
 
 

Predicting Olive-sided Flycatcher (Contopus cooperi) Breeding Habitats in Southwestern 

Nova Scotia Using LiDAR Metrics Informed by Drone Data. 

 

 

by 

 

Declan Burns 

 

Submitted in partial fulfillment of the requirements for the degree of  

Bachelor of Science in Environmental Science 

 

at 

 

Dalhousie University 

Halifax, Nova Scotia 

April 3rd, 2024 

 

Supervisor: Dr. Cindy Staicer 

 

 

 

 

©Copyright by Declan Burns, 2024 



i 
 

TABLE OF CONTENTS 

List of Tables ................................................................................................................................................ iii 

List of Figures ............................................................................................................................................... iii 

Abstract ....................................................................................................................................................... iv 

List of Abbreviations .................................................................................................................................... v 

Acknowledgements ..................................................................................................................................... vi 

Introduction .................................................................................................................................................. 1 

Motivation ........................................................................................................................................ 1 

Background ...................................................................................................................................... 1 

Summary of Literature and Knowledge Gaps .................................................................................. 2 

Introduction to the Study ................................................................................................................. 3 

Summary of Approach ..................................................................................................................... 4 

Literature Review ......................................................................................................................................... 5 

Context ............................................................................................................................................. 5 

Status and Conservation .................................................................................................................. 5 

Conservation Status and Protection ...................................................................................... 5 

Conservation Strategies ......................................................................................................... 6 

Protected Areas ..................................................................................................................... 6 

Anthropogenic Impacts .......................................................................................................... 7 

Habitat Conservation in the Context of Forestry ................................................................... 8 

Previous Habitat Studies in Nova Scotia .......................................................................................... 9 

Overview ................................................................................................................................ 9 

Habitat Characteristics ......................................................................................................... 10 

Habitat Modeling ........................................................................................................................... 11 

Previous Habitat Models for Nova Scotia ............................................................................ 11 

Filling in Knowledge Gaps .................................................................................................... 13 

Considering Foraging Ecology .............................................................................................. 13 

New Approaches to Modeling ............................................................................................. 14 

Methods ...................................................................................................................................................... 16 

Overview ........................................................................................................................................ 16 

Study Area ...................................................................................................................................... 16 

Sampling ......................................................................................................................................... 19 

Field Observations ............................................................................................................... 19 

Drone Imagery ..................................................................................................................... 19 



ii 
 

Analysis of CHMs ............................................................................................................................ 20 

Modeling Methods ......................................................................................................................... 22 

Maximum Entropy Modeling ............................................................................................... 22 

Environmental Data ............................................................................................................. 24 

Occurrence Data .................................................................................................................. 25 

Bias Layer ............................................................................................................................. 25 

Reverse Stepwise Elimination .............................................................................................. 26 

Model Evaluation ................................................................................................................. 26 

Results......................................................................................................................................................... 29 

Analysis of CHMs ............................................................................................................................ 29 

Assessing the Relationships of Variables ....................................................................................... 31 

Final Inputs for the Model.............................................................................................................. 31 

Model Results ................................................................................................................................. 32 

Discussion ................................................................................................................................................... 36 

Conclusion .................................................................................................................................................. 40 

References .................................................................................................................................................. 42 

APPENDIX A: THE DISTURBANCE EXPERIENCED BETWEEN COLLECTION DATES OF THE DRONE AND 
LIDAR DATA AT EACH SITE ......................................................................................................................... 52 

APPENDIX B: CREATION OF MAXENT GIS INPUT LAYERS ......................................................................... 53 

APPENDIX C: EXTENDED DATA TABLES FOR DRONE AND LIDAR CHM ANALYSIS .................................... 56 

 

  



iii 
 

List of Tables 

Table 1: List of the 12 sites across the province where the 19 transect surveys and drone 

imagery were collected for this study. The table shows how many transects were conducted at 

each site (representing the number of individual OSFL territories at each site)..........................17 

Table 2: List of input variables for the MaxEnt habitat suitability model, their source, and the 
rationale for including them in this study.....................................................................................23 

Table 3: Change in canopy cover area in the LiDAR CHMs after being standardized to the drone 
CHM canopy area at each of the 19 sites.....................................................................................29 

Table 4: Mean measurements of variables across the 19 sites and the correlation analysis results 
for the six metrics assessed between the drone and LiDAR CHMs...............................................30 

Table 5: Results of the reverse stepwise elimination trials for determining the best fit model...33 

Table 6: The covariates used in the final best fit model and their percent contribution (i.e. to 

training gain), permutation importance, and response curves. The y axis of all response curves 

represents relative habitat suitability, where suitability increased from 0 to 1............................33 

Table 7: Amount of suitable habitat in the Kespukwitk area after applying the MaxSS threshold 

with additional minimum area sizes for groupings of “suitable” pixels........................................35 

 

List of Figures 

Figure 1:  Map of study sites where transect surveys and drone imagery were collected in Olive-

sided Flycatcher (Contopus cooperi) habitat across Nova Scotia. Delineated with blue is 

Kespukwitk, the areas that this study’s habitat model will represent..........................................17 

Figure 2: Photos of six sites where transect surveys were conducted, showing the range of forest 

types and the structural variability of Olive-sided Flycatcher habitat across the province. Photos 

taken from McBeath (2023), except for the Twin Lakes Burn image take by D. Burns.................18 

Figure 3: Flow chart outlining the input and output products, actions, and associated 

considerations for each step needed to complete the study........................................................20 

Figure 4: Kernel density maps showing the relative density of survey locations where people 

conducted surveys for the OSFL, with darker areas representing higher point densities. The 

kernel density was used as a bias layer to account for spatial bias with the occurrence data in 

training the MaxEnt model...........................................................................................................32 

Figure 5: Species occurrence data overlayed on top of the MaxEnt output heat maps of relative 

habitat suitability for the Olive-sided Flycatcher...........................................................................34 

Figure 6: Binary habitat suitability maps created by applying the MaxSS threshold (0.4638) for 

the Olive-sided Flycatcher, showing suitable habitat in green and non-suitable habitat in grey..35 



iv 
 

Abstract 

The Olive-sided Flycatcher (OSFL) is a migratory species at risk bird, currently listed as 

“Threatened” in Nova Scotia, and “Special Concern” federally. The strategy to promote the 

recovery of OSFL population is expected to revolve around protecting existing breeding habitat 

as soon as these locations are found. Two studies have previously modeled OSFL habitat in Nova 

Scotia using tree-stand level input layers which makes it impossible to identify the within-stand 

characteristics used by the bird when choosing their habitat. These characteristics of fine-scale 

forest structure are closely tied to their foraging strategies and are the main driver determining 

OSFL occupancy rates in these habitats. The goal of this study is to use high-resolution drone 

imagery to inform LiDAR metrics as inputs for a model that predicts OSFL breeding habitat 

locations in Nova Scotia. The canopy height models (CHM) for the two data types were 

compared at 19 known OSFL habitat sites across the province by assessing tree spacing, canopy 

cover, and the vertical heterogeneity of the treetops to determine which LiDAR metrics can show 

the within-stand characteristics of OSFL habitat. A correlation test identified three metrics in the 

drone CHM that could be comparatively measured in the LiDAR CHM: canopy cover and the 

mean and standard deviation of tree heights. These metrics were then used as inputs for a 

Maximum Entropy (MaxEnt) model alongside other environmental layers important for 

characterizing OSFL habitat. MaxEnt created a predicted distribution of the species from 

occurrence data and the environmental input layers to identify where habitat with similar 

environmental characteristics could occur. After each run of the model, the performance of each 

input covariate was assessed, and the worst performing covariate was removed before the model 

ran again. This process was repeated until the best fit model was identified. The final model 

consisted of four environmental covariates used to predict OSFL habitat locations: proportion of 

canopy cover, distance to wetlands, mean canopy heights, and distance to spruce stands. The 

model performed comparatively well to previous predictive habitat models for the OSFL and 

identified 48.90% of the Kespukwitk area as being suitable habitat for the OSFL. The results 

showed the importance of capturing the variation within the OSFL’s habitat for predicting habitat 

locations, evident by the LiDAR-derived covariate measuring the proportion of canopy cover 

performing better than all other covariate used in any model predicting OSFL habitat in Nova 

Scotia. Locating where these habitats occur throughout the province is crucial to inform where 

recovery strategies would be most effectively implemented to protect the OSFL Atlantic 

population.  

 

Key Words: LiDAR Canopy Height Model; MaxEnt; Olive-sided Flycatcher; predictive habitat 

model; within-stand variability 
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Introduction 

Motivation 

Aerial insectivores are experiencing the most drastic declines in population among land 

birds in Canada, primarily due to changing land use and decreasing insect populations (NABCI, 

2019). With increased land-use changes in breeding and non-breeding habitat for bird species, 

continued declines in bird populations are to be expected (Zhao et al., 2019). One insectivore 

species in decline is the Olive-sided Flycatcher (OSFL), whose population has experienced a 

significant cumulative decline of 72% since 1970 (COSEWIC, 2019). Studies have shown 

habitat loss and degradation from anthropogenic impacts are the main threats to the OSFL 

(NSDLF, 2021). To effectively aid the recovery of the OSFL in Nova Scotia, a 2021 recovery 

plan emphasized the need to protect their current breeding and nonbreeding habitats (NSDLF, 

2021). The identification of potential breeding habitats across the province is considered an 

essential component for the recovery of this species (NSDLF, 2021) yet, to date, attempts to 

identify OSFL breeding habitat in the province have been limited. 

Using provincial LiDAR data, informed by proprietary drone data, I aim to create a 

model to identify the desirable characteristics of the known OSFL breeding habitats, and to 

predict additional potential breeding habitat locations in the Kespukwitk area of southwestern 

Nova Scotia. Previous OSFL habitat models in the province have not considered the bird’s 

foraging ecology, and I anticipate that this fine spatial resolution data will help to identify within-

stand features that are important to the species. The resulting identification of potential breeding 

habitat locations throughout the province can then be used to inform conservation techniques and 

prevent habitat degradation caused by anthropogenic activities.  

 

Background 

The OSFL is a medium-sized migratory bird that breeds primarily in forested Canada and 

overwinters in South America (COSEWIC, 2019). The species has faced substantial long-term 

population decline (COSEWIC, 2019; Altman & Sallabanks, 2020); however, the rate of decline 

has slowed in Canada over the past decade, which has resulted in a recent downgrade of their 

national Species at Risk (SAR) status to “Special Concern”, based on recommendations in the 

COSEWIC 2018 report (Government of Canada, 2023; Parks Canada, 2023). Nova Scotia 
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represents only a small portion of the OSFL’s breeding range, where their breeding season 

extends from mid-May to mid-August (COSEWIC, 2019), and where their provincial SAR status 

remains as “Threatened” (Government of Nova Scotia, n.d.-b).  

With the OSFL population on decline, the conservation of their habitat is vital to promote 

the recovery of the species (NSDLF, 2021), especially in areas where large portions of habitat are 

at risk of being lost or degraded (NSDLF, 2021). In general, conifer swamps are considered good 

habitat in the eastern portion of the OSFL’s range (Westwood, 2016), but these are understudied 

habitats in Nova Scotia (Government of Nova Scotia, 2011). 

Two published models have attempted to locate OSFL breeding habitat in Nova Scotia by 

mapping environmental characteristics of the bird’s preferred habitat (Westwood et al., 2019; 

Bale et al., 2020). Neither of these studies considered the variability of fine-scale forest 

structures within habitats, although, these characteristics are believed to be the driving factor for 

determining occupancy rates for OSFL habitat (Hack et al., 2023). The development of the fine 

spatial resolution remote sensing technology, Light Detection and Ranging (LiDAR), has 

revitalized studies of forest inventory and ecological research, and is especially useful for habitat 

studies of flying vertebrates (Jaime-González et al. 2017).  

 

Summary of Literature and Knowledge Gaps 

In 2021, a 5-year recovery plan was adopted for the OSFL in Nova Scotia (NSDLF, 

2021). The only recovery technique identified was to implement the Precautionary Principle; 

however, the report acknowledged gaps in existing OSFL habitat data in the province that 

prevented the implementation of more specific recovery strategies (NSDLF, 2021). The report 

suggested that the main recovery techniques in the future would revolve around protecting 

existing breeding habitat essential for OSFL survival once it was known where these habitats 

occur (NSDLF, 2021). 

Several habitat studies have characterized OSFL breeding habitat in Nova Scotia 

(Westwood, 2016; Staicer, 2017; Simai, 2019; McBeath, 2023). These studies identified the 

environmental features such as wetness, topography, and specific tree-species that are 

characteristic of OSFL habitat (Westwood, 2016), alongside crucial within-stand features that 
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show the fine-scale forest structures such as spacing between trees and emergent perches above 

the surrounding canopy (McBeath, 2023).  

The results from the Westwood 2016 study informed two models that previously sought 

to identify OSFL habitat within the province. Westwood et al. (2019) predicted population 

density and distribution of the OSFL by comparing occurrence points to wetness and forest cover 

variables derived from remote sensing data to characterize OSFL habitat. In the second model, 

Bale et al. (2020) used maximum entropy modeling (MaxEnt 3.3 software) to predict OSFL 

habitat in Nova Scotia based on the Forest Inventory Data (FID) that provides single 

measurements for stand attributes. 

A general critique of OSFL habitat models is that they do not use input data that can show 

the within-stand variability of forest habitats that are important for the species, causing these 

models to be less effective than species distribution models for other species (Betts et al., 2022). 

Both the Westwood et al. (2019) and Bale et al. (2020) models were limited in this regard due to 

the data that could show the finer-scale variability being unavailable at the time.  

 

Introduction to the Study 

 The goal of my study is to create a model that can more effectively predict OSFL 

breeding habitat in Nova Scotia. The identification of potential breeding habitat in the province 

will be essential for the recovery of the species (NSDLF, 2021) since it will inform where to 

apply conservation techniques and prevent habitat degradation caused by anthropogenic 

activities. This study will differ from previous OSFL habitat models by using LiDAR data to 

characterize the variability within these habitats. Habitat characteristics measured with drone 

data will inform the selection of LiDAR metrics that are used as inputs. It is expected that using 

drone imagery to analyze breeding habitat characteristics will allow for the inclusion of within-

stand features, such as the spacing of trees and diverse canopy structures as inputs for the model 

to create a more accurate prediction of OSFL breeding habitat in Nova Scotia. However, the use 

of the 1m spatial resolution LiDAR data required a large amount of storage space to create the 

input layers; therefore, my final predictive model was restricted to the Kespukwitk area of 

southwestern Nova Scotia.  
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Summary of Approach 

A two-step approach was used in this study to first identify which fine-scale forest 

structure metrics could be identified using provincial LiDAR data, and then using those metrics 

alongside other environmental data as inputs for a species distribution model to characterize 

OSFL habitat and predict additional potential locations. The project involved analysis of known 

OSFL breeding habitats in order to predict the location of additional breeding areas, focusing on 

19 OSFL breeding sites around Nova Scotia where high-resolution drone imagery was collected. 

The use of drone data provided sub-meter spatial resolution data that allowed us to quantify 

variation within the territories to identify specific tree metrics such as density, canopy cover, 

height, and canopy surface roughness (i.e., rugosity), while also providing elevation 

measurements for which a canopy height model (CHM) can be produced. The observations from 

the drone data were then compared to features in the provincial LiDAR data for the same sites to 

determine to what extent the LiDAR data can detect metrics of within-stand forest features, 

irrespective of stand boundaries. The identified metrics were then used as inputs for a species 

distribution model. 

This Geographic Information System (GIS)-based model used LiDAR data from the 

Nova Scotia government’s opensource data catalogue (Government of Nova Scotia, 2023). The 

benefit of using LiDAR data is that it allows for measurements of canopy height and density 

which are important features of OSFL habitat (Westwood, 2016). It also provides information 

that the Forest Inventory Data (FID) does not have, such as more current measurements and the 

data to calculate within-stand variability of forest stands. LiDAR data was used for the model 

because it provided fine spatial resolution data already available for the model area, where drone 

imagery is not available at larger scales. 
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Literature Review 

Context 

This literature review will explore the current state of research related to the OSFL within 

its breeding range across Canada and into western United States (Altman & Sallabanks 2020) 

and its relevance to predicting breeding habitat in Nova Scotia. Although OSFL habitat is 

generally similar, the climate and disturbance regimes differ across its range (Kotliar and 

Melcher, 1998; Westwood, 2016). I will discuss the status and conservation of the OSFL in Nova 

Scotia, including the anthropogenic impact to the species and how we can minimize adverse 

affects. I will then review the various habitat studies done for the eastern population of OSFL. 

Lastly, I will discuss the use of habitat models to help identify breeding habitat locations around 

the province, and how new approaches to modeling can further conservation.  

 

Status and Conservation 

Conservation Status and Protection 

The OSFL is a migratory bird, inhabiting Nova Scotia during its breeding season from 

mid-May to mid-August (COSEWIC, 2019). The species has faced long-term population decline 

at a significant rate of 2.8% mean annual decline from 1989 to 2016, and a cumulative decline of 

72% since 1970 (COSEWIC 2019). However, the rate of decline has slowed in Canada over the 

past decade, causing their national Species at Risk (SAR) status to recently be downgraded from 

“Threatened” to “Special Concern” (Government of Canda, 2023; Parks Canada, 2023), but the 

species still retains their “Threatened” SAR status in Nova Scotia (Government of Nova Scotia, 

n.d.-b). With this downgrade in status, the OSFL is still considered a SAR, just not one with a 

status that requires identification of critical habitat at the national level; however, the Province is 

required to designate core habitat (SARA, 2002). One of the main pieces of legislation protecting 

the OSFL is the Migratory Birds Convention Act (MBCA), a treaty signed with the United States 

of America as a joint effort to protect migratory birds that appear seasonally in both countries 

(ECCC, 2017). The MBCA protects most species of birds in Canada and is currently the only 

federal policy in place to protect SAR birds (MBCA, 1994). Unfortunately, the MBCA is rarely 

enforced, and the lack of prosecution suggests that the act has not been effective at protecting 

Canada’s birds (Cheskey, 2020). Therefore, more must be done. 
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Conservation Strategies 

With the OSFL population decreasing in Canada, governments have stepped in with 

conservation measures to help stem the decline and promote recovery. In 2016, the Canadian 

government published a recovery plan that was adopted in 2021 by the Nova Scotia Department 

of Lands and Forestry for a five-year period (NSDLF, 2021). Due to the lack of knowledge as to 

where OSFL habitat is located around the province, the recovery plan was unable to provide 

meaningful strategies to help promote the recovery of the OSFL in Nova Scotia. The report is 

useful in aggregating the current state of knowledge of the species and identifying gaps in our 

knowledge that prevent more effective recovery strategies from being implemented. The 

“precautionary principle” was the only strategy recommended in the report, and future 

conservation and recovery of the species is expected to revolve around protecting current 

breeding and non-breeding habitats, once the locations are identified (NSDLF, 2021).  

 

Protected Areas 

Habitat is a limiting factor for the OSFL; however, it is unknown to what extent breeding 

habitat vs non-breeding habitat is limiting (NSDLF, 2021). Because the OSFL is a migratory bird 

that overwinters in South America, it has been hypothesized that populations are affected mostly 

by loss or alterations of habitat in wintering grounds, but no work has been conducted to 

examine this (Altman & Sallabanks, 2020). Regardless, adequate breeding habitat must be 

conserved to ensure species recovery, and given the rate of population decline in the eastern part 

of the OSFL range, conservation in the Maritimes may be important for sustaining the species’ 

existing range (Westwood, 2016). Efforts to reduce species decline often include habitat 

conservation or establishment of protected areas in potential breeding habitat (Kerr & Cihlar, 

2004). In Nova Scotia, provincial protected areas are established to preserve ecologically 

important habitat for biodiversity, but they are designated based on remoteness, rarity, species 

richness, restoration potential, and connectivity potential (Province of Nova Scotia, 2013). They 

are not established specifically for the conservation of SAR. National parks alone are insufficient 

to maintain viable regional populations since only 1.2% of the estimated eastern OSFL 

population is found in national parks (Westwood, 2016) and almost 70% of Nova Scotia is 

privately owned land (Government of Nova Scotia, n.d.-a).   
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Anthropogenic Impacts 

Anthropogenic activity such as forest silviculture poses one of the biggest threats to 

OSFL breeding habitat in Canada (NSDLF, 2021). Canada is one of the few places retaining 

extensive tracts of forests, yet with ongoing habitat loss, the rates of species endangerment are 

similar to other countries in the Americas (Kerr & Deguise, 2004). Although new silviculture 

guidelines in Nova Scotia avoid harvesting in forested wetlands on Crown lands (McGrath et al., 

2021), throughout the OSFL’s range, forested wetlands have experienced historical pressure from 

the forestry sector and climate change that decreased the availability of these habitats (CCFM, 

2023), with ~18% decline of OSFL habitat over 35 years in eastern Canada (Betts et al., 2021). It 

has been hypothesized that habitat destruction through wetland loss and forestry activities on 

breeding grounds are a cause of population decline (Riordan et al., 2006). In addition, it is 

suggested that songbird communities may be especially sensitive to the changes in landscape 

structure caused by forest harvesting practices (Taylor & Krawchuk, 2005). A report from the 

Nova Scotia Department of Natural Resources (2017) discusses how most of the silviculture on 

Crown land has been clear cutting and that the province required the regeneration of forests to be 

managed or planted to produce “optimal stocks” (i.e., typically soft-wood species as they 

produce the highest yield). This has resulted in an even-aged coniferous forest composition 

within stands across the province (NSDNR, 2017) that may negatively affect OSFLs (Kotliar, 

2007). These changes to age-class and forest composition impact the forest structure and 

demonstrate how habitat degradation can be more impactful than loss of habitat as the main 

driver for avian population declines (Betts et al., 2021).  

There have been numerous studies that report positive numerical responses from OSFLs 

to some type of harvested forest (Altman & Sallabanks, 2020). But in the west, OSFLs have been 

shown to be less abundant or absent in harvest units, particularly clear cuts, due to lack of cover 

(Kotliar, 2007). One study in Nova Scotia identified that habitat occupied by OSFLs did not 

differ between recently harvested or unharvested sites, suggesting that features can be retained in 

managed forest landscapes (Westwood, 2016). However, there are concerns about creating 

ecological traps, where habitats aesthetically mimic desirable features, but not the fundamental 

quality of natural habitats (Roberston & Hutto, 2007). Ecological traps can be unsuitable for the 

survival or reproduction of species, as evidenced by the observation that nests in close proximity 

to timber harvests are less productive and less successful due to higher nest predation rates and 
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increased competition for resources (Hoover et al., 1995; Robertson & Hutto, 2007). Forest 

harvesting can also reduce the availability of arthropods (Duguay et al., 2000), therefore 

decreasing the OSFL’s food source. Even though anthropogenic activities pose one of the 

greatest threats to the OSFL (NSDLF, 2021), a study suggests that with proper forest 

management, important habitat features could be maintained (Westwood, 2016). Therefore, in 

order to promote the conservation and the recovery of the species, their habitat needs to be 

located so that action can be taken to mitigate habitat degradation from anthropogenic activities. 

 

Habitat Conservation in the Context of Forestry 

Beneficial Management Practices (BMPs) can be applied to mitigate habitat degradation 

caused from anthropogenic activities. BMPs appear to be successful in agriculture, where several 

studies have shown that they are effective in mitigating environmental impacts of the industry 

(Asgedom & Kebreab, 2011). BMPs are not yet widely applied in forestry but are being 

developed to reflect the habitat requirements specific to individual species and should be 

continuously monitored and updated based on the best available science (NSDLF, 2021). The 

current draft for the OSFL BMP for Nova Scotia recommends leaving a buffer of at least 50m of 

coniferous forests around wetlands and leaving snags, coarse woody debris, and clumps of tall 

trees after forest harvest (McLean, 2021). Nova Scotia’s current cutting regulations to reduce 

impact caused by silviculture mandate the retention of small patches and riparian buffers 

(Province of Nova Scotia, 2002). It is suggested that the OSFL BMP be updated to specify tree 

retention details (such as species, abundance, tree height and density; McBeath, 2023), and 

increasing riparian and wetland buffers to 100m – 250m around cuts (Westwood, 2016). The 

reason for the suggested changes is because under the current buffer regulations, trees and snags 

would be removed from the landscape and existing leave patches would not be large enough to 

retain habitat for the OSFL (Westwood, 2016). Updated BMPs would adjust forestry practices to 

integrate forest management planning (LSARFWP, n.d.), which is necessary to conserve habitat 

and identify key locations for regional management to prevent species extirpation (Westwood, 

2016). 
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Previous Habitat Studies in Nova Scotia 

Overview 

To develop effective conservation strategies for the OSFL, studies first need to 

characterize their habitat and identify the features important for the species. The occurrence of a 

species in a given habitat is linked to forest vegetation structures, and understanding these 

structures can help inform timber harvesting practices and mitigate the negative impacts 

(Marzluff et al., 2000; Sallabanks et al., 2006). The main habitat studies for the Nova Scotia 

population of the OSFL include studies by Westwood (2016), Staicer (2017; 2018), Simai 

(2019), and McBeath (2023). Westwood (2016) aimed to characterize fine-scale habitat for SAR 

in Nova Scotia in order to suggest habitat-maintaining forest management practices. Using a 

multivariate method of analysis, Westwood (2016) identified the vegetation species and structure 

of sites occupied and unoccupied by OSFLs, as well as contrasting occupied sites in areas of 

recent harvest and those in areas not recently harvested. Simai (2019) classified sites where 

OSFLs were present and absent using vegetation features, focusing on data-poor regions of the 

province. McBeath (2023) assessed whether OSFL foraging space requirements explained their 

association with open forest and their perch preferences. The Staicer (2017; 2018) studies 

intended to identify high quality habitat for the OSFL by analyzing population information, such 

as densities, level of breeding evidence, and persistence of site occupancy to indicate the relative 

quality of the habitat at different sites.  

Each study obtained vegetation data along 50-100m long and 6-10m wide transects to 

identify vegetation characteristics within the OSFL’s habitat. The belt transects in McBeath 

(2023) were anchored around trees on which an OSFL was observed to be perched, allowing for 

the mapping of trees to quantify spacing within the habitat and how much foraging space there is 

for the species. McBeath (2023) focused on characterizing forest structure, recording every tree 

that an OSFL landed on and noting the tree species, height, crown class, health, height of 

surrounding treetops, distance to nearby clearing, and density and dispersion of trees in the area.  

These studies revealed specific variables important for OSFL breeding habitat in Nova 

Scotia, most abundant in coniferous bog/fen and coniferous treed swamps (Simai, 2019). The 

vegetation and structural complexity in the upper strata were most important to characterize 

OSFL-occupied sites (Westwood, 2016), and the habitats typically have lower amounts of 
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canopy cover than other SAR landbird habitats in Nova Scotia (Staicer, 2018). Additionally, 

while there were differences observed between occupied and non-occupied sites, no significant 

difference was observed between occupied sites in harvested and non-harvested forests 

(Westwood, 2016). McBeath (2023) analyzed the same transects used in my study and found that 

the foraging spaces available in OSFL habitat in Nova Scotia were consistent with studies 

conducted in western populations, when assessing factors related to availability of open spaces 

and perch trees that provided for foraging. However, OSFL territories tend to be very large (10-

20ha in size; Altman & Sallabanks, 2020) and patchy, so a small plot or belt transect only 

captures some of the habitat features. Therefore, the results of these habitat studies characterized 

OSFL breeding habitat in Nova Scotia, but only in “small” sample areas. 

 

Habitat Characteristics 

When selecting breeding habitat, species choose based on environmental and structural 

cues that have become reliably correlated with habitat quality (Hutto, 1985). Habitat selection is 

not a conscious choice, but rather involves a weighing of intrinsic and extrinsic evolutionary 

constraints for various habitat types (Hutto, 1985). Due to the vast forested areas of Canada, the 

environmental influences vary from the eastern to western portions of the OSFL’s range, 

resulting in slightly different habitats and therefore different preferences for the Maritime 

population (Kotliar and Melcher, 1998; Westwood, 2016).  

Throughout their breeding range, OSFLs are associated with coniferous forest habitat, in 

forest openings and edges occurring in mature forests and following natural and anthropogenic 

disturbances that open up the canopy and allow them to forage more effectively (Kotliar, 2007; 

Altman & Sallabanks, 2020). In Nova Scotia, OSFLs typically inhabit forested wetlands 

dominated by black spruce trees, with perch trees being on average 1.6 times taller than the 

surrounding vegetation (Westood, 2016; Staicer, 2017; McBeath, 2023). Wetlands are an 

understudied environment in Nova Scotia that provide critical habitat for many wildlife species 

and are in decline due to anthropogenic activities (Government of Nova Scotia, 2011). OSFL 

sites were often characterized by extensive Sphagnum moss cover, abundant tall snags, and 

coarse woody debris (Staicer, 2017).  Foliage cover exceeded more than 80% in the low shrub 

layer likely due to the openness of the tree canopy as a result of poor and wet conditions that 
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limit tree growth (Staicer, 2017). The presence near water may reflect higher insect abundance in 

these areas (Altman & Sallabanks, 2020).  

Small-scale patchiness may also be particularly important in southwestern Nova Scotia, 

where the natural disturbance regime is dominated by small gap creation and the topography is 

variable, leading to a diversity of microsites (Neily et al., 2003). That said, clearings >200 m 

may not be used by OSFLs due to lack of nearby trees for cover (Kotliar, 2007). Habitat 

selection reflects how a species uses their habitat, and OSFL habitat is characterized by a wet, 

open-forest structure with variable tree height that provides protection, as well as allowing for 

adequate spacing for their foraging technique.  

 

Habitat Modeling  

After identifying the characteristics of OSFL habitat, habitat models have attempted to 

predict where else comparable characteristics exist in the province that could indicate potential 

habitat for the species. When characterizing habitat, it is necessary to ensure that input variables 

accurately represent the level at which a species operates in order to produce suitable results 

(Addicott et al., 1987). When studying the distribution of species, variables measured at local or 

fine scales are often better predictors than coarser scales (DeGraaf et al., 1998). Songbird 

occurrences, in particular, vary significantly between scales (Girard et al., 2004).  

 

Previous Habitat Models for Nova Scotia 

Two previous studies modeled the OSFLs in Nova Scotia (Westwood et al., 2019; Bale et 

al., 2020). Westwood et al. (2019) created a species distribution model to predict the distribution 

of OSFL based on topological and hydrological variables related to wetness in four maritime 

national parks. This model provided the first population density and size estimates for the four 

national parks by comparing BAM project occurrence points to three different methods for 

delineating wet areas to see which was best at predicting OSFL habitat (Westwood et al., 2019).  

When comparing the three different methods for delineating wet areas, Westwood et al. 

(2019) found that the best performing model to predict OSFL habitat used a wetness interacted 

with forest cover layer (WETxFOR). The WETxFOR layer considered areas with <1m depth to 
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water table to be areas which may support forested wetlands because the values correspond to 

field measurements in forested wetlands collected by the Forest Watershed Research Centre 

(2012). However, the spatial covariates used as inputs for this model had to be standardized to a 

250m spatial resolution raster layer for model predictions due to computational limitations. 

The other model by Bale et al. (2020) used Maximum Entropy modeling (MaxEnt 3.3 

software) to predict OSFL habitat in Nova Scotia based on a combination of topographic and 

forest covariates. This model took occurrence data from the Maritime Breeding Bird Atlas 

database and observations by individuals and research groups. For environmental variables, Bale 

et al. (2020) used the provincial Forest Inventory Data (FID) that provides tree heights and a 

measure of canopy cover at the stand level. Bale et al. (2020) included abiotic features in the 

model as these features can promote “ecological memory” and are generally less affected by 

climate change than biotic features (Holling, 1992). 

The interaction between forest cover and wetness from Westwood et al. (2019) was 

further supported by the Bale et al. (2020) model, where it was found that topographic features 

can have a predictive value, with OSFLs being found in valleys and low slopes. Overall, the 

forest covariates were more explanatory than topography (Bale et al., 2020). The Bale et al. 

(2020) model was based on raster layers with a spatial resolution of 150m and appeared to have 

less predictive ability than other models for different species in the same study. Staicer (2018) 

suggests that the lesser predictive power of this OSFL model was likely due to a generalizing of 

tree characteristics at the stand level to predict within-stand variation that characterize OSFL 

habitat. The model used FID, comprised of a polygon layer for each stand of trees, with a single 

value representing each attribute, such as height and canopy cover for each stand, as well as 

classifying it as either deciduous or coniferous. These inputs resulted in higher average canopy 

heights and lower canopy heterogeneity in areas determined to be suitable for the OSFL (Bale et 

al., 2020).  

The use of coarser spatial resolution data and habitat characteristics at a stand level are 

limitations of studies modeling OSFL distribution (Betts et al., 2022; Hack et al., 2023). The 

inputs for the model should be made to reflect the scale at which the species operates (Addicott 

et al., 1987), as predictions can only be as fine as the coarsest layer of input data (Franklin, 

2009). Inputs that result in a data value representing an average at the stand-level make it 
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impossible to calculate or consider within-stand variation, despite within-stand features having 

been identified as important to the species (Altman & Sallabanks, 2020). The previous models’ 

input data was restrained by the data available at the time and did not take into consideration data 

from field surveys that identified the within-stand features of the forest structure that the OSFL 

utilizes to select their habitat. Fortunately, as technology improves and more studies are done, 

new data becomes available for models to be altered and refined to become more accurate in 

their predictions.  

 

Filling in Knowledge Gaps 

Considering Foraging Ecology 

Although studies have identified that foraging ecology associated with the OSFL requires 

the bird to operate at within-stand levels (Westwood, 2016), previous OSFL models have not 

taken into account habitat characteristics associated with foraging ecology. It is important to 

identify within-stand tree characteristics, irrespective of stand boundaries, that enable the OSFL 

foraging strategies because food is an important factor in habitat selection. Intrinsic factors such 

as the presence and abundance of food, perch characteristics, and branch configuration contribute 

to a bird’s choice about the precise location within which to feed (Hutto, 1985). Optimal foraging 

theory involves patch choice, which suggests that as long as there is a limited supply of food, 

there will be selective pressures on individuals to use the space in the most profitable way 

possible (Pyke et al., 1997). Therefore, habitat selection can be considered a logical extension of 

patch choice as long as there is a limited supply of food, as it will result in there being better and 

worse places to settle, with selection favouring discrimination among sites on that basis alone 

(Pyke et al., 1997).  

The OSFL depends solely on one method of foraging called “sallying”, which is when a 

predator leaves an observation perch, captures an airborne insect on the wing, and then returns to 

a perch (Eckhardt, 1979). They show preference for a specific tree as a perch and will often 

return to the same perch after an attempt to capture their prey (Eckhardt, 1979). Specific foraging 

microhabitats are important to the OSFL due to their within-stand preferences that include 

foraging from a high prominent perch, which is often a snag or dead tips of the uppermost 

branches of tall trees that overlook surrounding vegetation (Wright, 1997; Altman & Sallabanks, 
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2020). Species distribution models show that the occupancy of OSFLs in a particular habitat is 

most closely tied to fine-scale forest structure that they use for foraging (Hack et al., 2023), and 

efforts to model their distribution have been less successful compared to other species 

distribution models due to the fine-scale forest structure associated with OSFL habitat being 

poorly captured by satellite imagery (Betts et al., 2022). In Nova Scotia, the OSFL’s selection of 

habitat is consistent with their foraging requirements, with OSFLs selecting habitat based on tree 

types, heights, and spacing (McBeath, 2023). Because of their exclusive dependence on one 

foraging technique, the OSFL requires specific characteristics within stands that facilitate their 

hunt for food. We can measure these habitat features in the field (in a small area) and more 

broadly with drone data to identify these important within-stand determinants of OSFL habitat.  

 

New Approaches to Modeling 

As technology advances and becomes increasingly accessible, it helps overcome previous 

limitations with data collection and analysis. One of the most impactful contributions to studying 

and modeling habitats is the increased use of remote sensing technologies. Unmanned aerial 

vehicles (UAVs), such as drones, allow for capturing images at low altitudes with high-resolution 

onboard sensors to collect high-spatial resolution imagery (Mathews, 2021). The use of drone 

imagery is extremely effective when analyzing defined areas (such as the OSFL’s territory which 

is usually 10ha – 20 ha in size; Altman & Sallabanks, 2020), to provide an understanding of the 

structure and ecology of the habitat (Mathews, 2021). The high-resolution imagery makes it easy 

to pick out features without having to conduct time consuming and intensive field surveys. 

However, with the high-spatial resolution comes a requirement for more digital storage and a 

higher computational capacity to work with this data at larger scales. Therefore, it is 

unreasonable to use drone imagery for a model of a large area like that of the Kespukwitk area 

used in my model, and other technology is needed. 

The development of the remote sensing technology, Light Detection and Ranging 

(LiDAR), has revitalized and strengthened studies with applications to forest inventory and 

ecological research, especially for habitat studies of flying vertebrates (Jaime-González et al., 

2017). LiDAR is an active sensor that relies on its own source of energy to emit a light in the 

direction of a target, and captures and measures the portion of light that was not absorbed but 
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was reflected back to the sensor (Singh, 2021). LiDAR is now widely used to measure tree 

height, terrain features, and topography, and is extremely beneficial to modeling on a large scale 

(Jaime-González et al., 2017). LiDAR data with a spatial resolution of 1m was collected in 2019 

for everywhere in the province, with some areas being updated in subsequent years (Government 

of Nova Scotia, 2023). The provincial LiDAR data was not available when the previous models 

identifying OSFL habitat in the province were created. Therefore, the Westwood et al. (2019) and 

Bale et al. (2020) studies were limited to coarser data and forest data at the stand scale. However, 

the effectiveness of using LiDAR for greater identification of ecologically relevant features for 

species was recommended by Westwood (2016) once it becomes more available. 

Combining the strengths of the various approaches should result in a more effective 

model, with the potential to help address current knowledge gaps as to where the species is 

located and therefore help promote the application OSFL recovery strategies. 
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Methods 

Overview 

The current recovery strategy for the OSFL identifies a lack of knowledge relating to 

habitat locations for the species as the limiting factor for implementing more effective recovery 

strategies (NSDLF, 2021). This study aims to help address this gap in knowledge by using drone 

imagery to inform the selection of provincial LiDAR metrics to be used as inputs for a Maximum 

Entropy (MaxEnt) model to predict potential OSFL breeding habitat locations in southwestern 

Nova Scotia. By using LiDAR metrics informed by drone imagery, I aim to identify and 

incorporate the within-stand variability that is important for the OSFL, a crucial aspect that I 

believe was missing from previous models that attempted to predict OSFL breeding habitat in 

NS. 

 

Study Area  

This study’s predictive habitat model will be applied to the Kespukwitk area, an area of 

conservation priority of Nova Scotia (NCC, 2024) which includes the five western-most counties 

and parts of two others that fall within the Annapolis and LaHave watersheds (NSECC, 2008). 

The model is informed by drone imagery collected from 12 managed forest blocks on crown land 

dispersed across the province (Figure 1). Each site had at least one transect conducted, with a 

total of 19 transects each placed in the territory of a different male OSFL: ten in southwestern 

Nova Scotia, two in the eastern shore, and seven in Cape Breton (Table 1). Because OSFLs are 

highly territorial, their territories do not overlap (Short, 2017). Two of the upland forest sites in 

southwestern Nova Scotia were post-burn sites (Figure 2). 
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Figure 1:  Map of study sites where transect surveys and drone imagery were collected in Olive-
sided Flycatcher (Contopus cooperi) habitat across Nova Scotia. Delineated with blue is 
Kespukwitk, the areas that this study’s habitat model will represent. 

 

Table 1: List of the 12 sites across the province where the 19 transect surveys and drone 
imagery were collected for this study. The table shows how many transects were conducted at 
each site (representing the number of individual OSFL territories at each site). 

 Region Site 
Transects 

(number of territories) 

Southwestern NS End Victory Rd  1 

Harvest Block 13 1 

MCFC Burn 1 
 Palmer Lake  1 
 Stillwater  2 
 Tupper Barrens 1 

 Twin Lakes Burn 2 
 Victory Rd Swamp  1 

   
Eastern Shore Otter Ponds 2 

   

Cape Breton Long Lake 1 

 Reagans Extension 1 

 River Tillard 5 

   

 Total: 12 19 

 
Model area 

(Kespukwitk)  
Transect 

locations 
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Figure 2: Photos of six sites where transect surveys were conducted, showing the range of forest 
types and the structural variability of Olive-sided Flycatcher habitat across the province. Photos 
taken from McBeath (2023), except for the Twin Lakes Burn image take by D. Burns. 
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Sampling 

Field Observations 

At each site, a belt transect was surveyed (50m x 10m), mapping the location of trees and 

snags to the nearest 0.1m and recording their height, a measure of canopy cover for the transect, 

and a measure of health for trees and decay for snags. Each transect was anchored around trees 

on which an OSFL was observed to be perched. The transect data helps provide an understanding 

of the vegetation structural diversity and the space available for foraging in the habitat. Of the 19 

transects used for this study, 16 were measured in 2022 and summarized in McBeath (2023). 

That study concluded that tree heights and spacing were consistent with previous studies of 

foraging behaviour conducted in western populations when assessing factors related to 

availability of open spaces and perch trees that provided for foraging space requirement. The 

other three transects (Twin Lakes #2 and River Tillard #4 & #5,) were assessed in 2023 after 

McBeath’s study. The transects provided ground-truthing for the drone and LiDAR data. 

 

Drone Imagery 

Drone imagery was collected at each site, using a Phantom 4 RTK drone that corrects 

satellite signals in real time to get more accurate location coordinates for each photo using cell 

signal (if available) or by a base station on site, to receive corrections from satellites (DJI 

Enterprise, n.d.). The drone was flown at 100m above the ground, with approximately 80% 

overlap between adjacent photos. The imagery was collected during the growing season when 

the trees were leafed out, between 4 June – 19 September 2022, except for Harvest Block 13 and 

River Tillard 4, where drone imagery was collected in August 2023. The imagery was then 

processed using AgiSoft Metashape (Agisoft), a software product that performs photogrammetric 

processing of digital images to generate 3D spatial data (Agisoft, 2023). Agisoft creates an 

orthomosaic (geotiff) with a resolution of 2.7cm/pixel, and a digital surface model (DSM) and 

digital terrain model (DTM) with a resolution of 6cm. 

The drone imagery was collected to encompass the bulk of each bird’s territory.  A 5ha 

plot centered on each transect and encompassing all occurrence observations of the OSFLs was 

used to quantify the habitat. These 5ha areas were used to compare the drone and LIDAR data. 
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Analysis of CHMs 

This study followed the steps outlined in Figure 3, starting with preparing the LiDAR and 

drone data. Variables from the two data collection methods were compared through a correlation 

test to identify LiDAR metrics that show the within-stand variability visible in the drone data and 

important for OSFL habitat. The identified LiDAR metrics were then turned into raster layers to 

be used as inputs alongside other environmental and occurrence data into a MaxEnt model to 

predict OSFL habitat in the Kespukwitk area. 

 

Figure 3: Flow chart outlining the input and output products, actions, and associated 
considerations for each step needed to complete the study. 

 

A provincial canopy height model (CHM) based on LiDAR data is available as a raster 

layer with a spatial resolution of 1m (Government of Nova Scotia, 2023). However, to determine 

if the spatial resolution of the LiDAR is fine enough to identify within-stand variation of forest 

structures, I compared the metrics derived from the LiDAR CHM to a drone CHM from each 

site. To do so, I first created CHMs with the drone data, which can be done by subtracting the 

digital terrain model (DTM) from the digital surface model (DSM) (Nasiri et al., 2021), creating 

a drone CHM with a 6cm spatial resolution. Both the LiDAR and drone CHMs were clipped to 
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the same 5ha areas around the transects at each site, for a sample size of 19. The drone CHM is 

assumed to be more accurate in identifying fine-scale forest structure due to the higher spatial 

resolution. Therefore, a correlation analysis was used to assess the strength of relationship 

between measurements obtained from the two different CHMs. The outputs of the correlation 

test show how well the variation in the 1m spatial resolution of the LiDAR data aligns with 

variation in the drone data. The correlation analysis involved assessing six variables from the 

CHMs: canopy cover, tree heights (mean and standard deviation), number of trees, tree spacing, 

and rugosity (i.e., surface roughness). Canopy cover and height were calculated by identifying 

individual trees within the 5ha plots using the ForestTools R package (Plowright, 2023). The 

ForestTool treetops script uses a local maximum variable window function to identify individual 

trees, providing coordinates and a height value for all identified trees. I followed the variable-

window equation from Swayze & Tinkham (2022), recommended for high-resolution CHMs: 

F(h) = 0.1*h 

This equation determines the variable window radius (in meters), adjusting the size by a 

factor of 0.1 in relation to h, the height value of the cell (Swayze & Tinkham, 2022). After 

identifying individual trees, the canopy was extracted using the ForestTools crowns outline 

script, set with the same parameters of a 5m minimum height to outline each tree’s crown as a 

vector polygon. However, in the years between the collection dates of the drone imagery and the 

LiDAR data, several of the sites experienced some sort of disturbance that decreased the number 

of trees in the area, either as a result of forest fires, harvesting, or blowdown from storms; 

changes are outlined in Appendix A. As a result, the CHMs had to be standardized. This was 

done in ArcGIS Pro by selecting only the LiDAR tree points within the drone’s outlined crown 

polygon layer. The selected LiDAR tree points were exported as their own file and used to select 

only the LiDAR tree crown polygons that had the selected tree points within. This standardized 

the trees in the 5ha LiDAR CHM plots to only show the trees that are still present in the drone 

5ha plots, allowing for calculated variables to be comparable to each other.  

The mean and standard deviation of tree heights were calculated from all the identified 

tree points for each site and an average nearest neighbor test was used to assess tree spacing. 

Each site’s canopy was calculated as a sum of each tree’s crown outline area, divided by 5ha to 

represent the percent of canopy cover in each plot. The rugosity is a measure of surface 

roughness and is calculated through a rumple index: the ratio of canopy outer surface area to the 
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ground surface area to give a measure of structural heterogeneity of CHMs (Kane et al., 2010). 

Rugosity can help identify gaps within stands, more mixed-aged forest stands with multiple 

canopy levels, and can be a predictor for areas that experience more disturbance (Kane et al., 

2010). This can be an important variable for predicting OSFL habitat because they have been 

described as a post-disturbance species, arriving at sites after a recent disturbance that causes 

trees to fall and open up canopy within the habitat (Robertson & Hutto, 2007). Rugosity was 

calculated using the lidR R package rumple index that assess cells in the context of their 

neighbors to create an output value for the whole site (Roussel, 2024).  

 After collecting the measurements, a correlation test was used to test the strength of the 

relationship between the metrics observed in the drone and LiDAR CHMs. The metrics with a 

significant (p <0.001) and high correlation (r >0.7) relationship were considered the LiDAR 

metrics that can show the within-stand variability important for OSFL habitat that are then used 

as inputs for the habitat suitability model.  

 

Modeling Methods 

Maximum Entropy Modeling 

I used Maximum Entropy (MaxEnt) modeling to create my habitat model. MaxEnt is a 

species distribution model tool used for predicting the distribution of species from a set of 

occurrence records and environmental predictors (Fourcade et al., 2014). It is robust to small 

sample sizes and is ranked among the top presence-only modeling approaches (Elith et al., 

2006). It uses species occurrence data to create a predicted distribution that is then referenced to 

environmental data to create a habitat suitability map that predicts potential suitable habitat for 

the species. I ran the model with settings set to 5,000 maximum iterations, 30 cross‐validated 

replicates, and a maximum of 10,000 background points. The environmental input data I used for 

the model do not currently exist in a form that can just be imported into MaxEnt software, and 

therefore required some type of manipulation (Table 2). Environmental data layers were selected 

based on the literature and previous models (Westwood et al., 2016; Staicer 2017; 2018; 

Westwood et al., 2019; Bale et al., 2020; Staicer et al., 2023). The occurrence data was compiled 

by Dr. Staicer, from the Atlantic Canada Conservation Data Centre (AC CDC) records, updated 

May 2023, and Staicer lab research data from summer 2023.  
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Table 2: List of input variables for the MaxEnt habitat suitability model, their source, and the 
rationale for including them in this study. 

Data Type Input Variables Source Applicability 

Occurrence 
Data 

Occurrence Data 
• With accurate 

GPS locations 
• Observations 

 > 1 km from 
each other 

• Within the 
breeding season 

Atlantic Canada 
Conservation Data Centre 
(AC CDC) SAR occurrence 
data and Staicer lab 
occurrence data updated 
May 2023. 

Extracting observations within the breeding 
season and with accurate GPS locations to 
make the MaxEnt habitat suitability 
predictions most accurately reflecting OSFL 
breeding habitat. Removing observations 
too close to each other removes some 
spatial autocorrelation of observations.  

Bias File Available survey 
locations and SAR 
occurrence data 

Created from known 
locations where people 
have found or looked for 
birds (e.g., breeding bird 
atlas and breeding bird 
survey points). 

Helps reduce surveying bias associated with 
occurrence data which is often spatially 
biased towards areas that are more easily 
accessible or more often surveyed. 

Environmental 
Data 

Depth to water 
table 

Extracted from the new 
LiDAR-based Wet Areas 
Mapping (WAM) model 
from John Gallop, NS 
department of 
Environment and Climate 
Change – wetlands 
program. 

This source is a more up-to-date version 
than what is available online from the NS 
department of natural resources. 
Westwood et al. (2019) found WAM to be a 
strong predictor of OSFL distribution. WAM 
is more effective at identifying wet areas 
under forest cover which is a limitation to 
the wetlands layer. When cross-referenced 
with forest cover, helps identify areas that 
could support forested wetland habitats.  

Environmental 
Data 

Wetland habitats Wetland polygons were 
extracted from the Forest 
Inventory Data (FID) from 
the Province of Nova Scotia 
GeoNova online database, 
to create a “distance to” 
layer. 

Wetland habitats are important for OSFLs. 
These layers were used to calculate a 
distance to wetlands layer to identify wet 
areas without some of the limitations from 
the WAM. 

Environmental 
Data 

Topography 
(topographic 
position index) 

Derived from the provincial 
LiDAR DEM from the Nova 
Scotia GeoNova online 
database. 

Regional topography creates microclimates 
and regulates accumulation of water on the 
landscape and has been shown to be an 
important predictor of OSFL habitat from 
the previous OSFL habitat models. 

Environmental 
Data 

Tree species data  Tree stands were extracted 
from the Forest Inventory 
Data (FID) from the 
Province of Nova Scotia 
GeoNova online database. 

Stands dominated by the OSFL’s preferred 
spruce species (black, red, and black and 
red mixed stands) were extracted to create 
a distance to spruce stand layer. 

Environmental 
Data 

Identified LiDAR 
Metrics 

From the provincial LiDAR 
data. Specific metrics to be 
determined by comparison 
to drone data. 

These variables will help identify the within-
stand variation independent of stand 
boundaries important for OSFL habitat. 
Variables include: tree heights (mean and 
standard deviation), canopy cover, canopy 
clumping, canopy surface roughness. 
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Environmental Data 

The environmental covariates used as inputs for the model all represent features 

associated with OSFL habitat. The datasets used to create the covariate layers are largely 

maintained and distributed by Nova Scotia Department of Natural Resources available through 

GeoNova, or from contacts at NS Department of Environment and Climate Change. All the 

environmental covariate layers were prepared with the same spatial resolution (100m), projection 

(NAD 1983 UTM Zone 20) and spatial extent in Esri’s (n.d.) ArcGIS Pro 3.1.0 to attain 

consistent spatial resolutions and extent among layers and to reduce the computational intensity 

of the model. The creation of each layer is explained in greater detail in Appendix B. 

Regional topography creates microclimates and regulates the accumulation of water on 

the landscape (Lawler et al., 2015), and will be used for this study to determine potential areas 

with forested wetlands around the province suitable for OSFL breeding habitat. Topographic 

covariates include: i) a topographic position index (TPI) of local topographic position (i.e., 

elevation) relative to the surrounding “neighborhood” calculated from the LiDAR DEM (Weiss, 

2001); ii) a depth to water table extracted from an updated provincial Wet Areas Mapping 

(WAM) model that can more accurately identify forest wetlands; and iii) a distance to delineated 

wetlands assuming that habitat suitability varies in relation to wetland proximity. Each of these 

topographic covariate layers were created according to regional indices specific to Nova Scotia. 

Forest characteristics are important to the OSFL, who have shown preferences for tree 

species, heights, canopy cover, and spacing of perch trees within their habitat (Altman & 

Sallabanks, 2020). Forest data was obtained from the provincial Forest Inventory Database (FID) 

with measurements at the tree-stand level, and from the provincial LiDAR data. Forest covariates 

include a distance to spruce-dominated stands that show habitat suitability in relation to 

proximity to the quality type of spruce trees, and five LiDAR CHM derived metrics consisting 

of: i) the proportion of canopy cover per 100m2; ii) a measure of canopy clumping to show 

where canopy was adjacent to other canopy, calculated as the sum of the focal cell and its eight 

nearest neighbor pixels; iii) a terrain ruggedness index (TRI) of canopy relative to the 

surrounding “neighborhood” to identify trees emerging from surrounding canopy; iv) a focal 

statistics layer calculating the mean height values of the CHM; and v) a focal statistics layer 

calculating the standard deviation of canopy height values of a pixel and its surrounding 
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“neighborhood”. Canopy clumping was calculated on a finer-scale (3x3 pixel window) than the 

other LiDAR CHM metrics calculated using focal statistics (10x10 pixel window) to stay 

consistent with McBeath (2023) who identified a scale of tree clumping at 0.5m – 1.5m.  

All final versions of the LiDAR-derived environmental layers used as inputs for the 

MaxEnt model were resampled to a 100m spatial resolution using a bilinear method, except for 

the mean canopy cover layer that had binary values aggregated by mean to a 100m grid 

tessellation over the study area that was then converted to raster with a cell size of 100m.  

 

Occurrence Data 

Methods that use presence-absence data are generally considered to be more accurate 

than presence-only methods (Brotons et al., 2004). However, absence data was not available for 

the OSFL, therefore limiting our approach. MaxEnt only uses presence data without the need for 

absence data. The occurrence data was sourced from the AC CDC, with additional records from 

Staicer’s lab that were not already in the database. The occurrence data was processed following 

the methods used in Staicer et al. (2023), retaining records for birds with dates during the 

breeding season (17 May to 14 August) and removing records with a location uncertainty greater 

than 250m. To reduce spatial autocorrelation in the occurrence data, records that were within 

1km of other records were removed, retaining the most recent record with the highest precision 

and farthest from roads.  

 

Bias Layer 

A bias layer was created to further reduce sampling bias of occurrence points, which is 

often spatially biased towards areas that are more accessible or more often surveyed (Petersen et 

al., 2021). Applying occurrence data in conjunction with a bias grid was determined to be among 

the most effective methods of reducing the effects of sample bias in MaxEnt (Syfert et al., 2013). 

The bias layer is a grid that is based on areas of known locations where people have 

looked for the birds, created as a kernel density of expected counts and a search radius of 10km. 

This grid does not change the number of background (occurrence) points, but when the grid is 

applied, the background points are sampled at a greater density around clusters of presence 
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points, rather than evenly sampled throughout the entire study area—as it would be when no bias 

grid is used (Bale et al., 2020). The bias layer will help improve MaxEnt’s ability to distinguish 

between true absences and absences due to areas not being surveyed (Staicer et al., 2023).  

 

Reverse Stepwise Elimination 

After all the environmental data layers were prepared, they were clipped to the 

Kespukwitk area in southwestern Nova Scotia and input into MaxEnt to create a predictive 

model for suitable habitat in the area. The program was run repeatedly to apply a reverse 

stepwise elimination process that identifies the most crucial subsets of covariates to include in 

the model (Bale et al. 2020). Each time the model ran, it generated a percent contribution, a 

permutation importance (calculated according to the drop in AUC that occurred if the variable is 

excluded from the model; Phillips, 2005), and a response curve to show how impactful each 

variable is at predicting OSFL habitat alone and in combination with the other variables in the 

model. The variable contributing the least was removed at the end of each run, and the model ran 

again without it. This was repeated until the best fit model was identified, where at least half the 

initial input variables were removed (to prevent over-fitting) and if the Area Under the Curve 

(AUC) mean value for cross-validated run decreased by >1% (Haughian et al., 2019). 

Although many studies use Akaike’s Information Criterion (AIC) to identify the best fit 

candidate, recent evidence shows that this method for selecting the best fit model in ecological 

niche models such as MaxEnt may lead to erratic model performance and oversimplified 

response curves that do not reflect complex species-environment relationships (Low et al., 2021). 

AIC values are best used for explanation-oriented models that estimate the fundament niche 

(Velasco & González-Salazar, 2019). Studies interested in prediction-oriented models would 

benefit more from “traditional” measures of model performance such as AUC results from cross-

validated models, which allows for straightforward evaluations (Low et al., 2021). 

 

Model Evaluation 

The AUC provides a measure of likelihood that randomly selected presence points have a 

higher suitability score than randomly selected background points (the MaxEnt equivalent of 
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absence; Fourcade et al., 2014). The AUC ranges from 0 (no discriminatory power) to 1 (perfect 

discriminatory power), with 0.5 being a reference that model predictions are no better than 

random (Elith et al., 2006). The best fit model was then evaluated by comparing the expected and 

observed omission rates, where I adopted 2 thresholds, the lowest presence threshold (LPT) and 

the 10% presence threshold (10PT) to determine how many points were excluded when these 

thresholds were applied on test data (i.e., observed omission rates). LPT is the lowest predicted 

suitability value associated with training occurrence data, where no presence locations are 

incorrectly classified as background points, and the 10PT refers to the suitability score where the 

lowest 10% of the training presence data is omitted, assuming that the occurrence data’s lowest 

10% of suitability measurements are errors. A LPT omission rate closer to 0% and a 10PT value 

closer to 10% indicate a better calibrated model. 

 

Limitations 

Limitations for my model largely come from the input data layers. The wetlands layer is 

mostly only accurate for open wetlands, not forested wetlands (Gallop, 2023) which are 

important for OSFL habitat. Therefore, the Wet Areas Mapping (WAM) model was used to 

mitigate some of the limitations with the wetlands layer, as the WAM more accurately reflects 

wet ground. However, if WAM is determined by drilled well measurements, it could potentially 

record false water table depths if a well that measures the water depth is drilled into a confined 

aquifer (Greene, C., pers. com., 2023).  

Another limitation of the input data is the difficulty to distinguish between black spruce 

(Picea mariana) and red spruce (Picea rubens). Because the FID uses remote sensing photo 

interpretation to identify tree species (NSDNR, 2021), it can be hard to identify one species from 

the other, especially because they often hybridize (Perron & Bousquet, 1997). Therefore, we can 

not be confident that the FID accurately identifies black spruce. To reduce the limitations, the 

black spruce, red spruce, and the black and red spruce mixed stands in my layer were included in 

the distance to spruce-dominated stand layer. 

The spatial resolution of the predictions from this study’s habitat suitability model may 

also be limiting, despite the high spatial resolution of several of the input layers. The predictive 



28 
 

power of the model may not be much finer than 250m, as this is the maximum threshold for 

location accuracies in the occurrence data used. The breeding bird survey (BBS) data is collected 

from roadside stops, and rarely is a bird in a tree right next to the road. A bird could be singing 

from within a radius of 400m, the maximum distance from a point that you can note a bird 

according to the BBS guidelines (ECCC, 2023). It is common for people to detect an OSFL 

singing 100m – 200m away in forests, or 300m across bogs, clearcuts, or water bodies (C. 

Staicer, pers. com., 2023). However, the AC CDC data includes a measure of locational accuracy 

that was used to determine whether to retain an observation. 

The spatial resolution of the input data brings up another limitation which is storage 

capacity. Originally, this study aimed to apply a model to the provincial scale; however, the 

storage drives quickly ran out of space before finishing the first LiDAR metric layer. Therefore, 

instead of modeling the whole province, the scope was reduced to just the southwestern part of 

the province. Although the original methods and aim for this study involved modeling the entire 

province, this was not the realized case. The methods could be scaled up to the whole province, 

but the storage capacity would be far too much for the equipment used during this study. 
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Results 

Analysis of CHMs 

A visual analysis of the 5ha plots showed that 10 of the 19 sites experienced some sort of 

disturbance that resulted in a decreased canopy cover observed in the drone CHMs when 

compared to the LiDAR CHMs. The collection dates for the drone imagery and LiDAR CHMs, 

along with the type of disturbance experienced between the collection dates at each site is shown 

in Appendix A. As a result of the discrepancy in canopy cover between the two CHMs at several 

of the sites, the variables in the LiDAR CHMs were standardized to the drone CHM’s canopy 

cover area to ensure I was only comparing metrics from trees and their canopy that were present 

in both CHMs (Table 3). Rugosity was the one metric not calculated from the standardized 

LiDAR CHM because the standardization of the CHMs involved vector points and polygons that 

are not conducive to conducting analysis of surface roughness. 

 

Table 3: Change in canopy cover area in the LiDAR CHMs after being standardized to the drone 
CHM canopy area at each of the 19 sites. 

  Canopy Cover Area (ha) Change in LiDAR Canopy Cover 
After Standardized (ha) Site Drone LiDAR Standardized LiDAR 

End Victory Rd 1.63 2.30 2.28 -0.02 

Harvest Block 13 2.57 2.47 2.47 0.00 

Long Lake 1.63 2.36 2.33 -0.02 

MCFC Burn 0.41 2.13 1.19 -0.94 

Otter Pond East 2.69 4.51 3.71 -0.80 

Otter Pond West 1.86 2.70 2.52 -0.18 

Palmer Lake 2.74 3.01 3.00 0.00 

Reagans Extension 1.81 2.41 2.40 -0.01 

River Tillard 1 3.02 3.24 3.20 -0.04 

River Tillard 2 1.68 2.44 2.20 -0.25 

River Tillard 3 1.79 3.68 2.64 -1.04 

River Tillard 4 0.71 3.21 1.33 -1.88 

River Tillard 5 1.57 2.94 2.24 -0.70 

Stillwater 1 1.20 2.45 2.08 -0.37 

Stillwater 2 2.73 3.65 3.58 -0.07 

Tupper Barrens 1.15 1.97 1.95 -0.02 

Twin Lake Burn 1 1.43 4.52 1.50 -3.02 

Twin Lake Burn 2 2.04 3.26 2.36 -0.90 

Victory Rd Swamp 1.45 1.49 1.49 0.00 

 



30 
 

Measuring variables in the drone and LiDAR data involved comparing the CHMs, as well 

as the attributes of individual trees that were identified within each CHM using the variable-

window function from Swayze & Tinkham (2022). This equation, set with additional parameters 

to select only trees >5m in height, had an accuracy of 90.5% and 90.0% for identifying trees in 

the drone and LiDAR CHMs, respectively. The measurements for each variable obtained from 

the drone and LiDAR CHMs are shown in Appendix C. A correlation analysis was then 

performed using these measurements to assess the strength of the relationship between variables 

in the two CHMs (Table 4). The drone CHMs consistently had a greater Rumple index (i.e., 

surface roughness) compared to the LiDAR CMHs. The drone CHMs also had more individual 

trees identified, on average, using the ForestTools local-maximum script to identify tree tops at 

each site. The spacing of trees was assessed through an Average Nearest Neighbor test, and 

because of the greater number of trees in the drone CHMs, the average nearest neighbor distance 

was less than half the size of the average nearest neighbor distance from the LiDAR CHMs. The 

LiDAR CHMs had higher mean tree heights than the drone CHMs across the 19 sites, but the 

standard deviation of the heights was more consistent between the two CHMs. There was less 

canopy cover in the drone CHMs at the 19 sites when compared to the LiDAR CHMs. 

 

Table 4: Mean measurements of variables across the 19 sites and the correlation analysis results 
for the six metrics assessed between the drone and LiDAR CHMs. 

Variable Drone LiDAR 
Correlation  

(r value) 
Significance  

(p value) 

Rumple Index 3.42 1.83 0.183 0.452 

Number of Trees 3656 1735 0.520 0.022** 

Nearest Neighbor 
Distance (m) 

1.54 4.15 0.404 0.087 

Mean Tree Height 8.90 10.68 0.859* 2.49e-06*** 

Tree Height Standard 
Deviation 

3.20 3.30 0.899* 1.71e-07*** 

Canopy Cover (%) 37.24 45.21 0.895* 2.38e-07*** 

*High correlation relationship (r >0.7) 
**Significant at p <0.05 
***Significant at p <0.001 
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Assessing the Relationships of Variables 

The relationship between drone and LiDAR measurements for each variable was assessed 

through a correlation test which determined a high (r >0.7) relationship between the drone and 

LiDAR measurements for three metrics: canopy cover (r = 0.895) and the mean and standard 

deviation of tree heights (r = 0.859 and r = 0.899, respectively; Table 4). These metrics were also 

the only identified metrics as having a highly significant (p <0.001) relationship. Based on these 

assumptions, the other variables assessed (rumple index, number of trees, and average nearest 

neighbor distance) were not considered to show a positive relationship between the LiDAR 

CHM. The rumple index was calculated from the unstandardized LiDAR CHM, and thus 

calculated the roughness of trees present in the LiDAR CHM and compared it to the roughness 

calculated by a lack of those trees in drone CHM. This is likely not representative of the 

relationship between the LiDAR and drone CHMs. Therefore, because it is a strong measure for 

assessing important characteristics of OSFL breeding habitat (e.g., identifying gaps within stands 

and mixed aged forests with multiple canopy levels; Kane et al., 2010), I decided to include it as 

the fifth LiDAR metric input for the predictive habitat model. 

 

Final Inputs for the Model  

The environmental layers used as inputs for the MaxEnt model consisted of nine layers:  

i) proportion of canopy cover; ii) canopy clumping; iii) mean canopy height; iv) standard 

deviation of canopy height; v) canopy roughness (i.e., TRI); vi) topographic position (i.e., TPI); 

vii) depth to water table; viii) distance to wetlands; and iv) distance to spruce-dominated tree 

stands. The first five listed input layers were derived from the provincial LiDAR CHM. 

From the 1,011 observations of OSFLs in the Kespukwitk area during the breeding 

season with location accuracies ≤250m, only 318 observations were used as the occurrence data 

after removing points in water or within 1km of each other. A bias layer created as a kernel 

density of expected counts with a search radius of 10km was created to further reduce the bias of 

the occurrence data to account for locations where people have conducted surveys in search of 

the bird or for standard Breeding Bird Surveys (Figure 4).  
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Figure 4: Kernel density maps showing the relative density of survey locations where people 
conducted surveys for the OSFL, with darker areas representing higher point densities. The 
kernel density was used as a bias layer to account for spatial bias with the occurrence data in 
training the MaxEnt model. 

 

Model Results 

Run 6 was chosen as the “best” model because at least half the variables were removed, 

and both the regularized training gain and AUC decreased by >1% if the least important variable 

was removed (when compared to the subsequent run: Run 7; Table 5). The mean AUCtrain 

(0.7066) and AUCtest (0.6908) values for Run 6 were fairly low but the AUCdiff value was also 

low (0.0158) across 30 cross-validated runs. The observed omission rates for the final best fit 

model was 0.91% higher than the expected omission rates for LPT and 11.33% higher than 

expected for 10PT. Therefore, both these metrics indicate that over-fitting did not significantly 

impact our species distribution model results. The final model included four covariates that 

represented a range of environmental features including distance to preferred habitat (wetlands 

and spruce trees) and the amount of canopy cover and the height of the canopy (Table 6). 
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Table 5: Results of the reverse stepwise elimination trials for determining the best fit model. 

Model run 
Regularized 
training gain 

Change in 
training gain* AUCtest 

Change in 
AUCtest* 

AUC standard 
deviation Covariate removed 

Run 1 0.3820 - 0.7100 - 0.0783 - 

Run 2 0.3402 -0.0418 0.7022 -0.0078 0.0716 TRI 

Run 3 0.3391 -0.0011 0.7075 0.0053 0.0674 WAM 

Run 4 0.3207 -0.0184 0.7035 -0.0040 0.0690 Canopy Clumping 

Run 5 0.3034 -0.0173 0.6899 -0.0136 0.0673 TPI 

Run 6 0.3035  0.0001 0.6908  0.0001 0.0681 SD Heights 

Run 7 0.2896 -0.0139 0.6827 -0.0081 0.0699 Distance to Spruce 

*Calculated as the difference of values between the current run and the previous run. 

 

Table 6: The covariates used in the final best fit model and their percent contribution (i.e. to 
training gain), permutation importance, and response curves. The y axis of all response curves 
represents relative habitat suitability, where suitability increased from 0 to 1. 

Covariate 
Percent 
Contribution (%) 

Permutation 
Importance (%) Response curve 

Proportion of 
Canopy Cover  

56.74 60.38 

 

Distance to 
Wetland 

29.05 20.07 

 

Mean Tree 
Heights 

7.34 9.68 

 

Distance to 
Spruce 

6.87 9.87 

 

 

The final map of relative suitability shows that suitable habitat for the OSFL is abundant 

and distributed in the Kespukwitk area (Figure 5). The maximum training sensitivity plus 
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specificity (MaxSS) threshold was applied to create a binary layer identifying suitable vs. 

unsuitable habitat, where the model predicted that 48.90% of the Kespukwitk area (including 

lakes and rivers) is suitable for the OSFL (Figure 6). MaxSS optimizes sensitivity and specificity 

values and was identified as the most robust threshold by Liu et al. (2013). After extracting 

clusters of “suitable” habitat with a total area large enough for an OSFL’s territory (10-20ha in 

size; Altman & Sallabanks, 2020), the amount of suitable habitat had minimal change (Table 7). 

 

 

Figure 5: Species occurrence data overlayed on top of the MaxEnt output heat maps of relative 
habitat suitability for the Olive-sided Flycatcher. 
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Figure 6: Binary habitat suitability maps created by applying the MaxSS threshold (0.4638) for 
the Olive-sided Flycatcher, showing suitable habitat in green and non-suitable habitat in grey. 

 

Table 7: Amount of suitable habitat in the Kespukwitk area after applying the MaxSS threshold 
with additional minimum area sizes for groupings of “suitable” pixels. 

Minimum territory size Total suitable area (ha) Percent of the Kespukwitk area 

No minimum size 791299 48.90 

10ha 753086 46.54 

20ha 741419 45.81 
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Discussion 

The final predictive habitat model consisted of four input variables to characterize OSFL 

habitat in the Kespukwitk area of southwestern Nova Scotia: distance to wetlands, distance to 

spruce-dominated stands, proportion of tree cover, and the mean height of tree cover, which 

aligns with the features characteristic of OSFL habitat observed in previous habitat studies. 

While the 1m spatial resolution of the LiDAR CHM was conducive to identifying some 

within-stand variation, it was too coarse to identify other metrics observed in the finer resolution 

drone CHMs. The differences in the spatial resolution of drone and LiDAR CHMs directly 

influenced the measurements obtained by some of my methods for comparing the CHMs at the 

19 study sites. These discrepancies between LiDAR and drone CHMs are logical and for the 

most part follow results I anticipated to see when comparing the two types of CHMs. The higher 

rugosity can be attributed to the higher spatial resolution of the drone CHMs being able to 

measure and show slighter changes in the canopy surface. In contrast, the LiDAR has a smoother 

surface due to having to represent a larger area of canopy surface by one 1m pixel, thus losing 

the complexity that is seen in the drone CHM.  

Even after standardizing the measurements from the LiDAR CHMs to the drone canopy 

area, the drone CHM had less canopy cover on average than the LiDAR CHMs. This is likely a 

result of the disturbance experienced between the drone and LiDAR collection dates creating 

more space for canopy to grow horizontally where there was otherwise another tree in the way at 

the time when the LiDAR data was collected. If the canopy of each tree increased in the drone 

imagery, then selecting the LiDAR trees by this area would expand the selection area and 

potentially cause the selection of additional trees in the LiDAR where the drone’s canopy cover 

grew to overlap. By selecting these additional trees, their associated canopy would also be 

retained and could explain the greater amount of canopy cover identified in the LiDAR CHMs. 

Additionally, due to the discrepancy in the collection dates between the drone and LiDAR data, 

the tree heights were not expected to be similar as a result of more growing time for the 

vegetation observed in the drone imagery; however, it was surprising to see that the tree heights 

were taller on average in the LiDAR CHMs at the 19 sites. Yet, even with the difference in the 

tree heights, the standard deviation of the tree heights was more consistent between the two 

CHMs, and both variables were still considered to show strong relationships.  
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It was expected that the rugosity layer would reflect similar canopy variation as the 

standard deviation of canopy heights layer. Therefore, both were included in the model to see 

which was a more useful predictor of OSFL habitat. Yet, with rugosity being a good at 

identifying gaps within stands and mixed aged forests with multiple canopy levels (Kane et al., 

2010), all of which are important characteristics of OSFL breeding habitat, I was surprised to see 

it be the lowest performing input variable in the initial run of the model. Perhaps the TRI did not 

calculate rugosity in a useful way. As such, further research is needed to identify the best way to 

incorporate measures of rugosity into future models. 

The final covariates used for my model (distance to wetlands, distance to spruce stands, 

proportion of canopy cover, and mean tree heights) were similar to the final inputs for previous 

OSFL models. My results supported the conclusion of Westwood et al. (2019), with both of our 

studies demonstrating measures of wetness and forest cover as the best contributors for 

identifying for OSFL habitat. However, the Westwood et al. (2019) model used depth to water 

table to measure wetness, and this variable was one of the first covariates removed during my 

stepwise elimination, likely because a proximity to wetlands measures a similar variable that is 

related to a depth to water table. Distance to wetlands is also likely correlated to TPI because 

wetlands are in low lying areas (Province of Nova Scotia, 2014), which could explain why TPI 

was the fourth eliminated covariate in my stepwise elimination. In contrast, TPI was one of the 

top four best performing covariates in the Bale et al. (2020) model, where it likely performed 

better as a result of the greater topographical variation across the province. The Bale et al. (2020) 

model represented all of Nova Scotia, including northern Cape Breton where there is very high 

relief and more vertical variation in contrast to my model of southwestern Nova Scotia, which 

lies generally low. However, both of our models found that habitat in proximity to the OSFL’s 

preferred tree to be important variables for predicting OSFL habitat. My final best fit model 

(AUCtrain = 0.7066, AUCtest = 0.6908, LPT omission rate = 0.91%, 10PT omission rate = 11.33%) 

was very similar to the Bale et al. (2020) model (AUCtrain 0.6850 and AUCtest 0.6674, LPT 

omission rate = 0.39%, 10PT omission rate = 11.98%), suggesting that although I used 

environmental covariates aimed to identify variability within OSFL habitat, these metrics may 

not be much more conducive to predicting habitat locations at this scale than previous models.  
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Despite two of the four environmental covariates in my final best fit model having been 

derived from LiDAR data, they did not measure much of the within-stand variability that I 

believed to be important identifiers for OSFL breeding habitat. The two final LiDAR metrics 

(proportion of canopy cover and mean tree heights) represented mean values for measures of 

within-stand variability. I believe this to be attributed to the coarse scale at which my input layers 

were standardized for analysis in MaxEnt. However, my model did use input layers at a finer 

spatial resolution (100m) than the two previous models by Westwood et al. (2019) and Bale et al. 

(2020) who standardized inputs to a 250m and 150m spatial resolution, respectively. Resampling 

data to any of these scales makes it difficult to accurately represent measures of within-stand 

variability. Just resampling measures of variability derived from the LiDAR CHM to coarser 

spatial resolutions loses the complexity of the area represented by each pixel. Therefore, future 

models that intend to use metrics that identify variability in LiDAR-derived metrics should 

create inputs based on a scale of the amount of variability observed within the area. For example, 

rather than calculating the standard deviation of tree heights and resampling the outputs to a 

100m spatial resolution, a measure that shows the abundance or range of standard deviation 

values within the 100m2 area could potentially be a stronger predictor of habitat suitability. This 

is seen in my results that show the proportion of canopy cover input layer as the best performing 

covariate. This layer was created with the aggregation of the 1m spatial resolution to a coarser 

scale being taken into account as the final pixel values, as opposed to the rest of the LiDAR input 

layers being created and then resampled to 100m.  

The proportion of canopy cover had the highest performance of any other inputs, even 

greater than any inputs used in Bale’s model. I was not expecting this to be the case, given that 

there isn’t much in the literature stating that the amount of canopy cover is extremely important 

for characterizing OSFL habitat. This is further confusing given that OSFL habitat could be 

forest wetlands (with moderate amounts of canopy cover) or barrens and even post-burn sites 

where there is little canopy cover on the trees (McBeath, 2023). However, with how high of a 

contributing factor the proportion of canopy cover played in my model, even when alongside 

other inputs that were high-performing covariates in previous models by Westwood et al. (2019) 

and Bale et al. (2020), there is likely some sort of variation that is also being identified within 

this layer. An explanation for this could be that the proportion of canopy cover is also a proxy for 

other important characteristics of OSFL habitat, such as greater spacing between trees that would 
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result in gaps in canopy cover, or identifying snags and dead tips of trees that are preferred 

perches for OSFLs (Altman & Sallabanks, 2020) and would have lower canopy cover. 

The suitable habitat identified in my model was abundant across the study area, but most 

prevalent in areas with fewer OSFL occurrences. The OSFL occurrence points used as inputs for 

the MaxEnt model were largely clustered to the north-east quadrant of my study area; however, 

most of the suitable habitat was identified to the south-west portion. This shows the importance 

of the spatial thinning of the occurrence data and the use of a bias layer when running MaxEnt 

because the occurrence data was spatially biased towards areas that are more accessible, like 

Kejimkujik National Park, and frequently surveyed areas, evident by large clustering of points 

around areas with a high density of bird survey locations. There were fewer occurrences in the 

larger areas of predicted suitable habitat identified from my model, likely because the final 

environmental covariates indicate suitability relating to tall spruce stands with moderate canopy 

cover in proximity to wetlands. In its simplest form, this model was predicting forested 

coniferous wetland habitats, so the larger areas identified by my model also had fewer 

occurrence points likely because these locations are understudied in Nova Scotia and difficult to 

access (Government of Nova Scotia, 2011). However, it is precisely this reason that shows the 

importance of habitat modeling to identify these areas. We need to identify these larger suitable 

habitats in order to maintain them and prevent further habitat degradation or loss to effectively 

promote the recovery of the species (NSDLF, 2021). 

Larger areas of suitable habitat are also important to identify because, with the spatial 

resolution of my predictive habitat model, bits of “suitable” habitat that are only a few pixels are 

un-inhabitable unless they are large enough to support a territory, which ranges from 10ha to 

20ha in size (Altman & Sallabanks, 2020). Therefore, continuous clusters of pixels that cover at 

least 10ha are the smallest areas that can be considered “suitable” habitat. My model did not 

show much change in the amount of suitable habitat with this 10ha minimum cut off, but the 

total area of suitable habitat is unrealistically high for the area which likely suggests that using 

the MaxSS threshold to determine suitability is too low for this model. However, to be sure, the 

results of my model would need to be tested, which would require new field data to be collected 

in these “suitable” habitats.  
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Conclusion 

The OSFL has experienced significant population decline since the 1970s (COSEWIC, 

2019), and a lack of knowledge as to where their breeding habitat occurs around the province is 

preventing effective recovery strategies from being implemented (NSDLF, 2021). Therefore, the 

identification of OSFL breeding habitat is crucial to promote the recovery of the species. 

However, the previous models designed to identify OSFL habitat in Nova Scotia were not able to 

account for the fine-scale forest structure and variability within the habitat that is consistent with 

the requirements for the bird’s foraging technique (McBeath, 2023).  

My study aimed to identify how LiDAR data, which has revitalized habitat studies of 

flying vertebrates (Jaime-González et al. 2017) and was recommended for use of OSFL habitat 

modeling in previous studies (Westwood, 2016), could be used to improve predictive habitat 

models for the OSFL by accounting for the bird’s foraging ecology. My analysis of the LiDAR 

data, when compared to high-resolution drone imagery, identified that the provincial LiDAR 

CHM could measure some types of within-stand variability of OSFL habitat, such as canopy 

cover and the mean and standard deviation of tree heights. These metrics were then used in my 

MaxEnt species distribution model to predict potential habitat locations in the Kespukwitk area 

of southwestern Nova Scotia, which showed that almost half of the area consists of suitable 

habitat for the OSFL.  

Although I was able to identify LiDAR metrics that could show the variability within 

habitats, these metrics contributed to a predictive habitat model that performed similarly to what 

previous studies had done without the LiDAR metrics. My best fit model incorporated 

environmental covariates that measured comparable characteristics of OSFL habitat to previous 

habitat models, further supporting the importance of spruce forest cover, wetlands, and tall trees 

to characterize OSFL habitat. However, my model did identify a covariate that performed 

drastically stronger for predicting suitable OSFL habitat than any other variable used in previous 

models. This shows that measures of variability within habitats are important for identifying 

OSFL habitat, supporting recent research that indicates these fine-scale forest structure are 

among the most important habitat characteristics for determining OSFL occupancy rates (Hack et 

al., 2023). That this one measure of habitat variability derived from the LiDAR metrics 

outperformed other covariates shows that the way in which fine-scale forest structure and its 
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variability is measured and represented has an impact on the layer’s contribution to predictive 

habitat models. As such, future models that aim to identify the fine-scale variation within habitats 

using input layers at coarser spatial resolutions should develop their inputs to reflect the area 

represented by each pixel as opposed to resampling measurement to greater areas.  
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APPENDIX A: 

THE DISTURBANCE EXPERIENCED BETWEEN COLLECTION DATES 

OF THE DRONE AND LIDAR DATA AT EACH SITE 

 

  Collection Date 

Disturbance: Region Site Drone LiDAR 

Southwestern NS End Victory Rd 2022-09-12 2019 None 

Harvest Block 13 2023-08-03 2019 None 

MCFC Burn 2022-07-14 2019 Burn 

Palmer Lake 2022-06-23 2019 None 

Stillwater 1 2022-07-10 2019 Blow down 

Stillwater 2 2022-07-10 2019 Blow down 

Tupper Barrens 2022-09-19 2019 None 

Twin Lake Burn 1 2022-09-13 2019 Burn 

Twin Lake Burn 2 2022-09-13 2019 Burn 

Victory Rd Swamp 2022-09-12 2019 None  

    
Eastern Shore Otter Pond East 2022-07-16 2019 Blow down 

Otter Pond West 2022-07-26 2019 Blow down  

    
Cape Breton Long Lake 2022-07-21 2018 None 

Reagans Extension 2022-07-21 2018 None 

River Tillard 1 2022-07-21 2016 None 

River Tillard 2 2022-07-21 2016 None 

River Tillard 3 2022-07-21 2018 Harvest 

River Tillard 4 2023-08-25 2016 Harvest 

River Tillard 5 2022-07-21 2018 Harvest 
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APPENDIX B: 

CREATION OF MAXENT GIS INPUT LAYERS 

 

Topographic Position Index. The topographic position index (TPI) is a measure of local 

elevation relative to the surrounding “neighborhood” (Weiss, 2001) calculated from the 

Provincial LiDAR digital elevation model (DEM) with a 1m spatial resolution. I ran the ‘Focal 

Statistics’ tool in ArcGIS on the DEM clipped to my study area to generate three new DEM-

derived layers: the minimum elevation (DEMmin), maximum elevation (DEMmax), and mean 

elevation (DEMmean) using a 10m x 10m square search window. Following the method in Bale 

(2017), a continuous TPI layer was then calculated for the study area using the ‘Raster 

Calculator’ tool with the equation: TPI = (DEMmean – DEMmin) / (DEMmax - DEMmin) 

The spatial resolution of the continuous TPI layer was increased to 100m using the 

‘Resample’ tool with a bilinear resampling method so that the resolution was consistent with all 

other environmental data layers. Lastly, using the ‘Reclassify’ tool, the continuous layer was 

converted to a categorical layer with five classes defined by standard deviation (SD): valleys  

(< -1 SD), low-slopes (-1 Sd to -0.5 SD), mid-slopes (-0.5 SD to 0.5 SD), upper-slope (0.5 SD to 

1 SD), and ridges (>1 SD). 

Depth to Water Table. A continuous index of the depth to water table (DTW) was used to 

delineate distance between the water-table and the soil surface. This layer was derived from the 

new LiDAR-derived Wet Areas Mapping (WAM) model obtained from John Gallop, Nova Scotia 

department of Environment and Climate Change – wetlands program, which is more effective at 

identifying forested wetlands in the province (Gallop, 2023). Using the ‘Extract by Mask’ tool, 

with my study area as the mask, the raw DTW values from the WAM within my study area were 

extracted and then resampled to a 100m spatial resolution using the ‘Resample’ tool and a 

bilinear resampling method. 

Distance-based Layers. Two distance-based layers were created to delineate distance 

from wetlands and spruce-dominated stands, to show habitat suitability as a function of 

proximity to these two features, both of which are preferred habitat characteristics for the OSFL 

(Westwood, 2016). Both distance layers used delineated polygon features extracted from the 
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provincial Forest Inventory Data (FID) using the ‘Select by Attribute’ tool to identify polygons 

with desired characteristics. Wetland delineated boundaries were identified through the 

“FORNON” field, where polygons were selected if the field was equal to 70 (general wetlands), 

71 (beaver flowage – any area that is or has been occupied by beavers), 72 (open bogs), or 73 

(treed bogs). Once the desired polygons were selected, they were exported to their own layer so 

that I could use the ‘Euclidean Distance’ tool to generate a continuous raster file (with cell size of 

100m) identifying each pixel’s distance to the nearest wetland. The same process with done to 

calculate the distance to spruce-dominated stands, where the FID polygons were identified by the 

“species” fields as having either of the top two dominant species in the stand be black spruce, red 

spruce, or mixed stands (i.e., SP1 or SP2 fields were equal to BS or RS or XS).  

Proportion of Canopy Cover. A measure of canopy cover was included as an input layer 

to distinguish between forest and non-forest and to show the variability among tree stands. 

Canopy cover was derived from the provincial LiDAR CHM, where I used the ‘Reclassify’ tool 

to create a binary layer, reclassifying values between 5m and 35m (inclusive) to 1, and setting all 

other values outside of this range, including “NODATA” values to 0. Values <5m were believed 

to be too small to classify as trees, while values >35m were assumed to be too tall to be trees and 

more likely to be building. This binary layer of only 1 and 0 values was then aggregated by mean 

to a square tessellation with 100m2 grid cells using the ‘Zonal Statistics as Table’ tool. The 

output table with the mean values was then joined to the tessellation layer and then converted to 

a raster with a 100m cell size, where each pixel represented the average amount of canopy cover 

within the 100m2 area.  

Canopy Clumping. A second canopy binary layer was calculated, this time considering 

8m as the lowest threshold height for canopy. I chose to use a a minimum height of 8m to 

remove some autocorrelation with the proportion of canopy cover layer and because this was the 

lowest perch height at which an OSFL was observed to occupy at my study sites (McBeath, 

2023). From this binary layer, a canopy clumping layer was calculated using the ‘Focal Statistics’ 

tool as the sum of the focal cell and the 8 cells surrounding it (1m radius square window size) to 

be consistent with the findings in McBeath (2023) who observed a scale of clumping for trees in 

OSFL territory between 0.5m – 1.5m. The output sum layer was then standardized using the 

‘Raster Calculator’ tool, dividing the sum layer by 9 to show the amount of canopy clumping at 
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each cell on a scale of 0 (no canopy cover around the focal cell) to 1 (focal cell is completely 

centered in canopy), with anything between showing a mix of canopy and no canopy. The spatial 

resolution of the final canopy clumping layer was then increased to 100m using the ‘Resample’ 

tool and a bilinear resampling method. 

Terrain Ruggedness Index. A terrain ruggedness index (TRI) was used as a measure of 

elevation difference between adjacent cells to compare the complexity of neighbouring values 

(Riley, 1999). This index was used to show a measure of vertical heterogeneity of the canopy 

surface as a proxy measure for rugosity. The TRI was derived from the LiDAR CHM, 

manipulated using the ‘Set Null’ tool to only have values between 5m and 35m (inclusive), so 

that only canopy roughness was measured. The ‘Focal Statistics’ tool with a 10m x 10m window 

size was used to calculate the minimum, maximum, and mean from the manipulated CHM. A 

continuous TRI layer was then calculated using the ‘Raster Calculator’ with the same equation 

used to create the TPI, but this time with focal statistic output layers derived from the LiDAR 

CHM: TRI = (CHMmean – CHMmin) / (CHMmax – CHMmin). The spatial resolution of the final TRI 

layer was then increased to 100m using the ‘Resample’ tool and a bilinear resampling method. 

Focal Statistics Layers. Two focal statistics layers were created to show a measure of 

CHM heights, with one layer representing the mean heights and the other showing the standard 

deviation (SD) of the heights. The mean and SD layers were derived from the manipulated 

LiDAR CHM with only values between 5m and 35m (inclusive), and were calculated as the 

mean and SD, respectively, using the ‘Focal Statistics’ tool with a 10m x 10m window size. The 

spatial resolution of the final mean and SD layers was then increased to 100m using the 

‘Resample’ tool and a bilinear resampling method.  
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APPENDIX C: 

EXTENDED DATA TABLES FOR DRONE AND LIDAR CHM ANALYSIS 

 

Extended Table 4a. Results from analysis of the 19 study sites for the rumple index calculated 

from the drone and LiDAR CHMs, and the mean and standard deviation (SD) of tree heights (m) 

calculated from the individual trees identified in the drone CHM and the trees in the LiDAR 

CHM standardized to the drone canopy cover area. 

 Rumple index Drone tree heights (m) LiDAR tree heights (m) 

Site Drone LiDAR Mean SD Mean SD 

End Victory Rd 3.5510 1.6680 8.2511 3.0905 9.4112 3.3393 

Harvest Block 13 2.7247 1.4950 9.2993 3.2808 11.0968 3.2342 

Long Lake 3.0876 2.0818 7.5942 2.1965 8.9307 2.2971 

MCFC Burn 2.5588 1.9723 9.6597 3.9449 11.5499 4.0431 

Otter Pond East 5.0211 2.1367 10.2126 4.3261 13.3518 4.4410 

Otter Pond West 4.0161 1.9419 8.7918 4.0507 11.5321 4.6456 

Palmer Lake 3.0665 1.8121 9.9179 3.7909 10.1706 3.1755 

Reagans Extension 3.3633 2.0828 7.6917 2.1889 9.2258 2.5503 

River Tillard 1 3.3503 2.0231 9.0491 3.0076 9.0817 2.6892 

River Tillard 2 3.0132 1.8022 8.0795 2.4426 8.1467 2.3448 

River Tillard 3 3.0898 1.7599 7.6836 1.9112 8.4934 1.9292 

River Tillard 4 1.5497 1.6283 7.2908 2.0293 7.7503 2.1063 

River Tillard 5 2.7477 1.7612 8.3342 2.4564 9.6771 2.3805 

Stillwater 2 4.4506 1.7551 10.3436 4.8196 14.1013 5.0711 

Stillwater 1 5.9646 1.6687 8.9383 4.8712 13.6989 6.6198 

Tupper Barrens 3.3152 1.7689 8.1560 2.7660 9.6727 3.1340 

Twin Lake Burn 1 2.7188 1.9986 11.0631 3.4180 13.6221 2.4203 

Twin Lake Burn 2 4.5562 1.8472 10.6610 3.5251 14.5460 3.1938 

Victory Rd Swamp 2.7470 1.5146 8.0358 2.7479 8.8863 3.1000 

 
      

Mean 3.4154 1.8273 8.8975 3.2034 10.6813 3.3008 
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Extended Table 4b. Average Nearest Neighbor (NN) analysis of individual tree identified in drone CHM and the identified trees in 

the LiDAR CHMs standardized to the drone canopy area. Average NN analysis involves the observed average distance to the nearest 

neighbor (in metres), the expected vs observed NN ratio, the z-score, and its significance.  

 Drone LiDAR 

Site 
# of 

Trees 
NN 

distance 
NN 

ratio z-score p-value 
# of 

Trees 
NN 

distance 
NN 

ratio z-score p-value 

End Victory Rd 3505 1.5125 0.7611 -27.0603* 0.0000 744 4.5605 1.0575 3.0004** 0.0027 

Harvest Block 13 4450 1.4884 0.8883 -14.2609* 0.0000 765 4.2936 1.0706 3.7365** 0.0002 

Long Lake 4667 1.2515 0.7764 -29.2291* 0.0000 1427 3.2890 1.1274 9.2065** 0.0000 

MCFC Burn 1066 2.0839 0.5608 -27.4446* 0.0000 314 6.0320 0.8858 -3.8789* 0.0001 

Otter Pond East 4078 1.4856 0.8468 -18.7151* 0.0000 873 4.7669 1.2598 14.6912** 0.0000 

Otter Pond West 3276 1.4603 0.7480 -27.5985* 0.0000 657 4.9857 1.1496 7.3401** 0.0000 

Palmer Lake 3545 1.6455 0.8622 -15.6972* 0.0000 1038 4.2285 1.2009 12.3900** 0.0000 

Reagans Extension 5285 1.1861 0.7714 -31.7923* 0.0000 1294 3.4577 1.1210 8.3283** 0.0000 

River Tillard 1 5950 1.3236 0.9136 -12.7570* 0.0000 10315 1.5359 0.9751 -4.8312* 1E-06 

River Tillard 2 4624 1.3540 0.8139 -24.2090* 0.0000 7189 1.4952 0.7797 -35.7340* 0.0000 

River Tillard 3 4802 1.5564 0.9622  -5.0149* 1E-06 925 4.1720 1.1376 8.0126** 0.0000 

River Tillard 4 2722 1.8025 0.8127 -18.6967* 0.0000 4054 1.6272 0.6278 -45.3445* 0.0000 

River Tillard 5 3239 1.7095 0.8676 -14.4199* 0.0000 747 4.2408 1.0367 1.9193** 0.0550 

Stillwater 2 1758 1.8700 0.6449 -28.4900* 0.0000 475 5.4764 0.9837 -0.6820*** 0.4952 

Stillwater 1 4043 1.4905 0.7736 -27.5443* 0.0000 736 4.9399 1.1136 5.9012** 0.0000 

Tupper Barrens 2865 1.4361 0.6813 -32.6448* 0.0000 571 5.4720 1.1647 7.5341** 0.0000 

Twin Lake Burn 1 1788 1.8840 0.6525 -28.1207* 0.0000 396 5.2137 0.8551 -5.5225* 0.0000 

Twin Lake Burn 2 3357 1.5067 0.7176 -31.3104* 0.0000 516 5.2011 0.9797 -0.8818*** 0.3778 

Victory Rd Swamp 3151 1.4161 0.6809 -34.2700* 0.00 524 5.0442 0.9962 -0.1669*** 0.8675 

           
Mean 3656 1.5444 0.7795   1736 4.1494 1.0193   
*Significant Clustering         

**Significant Dispersion         

***Random Distribution         

 




