the limit of large

distances (z →∞) V0 = W11. W10 must therefore be only non zero in an intermediate region.

Spurious values at the edges of W10 may be present if: (1) the DFT calculation of V0 does not

have sufficient discretization; (2) the fitting procedure of W00 and W11 is not precise enough;

or (3) if the transition W10 is considered in the case of field evaporation of a larger ion charge

such as in Figure 3.7; these values must be set to zero. An example of the form of W10 is

given in Figure 3.8.
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Figure 3.8: Diabatic transition potential energy W10 for the field evaporation of terminal
CF3 group leaving the remaining perfluoro-decanethiolate polymer adsorbed on Cu with an
applied field of 0.8V/Å. V0 shown as dashed line.

3.2.5 Wave function normalization

It has been mentioned in an earlier footnote that Fermi’s golden rule (3.0.3) can only be

interpreted as a transition rate if the initial and final wave functions are normalized in position∫ ∞

−∞
drψ∗ψ = 1. (3.2.15)

This should be clear as the units of (3.0.3) would not be [s]−1 if this were not the case.

Because of this, all following formula assumed the wave functions to have this normalization.

In the case of the continuum ionic wave functions it is clear that this normalization

condition can not be applied because the ionic wave functions are only bound on one side

leading to a divergence in the integral. To deal with this normalization problem Z. W.

Gortel, H. J. Kreuzer and R. Teshima in [54] see also [51, p.115ff.], normalize continuum

wave functions of the Morse potential by imposing∫ L

−L
drψ∗ψ = 1, (3.2.16)

i.e. they normalize in a box of size 2L. This effectively places a hard boundary on the

right side. As they have noted this normalization cannot be done analytically. This box

normalization procedure is the typical method used in textbooks and the literature when

dealing with continuum wave functions.

Here, we wish to calculate a transition from a bound state in a Morse potential to a

continuum state of the linear potential. This again leads to the question of how to properly

normalize the un-bound wave functions. If we impose a hard boundary a similar box nor-

malization can be carried out as done by Gortel. The potential energy curve seen by the ion
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in this case would look like Figure 3.9.
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Figure 3.9: Wave functions of a triangular potential energy well given by Airy functions. βi
are the locations of the zeros of the Airy function which define the allowed states. As the
width of the well L gets larger, the allowed energy levels sink to lower energies while becoming
more closely spaced.
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Figure 3.10: Airy function representing the wave function of a particle in homogeneous
external field. βi are the locations of the zeros. The units of amplitude [A] depend on
normalization.

Imposing the infinite boundary destroys the continuum resulting in discrete energy levels.

For small L these energy levels are obvious as their separation is large. As the box and thus

L gets larger the spacing of allowed energy levels gets smaller and smaller, tending towards

a continuum. The general solution to the linear potential are Airy functions Figure 3.10,

ψ(z) = AΦ(−ξ), which become highly oscillatory for large z. The allowed wave functions

must vanish in the region to the right of the hard boundary. In principle this involves finding

all of the zeros, βi, of the Airy function. Then the allowed wave functions are Airy functions

such that βi resides at the position of the hard boundary, hence the enumeration i of the
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zeros of the Airy function also numbers the allowed energy levels. Finding the zeros of the

Airy function must be done numerically, then each bound wave function must be normalized

separately by numerical integration of this highly oscillatory function. Clearly, this is not a

desirable method if one is looking at more than a few states.

In general this method is required for small L as the presence of discrete states is impor-

tant. However, its implementation for large L is more than computationally problematic and

simply unnecessary.

A common normalization of unbound wave functions is∫ ∞

−∞
drφ∗E′φE = δ(E′ − E). (3.2.17)

Such a normalization condition can be imposed on the continuum wave functions of the

linear potential analytically, as done by Landau [25, §24]. Using wave functions with different

normalization conditions leads to a problem in (3.0.3) as noted above.

In the case where the initial bound state ψi is normalized via (3.2.15) and final continuum

state φf normalized via (3.2.17) the units of (3.0.3) would include energy18, [J · s]−1. To solve

this problem we simply integrate over all of the possible input energies

Ti =

∫
dE′

2π

�

∣∣∣∣∫ L

−L
drφ∗f (r;Ei + E′)Vfi(r;Ei)ψi(r)

∣∣∣∣2Δ(E′,Γi) (3.2.18)

where the choice of E′ determines the possible final energies Ef = Ei + E′ of the free ionic

states the particle can transition into.

We can justify this integration over energy with more than just a units argument. Consider

the transition rate between an initial bound state ψi of a Morse potential and a group of

final bound states ψf of the linear potential with a hard boundary enforced at L. All wave

functions are thus normalized via (3.2.16). The total rate is then a sum of transitions between

the discrete levels.

Ti =
∑
t

∑
f

2π

�

∣∣∣∣∫ L

−L
drψ∗f (r)Vfi(r)ψi(r)

∣∣∣∣2 δ(Ef − Ei − Et) (3.2.19)

where Et is some externally supplied energy to make the transition. If only a single energy

Et is supplied, than only a single term in the double sum will survive due to conservation of

energy seen in the term δ(Ef − Ei − Et). The sum can be written as an integral provided

there is a dense set of final levels Ef and transition energies Et such that transitions to a

group of densely spaced final levels is considered. Introducing dummy variables E and E′

Ti =

∫
dE′ gt(E′)

∫
dE gf (E)

2π

�

∣∣∣∣∫ L

−L
drψ∗f (r)Vfi(r)ψi(r)

∣∣∣∣2 δ(E − Ei − E′), (3.2.20)

18A delta function has units inverse to the argument. In this case it should be clear that φ normalized by
(3.2.17) has units [J · r]−1/2.
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where gf (E) is the density of final states given for discrete states as

gf (E) =
∑
f

δ(E − Ef ) (3.2.21)

and where the number of states between E1 and E2 is given by integrated density of states

Gf (E) =

∫ E2

E1

dE gf (E), (3.2.22)

and similarly gt(E) is the density of states for allowed transition energies.

Due to the normalization the allowed ionic wave functions are not only a function of posi-

tion but defined for a given energy and normalization distance hence, ψf (r) = ψf (r;Ef , L).

Similarly the density of allowed states in the ionic potential depends on the normalization

condition gf (E) = gf (E;L). As L increases the amplitude of ψf decreases for a given energy

as the absolute square integral must always equal unity (3.2.16). Also with increasing L the

integrated density of states Gf (E;L) for any given energy range E ± ε increases without

bound as the spacing of allowed levels decreases for a given energy.

Consider now the limit

lim
L→∞

gf (E;L)
2π

�

∣∣∣∣∫ L

−L
drψ∗f (r;E,L)Vfi(r)ψi(r;Ei)

∣∣∣∣2 δ(E − Ei − E′). (3.2.23)

Defining a new final state wave function

φ∗f (r;E,L) =
√

gf (E;L) ψ∗f (r;E,L) (3.2.24)

we have

lim
L→∞

∫ L

−L
dr φ∗f (r;E

′, L)φf (r;E,L)

= lim
L→∞

∫ L

−L
dr

√
g(E′;L) ψ∗f (r;E

′, L)
√
g(E;L) ψf (r;E,L)

= lim
L→∞

√
g(E′;L)g(E;L)

∫ L

−L
dr ψ∗f (r;E

′, L)ψf (r;E,L)

=

⎧⎨⎩∞ E = E′

0 E �= E′

= δ(E′ − E). (3.2.25)

Hence, the transition rate from a single bound state ψi normalized via
∫∞
−∞ drψ∗ψ = 1 to a
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range of continuum unbound states φf normalized via
∫∞
−∞ drφ∗E′φE = δ(E′−E) is given by,

Ti =

∫
dE′ gt(E′)

∫
dE

2π

�

∣∣∣∣∫ ∞

−∞
drφ∗f (r;E)Vfi(r)ψi(r;Ei)

∣∣∣∣2 δ(E − Ei − E′)

=

∫
dE′ gt(E′)

2π

�

∣∣∣∣∫ ∞

−∞
drφ∗f (r;Ei + E′)Vfi(r)ψi(r;Ei)

∣∣∣∣2 (3.2.26)

where the bounds of energy integration for energy E′ define the range of transition energies

allowed and hence the range in final energy states you wish to attempt a transition into. If

only a single transition energy is supplied, i.e. gt(E
′) = δ(E′−E0), this does not represent an

exact transition between two levels but rather a transition between the bound state ψi and

a band of continuum states {φf} of width dE in energy around Ei +E0. Checking the units

of (3.2.26), we see dE′ → [J], gt → [J]−1, � → [J · s], φ → [J · r]−1/2, Vfi → [J], ψ → [r]−1/2,
giving the units of T → [s]−1 as expected 19.

The above can be extended to the ion yield equation (3.1.53) giving

Y =

∑
i Ti exp(−Ei/kBT )∑
i exp(−Ei/kBT )

. (3.2.27)

The density of states gt(E) for transition energies can alternatively be thought of as spread

of the initial bound state level, due to phonons for example. Using earlier notation for

transitions of type i particles in state ν of the Morse potential to type j particles in state μ

of the linear potential.

Yji =

∑
ν

∫
dEμ tji(μ, ν) exp(−Eiν/kBT )∑

ν exp(−Eiν/kBT )
(3.2.28)

where

tji(μ, ν) =
2π

�

∣∣∣∣∫ dR η0∗jμ(R;Eμ)Wji(R)η0iν(R;Eν)

∣∣∣∣2Δ(Eμ − Eν ,Γiν) (3.2.29)

and it is understood that the normalization of the bound states of the Morse potential is given

by (3.2.15) and continuum states of the linear potential is given by (3.2.17). The spread of

the initial bound state level is given by the Lorentzian Δ(Eμ−Eν ,Γiν) where Γiν is the width.

3.2.6 Width of bound state levels and occupation

If we consider a potential well with discrete levels then the density of states will be a sum

of delta functions centred at the allowed energies. This gives an integrated density of states

that looks like a stair case, increasing in steepness as the spacing between levels deceases, as

shown in Figure 3.11.

19This mixing of normalization conditions is hinted at in [25, §43] and carried out, albeit for a different case
and condition than is presented here, in [25, §90].
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Figure 3.11: Left: Density of states (left), g(E); Right: integrated density of states, G(E),
for discrete bound states. Each level contributes a delta function to the density of states,
where the spacing between allowed levels becomes smaller as energy increases.

Due to the finite lifetime of a given bound energy level there is a natural width given by

Heisenberg’s uncertainty principle, ΔE ≈ �

Δt , meaning that energy levels are only considered

discrete if the width is much less than the spacing between levels, ΔE = Γ << Em − En.

These new broadened levels are expressed as a Lorentzian, seen in Figure 3.12, making the

density of states a smooth function of energy

g(E) =
∑
n

1

2π

Γ

(E − En)2 + Γ2/4
(3.2.30)

given in Figure 3.13.
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Figure 3.12: Lorentzian profile for the extent of a bound state energy level. This is the
density of states as a function of energy.

To calculate the level width, (3.1.51), we require a complete knowledge of the material

of interest, i.e. the field evaporation tip in this case. The purpose of the atom probe is to

measure this structure exactly, thus the three dimensional structure is not known a priori.
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Figure 3.13: Left: Density of states, g(E); Right: integrated density of states, G(E) =∫ E
−∞ dE′g(E′), for the bound states of CF3 at 0.8V/Å, where each level contributes a
Lorentzian with a width of 1 eV.

Assuming a theoretical crystal structure allows for the calculation to be carried out as done

in [2] for bulk phonon modes for helium on tungsten, xenon on tungsten is also covered in

[51][55]. For larger molecules, the bound-bound transition rates required to know the level

width Γ have not been calculated exactly. A value of 1eV is taken as a constant across all

calculations. This source of error can be corrected with careful calculation, as will be done

in future work. For now, the parameter Γ is a source of question, however, its impact is

predictable and does not change the trends in ion yield, only the order of magnitude shown

here20.

3.3 Field evaporation of polymers

Starting with the species predicted by our ground state DFT calculations, CF3, the adiabatic

potential energy curves V0 for a variety of applied electric fields were calculated. These curves

have been shown earlier for the single copper atom base model, Figure 3.2. The phenomenon

of electrostriction is evident when looking at the depth of the minimum of these curves. For

this we can also look at the depth of the diabatic potential energy curves for the neutral

species, W00, given by the Morse potential energy fit. As noted earlier we would expect that

with increasing applied field the depth of W00 would increase as it becomes less likely for

a neutral species to field evaporate. In the case of perfluoro-decanethiolate it was shown in

earlier DFT calculations that due to the electronegativity of the fluorine groups the polymer

first compresses in fields below 0.6V/Å. This compression increases the force of repulsion

20The transition rates for exact initial and final levels will be in error as the allowed final states are strongly
dependent on Γ. Here, we are interested in the ion yield which involves an integration over the individual
bound state transitions. Hence this effect does not carry through, changing Γ results in a simple shift in
the graph of yield verses temperature. Note this argument only holds where the level width’s dependence
on temperature is weak. This is only true at low temperature. The level width becomes more dependent on
temperature as it increases which can change the ion yield trend.
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E
n
er
g
y
[e
V
]

0 0.2 0.4 0.6 0.8

Field [V/Å]

Figure 3.14: Left: W00 in the region of the minimum for the field evaporation of the terminal
CF3 group leaving the remaining perfluoro-decanethiolate polymer adsorbed on Cu, applied
fields of (0.0, 0.2, 0.4, 0.6, 0.8)V/Å. Right: The minimum of W00 as a function of applied
field.

between atoms thus the overall potential energy of the system is larger. We can see from

Figure 3.14 that the depth of W00 decreases until 0.6V/Å where it begins to increase again,

this turning point is where compression of the polymer stops and stretching begins. The

increase in potential energy due to compression makes it more likely for neutral species to

field evaporate. This trend is solely due to the compression in low applied fields.

When a neutral particle is ionized it makes a transition from a position in W00 to W11.

If we consider the ground state transition as shown in Figure 3.15 the particle sits in the

minimum of W00. Bound tightly by its walls it vibrates back and forth in a small region

shown by its wave function. In this ionization process the maximum transition rate from the

ground state is to a final potential energy state directly above the peak in the ground state

wave function. A plot of the ground state wave function of W00 and the wave function of

W11 for which this maximum transition rate occurs are shown in Figure 3.15, along with a

plot of the transition rate as a function of final potential energy for the field evaporation of

the terminal CF3 from perfluoro-decanethiolate on Cu at 0.8V/Å. The created ion has zero

kinetic energy at this point which was shown earlier. The ion is however accelerated by the

applied electric field, thus gains kinetic energy with time.

It should be clear from (3.2.29) that the maximum transition rate occurs when the product

of the bound and ionic wave functions withW10 is largest. Because of this product, transitions

to regions where one of these three functions is zero are zero. Transition rates from higher

levels in W00 show a similar form to that of the ground state, however change in magnitude

and become further modulated by the oscillatory nature of the wave functions of the higher

bound states.

To calculate the time of flight spectrum the position of the detector must be known. When

ionization occurs, the position of the ion in space is determined by the final energy state in

W11 to which the transition is made. The starting point of the ion in space is therefore at
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Figure 3.15: Right: Transition rate t10(μ, 0) from the ground state of W00 to a final energy
state μ of W11 for the field evaporation of the terminal CF3 from perfluoro-decanethiolate
on Cu at 0.8V/Å. The maximum transition rate from the ground state is to a final energy
state in W11 of −1.82 eV. Left: Wave functions and potentials involved in this transition rate
from the ground state.

some point along the line W11. Because the starting kinetic energy of the ions is zero the

spread in the measured time of flight spectrum is determined by the range in final potential

energy states of W11 for which a transition is made. As an example if the position of the

particle when ionization occurs is z = c−Eμ/F , the time of flight is then given by t =
√
2D/a

where D = d− z is the distance the ion must travel to hit the detector at d and a = F/m is

the acceleration of the ion by the applied electric field. Equivalently, one can simply plot the

ion yield as a function of the final potential energy state in W11.

In this case, the transition rate t10(μ, 0) from the ground state of W00 as a function of

final potential energy Eμ in W11, shown in Figure 3.15, is visually identical to the ion yield

as a function of Eμ at temperatures in the region of 50K and below as only the ground state

is significantly occupied. Looking at (3.2.28), if only the ground state is occupied than the

exponential terms drop out leaving

Y10 =

∫
dEμ t10(μ, 0) (3.3.1)

hence the total ion yield here is simply the integral of the curve shown in Figure 3.15.

A surface map for the transition rate t10(μ, ν) plotted beside the maximum transition

rate for each bound level ν of W00 is shown in Figure 3.16 for the same CF3 model. The

maximum transition rate occurs between the initial and final states corresponding to the

energy for which W00 = W11 which in this case is −2.7 eV as seen in Figure 3.16. Transition

rates from these high bound levels do not come into play at realistic temperatures as they

are not occupied. In fact, with a difference in energy of ΔE10 = 0.03 eV between the ground

state and first excited state of W00 for this model, temperatures in the region of 350K would
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Figure 3.16: Left: Surface map for the transition rate t10(μ, ν) for the field evaporation of
the terminal CF3 group leaving the remaining perfluoro-decanethiolate polymer adsorbed on
Cu at 0.8V/Å. The maximum transition rate for each bound level ν of W00 is highlighted
by the overlaid red line. Right: The maximum transition rate t10(μ, ν) for each bound level
ν of W00.

be required to allow significant occupation of the first excited vibrational state. Hence, for

temperatures below this value ion yield is exclusively a result of ionization from the ground

state, i.e. no temperature dependence.

Because only the ground state is significantly occupied, the ion yield is severely dependent

on the Morse potential energy fit W00, specifically the location of the minimum. This should

be clear as the transition rate (3.2.29) depends on the product of W10 with the wave functions

of the bound W00 and free ionic W11 respectively, where only the ground state of W00 is

relevant. If the process of interest is thermally activated than this becomes less apparent

as more of the bound levels become occupied and the ground state becomes less important.

Here, the accuracy and discretization in the calculation of V0, from which W00 is found, is of

utmost importance. Slight shifts in the position of the minimum will not lead to a change in

the trend of the final result but will change the order of magnitude.

The maximum transition rate follows the leading peak of the bound state wave function

of W00, i.e. the maximum transition rate will occur to a potential energy level in W11 directly

above this peak. This makes sense as the leading peak of the bound state wave function is

the largest, see for example η100 in Figure 3.5. At a point after, but in the region of the

W00 = W11 crossing, the maximum transition rate occurs between levels of the same energy.

This is seen in Figure 3.16 where the maximum transition rate t10(μ, ν) is highlighted in

red and there is a discontinuous jump at −1.7 eV. This line Eμ = Eν is a result of energy

conservation, all transitions where Eμ �= Eν would not occur if the bound levels of W00 were

infinitely sharp as discussed earlier. The fluctuation seen in Figure 3.16 for the region where

the maximum transition occurs for Eμ = Eν is a result of the calculation. Less care was

taken in the calculation of this section due to its irrelevance in the process of interest.
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To compare the ion yield of a variety of possible field evaporated species the same model

must be used. Here field evaporation of CF+
3 , C2F

+
5 and C3F

+
7 will be compared, in this

case all from the remaining perfluoro-decanethiolate polymer adsorbed on Cu3 to allow a

slightly larger electron sink for the larger species. Note in this case we are not looking at

successively field evaporated species. Rather, we comparing the rates of possible evaporated

species that are first to leave the complete chain. In other words, for the field evaporation

of CF3 the remaining chain is (CF2)7(CH2)2S − Cu3 and for the field evaporation of C2F5

the remaing chain is (CF2)6(CH2)2S −Cu3 etc.. For each species, a different V0 in a variety

of applied electric fields must be calculated, and for each of these curves the corresponding

diabatic potentials are constructed.
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Figure 3.17: Ion yield for the field evaporation of the terminal CF3 group leaving the remain-
ing perfluoro-decanethiolate polymer adsorbed on Cu3 enforcing F = qẼ, q = 1.0e.

Plotted in Figure 3.17 is the ion yield as a function of inverse temperature for the field

evaporation of CF3 at 0.8V/Å and 1.0V/Å. The temperature ranges from 50K − 2000K,

lower temperatures are not plotted as the yield is constant. The ion yield in the experimen-

tally valid low temperature region is a constant as only the ground state of W00 is occupied.

As the temperature increases there begins to be thermal excitation which leads to the oc-

cupation of higher energy levels in the bound state and thus easier field evaporation. As a

result, the ion yield is larger for higher temperatures. It is also clear from this graph that

there is a significant difference in the ion yield for different applied electric fields especially

in the temperature region around 50K, in this case being five orders of magnitude difference

between 0.8V/Å and 1.0V/Å.

The peak temperature of the atom probe tip in the experiment was estimated to be 200K

during the short laser pulses used to initiate field evaporation [1]. This temperature would

allow for occupation of the first excited vibrational level in W00 leading to the start of depen-

dence on temperature. An investigation into the nature of laser interaction with insulating

materials [20] showed that the laser pulses provided a dominant electronic excitation and

not a thermal excitation with dielectrics in atom probe experiments. In this case, the laser
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pulse would not directly heat the SAM but the underlaying metal bulk. The SAM would

take a longer time, on the order of picoseconds, to become thermally activated, by this point

the metal bulk would have conducted the majority of heat away. This finding suggests that

the SAM would remain in the region for which the yield is independent of temperature. An

explicit implementation of laser interaction would be the next step in development for this

theory.
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Figure 3.18: Ion yield for the field evaporation of the terminal CF3/C2F5/C3F7 groups leaving
the remaining perfluoro-decanethiolate polymer adsorbed on Cu3 enforcing F = qẼ, q = 1.0e
at 0.8 (left) and 1.0V/Å (right).

Moving on to the final comparison, Figure 3.18 shows the ion yield of different field

evaporated species from the complete perfluoro-decanethiolate polymer. As expected it is

more difficult to field evaporate a larger molecule; this is seen especially at the lower applied

field of 0.8V/Å. Interestingly, there is a large increase in yield for both C2F
+
5 and C3F

+
7

when the applied field is increased to 1.0V/Å. Yield at 50K for CF+
3 and C2F

+
5 are within an

order of magnitude which should be the case as both of these species are seen experimentally

in this applied field region [1]. In the same scenario, the yield of C3F
+
7 is three order of

magnitude smaller, and was not reported in the experiment.

3.4 Summary

The Kinetic theory of field evaporation first developed for metals by Kreuzer et al. [2] was

applied to the field evaporation of perfluoro-decanethiolate. The field evaporation of this

polymer was shown to not be a thermally activated process in the experimental temperature

region around 50K. Ionization occurs directly from the ground state of the diabatic potential

W00 as a result of electron tunnelling from the evaporated species to the bulk. At the point

of ionization the ion has zero kinetic energy and is accelerated away from the bulk by the

applied electric field. The interesting phenomenon of electrostriction was also reflected in the
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depth of the Morse potential energy curves W00 fit to the calculation of the adiabatic energy

curves V0 for the field evaporation of CF3.

Unlike the ground state density functional calculations of field evaporation this theory

allowed for a comparison between possible field evaporation species. The comparison given

here was between CF+
3 , C2F

+
5 and C3F

+
7 . The most probable field evaporated species was

CF3, agreeing with the DFT calculations of previous sections. The yield of the second

most probable species C2F5 was within an order of magnitude of CF3 which agrees with the

experiment to the extent that these two species are seen evaporating in the same field region.

Finally, the yield of C3F7 fell three orders of magnitude behind.

It is this comparison between species that makes this theory appealing in conjunction with

the usual ground state density functional calculations. The most probable species given by

the earlier DFT calculations was confirmed by this theory. Furthermore, this kinetic theory

gives us a comparison between the rate of field evaporation of other species, which cannot

be had from the earlier calculations. This provides us with an understanding not only of the

most likely species but other less probable but in some cases still significant species.
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4. Conclusion

Perfluoro-decanethiolate as a single polymer was studied using time independent density

functional theory. The first point of interest is the possible field evaporated species. These

species are given experimentally with the use of mass spectrum data, and hence theoretical

calculations of such species provides an initial check of the model. The simple model of a

single polymer chosen here showed agreement with initial field evaporation namely CF3/C2F4,

however began to deviate in the later stages of field evaporation. Larger species seen in

experiment such as SC9F4 where not seen in this model and thus may be a result of bulk

interaction not included here.

The HOMO/LUMO gap was shown to decrease with increasing applied electric field,

agreeing with current research on insulating and semiconducting materials in high electric

fields. Other interesting trends such as electrostriction and precursors to field evaporation

such as changing dipole moment were also studied. In the case of electrostriction, perfluoro-

decanethiolate was compressed in low applied fields before stretching leading up to field

evaporation. This trend was closely linked to that of the dipole moment, which was initially

negative but was reversed at higher applied fields due to the induced charge separation.

This single polymer model is in no way exhaustive, however it provides a necessary starting

point for further investigation. The angle an individual polymer in a monolayer makes with

the underlaying metal surface is still an area of interest when an electric field on the order of

volts per angstrom is applied. Geometrical changes to the monolayer prior to field evaporation

would indeed have an effect on atom probe experiments, specifically sample reconstruction.

The model presented here is clearly lacking in the areas of surface and neighbouring polymer

interactions. Both of these interactions must be included in future studies to gain an under-

standing of bulk geometrical changes and shielding of the electric field. These interactions

would also alter the field evaporated species seen. Calculating field evaporation from larger

clusters of polymers is the next step in understanding this process. Increasing the size of the

cluster, calculated in the Gaussian09 software package, vastly increases the computational

effort. This effort quickly becomes unmanageable rendering Gaussian09 all but useless for

such large scale calculations. Instead, the use of periodic boundary conditions (PBC) could

be the next step for these calculations. It should be noted that in a PBC calculation the unit

cell must be chosen large enough such that the entire surface layer is not field evaporated at

once.

A significant improvement would be the introduction of time dependent density functional

theory (TDDFT). Improvements in this area are currently being lead by K. Watanabe and

his group at the Tokyo University of Science where their cutting edge research is introducing

laser interaction from first-principles, see for example [56–58]. Laser pluses are used to initiate

field evaporation in atom probe experiments, and this is a key interaction missing in the DFT
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models presented here. The use of such advanced techniques will lead to a more detailed look

at this small system and more realistic sized samples.

A kinetic theory of field evaporation based on Fermi’s Golden rule was used to complement

the initial DFT study of perfluoro-decanethiolate. This theory was shown to agree with

the most probable evaporated species given by DFT, namely CF3. Further information on

alternate evaporated species was also given along with dependence on temperature. The ion

yield provides a direct comparison to the rate of detection of ions in experiment, and was

shown to not be a thermally activated process in the experimental temperature region. This

theory not only provides new information on the field evaporation process but does so with

minimal computational effort. The most costly area is the computation of the ground-state

adiabatic potential-energy curves V0, via DFT. This however, takes a fraction of the time that

the DFT methods presented in the first section requires. Calculation of these V0 curves can

be done prior to any knowledge of the species seen in DFT. Once V0 is known, the yield can

be calculated. Ordering the species in terms of yield then provides the dominant evaporation

sequence.

Further work must be undertaken to include all factors involved in the field evaporation

process. The main point of interest aside from the use of larger DFT models in the calculation

of the adiabatic potential energy curves, V0, would be the implementation of laser interaction,

as noted above. The experimental field evaporation of perfluoro-decanethiolate was initiated

with the use of a pulsed laser. Although a recent study [20] suggested that the laser pulse

initiates field evaporation with a dominant electronic excitation, not thermal excitation, it

remains to be seen how this laser interaction affects the results of this theory. Introducing

an effective change in temperature due to this laser interaction would not change the present

development, however any electronic excitation must be added. An exact calculation of the

width of bound state energy levels should also be carried out. This should be done specifically

for the thermally activated region where the width becomes dependent on temperature.

The use of two different normalization conditions, for the wave functions of W00 and W11,

led to incredible computational savings that should be remembered when implementing this

method in future transition rate calculations. Although the ion yield was shown to be a result

of transitions from the ground state alone, in the experimental temperature region, future

implementation of laser interaction and a larger DFT model may change this. In the case

where thermal activation is relevant, there will be more than one bound level contributing

to the ion yield. This normalization method will show its merit even more as the number of

relevant levels increase.

This work has provided a starting point, which will most certainly lead to some interesting

physics. It should be clear that DFT, although broad in its applicability, is not the only theory

that can be employed to study field evaporation. The kinetic theory presented here was first

developed to look a the field evaporation of metals in 1990 [2] and is for the first time here

being used to look at field evaporation of polymers with intriguing results begging for a

followup.
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