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Chapter 1

“Clink” versus “BOOM?”

Imagine I'm standing in front of you holding up two little pieces of silver-grey metal and between
us is a bucket of water. You can see the pieces of metal look pretty much the same; I tap them
on the desk so you can tell they sound about the same; I pass them around so you can check they
feel about the same, weigh about the same, smell the same (not really at all), although I warn you
not to taste them. I take them back and throw first one into the bucket, where it goes “clink”, and
then the other, where it goes “BOOM”.

Even if we had in-person classes I probably wouldn’t be allowed to explode things in front of
my students — that’s what tenure is for! — but I want you to think about how two things that
seem the same can behave so differently. Explaining that for those two little pieces of metal gets us
into discussions that get pretty deep pretty quickly, of chemical reactions and molecules and atoms.
The famous physicist Richard Feynman said that if some disaster were going to wipe out nearly all
scientific knowledge and he could choose once sentence to pass on to future generations, it would be
“all things are made of atoms”. Other scientists might choose deep statements from their own fields
that have changed humanity’s view of the universe and our place in it: for an astronomer, “the
earth goes around the sun”; for a biologist, “species arise through a process of natural selection”;
for a psychologist, “the mind is a function of the brain”. Statements about mathematics usually
aren’t quite so controversial, at least among non-mathematicians, but the story goes that the first
mathematician to prove that the square root of 2 is irrational was thrown overboard by his fellow
Pythagoreans.

So, what have we got? You've been studying computer science in university for a few years
now, and I'd like to know what you’ve learned about our field that can reasonably be considered
one of the great scientific truths. “The speed of processors doubles every 18 months”? “Adding
workers to a late software project makes it later”? “All your bases are belong to us”? “The cake
is a lie”? This is when I'd really like to be able to stop and let you think, and then hear what
you have to say. Under the circumstances, however, I'm just going to have to assume most of you
chose to study computer science because it’s fun, you can do cool things with it (including saving
people’s lives and making the world a better place), it pays pretty well and it’s indoor work with
no heavy lifting — even though it may not tell us deep things about the universe.



That’s rather a shame. If you check Scientific American’s list of “100 or so Books that Shaped a
Century of Science”, under “Physical Sciences” and mixed in with Stephen Hawking’s A Brief His-
tory of Time, Primo Levi’s The Periodic Table, Carl Sagan’s The Pale Blue Dot, Paul Dirac’s Quan-
tum Mechanics, The Collected Papers of Albert Finstein, Linus Pauling’s Nature of the Chemical
Bond and Feynman’s QED, you’ll find books about computer science (or things close to it): Benoit
Mandelbrot’s Fractals, Norbert Weiner’s Cybernetics and, last but definitely not least, Knuth’s Art
of Computer Programming. So apparently we are doing deep things, we’re just not teaching you
about them.

Actually, I think that in a very important sense, we are the deepest of the sciences. To under-
stand where the basic rules of psychology come from, for example, you must know something about
biology; to understand where the basic rules of biology come from, you must know something about
chemistry; to understand where the basic rules of chemistry come from, you must know something
about physics; to understand where the basic rules of physics come from, you must know some-
thing about mathematics; but who tells the mathematicians what they can and cannot do? We do.
Philosophers, theologians and politicians might claim to, but I think the mathematicians largely
ignore them. One field has really stood up to mathematics and laid down the law, and that field
was computer science.

At the International Congress of Mathematicians in 1900, a famous mathematician named
David Hilbert proposed ten problems that he thought mathematicians should work on in the 20th
century. He later expanded the list to 23 problems, which were published in 1902 in the Bulletin of
the American Mathematical Society. Let’s talk about Hilbert’s Tenth Problem (for the integers): “to
devise a process according to which it can be determined in a finite number of operations whether
[a given Diophantine equation with integer coefficients] is solvable in [the integers]”. Notice Hilbert
didn’t ask whether such a process existed; back then, people assumed that if a mathematical
statement were true, with enough effort they should be able to prove it.

I’ll assume you all know what a quadratic equation in one variable is, and that you can tell if
one has a solution in the reals using the quadratic formula. There are similar but more complicated
formulas for solving cubic and quartic equations in one variable, which fortunately I never learned.
If you’re given a quintic equation in one variable with integer coefficients, then you may be able
to use the rational-root theorem (which I actually did learn once upon a time!) to get it down to
a quartic, which you can then solve with the quartic formulas. (For anything more complicated,
maybe you can try Galois Theory, but I can’t help you there.) Anyway, the Diophantine equations
Hilbert was talking about are sort of like these equations but with a finite number of variables. He
wanted a way to solve any given Diophantine equation that has integer coefficients or, at least, a
way to tell if it even has an integer solution.

So, solving Diophantine equations over the integers was considered an important mathematics
problem by important mathematicians. Unfortunately for them, in 1970 Yuri Matiyasevich showed
in his doctoral thesis that we can take a certain general model of a computer, called a Turing
Machine, and encode it as a Diophantine equation with integer coefficients, in such a way that the
Turing Machine halts if and only if the Diophantine equation has an integer solution. It was already
known that determining whether a Turing Machine halts is generally incomputable, meaning there
is no algorithm for it (and that had already thrown a spanner in Hilbert’s plan for 20th-century
mathematics), so Matiyasevich’s Theorem (also known as a Matiyasevich-Robinson-Davis-Putnam



Figure 1.1: The seven bridges of Konigsberg in Euler’s time (https://commons.wikimedia.org/
wiki/File:Konigsberg_bridges.png).

Theorem, for some other mathematicians who laid the groundwork) says Hilbert’s Tenth Problem
is impossible (for the integers). So, computer science told mathematics that it couldn’t have
something it really wanted.

I guess 1970 seems like a long time ago and we don’t want to relive old victories so — although
we’ll talk a bit about Turing Machines and the Halting Problem and computability and Hilbert’s
Entscheidungsproblem — in this course mostly we’re not going to focus on the gap between possible
and impossible problems (and I won’t mention Diophantine equations again). Instead, we're going
to focus on the nature of the gap between easy problems (we have a polynomial-time solution that
runs on a standard computer) and hard problems (we don’t) — which is the deepest open question
in computer science and has been for a long time, since 1971. Echoing Hilbert, in 2000 the Clay
Mathematics Institute proposed a list of seven problems they thought mathematicians should work
on in the 21st century, including this one of easy versus hard, and backed each with a million-
dollar prize. To quickly illustrate the gap between easy and hard, I'd like to talk about two classic
problems, determining whether a graph has an Eulerian cycle and whether it has a Hamiltonian
cycle. At first these problems seem almost the same, but it turns out that one goes “clink” and
the other goes “BOOM” (we think).

In the 1730s, the citizens of Konigsberg (then in Prussia, now the Russian city of Kaliningrad)
wrote to the famous mathematician Leonhard Euler asking whether it was possible to start some-
where in their city (shown as it existed then in Figure , walk around it in such a way as to
cross each of their seven bridges once and only once, and arrive back at the starting point. Euler
answered that it was not possible since, if we draw a graph with each shore and island as a vertex
and each bridge as an edge, all of the vertices have odd degree, where a vertex’s degree is the
number of edges incident to it. He observed that in such a walk — now called an Fulerian cycle of
a graph — every time we visit a vertex we reduce the number of uncrossed edges incident to it by
2 (we arrive across one and leave across one); therefore, in order for a graph to have an Eulerian
cycle, it is a necessary condition that it be connected (that is, it must be possible to get from any
vertex to any other vertex) and every vertex must have even degree.

Euler also showed that this is also a sufficient condition, which is less obvious. Suppose we
start at some vertex v in a graph G that satisfies the condition, and walk around until we get stuck
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(that is, we arrive at a vertex all of whose incident edges we’ve already crossed). Where can we get
stuck? Well, when we're at a vertex w # v then we’ll have “crossed off” an odd number of edges
incident to w (one for each time we’ve arrived there and one for each time we’ve left, and we’ve
arrived once more often than we’ve left); therefore, since an even number minus an odd number
is an odd number and 0 isn’t odd, there’s always at least one edge left for us to leave across. It
follows that we can only get stuck back at v, after tracing out a cycle C' in G.

Let G’ be the graph resulting from deleting from G the edges in C. If v has positive degree in
G’ then we can start there again and find and delete another cycle; otherwise, if some other vertex
has positive degree in G’, we can start there and find and delete another cycle. If we keep doing
this until there are no edges left, we get a decomposition of G into edge-disjoint cycles (meaning
the cycles can share vertices but not edges). Take any of the cycles C1, choose a vertex v it shares
with any of the other cycles, and choose another cycle Cy containing v. (If C; doesn’t share any
vertices with any other cycles, then its vertices aren’t connected to the rest of the graph, contrary
to our assumption.) Replace C and Cy by a single (non-simple) cycle Cg that makes a figure 8 in
some sense: if we start at v then we first cross all the edges in C] and return to v, then cross all
the edges in (5 and return to v. Repeating this cycle-merging, we eventually obtain an Eulerian
cycle of the graph.

It’s not totally trivial to implement this algorithm cleanly but it’s not all that hard either (so
I gave it as a homework exercise last year) and it obviously takes only polynomial time in the size
of the graph. In other words, the problem of determining whether a graph is Eulerian (contains an
Eulerian cycle) goes “clink”. It’s actually an important problem that comes up in de novo genome
assembly: one of the most common ways to assemble DNA reads is by building what’s called a
de Bruijn graph of the k-mers they contain, for some appropriate value of k, and then trying to
find an Eulerian tour of that graph (“tour” instead of “cycle” because it need not end where it
started). It’s likely, for example, that this played a role in sequencing the Covid genome, which
was important for developing a test for whether people were infected. Now let’s consider a problem
which seems deceptively similar at first.

In 1857 William Rowan Hamilton showed how to walk along the edges of a dodecahedron,
visiting each vertex once and only once, until arriving back at the starting point. Such a walk in
a graph is now called a Hamiltonian cycle, and it’s an obvious counterpart to an Fulerian cycle
but focusing on visiting vertices instead crossing edges. Hamilton didn’t give a general result like
Euler’s, however, and in fact no one has ever found an efficient algorithm for determining whether a
given graph is Hamiltonian (that is, it has a Hamiltonian cycle). By “efficient”, in computer science
we mean that the algorithm takes time polynomial in the size of the graph (in this case, the sum of
the number of vertices and the number of edges). Obviously there are necessary conditions we can
check quickly (for example, the graph has to be connected), and there are sufficient conditions we
can check quickly (for example, if a graph is a clique then it’s Hamiltonian, meaning it contains a
Hamiltonian cycle), and there are some kinds of graphs that are easy (for example, cycles or trees),
and some graphs are small enough that we can deal with them by brute force. .. but nobody’s ever
found an algorithm that can handle all graphs in polynomial time. In other words, it seems this
problem goes “BOOM”.

To see why people would really like to be able to determine whether a graph is Hamiltonian,
suppose you're in charge of logistics for a delivery company and you're looking at a map trying to



plan the route of a delivery truck that has to visit n cities, in any order and then return home. You
can tell the distance between each pair of cities and you want to know if it’s possible for the truck
to make its deliveries while travelling at most a certain total distance. (This problem is called the
TRAVELLING SALESPERSON PROBLEM or TSP or, assuming the truck travels only in the plane,
EucLipIAN TSP; computer scientists often use SMALL CAPS for tricky problems.) If every road
between two cities has distance 1, then the truck can travel distance n if and only if the graph with
cities as vertices and roads as edges, is Hamiltonian. It follows that if HAMCYCLE (the problem of
determining whether a graph is Hamiltonian) goes “BOOM”, then TSP goes “BOOM” too. That
is, if HAMCYCLE is hard, then so is TSP, because in some sense HAMCYCLE can be turned into
TSP. Don’t worry, we’ll see a lot more about this later in the course.

How can two problems — determining if a graph is Eulerian and if it’s Hamiltonian — that
seem so similar be so different? Well, we hope investigating that will lead us to a deep truth, like
investigating the reactions of those pieces of metal to water could lead us to studying atoms. We
may not even really care as much about the problems themselves as we do about what studying
them can tell us: my chemistry teacher might forgive me if I forgot that sodium metal explodes in
water, but he’d be really annoyed if I forgot the atomic theory; similarly, you may pass this course
even if you forget Euler’s algorithm, but I really do want you to remember something about the
difference between easy and hard problems.

Another way of saying this is that you shouldn’t miss the forest for the trees. Think of Euler’s
Algorithm as a tree and HAMCYCLE as a tree and yourself as a student of geography: you’re not
really interested in individual trees as much as you’re interested in the general layout of the forest
and, metaphorically, whether there’s a big river splitting it into two pieces. In the next class,
we’ll talk about another classic problem, colouring graphs, some versions of which (1-colourability,
2-colourability, planar k-colourability for k > 4) are easy and some versions of which (planar 3-
colourability, general k-colourability for k& > 3) are thought to be hard. Does anyone really care
about 47-colourability in particular, say? Probably not, but by the end of this course you should
understand that it’s on the same side of the river as HAMCYCLE and TSP and planar 3-colourability
and general k-colourability for any other k£ > 3 (that is, the “BOOM” side, to mix metaphors), and
on the opposite side from finding Eulerian cycles and 1- or 2-colourability (the “clink” side).

Investigating the difference between the complexity of finding Eulerian and Hamiltonian cycles
and between 2-colouring and 3-colouring graphs also leads us to a shallow but important truth
about this course: it’s dangerous to answer questions just by pattern matching! That is, just
because a problem sounds similar to something you’ve seen before, don’t think you can just write
the answer to the old problem and get part marks.

Summing up, here are some things to remember while taking this course:

e Computer science is the deepest of the sciences!

Some problems are possible, some aren’t — and that’s deep.

Some problems are easy, some probably aren’t — and that’s deep, too.
Don’t miss the forest for the trees.

It’s dangerous to answer questions just by pattern matching.



Part 1

Divide and Conquer



Chapter 2

Colouring Graphs

When I was in primary school geography was mainly about colouring maps, which I was pretty
good at except that I kept loosing my pencil crayons, so my maps weren’t as colourful as the other
children’s. I was therefore really impressed when I learned that in 1852 Francis Guthrie found a
way to colour a map of the counties of England (there were 39 back then) using only four colours,
such that no two counties with the same colour share a border (although meeting at a point is
ok). This made him wonder if it was possible to 4-colour any (planar) map like this. He wrote to
his brother, who was studying with the mathematician De Morgan (who formulated De Morgan’s
Laws of propositional logic, which you may have heard about last year), and the conjecture was
published in The Atheneum magazine in 1854 and 1860. In 1890 Heawood proved any planar map
can be 5-coloured, and in 1976 Appel and Haken finally proved the original conjecture by checking
1834 cases with a computer.

(An important (and very long) part of the proof was checked manually by Haken’s daughter
Dorothea, who taught me third-year algorithms at Queen’s 22 years later; she’s also a coauthor of
the Master Theorem that we’ll discuss next week.)

Appel and Haken’s Four-Colour Theorem is considered part of graph theory, instead of geogra-
phy, because if someone gives us a planar map and we draw a vertex in each region and put an edge
between two vertices if and only if their regions share a border, then we get a planar graph that
can be coloured with k colours such that no two vertices with the same colour share an edge, if and
only if the original map can be coloured with k colours. For example, Figure shows the graph
we get for the map of the counties of Nova Scotia. (Actually, if we put an edge for every shared
border — so one edge between France and Spain for their border west of Andorra and another for
their border east of it, for example — then the graph and the map are duals, meaning that from
the graph we can reconstruct something that’s topologically equivalent to the map, and from that
we can reconstruct the graph, and so on.) It’s easy to find planar graphs that require 4 colours,
such as a 4-clique (a graph on four vertices with edges between every pair), but it’s not so easy
to tell whether a given planar graph can be 3-coloured. In fact, as mentioned in the last lecture,
that’s a “BOOM” problem.
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Figure 2.1: A graph that is 3-colourable if and only if the map of the counties of Nova Scotia is
3-colourable.

Suppose someone gives us a planar graph, meaning one that can be drawn in the plane such
that edges don’t cross, and asks us if it can be coloured with k colours. (There are polynomial-time
algorithms for determining whether a graph is planar and, if so, finding a way to draw it without
edge-crossings, so we won’t worry about that.) If £ = 1 then the answer is “yes” if and only if the
graph contains no edges. If £ = 2 then there’s a simple algorithm based on breadth-first search:
choose any vertex and colour it blue; colour its neighbours red; colour their uncoloured neighbours
blue; keep going until the whole graph is coloured; if there’s an edge with endpoints the same
colour, tne answer is “no” and otherwise it’s “yes”. If k > 4 then, by the Four-Colour Theorem and
the fact the graph is planar, the answer is “yes”. No one has ever found an algorithm, however, for
determining whether a graph is 3-colourable, whether or not it’s restricted to be planar, that runs
in polynomial time in the size of the graph in the worst case.

Of course, just because we don’t have an algorithm that runs quickly in the worst case, doesn’t
mean we have to give up. For small graphs, we can just use brute force. Even for large graphs,
it may be that almost all graphs are easy. We’re going to explore that in this class, along with
the idea of “degrees of BOOM”, and then finally we’ll end with some programming (which will
probably be a relief by then).

Notice we didn’t use the fact that the graph was planar in our tests for 1- and 2-colourability, so
those problems are easy for general graphs too. If we can solve 3-COLOURABILITY (affectionately
known as 3-CoL) for general graphs, then obviously we can solve it for planar graphs as well. Later
in the course we’ll see that if we can solve PLANAR 3-COL in polynomial time then we can use it to
solve general 3-CoOL. Therefore, PLANAR 3-COL goes “BOOM?” if and only if general 3-COL goes
“BOOM” — even though the latter is probably a bigger “BOOM”. (Don’t worry, by the end of the
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course you'll know the technical names for “clink” problems and “BOOM” problems.) When we
consider 4-colourability, though, there’s a big difference: while any planar graph can be 4-coloured,
not every graph can be (think of a 5-clique).

In fact, if we could solve general 4-CoOL in polynomial time, then we could also solve 3-CoL
(and, thus, PLANAR 3-CoOL) in polynomial time. To see why, suppose we’ve been asked if a graph
G is 3-colourable and we have a magic box that tells us quickly whether a graph is 4-colourable.
If we build a graph G’ by adding a vertex v to G and putting edges between v and all the original
vertices of G, then G’ is 4-colourable if and only if G is 3-colourable: if G’ is 4-colourable and we
take a 4-colouring of it and remove v, then the remainder — which is G — must be 3-coloured,
because v couldn’t have been the same colour as any other vertex; if G is 3-colourable and we take a
3-colouring of it and add v and colour v a new colour, then we get a 4-colouring of G’. In general, a
polynomial-time algorithm for general (k 4 1)-colourability immediately implies a polynomial-time
algorithm for k-colourability.

Later in the course we’ll see that if we have a polynomial-time algorithm for 3-CoL (either
planar or general, since I'll show you how to use the former to solve the latter) then we can use
it to get a polynomial-time algorithm for a problem called SAT (determining whether a given
propositional formula has a satisfying truth assignment). We’ll then see that if we have such an
algorithm for SAT then we can use it to get one for k-colourability for any k. We’ll also see that if
we have such an algorithm for SAT then we can use it to get one for HAMCYCLE, and vice versa,
and the same for TSP. This means that SAT goes “BOOM?” if and only if 47-CoL goes “BOOM”,
and that happens if and only if TSP goes “BOOM”. If one of these problems is hard, they all are
and, conversely, if we can solve one then we’ll have solved them all.

This is probably all getting a little confusing by now, so I'’ve drawn Figure to help you
visualize things, with an arrow from a problem u to a problem v if having a solution for v gives
us a solution for u. The arrow goes from u to v instead of the other way around because, instead
of changing the algorithm for v into an algorithm for w directly, what we normally do is design a
polynomial-time algorithm that takes an instance of u and produces an instance of v such that the
former is a “yes”-instance of u if and only if the latter is a “yes”-instance of v.

[43

For example, the arrow from 3-COL to 4-COL is because we saw how to take a graph G and
produce a graph G’ such that G is 3-colourable if and only if G’ is 4-colourable. This is called a
reduction. Note that the reduction can (and usually does) change the type: for example, when we
reduce SAT to 3-COL later in the course, our reduction will turn a propositional formula into a
graph. The solid arrows I should be able to test you on right now, and the dashed arrows I'll be
able to test you on later in the course. We won’t have time to see many reductions in this course,
unfortunately, but there are hundreds of famous problems that all turn out to be essentially the
same problem in different guises, and we don’t know how to solve any of them quickly in the worst
case.

Do you get the feeling we might be onto something deep here?

Now that we’ve talked about how we probably can’t solve lots of interesting problems in poly-
nomial time in the worst case, let’s talk about how we can solve some of them in practice by divide
and conquer. (Most people learn the divide-and-conquer approach to algorithm design for sorting

12



clink BOOM

- —_—
Eulerian cycle HAMCYCLE w
Y O O N This way to the
1-colourability ,-(O PrANAR 3-CoL Halting Problem,
= '\ _ A IR Diophanine Equations on Z,
2-colourabilit, QO 3-CoLy" \
AN \\ etc.
planar O 4-COL AN \
4-colourability g \ !
\
O 5-Cor \ |
< \ |
. | I
: ! )
(O 47-CoL : K
’ / ,
/ . / /
\ : / /
\ / /
A sar S
1 4 -
, -
“w(O 3-Sar %4 -~

Figure 2.2: A very sketchy diagram of how some problems are related.

and thus get the impression it’s only good for easy problems. I'm trying to avoid that with this
course.) To start with, let’s talk about PLANAR 3-COL or, rather, an even harder version of it:
how many 3-colourings there are of the map of the 18 historical counties of Nova Scotia using only
the colours red, green and yellow — such as the colouring shown in Figure I’'ve just told you
that determining if there’s at least one valid 3-colouring of a planar graph is a “BOOM” problem,
but now I want to know exactly how many there are. Don’t worry, it’s not that bad: there are only
3'8 possibilities to check, after all, and that’s not even 400 million.

If we simply list the counties in alphabetical order, and for each list their neighbours, we get
what’s called the adjacency-list representation of the graph, as shown in Table It’s pretty easy
to turn that into a simple program for counting 3-colourings, as shown in Figure which might
take a couple of seconds on a modern laptop. It hardly seems worth optimizing that, but it will be
worth it when we get to bigger instances later.

The first optimization you might notice is that we’re unnecessarily comparing Digby and
Yarmounth twice (once as Digby != Yarmouth and again as Yarmouth != Digby). A more impor-
tant optimization is that, since Cape Breton Island is an island, we can count its 3-colourings and
the 3-colourings of the mainland separately, and multiply them to get the number of 3-colourings
of the whole province, as shown in Figure This way, instead of 3'® possibilities, we’re only
checking 3* 4 3!, so our new program should be about 80 times faster.

It’s not as obvious what to do next, since we don’t have another big island to work with, but we
can break the mainland into two “islands” of size 6 each if we consider Hants and Lunenberg first,
as shown in Figure[2.6] The idea is that, for each way to colour Hants and Lunenberg, we count the
ways to colour the mainland counties north of them, and the ways to colour the mainland counties
south of them, and multiply those counts to get the number of ways of colouring the mainland
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Halifax:

Annapolis

Figure 2.3: A 3-colouring of the counties of Nova Scotia.

given how we chose to colour Hants and Lunenberg. Summing over the 9 ways to colour Hants and
Lunenberg (only 6 of which are valid!) we get the number of ways to colour the mainland. This
way, we consider only 3% + 32 .2 . 3% = 13203 possibilities.

A final optimization is to check the endpoints of each edge are different colours as soon as we’ve
coloured both endpoints. For example, in Figure [2.6] right after the line
for (int Lunenberg = RED; Lunenberg <= YELLOW; Lunenberg++)
we should check that Lunenberg is not the same colour as Hants,
if (Lunenberg != Hants) { ... }.

Just as Hants and Lunenberg break the mainland into two fairly small pieces, there’s a theorem
that says that in a planar graph on n vertices, we can always find a set of O(y/n) vertices such that,
when we remove them, none of the remaining connected pieces of the graph contain more than
2n/3 vertices. The vertices we remove are called a separator and there are efficient algorithms for
choosing them, but we’re not going to see those in this course as, for graphs that aren’t very big,
it’s usually possible to do it fairly well by hand. In any case, this result about separators gives us
a recursive algorithm for counting the 3-colourings of planar graphs: find a separator and, for each
way to colour the separator, recursively count the ways to colour each of the remaining pieces.

Writing a recurrence for this, we get something like

T(n) = 3*".27(2n/3)
— 32Vn.9.32V/2n/3 9 32¢/4n/9

30(711/2 logn)
which isn’t polynomial but is much better than 2"n®®), which is what we get with the fastest known
algorithm for finding the chromatic number of a general graph (the number of colours needed to

colour it). Notice that it’s not generally possible to choose a small separator in a general graph: no
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Annapolis Digby, Kings, Lunenburg, Queens
Antigonish Guysborough, Pictou

Cape Breton | Richmond, Victoria

Colchester Cumberland, Halifax, Hants, Pictou
Cumberland | Colchester

Digby Annapolis, Queens, Yarmouth
Guysborough | Antigonish, Halifax, Pictou

Halifax Colchester, Guysborough, Hants, Lunenburg
Hants Colchester, Halifax, Kings, Lunenburg
Inverness Richmond, Victoria

Kings Annapolis, Hants, Lunenburg

Lunenburg Annapolis, Halifax, Hants, Kings, Queens
Pictou Antigonish, Colchester, Guysborough
Queens Annapolis, Digby, Lunenburg, Shelburne
Richmond Cape Breton, Inverness

Shelburne Queens, Yarmouth

Victoria Cape Breton, Inverness

Yarmouth Digby, Shelburne

Table 2.1: The adjacency-list representation of the planar graph dual to the map of the counties of
Nova Scotia.

matter how many vertices we remove from an n-clique, it remains connected (until we’ve removed
the whole graph).

This all leads us to your homework, due in a little over a week: on Brightspace you’ll find a
text file with the adjacency-list representation of a graph corresponding to a simplified world map;
figure out how many ways there are to 4-colour it. If you’re feeling really enthusiastic, you can
try to write general code that takes an encoding of a tree, such as the one shown in Figure 2.7]
and uses it to compute the number of colourings: at a x node, start a new counter for each child,
compute their values recursively, and multiply them; at a + node, increment the current counter; at
a node for a county, for each colour that isn’t already assigned to one of the ancestors it’s pointing
at, assign it that colour and descend. (I may have made a mistake with the tree — it happens.)
Honestly, any time you see that many nested for-loops, all doing essentially the same thing, you
should think “There must be a better way!” (and maybe “Recursion!”). I'm not going to distribute
a nice, general answer, because I want to use this exercise again (just switching maps).

Although the answer (and your code) are due in a week, I suggest you should try to get it done
in the next 24 hours or so, while all of this is still fresh in your minds. Actually, I'm suggesting
that only so I can finish the class by saying

Divide and Conquer! Today, Nova Scotia; tomorrow, the world!
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#define RED O
#define GREEN 1
#define YELLOW 2

int main() {
int count = O;

for (int Annapolis = RED; Annapolis <= YELLOW; Annapolis++) [
for (int Antigonish = RED; Antigonish <= YELLOW; Antigonish++) {

for (int Yarmouth = RED; Yarmouth <= YELLOW; Yarmouth++) {
if (Annapolis != Digby &&
Annapolis !'= Kings &&
Annapolis != Lunenberg &&
Annapolis != Queens &&
Antigonish != Guysborough &&
Antigonish != Pictou &&

Yarmouth != Digby &&

Yarmouth != Shelburne) {
count++;

}
}

printf ("There are J%i ways to 3-colour Nova Scotia.\n", count);
return(0) ;

}

Figure 2.4: A naive program for counting the 3-colourings of Nova Scotia.
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#define RED O
#define GREEN 1
#define YELLOW 2

int main() {
int CB_count = 0;
int mainland_count = O;

for (Cape_Breton = RED; Cape_Breton <= YELLOW; Cape_Breton++) {
for (Inverness = RED; Inverness <= YELLOW; Inverness++) {
for (Richmond = RED; Richmond <= YELLOW; Richmond++) {
for (Victoria = RED; Victoria <= YELLOW; Victoria++) {
if (Cape_Breton != Victoria &&
Cape_Breton != Richmod &&

Inverness != Victoria &&
Inverness != Richmond) {
CB_count++;
¥
}
}
}
}

for (int Annapolis = RED; Annapolis <= YELLOW; Annapolis++) [
for (int Antigonish = RED; Antigonish <= YELLOW; Antigonish++) {

¥
}

printf ("There are %i ways to 3-colour Nova Scotia.\n",
CB_count * mainland_count);
return(0);

}

Figure 2.5: A somewhat faster program for counting the 3-colourings of Nova Scotia. We have
omitted the details of how to count the 3-colourings of the mainland, since they have not changed
except that we leave out the counties on Cape Breton Island.
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int mainland_count = 0;

for (int Hants = RED; Hants <= YELLOW; Hants++) {
for (int Lunenberg = RED; Lunenberg <= YELLOW; Lunenberg++) {
int north_count 0;
int south_count 0;

for (Antigonish = RED; Antigonish <= YELLOW; Antigonish++) {
for (Colchester = RED; Colchester <= YELLOW; Colchester++) {

for (Pictou = RED; Pictou <= YELLOW; Pictou++) {
if (Hants != Colchester &&
Hants != Halifax &&
Hants != Lunenberg &&
Lunenberg != Halifax &&
Antigonish !'= Guysborough &&

Guysborough != Pictou) {
north_count++;

for (Annapolis = RED; Annapolis <= YELLOW; Annapolis++) {
for (Digby = RED; Digby <= YELLOW; Digby++) {

for (Yarmouth = RED; Yarmouth <= YELLOW; Yarmouth++) {
if (Hants != Kings &&
Hants != Lunenberg &&

Lunenberg != Annapolis &&
Lunenberg != Kings &&
Lunenberg !'= Queens &&

Annapolis != Digby &&

Shelburne != Yarmouth) {
south_count++;

mainland_count += north_count * south_count;
}
}

Figure 2.6: A somewhat faster way to compute the number of 3-colourings of the mainland.
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Figure 2.7: An abstract representation of a way to compute the number of 3-colourings of Nova
Scotia.
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Assignment 1

posted: 05.05.2021 due: midnight 14.05.2021

You can work in groups of up to three people. One group member should submit a copy of the solu-
tions on Brightspace, with all members’ names and banner numbers on it; the other group members
should submit text files with all members’ names and banner numbers (otherwise Brightspace won’t
let us assign them marks!). You may consult with other people but each group should understand
the solutions: after discussions with people outside the groups, discard any notes and do something
unrelated for an hour before writing up your solutions; it’s a problem if no one in a group can ex-
plain one of their answers. For programming questions you should submit your code, which should
compile and run correctly to receive full marks.

1. Use divide-and-conquer to count the valid 4-colourings of the map shown in Figure [2.§
(Apologies to New Zealand and Antarctical) In this case, let’s say a valid 4-colouring is an
assignment of the colours red, green, yellow and purple to the regions of the map (ignore
water and the current colours) such that no two regions assigned the same colour share a
border of positive length (they can touch at a point) or have a line drawn between them. The
adjacency-list representation of the corresponding graph (with the vertices names A1 through
F4) is on the back of this sheet and will be posted as a text file on Brightspace. If you find a
discrepancy between the map and the adjacency lists, please email Travis as soon as possible!

South
America

Figure 2.8: How many ways can this map (https://commons.wikimedia.org/wiki/File:Risk_
game_map_fixed.png) be 4-coloured?
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Chapter 3

Euclid, Karatsuba, Strassen

Euclid’s algorithm is one of the oldest, having appeared in his Elements about 300 BCE, and says
that given two integers a and b — for simplicity, assume a > b > 0 — we can find the greatest
common divisor (a,b) of a and b by finding ¢ = a mod b and then recursively finding (b, c). For
example,

(168,78) = (78,12) = (12,6) = (6,0) = 6.

Fuclid actually proposed repeatedly subtracting the smaller of the two numbers from the larger
one, but that can obviously be really slow: it takes |a/b] step to do the same thing as a single
mod step, and so the whole algorithm can take (a) steps in the worst case, when a is huge and b
is tiny. (We’ll see €2 soon; for now, just think of O as meaning “roughly at most” and (2 as meaning
“roughly at least”.) Rather surprisingly, the complexity of the mod version wasn’t analyzed until
the 19th century, when it was shown to take O(loga) steps. To see why, consider than if b < a/2
then a mod b < b < a/2, and if b > a/2 then a mod b < a — b < a/2. Either way, at each step the
sum of the two numbers we’re considering decreases by at least half the larger number, which is
at least a quarter of the sum, so the number of steps can’t be more than about logy/3(a +b). In
fact, Lamé proved in 1844 that the number of steps is no more than 5 times the number of digits
in the decimal representation of a, and this bound is tight when a and b are consecutive Fibonacci
numbers. Lamé’s proof is considered the beginning of computational complexity theory (the study
of how long computations take).

I was careful to write “steps” in the preceding paragraph because it’s not clear that taking
the mod of two numbers takes constant time, especially not for a human. In just a moment we’ll
discuss how long basic arithmetic operations take, but first we should decide how we measure the
size of the input (so we can express the complexity as a function of that size), what model of
computation we’re working in, and how to measure the difficulty of a problem.

When I wrote “O(loga) steps”, I was expressing the complexity in terms of the numbers them-
selves (since a > b means O(loga) = O(log(a+0))); Lamé’s bound — linear in the number of digits
in a — is in terms of the size of the input, with “size” interpreted as the amount of paper it would
occupy when the numbers are written in base ¢ for some constant ¢ > 1. (Notice that choosing
another constant base d > 1 would change the number of digits by only a constant factor, which
disappears in the O, although the number of digits in unary — writing a as a copies of 1 — is
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exponentially larger.) Although there can be exceptions, that “size of the paper” measure is the
default.

To remember this, think of factoring integers. You may have heard that factoring is believed
to be hard, and we don’t have a fast algorithm for it, at least not on classical computers. Probably
the most famous quantum algorithm, Shor’s algorithm, should be able to factor in polynomial time
if we can build the hardware needed to run it.

(If you haven’t heard that factoring is believed to be hard, I recommend the movie Sneakers,
starring Robert Redford, Dan Aykroyd, Ben Kingsley, Mary McDonnell, River Phoenix, Sidney
Poitier and David Strathairn), about what happens when a mathematician figures out how to factor
quickly. Incidentally, I just read that Len Adleman — the A in the RSA public-key cryptosystem
— prepared the lecture that’s given in one of the scenes, in exchange for his wife meeting Robert
Redford.)

How hard is it to factor a number n? Consider the following simple program and how many
steps it takes (with % meaning mod in C):

for (int i = 2; i < n; i++) {
if (m%i=0){
printf ("%i\n", i);

Pretty clearly this takes O(n) steps: linear in n, but exponential in the number of digits in n.
This will come up later in the course when we discuss the difficulty of the “BOOM” problem
KNAPSACK, which is NP-hard only in the weak sense, meaning it can be solved in time polynomial
in the numbers involved but not (we think) in the number of digits in them. If a problem is NP-hard
in the strong sense, then we don’t know how to solve it in polynomial time even when the numbers
are written in unary.

Usually, when we tell a computer to add two numbers, for example, we can assume it’ll happen
in a constant number of clock cycles. It’s fairly rare to be dealing with numbers so big they won’t
fit in a machine word — normally 64 bits or at least 32 bits on any reasonably recent machine —
and word-level parallelism allows us to do a lot with numbers that will fit. (Even the number of
4-colourings from your assignment fits in 64 bits!) Algorithm designers often work in the word-
RAM model with words whose size is logarithmic in the size of the input. One reason for this
is that, if an algorithm runs in time polynomial in the size of the input, then it also uses space
(memory) polynomial in the size of the input, so pointers take a logarithmic number of bits and fit
in a constant number of words. Operations on words are considered to take constant time if they
can be computed by ACO circuits, which have constant depth and a number of gates polynomial
in the word-size (so polylogarithmic in the input size, in the word-RAM model). Addition and
subtraction are in ACO but multiplication and parity (checking whether the word contains an odd
or even number of 1s) aren’t, so some people still tweak their algorithms to avoid multiplications,
even though multiplication is still fast in practice on modern machines. We’ll usually assume we’re
working in the word-RAM model in this course, but we won’t mention it much. If you go further
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in algorithmics, it’ll become more important, but for now you just need to know that there is a
formal definition of what’s fast and what’s not.

We're also usually going to consider the difficulty of a problem, as a function of the size of the
input, to be the difficulty of the hardest instances as the size goes to infinity. That is, if we say
we can compute a function of graphs on n vertices and m edges in O(n 4+ m) time, we mean that
no matter how big n and m are, we can compute the function that quickly for any graph with n
vertices and m edges. (We'll talk in a later class about exactly what O means and why it means
we only have to worry about sufficiently large graphs.) This is worst-case complexity, and it’s the
default. You’ll also hear about best-case, expected-case and average-case complexities. A lot of
people seem to think O means “in the worst case” and {2 means “in the best case” but, as we’ll
discuss in that later class, they’re confused.

So, how long does addition take for a human? Suppose I give you two n-digit numbers and you
perform the standard algorithm for addition that we learn in primary school, working from right
to left and carrying when necessary. It’s easy to prove by induction that, with two numbers, the
carry is never bigger than 1; therefore, you use O(n) time. That’s optimal, since you have at least
to read the input.

Now, how long does multiplication take, for a human (and for a computer when the numbers are
much bigger than the word size)? Again, suppose I give you two n-digit numbers and you perform
the standard algorithm for multiplication that we learn in primary school, working from right to
left in the second number and multiplying each digit by the whole first number, padding on the
right with Os, and then summing up all the products. This takes O(n?) time and O(n?) digits of
space, using O(n)-time addition as a subroutine. (Actually, both those O(n?)s should be ©(n?)s,
but we’ll discuss that in another class.) Can we do better? For example,suppose we’'re multiplying
85419621 by 75339405:

85419621
75339405
427098105
0000000000
34167848400
768776589000
2562588630000
25625886300000
427098105000000
5979373470000000

6435463421465505

First, it’s not really hard to reduce the space to O(n), by figuring out the digits in the addition
column-wise instead of row-wise. For example, suppose we’ve worked out that last 8 digits in the
answer are 21465505 and the carry into the ninth column from the right in the addition is 4, all of
which takes O(n) digits of space to store. Also, suppose we know that the carries are as follows: 4
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for the multiplication by the 5 on the right (because 5 x 8 4+ 2 = 42); 0 for the multiplication by
0; 1 for the multiplication by 4; 1 for the multiplication by 9; 2 for the multiplication by the 3 on
the right; 1 for the multiplication by the 3 on the left; 1 for the multiplication by the 5 on the left;
and 0 for the multiplication by 7. These carries also take O(n) digits of space to store.

There are no more digits in 85419621 to multiply the 5 on the right by, so its entry in the
ninth column from the right is just its carry, 4; the entry for 0 is (0 x 8 + 0) mod 10 = 0; the
entry for 4 is (4 x 5+ 1) mod 10 = 1 and its next carry is [(4 x 5+ 1)/10] = 2; the entry for 9
is (9 x4+ 1)mod 10 = 7 and its next carry is [(9 x 4 + 1)/10| = 3; the entry for the 3 on the
right is (3 x 1+ 2) mod 10 = 5 and its carry is | (3 x 1+ 2)/10| = 0; the entry for the 3 on the
left is (3 + 1) mod 10 = 8 and its next carry is |(3 + 1)/10] = 2; the entry for the 5 on the left
is (5 x 6+ 1) mod 10 = 1 and its next carry is [(5 x 6 + 1)/10] = 3; finally, the entry for 7 is
(7 x 2+ 0) mod 10 = 4 and its next carry is [(7 x 2+ 0)/10] = 1. Summing up the carry into the
9th column of the addition and the entries, we get 4+ (4+0+ 1+ 7+ 5+ 8+ 1+4) = 34, so the
ninth digit from the right in the answer is 4 and the carry into the tenth column from the right in
the addition is 3. Now we can forget the entries in the ninth column and just remember the carries
and the last 9 digits of the answer, 421465505. This still takes O(n?) time but at least we never
need to store more than O(n) digits of space.

There are lots of folklore methods for fast multiplication, but I don’t think any of them actually
beat that O(n?) time bound. At least, in a seminar in the 1960, the famous mathematician
Andrei Kolmogorov (who'll come up again when we get to Kolmogorov complexity and why it’s
incomputable) conjectured that Q(n?) is a lower bound for multiplication. A student in the seminar,
Anatoly Karatsuba, thought about the problem for a few days and then presented Kolmogorov
with a simple divide-and-conquer algorithm that takes subquadratic time, disproving Kolmogorov’s
conjecture. Kolmogorov was so impressed that he presented the algorithm in lectures, wrote it up
and sent it to a journal with Karasuba’s name on it.

Suppose we are given two n-digit numbers z and y to multiply and, for simplicity, assume x
and y are written in decimal and n is a power of 2. If n is 1, we can work out zy in constant time,
so suppose n > 1. We rewrite xy as

(21 - 10™2 + 0) (31 - 102 + yg)

where x; and y; consist of the first n/2 digits of z and y respectively, and z¢ and yp consist of the
last n/2 digits of s and y respectively. The obvious way to work this out,

(27 - 102 4 x0)(y1 - 102 4 yo) = z1y1 - 10" + (x1y0 + oY1) - 102 4 ZoYo

seems to require four multiplications of (n/2)-digit numbers, plus some easy shifts and additions,
which doesn’t help since 4(n/2)? = n?. However, Karatsuba noticed that if we define

22 = T1Y1,
z1 = Z1Yo + Zoy1,
Z0 = ZoYo,

S
Ty =29 - 10" + 2 - 102 + 2,
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then since
21 = (z1 + 20)(y1 +yo) — 22 — 20,

we can use one multiplication to work out z9, one multiplication to work out zg, and then one
multiplication (and two additions and two subtractions, which are easy) to work out zj.

(You might wonder if z1 + 29 and y; + yo couldn’t be (n/2 + 1)-digit numbers. They could,
but let’s ignore that and get through this lecture. Karatsuba’s algorithm doesn’t actually need the
number of digits in the numbers to be powers of 2, or equal, since we can always pad on the left
with 0s.)

Of course just saving a quarter of the multiplications doesn’t improve the asymptotic bound; for
that, we have to apply this technique recursively, working out each multiplication of two (n/2)-digit
numbers using three multiplications of (n/4)-digit numbers. This gives us a recurrence

T(n) =3T(n/2) + 2n,

where the 2n is just my guess at the the complexity of all the additions and subtractions, and
doesn’t really matter. Expanding this, we get

T(n) = 3T(n/2)+2n
= 3(3T(n/4) +n/2) +2n
= 3(3(3T(n/8) +2(n/4)) +2(n/2)) + 2n

so expanding ¢ times gives us

i—1
T(n) = 3'T(n/2') +2n> (3/2).
j=0

If we set @ = 1gn and assume T'(1) = 1, where lg denotes log,, then since

lgn—1

2n Y (3/2)0 < 2n(3/2)B"1) (2/3)F = 0(3E™),
j=0

E>0
we get T'(n) = O(38") C O(n!5%).
For example, to multiply 85419621 and 75339405 with Karatsuba’s algorithm, we’d compute

2 = 8541 x 7533 = 64339353,
9621 x 9405 = 90485505 ,

(8541 4 9621) (7533 + 9405) — 25 — 2o
18162 x 16938 — 64339353 — 90485505
307627956 — 154824858

— 152803098

20

21
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and then
6433935300000000 + 1528030980000 + 90485505 = 6435463421465505 .

As you can probably guess, it doesn’t really make sense to use Karatsuba’s algorithm for
any except really huge numbers. (It’s also worth noting that, although Karatsuba’s algorithm
is recursive, just because you start breaking up big numbers and multiplying the pieces doesn’t
mean you're stuck doing that; once the pieces get small enough, you can switch to the standard
algorithm.) Still, I like teaching Karatsuba’s algorithm for several reasons:

e Who would have guess that after thousands of years of people multiplying in quadratic time,
multiplication would finally be sped up in 19627

e Stephen Cook (one of my professors at Toronto, who’ll also come up again in this course) stud-
ied the complexity of multiplication for his PhD thesis, and a generalization of Karatsuba’s
algorithm (splitting each number into k parts) is named Toom-Cook.

e In March 2019 — just over two years ago, and just six months before the first time I taught
this course! — Harvey and van der Hoeven gave an O(nlogn)-time algorithm for multiplying
two n-digit numbers.

e Karatsuba’s algorithm is a gentle introduction to the ideas used in Strassen’s algorithm for ma-
trix multiplication — which is kind of mysterious otherwise — and the matrix-multiplication
exponent is sort of theoretical computer science’s answer to the gravitational constant.

Once we know we can speed up multiplication of integers by divide-and-conquer, it’s natu-
ral to wonder what other kinds of multiplication we can speed up. Strassen considered matrix
multiplication, such as

[ A1 Al } [ Bi1 B ] _ [ Cip Cip2 ]
Az Ao By1 DBaoa Co1 Cha |

In high school, we learned to get the value in cell (i,j) of C' by multiplying the ith row of
A by the jth column of B. If A, B and C are n x n matrices, however — with each of Aj;
through Cy 2 being an (n/2) x (n/2) matrix — then this involves computing the dot product of
two m-component matrices for each of the n? entries of C, and thus takes Q(n3) time overall, even
assuming multiplying each pair of components takes constant time.

In 1969 Strassen took the equations we all know,

Cipn = A11Bi1+ A28,
Cip A11B12+ A12B2 2,
Can A2 1B11 4+ A22Ba 1,
Cho = Ay1Bia+ A22DB23,

and defined 7 intermediate matrices similar to Karatsuba’s 29, 21, z9 (but harder to memorize —
you don’t have to!):

My = (A11+ A22)(Big+ Bap),
My = (As1+ A22)Bi,
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Ms
My
Ms
Ms
My

= A1 1(Bi2— Ba2),

Aso(Ba1 — Bi1),
(A11+ A12)B22,
(A1 — A11)(Big + Bi2),

= (A12— A22)(B21+ Bap2).

Once we’ve computed M; through M7 using 7 multiplications of (n/2) x (n/2) matrices and a
constant number of matrix additions and subtractions (which take O(n?) time each, assuming we
can add and subtract components in constant time), then we can compute C;; through Cs 5 using
only a constant number more additions and subtractions, as follows:

Cip =
Cip =
Con =
Cro =

My + My — M5 + M7,
M3 + M5,
My + My,
My — My + M3 + M .

Checking only C1 1, for brevity, we see that indeed

Cip = M+ My— Ms+ My

)

= (A1 + A22)(Big+ Ba2)+ A22(Ba1 — B11) —
(A11+A12)Baa+ (A2 — A22)(B21 + Ba22)

= A11Bi1+A11Boo+ A29B1 1 + A20Boo + Az 9Bo 1 — Aa 0By —
A11B2o — A19Boo + A19B21 + A12Boo — A29B21 — Az 2B o

= A11Bi11+ A28 .

Computing C' from M; through M7 saves us one multiplication compared to computing it
directly from A and B, which leads to the recurrence

T(n) = 7T (n/2) + cn?

for some constant ¢ (for the additions and subtractions). Expanding and plugging in i = lgn as

before,

T(n) =

we get

7T (n/2) + cn?
7(7T(n/4) + c(n/2)?) + cn?
7(7(7T(n/8) + ¢(n/4)?) + ¢(n/2)?) 4 cn?



Since

lgn—1
cn? gz (7/4) < en®(7/4)E""1 Y "(4/7)F = O(7'8™)
5=0 k>0

we get
T(n) = O(7%") C O(n*™™).

That is, Strassen’s algorithm multiplies matrices in subcubic time. You can read more about it
on Wikipedia (https://en.wikipedia.org/wiki/Strassen_algorithm), which is where I just
looked up the definitions of M; through My. I've taught Karatsuba’s algorithm often enough that
I’ve pretty much memorized z1 = (1 + x0)(y1 + o) — 22 — 20, but if I ever get to the point where
I’ve memorized the definitions of M; through M5 then I think it’ll be time to quit.

People actually do use Strassen’s algorithm in practice for large enough matrices, padding with
rows and/or columns of Os to deal with matrices that aren’t square or whose height and/or width
are odd, although there are asymptotically faster algorithms. Currently the asymptotically fastest
algorithm, published by Alman and Vassilevska-Williams in January this year, runs in O(n?-3728596)
time. Since matrix multiplication is used as a subroutine in many other algorithms (we’ll see some
later in the course), according to some people the question of what that exponent actually is stands
as one of the big open problems in theoretical computer science.
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Chapter 4

Fast Fourier Transform

We've looked at multiplying integers and square matrices quickly using divide-and-conquer, and
those sets are two classic examples of rings: addition and multiplication are defined, there are
additive and multiplicative identity elements and additive inverses, and multiplication is associative
and distributive but may not be commutative. Another classic example of a ring is the set of
polynomials, and today we’re going to look at a divide-and-conquer algorithm, the Fast Fourier
Transform (FFT), for multiplying those quickly[|

Since polynomials are functions, the most obvious thing to do with them is evaluate them.
Given a degree-n polynomial

A(z) =ap+ a1z + asx® + -+ ap_1x" !

and a value for z, we can evaluate A(z) in O(n) time as follows:

double eval(int n, double *A, double x) {
double powx = 1.0;
double value = 0.0;

for (int j = 0; j < mn; j++) {
value += A[j] * powx;
pOWX *= X;

}

return(value) ;

}

*Gauss knew about a form of the FFT in the early 1800s but its widespread use dates from Coo-
ley and Tukey’s rediscovery of it in the 1960s, and it’s now one of the most widely used numerical al-
gorithms.  T’ll try to give a basic introduction here but, if you want more details, you should watch
Max’s lecture (actually, you should already have watched that), read the chapter on the FFT in Intro-
duction to Algorithms or watch Demaine’s lecture about it (https://www.youtube.com/watch?v=iTMnOKt18tg)
and read his lecture notes (https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-046j-design-and-analysis-of-algorithms-spring-2015/lecture-notes/MIT6_046JS15_lec03.pdf) — which
is how I reviewed the FFT before writing this.
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(This can be written more mathematically as a formula called Horner’s Rule, but perhaps a program
is clearer for us.)

If we want to add A(x) and another degree-n polynomial
B(.T) =byg+ biz + bQ(EQ + -+ bnflmn_l ,
then we can just add corresponding coefficients, also in O(n) time:

A(z) + B(z) = (ap + bo) + (a1 + b1)x1 + (a2 + ba)2z® + -+ + (ap—1 + bp—1)z" .

Now suppose we want to multiply A(x) and B(z). The standard way we were taught in high
school involves ©(n?) multiplications of coefficients,

2n—2 J

C(z) = A(@)B(z) = > 27 Y axbj.
j=0 k=0

As you'll see in the next assignment, it’s possible to speed that up using a version of Karatsuba’s
algorithm.

For example, if

Alx) = 543z — 2%+ 42°,
B(x) = —2—z+32%+42°
then
Alx)+Bx)=5-2)+ B - Dz + (—2+3)z> + (4 + 1)2® = 3 + 22 4 2° + 523
but

C(x) = A(x)B(x)
(54 32 — 222 + 42%) (=2 — z + 32% 4+ )
(=10 — 5z + 1522 + 523) +
(=62 — 322 + 9% + 32) +
(42? + 22° — 62" — 22°) +
(—8a3 — dat + 1225 + 42°)
= 10+ (-5-6)x+(15-3+4) 2>+ (5+9+2—8)z +
(36— 4)z* + (=24 12)2° + 425
= —10— 11z + 162% + 82 — 72" + 102° 4 425 .

The first idea behind the FFT is something like evaluating A(x) and B(z) at n distinct values
xo, ..., Tn—1; calculating C(z;) = A(x;)B(x;) for each x;; and then recovering the coefficients of
C(z) from the pairs (zg,C(x0)), ..., (zn—1,C(2n—1)). This isn’t quite right — because C(z) is a
polynomial of degree 2n and thus can be uniquely specified by 2n points on its curve but not by
only n points — but it is if we assume (without loss of generality) that n is a power of 2 and the
last n/2 coefficients in A(x) and B(zx) are all Os.

31



=1+ 144

1=
V2

Figure 4.1: The 8th roots of unity.

The second idea is to choose xg,...,z,_1 to be the n distinct complex numbers ¢ such that
™ =1 (called “the nth roots of unity”). Drawn in the complex plane, as in Figure for n = 8,
these are n points equally spaced around the unit circle, starting at 1 = 1 4 0¢ (which corresponds
to (1,0) in the Euclidean plane).

To evaluate A(x) at xq,...,Tn—1, we compute the matrix-vector product
2 n—2 n—1
1z xy o ... @, x ao ﬁgﬂz’o;
_ _ a x
1 = 3 ar ot ! !
S o az A(@2)
1 zp_o z2_ "2 gl ’
; 2 " ; " i anp—2 A(mn—Z)
n— n—
1 zp Tn—1 Tp-1 Tn-1 an—1 A(xn—l)

The matrix V on the left is a Vandermonde matriz (meaning the entries in each row are increasing
powers) and we’ll discuss it in detail next; the components of the vector A by which its multiplied are
just the coefficients of A(x); and the components of the product are A(x) evaluated at xq, ..., Zp_1.

To see why we choose xg,...,x,—1 to be the nth roots of unity, consider V for the 8th roots of
unity and A for our example polynomial A(x):

1 1 1 1 1 1 1 1 5
1 -1 1 -1 1 -1 1 -1 3
1 i —1 —i 1 i —1 —i —2
1 —i ~1 i 1 —i -1 i 4
L (14+d)/V2 i (=1+9)/V2 -1 (-1-9)/vV2 —i (1-9)/V2 0
L (-1-9)/vV2 i (1-i)/v2 -1 (1+9)/V2 —i (=1+14)/V2 0
1 (—1+9)/V2 —i (Q+d)/vV2 -1 (1-i)/V2 i (=1-i)/V2 0
1 1-9/V2 —i (-1-9/V2 -1 (-=1+9)/vV2 i (1+19)/vV2 0
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There seems to be a lot of structure to V', doesn’t there? Among other things, in our example
it’s an 8 x 8 matrix containing 8 distinct values. We’ll use that structure to multiply V by A in
O(nlogn) time rather than (n?) time, which the high-school algorithm would use.

The third idea behind the FFT is that A(z) = Acyen(2?) + 2 Aoqq(2?), where

Aeven(x> = ag+ ax + a4x2 4+ an_2$(n_2)/2
Apad(z) = a1 +asz+ a5:c2 I an_1x(”_2)/2
SO
Aeven(xz) = ap+ aga;2 + a4(1;4 4+t an_anfZ
ondd(-Tz) = a1xr+ a3x3 + a5g;5 4+ 4 an_lxn—l .

We can compute Aeven(7?) and Aygq(2?) for all the values x that are nth roots of unity, by first
deleting every other column of V' (which contain the odd powers of the nth roots of unity) and
removing duplicate rows, and then multiplying by the vectors erven and ffodd which consist of the
components ag, as, a4, . . .,dn_1 and a1, ag, as, ..., a,_1, respectively.

After the deletion of the columns, half the rows of V are duplicates since, when n is a power
of 2, squaring the n distinct nth roots of unity gives us the n/2 distinct (n/2)th roots of unity.
Assuming we’ve listed the nth roots of unity such that roots squaring to the same value are adjacent
(as we have in our example), we can think of these multiplication as

1 22 .. wg_Q Aeven(73)
_ a
1 1‘% e azg 2 ag Aeven (‘T%)
1 ap_y n Acven(7_4)
s Gnp—2 )
1 ap Tn5 Acven(7,_2)
and )
1 a3 Ty Aoaa(p)
—92 aj
1 23 xh a Aoaa(23)
1 22, a3 ' Aoda(zp_4)
2 n—2 n-1 2
1 =z o T, 5 Aoad(25,_2)
For our example, these multiplications are
1 1 1 1 5 3
1 -1 1 -1 -2 _ 7
1 ¢ -1 —i 0 - 5—2¢
1 —i -1 0 5+ 24
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and

11 1 1 3 7
1 -1 1 -1 a4 | =
1 i -1 —i 0 | 3+4i
1 —i -1 i 0 3—4i

Notice we are now performing two matrix-vector multiplications with a 4 x 4 matrix containing 4
distinct values.

This means that in our example,

A(=1) = Acven((=)*) + (=1) Aoaa((~1)*)
Aeven(_1> + (_i)Aodd(_l)

— T4 (=) (-D)
T+,

for instance. (We can tell Aeyen(—1) = 7 and Ayqq(—1) = —1 because the second components of

the matrix-vector products immediately above are 7 and —1.) Checking the inner product of the

4th row of V' — in which the components are the powers of x3 = —i — with the transpose of A in

our example, indeed we have

(1,—i,—1,4,1,—i,—1,4) - (5,3,-2,4,0,0,0,0) =5 — 3i +2+4i + 0+ 0+04+0="T7+1.

Using this divide-and-conquer approach, the time to evaluate A(x) on the nth roots of unity
by computing VA is T'(n) = 2T(n/2) + O(n) = O(nlogn). If we do the same for B(z), and then
compute C(z1) = A(xg)B(x1),...,C(xp-1) = A(xp—1)B(xn—1), we'll have n distinct points on the
curve C(z), which uniquely specify C(z).

To recover the coefficients of C(z) from C(zy),...,C(xn_1), we multiply V~C, where V1 is
V’s inverse and C is the vector with components C(xo),...,C(z,_1). We can do this with the
Inverse FFT (IFFT), which also works in O(nlogn) time and is based on the fact that V=1 =V /n,
where V is the result of replacing each entry of V by its complex conjugate (that is, multiplying
each entry’s imaginary part by —1).

Notice that taking the complex conjugates of the matrix in our example only swaps the rows.
This is true in general, because taking complex conjugates doesn’t change the set of nth roots of
unity (and their powers), it just rearranges them. Therefore, we can compute the IFFT the same
way we computed the FFT, and then multiply the resulting vector by 1/n.
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Assignment 2

posted: 14.05.2021 due: midnight 28.05.2021

You can work in groups of up to three people. One group member should submit a copy of the solu-
tions on Brightspace, with all members’ names and banner numbers on it; the other group members
should submit text files with all members’ names and banner numbers (otherwise Brightspace won’t
let us assign them marks!). You may consult with other people but each group should understand
the solutions: after discussions with people outside the groups, discard any notes and do something
unrelated for an hour before writing up your solutions; it’s a problem if no one in a group can ex-
plain one of their answers. For programming questions you should submit your code, which should
compile and run correctly to receive full marks.

1. Given a tree on n vertices, we can always find a single vertex whose removal leaves a forest in
which no tree has more than n/2 vertices. Suppose we use our divide-and-conquer algorithm
to count the 3-colourings of a tree on n vertices; about how long does it take? How fast can
you compute the answer?

You can assume n is a power of 2 and the tree is always split into exactly two pieces of size
n/2 (even though the two pieces together should have n — 1 vertices instead of n, since we
removed a vertex to split the tree).

2. In the lecture, we saw that implementing Fuclid’s algorithm on positive integers a and b with
a > b by repeated subtraction takes 2(a) time in the worst case but implementing it by mod
takes O(loga) time, assuming subtraction and mod each take constant time. Now suppose
subtracting two n-digit numbers takes n time but taking their mod takes n? time; comparing
two numbers takes time 1. About how much bigger does a have to be than b in order for it
to be faster to compute a mod b with mod directly than with repeated subtraction?

For example, if a = 1523 and b = 0427, then computing a mod b = 242 by repeated sub-
traction means subtracting 0427 from 1523 to get 1096 in 4 time units, checking 1096 is still
bigger than 0427 in 1 time unit, subtracting 0427 from 1096 to get 0669 in 4 time units,
checking 0669 is still bigger than 0427 in 1 time unit, subtracting 0427 from 0667 to get 0242
in 4 time units, and checking whether 0240 is bigger than 0427 in 1 time unit (and finding
it’s not). That takes a total of 4 + 1+ 4+ 1+ 4+ 1 = 15 time units, whereas computing
a mod b = 242 directly takes 42 = 16 time units, so in this case repeated subtraction is faster.

3. Describe how to build a circuit consisting of AND, OR and NOT gates that takes two n-bit
binary numbers x and y and outputs the (n+ 1)-bit binary number x +y. Your circuit should
be a directed acyclic graph (a DAG) whose size is at most polynomial in n and whose depth is
constant (where “depth” means the length of the longest directed path); the fan-in and fan-
out are not bounded (where “fan-in” and “fan-out” mean the maximum in- and out-degree
of any vertex).

CONTINUED ON NEXT PAGE!
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4. Give a divide-and-conquer program for
https://leetcode.com/problems/maximum-subarray
(you don’t have to pay for a membership!) and explain how to use your solution to solve
https://leetcode.com/problems/maximum-sum-circular-subarray

neatly.

(If you don’t use divide-and-conquer or your solution looks like it’s been copied, you will not
get the mark and you may be reported to FCS.)

5. Suppose you didn’t understand Max’s lecture on the FFT but you still want to multiply
degree-n polynomials in time subquadratic in n. Show how to use Karatsuba’s algorithm to
do it in O(n'83) time, assuming arithmetic operations on coefficients take constant time.
For example, consider multiplying the two polynomials

A(x) = 827 +52% +42° + 2 + 923 + 622 + 22 + 1
B(z) = Ta"+52%+32° +32* + 923 + 422 + 5.

Notice

(873 + 52% + 4z + 1)(92° + 42® + 5) + (922 + 627 + 22 + 1)(72® + 52% + 3z + 3)
= (823 + 52 +4x + 14923 + 622 + 22 + 1)(72> 4 52 + 3z + 3 + 92° 4+ 42® + 5) —
(823 4+ 522 + 4z + 1) (72 + 52 + 32 + 3) — (92 + 62% + 20 4 1)(92° + 422 + 5);

does this look familiar?
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Chapter 5

Asymptotic Bounds

My friend Simon was part of a team that took turns running on a treadmill and together ran over
420 km in 24 hours, trying to break the world record (about 429 km back then, currently about
453 km). His ambition was to be the first PhD-level computer scientist to run faster than Turing,
although I don’t think he quite made it[] Suppose Simon normally runs distance n > 1 in time
f(n) = n3/2. His exact performance on any given day depends on many factors, however: if he’s
wearing his favourite shoes then we should multiply his time by 0.8; if he’s just had a coffee, we
multiply it by 0.9; if he’s tired, we multiply it by 1.1; etc.

Suppose I normally run distance n > 1 in time n7/%, but if I'm running against Simon then he

might give me a head start, so I'll take time g(n) = n7/* —10. If ’m wearing my favourite shoes
then we should multiply my time by 0.95, etc. Clearly Simon is much faster than I am in the long
run (pun intended), even though in a short enough race and with a big enough head start and
when I'm wearing my favourite shoes and he’s not, etc, I might still win. How can we formalize the
notion of “in the long run” and our intuition that, regardless of head starts and shoes and coffee
and fatigue, as long as we run far enough then Simon is going to leave me in the dust?

This is important in computer science because, when we’re talking about how much time algo-
rithms take, we don’t want to worry too much about how they behave on small inputs, or whether
one algorithm is slightly faster when implemented in some particular language on some particular
architecture. For example, Simon is also a really good programmer and he works in Silicon Valley

*Incidentally, if you’ve seen The Imitation Game and think Benedict Cumberbatch’s wimpy portrayal of Turing
was accurate, think again: he sometimes ran more than 60 km from Bletchley Park to London for meetings. When
he was 13 he was featured in a local newspaper for cycling over 100 km to his boarding school during a train strike:

“By 1926, Alan’s parents were living in France and with Alan due to begin his first term at Sherborne
School on 4 May 1926 he set off alone the preceding day, taking the Channel ferry from St Malo and
arriving in Southampton only to discover that owing to the General Strike no trains were running.
Undeterred, Alan sent his housemaster a telegram informing him that he would not now be arriving
until the following day and set out to cycle the 63 miles from Southampton to Sherborne across what
was for him unknown territory. He stopped overnight at the Crown Hotel in Blandford Forum and the
following morning, he reported later in a letter to his parents, the hotel staff turned out to see him off
on the remainder of his journey to Sherborne.”

(https://oldshirburnian.org.uk/the-sherborne-formula-the-making-of-alan-turing)
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so he can probably afford a faster computer than I can, but maybe his brain has atrophied slightly
since he switched from academia to industry so he’s not as good at designing algorithms any more.
(I admit this is unlikely, but it’s a convenient supposition for this lecture.) Let’s suppose he designs
an algorithm that can normally process an input of size n in g(n) time and I design an algorithm
for the same problem that can normally process such an input in f(n) time. Even if Simon can
speed his algorithm up by a factor of 1.5 using fancy programming tricks, and by another factor
of 2 using a fancy computer, and his algorithm has a head start because he pre-computes what it
should do for the first few steps on any input, in the long run my algorithm is still going to be
faster.

One way to say what we want is

lim M:O,

n—oo g(n)

”

but computer scientists usually use asymptotic notation and just say “f(n) € o(g(n))” or, equiva-
lently, “g(n) € w(f(n))”. You've seen O in previous courses and we’ve mentioned €2 and O before
in this course, and I told you to think of them as meaning “at most about”, “at least about” and
“about”, respectively. (Historically, O stood for “on the order of”, which is a bit confusing because
in English that means “about”, not “at most about”.) In this class we’ll cover o and w too and give
formal definitions, then talk about proving upper and lower bounds, and finally about how to use
the Master Theorem to solve many of the recurrences you’ll run across using divide-and-conquer
algorithms.

The first thing we should get straight is that O(g(n)), Q(g(n)), O(g(n)), o(g(n)) and w(g(n))
are all sets — more specifically, sets of functions — and we should write f(n) € O(g(n)) instead
of f(n) = O(g(n)), even though being picky about the proper use of asymptotic notation is as
frustrating as being picky about the proper use of apostrophes. It’s really common for people to
write f(n) = O(g(n)), but it’s also misleading, since equality is supposed to be reflexive — that is,
ifz =ytheny =2 —but f(n) = O(g(n)) (which is true in this case) doesn’t imply g(n) = O(f(n))
(which is false in this case).

Being really precise, O(g(n)) is the set of functions h(n) such that, for some constants ng and
¢ > 0 and for every n > ng, we have h(n) < cg(n). We can write this in mathematical notation,
with 3 for “there exists” and V for “for all”, as

O(g(n)) ={h(n) : Ing,c>0Vn>ng. h(n) <cg(n)}.

Notice our f(n) is in this set, f(n) € O(g(n)). You can see that “about” in my “at most about”
means “for sufficiently large n and ignoring constant factors”.

To go from “at most about” to “at least about”, we just switch things around:
Q(f(n)) ={h(n) : Ing,c¥n>mng. h(n) >cf(n)}.

I’ve switched from g(n) to f(n) here because, for the functions f(n) and g(n) we’ve chosen, we have
g(n) € Q(f(n)) but f(n) € Qg(n)). Of course if we’d chosen f(n) = n%/? and g(n) = 5n%/?>+1gn—7,
for example, then we’d have all of g(n) € O(f(n)) and g(n) € Q(f(n)) and f(n) € O(g(n)) and
f(n) € Omega(g(n)). In this case, we write f(n) € ©(g(n)) or g(n) € ©(f(n)), so when I said ©
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means “about”, I meant “within a positive constant factor of each other, for sufficiently large n”.

Formally, ©(f(n)) = O(f(n)) N 2(g(n)).

Notice f(n) € O(g(n)) implies g(n) € Q(f(n)) and vice versa, so f(n) ¢ O(g(n)) implies
g(n) & Q(f(n)) and vice versa, but it’s not true that nsinn ¢ O(n cosn) implies nsinn € Q(ncosn),
for example. Although for real numbers z and y either we have x < y or x = y or x > y, functions
like nsinn and ncosn aren’t always comparable like that, because for any constant ¢ we have
(nsinn)/(ncosn) > c for infinitely many values of n, and (ncosn)/(nsinn) > ¢ for infinitely many
values of n.

Of course, none of these concepts really say what we started out wanting to say about how
Simon and I run: he’s not just at least about as fast as I am, in the long run he’s much faster. For
that we need o or w. Saying f(n) € o(g(n)) means that for any positive constant ¢ and sufficiently
large n, we have f(n) < ¢(n) or, in mathematical notation,

o(g(n)) ={h(n) : Ve>03ng. h(n) <cg(n)}.

Switching things around, saying g(n) € w(f(n)) means that for any positive constant ¢ and
sufficiently large n, we have g(n) > cf(n) or, in mathematical notation,

w(f(n)) ={h(n) : Ve>03Ing. h(n) >cf(n)}.
Notice f(n) € o(g(n)) implies g(n) € w(f(n)) and vice versa, and they’re both equivalent to saying

lim MZO

n—oo g(n)

or

Since O(g(n)), Q(g(n)), O(g(n)), o(g(n)) and w(g(n)) are all sets, we can draw them as a Venn
diagram, with the following relations:

o(g(n)) < O(g(n)),
O(g(n)) = O(g(n)) NQg(n)),
w(g(n)) < Qg(n)),

g(n) € ©(g(n)),

g(n) & o(g(n))Uw(g(n)),

as shown in Figure Notice we can write C instead of C, because g(n) € ©(g(n)) but g(n) ¢

o(g(n)) Uw(g(n)).

In fact, since f(n) € o(g(n)), we also have the following relations, which are beyond my abilities
at drawing Venn diagrams:



Figure 5.1: A Venn diagram showing the relationships between O(g(n)), Q(g(n)), ©(g(n)), o(g(n))
and w(g(n)).

w(f(n)) < Qf(n),

fn) € O(f(n)),

fn) ¢ o(f(n)) Uw(f(n)),
O(f(n)) < olg(n)),
Qg(n)) < w(f(n)).

It’s traditional for instructors to give their students lots of examples of functions and how they
compare asymptotically, and drive home the message of how asymptotic notation lets us ignore
constant factors and lower-order terms. Because that’s traditional, however, you can find lots of
explanations and exercises on Khan Academy or YouTube, as well as in Introduction to Algorithms.
Actually, one of the coauthors of the lesson on Khan Academy (https://www.khanacademy.org/
computing/computer-science/algorithms/asymptotic-notation/a/asymptotic-notation) is
a coauthor of Introduction to Algorithms.

Instead, I want to focus on something I've heard from students in the past, which is that  is
for best-case bounds and O is for worst-case bounds. I don’t know where people get that from, but
it’s WRONG!

Stirling’s formula says
Inn! =nlnn —n+ O(logn).

(The sum of the lower-order terms hidden by O(logn) is positive. If you want to be really exact, it’s
between (1/2)Inn+1In+v/27+1/(12n+1) and (1/2) Inn+1In+/27+1/(12n).) Because it includes an
O, is Stirling’s formula talking about the worst case? In what sense is it bad? Incidentally, notice
that we don’t care about the base of the logarithm, since changing from one constant greater than
one to another just changes the constant coefficient hidden by the O.

It often makes sense to say things like “even in the best case, we still use at least about /n
time” or “even in the worst case, we still use at most about n? time”, and then we indeed use
for a best-case bound and O for a worst-case bound, but it can also make sense to say “in the best

case we use at most about n3/4 time” or “in the worst case we use at least about nlogn time”.
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111113
11113 4
1113 4 4
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1 2 4 4 4 4
344 4 4 4

Figure 5.2: A 6 x 6 matrix with 1s in the top left, 4s in the bottom right and a diagonal of 3s
separating them, except for a single 2.

Instead of associating {2 with best-case bounds and O with worst-case bounds, it’s more accurate
to say € is for lower bounds (or “bounds from below”) and O is for upper bounds (or “bounds from
above”). Let’s look at my favourite example.

Suppose 1 give you a scratchcard with an n x n matrix on it, and tell you that in each cell
there is a number between 1 and n?, arranged such that every row and every column is sorted in
non-decreasing order from left to right and from top to bottom. You draw a target number z from
a hat with n? pieces of paper, one with each number from 1 to n?, and then have to scratch enough
cells to either find x in the matrix or show it isn’t there. How many cells do you need to scratch?

Even in the best case, you obviously need to scratch at least one cell, and if you're lucky and
draw = = 1, then you just need to check the top left, so the best-case bound is Q(1)NO(1) = ©(1).
When our lower bound and upper bound match for this case, ignoring constant coefficients and
lower-order terms (although those match too in this instance), we can use © and we say the bound
is tight.

What about in the worst case? Clearly, you still need (1) in the worst case, and you don’t
have to scratch more than the whole matrix, so O(n?) is enough — but we don’t have a tight bound
yet. If you perform binary search on each row, then you scratch O(nlogn) cells. It feels like you
might be able to use some kind of 2-dimensional binary search, first checking the cell in the middle
of the matrix and eliminating either the top-left quadrant or the bottom-right quadrant. Does that
work?

In fact it doesn’t. To see why, suppose the top left of the matrix is full of 1s, the bottom right
is full of 4s, and the diagonal separating them is a line of 3s, except one of the cells on the diagonal
contains a 2, as shown in Figure If you're unlucky and draw an z = 2, then you have to check
at least every cell on the diagonal until you find the 2, because if you don’t then you can’t be sure
if there’s a 2 or not. Whatever your strategy, the 2 could be in the last cell you check, so in the
worst case you need to scratch Q(n) cells. That is, tempting though it is, binary search won’t help
much in the worst case.

It’s not hard to see that we can take the idea we just used to prove a lower bound on the number
of cells you need to scratch, and derive a matching upper bound. Suppose we start at the top-left
corner and move right, scratching each cell as we go, until we either find z (in which case you're
done) or a value greater than x or we reach the top right-corner, in which case we turn and go
down and continue until we find x or a value greater than x or we reach the bottom-right corner
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(in which case you know z is not in the matrix). Assuming we find a value greater than z, you can
trace out the border between the values less than = and at least = by scratching O(n) cells. Since
x has to lie along that border, you can find it or determine that it’s not in the matrix, scratching
only those O(n) cells. Since our upper bound O(n) matches our lower bound Q(n), we have a tight
bound, ©(n).

Now that we more or less understand asymptotic notation (it gets more complicated with more
than one variable, but we won’t worry about that in this course), we can understand what the
Master Theorem says. There are stronger versions, but the one stated in Introduction to Algorithms
says this:

Theorem 1 Let a > 1 and b > 1 be constants, let f(n) be a function, and let T'(n) be defined on
the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n),

where we interpret n/b to mean either |n/b| or [n/b]. Then T(n) has the following asymptotic
bounds:

O(n'°& =€) for some constant ¢ > 0, then T'(n) = O(n'°& ),

O(n'°8 ), then T(n) = O(n'°% *logn).

3. If f(n) = Q(n'°8v91€) for some constant ¢ > 0, and if af(n/b) < cf(n) for some constant
¢ <1 and all sufficiently large n, then T'(n) = O(f(n)).

This won’t help you solve all recurrences, nor even all recurrences you’ll encounter with divide-
and-conquer algorithms — for example, the recurrence T'(n) = 32V . 27(2n/3) from Chapter
doesn’t have the right form, since 32V™ - 2 isn’t a constant — but it will help with a lot of them.
For example, it will help with the recurrences for Karatsuba’s algorithm, T'(n) = 37'(n/2) + 2n,
and for Strassen’s algorithm, T'(n) = 7T(n/2) + cn? for some constant c.

For the recurrence for Karatsuba’s algorithm, we have a = 3, b = 2 and f(n) = 2n, and 2n =
O(n'°&237¢) for ¢ < 0.58, so we're in Case [1|and T'(n) = ©(n'83). For the recurrence for Strassen’s
algorithm, we have a = 7, b = 2 and f(n) = cn? for some constant ¢, and cn? = O(n!%827-¢)
for € < 0.8, so we're again in Case [l and T'(n) = ©(n'87). You've probably seen the recurrence
for MergeSort, T'(n) = 217'(n/2) 4+ cn, and for that we’re in Case |2, since a = 2, b = 2 and
cn = O(n'°822) = O(n), so MergeSort takes O(nlogn) time.

If we think of the trace of a divide-and-conquer algorithm as a tree of subproblems, then we can
give informal characterizations of the three cases. Casel[l|is when we’re subdividing the problem into
many subproblems, but the subproblems aren’t shrinking as fast as we’re subdividing. For example,
with Strassen’s algorithm we’re dividing 2 matrices of size n x n into a total of 8 submatrices and
then doing 7 multiplications, but the submatrices are still of size (n/2) x (n/2). This means that
most of the work in the tree is done at the leaves.

Case [2|is when we’re subdividing and the subproblems are shrinking at about the same speed,
so we do about the same amount of work at each level of the tree. For example, in MergeSort, in
the ith round of the recurrence, we’re doing linear work on 2¢ lists each of length about n/2¢, which
takes O(n) time in total for that round.
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Case [3] is when the overhead of splitting the problem into subproblems and then merging the
subsolutions into a solution is really high, so most of the work is at the root of the tree. For
example, suppose it takes us 2" time to split the problem up into two subproblems each of size
n/2 and later to merge the subsolutions of those into a solution for our original problem. Then the
recurrence is

T(n) =2T(n/2) + 2"

and we have a = 2, b =2 and f(n) = 2" = Q(n'°822+¢) for any constant ¢, so T'(n) = ©(2"). This
makes sense because
T(n) = 2T(n/2)+2"
2(2T(n/4) + 2"/%) 4 2"
= 2(2(2T(n/8) + 2"*) + 27/2) + 27

Ign—1 )
_ 2lgn_|_ Z 2n/2’+i
=0

is dominated by the term 2™.
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Chapter 6

Sorting

You may have heard that sorting n integers takes O(nlogn) time. As long as each integer fits
in a constant number of machine words, that’s true, as we’ll see in this lecture. In fact, we’ll see
that sorting n integers takes ©(nlogn) time in the worst case in some models (and by now you
should understand why saying ©(nlogn) is stronger than saying O(nlogn)). Before we consider
cases when we actually need 2(nlogn) time, though, we should discuss two special cases when it’s
possible to do better, the latter of which comes up fairly often in practice[f|

Suppose we have n positive binary integers x1,...,z, drawn from a range of size c¢n for some
constant ¢, with each z; fitting in a constant number of machine words. We can easily scan them to
find min;{z;} and then subtract it from each x; to get n integers z/, ..., 2], in the range [0, cn — 1],
all in O(n) time. If we can sort i,...,z], in O(n) time, then we can just add min;{x;} to each «
and recover 1, ..., Xy, sorted. Therefore, without loss of generality, we can assume x1,...,x, are
from the range [0, cn — 1].

In O(en) = O(n) time we create an integer array A[0..cn — 1] with each A[i] = 0 initially. We
scan 1, ..., x, and, for each x;, we increment A[i]. Finally, we scan A[0..cn — 1] and, for each A[i],
we report that there were that many occurrences of ¢ in x1,...,z,. This all takes O(n) time, and
the procedure is called counting sort. If we want to return the actual x;s (perhaps because they
have satellite data associated with them), then we can make A an array of linked lists instead,
and add each z; to the appropriate linked list instead of just incrementing the appropriate counter.
Notice that, if we prepend each z; to the head of its linked list but eventually report the contents of
each linked list in tail-to-head order (which still takes linear time), then we sort z1,...,x, stably:
that is, if ; = x; and 7 < j, then we report z; before x;.

Now suppose we have n positive binary integers x1,...,z, drawn from a range of size n¢ for
some constant ¢, with each x; still fitting in a constant number of machine words. Again, without
loss of generality, we can assume z1, ..., z, are from the range [0,n° —1]. Let b = [lgn], so we can
view each x; as a sequence of ¢ binary numbers, each of b bits and in the range [0, olle ”1]. Since

*In the word-RAM model, which is our default for most of this course, I think the best known upper bound for
sorting n integers that each fit in a constant number of machine words, is O(n+/loglogn), by Yan and Thorup from
FOCS 2002; we won’t discuss that in this course, though.
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2llen] < 9y we can then view z1, ..., x, as an n X ¢ matrix, with each cell containing a number in
the range [0,2n — 1].

This is like viewing each z; as a c-digit number in base 2°, and we can use radiz sort to sort
Z1,. .., 2Ty quickly. For each of the ¢ columns, we use counting sort to sort in O(n) time the rows of
our matrix on the basis of the numbers in that column. (Swapping two rows takes constant time,
because each z; fits in a constant number of machine words.) Overall we use O(cn) = O(n) time
S0, as long as we’re working in the word-RAM model and each integer fits in a constant number of
machine words, we can sort n integers from a range of size polynomial in n in linear time.

If we sort based on the the columns of the matrix working from left to right, it corresponds to
most-significant-bit-first (MSB) radix sort (although our “bits” in this case are digits in base 2°);
if we work right to left, it corresponds to least-significant-bit-first (LSB) radix sort. Each of these
have advantages and disadvantages: for example, with MSB, if we get interrupted halfway through,
we’ve still roughly sorted x4, ..., x,; with LSB, we don’t need to split the matrix into buckets as
long as we use stable counting sort.

To see what I mean, consider the example

r1 = 10001101,

zo = 11101001,
x5 = 00110010,
x4 = 01001000,
x5 = 01001010,
z¢ = 10100101,

z7 = 01110100.

(Let’s skip subtracting the minimum this time.) Since n = 7 we have b = 2llen] — 8 and we view
each x; as a 3-digit octal number (or, equivalently, we view x1,...,x, as a matrix with 7 rows and
3 columns with each cell containing a number between 0 and 7):

ry = 215,
o = 351,
r3 = 062,
gy = 110,
rs = 112,
g = 245,
r7 = 164.

If we use counting sort on the least significant digits, we get

zy = 110,
zs = 351,
x5 = 062,
x5 = 112,
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7 = 164,
1 = 215,
zg = 245.

Now if we use counting sort on the second digits, ignoring the least significant ones, if we’re not
careful we could get

1 = 215,
x5 = 112,
xqy = 110,
g = 245,
xo = 351,
ry = 164,
x3 = 062,

which undoes all the sorting we just did based on the least significant digits. If we use stable
counting sort on the second digits, however, then we get

gy = 110,
rs = 112,
r1 = 215,
rg = 245,
9 = 351,
3 = 062,
7 = 164,

with x4 preceding x5, for example, because it preceded it after we sorted on the least significant
digit, because 0 is smaller than 2 and those are z4’s and z5’s least significant digits, respectively.
Applying stable counting sort to the most significant digits, we get

r3 = 062,
gy = 110,
s = 112,
ry = 164,
r; = 215,
rg = 245,
r9g = 351.

Finally, translating back into binary, we have

r3 = 000110010,
x4 = 001001000,
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Figure 6.1: A decision tree for sorting 3 distinct numbers.

zs = 001001010,

z7 = 001110100,
r1 = 010001101,
r¢ = 010100101,

o = 011101001.

I guess you might have seen all this in first or second year, but it’s probably good to have a
reminder before continuing, anyway. Just in case, I'm going to restate what we saw above as a
theorem:

Theorem 2 In the word-RAM model, if each integer fits in a constant number of machine words
then sorting n integers from a range of size polynomial in n takes O(n) time.

Counting sort and radix sort “look inside” their arguments, but for the rest of the lecture we’ll
be working in the comparison model, which disallows direct addressing, pointer arithmetic, and
even adding and subtracting the integers in the input. Since the word-RAM model lets us do more
(as long as the integers each fit in a constant number of machine words so we can compare two
of them in constant time), upper bounds in the comparison model hold in the word-RAM model
but not necessarily vice VGI'S&E and lower bounds in the word-RAM model hold in the comparison
model but not necessarily vice versa. This means showing that MergeSort works in O(nlogn) time
in the comparison model, for example, implies we can sort in that time in the word-RAM model as
well.

First, let’s see why we need Q(nlogn) time in the worst case when we're in the comparison
model. Suppose we have a set of n numbers, x1, ..., z,, now with “set” implying they’re all distinct.
A pairwise comparison between x; and z; returns exactly 1 bit of information: either x; < x; or
x; > xj. Suppose you have an algorithm A that does pairwise comparisons and eventually tells
you how to order z1,...,z,, and consider A as a decision tree. For example, Figure shows a
decision tree for sorting 3 numbers with pairwise comparisons.

fSort of: some people only count comparisons in the comparison model and allow other computations for free, in
which case those bounds may not translate well into the RAM model.
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Since the decision tree is binary and has a leaf for each of the n! possible orderings, one of those
leaves must be at depth at least [lgn!]|. Stirling’s Formula says that’s

el 1, +O(logn) = nl "4 Oflogn) = Q(nlogn)
m2 | meurnn o tlesn)=nign T mlogn) = n o)

Therefore, for some ordering, algorithm A makes Q(nlogn) pairwise comparisons — regardless of
what algorithm A is.

Lemma 3 In the comparison model, sorting takes Q(nlogn) time.

Does this mean that we always need Q(nlogn) time to sort n numbers? Consider how Inser-
tionSort behaves on the list 1,2, 3,...,n: after ¢ — 1 steps, it has removed 1,...,7—1 from its input
list and inserted them into its output list; during step ¢, it removes ¢ from the front of its input list
and scans through its output list, comparing 7 to 1,...,7 — 1 in turn, and then finally adds ¢ at the
end of that list. In total, it uses 1 +2+3 +... +n — 1 = Q(n?) comparisons. This is actually its
worst case.

Now, however, consider how InsertionSort behaves on the list n,n —1,n —2,...,3,2,1: after
i — 1 steps, it has removed n,n—1,...,n—¢+1 from its input list and inserted them into its output
list; during step 4, it removes n — ¢ from the front of its input list, compares it to n — ¢ + 1 at the
front of its output list, and adds ¢ at the start of that list. In total, it uses O(n) comparisons. This
is actually its best case.

Most algorithms do pretty well on their best case — which is one reason comparing best-case
performance isn’t very informative — but not all. For example, SelectionSort always uses ©(n?)
comparisons. It’s more interesting to talk about the average case or expected case, which we’ll see
when we get to QuickSort. My friend Jérémy has spent years studying how sorting algorithms can
take advantage of pre-sortedness in their inputs, such as being made up of only a few interleave
increasing subsequences. I might be able to squeeze that into the next assignment.

I think you all know MergeSort, but let’s review it quickly: given an array of n > 2 numbers,
we divide it roughly in half and recursively sort both halves, then merge the sorted subarrays.
To merge two sorted subarrays S7 and S of length n; and no into a sorted array S of length
n = ni + ng, we can conceptually append oo to both lists and run the following code:

i= 0;
j=0;
k = 0;

while (S1 [i] != infty || S2 [j]1 != infty) {
if (S1 [i] < s2 [j1) {
S [k] =81 [i];
i++;

k++;

} else {
S [k] = 82 [j];
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jt+s
k++;

This takes time O(n; + n2) = O(n). Incidentally, is this implementation of MergeSort stable?

The recurrence for MergeSort is T'(n) = 27'(n/2) + n, since splitting the input in half takes
constant time (and no comparisons) and merging the sorted sublists takes n time and comparisons.
This is Case [2] of the Master Theorem, a = 2, b = 2, f(n) = n = Theta(n'°® %) = O(n), so we use
©(nlogn) time overall.

Lemma 4 In the comparison model, sorting takes O(nlogn) time.

Notice that, even though we just proved that MergeSort uses ©(nlogn) time, that only gives
us an O(nlogn) upper bound for sorting, until we combine it with Lemma to get a tight bound:

Theorem 5 In the comparison model, sorting takes ©(nlogn) time.

So, why not just stop here? Why are there literally dozens of other sorting algorithms? Well,
some of them have other useful properties, like being adaptive to various kinds of pre-sortedness,
and some are just faster in practice, such as QuickSort.

I think you also all know QuickSort, but we should probably review that too: given an array
S[1..n] of n numbers, we choose a pivot S[i] somehow; scan S and then partition it into numbers
smaller than S[i], numbers equal to S[i], and numbers greater than S[i]; and recursively sort the
numbers smaller than S[i] and the numbers bigger than S[i].

How long can this take in the worst case? If we're extremely unlucky, S could contain the
numbers 1 to n and we could choose as pivots 1,2, 3,...,n. In this case, for the ith step we choose
1 as a pivot and spend n — ¢ time scanning ¢ + 1,...,n and finding they’re all bigger than i. Thus,
in the worst case we use (n — 1)+ (n —2) +--- + 3+ 2+ 1 = O(n?) time.

To see why anyone uses QuickSort, we must analyze how fast it usually runs. Suppose we pick
a pivot S[i] uniformly at random from S; what is the probability that neither the partition of
numbers smaller than S[i] nor the partition of numbers bigger than S[i] contain more than 3n/4
numbers? If we imagine S already sorted then, because we pick S[i] uniformly at random, the
probability it is in the first quarter — in which case the partition of numbers bigger than S[i] can
contain more than 3n/4 numbers — is 1/4, and the probability it is in the last quarter — in which
case the partition of numbers smaller than S[i] can contain more than 3n/4 numbers — is also 1/4,
but the probability it is in neither of those quarters — in which case neither of those partitions has
size more than 3n/4 — is 1/2. Imagining S sorted is just for analysis, of course; we don’t really
want to sort S before choosing S[i] (although later we’ll discuss an idea along the same lines).

Suppose we change our implementation of QuickSort to be fussier: if at some step it picks a
pivot and scans and partitions the subarray it’s trying to sort recursively, and finds that either
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the partition of numbers smaller than the pivot contains more than 3/4 of all the numbers in the
subarray, or the partition of numbers bigger than pivot does, then it undoes the partitioning, picks
another pivot and tries again. How many tries do we expect it to make before it finds a pivot it
likes?

As we just argued, it makes exactly 1 try with probability p > 1/2; it makes exactly 2 tries
with probability p(1 — p); it makes exactly 3 tries with probability p(1 — p)?; etc. Therefore, the

expected number of tries is
D ipl—p) Tt <Y i/2i =2,
i>1 i>1

and so the expected time before it recurses is linear in the size of the subarray.

As we did when considering the cases of the Master Theorem, let’s visualize the recursion as a
tree of height O(log,/3n) = O(logn), with each vertex corresponding to a subarray, each of the n
leaves corresponding to a single number, and the size of each vertex’s subarray being the number of
leaves in its subtree. At each vertex — that is, at each step in the recursion — we expect to spend
time linear in the size of the subarray, which means each leaf in its subtree is contributing constant
expected time to that vertex. By linearity of expectation — that is, because the expected value
of a sum is the sum of the expected values of the terms — the total expected time is proportional
to the sum of the leaves’ depths, or O(nlogn). As long as you believe making QuickSort fussier
doesn’t actually speed it up (it doesn’t), then we can conclude that QuickSort uses O(nlogn) time
in the expected case.

Since we’re talking about QuickSort, we can quickly cover a related algorithm, called QuickS-
elect. Suppose we just want to find the kth number in sorted order in an array S[1..n]. Of course
we could sort S to find the kth number in sorted order, but that seems like overkill. Suppose we
run QuickSort, but we discard whichever partition doesn’t contain the kth number. For example,
suppose we're looking for the 197th number in an array of 300 numbers. If we choose a pivot and
partition and it turns out there are 103 numbers smaller than the pivot and 3 numbers equal to the
pivot, then we can discard those and recursively find the 91st number in the 294 numbers larger
than the pivot.

With QuickSelect, we're conceptually just descending one branch of the recursion tree, which
takes expected time at most proportional to

n+(3/4)n+ (3/4)*n+---+1=0(n)
although, like QuickSort, in the worst case QuickSelect uses ©(n?) time.

In fact, it’s possible to find the kth largest number in linear time even in the worst case. To do
this, we partition S into quintuples and find the median of each quintuple, which takes O(n) time.
We collect the medians into a set S’ of size about n/5 and recursively find the median of S’. The
median of S’ needn’t be the median of S, but it can’t be in the first quarter or the last quarter:
half the n/5 quintuples had medians smaller than the median of S’ (ignoring rounding), and each
of those quintuples had 3 numbers (the median of the quintuple and the two smaller elements)
smaller than the median of S’, so there are at least 3n/10 numbers in S smaller than the median
of " and, symmetrically, there are at least 3n/10 numbers in S larger than the median of S’. It
follows that the median of S’ is a good pivot.
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Analyzing this algorithm is a bit complicated, because we’re finding the pivot recursively and
then recursing on one of the partitions, but the recurrence and its solution is given in Introduction
to Algorithms.

So, why don’t people use this technique to find the pivots for QuickSort, to make it run in
O(nlogn) time in the worst case, as well as the expected case? Because then it’s slower in practice
than just running MergeSort!
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Assignment 3

posted: 21.05.2021 due: midnight 04.06.2021

You can work in groups of up to three people. One group member should submit a copy of the solu-
tions on Brightspace, with all members’ names and banner numbers on it; the other group members
should submit text files with all members’ names and banner numbers (otherwise Brightspace won’t
let us assign them marks!). You may consult with other people but each group should understand
the solutions: after discussions with people outside the groups, discard any notes and do something
unrelated for an hour before writing up your solutions; it’s a problem if no one in a group can ex-
plain one of their answers. For programming questions you should submit your code, which should
compile and run correctly to receive full marks.

1. Mark the true statments. (Your score for this questions will be proportional to the number
of statements you mark correctly, plus the number you correctly leave unmarked, minus the
number you should have marked but didn’t, minus the number you shouldn’t have marked
but did.)

(a) Ign™ = O(Ign!)

) n(n-i—l) mod 2 _ Q(nn mod 2) for n € N

( ) n(3n) mod 2 _ O(nn mod 2) forn € N

(d) If T(n) = 7T(n/3) + n* then T(n) = Q(n*/logn).
) If T(n) = 8T (n/2) + 8n? then T'(n) = O(n3logn).

Theorem 4.1 (Master theorem)
Leta > 1 and b > 1 be constants, let f(n) be a function, and let 7'(n) be defined
on the nonnegative integers by the recurrence

T(ny=aTn/b)+ f(n),

where we interpret n/b to mean either |n/b | or [n/b]. Then T (1) has the follow-
ing asymptotic bounds:

1. If f(n) = O(n'"% %) for some constant € > 0, then T'(n) = O(n'°% %),
2. If f(n) = O(n'" %), then T'(n) = O(n'% *1gn).

3. If f(n) = Q(n"e»*¢) for some constant € > 0, and if af(n/b) < cf(n) for
some constant ¢ < 1 and all sufficiently large n, then T'(n) = O( f(n)). [

2. Explain how you can sort a sequence of n integers from a range of size n'¢'8™ in O(nloglogn)
time (assuming each integer fits in a constant number of machine words).

3. An in-place algorithm uses a constant number of machine words of memory on top of the
memory initially occupied by its input and eventually occupied by its output. Give code or
pseudo-code for an in-place version of QuickSort.

CONTINUED ON NEXT PAGE!
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4. You’ve probably seen in previous courses how to build a min-heap on n elements in O(n)
time and how to extract the minimum value from one in O(logn) time. Do you think we can
easily extract the minimum value in o(logn) time while still leaving a heap on the remaining
elements? Why or why not?

5. Suppose you have an algorithm that, given a sequence of n integers that can be partitioned
into d non-decreasing subsequences but not fewer, does so in O(nlogd) time. Explain how
you can also sort such a sequence in O(nlogd) time.
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Part 11

Greedy Algorithms
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Chapter 7

Huffman Coding

When I asked during the first lecture for examples of profound truths we have found through
computer science, someone suggested Shannon’s information theory. I hadn’t thought of that
and it’s a good answer, even though I think information theory is often considered more part
of electrical engineering than computer science (for example, the Transactions on Information
Theory is published by the Information Theory Society of the Institute of Electrical and Electronics
Engineers, better known as the IEEE). I want to introduce greedy algorithms by teaching you
Huffman’s algorithm, which gives us a chance to discuss some of the basics of noiseless coding,
which was the topic of the first half of Shannon’s 1948 article introducing information theory (the
other half was about noisy coding).

Before Shannon’s article, it wasn’t clear how to measure information. All other things being
equal, it was intuitively clear that a big book contained more information than a one-page letter,
but it was also easy to think the situation might be reversed if the book was boring and inaccurate
while the letter held vitally important news. Shannon neatly sidestepped this by focusing only on
transmitting losslessly whatever message we’re given, regardless of its content. In fact, he assumed
that we and the people we're transmitting to all know the probability distribution — over the
universe of possible messages — according to which the message is chosen, and we’ve been able to
prepare in advance a code assigning a distinct self-delimiting codeword to each possible message
(where “possible” means the distribution assigns it a non-zero probability). This way, we don’t
have to talk about the message, per se, only about the distribution.

Shannon’s information theory is thus concerned with random variables that take on values which
are individual messages, not with the individual messages themselves. (Later in the course we’ll talk
a little about Kolmogorov complexity, which s concerned with the individual messages — but, as
we’ll see, that’s incomputable.) We need not care about the significance of the random variables: a
random variable that takes on the value “yes” with probability 0.5 and “no” with probability 0.5 is
the same for us whether the question was “Launch the missile?” or “Do you want fries with that?”.
(My first statistics professor used to say “let’s consider a random variable, such as your mark on
the next test”, which made us uncomfortable even though he was completely correct.) Some people
still object to how information theory separates “information” from “meaning” and says a page
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of randomly-chosen characters contains more information than a page of beautiful poetry — but
consider which is easier to memorize ezxactly.

One way to remember that information theory is about random variables is to think of trans-
mitting information as removing uncertainty. It’s not often mentioned in electrical engineering, but
Shannon proposed three axioms for measuring uncertainty:

Suppose we have a set of possible events whose probabilities of occurrence are
P1,P2,-.-Pn- These probabilities are known but that is all we know concerning which
event will occur. Can we find a measure of how much “choice” is involved in the selection
of the event or of how uncertain we are of the outcome?

If there is such a measure, say H(p1,p2,...,Dn), it is reasonable to require of it the
following properties:

1. H should be continuous in the p;.

2. If all the p; are equal, p; = %, then H should be a monotonic increasing function
of n. With equally likely events there is more choice, or uncertainty, when there
are more possible events.

3. If a choice be broken down into two successive choices, the original H should be
the weighted sum of the individual values of H. The meaning of this is illustrated
in Figure At the left we have three possibilities p; = %,pg = %,pg = %. On
the right we first choose between two possibilities each with probability %, and if
the second occurs make another choice with probabilities %, % The final results
have the same probabilities as before. We require, in this special case, that

111 11 1 21
H a0 o =H ) o +7H 90 o .
2°3°6 2°2 2 33
The coefficient % is because this second choice only occurs half the time.

Shannon showed that the only function H satisfying those three axioms is of the form

H = —Kzn:pz‘ log pi ,

=1

where K is a positive constant. Changing the base of the logarithm changes the value K or the
unit in which we measure information and uncertainty. If the base of the logarithm is 2 and K =1
then we are measuring uncertainty in bits, with 1 bit (an abbreviation of “binary digit” and a term
suggested to Shannon by Tukey, one of the re-discoverers of the Fast Fourier Transform) being our
uncertainty about the outcome of a flip of a fair coin. If the base of the logarithm is e and K =1
then we are measuring uncertainty in units called nats (which I think only electrical engineers use).

He called this function the entropy of the random variable (or of the probability distribution,
when we’re concentrating on that). In this course, we’ll usually be concerned with the binary
entropy,

n
H(p17 soe 7p7l) - _Zp’t lgp’ba
=1
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Figure 7.1: Decomposition of a choice from three possibilities (from Shannon’s article).

and we’ll measure information and uncertainty in bits. Quite apart from his axiomatic derivation
he showed that, given P = p1,...,py, it is not possible to assign self-delimiting binary codewords
to the n possible outcomes such that the expected codeword length is less than H(P), but it is
possible to assign such codewords so that the expected codeword length is less than H(P)+ 1. This
result is often called “Shannon’s Noiseless Coding Theorem”.

It’s not hard to prove the first part of the Noiseless Coding Theorem (the lower bound) but it’s
less important for this class, so we’ll leave it until the end and for now prove only the second part
(the upper bound).

Without loss of generality, suppose p1 > pg > - > p, > 0. Let s; = Z;;ll p;j and consider how
many bits of the binary representation of s; we must write to uniquely distinguish s;. Notice that
if two binary fractions agree on their first b bits after the binary point then they differ by less than
1/2%: the smaller binary fraction can end with an infinite number of Os after those b bits, but the
larger cannot end with an infinite number of 1s because we would write 0.0101100111111111111 ... .,
say, as 0.0101101000000000000. ... Conversely, if two binary fractions differ by at least 1/2° for
an integer b then they must differ on one of their first b bits after the binary point. It follows
that, since s; differs from s;_1 by p;—1 > p; for ¢ > 1 and from s;11 by p; for i < n, s; is uniquely
distinguished by its first [1g(1/p;)] bits after the binary point. Taking the first [1g(1/p;)] bits of s;
to the ¢th outcome, the expected codeword length is

> pillg(1/p)] <> pilg(l/pi) +1=H(P)+1.
in1 P

Codes in which every codeword is self-delimiting are called prefiz-free (sometimes abbreviated to
only “prefix”), because no codeword can be a prefix of another codeword, or instantaneous, because
we can tell as soon as we’ve reached the end of a codeword. Prefix-free codes built with Shannon’s
construction are called, naturally enough, Shannon codes. Shortly after Shannon published his
article, Robert Fano proposed a construction that recursively divides the p;s into two subsets
whose sums are as close as possible.

Even before he was the father of information theory, Shannon had made important contributions
to electrical engineering: for example, in his master’s thesis at MIT, written when he was 21, he
introduced the idea of modelling digital circuits with Boolean logic (and included a diagram of
a 4-bit full adder); if you think Question 3 on Assignment 2 was hard, imagine what it would
have been like without the notion of logic gates! Suffice to say, like Turing (with whom he met
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at Bell Labs), Shannon was a genius. Nevertheless, Shannon codes can be sub-optimal, meaning
the expected codeword length is not always minimum. For example, for P = 1%, 1—56, %, Shannon’s
construction produces a code with all codeword lengths equal to

[1g(16/6)] = [1g(16/5)] = 2,

but if we assign the first outcome codeword 0 and the third and fourth codewords 10 and 11, then
the expected codeword length is

(6/16) +2((5/16) + (5/16)) = 1.5.

People realized immediately that Shannon’s article was a masterpiece and by 1951 Fano was
teaching a graduate on information theory. He gave the students the option of doing a project or
writing a final exam, and one of the students, David Huffman, decided to find an efficient algorithm
for building optimal prefix-free codes. The story goes that he failed repeatedly and was about to
give up when inspiration struck and he found the famous greedy algorithm now named after him,
which he published in 1952 and we're going to cover in this lecture.

Before we try to understand Huffman’s algorithm, however, I'd like us to warm up by developing
a greedy algorithm for another problem. Suppose that during the last lecture I tried to demonstrate
MergeSort by taking an unsorted sequence, splitting it half, and sending the two subsequences to
two students with instructions to continue the recursion and send me their sorted subsequence
when it was ready. Somehow wires got crossed, however, and some other students sent their sorted
subsequences directly to me instead of giving them back to the people they’d got them from. To
save time, I decide to merge the subsequences myself, using the code I showed you in the last lecture
that merges two sorted subsequences of lengths n; and ne into a single sorted sequence of length
n = ni + ng in O(n) time. The subsequences are of many different sizes, however, and I want to
know in which order I should merge them to minimize the time I spend.

Faced with this problem of planning how to perform pairwise merges of subsequences, with
each merge taking time proportional to the combined length of the two merged subsequences, an
obvious first step is to merge the two shortest subsequences. Since this minimizes the time taken
by the first merge, in some sense it’s the obvious greedy choice.

Suppose we start with n subsequences — ignoring the fact that in the last lecture n was the
length of the original sequence and thus the total length of the subsequences — so after we merge
the two shortest, we have n — 1 subsequences (including the result of that first merge). For now,
let’s concentrate on proving only that there exists some strategy — maybe greedy, maybe not —
that merges those n — 1 subsequences such that the total time (including the first merge) is the
minimum possible for any pairwise merging strategy.

Suppose, for example, that we’'ve asked my friend Jérémy (an expert on sorting, as I mentioned
in the last lecture) to merge our subsequences for us, but he’s been delayed and we’ve decided to
choose and perform the first merge ourselves. How can we be sure that after we merge the two
shortest subsequences, when Jérémy does eventually arrive he’ll say something like

“That’s not exactly what I would have done, but I can work with it; we can still get
an optimal solution (so the total time spent merging is minimized).”
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and not something like

“Sacre Bleu, what have you done? All is lost! There’s no way to reach an optimal
solution now!” ?

(Jérémy is French, as you may have guessed.)

Any strategy for merging the subsequences pairwise can be viewed as a strictly binary tree (that
is, every internal vertex has exactly 2 children), with the input subsequences at the leaves, each
internal being the merge of its children, and the root being the complete sequence. Symmetrically,
any such tree can be viewed as a strategy for merging the subsequences. Notice that an element
of the input subsequences for leave v is processed during the merges resulting in the subsequences
for v’s proper ancestors (that is, the ancestors of v excluding v itself), taking constant time during
each of those merges. Therefore, the total contribution of all the elements in v’s subsequence to
the time for merging, is proportional to the length of that subsequence times v’s depth. (Yes, this
is similar to our analysis of QuickSort; that’s deliberate.)

If we assign each leaf weight equal to the length of its subsequence, then a strategy according to
which the time spent merging is minimized, corresponds to a tree in which the sum of the products
of the leaves’ weights and depths is minimized. Let’s call that sum the tree’s cost. Suppose we are
given a tree Tppt that corresponds to an optimal merging strategy, so it has minimum cost.

If a leaf with a smaller weight is higher in Tt than a leaf with a larger weight, then we can swap
them and reduce Top’s overall cost, contrary to the assumption its cost is minimum. Therefore,
if we choose to merge subsequences with lengths w; and w; because those are the shortest, we can
assume Topy has two leaves at its bottom level with weights equal to w; and w;. (It can’t have a
single leaf at its bottom level because it’s strictly binary.)

Swapping leaves at the same level doesn’t change the cost of the tree, and neither does swapping
leaves with the same weight, so there exists a tree Tépt with the same cost as Topt in which the
leaves for the subsequences we merge first are siblings (at the bottom level). In other words, there
indeed exists some optimal merging strategy that starts by merging the two subsequences we merge
— meaning Jérémy will be able to take over and reach an optimal solution.

Now consider the algorithm that merges subsequences into a single subsequence by repeatedly
merging the shortest two subsequences (breaking ties arbitrarily). We have just shown that if we
merge the shortest two of n subsequences and then merge all the resulting n — 1 subsequences
optimally, then we use the minimum possible time for merging. It follows that if our algorithm is
optimal for merging n — 1 subsequences, then it is optimal for merging n subsequences.

Clearly our algorithm is optimal for 0 or 1 subsequences (for which it has nothing to do) or
even two subsequences (for which it makes the only possible merge). Therefore, by induction, it is
optimal for any number n of subsequences.

Theorem 6 Given a set of sorted subsequences to merge pairwise into a single sequence, with each
merge taking time proportional to the combined length of the two merged subsequences, we can
minimize the total time used by repeatedly merging the two shortest subsequences.
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Figure 7.2: If we merge subsequences with lengths w; and wjcorresponding to leaves u and v, then
there must be leaves v’ and v’ at the bottom level of T opt With those weights. We can swap v and v
with ¢/ and v" to have v and v at the bottom level and swap them with other leaves at the bottom
level to make them siblings in a new tree Tépt with the same cost as Top.

Considering again pairwise merging strategies as corresponding to binary trees, with optimal
strategies corresponding to trees with minimum cost (where a tree’s cost is the sum of the products
of its leaves’ weights and depths), we can rephrase Theorem |§| as follows:

Theorem 7 Given positive weights, the following algorithm builds a binary tree whose leaves are
assigned those weights, in some order, such that the sum of the products of the leaves’ weights and
depths is minimized:

1. we create a set of vertices with those weights;
2. until there is only one vertex in the set, we repeatedly
(a) remove the two vertices u and v with the smallest weights in the set,
(b) make u and v the children of a new vertex t with weight equal to the sum of u’s and v’s
weights,
(c) insert t into the set;
3. we return the single vertexr remaining in the set, as the root of the tree.

An obvious way to implement our algorithm in Theorem [7]is to keep vertices with the current
weights in a priority queue, in non-decreasing order by weight. When we extract the two vertices
with the smallest weights w; and w;, we make them the children of a new vertex with weight w; +wj,
which we insert into the priority queue. Using a min-heap as a priority queue, the algorithm then
takes O(nlogn) time.

Now that we have warmed up, we are ready to consider the problem of designing an optimal
prefix-free code, as Huffman did. Specifically, given a probability distribution py, ..., p,, we want to
associate binary codewords to the p;s such that no codeword is a prefix of any other codeword and,
when the ith codeword is chosen with probability p;, the expected codeword length is minimum.

The key to this problem is to realize that a collection of n binary codewords in which no one
codeword is a prefix of any other codeword, can be viewed as a binary tree with edges from parents
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Figure 7.3: A binary tree corresponding to a prefix-free code with codewords 000, 001, 01, 100,
1010, 1011, 11.

to left children with Os, edges from parents to right children with 1s, and the paths from the root
to the leaves labelled with the codewords. Figure illustrates this correspondence.

From this perspective, building an optimal prefix-free code is equivalent to building a binary
tree whose leaves are assigned weights p1, ..., py,, in some order, such that the sum of the products
of the leaves’ weights and depths is minimized. Because we can assume all the probabilities are
positive, in fact we have already solved this problem with Theorem [7] Our supposed warm-up was
actually a derivation of Huffman’s algorithm. As one of my former supervisors would say, “I was
tricking you!” I hope this presentation is easier to understand than the traditional one: last year I
had a student spontaneously suggest merging the two shortest lists as a first step, and I’ve never
had anyone spontaneously suggest something like “make the two leaves labelled with the least likely
characters in the alphabet the children of a new vertex assigned a probability equal to the sum of
theirs”. Figure [7.4] gives an illustration of Huffman’s algorithm.

In order to fill some space and hide my trick from people glancing ahead in these notes (who
might be suspicious if we finish too quickly after proving Theorem , now we will discuss Van
Leeuwen’s algorithm, which is a version of Huffman’s algorithm that runs in linear time when the
probabilities are given already sorted (or can be represented by integers in a range of size polynomial
in n, in which case we can sort them in linear time ourselves). This is in contrast to using a priority
queue, which uses Q(nlogn) time with most common implementations of priority queues. Van
Leeuwen’s algorithm is also a nice example of how the clever use of data structures, even standard
ones, can significantly speed up algorithms.

Suppose we are given weights w1, ..., w, with wy < --- < w,. We enqueue vertices with weights
w1, ..., W, in order in a queue @)1, such that the vertex with weight w; is at the head of ;1 and
the vertex with weight w,, is at its tail. We create an empty queue Q)2 and repeat the following
steps until there is only one vertex left in the queues:

1. dequeue a vertex with weight = from whichever of ()1 and )2 has a lighter vertex at its head
(or from whichever has a vertex at its head, if one is empty);

2. dequeue a vertex with weight y from whichever of @)1 and ()2 has a lighter vertex at its head
(or from whichever has a vertex at its head, if one is empty);
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Figure 7.4: The first few steps of Huffman’s algorithm, implemented with a priority queue, and
the complete tree (bottom right). The weights are the approximate frequencies (as percentages)
of the characters A through Z and SPACE in English text. (They sum to 100.16 instead of 100
because of rounding.)
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3. make those vertices the children of a new vertex with weight = + y;
4. enqueue that new vertex in @)s.

Since enqueuing and dequeuing take constant time, the algorithm takes O(n) time overall.

As long as both queues are always sorted, dequeuing from whichever has a lighter vertex at its
head is equivalent to extracting from a priority queue. Obviously @)1 stays sorted, because we only
dequeue from it and never enqueue to it. To see why Qo stays sorted, assume for the sake of a
contradiction that at some point we enqueue a vertex v to (J2 with a weight x + y that is smaller
than weight of the vertex u ahead of it in )2, and that previously both queues were always sorted.

Since @3 is initially empty and we enqueue only vertices with weights that are the sums of the
vertices they are replacing, u’s weight is 2’ + 3 for some weights 2’ and 3’ of vertices that were
dequeued before the vertices with weights = and y that v is replacing. If both queues were always
sorted up to this point, however, and we dequeued vertices with weights 2’ and vy’ before vertices
with weights x and y, however, then 2’ + 3y’ < x + y, so v is heavier than u.

Theorem 8 If we are given a distribution with n sorted probabilities, then we can build an optimal
prefiz-free code for them in O(n) time.

As promised, and to fill some more space, now we will see the proof (more or less) of the lower
bound in the Noise Coding Theorem: given P = p1, ..., pn, it is not possible to assign self-delimiting
binary codewords to the n possible outcomes such that the expected codeword length is less than

H(P).

Let’s assume the p;s are positive rationals, so each p; can be expressed as a;/b; for some positive
integers a; and b;. Let m be a sufficiently large common multiple of the b;s and let m; = a;m/b;, so
my + -- -+ my = m. For the sake of a contradiction, assume it is possible to assign self-delimiting
binary codewords wy, ..., w, to the outcomes such that the expected codeword length

> pilwi| < H(P) —¢

for some positive constant e.

Consider an alphabet {c1,...,¢,} and all the possible strings of length m in which ¢; occurs m;
times, for each i. There are (m1 Tmn) such strings, where the multinomial coefficient

m
(ml,...,mn)
. m m —ma m—mi— - —Mp_2 m—-—mip— - —Mp—2 —Mnp_1
mi ma mnp—1 mp

- ((m — :Ll!l)!mll) ((m —(;nu_—mnil)!mg!) o <(m —(21_—77.%-1 -_—'én_gﬂﬂfnjn_lnﬁlréil)!mn!>

m)

ml!mg! tee mn! '

Notice this is equal to 2'87'~lgmil=—lgma!
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By Stirling’s formula,

lgm!—lgmq! — - —lgm,!
= (mlgm—mlge+ O(logm)) — Z(ml lgm; —m;lge+ O(lgm;))

= mlgm— Zmzlgmz mlge—i—Zlege—i—Ologm ZOlong

= Zmzlgm Zmllgmz Zmllge+2mllge+010gm ZOlogm,

= Zmzlg m/mz)—i—Ologm ZOlogml

A

= mz (m;/m)lg(m/m;) + O(logm) — ZO (logmy;)

7

= mH(P)+ O(logm) — ZOlogml

v

mH(P) —O(n log(n/m)) .

For sufficiently large m, this is greater than m(H (P) — €/2), so we can assume we are considering
more than 277 (P)=¢/2) pogsible strings.

Suppose we assign each ¢; codeword w; and encode each of those possible strings by concate-
nating the codewords of its characters. Then we encode each such string with a distinct binary

Zmi|wi| = mZpﬂwi\ < m(H(P) —¢)

bits — but there are fewer than 2m(H(P)=)+1 _ 1 of those and, for sufficiently large m,

string consisting of

2m(H(P)—€/2) > 2m(H(P)—e)+1 _ 1’

so we have a contradiction.

For a course on algorithms, you don’t really need to know why the Noiseless Coding Theorem
holds, but the proofs of the upper and lower bounds aren’t really all that hard (and used some
things we’ve seen before) and the result is generally considered deep and beautiful, so I thought it
worth including them. Understanding the full proof of the Noiseless Coding Theorem may also help
you understand an apparent contradiction: that theorem says we can’t beat the entropy and that
Huffman coding is optimal, but you’ll often hear people saying arithmetic coding beats Huffman
coding and that more sophisticated schemes do even better.

To see that this isn’t really a contradiction, it’s important to remember that Shannon and
Huffman were assuming we know the probability distribution over the universe of possible entire
messages. That’s usually not the case and, when people actually use Huffman coding, they’re
usually taking a string, counting how many times each character in the alphabet occurs in that
string, assigning each character probability proportional to its frequency, building a Huffman code
for the resulting probability distribution, and then using that code to encode the string character
by character. That’s quite different from trying to encode the whole string at once!
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As we just saw, if the string is long enough and the characters are shuffled randomly, then we
can’t achieve an average codeword length of H(P)— e for the characters, where P is the distribution
of characters in the string. If the characters are shuffled or if they’re sampled from a multiset with
replacement — for example, drawn from a hat containing slips of paper with the characters written
one them, possibly with a different number of slips for each character, and then returned to the hat
— then Huffman coding is (essentially) optimal among all codes that encode the string character
by character, using an integer number of bits for each character. Such codes are sometimes called
character codes or, when prefix-free, instantaneous codes (since we can decode each character when
we reach the end of its codeword), and they can be beaten by schemes, such as arithmetic coding,
that can encode several characters together.

More sophisticated compression schemes also take advantage of the fact that the choice of each
character is not independent and identically distributed (often abbreviated to “iid”). For example,

[1P] [1))

a “q” in in English is usually followed by a “u”, and if we’ve just seen “th” then the next character
is probably an “e” or an “a”, or maybe a space or an “0” or an “r”, but almost certainly not a “t”,
even though “t” is a fairly common in English generally. Those schemes can beat Huffman coding

when they use a contextual model and it’s used as a memoryless character code.

Arithmetic coding can also be used with a contextual model; in fact, it was invented partly to
determine which is the best model, according to the principle of minimum description length: of a
class of models for a string, the best one is the one that minimizes the total size of the model and
of the encoding of the string with respect to the model. You may hear more about this in courses
on machine learning.
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Chapter 8

Minimum Spanning Trees

Building a minimum spanning tree of a connected, edge-weighted graph is a classic problem, and
a classic example of a problem we can solve with greedy algorithms. There are many greedy
algorithms for building minimum spanning trees, and we’ll look at three: Kruskal’s, Prim’s and
Bortuvka’s. They have different advantages and disadvantages which you should consider when
choosing one for a particular situation.

Recall that a graph is connected if and only if there exists a path from any vertex to any other
vertex. (For this lecture, we’ll consider only undirected graphs.) An edge-weighted graph has a cost
associated with each edge; without loss of generality, we can assume all the weights are positive. (If
some of the edges have negative weights or weight 0, then we can include all those in our solution
without increasing its total cost, and then consider as single vertices the connected components
of the resulting graph.) In a connected graph with positive edge weights, a connected subgraph
with minimum weight that spans all the vertices — that is, includes them all — will necessarily
be a tree. (If it included a cycle, we could remove one of the edges in that cycle and reduce the
subgraph’s weight without disconnecting it.) Such a subgraph is thus called a minimum spanning
tree (MST).

There are many applications for which MSTs are useful, which is one reason there are so many
algorithms, and why they have been rediscovered so often: Bortuvka developed his algorithm in
1926 for designing an electrical grid for part of the eastern Czech Republic (then part of Czechoslo-
vakia) and, according to Wikipedia (https://en.wikipedia.org/wiki/Boruvkas_algorithm) it
was later rediscover by Choquet in 1938, by Florek et al. in 1951, and by Georges Sollin in 1965
(and is sometimes known as “Sollin’s algorithm”); Prim’s algorithm also first developed in Czech-
slovakia, by Jarnik in 1930; it was then rediscovered by Prim in 1957 and again by Dijkstra in
1959 (so it is sometimes known as “Jarnik’s algorithm”, or “Prim-Jarnik”, or “Prim-Dijkstra” or
“DJP”).

For example, suppose you're the county planner in charge of paving some roads in your county
such that it’s possible to drive between any two towns along paved roads, and every road starts at

66


https://en.wikipedia.org/wiki/Boruvkas_algorithm

a town and ends at another town without forking or intersecting other roads along the way[f] Let’s
assume it is currently possible to drive between any two towns along dirt roads without leaving
the county, you know the cost for paving each road and, although you need not worry about how
long it will take to drive between towns along paved roads, you want to spend as little money as
possible on paving. How do you choose which roads to pave?

We can model this as a graph, with the towns as vertices, the roads as edges, the cost of paving
a road as the weight of the corresponding edge, and an optimal plan for paving as an MST of the
graph. Let’s start by considering what at first seems like the simplest algorithm for this, Kruskal’s:
first, we sort the edges by weight, breaking ties arbitrarily; then, we process the edges in non-
decreasing order by weight, adding each edge to our current subgraph if it does not create a cycle
and discarding it if it does.

To see why Kruskal’s algorithm works, let’s consider the standard form of a proof of correctness
for a greedy algorithmﬂ

Before we take any steps, our (empty) subsolution can be extended to
an optimal solution. Assume that, after ¢ > 0 steps, our subsolution can
be extended to an optimal solution S. Then we show that after i + 1 steps,
our subsolution can be extended to an optimal solution S’. Therefore, by
induction, we obtain an optimal solution.

To show that our subsolution after ¢ + 1 steps can be extended to an optimal solution, consider the
edge e we process in our (i + 1)st step.

If we discard e then, because we discard edges only when they create a cycle with our current
subsolution and S extends our current subsolution — so it contains all of the edges we have taken
so far and none of the edges we have discarded — S cannot contain e, so S itself extends our
subsolution after i+ 1 steps (meaning S’ = S). If we take e and S includes e then, again, S extends
our subsolution after i + 1 steps (and S’ = S). Finally, if we take e and S does not include e,
then we must show how to change S to obtain a solution S’ that does include e but does not cost
more. We will do this in the normal way, by an exchange argument: proving we can exchange e for
another edge in S of equal or greater weight without disconnecting the subgraph in S.

If S does not already include e, then adding e to S creates a cycle. There must be some edge f
in this cycle we have not already considered (because S agrees with our subsolution after i steps).
Since we consider the edges in non-decreasing order by weight, f’s weight must be at least as great
as e’s. Therefore, by replacing f with e, we obtain a solution S’ that still spans the graph and has
total weight no more than S.

To use Kruskal’s algorithm, it’s important that you know the whole graph for which you’re
trying to build an MST. It’s reasonable to assume a county planner has a map of their county, of

*If we consider intersections and allow plans in which pavement on roads can stop at intersections instead of at
towns, then we have an instance of the minimum Steiner-tree problem, which is another of those “BOOM” problems
essentially equivalent to finding Hamiltonian paths.

TThis is a more formal version of the argument in the last lecture that my friend Jérémy can show up after we
take a step and still reach an optimal solution.
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course, but suppose you're trying to choose a subset of communication links between computers in
a network such that a message can be sent from any computer to any other through those links,
the links have various costs, and you find out how a computer is linked to the rest of the network
only when you have selected links allowing it to exchange messages with your computer.

Prim’s algorithm can deal with this version of the MST problem because, while Kruskal’s
algorithm builds subsolutions that are forests, Prim’s subsolutions are always trees: first, we choose
a vertex from which to start our MST; then, at each step, we consider the edge with lowest weight
incident to our current tree which we have not already considered and add it to our tree unless it
creates a cycle, in which case we discard that edge.

To see why Prim’s algorithm works, we again follow the standard form:

Before we take any steps, our (empty) subsolution can be extended to
an optimal solution. Assume that, after i > 0 steps, our subsolution can
be extended to an optimal solution S. Then we show that after i + 1 steps,
our subsolution can be extended to an optimal solution S’. Therefore, by
induction, we obtain an optimal solution.

(I'm repeating this because I want you to be able to remember it during an exam.) Again, we will
use an exchange argument to show that, if we take an edge e in the (i + 1)st step and S does not
include e, then we can change S into a solution that includes e without increasing the total weight.

The argument again starts with adding e to .S and considering the resulting cycle, but this time
we cannot claim that any edge in that cycle we have not yet considered must have weight at least
as great as e’s, because some of them may not be incident to our tree after i steps. Nevertheless,
since the cycle includes e, and one of e’s endpoints is in our tree after 7 steps but the other is not
(otherwise our taking e would create a cycle in that tree), then some edge f in the cycle is not in
our tree after i steps but is incident to it. Therefore, since we consider the edges incident to our
tree in non-decreasing order by weight, f’s weight must be at least as great as e’s, so by replacing
f by e we obtain an optimal solution S’ that extends our subsolution after i + 1 steps.

To get a broader perspective, I encourage you to read about Kruskal’s and Prim’s algorithms
in Introduction to Algorithms. For consistency, since I used it in the video, I've also copied their
example of how those algorithms produce MSTs (which I hope falls under “fair use” of copyrighted

material), in Figures [8.1] and

Finally, suppose that all the computers in the network want to work together to build an
MST quickly, but know only about the links incident to computers with which they they can
exchange messages. In this case, we can use Boruvka’s algorithm (which I don’t think Introduction
to Algorithms covers): like Kruskal’s algorithm, a subsolution is a forest and not necessarily a tree;
like Prim’s algorithm, in each step, the computers in each tree consider all the edges incident to
that tree and add the one with lowest weight, unless it creates a cycle.

For the sake of simplicity, let’s assume either the links all have slightly different costs, or there’s
some locking mechanism to prevent the computers in two trees simultaneously adding edges with
equal weight that create a cycle. If the computers in each tree take 1 time unit to choose the edge
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Figure 8.1: The example of Kruskal’s algorithm from Introduction to Algorithms: “The execution
of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges belong to the forest. The
algorithm considers each edge in sorted order by weight. An arrow points to the edge under
consideration at each step of the algorithm. If the edge joins two distinct trees in the forest, it is
added to the forest, thereby merging the two trees.”
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Figure 8.2: The example of Prim’s algorithm from Introduction to Algorithms: “The execution of
Prim’s algorithm on the graph from Figure 23.1. The root vertex is a. Shaded edges are in the
tree being grown, and black vertices are in the tree. At each step of the algorithm, the vertices in
the tree determine a cut of the graph [Travis: don't worry what this means, we'll learn about cuts if
we have time to cover network flows], and a light edge crossing the cut is added to the tree. In the
second step, for example, the algorithm has a choice of adding either edge (b, c) or edge (a,h) to
the tree, since both are light edges crossing the cut.”
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incident to that tree with lowest weight and add it to the tree, then after 0 time units the trees
consist of 1 vertex each; after 1 time unit the trees consists of at least 2 vertices each; in general,
after i time units the trees consist of at least 2! vertices each; and we have an MST in O(logn)
time units, where n is the number of vertices in the graph. That is, although building an MST
takes Q(n) work, it can be done in o(n) time if we can use parallelism.

Although the strength of Bortiivka’s algorithm is that computers in the different trees can work
in parallel, it’s easiest to see why it is correct by considering the computers in one tree adding one
edge in isolation. In this case, we can consider the other trees as single vertices, so the correctness
of a step in Bortuvka’s algorithm follows from the correctness of Prim’s algorithm (or of Kruskal’s
algorithm, from a different perspective).

Let’s now look at how to implement each algorithm. With Prim’s algorithm we need a priority
queue of the edges incident to our current tree. If we use a min-heap with ©(logm) time to extract
the min or insert a new element, where m is the number of edges, then Prim’s algorithm takes
©(mlogm) = O(mlogn) time. Detecting when adding an edge would create a cycle is relatively
easy: we keep all the edges in our tree coloured a certain colour and, whenever we add an edge to
the tree, we colour its endpoint that was just added to the tree and consider all the edges incident
to that vertex; we discard any that have both endpoints coloured and insert into the priority queue
any that have only one endpoint coloured.

We can also implement Bortuvka’s algorithm in O(mlogn) time: we initially colour all the
vertices different colours and then proceeding in O(logn) rounds, maintaining the invariant that
all the vertices in any one tree are all the same colour, and a different colour than the vertices in
any other tree; in each round, we scan all the edges in the graph; if an edge e’s endpoints are two
different colours and one of the endpoints is red, for example, and e’s weight is the smallest we’ve
seen so far during this round for any edge with a red endpoint, then we keep e as our candidate
edge to add to the red tree (discarding any previous candidate); when we finish the scan, we have
the edge with lowest weight incident to each tree; we then add those edges — taking some care
not to create a cycle by adding two edges with the same weight incident to the same tree (two
candidates with endpoints that share a colour) — and recolour vertices so all the vertices in each
tree are the same colour (perhaps with breadth-first or depth-first traversals of the trees). This
takes O(m + n) = O(m) time per round, or O(mlogn) time in total.

The most interesting implementation is of Kruskal’s algorithm. At first it seems the simplest,
because we need only sort the edges once. It is not so obvious how to detect when adding an edge
would create a cycle, however: we cannot use a single colour, as with Prim’s algorithm; but if we
use many colours, like Boruvka’s algorithm, then we must be careful not to spend too much time
recolouring.

Suppose we initially colour all the vertices different colours and maintain the invariant that all
the vertices in any one tree are all the same colour, and a different colour than the vertices in any
other tree, and we know the count of how many vertices are in each tree. Whenever we consider an
edge, if its endpoints are the same colour then we discard it; otherwise, we choose the smaller of
the two trees it connects and recolour all its vertices to match the vertices in the larger tree. With
a fairly simple implementation this takes time linear in the size of the smaller tree, and it is not
hard to see that any vertex is recoloured O(logn) times. It follows that, after sorting the edges, we
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spend O(nlogn) time building an MST with Kruskal’s algorithm. Since we can sort the edges in
O(mlogm) = O(mlogn) time, we get an O(mlogn) bound for Kruskal’s algorithm as well.

As you’ll remember from the lecture on sorting, however, in some models or in some circum-
stances we can sort the m edges in o(mlogn) time. Therefore, it makes sense to try to optimize
the post-sorting construction and, for that, we’ll now briefly cover the union-find data structure.
This data structure maintains a collection of disjoint sets with a representative for each set, and
supports the following operations:

create(x) creates a new set {z} (when z is not already in any set);
union(x,y) merges the sets containing z and y (unless they are already in the same set);
find(x) returns the representative of the set containing z.

It shouldn’t be too hard to see how to use this data structure to implement Kruskal’s algorithm:
whenever we consider an edge, we find the representatives of its endpoints and, if they are the
same, we discard the edge; if not, we union the sets containing the endpoints. It also shouldn’t
be too hard to see how, as long as our sets contain a total of n elements, we can support all of
the operations in O(logn) time, using the idea for implementing Kruskal’s algorithm in O(mlogn)
time: we keep a coloured tree for each set, whose vertices are the elements in that set, and a
representative vertex associated with each colour; when we union two elements, we add an edge
between their vertices and recolour the smaller of their two trees.

The standard implementation of union-find actually works much faster than this. We still keep
the elements of a set in a tree, but now the tree is rooted and each vertex points to its parent (with
the root pointing to itself). We consider the root to be the representative of the set and, when
we union two sets, we switch the pointer at the root of the smaller tree from pointing to itself, to
pointing to the root of the larger tree. The main change is in how we implement find, using an
idea called path compression: when we perform find(x), we follow the pointers up the path from z
to the root of its tree and, as we go, we push x’s ancestors on a stack so that, when we finally reach
the root of the tree, we can reset all of their pointers to the root. This increases the worst-case
time of a find by a constant factor, but it greatly decreases the amortized time.

I’'m not sure if you've seen amortized analysis in previous courses. The simplest example is an
expandable array, which is useful when we are receiving elements and want to store them in an
array but don’t know how many there are or how much space to allocate. By starting with a small
array and doubling the size whenever it fills up, we never use more than a constant times as much
space as we need and, although the worst-case time to receive an element is linear in the number of
elements we have received — to create the new array, copy all the elements into it, and free the old
array — the total time is linear in the number of elements and so the time to receive and process
each element is constant when amortized over all of the elements. To see why, suppose we charge
3 units to receive each element, spend 1 to insert it into the current array, and save 2; then, when
an array of n elements is full, we have 2(n/2) = n units saved to pay for copying each element into
a new array.

The analysis of union-find with path compression is quite detailed, and even Introduction
to Algorithm presents only a simplified version, showing that it makes Kruskal’s algorithm take
O(mlog* n) time after sorting the edges, where lg* n is the number of times we need to apply lg to
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n to get down to 1. The function Ig* n grows very slowly; for example, even though 22 2.1019728
g gng

22 2
1g* 22" =1g"2% +1=1g"2¥ +2=1g"22 +3=1g"2+ 4 = 5.
In fact, m operations on an initially empty collection of sets, of which n operations are create,

takes O(a(m,n)) time, where « is the Inverse Ackermann Function, which grows even more slowly
than lg*.
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Chapter 9

More Greedy Algorithms

We started our study of greedy algorithms with Huffman coding so I could trick you into redis-
covering Huffman’s algorithm while pretending we were warming up with a simple exercise about
merging sorted lists. Most other courses on algorithms start with simpler problems, not known
to have stumped Shannon (“Father of the Information Age”). Now that we've seen Huffman’s,
Kruskal’s, Prim’s and Boruvka’s algorithms, let’s look at a couple of those easy problems — and
some harder versions of them, to keep things interesting.

The first problem Introduction to Algorithms shows how to solve with a greedy algorithm is
ACTIVITY SELECTION: we are given a list of activities with their start times and finish times; we
can think of an activity with start time s and finish time f as a half-open interval [s, f); an activity
[s, f) is compatible with another activity [¢', f’) if and only if their intervals do not intersect,
[s, )N [s, f") = 0; we want to choose the largest possible subset of pairwise-compatible activities.

The example of ACTIVITY SELECTION I have in my edition of Introduction to Algorithms has
these activities: [3,5),[5,7),[12,14),[1,4),[8,11),[5,9),[6, 10),[8,12),[3,8),[0,6), [2,13). For exam-
ple, if your school-day lasts from 9:30 am to 4:30 pm, 0 means 9:30 and 14 means 4:30, then [5,7)
could be lunch from 12:00 to 1:00 and the other activities could be lectures, seminars, tutorials,
sports, naps, etc.

Assuming you can do only one thing at a time but you can get from one activity to another
instantly — hooray for online learning! — and you value all activities equally — even 3110 lectures,
and even lunch! — how can we choose your activities so that you do as many as possible?

Remember that greedy algorithms usually start by sorting their inputs in some way. I listed the
activities in order by length, with ties broken by start time, but that’s not always the best way to
sort them. For example, if your activities are [0, 3), [2,4), [3, 6) then it’s better to take [0, 3) and [3, 6)
than only [2,4), even though that’s the shortest. How else can you sort the activities? The obvious
other ways are by start time — which isn’t optimal, in cases such as [0, 14),[1,2),[2,3),...,[12,13)
— and by finish time.

If you try a few examples, it seems that processing the activities in order by finish time, from
earliest to latest, and scheduling each activity if it is compatible with all the activities you’ve
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already scheduled and ignoring it otherwise, always produces an optimal schedule. (Ok, this is
symmetric processing the activities by start time, from latest to earliest — just think of time as
running backwards.) Why is this the case?

Before we take any steps, our (empty) subsolution can be extended to
an optimal solution. Assume that, after i > 0 steps, our subsolution can
be extended to an optimal solution S. Then we show that after i + 1 steps,
our subsolution can be extended to an optimal solution S’. Therefore, by
induction, we obtain an optimal solution.

Suppose that in the (i + 1)st step we consider activity [z,y). If we discard it then it must be
incompatible with one of the activities we have already scheduled, in which case S cannot include
it, so S’ = S. If we schedule it and S includes it then, again, S” = S. The only interesting case is
when we schedule [z,y) and S discards it. If S does not schedule any activities incompatible with
S, then we can add [z, y) to S and achieve an improved solution (contrary to the assumption that
S is optimal). Therefore, assume S schedules such an activity, [2/,7/).

Notice that ' < y (otherwise the two activities are not incompatible) and 3’ > y (otherwise
we would have considered [z/,y’) before [z,y)), so S contains only one activity incompatible with
[x,y). If we remove [z/,y’) from S, then the rest of S’s activities are compatible with [z, y), so we
can add [z,y) and achieve a solution S’ containing [z,y) that has as many activities as S and, so,
is optimal.

ACTIVITY SELECTION is perhaps the simplest problem in a field known as job scheduling, which
includes many “BOOM” problems. Imagine each activity can be started after a certain point (its
release time), should be finished before a certain point (its deadline), has a certain profit (which can
vary between activities), may depend on other activities having already been completed, and takes
a certain amount of time (its duration) less than or equal to the difference between its deadline and
its release time, with the duration depending on who among several people performs that activity
— and you’ll start to see why we’re not going deeper into this topic in this course.

For Assignment 3, you showed how to sort quickly using a procedure that “given a sequence
of n integers that can be partitioned into d non-decreasing subsequences but not fewer, does so in
O(nlogd) time”. There actually exists such an algorithm, called Supowit’s algorithm, that does
this partitioning online and greedily. By “online” I mean that it processes the integers in order
and has always partitioned those it has seen so far into a minimum number of non-decreasing
subsequences.

For example, if the original sequence is 7,2,4,3,1,2,6,9,5,8,7,4,3, how can you partition it
online? The first 7 must start a subsequence, and the first 2 is less than 7 so it must start its own
subsequence, but the first 4 could either start its own subsequence or follow the first 2; if the first
4 follows the first 2 then the first 3 must start its own subsequence, otherwise it can follow the first
2; etc.

For Supowit’s algorithm, we keep the last element in each subsequence in a dynamic predecessor
data structure (such as an AVL tree) with operations taking time logarithmic in the number of
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elements stored. We append each element = to the subsequence currently ending with x’s prede-
cessor among the last elements in the subsequences (that is, the largest element appearing last in
a subsequence, that is at most x); if x is smaller than all of the current last elements, we start a
new subsequence with it. If we append x to a subsequence, then we delete from the predecessor
data structure the element that was the last element in the subsequence; in both cases, we insert
x into the predecessor data structure. To process the entire sequence, we use O(nlogd) time.

In our example, we start a subsequence with 7 and insert it into the predecessor data structure;
search for the predecessor of 2 but find nothing, and start a new subsequence with 2 and insert
it into the predecessor data structure; search for the predecessor of 4 and find 2, append 4 to the
subsequence 2, delete 2 from the predecessor data structure and insert 4; search for the predecessor
of 3 but find nothing, and start a new subsequence with 3 and insert it into the predecessor data
structure; search for the predecessor of 1 but find nothing, and insert it into the predecessor data
structure; search for the predecessor of 2 and find 1, append 2 to the subsequence 1, delete 1 from
the predecessor data structure and insert 2; etc. Eventually, we obtain the following 5 subsequences:

7, 9

2, 4, 6, 8
3, 5 7
1, 2, 4
3.

Why can we be sure it is impossible to partition our example sequence into fewer than 5 non-
decreasing subsequences?

Before we take any steps, our (empty) subsolution can be extended to
an optimal solution. Assume that, after i > 0 steps, our subsolution can
be extended to an optimal solution S. Then we show that after i 4 1 steps,
our subsolution can be extended to an optimal solution S’. Therefore, by
induction, we obtain an optimal solution.

Suppose that an optimal solution S extends our subsolution after ¢ steps, when we have pro-
cessed i integers. If S has the (i + 1)st integer x in the same subsequence that we put it in, the S
extends our subsolution after i + 1 steps, so S’ = S. If we start a new subsequence with x, then it
cannot be appended to any of the existing subsequences, so S must start a new subsequence with
x as well and, again, S’ = S. The only case left to consider is when we append x to a subsequence
A and S appends it to another (possibly empty) subsequence B.

Let a be the last element of A before x in our subsolution and let b be the last element of
B before z in S. Let C and D be the suffixes in S of the subsequences that start A and B, x,
respectively — meaning S includes subsequences A, C and B, z, D. Since we append x to the list
ending with x’s predecessor among the last elements of the subsequences when we consider z, we
have b < a < x. Therefore, the first integer in C is larger than b, so we can swap C and x, D
to obtain a solution with the same number of subsequences as .S and containing the subsequences
A,x,D and B, C. This solution extends our subsolution after i + 1 steps.
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Figure 9.1: A vertex cover of size 4 (shown with red markers) of a graph with 7 vertices.

Interestingly, the problem of partitioning a sequence of integers into the minimum number of
monotone subsequences — that is, with each subsequence either increasing or decreasing — is a
“BOOM” problem. For various reasons, people who work in data compression and data structures
would like to be able to partition sequences of integers into non-decreasing subsequences so as
to minimize the entropy of the distribution of elements to subsequences. This isn’t the same
as minimizing the number of non-decreasing subsequences: for example, another solution to our
example instance

7, 9
2, 4, 6, 8
3, 4

1, 2, 5 7
3.

has the same number of subsequences but the entropy of its distribution
(2/13)1g(13/2) + (4/13) 1g(13/4) + (2/13)1g(13/2) + (4/13)1g(13/4) + (1/13) 1g(13/1) ~ 2.16

is slightly lower than the entropy of the distribution of the solution given by Supowit’s algorithm,
(2/13)1g(13/2) + (4/13) 1g(13/4) + (3/13) 1g(13/3) + (3/13) 1g(13/3) + (1/13)1g(13/1) ~ 2.20.

As far as I know, no one knows whether partitioning sequences of integers into non-decreasing
subsequences so as to minimize the entropy, goes “clink” or goes “BOOM”. If you figure it out,
either way, I promise to give you as many bonus marks as the faculty will let me.

VERTEX COVER is a classic “BOOM” problem: given a graph on n vertices and an integer
k < n, decide if there is a subset of k vertices such that every edge is incident to (“covered by”)
at least one vertex in that subset. (There’s an analogous problem called EDGE COVER for which
we must select a subset of edges so as cover all the vertices. The way to keep them straight is to
think “We’re looking for a vertex cover (of the edges)”.) Figure shows a vertex cover of size 4
of a graph with 7 vertices.

Notice that, if you find a vertex cover consisting of fewer than k vertices, you can always add
more vertices to get a vertex cover consisting of exactly k vertices, so we can write “of k vertices”
instead of “at most k vertices”. This is called a decision problem because it asks for a yes-or-no
answer; the corresponding optimization problem is to find the smallest vertex cover. Theorists
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Figure 9.2: A maximal (but not maximum!) matching, and the vertex cover we get from including
all the endpoints of its edges.

like thinking about decision problems because you can call the set of all strings encoding “yes”
instances of VERTEX COVER as a language, for example, and start using terms and ideas from
formal language theory.

Even though there’s no known polynomial-time algorithm for finding the smallest vertex cover
in a graph, there is an easy way to find a vertex cover that’s at most twice as big as the smallest:
as often as we can, we choose an edge arbitrarily, then remove all the other edges incident to its
endpoints; when we’re done, we have a maximal matching. (A matching is a subset of the edges
such that no two share an endpoint. We say “maximal” instead of “maximum” because we can’t
add any more edges, but that doesn’t necessarily mean there isn’t a larger matching.) If we then
add both endpoints of each edge in our matching to our vertex cover, every edge is covered (because
if an edge e were uncovered, then we could have added it to our matching) and our vertex cover
is at most twice the size of the smallest one (because any vertex cover must include at least one
endpoint of each edge in our matching, and none of those edges share endpoints).

Figure shows a matching consisting of 2 edges for the graph shown in Figure and the
vertex cover — again of size 4 — that we get by choosing both endpoints of each edge in our
matching. Although in this case we obtain a vertex cover as small as possible (I think), if we’d
considered the edges in a different order when building our matching then we could have ended up
with 3 edges instead of 2 (so our current matching is maximal but not maximum), and then our
vertex cover would have 6 vertices instead of only 4.

When we’re faced with instances of “BOOM?” problems in real life, we usually can’t just give up,
so people have developed approaches to dealing with them. We can use approximation algorithms,
that aren’t guaranteed to find optimal solutions but are guaranteed to find good ones (incidentally,
there are better approximation algorithms for VERTEX COVER, we just won’t see them in this
course); we can use heuristics and hope for the best, because sometimes worst-case analysis is
unduly pessimistic; we can try to solve them using brute force and big computers; or we can try to
find characteristics of the instances we're interested in that make them special and easier to solve.
For example, although VERTEX COVER goes “BOOM” in general, on trees it goes “clink” — in
fact, there’s a greedy algorithm! (If you take Norbert’s 4th-year course on algorithms, you'll see a
lot more algorithms that work well on special cases.)
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Figure 9.3: A tree with a vertex cover of size 4, but no vertex cover of size 4 including the central
vertex.

The obvious greedy strategy for choosing a small vertex cover of a tree — start by adding the
vertex with highest degree — doesn’t always work optimally. For example, consider the cross-
shaped tree shown in Figure if we choose the center vertex because it has degree 4, then we
still need to choose 4 more vertices to cover the edges incident to the leaves; if we choose the 4
vertices with degree 2, however, then we cover all the edges.

Instead, suppose we choose a leaf of the tree, add to our (initially empty) vertex cover the
other endpoint v of the single edge incident to that leaf, delete that edge and all the other edges
incident to v, and recurse on each tree of the resulting forest (ignoring all the vertices which are
now isolated). Figure shows an example of how this algorithm can work on a tree, with the
numbers showing which vertices we consider as leaves (which need not be leaves when we start)
and red disks showing which vertices we add to our vertex cover. How can we be sure the vertex
cover we obtain will be as small as possible?

Before we take any steps, our (empty) subsolution can be extended to
an optimal solution. Assume that, after ¢ > 0 steps, our subsolution can
be extended to an optimal solution S. Then we show that after i + 1 steps,
our subsolution can be extended to an optimal solution S’. Therefore, by
induction, we obtain an optimal solution[]

Suppose that during our (i + 1)st step we consider an edge (u,v) and take v. If S includes v,
then S = S. If S does not include v, then it must contain u in order to cover that edge. Since all
the other edges incident to u must already have been covered — because we consider (u,v) only
when one of its endpoints is a leaf and then we take the other endpoint — removing u from S leaves
only (u,v) uncovered. Therefore, S’ = {v} U (S {u}) (that is, v added to S with u removed) is a
vertex cover of the same size as S that extends our subsolution after i + 1 steps.

Another “BOOM” problem with easy and hard versions is KNAPSACK: suppose you're going
on a hiking trip and you’re deciding which of a set of items to take with you in a knapsack, with

*I hope you’re getting the impression that I want you to remember this.
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Figure 9.4: A minimum vertex cover of a tree.

each item having a weight and a profit and the knapsack having a certain limit on the weight it
can hold, called its capacity; you want to choose items such that you obtain the maximum possible
profit without exceeding the knapsack’s capacity.

The easy version of KNAPSACK is called FRACTIONAL KNAPSACK, and I think it’s really only
used as an example problem for teaching greedy algorithms. The normal, hard version of KNAPSACK
is usually just called KNAPSACK, but sometimes also BINARY KNAPSACK or 0-1 KNAPSACK to
distinguish it from FRACTIONAL KNAPSACK.

BiNARY KNAPSACK will come up again when we get to dynamic programming, and again when
we get to NP-completeness. I'll show you an algorithm for BINARY KNAPSACK that solves even the
hard version optimally, and runs in time polynomial in the capacity — even though it’s a “BOOM”
(that is, NP-complete) problem. It was to prepare you for that apparent contradiction that I told
you we usually measure running times in terms of the size of the paper it takes to write out the
instance, and had you think about why factoring is used in crypto-systems even though we can
factor a number n in O(n) arithmetic operations.

For now, let’s concentrate on FRACTIONAL KNAPSACK, which is called that because we can cut
the items: if we cut an item and discard some fraction of it, then the profit of the remaining part
is proportional to its original profit times the fraction that we keep. Figure [9.5] shows some of the
figures from the scribe notes on this topic, which for some reason make me smile.

Taking the most profitable item (such as a giant watermelon) first could be a mistake since, as
shown in the second part of Figure it might fill the whole knapsack. Taking the smallest item
first could also be a mistake. Since we can cut the items, the best approach is to order the items
into non-increasing order by their profit-to-weight ratios — their densities — then take each item
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@ chocolate bar 100g value 12 m cheese 2kg value 10
@ bread 1kg value 6 m watermelon 10kg value 20

10kg capacity Knapsack

“Empty knapsack with items can be taken”

value 20 value 28

“A giant watermelon vs cheese+bread+chocolate bar”

[  chocolate bar 100g value 12 density 120
«vir, - bread 1kg value 6 density 6
3  cheese 2kg value 10 density 5

watermelon  10kg value 20 density 2

S

“Each item with value density”

A

m 2kg value 10 vs. 1kg value 5

“cut cheese into half and get half value”

Figure 9.5: Some memorable figures from the 2020 scribe notes.
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as long as it fits in the knapsack and, when we reach an item that won’t fit in the knapsack, to cut
it and take as much of it as we can. Why does this fill the knapsack as profitably as possible?

Before we take any steps, our (empty) subsolution can be extended to
an optimal solution. Assume that, after ¢ > 0 steps, our subsolution can
be extended to an optimal solution S. Then we show that after i + 1 steps,
our subsolution can be extended to an optimal solution S’. Therefore, by
induction, we obtain an optimal solutionm

Suppose that for our (i 4+ 1)st step we take g grams of some item z and S includes ¢’ grams of
it. Since we always take the whole item when we can, and as much as possible when it won’t all
fit, g > ¢'. Suppose we take S and cut out g — ¢’ grams of whatever it includes instead of those last
g — ¢’ grams of z, and fill the extra space up with z. The profit cannot go down, because g — ¢’
grams of z are at least as profitable as g — ¢’ grams of anything we consider after x, so we obtain
a solution S’ that is as profitable as S and extends our subsolution after 7 + 1 steps.

fDon’t worry, this is the last time I'm going to write this. Of course, you should probably still write it for various
assignments and exams. . .
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Assignment 4

posted: 11.06.2021 due: midnight 18.04.2021

You can work in groups of up to three people. One group member should submit a copy of the solu-
tions on Brightspace, with all members’ names and banner numbers on it; the other group members
should submit text files with all members’ names and banner numbers (otherwise Brightspace won’t
let us assign them marks!). You may consult with other people but each group should understand
the solutions: after discussions with people outside the groups, discard any notes and do something
unrelated for an hour before writing up your solutions; it’s a problem if no one in a group can ex-
plain one of their answers. For programming questions you should submit your code, which should
compile and run correctly to receive full marks.

1. You have a week to complete an assignment with several questions, each worth the same
number of marks. You don’t want to spend more than h hours on the whole assignment
and you can estimate accurately how many hours each question will take you. Give a greedy

algorithm to decide which questions to answer. PROVE YOUR ALGORITHM CORRECT!

2. Your professor is training to run against his friend Simon, but he’s not sure he can make it
around his whole planned route in one go, so he’s made a list of places where he can stop for
a break, coffee, etc. (For example, if he starts at the shipyards and runs along the coast, he
can stop at the Tim Horton’s by the ferry terminal, then in the Salt Yard, then at one of the
restaurants along the waterfront, then at the Garrison Brewery or Tomavinos by the Seaport
Market, then at the entrance of Point Pleasant, then at the top of Arm Road in the park,
etc etc.) Suppose he gives you this list, with the distance between each consecutive pair of
potential pit stops, and the distance d he can run without stopping. Give a greedy algorithm
that tells him where to stop such that 1) he never runs more that distance d without a break
and 2) he makes the minimum number of stops. PROVE YOUR ALGORITHM CORRECT!

3. A cross parsing of a string S[1..m] with respect to a string T[1..n] is a partition of S into a
minimum number of substrings each of which occurs in T'. Suppose you are given an array
L[1..m] such that, for 1 < i < m, the substring S[i..i + L[i] — 1] occurs in T but the substring
S[i..i+ L[i]] doesn’t. Give a greedy algorithm for computing a cross parsing of S with respect
to T. PROVE YOUR ALGORITHM CORRECT!

4. According to https://wwwlb0.statcan.gc.ca/tl/tbll/en/tv.action?pid=1710000901,
the populations of Canada’s provinces and territories in the first quarter of 2021 were as
follows:
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Newfoundland and Labrador 520,438
Prince Edward Island 159,819
Nova Scotia 979,449
New Brunswick 782,078
Quebec 8,575,944
Ontario 14,755,211
Manitoba 1,380,935
Saskatchewan 1,178,832
Alberta 4,436,258
British Columbia 5,153,039
Yukon 42,192
Northwest Territories 45,136
Nunavut 39,407

Suppose we choose a resident of Canada uniformly at random and let X be the province or
territory where they live.
(a) Compute the entropy (in bits) of the random variable X.
(b) Compute >, p;[1g(1/p;)], where p; is the probability the resident of Canada lives in the
1th province or territory listed above.
(¢) Build a Huffman code for the probability distribution pi,...,p13; what is its expected
codeword length?

. Suppose you have season passes for m train lines between n cities, with different expiry dates.
A ticket lets you travel on the line between two cities as many times as you like, in either
direction, from now until the ticket expires. How can you quickly determine the last date on
which you will be able to reach any city from any other city using your passes?
(a) Give a solution with the union-find data structure that takes O(m «a(m,n)) time after
you’ve sorted the passes by expiry date.
(b) Give a solution that colours and re-colours the cities, and takes O(m) time after you've
sorted the passes by expiry data.
You need not prove your solutions correct.
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Midterm 1

posted: 9 am, 07.06.2021 due: midnight, 11.06.2021

You are not allowed to work in groups for the midterm. You can look in books and online, but
you must not discuss the exam problems with anyone. If you don’t understand a question, contact
Travis or one of the TAs for an explanation (but no hints). All problems are weighted the same
and, for problems broken down into subproblems, all subproblems are weighted the same.

1. For each cell (7,7) in the matrix below, write o, O, ©, Q or w to indicate the relationship of
the ith function on the left to the jth function along the top. If none of those relationships
hold, leave the cell blank. Only the best answer possible will be considered correct (so writing
O when the best answer is o doesn’t count, for example). The cell (1,1) is filled in as an
example: n'/* € o(n?), so that cell contains “0”. You need not explain your answers.

n? | (=)™ 4 1)n | 3'8m | pl8len | nlgn
nt/4 0
2n
[lgn]!
ny i1(1/4)
T(n) =5T(n/4) +n3?

2. Assuming you have an O(n)-time algorithm to find a separator of a planar graph on n vertices
— that is, a subset of at most 2\/n vertices after whose removal all remaining connected
components each consist of at most 2n/3 vertices — give a divide-and-conquer algorithm
to find a minimum vertex cover of a planar graph on n vertices, similar to our algorithm
for colouring a planar graph. Your mark will partly depend on how fast your algorithm
is (although there is not believed to exist a polynomial-time algorithm). You need not
analyze your algorithm nor prove it correct.

3. Suppose we have a function that, given an unsorted sequence of n integers, in O(n) time
returns the (n/q)th, (2n/q)th, ..., ((¢ — 1)n/q)th smallest elements, called g-quantiles. Con-
sidering the time to compare elements to quantiles,

(a) how quickly can we sort with this function when ¢ is constant?
(b) how quickly can we sort with this function when ¢ = \/n?
(c) if we can choose ¢ freely, how should we choose it to sort as quickly as possible with this
function?
You need not explain your answers.

(10% bonus question) How fast can we sort if the function takes O(n) time and separates
the integers in the array into y/n bins such that the ith bin contains the ((i — 1)y/n + 1)st
through (iy/n)th smallest integers? (That is, the first bin contains the smallest \/n elements,
the second bin contains the next \/n elements, etc.) You need not explain your answer.

CONTINUED ON NEXT PAGE!

85



4. Imagine you’re planning a post-lockdown canoe trip with friends, but

people want to bring different amounts of equipment,

everyone wants to be in the same canoe as their equipment,

you can have only so much equipment in each canoe (all the canoes are the same, and
consider only the weight of the equipment),

any one person’s equipment fits in one canoe,

everyone wants to row (so you can have at most two people in each canoe).

You have a list of how much equipment each person wants to take (in kilos), and you know
how much fits in a canoe. For example, if there are 3 people going and they want to take 37
kg, 52 kg and 19 kg of equipment and a canoe can hold up to 60 kg of equipment (plus up to
2 people), then you need at least 2 canoes: you can put the first and third people and their
37 4+ 19 = 56 kg of equipment in one and the second person and their 52 kg in the other.
Give a greedy algorithm to find the minimum number of canoes you need AND GIVE A
PROOF OF CORRECTNESS!

5. Give a greedy algorithm for BINARY KNAPSACK that runs in O(nlogn) time, where n is the
number of items to consider, and achieves at least half the maximum profit when all the items
have the same profit-to-weight ratio. Explain why your algorithm achieves this.
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Part 111

Dynamic Programming
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Chapter 10

Edit Distance

My high school biology teacher, Mr Klages, wasn’t very strict when it came to tests. If a student
asked him to clarify a question, he would first explain what the question was asking and then, if
the students was still confused, he’d also explain the steps in the reasoning leading to the answer,
and eventually he’d often end up saying something like “So the answer’s 5, isn’t it?”. One of my
classmates, Ryan, had an odd sense of humour (and a lot of patience!) and thought it was fun to
keep asking Mr Klages questions until he’d revealed the answers to all the questions on the test:

Ryan: “Mr Klages, I don’t understand Question 1.”
Mr Klages: “Well, Ryan, it’s asking for the cell organelles; remember those from last week?”

Ryan: “Not really.”

Mr Klages: “So the last one is Golgi body, isn’t it?”
Ryan: “Right, thanks, Golgi body...” [writes]
Mr Klages: “Ok, so now you're all set?”

Ryan: “Yes, but I don’t understand Question 2 either.”

(I sympathize more with Mr Klages now that I've tried teaching; http://phdcomics.com/comics/
archive.php?comicid=5.)

Let’s suppose Mr Klages is testing Ryan’s ability to compute the minimum cost of a path from
the top left corner of the matrix in Figure to the bottom right, according to the following
rules:

e at each step we can move right one cell, down one cell, or diagonally right and down one cell;
e crossing a black arrow costs $1;
e crossing a red arrow is free.
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z

Figure 10.1: What is the minimum cost of a path from the top left to the bottom right if crossing

a black arrow costs $1 and crossing a red arrow is free?

Naturally, Ryan is going to say he doesn’t know the minimum cost of a path from one corner to

the other, and Mr Klages will say something like

“Well, if I told you the minimum costs =, y and z of paths to the cells above and to
the left, above, and to the left of the cell in the bottom right corner, respectively, then
you could work out the minimum cost min(z + 1,y + 1,z 4+ 1) of a path to that cell,

couldn’t you?”

Ryan being Ryan, he’ll say yes and ask what x, y and z, to which Mr Klages will answer

something like

“Well, if T told you the minimum costs s, ¢, u, v and w of paths to the cells above

and to the left of those cells, then you could work out

couldn’t you? (Notice we can get from the cell with cost v to the cell with cost z for

x = min(s+1,t+1L,v+1),
= min(t+1l,u+1,z+1),
z = min(v,z+ L,w+1),

free, so we don’t add a 1 to v when computing z!)”

What Mr Klages tells Ryan is essentially the following recurrence,

A0, 0]
Ali, 0]

— 0,
= Ali—1,0]+1fori >0,
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Aj0,j] = A[0,j—1]+1forj>0

Ali—1,7 — 1]+ B, 5,
min | A[i —1,7] + 1, for i,7 > 0,
Ali,j—1]+1

Ali, j]

where B ; is an indicator variable equal to 1 if the arrow from A[i — 1,5 — 1] to Ali, j] is black and
0 if it’s red. Seeing a recurrence, computer scientists automatically think of recursion, and it’s true
Ryan could call the following program on the coordinates of the bottom right corner:

int cost(int i, int j) {
if (i==0& j == 0) {
return(0) ;
} else if (i == 0) {
return(cost(i, j - 1) + 1);
} else if (j == 0) {
return(cost(i - 1, j) + 1);
} else {
return(min(cost(i - 1, j - 1) + B[i, j],
cost(i - 1, j) + 1, cost(i, j - 1) + 1));

How long is that going to take, though? Notice we’ll call cost for a cell once for every way
to reach that cell from the bottom right corner using only moves left, up, and diagonally left and
up. If we ignore diagonal moves, we’ll get a lower bound on the number of calls to cost that’s
something like the number of binary strings on at most 22 bits containing at most 12 copies of 0
and at most 10 copies of 1, which is huge. Not even Mr Klages and Ryan are that patient!

We could memoize the answers to each call to cost — meaning we record them in an array so
we don’t need to recompute them — but instead of “unwrapping” the problem from the bottom
right corner and backtracking, it’s a bit cleaner to work from the top left corner. If we decide the
top left corner has coordinates (0,0) and the bottom right corner has coordinates (m,n) — there’s
a reason for this that we’ll see later — then we can use the following iterative program:

int costDP(){

A0l [0] = 0;

for (int i = 1; i <= m; i++) {
A[il[0o] = A[i - 1][0] + 1;

}

for (int j = 1; j <= n; j++) {
A[0I[j] = A[OI[j - 11 + 1;

}
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for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
A[i1[j] = minCA[i - 1][j - 1] + B[il(j],
Ali - 11[31 + 1, A[Ll[j - 11 + 1);

return(A[m] [n]);
}

This is dynamic programming[| with Ali, j] storing the minimum cost of reaching cell (4, 7) in
our original matrix. Of course the first and second for loops just set A[i,0] = ¢ and A[0, j] = 7,
but it’s useful to remember why they're doing that. The main work of the algorithm is the nested
for loops, which take a total of ©(mn) time. This is a fairly typical dynamic program so, before
moving on to more serious problems, let’s spend some time trying to optimize it.

First, notice this program finds only the cost of the minimum path, but not the path itself.
We could fix that by creating a matrix C[0..m,0..n] and, whenever we fill in A[i, j], we store in
C[i, j] from which direction we would arrive at A[i, j] to achieve the minimum cost: if Afi,j] =
Ali—1,j — 1] + B; j then we store (i — 1, j — 1) in C[i, j]; otherwise, if Afz,j] = Al — 1, 5]+ 1 then
we store (i — 1,7) in C[i, j]; otherwise, we store (i,j — 1) in C[i, j]. This lets us walk back along
the path from C[m,n].

Because we're filling in an (m + 1) x (n + 1) matrix (or two of them, if we want the path), we
also use ©(mn) space. Notice, however, that if we don’t need the path, just the cost, then after
we fill in A[i + 1,0..n], we never use A[i,0..n] again and can discard it to save space. If m is much
less than n, then we can fill A in column-major order instead of row-major order. This means we
can use ©(mn) time but only ©(min(m,n)) space. If we want to recover the path itself while still
using o(mn) space, there are various tradeoffs we can use, but those are beyond the scope of this
course.

An important optimization is called banded dynamic programming. Suppose you want to get
from the top left corner to the bottom right corner but you have only $7. Notice that reaching a
cell (i,7) with @ > j + 7 requires more than 7 moves straight down and thus costs more than $7,
while if j > ¢ + 7 then reaching the cell requires more than 7 moves straight right and thus costs
more than $7. Therefore, we need only concern ourselves with the cells of the matrix in the band
Ali, j] with |i — j| < 7, which contains at most (2- 7+ 1)n cells, as shown in Figure In general,
if we have a budget of k then we can find A[m,n] in time O(kmin(m,n)) using this technique.
This is important in practice because we often are only interested in the exact cost of an optimal
solution when it is fairly small; as the cost grows, either we lose interest in the solution or we are
more willing to accept some error.

Now that everyone’s completely comfortable with finding a minimum-cost path through a ma-
trix, we can discuss how to compute the edit distance between two strings S[1..m| and T[1..m],

*Incidentally, don’t worry if you don’t see why it’s called that: https://en.wikipedia.org/wiki/Dynamic_
programming#History .
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Figure 10.2: If we are interested only in solutions of cost 7 or less, we need fill in only the band
Ali, j] with |i — j| < 7.

which is the number of single-character insertions, deletions and substitutions needed to change S
into T'. For example, if S = AGATACATCA and T" = GATTAGATACAT, then we can change S into T by
prepending GATT and deleting the last two characters AC, so the edit distance is at most 6. How
can we quickly tell if this is minimum?

Computing the edit distances between strings is a key task in bioinformatics in particular, since
it lets us judge how similar pieces of DNA are and we can modify the computation to align pieces
of DNA. For example, the alignment corresponding to the series of edits given above is

-———AGATACATCA
GATTAGATACAT--

and another is

AGAT-ACAT-CA-
—-GATTAGATACAT

with the second corresponding to only 5 edits to change S into T: deleting an A, inserting a T,
changing a C to a G, inserting an A, and inserting a T.

It’s worth noting that edit distance, also sometimes called Levenshtein distance, is a true dis-
tance measure: the distance between S and T is 0 if and only if they are equal, the distance from S
to T is the distance from T to S, and the distance from S to T plus the distance from 7" to another
string U is at least the distance from S to U (that is, the Triangle Inequality holds).

Let M[i][j] be the minimum number of edits to turn a prefix S[1..i] of S into a prefix T'[1..j] of
T. Turning the empty prefix of S into the empty prefix of T' requires no edits, so M[0][0] = 0. (It
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is convenient to index the characters of .S and T starting from 1, even though it differs from how
strings are usually indexed in code, so we have a row for the empty prefix of S and a column for
the empty prefix of T'.) Turning a prefix S[1..i] of S into the empty prefix of T requires i edits,
and turning the empty prefix of S into a prefix T[1..j] of T requires j edits, so M[i][0] = ¢ and

M[0][5] = j.

Suppose we have computed M[i — 1]|[j — 1], M[i — 1][j] and M[i][j — 1]. To turn S[1..i] into
T[1..j], we can

e turn S[1..7 — 1] into T'[1..j — 1] with M[i — 1][j — 1] edits and then turn S[i] into T'[j] with
0 edits if they're already equal and 1 edit if not (so S[i] is above T'[j] in the corresponding
alignment);

e turn S[l..i — 1] into T[1..j] with M[i — 1][j] edits and then delete S[i] with 1 edit (so S|i] is
above a ‘=’ in the alignment);

e turn S[i| into T'[1..j — 1] with MTi][j — 1] edits and then insert T'[j] with 1 edit (so T'[j] is
below a ‘=’ in the alignment).

In other words,

M[0,0] = 0,

M[i,0] = M[i—1,0]+1fori>0,

M[0,j] = M][0,j—1]+1forj>0,
M[i—1,j —1] + By,

Mli,j] = min| M[i—1,5]+1, for i,j > 0,
Mli,j—1]+1

where B; ; is an indicator variable equal to 0 if S[i] = T'[j] and 1 if they are not equal.

But this is the same recurrence we had for filling in A and finding the minimum-cost path
through the matrix in Figure In fact, if we consider Figure we can see that the red
arrows point into the cells (¢, j) for which S[i] = T'[j]. (The leftmost column and the top row don’t
have characters associated with them because they correspond to the empty prefixes of S and T'.)
So, much as we essentially rediscovered Huffman’s algorithm while considering how to merge sorted
lists, we’ve essentially derived the dynamic-programming algorithm for edit distance while thinking
about paths through matrices. Once again, as my former supervisor would say, “I was tricking
you!”

The technique of banded dynamic programming is so useful because we rarely try to compute
the edit distance of long, dissimilar strings; most of the time, we’re aligning human DNA with
other human DNA, or at least two pieces of DNA from the same phylum.

We’re almost done, but I'd like to mention two things. First, it’s often useful to find the best
alignment of a small string (such as a DNA read) against a substring of a long string (such as
a chromosome). It doesn’t make sense to use the algorithm we’ve developed so far, because the
minimum number of edits to change a small string into a long string is at least the difference in
lengths. If S = ACATA and T" = GATTAGATACAT, for example, then we want the alignment
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Figure 10.3: Computing the edit distance between S = AGATACATCA and T = GATTAGATACAT is
equivalent to finding the cost of the cheapest path through the matrix from Figure The red
arrows point into cells (¢, j) such that S[i] = T'[j].

----ACATA---
GATTAGATACAT

to correspond to only 1 edit — changing C to G — and not 8. To make the algorithm compute this
modified cost, it is enough to change the costs to 0 for moving to the right along the top and bottom
rows (in other words, changing the black arrows in the top and bottom rows to red). Whereas
an alignment computed with the previous algorithm is called a global alignment, an alignment
computed with this algorithm is called a local alignment.

The last thing I want to mention is a closely related problem, called LONGEST COMMON SUB-
SEQUENCE (LCS), for which we are asked to find the longest subsequence common to two strings.
(Recall that the characters in a subsequence need not be consecutive; if they are then it is a sub-
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Figure 10.4: The matrix for computing the local alignment of ACATA and GATTAGATACAT.
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string.) If we consider all the characters that are not edited when turning S into 7, then they
are a common subsequence. In other words, all the characters for which we cross red arrows while
computing a global alignment are a common subsequence between the two strings. Therefore, if
we change the recurrence so that crossing black arrows are free and we are paid $1 for crossing red
edges, we can compute an LCS in essentially the same way that we compute edit distance. Code
for computing an LCS is shown below.

#include <stdio.h>

#define MAX(a, b) (a>b ? a : b)
#define MAX3(a, b, c) (MAX(a, b) > ¢ ? MAX(a, b) : c)

int LCS(char *S, char *T, int m, int n) {
int Alm + 1] [n + 1];

Afol[0] = o;

for (int i = 1; i <= m; i++) {
A[i]l [0] = O;
}

for (int j = 1; j <= n; j++) {
Af0][3] = 0;
}

for (int i = 1; 1 <= m; i++) {
for (int j = 1; j <= n; j++) {
Ali][j] = MAX3(A[i - 11([3], A[i1[j - 1],
Ali - 1J[j - 11 + (S[i - 1] ==T[j - 11 71 : 0));
}
}

return(A[m] [n]);
}

int main() {
char xS = "AGATACATCA";
char *T = "GATTAGATACAT";

printf ("The length of the LCS between %s and %s is %i.\n",

S, T, LCS(S, T, 10, 12));
return(0) ;
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Chapter 11

Subset Sum and Knapsack

I’ve mentioned before that KNAPSACK is a “BOOM?” problem but we can solve it in time polynomial
in the capacity of the knapsack. More specifically, we can solve it in time polynomial in the capacity
of the knapsack when measured in a unit such that capacity and all the items’ weights are integers.
This means we can’t speed things up by a factor of 1000 just by measuring the capacity of the
knapsack in kilos instead of grams.

Before we consider KNAPSACK, however, let’s consider a simpler “BOOM” problem that can
be solved by dynamic programming, called SUBSET SUM. For this problem, we are given a set
X ={x1,...,xy} of integers and an integer target n, and asked if a subset of X sums to n. (I'm
using m to denote the number of integers and n to denote the target because it will lead to us filling
another (m + 1) x (n + 1) matrix.) For example, suppose m = 6 and z1,...,26 = 2,5,8,9,11,12
and n = 15. It’s pretty obvious the only solution is 2 4+ 5 + 8 = 15, but it’s not so obvious how to
find that solution in a way that will still be reasonably efficient even for large instances.

The key step to designing a dynamic program is usually deciding what you’ll store in each cell
of your matrix. (I used to work with someone who would often propose solving open problems by
“DP!”) meaning dynamic programming, without giving any more details; that’s only slightly more
informative than saying “Math!”.) For SUBSET SuM, the classic solution fills a Boolean matrix
A[0..m, 0..n] such that cell Ai, j] stores true if a subset of {x1,...,x;} sums to exactly j, and false
otherwise [

It’s easy to fill in A[0..m, 0] and A[0, 1..n], because the empty set sums to 0 so A[i, 0] = true for
i > 0 and AJ0, j] = false for j > 0. To see how to fill in A[i, j] when we’ve filled in Afi —1,0..n],
consider that when trying to select a subset of {z1,...,z;} that sums to exactly j, we have only
two choices of what to do with z;:

*For simplicity, 'm assuming the x;s are positive; otherwise, we should fill in a matrix A[0..i, s—..s+], where s_ is
the sum of the negative x;s and s+ is the sum of the positive x;s. Notice it’s not as easy as offsetting each number
by the same amount such that the smallest number is 0, since we don’t know the size of the subset that sums to n,
if there is one, and so we don’t know how many times to add the offset to the target n.
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e we can include it in the subset, in which case we are left with the subproblem of selecting
a subset of {z1,...,x;_1} that sums to exactly j — x; — and there is one if and only if
Ali — 1,7 — x;] = true;

e we can exclude it from the subset, in which case we are left with the subproblem of selecting
a subset of {x1,...,z;_1} that sums to exactly j — and there is one if and only if A[i—1, j] =
true.

Therefore, we fill in the matrix with the recurrence

true ifj=0
Ali, j] = ¢ false ifi=0and j#0
Ali —1,j —z;] V Ali — 1,j] otherwise,

treating A[i — 1][j — ;] as false whenever j —x; < 0. This takes ©(mn) time (which is polynomial in
m and n but not necessarily in the size of the input (X, n), since we need only O(lgn) bits to write
n). The correctness of the algorithm follows from the correctness of the base cases, the recurrence,
and induction.

Code to solve our example instance is shown below, with the matrix printed to stderr, and
Figure shows its output.

#include <stdio.h>

#define bool int
#define TRUE 1
#define FALSE O

bool subsetSum(int *X, int m, int n) {
bool Alm + 1] [n + 11;

for (int i = 0; i <= m; i++) {
A[i] [0] = TRUE;
}

for (int j = 1; j <= n; j++) {
A[0] [j] = FALSE;
}

for (int 1 = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
Alil1[3] = A[i - 1131 I
((j - X[i] >=0) && A[i - 11[j - X[i1D);

fprintf (stderr, "\t");
for (int j = 0; j <= n; j++) {
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F
F

Figure 11.1: The matrix for our example of SUBSET SUM.

fprintf (stderr, "\t%i", j);
}
fprintf (stderr, "\n");

for (int i = 0; i <= m; i++) {
fprintf (stderr, "\t%i", i);
for (int j = 0; j <= n; j++) {
if (A[L1 051D o
fprintf (stderr, "\tT");
} else {
fprintf (stderr, "\tF");
}
}
fprintf (stderr, "\n");
+

return(A[m] [n]);
}

int main() {
int X1 = {0, 2, 5, 8, 9, 11, 12};
// the leading O means we can index X from 1,
// which is less confusing
int m = 6;
15;

int n

if (subsetSum(X, m, n)) {
printf ("True.\n");

} else {
printf("False.\n");

}

return(0) ;

Once you understand the dynamic-programming algorithm for SUBSET SUM, understanding
the algorithm for KNAPSACK is not too difficult. Recall that for KNAPSACK we are given a set
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X = {x1,...,zn} of (weight, profit) pairs, with z; = (w;, p;), and a capacity n, and asked to
find the maximum profit of a subset of X with weight at most nm Once again, I’'m naming the
parameters so that we fill in an (m+ 1) x (n+ 1) matrix; for that, we must also assume the weights
and capacity have been scaled so they are all integers. For example, suppose x1 = (2,1),z9 =
(3,4),z3 = (3,3), 24 = (4,5) and n = 8, so the maximum profit achievable is 9 (with xo and z4).

Now, we want A[i, j] to store the maximum profit we can achieve with a subset of z1,...,z;
with weight exactly j. Assuming the weights and profits are all positive, it’s again easy to fill in
AJ0..m, 0], since we can get no profit with no weight; for technical reasons that should be clearer
in a moment, we set A[0, 1..n] to —oo to indicate we cannot choose an empty subset with positive
weight.

To see how to fill in A[i, j] when we’ve filled in A[i — 1, 0..n], consider that when trying to select
a subset of {z1,...,z;} with maximum profit whose weights sum to exactly j, we have only two
choices of what to do with z;:

e we can include it in the subset and receive profit p; for it, in which case the maximum profit
we can achieve from {z1,...,2;} is p; plus the maximum profit we can achieve from a subset
of {z1,...,x;—1} with weight exactly j — w;;

e we can exclude it from the subset and no profit for it, in which case the maximum profit
we can achieve from {z,...,z;} is the maximum profit we can achieve from a subset of
{z1,...,2;_1} with weight exactly j.

Therefore, we fill in the matrix with the recurrence

0 if j=0
Ali,jl=¢ —o0 ifi=0and j#0
max(p; + Ali — 1,7 —w;], A[i — 1,j]) otherwise,

treating A[i — 1][j — w;] as —oo whenever j — w; < 0. This takes O(mn) time (which is again
polynomial in m and n but not necessarily in the size of the input (X,n)). Again, the correctness
of the algorithm follows from the correctness of the base cases, the recurrence, and induction.

We put —oo in a cell Afi, j] to indicate we cannot select a subset of x1,...,z; with weight j,
and consider A[i, j] = oo for j < 0, because —oo will not change no matter what we add to it. We
could also sum all the weights, multiply them by —1 and subtract 1 (as in the code below); or take
the largest number, multiply it by —m and subtract 1; etc.

Although it’s simpler to fill in the matrix when we define A[i, j|] to be the maximum profit
achievable from a subset of {x1,...,x;} with weight exactly j, we eventually want the maximum
profit achievable with a subset of any weight up to the capacity, which is the maximum entry in
the row Az, 0..n].

Code to solve our example instance is shown below, with the matrix printed to stderr, and
Figure shows its output.

TThis version is an optimization problem; for the decision version, we need a target parameter ¢ that is the
minimum acceptable profit, so we should answer true if there is a subset with weight at most n and profit at least ¢,
and false otherwise.
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#include <stdio.h>
#define MAX(a, b) (a > b 7 a : b)

int Knapsack(int *W, int #P, int m, int n) {
int Alm + 1][n + 1];
int sum = 0, max = 0;

for (int i = 0; i <= m; i++) {
Afi][0] = 0;
sum += P[i];

}

for (int j = 1; j <= n; j++) {
A[01[j] = - 1 * sum - 1;
}

for (int 1 = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
A[i][j] = MAXCA[L - 11(j1, P[i] +
(j - Wlil >= 0 7 A[i - 11[j - W[il] : - 1 * sum - 1));

for (int j = 0; j <= n; j++) {
max = MAX(A[m] [j], max);
}

fprintf (stderr, "\t");

for (int j = 0; j <= n; j++) {
fprintf (stderr, "\t%i", j);

}

fprintf (stderr, "\n");

for (int i = 0; i <= m; i++) {
fprintf (stderr, "\t%i", i);
for (int j = 0; j <= n; j++) {
fprintf (stderr, "\t%i", A[il[j1);
}
fprintf (stderr, "\n");
}

return(max) ;
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Figure 11.2: The matrix for our example of KNAPSACK.

int main() {
int W1 = {0, 2, 3, 3, 4};
int P[] = {0, 1, 4, 3, 5};
// the leading Os means we can index P and W from 1,
// which is less confusing
int m = 6;
int n = §;

printf ("%i.\n", Knapsack(W, P, m, n));

return(0) ;

There’s a lot more to know about using dynamic programming to solve “BOOM” problems,
but it’s hard to discuss it reasonably when we’re still using terms like “clink” and “BOOM” and
it’s probably beyond the scope of this course anyway. If you study algorithms in the future, you’ll
probably learn how to use dynamic programming to compute in truly polynomial time approximate
answers to “BOOM” problems for which we can compute exact answers in time polynomial in the
parameters (rather than the sizes of their binary representations).

It would be unfair to finish, however, without giving you an example of a “BOOM” problem we
think is hard even if all its parameters are given in unary rather than binary (so “polynomial-time”
means “polynomial in the sum of all the numbers”). You probably remember the question about
canoes from the midterm, for which you had to partition a list of numbers into a minimum number
of subsets such that

e every subset had cardinality at most 2,
e 1o subset summed to more than a given amount.

The restriction on the cardinality was justified because “everyone wants to row”. What if people
don’t care about rowing and thus we can put 3 people in a canoe? More formally, given a set of n
numbers, can we partition it into subsets of size exactly 3 such that every subset sums to the same
amount?

This problem is called 3-PARTITION and, although we can obviously solve it by trying all possible
n™/3 partitions, it is believed there is no algorithm that runs in polynomial time even in the sum
of the numbers (and if there is, then we can find Hamiltonian paths in polynomial time, etc).
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Chapter 12

Optimal Binary Search Trees and
Longest Increasing Subsequences

A binary search tree (BST) on n keys must have height Q(logn), so the worst-case time for a search
is also Q(logn). If we know the frequency with which each key is sought, however, then we can
arrange the tree (maintaining the order of the keys) such that the more frequent keys are higher,
and thus reduce the average time for a search. For example, if the keys are apple, banana, grape,
kiwi, mango, pear and quince and their frequencies are 5, 3, 4, 1, 1, 2, 1, then with the tree shown
on the left in Figure we use a total of

5:3+3:-24+4-3+1-14+1-3+2-241-3=44
comparisons for the 17 searches, while with the tree shown on the right we use only
9:243-34+4-14+1-4+1-3+2-2+1-3=37

comparisons (assuming that, when we search for a key z, we compare it to the key stored at each
vertex on the path from the root to the vertex storing z).

A BST is optimal with respect to a certain distribution over its keys if it minimizes the average
number of comparisons during a search, which is called the cost of the tree. In our example, the
cost of the tree on the left in Figure is 44/17 while the cost of the one on the right is 37/17. We
can use dynamic programming to build efficiently an optimal BST for a given distribution, because
any subtree of an optimal BST is itself optimal. To see why, consider that the total number of
comparisons we perform while searching in a BST T is the total number of comparisons we perform
in its left subtree 17, plus the total number of comparisons we perform in its right subtree T, plus
the number of comparisons we perform at the root (which is the number of searches or, equivalently,
the total of all the frequencies). If 77, or Tg are sub-optimal then we can rearrange them to reduce
the number of comparisons we perform in them during searches for their keys, and thus reduce the
cost of T overall.

Imagine Mr Klages asking Ryan to build an optimal BST:

102



quince

mango

‘ grape ‘ quince ‘

‘ apple mango

Figure 12.1: Two BSTs with keys apple, banana, grape, kiwi, mango, pear and quince. The tree
on the left has better worst-case performance (3 comparisons versus 4 for a single search) but, if
the frequencies with which the keys are sought are 5, 3, 4, 1, 1, 2, 1 then the tree on the right has
better average-case performance (37/17 comparisons per search versus 44/17).

Ryan: “Mr Klages, I don’t know what the optimal BST is.”

Mr Klages: “Well, Ryan, one of the keys has to be at the root. If it’s apple,
then the optimal BST has an empty left subtree, apple at the root,
and a right subtree that’s an optimal BST for banana to quince.”

Ryan: “But I don’t know the optimal BST for banana to quince.”

Mr Klages: Well, again, one of the keys is at the root of that subtree. If it’s banana,
then the optimal subtree has an empty left subtree, banana at the root,
and a right subtree that an optimal BST for grape to quince.”

Ryan: “But I don’t know the optimal BST for grape to quince.”

)

Mr Klages: “So now you know what the optimal BST is, assuming the root stores apple.’
Ryan: “But what if it doesn’t? What if it stores banana?”

Mr Klages:  “Well, then the left subtree contains only apple, the root stores banana,
and the right subtree is an optimal BST for grape to quince.”

Ryan: “But I don’t know the optimal BST for grape to quince.”

Travis:  “Yes you do, he just told you! Pay attention, Ryan!
How am I in the same class as this bozo?!”

It’s easy to build an optimal binary search tree for a single key — it’s simply one vertex, storing
that key — and if we know the optimal BST for any set of up to ¢ consecutive keys out of n, then
we can compute an optimal BST for any set of up to ¢ + 1 consecutive keys by considering all the
possible roots and choosing the one that minimizes the total cost.

*It’s important to remember the differences between recursion and dynamic programming, to avoid using expo-
nential time and annoying your classmates.
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Suppose we are given keys o, ..., x,—1 with frequencies fo, ..., fn—1. Let Ai, j] be the number

of comparisons we perform in an optimal BST for x;,...,2;. Then our recurrence is
0 if ¢ > 7,
Ali,jl=q fi ifi=j

min;<,<;{Afi,r — 1| + A[r+1,j] + fi+---+ f;} otherwise.

We're still filling in a 2-dimensional matrix (or, more specifically, the top-right half, where ¢ < j),
but now we cannot fill it in row-major or column-major order. Instead, we have to work along
the diagonals, starting with the diagonal j = ¢ and then continuing with the diagonals j =i 4 1,
Jj =1+ 2, etc — so the final answer is stored in A[0,n — 1].

Since j — i + 1 is the size of the tree for A[i, j], in the code below we use a counter size. We
can recover the tree itself by storing for each cell which choice of root minimized the cost of the
corresponding subtree.

#include <stdio.h>
#define MIN(a, b) (a < b ? a : b)

int optBST(int *F, int n) {
int A[n] [n];

for (int i = 0; i < n; i++) {
A[il[i] = F[il;
}

for (int size = 2; size <= n; size++) {
for (int i = 0; 1 < n - size + 1; i++) {
int j = 1 + size - 1;
A[il[3]1 = Ali + 11[j];
for (int r =i + 1; r <= j - 1; r++) {
A[i1[3j1 = MINCA[i1[31, A[illr - 11 + Alr + 11051);
}
A[i1[j1 = MINCA[i1[j1, A[L1[] - 11D,
for (int k = i; k <= j; k++) {
A[i1[j] += F[x];
}
}
}

return(A[0] [n - 1]);
}

int main() {
int F[] = {5, 3, 4, 1, 1, 2, 1};
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Figure 12.2: The top-right half of the matrix we fill in for our example.

printf ("%i\n", optBST(F, 7));
return(0) ;

¥

If we add the following code before the return statement in the function optBST, we get the
output shown in Figure [12.2}

fprintf (stderr, "\t");

for (int j = 0; j < n; j++) {
fprintf (stderr, "\t%i", j);

}

fprintf (stderr, "\n");

for (int i = 0; i < n; i++) {
fprintf (stderr, "\t%i", i);
for (int j = 0; j < n; j++) {
fprintf(stderr, "\t");
if (j >= 1) {
fprintf (stderr, "%i", A[il1[j1);
}
+
fprintf (stderr, "\n");
}

As we can see from the output, the BST on the right in Figure [12.1]is indeed optimal.

This algorithm takes ©(n?) time because, to fill in each cell A[i, ] with j > 4, it checks j —i+1
cells that have previously been filled in. (It also sums f; through f;, but this can be avoided.)
Knuth showed that the best choice for the root of the tree with keys x;,...,x; is not to the left of
the best choice for the root of the tree with keys x;,...,x;_1 nor to the right of the best choice for
the root of the tree with keys z;¢1,...,2;. In other words, adding keys to the right cannot make
the best choice of root move left, and adding them to the left cannot make it move right.

105



Let r; j be the best choice of root for the tree with keys x;, ..., z;. Then when taking advantage
of Knuth’s lemma, we use time proportional to

n—1 n—1

Z Z (rig1j —mij—1+1).

i=0 j=i+1

In particular, when working out the best choices of roots for subtrees of size s, we use time pro-
portional to

(T1’8,1 — T0,572) + (7'2,5 - 7"1,571) +-+ (Tnferl,nfl - "ﬂnfs,nf2) = Tn—s+1,n—1 — T0,5—2 <n,

so overall we use O(n?) time.

There’s an algorithm that runs in O(nlogn) time, but it works only when all our searches are
guaranteed to be successful. The dynamic programming algorithm we’ve been considering works
even when the gaps between the keys are also assigned frequencies. For example, if the gap between
banana and grape is assigned frequency 4, then we might search twice for cherry and once each
for date and fig.

Another classic problem solvable with dynamic programming is finding the longest increasing
subsequence (LIS) in a sequence of numbersm Let’s assume we're interested in subsequences that are
strictly increasing, not just non-decreasing (although the same techniques work in both cases). For
example, in the sequence S = 5,3,2,4,1,7,9,6,8,2,7,1,5, the subsequence 2,4, 6,8 is increasing
but the subsequence 2,2, 7 is not.

There is a nice dynamic-programming algorithm for LIS, which illustrates how the arrays for
dynamic programs can be 1-dimensional (which it’s easy to forget). If we define S[—1] = —o0,
A[—1] = 0 and A[i] to be the length of the longest increasing subsequence ending at S[i|, for
0<i<n-—1, then

Ali] = max{A[j] : -1<j<i,S[j]<S[]}+1.

Therefore, we can fill in A with the following code,

for (int i = 0; i < n; i++) {
Ali] = 1;
for (int j = 0; j < i; j++) {
if (8[j] < s[il) {
Ali] = MAX(A[il, A[j]1 + 1);
}
}
}

We set A[i] to 1 because we can always consider a single element as a subsequence. Since A[n — 1]
is only the length of the longest subsequence ending exactly at S[n — 1], we must make a final pass
to report the maximum value in A[0..n — 1].

fRecall we've already seen how to partition a sequence into the minimum number of increasing subsequences,
using Supowit’s greedy algorithm; I like to keep people on their toes by showing two similar-sounding problems with
completely different solutions.
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Figure 12.3: The query range — max(—o00, 6) we use to compute A[7] in our example.

This algorithm takes ©(n?) time but it can be improved to O(nlogn) time fairly easily, using
a dynamic range-max data structure This data structure stores a set of 2-dimensional points and
supports the following operations:

insert (z,y) adds the point (z,y) to the set;
delete (z,y) deletes the point (x,y) from the set;
range-max (x1,z2) returns the highest point in the half-open range [z, z2).

It’s possible to adjust the definition of the range-max query so the query range is [x1, x2], (21, z2]
or (z1,x9); for finding LISs, the version above is the most convenient. The definition of the delete
operation is given only for the sake of completeness, since we won’t use it here.

Suppose we have a dynamic range-max data structure that supports all operations in O(logn)
time when storing O(n) points. If we start with the set of points empty and insert the point
(S[j], Alj]) when we compute A[j], then we can compute A[i] in O(logn) time by using the query
range — max(—oo, S[i]) to find the point (S[j], A[j]) with S[j] < S[i] and A[j] as large as possible.
Figure shows the points when processing S[7] = 6 in our example: the highest point in the
query range [—o0,6) is (4,2), so we set A[7] = 3 and insert the point (6, 3); the grey area is meant
to show the query range, although it should be a half-plane instead of a box, with the dashed line
indicating that it does not include the points with z = 6.

We can implement a static range-max data structure with O(logn) time queries with an aug-
mented BST, as shown in Figure We store each z-coordinate as a key with the corresponding
y-coordinate as satellite data; at each vertex in the tree, we store the point with the maximum
y-coordinate stored in that vertex’s subtree. Given a range [x1,x2), we can search for z; and
x9 and find a collection of O(logn) single vertices and subtrees which store all the points with
x-coordinates in the range [z1, x2), and no other points.

For the single nodes, we check their y-coordinates and, for the subtrees, we check the point
with the maximum y-coordinate stored in that subtree. This way, in O(logn) time, we can find

Actually, we don’t need the full power of range-max queries for this particular problem — see https://leetcode.
com/problems/longest-increasing-subsequence/solution, which is much clearer than it was last year — but I
think you do for one of the questions on the assignment.
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(4,2)
9,4

(3,

3,1) (9,4)
(3.1) (9.4)
Figure 12.4: An augmented BST storing the points (1,1),(2,1),(3,1), (4,2),(5,1),(7,3),(9,4) and

supporting range-max queries. The shaded vertices are the ones with z-coordinates in the range
[—00,6) and the numbers in red are those we check for answering that query.

the point whose z-coordinate is in the range [x1, z2) and whose y-coordinate is as large as possible.
Figure shows an augmented BST storing the points shown in Figure [12.3] with the top pair
in each vertex being the z-coordinate stored as the key and the y-coordinate as satellite data, and
the bottom pair being the highest point stored in the vertex’s subtree. The shaded vertices are the
ones with z-coordinates in [—00, 6), and we check the numbers shown in red for that query.

If you’ve seen AVL-trees then it shouldn’t be too hard for you to figure out how to maintain the
additional information in the tree when performing rotations — it’s at the level of an interesting
homework problem. Similarly, if you’'ve seen red-black trees or (2,4)-trees or some other dynamic
balanced binary search tree, then you should be able to figure out how to implement the updates to
those such that they maintain the additional information. As a consequence, we obtain a dynamic
range-max data structure, with insertions and deletions also taking logarithmic time.

If you haven’t seen any dynamic balanced binary search trees, then I'm afraid there was a
gaping hole in your second-year course on data structures (especially considering what university
costs these days!). Unfortunately, we don’t really have time to fix that in this course, which is full
enough already. They’re not that tricky, though, so an hour of YouTube tutorials should be more
than enough.
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Assignment 5

posted: 18.06.2021 due: midnight 02.07.2021

You can work in groups of up to three people. One group member should submit a copy of the solu-
tions on Brightspace, with all members’ names and banner numbers on it; the other group members
should submit text files with all members’ names and banner numbers (otherwise Brightspace won’t
let us assign them marks!). You may consult with other people but each group should understand
the solutions: after discussions with people outside the groups, discard any notes and do something
unrelated for an hour before writing up your solutions; it’s a problem if no one in a group can ex-
plain one of their answers. For programming questions you should submit your code, which should
compile and run correctly to receive full marks.

1. Write a program that takes two strings S and T and outputs an optimal alignment in
O(|S||T|) time, displayed as in the lecture notes. For example, if S = AGATACATCA and
T = GATTAGATACAT, then an optimal alignment is

AGAT-ACAT-CA-
—-GATTAGATACAT

(I think). You need not analyze your algorithm nor prove it correct.

2. Write a linear-time dynamic-programming algorithm for https://leetcode.com/problems/
maximum-subarray| and EXPLAIN IT.

3. Suppose your professor has assigned a “profit” to each of several indivisible food items,
expressing how much he likes each item. He’s now filling his knapsack and trying to select
items to maximize the total profit. The food items are light but bulky, so the key constraint
now is the volume the knapsack can hold, rather than the weight. Even though the food items
cannot be cut, they can be squashed, which reduces their volume by a factor of 2 — but also
reduces their profit by a factor of 2 (since squashed food is not as appetizing).

Write a dynamic-programming algorithm that runs in time polynomial in the number of items
and the capacity of the knapsack (in litres) and tells your professor which food items to select
and, of the selected ones, which ones to squash. You can assume the knapsack’s capacity and
the original volume in litres of each item are integers. Explain why your algorithm is correct.

4. Write pseudo-code — you don’t have to code this — for an O(nlogn)-time algorithm that
takes a sequence of n integers and finds the longest slowly increasing subsequence (LSIS),
where an LSIS is a sequence in which each number after the first is larger than it’s predecessor
but not by more than 10. Explain why your algorithm is correct.

5. Modify the code in the lecture notes for building an optimal binary search tree such that it
runs in O(n?) time instead of O(n3) time. You need not analyze your algorithm nor prove it
correct.
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NP-Completeness
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Chapter 13

Reductions

One of the coolest ideas in computer science is that many seemingly disparate problems are in some
sense equivalent. In this lecture, we're going to prove (almost) the following theorem:

Theorem 9 There exists a polynomial-time algorithm for problem P if and only if there exists a
polynomial-time algorithm for problem O, for any P and Q in the set

{ CLIQUE, INDEPENDENT SET, VERTEX COVER, 3-SAT, SAT, 3-CoOL,
4-CoL, 5-CoL, PLANAR 3-CoL, SUBSET SuM, KNAPSACK } .

To do this, we’ll show that, given an instance X of problem P, in time polynomial in the size
of X we can turn X into an instance Y of problem Q such that Y is a positive instance if and only
if X is a positive instance. For example, given a graph G on n vertices and an integer k, in time
polynomial in n we can choose a set S of integers and an integer ¢ such that some subset of S sums
to t if and only if G has a clique of size k[

Since we don’t have a polynomial-time algorithm for deciding whether G has a clique of size k,
we can’t just work that out first and choose S and ¢ accordingly. Instead, we turn G and k into S
and t without knowing whether either is a positive instance. Doing that in time polynomial in n is
called a polynomial-time reduction from CLIQUE to SUBSET SUMEI

We're not going to see explicitly how to reduce each problem in the set above to each other
problem, because we don’t need to. Suppose we find one polynomial-time reduction CliqueToSat
from CLIQUE to SAT, and SatTo3Sat another from SAT to 3-SAT, and a third 3SatToSubsetSum
from 3-SAT to SUBSET SUM; then the composition of these reductions,

3SatToSubsetSum(SatTo3Sat(CliqueToSat(+))),

*T know T used X and n to denote the input to SUBSET SUM in a previous lecture; sorry!

tTo remember that “P polytime reduces to Q" means we can turn an instance of P into an instance of Q in
polynomial time such that the latter instance is positive if and only if the former instance is positive, just think of
“reduces” as “turns into”. Someone pointed out that “we reduce” usually means “we make smaller” (and presumably
easier), but here we if we can reduce P to Q then it means Q is not easier (by more than a polynomial factor) and
may be harder. Sorry!
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is a polynomial-time reduction from CLIQUE to SUBSET SUM. To see why, consider that

e reductions are functions (mapping instances of one problem to instances of another),

e polynomial-time functions have polynomial-sized outputs,

e polynomials are closed under composition (as well as under addition and multiplication, as
we've already discussed).

This means, for example, that if CliqueToSat runs in time f(n), where f(z) = 322 + 52 + 2 is
a polynomial and n is the size of CliqueToSat’s input, and SatTo3Sat runs in time g(n'), where
g(z) = 823 + 1422 + 6x + 4 is another polynomial and 7’ is the size of SatTo3Sat’s input, then
SatTo3Sat(CliqueToSat(n)) runs in time

g(f(n)) 8(3n? + 5n + 2)% + 14(3n? + 5n + 2)? + 6(3n? + 5n + 2) + 4

= 216n° + 1080n° + 2358n* + 286013 + 2024n% + 790n + 136,

which is just another polynomial.

You may have noticed we’re only considering the decision versions of problems (which ask us
whether there exists a clique of size k or a subset summing to t) rather than the search versions
(which ask us to find a clique of size k or a subset summing to ¢). This is traditional, it makes the
explanations simpler, and it doesn’t really matter because, if we can determine in polynomial time
whether any graph G has a clique of size k, for example, then in polynomial time we can find such
a clique:

L ={}

for (each vertex v in G) {
let G’ be subgraph of G consisting of only v and its neighbours;
if (G’ has a clique of size k) {

add v to L;
G = G’ minus v;
k =k - 1;
} else {
G = G minus v;
}
}
return(L)

The polynomial-time reductions we’ll see first are:

e CLIQUE to INDEPENDENT SET (and vice versa),

e INDEPENDENT SET to VERTEX COVER (and vice versa),
e 3-SAT to INDEPENDENT SET,

e CLIQUE to SAT.

These are sufficient to prove that P has a polynomial-time algorithm if and only if @ does, for any
P and Q in the set { CLIQUE, INDEPENDENT SET, VERTEX COVER }.
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3-SAT and SAT aren’t in the set yet because, to add them, we need a polynomial time reduction
from SAT to 3-SAT. There exists such a reduction, called the Tseytin Transform, but we won’t see
it until the next class; today, I'm asking you to take my word for it that 3-SAT polytime reduces
to 3-SAT. Obviously 3-SAT reduces to SAT, because it’s a special case of SAT.

Next, we’ll see polynomial-time reductions from

3-CoL to 4-CoL (which we’ve seen before),
4-CoL to 5-CoL (which is the same),
PLANAR 3-CoL to 3-CoL (which is trivial),
3-CoL to PLANAR 3-CoL,

3-SAT to 3-CoL,

5-COL to SAT.

As long as you believe me about the Tseytin Transform, these expand the set to

{ CLIQUE, INDEPENDENT SET, VERTEX COVER, 3-SAT, SAT,
3-CoL, 4-CoL, 5-CoL, PLANAR 3-CoOL }.

Finally, we’ll see polynomial-time reductions from

e SUBSET SUM to KNAPSACK,
e 3-SAT to SUBSET SUM,
e KNAPSACK to SAT.

These complete our set and prove Theorem |§| (apart from the Tseytin Transform). There are
actually now hundreds or even thousands of problems known to belong in the set — meaning they
all polytime reduce to each other. Problems in this set are called NP-complete. “NP” stands
for “non-deterministic polynomial time”, and we’ll discuss more in the next class what it means.
Figure [13.1| shows our reductions, with the dashed arrow indicating the Tseytin Transform.

I feel a bit guilty showing you how to reduce problems to SAT, because no one ever does that. In
the next lecture we’ll see Cook’s Theorem — yes, the same Cook as Toom-Cook multiplication —
which is (essentially) a polynomial-time reduction from a problem that I'll call INPUT CHECKER to
SaT. We'll see that any problem P for which we can check solutions in polynomial time, polytime
reduces to INPUT CHECKER; Cook showed (essentially) that INPUT CHECKER polytime reduces to
SAT; therefore, as long as we can check solution for P in polynomial time, P polytime reduces to
SAT, and is said to be in NP.

Professors routinely dock marks because, when asked to prove that a problem P is NP-complete,
students show that some NP-complete problem reduces to P but forget to show that P is in NP.
There are problems for which we can’t even check a solution in polynomial time, but I don’t think
they crop up all that often in real life, so I'm going to try not to be too pedantic about this.

I just realized I used P to denote a problem, when P stands for “deterministic polynomial-time”
— the class of problems we can solve in polynomial time — so I'll just say that the question “Does
P equal NP?” asks whether we can solve in polynomial time any problem for which we can check a

113



VERTEX
IND. SET COVER

Figure 13.1: The polynomial-time reductions we prove and the Tseytin Transform (dashed) from
SAT to 3-SAT.

solution in polynomial time. That sounds unlikely, and most people think it is, but after 50 yearslﬂ
we don’t have a proof either way — and finding a polynomial-time algorithm for any NP-complete
problem would be enough to show P = NP.

Our first reductions are pretty trivial:

e a clique in a graph is a subgraph in which each pair of vertices have an edge between them,
and an independent set is a subgraph in which no pair of vertices have an edge between them,
so there is clique of size k in a graph G if and only if there is an independent set of size k
in G’s complement (that is, the graph on the same vertices as G in which there is an edge
between two vertices u and v if and only if there is no edge between them in G);

e since the complement of an independent set (that is, the subset of vertices of the graph not
in the independent set) is a vertex cover — to see why, consider that every edge must have
at least one endpoint outside the independent set — there is an independent set of size k in
a graph G on n vertices if and only if there is a vertex cover of size n — k.

The reduction from 3-SAT to INDEPENDENT SET is slightly more complicated, though.

An instance of 3-SAT is a Boolean propositional formula in conjuctive normal form (CNF) in
which each clause has exactly three literals (variables or their negations). The instance is positive
if there is a satisfying truth assignment — that is, a way to set the variables to true or false such
that the formula evaluates to true. For example,

(.1'1 V —x9 V 333) A (:CQ V —x3 V x4) A (1‘1 V —x3 V —|1'4)
is an instance of 3-SAT.

To turn an instance F' of 3-SAT into an instance (G, k) of INDEPENDENT SET, we

$Cook’s Theorem is from a paper published in the 1971 Symposium on Theory of Computing (STOC), and there
was a panel discussion at STOC 21 last week to celebrate 50 years of the P vs. NP.
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Figure 13.2: A graph that contains an independent set of size 3 if and only if (z1 V —xa V 23) A
(o V —x3 Vxy) A (21 V -3 V —24) has a satisfying truth assignment.

1. create a graph with a triangle for every clause and label each vertex with a literal from the
clause;
2. add an edge between any vertices labelled x; and —x;, for any variable x;.

This graph G has an independent set of size k, where k is the number of clauses in F', if and only if
F has a satisfying truth assignment. To see why, suppose there is an independent set of size k. It
can’t contain two vertices from the same triangle, so we have one vertex from each triangle. None
of the vertices in the independent set are labelled with a variable and its negation — otherwise
there would be an edge between them — so it is possible to set all the literals labelling vertices
in the independent set true simultaneously. Doing this makes every clause in F' true, and thus F'
itself true. For example, we turn the instance

(1 V 2o Vas) A (2 V —x3Vag) A(x1 Vxg V oxy)
of 3-SAT into the instance (G, 3) of INDEPENDENT SET, where G is the graph shown in Figure|13.2]5]
To reduce an instance (G, k) of CLIQUE to an instance of SAT,

1. for every vertex v; in G we create a variable z;;

2. for every possible edge (v;,v;) that is not in G, we AND —(z; A ;) to our formula;

3. we AND to our formula a sub-formula that is satisfied if and only if at least k of the x;s are
set to true.

Writing the sub-formula is the least obvious of these steps, but we can do it with something like
a dynamic-programming recurrence, creating a variable y; ; that can be true in a satisfying truth

$1t’s more common to reduce 3-SAT to CLIQUE, but I find the graph harder to draw and to understand then.
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assignment if and only if at least j of x1,...,x; are set to true in that assignment, for 0 < i < n
and 0 < j < k.

We build the sub-formula from the following pieces, ANDed together:

e yio < true for all 0 < ¢ <n (because at least 0 of z1,...,z; are always set to true),
e Yo, < false for 1 < j < k (because j > 1 of 0 variables can’t be set to true),
o yij < (Yi—1,;V(Yi—1,j—1Az;)) for 1 <i<mand 1 < j <k (because at least j > 1 of x1,...,;

are set to true if and only if and only if at least j of x1,...,x;—1 are set to true, or at least
j—1lof xy,...,2;_1 are set to true and x; is set to true),

e Yok (because we want any satisfying truth assignment to have at least k of the x;s set to
true).

(The symbol “<” means bidirectional implication or, equivalently, that the two sides have the same
truth value — so “a < b” means “(a A b) V (ma A =b)”.) The size of this formula is O(nk), which
is a polynomial, and it can be built in polynomial time.

Instead of writing out a long and detailed proof of correctness — because, as I said earlier,
nobody reduces to SAT now — I'm just going to claim that “by inspection” our construction
formula that is satisfiable if and only if G has a clique of size k. The idea is that there is a clique
with vertices v{,..., v, in G if and only if there is there is a satisfying truth assignment with the
corresponding literals /, ..., z}. set to true (the other z;s can be set to false).

For example, if G is the graph shown in Figure[13.3]and k = 4, then our instance of SAT is

—\(xg A $4)
—(z3 A xs)
Yo,0 < true

Y22 = W12V (Y1,1 N\ 22
Y23 < (W13 V (Y12 N\ 22
Y2,4 = W14V (1,3 N\ 22
y2,1 V (Y2,0 N 3
Y22V (¥2,1 N X3
y3 3= (Y23 V (Y22 /N3
Y34 = (Y24 V (Y23 N3

( ( ( )
( ( ( )
( ( ( )
(ys1 = ( ( )
( ( ( )
( ( ( )
( ( ( )
(Ya1 < (y3,1 V (¥30 A 24)))
( ( ( )
( ( ( )
( ( ( )
( ( ( )
( ( ( )
( ( ( )
(5,4 < ( ( )

Y2,0 < true
Y3,0 < true
Y4,0 < true
Ys5,0 < true
Yo,1 < false

( )
(y1, )
( )
( )
( )
( )
( )
(yo,2 & false)
( )
(
(
(
(
(
(

Ya,2 < (Y32 V (y3,1 N\ x4
Y33V (Ys2 A xy
y4 4 (Y34 V (Y33 Ny
Ys5,1 <= (Y41 V (Y40 N T5
Y52 < (Ya2 V (Y41 A x5
Ys5,3 = (Y43 V (Y42 N5
Yaa V(Y43 N\ T5

Yo,3 < false

Yo,4 < false)

Y11 < (Yo V (Yoo A1)
Y12 € (Yo2 V (Yo1 A x1)))
Y13 < (Y03 V (Vo2 A 71)))
Y14 < (YoaV (Y03 N 71)))
Y21 < (Y11 V (Y10 A 12)))

>>>>>>>>>>>> > > > >
>>>>>>>>>>>>> > > >

If I haven’t made a mistake, this formula is satisfiable if and only if the graph in Figure [13.3
contains a clique of size 4. Of course, that graph does contain exactly one clique of size 4 (that
is, with v1,v2,v4,v5) and there should be exactly one satisfying true assignment: x1 = x9 = x4 =
x5 = true, x3 = false, and y; ; is true if at least j of z1,...,x; are true and false otherwise.
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V4

Figure 13.3: A graph that may contain a 4-clique.

We’ve already discussed how to reduce 3-CoL to 4-CoL: add a new vertex and put an edge
between it and all the vertices already in the graph, so the new graph is 4-colourable if and only
if the original graph is 3-colourable. We can reduce 4-COL to 5-COL the same way. Reducing
PrLaNAR 3-CoL to 3-CoL is trivial, since the former is a special case of the latter: we needn’t
change the instance at all. To reduce 3-CoOL to PLANAR 3-COL, we use the crossing gadgezm shown
in Figure to replace edge crossings. It is left as an exercise for the reader to check that any
3-colouring of the crossing gadget has the same colour at the topmost and bottommost vertices,
and the same colour at the leftmost and rightmost ones. Figure shows how to use the crossing
gadget to turn a non-planar graph G into a planar graph G’ such that G’ has a 3-colouring if and
only if G does.

We reduce 3-SAT to 3-CoOL using clause gadgets, as we did when we reduced it to INDEPENDENT
SET. We start with a triangle with vertices labelled true, false and base. For each variable x;
in the formula, we create a pair of vertices labelled x; and —z;, and make them two vertices in a
triangle with the third vertex being base. If we 3-colour the graph so far, one of x; and —x; will
be the same colour as true and the other will be the same colour as false.

For each clause, we add a gadget as shown in Figure (for x1V—xe Vas). It is left as another
exercise for the reader to check that the rightmost vertex can be the same colour as true if and only
if at least one of the three leftmost vertices is. Finally, we add edges between the rightmost vertex
in each clause gadget and base and false, so the only way the whole graph can be 3-coloured is
if, for each clause, some vertex labelled with a literal in that clause is the same colour as true —
meaning the formula is satisfiable. Figure shows the graph for

($1 V —xo V 563) VAN (xg V —x3V x4) A ($1 V —x3V ﬁ$4) .

fReductions tend to be very structured, and the repeated substructures are called gadgets. For example, the
triangles in our reduction from 3-SAT to INDEPENDENT SET are clause gadgets.

117



Figure 13.4: A gadget that can only be 3-coloured with the topmost and bottommost vertices the
same colour, and the leftmost and rightmost ones the same colour.

Figure 13.5: The graph G on the left can be re-embedded in the plane with only one edge-crossing

(center) but not with 0. Nevertheless, the graph G’ on the right — with the grey diamond
representing a copy of the crossing gadget — can be 3-coloured if and only if G can be.
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Figure 13.6: The rightmost vertex can be a colour in a 3-colouring if and only if at least one of the
leftmost vertices is that colour.

Reducing 5-CoOL to 3-SAT — or k-COL to 3-SAT for any constant k — is somewhat easier than
reducing CLIQUE to 3-SAT, because now we needn’t count anything. For every vertex v; we create
5 variables, red;, yellow,, green,, blue;, purple; and AND the following sub-formula to our formula,
which is initially empty:

(red; V yellow; V green; V blue; V purple;)
A —(red; A yellow,)
A —(red; A green;)

A —(blue; A purple;) .
For each edge (v;, v;) in the graph, we AND the sub-formula

—(red; A red;)

—(yellow; A yellow )
J

—(blue; A bluey)

—(purple; A purple;) .

> > > >

(
(
—(green; A green)
(
(

to our formula. After this, the formula is satisfiable if and only if the graph is 5-colourable.

We have three reductions left to prove today: SUBSET SUM to KNAPSACK, 3-SAT to SUBSET
SuM, and KNAPSACK to SAT. The first reduction is pretty obvious, since SUBSET SUM is something
like a special case of KNAPSACK.

Formally, given an instance (S,¢) of SUBSET SuM, where S is a set of integers and t is an
integer, in time polynomial in the size of that instance we can turn it into an instance (P, p, w) of
KNAPSACK, where P is a set of (profit, weight) pairs of integers and p and w are integers, such
that there is a subset of S summing to exactly ¢ if and only if there is a subset of pairs in P whose
profits sum to at least p (the desired profit) and whose weights sum to at most w (the knapsack’s
capacity). To do this, we make every element x a pair (z,z) in P, and set both p and w to t. If
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true false

Figure 13.7: A graph that can be 3-coloured if and only if (z1 V —~zo V 23) A (22 V —x3V 24) A (21 V
-3 V xy) is satisfiable.
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there is a subset S’ of S summing to exactly ¢ then

Zx:t:p:w,

xzeS’!

so choosing the corresponding pairs in P yields profit p with weight w. Conversely, if there is a
subset P’ of P whose profits sum to at least p and whose weights sum to at most w then

Z:c: =p=w,

so choosing the corresponding elements of S yields a subset that sums to exactly t.

Reducing 3-SAT to SUBSET SUM is trickier. Given a Boolean 3-CNF formula F', we must choose
a set S of integers and an integer ¢ such that a subset of S sums to exactly t if and only if F' has a
satisfying truth assignment. Suppose F' has n variables z1,...,x, and m clauses. We first build a
2(n+m) x (n+m) grid of decimal digits (although we’ll only use digits 0, 1 and 3), with the ith
row being the ith integer in S.

For each variable z; in F', we have two rows in our grid:

e one row has a 1 in the ith column and a 1 in the (n + j)th column if the jth clause contains
the positive literal x;, for 1 < j < m, and 0s in all the other columns;

e the other row has a 1 in the ith column and a 1 in the (n + j)th column if the jth clause
contains the negative literal —z;, for 1 < j < m, and Os in all the other columns.

For the j clause in F, for 1 < j < m, we also have two rows in our grid:

e one row has a 1 in the (n + j)th column and Os everywhere else;
e the other row has a 2 in the (n 4 j)th column and Os everywhere elsem

We set t to be the number that starts with n copies of 1, followed by m copies of 4. Figure [13.8
shows the grid for

(1 V 2o Vas) A (z2 V23V ag) A(x1V-xsVxy).

Suppose a subset S’ of S sums to exactly ¢. For the ith digit of the sum to be 1, for 1 <1i < n,
S’ must contain the number for the positive literal x; or the negative literal —z;, but not both. For
the (n + j)th digit to be 4, for 1 < j < m, S’ must contain at least one of the numbers for a literal
that makes the jth clause true. (If S’ contains exactly one such number, it also contains both
“slack” numbers for that clause, to bring the sum for the (n + j)th column up to 4; if it contains
exactly two such numbers, it contains only the slack number with a 2 in the (n+ j)th position; if it
contains three such numbers, it contains only the slack number with a 1 in the (n + j)th position.)
Therefore, there exists a satisfying truth assignment for F'.

Now suppose there is a satisfying truth assignment for F', and consider the sum of the rows
corresponding to literals that are true in that assignment. This number will start with n copies of

ISome people put a 1 instead of a 2 in this row, but then rows are duplicates so we don’t get a multiset of numbers
instead of a set.
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literalzy |1 O 0O O|1 O 1
literal =z; |1 O O 0|0 O O

literalzo O 1 0 0|0 1 O
literal -zo |0 1 O O|1 0O O

literalzg |O O 1 0|1 0 O
literal ~z3 |0 0 1 0|0 1 1

literalz4 (O O O 1]0 1 O
literal -z, {0 O O 1[0 0 1
Istclause [0 0 O O|1 O O
Istclause |O 0 0O 0|2 0 O
2nd clause [0 0 O 0|0 1 O
2nd clause [0 0 0O 0|0 2 O
3rdclause |0 0 0O 0|0 0 1
3rdclause |0 O O 0|0 0 2

Figure 13.8: A set of integers with a subset that sums to 1111444 if and only if (1 V =22 V x3) A
(o V —x3 V) A (21 V -3 V —xyg) is satisfiable.

1, and end with m digits that are between 1 and 3. If the (n + j)th digit of the sum is 1, we add
the two numbers with Os everywhere else but 1 and 2 in the (n + j)th position, respectively; if that
digit is 2, we add only the number with Os everywhere else but 2 in the (n + j)th positon; if that
digit is 3, we add only the number with Os everywhere else but 1 in the (n + j)th position. This
way, the final sum starts with n copies of 1 and ends with m copies of 4. Therefore, S has a subset
that sums to exactly ¢.

Probably the hardest reduction we’ll see today is from KNAPSACK to SAT. You'll probably see
such a reduction only in this class, because it’s quite painful and it’s existence is implied by Cook’s
Theorem anyway, so normally there’s no reason to talk about it. We’re going to talk about it now
for the insight I hope it will give you into Cook’s Theorem and how that works (and to ensure no
one ever again says this course is easier than Norbert’s Principles of Programming Languages!).

Suppose we're given a set P of n pairs of (profit, weight) pairs of integers and integers p and
w, and in time polynomial in n we want to build a formula F' such that F' is satisfiable if and only
if there is a subset P’ of P whose profits sum to at least p and whose weights sum to at most w.

For example, consider the instance of KNAPSACK we solved by dynamic programming in Chap-
ter — that is, P = (1,2),(4,3),(3,3),(5,4 and w = 8 — with p = 8. Remember, the
dynamic-programming algorithm we devised in Chapter doesn’t run in time polynomial in n,
just time polynomial in n plus the capacity of the knapsack!

We start by creating a variable x; for the ith pair (p;, w;), for 1 < i < n. Let m be the number of
bits in the binary representation of maximum of the sum of all the profits, the sum all the weights,
pand w. For 1 <i <nand 1< j < m, if the jth bit of p; is 1 then we AND (p; ; < ;) to our
formula, and if that bit is 0 we AND (p; ; < false) to it; if the jth bit of w; is 1 then we AND

**I seem to have reversed the order of the profits and the weights since Chapter sorry again!
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(p1,1 & false)
A(p2,1 < false)
N(ps,1 < false)
A(ps1 < false)

AN wi, < false

/\(p1,2 & false
N(p22 < false
A(ps2 < false
N(ps2 < false

)
)
)
)

Nwi2 < false

A(p13 & false)
A(p2,3 < ©2)
N(ps3 < false)
Npa3 < x4)

Nwi s < false)

A(p14 & false) Ap1s < x1)
N(p24 < false) A(pa2s < false)
Np3a & x3) AN(p3s < x3)

A(ps4 < false) N(pajs < x4)

/\(w1,4 = xl)

/\(w1,5 = false)
/\(w275 = xz)
Nwss & x3)

N wys < false)

( ) A
N w1 & false) A(wap2 < false
AN ws < false) A(wsgz < false
/\(w4,1 & false) /\(w472 & false

/\(w274 & 1‘2)
/\(w3,4 = 333)
N wy g & false)

(
N wy3 < false)
N ws 3 < false)
Nwyz & x4)

~— — — —

Figure 13.9: The subformula we get after the first step of turning our example instance of KNAP-
SACK into an instance of SAT.

(wij & x;) to our formula, and if that bit is 0 then we AND (w;; < false) to it. Figure [13.9]
shows the subformula we get after this first step.

We now add variables a1, ...,a,, and b1,...,b,,, and subformulas saying the following:

® ay,...,a, are the bits of the binary number obtained by summing the n binary numbers
whose bits are p1.1,...,p1,m and pa1,...,p2.m and p31,...,p3.m, etc.;

e by,...,b, are the bits of the binary number obtained by summing the n binary numbers
whose bits are wi1,..., w1, and wa1,..., W2, and w31, ..., w3 m, etc.;

e the binary number with bits ay,...,a,, is at least as large as p;

e the binary number with bits b1, ..., b,, is at most as large as w.

I'm sure you could figure these subformulas out for yourselves if you needed to (since I made you
study circuits for addition for the second assignment)m The result is an instance of SAT that is
satisfiable if and only if you can assign truth values to x1,...,x, such that the p;s for the x;s that
are true sum to at least p, and the w;s for the z;s that are true sum to at most w — in other words,
if and only if there is a solution for the instance of KNAPSACK we started with.

Actually, that wasn’t really all that bad, was it? Maybe I should worry about Principles of
Programming Languages being harder than this course after all. On the bright side, now we’re
probably ready for Cook’s Theorem.

You might wonder about trying to avoid subformulas for addition by having a variable for each possible sum,
something like we had a variable for every vertex and colour in the reduction from 3-COL to SAT. That can work,
but the number of variables isn’t polynomial in n, only in n plus the capacity of the knapsack.
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Chapter 14

Cook’s Theorem

Turing introduced what we now call Turing Machines (TMs) in order to reason about what com-
puters can and, more importantly, cannot do. To see why it’s harder to design robust models for
proving lower bounds than for proving upper bounds, consider that if Turing had included in his
definition of TMs some seemingly-reasonable assumptions about speed and memory, then by now
we’d quite likely have broken those assumptions, in which case all his upper-bound proofs would
still hold but his lower-bound proofs wouldn’t. It’s remarkable that he described TMs in the 1930s
and, despite nearly a century of amazing technological advances, we still accept today that what
cannot be computed on TMs cannot be computed at all — not then, not now and not ever.

If you’ve seen the movie Hidden Figures then you should know that in the early days of NASA,
calculators were people who did calculations. Similarly, Turing started by considering human
computation and had to argued it could be modelled by TM, before he could even start reasoning
about the limits of TMs[f| He was convincing enough that people accepted TMs as a universal
model of computation more readily than they had accepted, say, Church’s lambda calculus. I'll
spare you those arguments, however, because you’ve grown up with computers and you’ll probably
believe me that if something can’t be computed by any C program, for example, then we have good
evidence (at least enough for this course) that it’s incomputable.

A TM consists of a finite-state control and a tape with cells that we assume stretches off to
infinity in both directions. At each step, the TM can

read a symbol in the cell the control is currently over,

write a symbol in the cell the control is currently over (overwriting whatever’s there),
move the tape one cell to the right or left,

change its state.

You might think that’s a silly model because

*Turing was very thorough: when proposing the Turing Test for artificial intelligence, he thought about whether
it could be confounded by extra-sensory perception (ESP), because he couldn’t categorically rule out the possibility
ESP existed.
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e finite-state machines are a really weak model of computation (they can’t even recognize all
strings of the form a™b"),
e we don’t actually have infinite tapes.

On the other hand,

e any stand-alone computer is a finite-state machine,

e if you can’t do something with an infinite tape then you can’t do it with a finite tape either
(so assuming the tape is infinite makes lower bounds stronger),

e no one has ever thought of a model that can compute something TMs can’t (given enough
time),

e theoretical computer scientists will make fun of you if you don’t know what a TM is.

You should know about TMs but teaching them properly would take at least another full course,
so 'm going to claim they’re equivalent to something more familiar. Suppose your computer has
32 GB of RAM and 1 TB of disk space and you buy a tape-drive (yes, these are still used) and a
sequence of 21 tape cassettes that you label —10,...,10, and attach the drive to your computer
with cassette 0 in it. If your computer tries to move past the beginning of the current cassette,
you replace it with the preceding cassette, wound to the end; if it tries to move past the end of
the current cassette, you replace it with the next tape, rewound to the beginning; if you get to the
beginning of the first cassette or to the end of the last cassette, then you go out and buy more
cassettes and add them to the beginning or end of your sequence, numbered appropriately.

Your computer is essentially a 21032000000003_gtate finite-state machine (the last digit is a 3

because a byte has 8 bits), so your computer and tape-drive and cassettes are together essentially
a TM. Therefore, if no TM can compute something, then neither can your computer hooked up to
a tape-drive, regardless of how many cassettes you buy. To prove the converse — that is, if your
computer hooked up to a tape-drive with an infinite supply of cassettes can’t compute something,
then neither can any TM — we need the idea of a universal TM. This is a TM M; that, when
started with a description of any other TM M>s and an input X on its tape, simulates My on X.
People compete to see who can design the smallest universal TM, and by now I think they’re down
to a half-dozen states or so. Since we can easily implement such a universal TM on your computer
as a switch statement with a half-dozen or so cases, if your computer hooked up to a tape-drive
can’t compute something, then neither can any TM. This means we don’t have to worry about
your computer not being able to compute something now because it doesn’t have enough RAM,
and that something becoming computable in a few years when memories are bigger. In fact, you
could have saved nearly all the money you spent on RAM and your hard-drive and bought only
enough memory to simulate a universal TM, as long as you don’t mind polynomial slowdowns.

The Church-Turing Hypothesis claims that any decision problem that is effectively computable
is computable on a TM. Here “effectively” means we can do it in a finite amount of time. What’s
called the Strong Church-Turing Hypothesis (which came after Church and Turing, actually) claims
that any decision problem that is efficiently computable is computable in polynomial time on
a deterministic TM. Here “efficiently” means we can do it in a reasonable amount of time. A
deterministic TM is one whose finite-state control is deterministic, whereas a mnon-deterministic
TM is one whose finite-state control is non-deterministic. Since a universal TM need not be more
than a polynomial factor slower than the TM it’s simulating, and your computer is deterministic, the
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Strong Church-Turing Hypothesis implies that any decision problem that is efficiently computable
is computable in polynomial time on your computer hooked up to a tape-drive (and now you need
only polynomially many cassettes).

The complexity class P is the set of decision problems we can solve in polynomial time on
a deterministic TM — so the class of efficiently computable problems, according to the Strong
Church-Turing Hypothesis — and the class NP is the set of decision problems we can solve in
polynomial time on a non-deterministic TM. Never say NP stands for “not polynomial”! That
would be wrong, because P is obviously a subset of NP (and, although we strongly believe it’s a
proper subset, they could be equal).

A problem is called NP-hard if any problem in NP can be reduced to it in polynomial time. A
problem is called NP-complete if

e it is in NP,
e it is NP-hard.

It’s been shown that a problem is in NP if and only if we can check a solution to it in polynomial
time on a deterministic TM.

The quintessential NP-complete problem to decide whether a given non-deterministic TM of
size s halts in f(s) time for some fixed polynomial f. In other words, the following statements are
equivalent:

e there is a polynomial-time algorithm (that runs on a deterministic TM) for this problem,

e P =NP,

e for every problem for which we can check a solution in polynomial time (on a deterministic
TM), we can find a solution in polynomial time (on a deterministic TM).

The “P vs. NP” problem asks if these statements are true.

That quintessential problem isn’t very natural, however, and it’s not easy to reduce it to many
natural problems in the way we reduced 3-SAT to INDEPENDENT SET and 3-CoOL, for example. The
goal of today’s lecture is to prove Cook’s Theorem, that SAT is NP-complete; thus, by the Tseytin
Transform (which we’ll see at the end of the day), 3-SAT is also NP-complete. It follows from our
reductions in the last class that CLIQUE, INDEPENDENT SET, VERTEX COVER, 3-COL, etc., are all
NP-hard and thus, because solutions to them can be checked in polynomial time, NP-complete. If
there’s a polynomial-time algorithm for one of them, there’s a polynomial-time algorithm for all of
them (and everything else in NP).

I made you do all those reductions to SAT because

e until we’ve proven Cook’s Theorem, showing that a problem is in NP doesn’t immediately
imply it reduces to SAT,

e it’s good practice for proving Cook’s Theorem,

e it probably builds character.
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After today, though, you’ll never need to reduce anything to SAT againlﬂ since, by Cook’s Theorem,
showing you can check a solution in polynomial time will imply that such a reduction exists.

Theorem 10 (Cook’s Theorem) SAT is NP-complete.

Incidentally, T should note here that Cook’s Theorem is sometimes called the Cook-Levin The-
orem, since Leonid Levin proved a version of it (that CIRCUIT SAT is NP-complete) around the
same time as Cook. It’s not always called that because he gave lectures on his proof but didn’t
publish it, and he was working in the USSR during the Cold War so it took several years for his
results to become known in the West, by which time Cook’s Theorem was already famous.

We'll start by reducing the quintessential problem to the problem INPUT CHECKER, which uses
more familiar terms:

For the problem INPUT CHECKER, we are given a C program consisting of n char-
acters and asked if there is an input that makes it output true in at most n steps (on
your computer hooked up to a tape-drive).

Once we’ve done that, we won'’t need to talk about TMs again until the end of the course (when we
discuss computability). After that reduction, we’ll briefly consider how powerful INPUT CHECKER
is, before reducing it to SAT. Finally, we’ll cover the Tseytin Transform for reducing SAT to 3-SAT.

To see that INPUT CHECKER is in NP, consider that if we are given an input to a C program
of length n then we can check in polynomial time whether the program outputs true in at most n
steps: we just run the program. To see that INPUT CHECKER is NP-hard, suppose we are given
a non-deterministic TM M of size s and we want to decide if M halts in time f(s) for some fixed
polynomial f. We can write a C program that takes as input a list of f(s) transitions (where a
transition says what M does in a step), checks they describe a valid computation of M leading to
it halting and, if so, outputs true. This program will take g(f(s)) steps for some fixed polynomial
g, and we can pad the program with comments until its length n is at least g(f(s)).

To understand how powerful INPUT CHECKER is, consider that even if you hadn’t just read
about TMs and NP, you could still easily reduce anything in NP (that is, any problem for which
you can check a solution in polynomial time) to it. Consider KNAPSACK, for example: given
(P,p,w), in polynomial time we can easily write a C program that, given a supposed solution
consisting of a list of (profit, weight) pairs,

checks those pairs are in P,

checks their profits sum to at least p,

checks their weights sum to at most w,

outputs true if these three check are confirmed.

We can work out a polynomial upper bound on the number of steps this program takes and pad the
program with comments until it has that length. There is an input that makes this program output

tExcept for Midterm 2, and unless you ever need to solve constraint satisfaction problems (CSPs), which are often
handled by reducing them to instances of SAT and feeding those to industrial SAT-solvers such as Z3.
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true if and only if (P, p,w) is a yes instance of KNAPSACK. Think about some other problems we
looked at in the last lecture and how you can reduce them directly to INPUT CHECKER.

Suppose we’re given an instance C' of INPUT CHECKER with n characters and in time polynomial
in n we want to write an instance F' of SAT such that F' has a satisfying truth assignment if and
only if C' outputs true within n steps. First of all, since reading input takes time, we can assume
C reads at most n bytes (8n bits) of input. Since declaring variables and mallocing memory
takes time, we can also assume C' doesn’t use more than n bytes (8n bits) of memory. We won'’t
distinguish between the levels of the memory hierarchy — cache, main memory, disk, tape — so,
if n bytes is more than your 32 GB of RAM and your 1 TB of disk and your computer has to fall
back on the tape-drive, we’ll still talk about “memory”.

We create a variable x; for 1 <14 < 8n (one for each bit of input C' could read), and a variable
y;j for 0 <i < 8n and 1 < j < n (corresponding to the ith bit of memory C could use, at the jth
time step). Let’s assume 32 of the memory bits are an output buffer, so if C' sets them to

01110100011100100111010101100101

(that is, 116, 114, 117, 101, which are the ASCII codes for t, r, u and e), then C outputs true. We
can create a variable z, write a subformula saying z is true if and only if the output buffer holds
true at some point during C’s first n steps, and AND z to that subformula (so any satisfying truth
assignment for the subformula has to make z true).

We want to write our instance F' of SAT such that, for any truth assignment that satisfies F’
and any input to C' of at most 8n bits and any initial setting of the 8n bits of your computer’s
memory that C will use, if

e the truth assignment sets x; to true if and only if the ith bit of the input to C' is 1,

e the truth assignment sets y; o to true if and only if the ith bit of the memory C uses is
initially set to 1 (although well-written programs shouldn’t rely on the initial contents of the
memory they use!),

then, for 1 <17 < 8n and 1 < j < n, the truth assignment sets y; ; to true if and only if the ith bit
of memory is set to 1 during the jth time step. In other words, we want F' to model C’s execution.

Let’s assume that, for any truth assignment that satisfies F' and any input to C of at most 8n
bits and any initial setting of the 8n bits of your computer’s memory that C' will use and some j
with 0 < j < n, if

e the truth assignment sets x; to true if and only if the ith bit of the input to C is 1,
e the truth assignment sets y; ; to true if and only if the ith bit of the memory C uses is set
to 1 at time step j.

How can we add subformulas to F' to guarantee that the truth assignment sets y; ;11 to true if and
only if the 7th bit of the memory C uses is set to 1 at time step j + 17 If we can do this for any
j then, by induction, F has a satisfying truth assignment if and only if some input to C' makes it
output true in at most n steps.

If your CPU isn’t “looking at” the ith bit during the jth step (that bit isn’t in the CPUs
registers and it’s not being written to by the memory bus or hard-drive head or tape head during

128



INPUT «
CHECKER ‘

SUBSET  KNAPSACK
Sum

Figure 14.1: The polynomial-time reductions we proved in the previous lecture, the ones to INPUT
CHECKER, the one from INPUT CHECKER to SAT, and the Tseytin Transform (dashed) from SAT
to 3-SAT.

the jth step), then the value of the ith bit shouldn’t change between the jth and (j + 1)st steps.
It’s fairly easy to add subformulas expressing those constraints.

We can cheat here and observe that, since your computer is a finite-state machine (except for
its tape-drive), we can simply use a subformula with 21932000000003 yayiables — which is just a (big!)
constant — and something like that length to capture its transition function. If you don’t like that,
then it’s possible to consider your CPU as circuits (adders, for example) and write subformulas
modelling how they behave. The details are left as an exercise for the reader. Either way, the
subformulas will be pretty big, but only polynomial in n. In polynomial time, we get an instance
F of SAT that is satisfiable if and only if C outputs true in at most n steps. In other words, INPUT
CHECKER polytime reduces to SAT — so we’ve proven Cook’s Theorem.

Adding INPUT CHECKER to Figure [13.1] we get Figure with everything in NP polytime
reducing to INPUT CHECKER and INPUT CHECKER polytime reducing to SAT, with only the Tseytin
Transform missing to have SAT polytime reduce to 3-SAT, which polytime reduces to INDEPENDENT
SET, 3-CoL and SUBSET SUM.

The Tseytin Transform is pretty simple: given a Boolean formula F', we

1. rewrite F' using only AND (A), OR (V) and NOT (—) gates;
2. parenthesize F' so that all operations are either unary (NOT) or binary (AND and OR);
3. initialize a new formula F’ to be empty;
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4. add to F’ a CNF-subformula with at most 3 literals in each clause, saying a new variable is
equal to the outcome of each operation in F;

5. add to F’ the clause containing only the new variable equal to the outcome of the last
operation;

6. pad each clause to have exactly 3 literals, by duplicating literals.

For Step [ we use the following identities:
(ce(and) < ((raV-bVe)A(aV—c)A(DV-e),
(ce(avbd) < ((avbV-c)A(-aVe)A(=bVe)),

(ce (—a) & ((aV-c)A(-aVe)).

For example, if F' after Steps[I] and [2]is

(=@ Az2)) v (21 A (22 A (223))))
then after Step [5| F” is

-1 Voo Vyr) A (z1V—y1) A(x2 V —yr)
Y1V oy2) A (=1 Vye)

z3V —ys) A (mxz3 V ys)

=22 V Y3V ya) A (22 V —ya) A (Y3 V —ya)
21V eV ys) A (21 V oys) A (Ya vV -ys)
Y2V s Vye) A (y2 V we) A (ys V )
Y6 -

(
(
(
(
(
(

> > > > > >

There is a lot more to know about complexity theory, but I think we've met the learning
objectives for this course. At the moment, I think most computer scientists (at least, the ones who
think about this kind of thing) believe in the Strong Church-Turing Hypothesis and that P is not
equal to NP. Although we haven’t proven P and NP are different, despite 50 years of trying, we
know (by a result called Ladner’s Theorem) that if they are different, then there are problems in
NP that are neither in P nor NP-complete. Many people think factoring and graph isomorphism
might be such problems, for example.

Interestingly, we have a polynomial-time algorithm, called Shor’s algorithm, for factoring on
quantum Computers so if factoring really isn’t in P and if we can get a quantum computer
actually running Shor’s algorithm, then it’ll disprove the Strong Church-Turing Hypothesis (but
not the Church-Turing Hypothesis). As far as I know, however, no one has shown an algorithm for
an NP-complete problem that runs in polynomial-time even on a quantum computer.

Of course, if P = NP, then everything in NP has a polynomial-time algorithm on a normal
computer (with a tape-drive) and everything in P = NP is NP-complete, with two exceptions: the
problem for which all instances are “yes” instances, and the problem for which all instances are

#Maybe the magic box in Sneakers is a quantum computer!
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NP

omplete

Figure 14.2: If P is a proper subset of NP, then NP looks like the diagram on the left: P and the
class of NP-complete problems are disjoint. If P = NP, then NP looks like the diagram on the
right: everything in P is NP-complete (with the exceptions of the problem for which all instances

are “yes” instances and the problem for which all instances are “no” instances).

“no” instances (since we can’t map a “no” instance of another problem to a “no” instance of the
former, nor map a “yes” instance of another problem to a “yes” instance of the latter).

These two possibilities, P ## NP and P = NP, are roughly illustrated in Figure If you
want more details, I encourage you to ask a complexity theorist, who may get carried away and
show you something like the map of complexity classes in Figure [14.3
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Figure 14.3: A map of complexity classes, from https://www.math.ucdavis.edu/~greg/zoology|.
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Assignment 6

posted: 02.07.2021 due: midnight 16.07.2021

You can work in groups of up to three people. One group member should submit a copy of the solu-
tions on Brightspace, with all members’ names and banner numbers on it; the other group members
should submit text files with all members’ names and banner numbers (otherwise Brightspace won’t
let us assign them marks!). You may consult with other people but each group should understand
the solutions: after discussions with people outside the groups, discard any notes and do something
unrelated for an hour before writing up your solutions; it’s a problem if no one in a group can ex-
plain one of their answers. For programming questions you should submit your code, which should
compile and run correctly to receive full marks.

1. Show that SUBSET SUM is self-reducible: that is, if you have an algorithm that, given a set
S of integers and a target ¢, in polynomial time (in the cardinality of S) determines whether
a subset of S sums to t, then you can use it to design an algorithm that, given S and ¢, in
polynomial time (in the cardinality of S) returns such a subset.

2. A grid graph is a graph whose vertices are labelled with distinct pairs of integers such that a
vertex u labelled (x,y) is adjacent to a vertex v if and only if v is labelled (x —1,y), (z+1,¥),
(x,y — 1) or (z,y +1). HAMPATH is known to be NP-complete even when restricted to grid
graphs.

For the problem WORDZ 2, we are given an n x n grid of characters, a dictionary of strings
and an integer k and asked if the grid contains at least k sequences of characters such that
e if a character in a sequence has coordinates (x,y), then the next character must have
coordinates (z — 1,y), (z+1,y), (z,y — 1) or (z,y + 1),
e each character in the grid appears at most once across all of the sequences,
e cach sequence is a distinct string in the dictionary.
The image below shows an instance of WORDZ 2 with a 5x 5 grid and the dictionary of English
words, with 4 sequences indicated with blue, red, green and purple. (The grey characters are
not a sequence, although they could be.)
Give a polynomial-time reduction from HAMPATH ON GRID GRAPHS to WORDZ 2. (You can
assume all the coordinates in the vertices’ labels in the graph are polynomial in the number
of vertices.)
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3. For the problem INTEGER LINEAR PROGRAMMING (ILP) we are given a set of linear con-
straints such as

3x1 + 522
4xo — 213 10
6rxr1 —x20+3x3 > 6

IA
ot

and asked if there is a solution with all of the variables’ values integers. Give a polynomial-
time reduction from 3-SAT to ILP.

4. We can reduce 3-CoOL to PLANAR 3-COL in polynomial time. Why doesn’t our 30(n!/?logn)_
time divide-and-conquer algorithm for PLANAR 3-COL give us a 30(n!'/?logn) time algorithm
for 3-CoL?

5. We saw a 2-approximation algorithm for the search version of VERTEX COVER, and the
complement of a vertex cover is an independent set; does that mean we have a 2-approximation
algorithm for the search version of INDEPENDENT SET? Why or why not?
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Midterm 2

posted: 9 am, 05.07.2021 due: midnight, 09.07.2021

You are not allowed to work in groups for the midterm. You can look in books and online, but
you must not discuss the exam problems with anyone. If you don’t understand a question, contact
Travis or one of the TAs for an explanation (but no hints). All problems are weighted the same
and, for problems broken down into subproblems, all subproblems are weighted the same.

As with assignments, answers the markers consider hard to read will get 0!

1. Suppose your class is on a field trip to an island with n towns on it, connected by m town-
to-town buses (which run in both directions), run by ¢ companies. Each company’s buses
are a different colour, and there can be buses from two or more companies running between
two towns. You have a map showing which companies run buses between which towns. The
drivers have a relaxed attitude to schedules and the buses run often, so there’s no telling
which buses will be arriving and leaving next.

Your classmate Ryan has wandered off and got lost and you’re (somewhat reluctantly) trying
to find him. You’d told him which buses the class was supposed to take during the day, and
given him tickets from the appropriate companies, the same colours as the buses and stapled
together in the right order. Ryan didn’t remember which towns the class was going to visit,
however, so he always took the first bus he saw of the colour of the next ticket, tearing off
that ticket and giving it to the driver.

Design a polynomial-time dynamic-programming algorithm that, given the map of the bus
routes, Ryan’s starting point and the colours of the buses he took, calculates the probability
Ryan is in each of the n towns.

For example, if the map is as shown below on the left and Ryan started in town A and took
a red bus, a green bus, a blue bus and another green bus, then his itinerary could be any of
those shown below in the center, and the probability of him being in a certain town after a
certain number of steps and of taking trips between cities is as shown in the DAG below on
the right.

A A-B-C-D-B,
A-B-D-A-C,
A-B-D-C-A,
A-B-D-C-B,
A-C-A-B-C,
D A-C-A-B-D,
A-C-A-D-B, /
C A-C-B-A-C. 0%5 0.4@?75 o%% 0%5
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The probability Ryan went first from A to B is 0.5, and the probability he went first from A
to C is 0.5. Therefore, after one trip, the probability he was in B is 0.5 and the probability
he was in C is 0.5.

The probability Ryan’s second trip took him from B to C is 0.5 times the probability he was
in B, or 0.25. The probability it took him from B to D is also 0.5 times the probability he
was in B, or 0.25. The probability it took him from C to A is 0.5 times the probability he
was in C, or 0.25. The probability it took him from C to B is 0.5 times the probability he
was in C, or 0.25. Therefore, after two trips, the probability is 0.25 he was in any particular
town.

The probability Ryan’s third trip took him from A to B is 0.5 times the probability he was
in A, or 0.125. The probability it took him from A to D is 0.5 times the probability he was
in A, or 0.125. The probability it took him from B to A is the probability he was in A, or
0.25. The probability it took him from C to D is the probability he was in C, or 0.25. The
probability it took him from D to A is 0.5 times the probability he was in D, or 0.125. The
probability it took him from D to C is 0.5 times the probability he was in D, or 0.125.

Therefore, after three trips, the probabilities Ryan was in A, B, C, D are, respectively, 0.25+
0.125 = 0.375 (the probability his third trip took him from B to A plus the probability it
took him from D to A), 0.125, 0.125 and 0.125 4 0.25 = 0.375 (the probability his third trip
took him from A to D plus the probability it took him from C to D).

You can compute the probability of Ryan being in a particular town after four trips similarly.
Isn’t it lucky you're on an island, so you can’t accidentally lose Ryan forever?

(Hint: first design an algorithm that computes the number of ways Ryan could have ended
up in a town, and then modify it to compute the probability.)

2. Your professor Travis told your TA Sarah that he was going to ask you to modify the solution
to the alignment question on Assignment 5, to compute an optimal alignment using only one
pass through the matrixﬁ In contrast, that assignment question allows filling in the matrix
and then walking back from the bottom right corner to the top left corner to compute the
alignment.

Travis claimed it was possible by keeping two more arrays, top[0..m, 0..n] and bottom[0..m, 0..n],
where topli, j] is a pointer to a string of length at most m +n+1 (including the end-of-string
delimiter) containing the top line in an optimal alignment of S[1..i] to T'[1..j], and bottom]z, j]
is a pointer to a string of length at most m+n+1 containing the bottom line in that alignment.
To compute topli, j], we sprintf into an empty string either top[i — 1, j] or top[i — 1,5 — 1]
or top[i,j — 1], followed by either S[i — 1] or ‘=’. To compute bottom][i, j], we sprintf into
an empty string either bottom|[i — 1, j] or bottom[i — 1,5 — 1] or bottom[i, j — 1], followed by
either T'[j — 1] or -.

Sarah correctly pointed out that mallocing and sprintfing a string of length Q(m +n + 1)
takes Q(m + n + 1) time, so Travis’s solution takes cubic time. Help Travis by figuring out
how to modify his solution (shown below) to use quadratic time again.

(Hint: pointers are your friends!)

$Yes, this question is based on a true story.
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##include <stdio.h>
#include <stdlib.h>

#define MIN(a, b) (a < b ? a : b)
#define MIN3(a, b, c) (MIN(a, b) < ¢ ? MIN(a, b) : c)

void align(char *S, char *T, int m, int n) {
int Alm + 1] [n + 1];
char *top[m + 1][n + 1];
char *bottom[m + 1][n + 1];

Afol[0] = 0;

top[0] [0] = (char *) malloc(m + n + 1);
bottom[0] [0] = (char *) malloc(m + n + 1);
sprintf (top[0] [0], "");

sprintf (bottom[0] [0], "");

for (dnt i = 1; i <= m; i++) {
A[i][0] = 1i;
top[i] [0] = (char *) malloc(m + n + 1);
bottom[i] [0] = (char *) malloc(m + n + 1);
sprintf (top[i] [0], "%slc", topli - 1]1[0], S[i - 11);
sprintf (bottom[i] [0], "%s-", bottom[i - 1][0]);
+

for (int j = 1; j <= n; j++) {
Afol[3] = j;
top[0] [j] = (char *) malloc(m + n + 1);
bottom[0] [j] = (char *) malloc(m + n + 1);
sprintf (top[0] [j1, "%s-", topl[0l[j - 11);
sprintf (bottom[0] [j1, "%s%c", bottom[0]1[j - 11, T[j - 11);
}

for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
A[i1[j] = MIN3(A[i - 11[j] + 1, A[i]1[j - 1] + 1,
Ali - 110 - 11 + (S[i - 1] ==T[j - 11 72 0 : 1));

top[i] [j] = (char *) malloc(m + n + 1);
bottom[i] [j] = (char *) malloc(m + n + 1);

if (A[iI[j] == A[i - 11[j]1 + 1) {
sprintf (topl[il [j1, "%s¥c", topli - 11[j], S[i - 11);
sprintf (bottom[i] [j1, "%s-", bottom[i - 1]1[j1);

} else if (A[i][j] == A[i1[j - 1] + 1) {
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sprintf (top[i]l [j1, "%s-", toplill[j - 11);
sprintf (bottom[i] [j1, "%s%c", bottom[il[j - 11, T[j - 11);
} else {
sprintf (top[i] [j], "#%s%c", topli - 11[j - 11, S[i - 11);
sprintf (bottom[i] [j1, "%s%c", bottom[i - 1]1[j - 11, T[j - 11);

printf ("%s\n%s\n", toplm] [n], bottom[m] [n]);

return;

}

int main() {
char *S = "AGATACATCA";
char *T = "GATTAGATACAT";

align(S, T, 10, 12);

return(0);

}

Bonus (worth 10% of the midterm): Can you reduce the space usage to O((m + n)k),
assuming you’re given the edit distance k between S and 177

(Hint: banded dynamic programming and garbage collections are your friends!)

. For the problem LONGEST KIND-OF INCREASING SUBSEQUENCE (LKOIS), we're given a
sequence S[1..n] of integers and asked to find the longest subsequence S’ of S such that
S'i— 1] =3 < S'[i] for 1 < i < |S'|. Give an O(nlogn) algorithm for LKOIS.

. For the problem PARTITION, we're given a set .S of positive integers that sum to 2¢ and asked
if there is a subset of S that sums to exactly ¢t. Prove PARTITION is NP-complete by

e showing PARTITION is in NP,

e reducing one of the NP-complete problems we’ve seen in class to PARTITION.

. Write a program that, given a list of the edges in a connected graph G on the vertices

1,...,n, in polynomial time outputs a Boolean formula F' that is satisfiable if and only if G
has a Hamiltonian path. You can assume the list of edges looks something like

(1, 2)

(1, 3

(4, 2)

(6, 5

(5, 3

with one pair per line, and your output should consist of a single line containing copies of
space, (, ), AND, OR, NOT and variables that look something like x1, x2, etc.
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Assignment 7

posted: 16.07.2021 due: midnight 23.07.2021

You can work in groups of up to three people. One group member should submit a copy of the solu-
tions on Brightspace, with all members’ names and banner numbers on it; the other group members
should submit text files with all members’ names and banner numbers (otherwise Brightspace won’t
let us assign them marks!). You may consult with other people but each group should understand
the solutions: after discussions with people outside the groups, discard any notes and do something
unrelated for an hour before writing up your solutions; it’s a problem if no one in a group can ex-
plain one of their answers. For programming questions you should submit your code, which should
compile and run correctly to receive full marks.

1. You may have seen the standard BFS-based algorithm that, given a set of n jugs with capac-
ities c1,...,c, in litres, a target of ¢ litres and access to a tap, finds the fastest way of using
the jugs to measure out ¢ litres of water, or that it’s not possible. If the ¢;s are integers then
this takes O((c1 + 1) (2 +1)---(cy + 1) - (n + 1)?) time.

How can you modify the standard algorithm such that it runs in
O(le1+1) - (ca+1) - (cn+1)-(n+1)* - log((c1 +1) - (ca+1)---(cn + 1))

time and, instead of the fastest way (fewest pours), it finds the way to measure out ¢ litres
which involves the least total lifting? For example, pouring 2 litres from 5-litre jug containing
4 litres into a 3-litre jug containing 1 litre, and then pouring the remaining 2 litres from the
5-litre jug into a 6-litre jug containing 1 litre, involves lifting a jug containing 4 litres and
then lifting a jug (the same one) that contains 2 litres, so the total cost is 6. (You can assume
the tap has a hose so you can fill a jug without lifting it.)

2. Suppose you're given a list of statements such as “FACTORING polytime reduces to SAT”,
“CLIQUE polytime reduces to INDEPENDENT SET”, “INDEPENDENT SET polytime reduces to
SAT” and “SAT polytime reduces to CLIQUE”. How can you divide the mentioned problems
up into the minimum number of equivalence classes such that, for any equivalence class C and
any two problems P and @ in C, you know only from the statements that P polytime reduces
to @ and vice versa? (In the example above, there are two equivalence classes: { FACTORING }
and {SAT, CLIQUE, INDEPENDENT SET}.)

3. How can you modify Dijkstra’s (without making it much slower) such that it works even when
there’s one directed negative-weight edge in the graph?

4. How can you determine if there’s a negative-weight cycle of length at most & in time O(kn?),
where n is the number of vertices in the graph?

5. Give an O(n?log k)-time algorithm that, given an integer k and the n x n adjacency matrix
of a graph on n vertices, returns the n x n matrix in which cell (4, ) is the number of ways
of going from the ith vertex to the jth vertex in exactly k steps.

(Hint: First figure out how to do this when k is a power of 2, and then consider the binary
representation of general k.)
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Assignment 8

posted: 23.07.2021 due: midnight 29.07.2021

You can work in groups of up to three people. One group member should submit a copy of the solu-
tions on Brightspace, with all members’ names and banner numbers on it; the other group members
should submit text files with all members’ names and banner numbers (otherwise Brightspace won’t
let us assign them marks!). You may consult with other people but each group should understand
the solutions: after discussions with people outside the groups, discard any notes and do something
unrelated for an hour before writing up your solutions; it’s a problem if no one in a group can ex-
plain one of their answers. For programming questions you should submit your code, which should
compile and run correctly to receive full marks.

1. Consider the map from Assignment 1, shown below. Suppose you and lots of your friends
have decided to celebrate the end (?7) of the pandemic with trips from Dal to Eastern Europe.
To maintain the feeling that the world is big and wide, you don’t want to travel in big groups,
nor keep running into each other while you’re travelling.

You’ve decided to stay spread out with the following rule: on any particular day, if region
A is labelled with the number x and region B is labelled with the number y, then at most
min(z, y) people can travel from A to B, and at most min(z, y) can travel from B to A. (You
can assume movements are synchronous.)

The first few days may be a little chaotic, but then things should stabilize for a while, with
the same number of people leaving each region as entering, until the last people are leaving
Dal and eventually making their way to Eastern Europe. During this intermediate period of
stability, how many people are leaving Dal each day (or, equivalently, how many are arriving
in Eastern Europe)?

(Hint: can you find a matching cut?)

/
Ay L s
8 1 l';l,d

2. Suppose you're organizing a dinner at an event with n students from k universities and trying
to choose a seating plan. Eight people can sit at each table and you don’t want more than
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three people from the same university sitting at the same table. How can you efficiently find
the minimum number of tables you’ll need? The input is the number of people from each
university, ni,...,ng with n; + -+ -+ ni = n, and the output is the number of tables.

(Hint: to test if ¢ tables are enough, create a graph G; with a source, a sink, a vertex for each
university, and a vertex for each of ¢ tables.)

. We saw in the Lecture 19 that if we assume there’s a C routine P that, given any string .S,
returns the length in characters of the shortest C program that outputs S and then stops,
then we reach a contradiction.

Specifically, if the code for P looks like

int P (char *S) {
...SOME CODE GOES HERE...
}

(with the code to compute P replacing ...SOME CODE GOES HERE...), then we can write a
program () that has P as a subroutine and loops through all possible strings in increasing
order by length until it finds one that P says requires a program much longer than @, at
which point @ stops and outputs that string. (P must eventually say some string requires a
program much longer than @, by counting arguments.) An example of such a program @ is
shown below.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct node {
char *string;
struct node *next;
} node;

char *stringP = "int P (char *S) {\n ...SOME CODE GOES HERE...\n}";
int lenP = strlen(stringP);

int P (char *S) {
...SOME CODE GOES HERE...

int main() {
node *head
node *tail

(node *) malloc(sizeof (node));
head;

tail -> string = (char *) malloc(1);
sprintf (tail -> string, "");
tail -> next = NULL;
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while (1) {
if (P(head -> string) > 2 * lenP + 1000000) {
// Notice P appears twice in this program:
// once as a string and once as a subroutine.
// The number 1000000 only has to be more than
// the length of the rest of the program.
printf ("%s", head -> string);
return(0) ;
} else {
for (int ¢ = 0; c < 256; c++) {
tail -> next = (node *) malloc(sizeof (node));
tail = tail -> next;
tail -> string = (char *) malloc(strlen(head -> string) + 2);
sprintf (tail -> string, "¥s%c", head -> string, (char) c);
tail -> next = NULL;
}
head = head -> next;
}
}
}

Adapt that argument to show it’s not possible even to approximate within a factor of 10 the
length of the shortest C program that outputs S and then stops. How does the code for @@
above change?
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Final Exam

posted: 8 am, 05.08.2021 due: midnight, 05.08.2021

You are not allowed to work in groups for the final exam. You can look in the lecture notes, books
and online, but you must not discuss the exam problems with anyone. If you don’t understand
a question, contact Travis or one of the TAs for an explanation (but no hints). All problems are
weighted the same and, for problems broken down into subproblems, all subproblems are weighted
the same. Answers that are difficult to read will receive 0.

1. Suppose you are given a rooted tree T' on n vertices, each of which is assigned a colour.
(In this problem, both endpoints of an edge can have the same colour.) Give an efficient
divide-and-conquer algorithm to find the longest path in T" whose vertices are all the same
colour. (Paths can ascend and then descend, as long as they don’t revisit vertices.) What is
the complexity of your algorithm? You need not prove your algorithm correct.

2. (a) Give an efficient greedy algorithm that, given a sequence A[l..n] of integers, partitions A
into the minimum number of kind-of increasing subsequences. A subsequence is kind-of
increasing if, for each consecutive pair of numbers A[h] and A[i] in the subsequence, with
h < i, we have A[h] — 3 < A[i]. Prove your algorithm correct.

(b) What goes wrong if you try to partition S into the number of slowly increasing subse-
quences the same way? A subsequence is slowly increasing if, for each consecutive pair
of numbers S[i] and S[j] in the subsequence, with i < j, S[i] < S[j] < S[i] + 10?7
(Hint: consider the two sequences 8, 1, 9, 2 and 8, 1, 9, 18, 18.)

3. Suppose you are given a directed acyclic graph G on n vertices, each of which is assigned
a colour. (In this problem, both endpoints of an edge can have the same colour.) Give an
efficient dynamic-programming algorithm to find the length of the longest directed path in
G whose vertices are all the same colour. What is the complexity of your algorithm? You
need not prove your algorithm correct.

(Hint: start with a topological sort.)

4. Suppose you are given a graph G on n vertices, each of which is assigned a colour. (In
this problem, both endpoints of an edge can have the same colour.) Either give an efficient
algorithm to find the longest monochromatic path in G or justify your inability to do so. If
you give an algorithm, you need not prove it correct.

5. We reduced 3-CoOL to PLANAR 3-COL in polynomial time using a crossing gadget. Why can’t
we reduce 4-COL to PLANAR 4-COL in polynomial time the same way (assuming P # NP)?
What goes wrong in the reduction?

6. Suppose you are given a directed graph G on n vertices, each of which is assigned a colour.
(In this problem, both endpoints of an edge can have the same colour.) Give an efficient
algorithm to find the length of the longest monochromatic directed walk in G. (In a walk we
can revisit vertices and recross edges, whereas in a path we cannot.) Your algorithm should
return “undefined” if there is a directed cycle whose vertices are all the same colour.
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Assignment 1 Solution

The solution below is not pretty — as one of you amusingly wrote in the Zoom chat when I showed
you my code for counting the 3-colourings of Nova Scotia, “my eyes are on fire, it’s so ugly” —
but as I said, I'm not going to give out a general solution because I want to be able to reuse this
exercise if Dal has me teach this course again, just changing the map. The code I originally posted
had a couple of bugs in it and the answer it returned was about 3 times larger than what the code
below returns (and what we now think is the real answer), 8720115499008. Both versions ran in
a second or two on my very standard, two-year-old laptop. As long as your answer was within a
factor of 1000 either way and wasn’t obviously wrong, we’d consider it correct.

#include <stdio.h>

long long int countA(Q);
long long int countB();
long long int countC();
long long int countD(Q);
long long int countE();
long long int countF();

long long int A1, A2, A3, A4, A5, A6;

long long int B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, Bl1l, B12;
long long int C1, C2, C3, C4;

long long int D1, D2, D3, D4, D5, D6, D7;

long long int E1, E2, E3, E4, E5, E6, E7, E8, E9;

long long int F1, F2, F3, F4;

int main() {
long long int counter = 0, temp;

for (A5 = 0; A5 < 4; A5++) {
for (B6 = 0; B6 < 4; B6++) {
for (B7 = 0; B7 < 4; B7++) {
for (B9 = 0; B9 < 4; B9++) {
for (D5 = 0; D5 < 4; D5++) {
if (D5 != A5 && D5 !'= B7) {
for (D6 = 0; D6 < 4; D6++) {
if (D6 != B7 && D6 != D5) {
for (E3 = 0; E3 < 4; E3++) {
for (E5 = 0; E5 < 4; E5++) {
counter += countA() * countB() * countC() * countD() * countE() * countF();
j33333 33335
printf ("The number of 4-colourings is %11li.\n", counter);
return(0);

}

long long int countA() {
long long int counterA = 0;

for (A1 = 0; Al < 4; A1++) {
if (A1 1= AB) {
for (A2 = 0; A2 < 4; A2++) {
if (A2 '= A1 && A2 '= A5 && A2 !'= B7) {
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for (A3 = 0; A3 < 4; A3++) {
if (A3 != A2 && A3 '= A5 && A3 != B7 && A3 !'= D5) {
for (A4 = 0; A4 < 4; Ad++) {
if (A4 != A2) {
for (A6 = 0; A6 < 4; A6++) {
if (A6 !'= Al && A6 '= A2 && A6 !'= A4) {
counterA++;
I3}
return(counterA);

}

long long int countB() {
long long int counterB = 0;

for (B1 = 0; Bl < 4; Bi++) {
if (B1 != B7 && B1 != D6) {
for (B2 = 0; B2 < 4; B2++) {
if (B2 != Bl && B2 !'= B9) {
for (B3 = 0; B3 < 4; B3++) {
if (B3 != Bl && B3 != B2 && B3 != B7 && B3 != B9) {
for (B4 = 0; B4 < 4; B4++) {
if (B4 != B6) {
for (B5 = 0; B5 < 4; B5++) {
if (B5 != B6) {
for (B8 = 0; B8 < 4; B8++) {
if (B8 != B2 &% B8 != B4 && B8 !'= B5 && B8 != B6) {
for (B10 = 0; B10 < 4; B10 ++) {
if (B10 !'= B2 && B10 != B4 && B10 != B8) {
for (B11 = 0; B11 < 4; Bii++) {
if (B11 != Bl && B11 !'= B2 && B11 != B10 && B11 '= D6) {
for (B12 = 0; B12 < 4; B12++) {
if (B12 != B4 && B12 !'= B6 && B12 != B10) {
counterB++;
1333333333330 00
return(counterB) ;

}

long long int countC() {
long long int counterC = 0;

for (C1 = 0; C1 < 4; C1++) {
for (C2 = 0; C2 < 4; C2++) {
if (C2 !'=B9) {
for (C3 = 0; C3 < 4; C3++) {
if (C3 !=C1 && C3 '= C2) {
for (C4 = 0; C4 < 4; C4++) {
if (C4 '=C1 &% C4 '= C2 && C4 '= C3) {
counterC++;
PRI}
return(counterC) ;

}

long long int countD() {
long long int counterD = 0;

for (D1 = 0; D1 < 4; Di++) {
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for (D2 = 0; D2 < 4; D2++) {
if (D2 !'= D1 && D2 != E5) {
for (D3 = 0; D3 < 4; D3++) {
if (D3 != D1 && D3 !'= D5 && D3 != D6) {
for (D4 = 0; D4 < 4; D4++) {
if (D4 '= D1 &% D4 '= D2 && D4 != D3 && D4 '= D6) {
for (D7 = 0; D7 < 4; D7++) {
if (D7 != A5 && D7 !'= D1 && D7 !'= D3 && D7 != D5) {
counterD++;
33333333
return(counterD) ;

}

long long int countE() {
long long int counterE = 0;

for (E1 = 0; E1 < 4; E1++) {
if (E1 != B6) {
for (E2 = 0; E2 < 4; E2++) {
if (E2 != E1) {
for (E4 = 0; E4 < 4; E4++) {
if (E4 !'= E3) {
for (E6 = 0; E6 < 4; E6++) {
if (E6 != E1 && E6 !'= E2 && E6 != E5) {
for (E7 = 0; E7 < 4; E7++) {
if (E7 != E2 && E7 '= E4 && E7 !'= E5 && E7 != E6) {
for (E8 = 0; E8 < 4; E8++) {
if (E8 != E4 &% E8 != E5 && E8 != E7) {
for (E9 = 0; E9 < 4; E9++) {
if (E9 '= E2 &% E9 !'= E3 && E9 != E4 && E9 !'= E7) {
counterE++;
3333333333330
return(counterE) ;

}

long long int countF() {
long long int counterF = 0;

for (F1 = 0; F1 < 4; Fi++) {
for (F2 = 0; F2 < 4; F2++) {
if (F2 != A5 &% F2 != F1) {
for (F3 = 0; F3 < 4; F3++) {
if (F3 != F1 && F3 !'= F2) {
for (F4 = 0; F4 < 4; F4++) {
if (F4 != E3 && F4 '= F2 && F4 '= F3) {
counterF++;
FFIIR}
return(counterF) ;

}
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Assignment 2 Solutions

1. Given a tree on n vertices, we can always find a single vertex whose removal leaves a forest in
which no tree has more than n/2 vertices. Suppose we use our divide-and-conquer algorithm
to count the 3-colourings of a tree on n vertices; about how long does it take? How fast can
you compute the answer?

You can assume n is a power of 2 and the tree is always split into exactly two pieces of size
n/2 (even though the two pieces together should have n — 1 vertices instead of n, since we
removed a vertex to split the tree).

Solution: In this case, the recurrence for our colouring algorithm from Assignment 1 is

T(n) = 3-2T(n/2)+ f(n)
= 6(6T(n/4) + f(n/2)) + f(n)
= 6(6(6T(n/8) + f(n/4)) + f(n/2)) + f(n)

1—1
= 6T(n/2)+> 6 f(n/27).

J=0

I forgot to say it takes O(n) time to find the vertex whose removal leaves a forest in which
no tree has more than n/2 vertices — that is, f(n) = n — but trying every vertex naively
would take O(n?) time. Plugging that in and setting i = lgn, we still get

Ign—1
T(n)~6%" +n® > (3/2) =0(6"") = O(n'2%).
j=0

On the other hand, it doesn’t actually matter what the shape of the tree is: for whichever
vertex you decide to colour first, you have 3 choices; for all its neighbours, you have 2 choices;
for all their neighbours, you have 2 choices; etc. So the number of ways to 3-colour a tree
on n vertices is always 3 - 2771, (That’s a big number, but it’s easy to work with because in
binary it’s just 11 followed by n — 1 copies of 0.)

2. In the lecture, we saw that implementing FEuclid’s algorithm on positive integers a and b with
a > b by repeated subtraction takes €(a) time in the worst case but implementing it by mod
takes O(loga) time, assuming subtraction and mod each take constant time. Now suppose
subtracting two n-digit numbers takes n time but taking their mod takes n? time; comparing
two numbers takes time 1. About how much bigger does a have to be than b in order for it
to be faster to compute a mod b with mod directly than with repeated subtraction?

For example, if a = 1523 and b = 0427, then computing a mod b = 242 by repeated sub-
traction means subtracting 0427 from 1523 to get 1096 in 4 time units, checking 1096 is still
bigger than 0427 in 1 time unit, subtracting 0427 from 1096 to get 0669 in 4 time units,
checking 0669 is still bigger than 0427 in 1 time unit, subtracting 0427 from 0667 to get 0242
in 4 time units, and checking whether 0240 is bigger than 0427 in 1 time unit (and finding
it’s not). That takes a total of 4 +1+4+ 144+ 1 = 15 time units, whereas computing
a mod b = 242 directly takes 4> = 16 time units, so in this case repeated subtraction is faster.
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Solution: It’s faster to compute a mod b when a is at least about n times larger than b: if
a/b = w(n) then it will take w(n?) time to do the repeated subtractions; if a/b = ©(n) then
it will take ©(n?) time to do either the repeated subtractions or compute the modulus; if
a/b = o(n) then it will take o(n?) time to do the repeated subtractions.

. Describe how to build a circuit consisting of AND, OR and NOT gates that takes two n-bit
binary numbers x and y and outputs the (n+ 1)-bit binary number x+y. Your circuit should
be a directed acyclic graph (a DAG) whose size is at most polynomial in n and whose depth is
constant (where “depth” means the length of the longest directed path); the fan-in and fan-
out are not bounded (where “fan-in” and “fan-out” mean the maximum in- and out-degree
of any vertex).

Solution: To be consistent with what I wrote in the discussion on Brightspace, let’s number
the columns from the right, say the sum of x and y is 2z, and consider how to compute the
bit z[i].

If we know the carry-bit c[i] from adding z[i —1..0] and y[i — 1..0], then for 1 <1i < n we can
compute z[i] according to the following truth table:

8
=
<
=

@)
=

N
=

== =0 OO OO
_ =0 O~k OO
— O, ORFRORFRO
—_— OO, O R~ O

That is, z[7] is 1 if and only if an odd number of z[i], y[i] and c[u = i] are 1s, for 1 < i < n.
(If ¢ = 0 then we ignore the carry-bit, and z[n] = ¢[n].)

As people pointed out in the discussion, that still leaves the problem of figuring out the
carry-bit c[i]. Notice that c[i] = 1 if and only if, for some k < i, we have z[k] = y[k] = 1 and,
for all j with i > j > k, we do not have z[j] = y[j] = 0. In other words (or, rather, symbols),

clil = \/ | ekl Ayl A [ A (@l v yli])

k<i i>j5>k

For each choice of ¢ and k < ¢ and j with ¢ > j > k, we have an AND gate, so our entire
circuit has ©(n3) gates — but that’s allowed. The main thing is, the entire circuit has
constant depth.

. Give a divide-and-conquer program for
https://leetcode.com/problems/maximum-subarray
(you don’t have to pay for a membership!) and explain how to use your solution to solve

https://leetcode.com/problems/maximum-sum-circular-subarray
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neatly.

(If you don’t use divide-and-conquer or your solution looks like it’s been copied, you will not
get the mark and you may be reported to FCS.)

Solution: The main idea is that the max-sum subarray nums|[i..j] is either entirely in the first
half of nums, so j < numsSize/2; or entirely in the second half, so i > numsSize/2; or crosses
the middle, in which case its a non-empty suffix of the first half followed by a non-empty
prefix of the second half, so i < numsSize/2 < j.

We find the max-sum subarrays in nums[0..|numsSize/2|] and
nums||numsSize/2|..numsSize — 1] recursively. With a for-loop, we work out the sum of each
non-empty suffix of nums|0..|numsSize/2]] and, with another for-loop we work out the sum of
each non-empty prefix of nums[|numsSize/2|..numsSize — 1]. We concatenate the max-sum
suffix of the first half and the max-sum prefix of the second half to get the max-sum subarray
that crosses the middle. We return the largest of the sums of the max-sum subarray entirely
in the first half, the max-sum subarray entirely in the second half, and the max-sum subarray
that crosses the middle.

int maxSubArray(int* nums, int numsSize){

if (numsSize == 1) {
return(nums[0]);

int split = numsSize / 2;
int maxLeft = maxSubArray(nums, split);
int maxRight = maxSubArray(&nums[split], numsSize - split);

int sufSum = nums[split - 1];
int maxSufSum = sufSum;
for (int i = split - 2; i >= 0; i--) {
sufSum += nums[i];
if (sufSum > maxSufSum) {
maxSufSum = sufSum;

int prefSum = nums[split];
int maxPrefSum = prefSum;
for (int i = split + 1; i < numsSize; i++) {
prefSum += nums[i];
if (prefSum > maxPrefSum) {
maxPrefSum = prefSum;

3

int maxMiddle = maxSufSum + maxPrefSum;
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if (maxLeft >= maxRight && maxLeft >= maxMiddle) {
return(maxLeft);

} else if (maxRight >= maxMiddle) {
return(maxRight) ;

} else {
return(maxMiddle) ;

}

The coolest way to reuse this code to find the max-sum subarray in a circular array A is to
find the max-sum subarray A[i..j] in A considering it as a normal array, and then find the
max-sum subarray A'[i’..5'] in A’ where A'[k] = —Alk] for all k, and then report the larger of
the sums of A[i..j], and of A[j’ + 1..]A| — 1] concatenated with A[0..i" — 1].

The more obvious way to find the max-sum subarray is to find the max-sum subarray A[i..j],
find the max-sum prefix of A, find the max-sum suffix of A, and then report the larger of the
sums of A[i..j], and of the max-sum suffix concatenated with the max-sum prefix.

. Suppose you didn’t understand Max’s lecture on the FFT but you still want to multiply
degree-n polynomials in time subquadratic in n. Show how to use Karatsuba’s algorithm to
do it in O(n'83) time, assuming arithmetic operations on coefficients take constant time.
For example, consider multiplying the two polynomials

Alz) = 82" +52° 4425 + 2t + 923 + 62 + 22 + 1
B(z) = 72" +52%+32° +32* + 923 + 422 + 5.
Notice
3 2 3 2 3 2 3 2
(8x° + bx” 4+ 4x + 1)(9z° + 42* + 5) + (92° 4 62° + 2z + 1)(7x° + bz + 3z + 3)

= (8% 4+ 522 +4a 4+ 1+ 923 + 622 4+ 22 + 1)(723 + 52° + 3z + 3 + 92° + 422 +5) —
(823 + 522 + 4z + 1) (72 + 52 + 32 + 3) — (92° + 62% + 2z + 1)(92% + 422 + 5);

does this look familiar?

Solution: We can imagine x is a base so large that we’ll never have to worry about carries,
and then apply Karatsuba’s algorithm.
In the example, we set

() = 8z°+52% +4x+1
ap(z) = 923 +62% 4+ 2z +1
() = 72 +522 +3x+3
() = 92° +42® +0x+5

SO

Alz) = ai(z)zt 4 ag(x)
B(x) = bi(z)z* +bo(z).
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and

A(z)B(z) = (a1(x)z* + ao(x))(b1(2)z* + bo(2))
= a1(2)bi(z)2® + (a1(2)bo(z) + ao(z)by (x))x* + ag(z)bo(x) .

Setting
zo(x) = ay(z)bi(x)
zo(x) = ap(z)bo(x)
z1(x) = a1(z)bo(x) + ap(z)bi(z)
= (a1(2) + ao(x))(br(z) + bo(x)) — 22 = 20
we get
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Assignment 3 Solutions

1. Mark the true statments. (Your score for this questions will be proportional to the number
of statements you mark correctly, plus the number you correctly leave unmarked, minus the
number you should have marked but didn’t, minus the number you shouldn’t have marked
but did.)

(a) lgn" = O(Ign!)

( ) (n+1 ) mod 2 Q(nn mod 2) for n € N

( ) n(?m )mod 2 _ O(nn mod 2) forn € N

(d) If T(n) = 7T'(n/3) +n* then T(n) = Q(n*/logn).
(e) If T(n) = 8T(n/2) + 8n3 then T(n) = O(n3logn).

Solution: a, c, d, e

2. Explain how you can sort a sequence of n integers from a range of size n'8'8" in O(nloglogn)
time (assuming each integer fits in a constant number of machine words).

Solution: Consider each number as a (lglgn)-digit number in base b = 2’8"l Since b is
linear in n, we can radix-sort all the numbers in O(n) time for each column of digits, so we
use O(nloglogn) time overall.

3. An in-place algorithm uses a constant number of machine words of memory on top of the
memory initially occupied by its input and eventually occupied by its output. Give code or
pseudo-code for an in-place version of QuickSort.

Solution: Start a pointer p at the start of the subarray and a pointer ¢ at the end of the
subarray; move p right until we find a value larger than the pivot and move ¢ left until we
find a value smaller than the pivot; then swap the elements pointed to by p and ¢; continue.
We stop when p meets gq.

4. You’ve probably seen in previous courses how to build a min-heap on n elements in O(n)
time and how to extract the minimum value from one in O(logn) time. Do you think we can
easily extract the minimum value in o(logn) time while still leaving a heap on the remaining
elements? Why or why not?

Solution: If we could do this easily, then we could easily implement HeapSort in o(nlogn)
time.

5. Suppose you have an algorithm that, given a sequence of n integers that can be partitioned
into d non-decreasing subsequences but not fewer, does so in O(nlogd) time. Explain how
you can also sort such a sequence in O(nlogd) time.

Solution: We partition the sequence into the d subsequences, and then merge them in
O(nlogd) time using a min-heap on d elements, containing the first element in each list.
When we extract the minimum element, we insert into the heap the next element from the
list that extracted element came from, maintaining the invariant that the smallest element
from each list not yet included in the sorted output, is in the heap.

154



Assignment 4 Solutions

1. You have a week to complete an assignment with several questions, each worth the same
number of marks. You don’t want to spend more than h hours on the whole assignment
and you can estimate accurately how many hours each question will take you. Give a greedy
algorithm to decide which questions to answer. PROVE YOUR ALGORITHM CORRECT!

Solution: Sort the questions into increasing order by the time it takes you to answer them
and do as many you can in that order.

Before we take any steps, our (empty) subsolution can be extended
to an optimal solution. Assume that, after i > 0 steps, our subsolution
can be extended to an optimal solution S. Then we show that after
i + 1 steps, our subsolution can be extended to an optimal solution S’.
Therefore, by induction, we obtain an optimal solution.

If we do not answer the (i+ 1)st question ¢, then we do not have enough time for it, so S does
not answer it either and S’ = S. If we answer ¢ and so does S, then S’ = S. If we answer
the ¢ and S does not, then whichever is the question ¢’ that S answers instead, we can swap
q and ¢’ and obtain a solution S’ that is optimal because it answers as many questions as S,
and extends our subsolution after i + 1 steps. (If S doesn’t answer any questions instead of
q, then we can add ¢ to S to obtain S’.)

2. Your professor is training to run against his friend Simon, but he’s not sure he can make it
around his whole planned route in one go, so he’s made a list of places where he can stop for
a break, coffee, etc. (For example, if he starts at the shipyards and runs along the coast, he
can stop at the Tim Horton’s by the ferry terminal, then in the Salt Yard, then at one of the
restaurants along the waterfront, then at the Garrison Brewery or Tomavinos by the Seaport
Market, then at the entrance of Point Pleasant, then at the top of Arm Road in the park,
etc etc.) Suppose he gives you this list, with the distance between each consecutive pair of
potential pit stops, and the distance d he can run without stopping. Give a greedy algorithm
that tells him where to stop such that 1) he never runs more that distance d without a break
and 2) he makes the minimum number of stops. PROVE YOUR ALGORITHM CORRECT!

Solution: Considering his starting point as the first pit stop, after each pit stop p he should
run to the furthest pit stop that is within distance d of p.

Before we take any steps, our (empty) subsolution can be extended
to an optimal solution. Assume that, after i > 0 steps, our subsolution
can be extended to an optimal solution S. Then we show that after
i + 1 steps, our subsolution can be extended to an optimal solution S’.
Therefore, by induction, we obtain an optimal solution.

If you tell your professor to stop at pit stop 7 + 1 and so does S, then S’ = S. If you tell him
to keep going and so does S, then S’ = S.

Suppose you tell your professor to stop at pit stop i + 1 and S tells your professor to keep
going. Since you always have your professor as far as possible without going over distance d,
following S will cause him to collapse or something.
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Now suppose S tells your professor to stop at pit stop ¢+ 1 and you tell him to keep going to
pit stop 7, with j > ¢ 4 1. Since you never tell your professor to run further than distance d,
he’ll make it to pit stop j. Let k be the first pit stop after j that S tells your professor to stop
at. Since S has your professor run from a pit stop before or equal to j (notice it could have
him stop more times getting to j, even if that would be a waste) to pit stop k, the distance
from j to k is at most d. Therefore, you can tell your professor that, after j, he should stop
at the pit stops in S at k or later, and get a solution S’ with at most as many stop as S that
extends your solution after i 4+ 1 steps.

(A step here is a pit stop, whether you say to skip it or stop at it. This is basically problem
16.2-4 from Introduction to Algorithms.)

. A cross parsing of a string S[1..m] with respect to a string 7'[1..n] is a partition of S into a
minimum number of substrings each of which occurs in T'. Suppose you are given an array
L[1..m] such that, for 1 <i < m, the substring S[i..i + L[i] — 1] occurs in T" but the substring
S[i..i+ L[i]] doesn’t. Give a greedy algorithm for computing a cross parsing of S with respect
to T. PROVE YOUR ALGORITHM CORRECT!

Solution: We make the first substring S[1..L[1]]. If a substring ends at S[j — 1], then we
make the next substring S[j..7 + L[j] — 1].

Before we take any steps, our (empty) subsolution can be extended
to an optimal solution. Assume that, after i > 0 steps, our subsolution
can be extended to an optimal solution S. Then we show that after
i + 1 steps, our subsolution can be extended to an optimal solution S’.
Therefore, by induction, we obtain an optimal solution.

Let k = j + L[j]. If S makes the (i 4+ 1)st substring S[j..k — 1], then S’ = S. Because S[j..k]
doesn’t occur in T', we know S can’t make the (i + 1)st substring longer than L[j], so suppose
S makes the (i + 1)st substring S[j..k" — 1] with ¥’ < k.

Since S[k..k + L[k]] doesn’t occur in 7', at some point S has to choose a substring ending at
S[¢] in S[k..k + L[k] — 1]. We make the next substring S[k../], and thereafter choose the rest
of the substrings the same way S does. This way, we get a solution S’ with the same number
of substrings as .S that extends our subsolution after ¢ 4+ 1 steps.

. According to https://wwwlb50.statcan.gc.ca/tl/tbll/en/tv.action?pid=1710000901,
the populations of Canada’s provinces and territories in the first quarter of 2021 were as
follows:
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Newfoundland and Labrador 520,438
Prince Edward Island 159,819
Nova Scotia 979,449
New Brunswick 782,078
Quebec 8,575,944
Ontario 14,755,211
Manitoba 1,380,935
Saskatchewan 1,178,832
Alberta 4,436,258
British Columbia 5,153,039
Yukon 42,192
Northwest Territories 45,136
Nunavut 39,407

Suppose we choose a resident of Canada uniformly at random and let X be the province or
territory where they live.
(a) Compute the entropy (in bits) of the random variable X.
(b) Compute >, p;[1g(1/p;)], where p; is the probability the resident of Canada lives in the
1th province or territory listed above.
(¢) Build a Huffman code for the probability distribution pi,...,p13; what is its expected
codeword length?

Solution: Since

520438 + 159819 + 979449 + 782078 + 8575944 + 14755211+
1380935 + 1178832 + 4436258 + 5153039 + 42192 + 45136 + 39407 = 38048738

the entropy of X is

H(X) = (520438,/38048738)1g(38048738/520438) +
(159819/38048738) 1g(38048738/159819) +
(979449/38048738) 1g(38048738/979449) +
(782078/38048738) 1g(38048738 /782078) +
(8575944/38048738) 1g(38048738 /8575944) +
(14755211/38048738) 1g(38048738 /14755211) +
(1380935,/38048738) 1g(38048738 /1380935) +
(1178832/38048738) 1g(38048738/1178832) +
(4436258/38048738) 1g(38048738 /4436258) +
(5153039,/38048738) 1g(38048738 /5153039) +
(42192/38048738) 1g(38048738 /42192) +
(45136,/38048738) 1g(38048738 /45136) +
(39407/38048738) 1g(38048738/39407)

2.497 .

Q
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You can plug (520438/38048738) 1g(38048738/520438) + ... straight into the Google search
bar to evaluate it, but Google doesn’t seem to recognize the ceiling function. For that, it’s
probably easiest to replace “lg” by “xceiling((1/log(2))+” and “)4+” by “))+” and put an
extra “)” at the end, and plug the resulting formula into a spreadsheet, to get

520438/38048738) x* ceiling((1/ log(2
159819/38048738) x* ceiling((1/ log(2
) ( (
( (

)) * log(38048738/520438)

)
979449 /38048738) * ceiling((1/log(2)

)

( ) * log( )+
( )  log(38048738,/159819)) +
( )  log (38048738 /979449)) +
(782078 /38048738) * ceiling((1/ log(2)) * log(38048738 /782078)) +
(8575944/38048738) * ceiling((1/ log(2)) * log (38048738 /8575944)) +
(14755211 /38048738) * ceiling((1/ log(2)) * log (38048738 /14755211)) +
(1380935/38048738) * ceiling((1/ log(2)) * log (38048738 /1380935)) +
(1178832/38048738) * ceiling((1/ log(2)) * log (38048738 /1178832)) +
(4436258/38048738) x ceiling((1/log(2)) * log(38048738/4436258)) +
(5153039/38048738) * ceiling((1/ log(2) ) +
(42192/38048738) x ceiling((1/log(2)) * log(38048738/42192)) +
(45136,/38048738) * ceiling((1/10g(2)) * log (38048738 /45136)) +

( (1/10g(2)) * log(38048738,/39407))

)
)
)
) * log (38048738 /5153039

39407 /38048738) * ceiling((1/log(2
~ 3.132.

(Yes, you could also write a little program to compute it.)
A Huffman code with expected codeword length 97783314 /38048738 ~ 2.570 is shown below:

3007 3007
st

2192 ) - 019

1513 / 2867554 513

159819/ 06992 156819

520438/’—_<’»#<4»—_<’»#<4>—_<’>#<4>__,,>——-i>> 1589070 520438

78078

2970005 I
979449> _ 970 5198986 979449
1178832
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T ot & g 0 ©
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4436258 4<<<<<4<<<<<<4<<<<<<4<<<<<<<4<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<i}x 23293527 4436258
5153039 5153039
:::> 13728983 38048738 ’
8575944 8575944 x 3
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X X X X X X X X X X X

w w ot

5. Suppose you have season passes for m train lines between n cities, with different expiry dates.
A ticket lets you travel on the line between two cities as many times as you like, in either
direction, from now until the ticket expires. How can you quickly determine the last date on
which you will be able to reach any city from any other city using your passes?

(a) Give a solution with the union-find data structure that takes O(m a(m,n)) time after
you’ve sorted the passes by expiry date.

(b) Give a solution that colours and re-colours the cities, and takes O(m) time after you've
sorted the passes by expiry data.
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You need not prove your solutions correct.

Solution: The key idea is to start with a graph whose n vertices are the cities and which
contains no edges, and then insert the edges for the train lines in the non-increasing order
of their tickets’ expiry dates. The line whose insertion connects the graph is the one whose
removal would disconnect the graph if we started with all the edges present and deleted them
in non-decreasing order of their tickets’ expiry dates.

Suppose we start with a singleton set for each city and, for each edge (u,v) we insert, use find
queries on v and v to determine whether they’re already in the same connected component
and then a union operation on them if they are not. In O(ma(m,n)) time we learn the
last edge for which the find queries return distinct representatives, and thus whose insertion
connects the graph.

Now suppose we start with all the cities coloured blue except for one, which is coloured red.
Whenever we add an edge, if it is between two vertices with the same colour, we add it but
do not re-colour anything; if it between a blue vertex and a red vertex, we start at the blue
endpoint of that edge and re-colour red it and all the blue vertices it is currently connected
to. The last edge for which we re-colour a blue vertex is the one whose insertion connects the
graph. To see how this takes O(m) time after the edges are sorted, consider that re-colouring
a blue connected component takes time proportional to the number of edges already added
to that component. Since we re-colour each vertex only one, in total we use O(m) time.
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Midterm 1 Solutions

1. For each cell (7,7) in the matrix below, write o, O, ©, Q or w to indicate the relationship of
the ith function on the left to the jth function along the top. If none of those relationships
hold, leave the cell blank. Only the best answer possible will be considered correct (so writing
O when the best answer is o doesn’t count, for example). The cell (1,1) is filled in as an
example: n'/* € o(n?), so that cell contains “0”. You need not explain your answers.

n? | (=)™ + 1)n | 3'8n | pl8len | nlgn
nt/4 0 0 0 0
2n w w w w w
[lgn]! w w w 0 w
ny 5 (1/7) 0 w 0 0 ©
T(n)=5T(n/4) +n%?% | o w 0 0 w

2. Assuming you have an O(n)-time algorithm to find a separator of a planar graph on n vertices
— that is, a subset of at most 2y/n vertices after whose removal all remaining connected
components each consist of at most 2n/3 vertices — give a divide-and-conquer algorithm
to find a minimum vertex cover of a planar graph on n vertices, similar to our algorithm
for colouring a planar graph. Your mark will partly depend on how fast your algorithm
is (although there is not believed to exist a polynomial-time algorithm). You need not
analyze your algorithm nor prove it correct.

Solution: We first find a separator S of the graph and then, for each subset T of S, we
recursively find the minimum vertex cover of the graph that contains every vertex in 1" and
none of the other vertices in S. To do this,
(a) we ensure there are no edges between two vertices in S\T (if there are, then no vertex
cover omits both);
(b) for each vertex v in T', we add v to the vertex cover and delete all the edges incident to
v;
(c) for every remaining edge incident to a vertex w in S\T', we add the other endpoint w of
that edge to the vertex cover and delete all the edges incident to w;
(d) we recurse on the remaining connected components.

This takes time bounded by T'(n) = 22V"2T(2n/3) € O (2"1/2+6> for any positive constant e
— but you don’t have to include an analysis.

3. Suppose we have a function that, given an unsorted sequence of n integers, in O(n) time
returns the (n/q)th, (2n/q)th, ..., ((¢ — 1)n/q)th smallest elements, called g-quantiles. Con-
sidering the time to compare elements to quantiles,

(a) how quickly can we sort with this function when ¢ is constant? Solution: ©(nlogn)
(in the comparison model, at least)
(b) how quickly can we sort with this function when ¢ = \/n? Solution: the fastest I could
figure out was still ©(nlogn)
(c) if we can choose ¢ freely, how should we choose it to sort as quickly as possible with this
function? Solution: if we choose ¢ = n then we can sort in linear time
You need not explain your answers.
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(10% bonus question) How fast can we sort if the function takes O(n) time and separates
the integers in the array into y/n bins such that the ith bin contains the ((i — 1)y/n + 1)st
through (iy/n)th smallest integers? (That is, the first bin contains the smallest y/n elements,
the second bin contains the next y/n elements, etc.) You need not explain your answer.

Solution: The recurrence is

T(n) = n'?TnY?) +0(n)
= '2(MAT (YY) + 0(n'/?)) + O(n)
= n%+iT(n1/4) +O(n)+ O(n)
= n2ti('BT(n') + 0(n'Y) + O(n) + O(n)
= nztitST(nY/8) 4+ O(n) + O(n) + O(n)
Iglgn ,
=[] @Y% +0(n)
i=1
= O(nlglgn).
The trick here is to ask for what i we have nl/2" = 2 or, equivalently, 22 = n; taking lg twice
on both sides, we get ¢ = Iglgn. You don’t need to write the recurrence or the explanation,
though — writing O(nlglgn) is enough.

. Imagine you’re planning a post-lockdown canoe trip with friends, but

e people want to bring different amounts of equipment,

e everyone wants to be in the same canoe as their equipment,

e you can have only so much equipment in each canoe (all the canoes are the same, and

consider only the weight of the equipment),

e any one person’s equipment fits in one canoe,

e everyone wants to row (so you can have at most two people in each canoe).
You have a list of how much equipment each person wants to take (in kilos), and you know
how much fits in a canoe. For example, if there are 3 people going and they want to take 37
kg, 52 kg and 19 kg of equipment and a canoe can hold up to 60 kg of equipment (plus up to
2 people), then you need at least 2 canoes: you can put the first and third people and their
37 + 19 = 56 kg of equipment in one and the second person and their 52 kg in the other.
Give a greedy algorithm to find the minimum number of canoes you need AND GIVE A
PROOF OF CORRECTNESS!

Solution: Let ¢ be the capacity of a canoe in kilos. Sort the people into non-increasing order
by the amount of equipment they want to take and consider them in that order. Suppose
the ith person has w; kilos of equipment. Pair them with the person who has the closest to
¢ — w; kilos of equipment, without going over.

Before we take any steps, our (empty) subsolution can be extended
to an optimal solution. Assume that, after ¢ > 0 steps, our subsolution
can be extended to an optimal solution S. Then we show that after

161



i + 1 steps, our subsolution can be extended to an optimal solution S’.
Therefore, by induction, we obtain an optimal solutionm

Suppose we pair the (i + 1)st person with someone who has w; < ¢— w1 kilos of equipment.
If S also has those people paired, then S’ = S. If S doesn’t have the (i + 1)st person paired
with anyone, then we can move the person with w; kilos into the same boat as the (i 4 1)st
person and obtain a solution S’ that uses no more canoes than S and extends our subsolution
after i + 1 steps. So, suppose S puts someone else in the canoe with the (i + 1)st person,
with w; kilos of equipment. Since wj < wj;, we can swap the people with those amounts
of equipment, to obtain a solution S’ that uses no more canoes than S and extends our
subsolution after i 4+ 1 steps.

5. Give a greedy algorithm for BINARY KNAPSACK that runs in O(nlogn) time, where n is the
number of items to consider, and achieves at least half the maximum profit when all the items
have the same profit-to-weight ratio. Explain why your algorithm achieves this.

Solution: We sort the items into non-decreasing order by profit (and, thus, also by weight).
After we discard items that don’t fit in the knapsack at all (even when it’s empty), at least
one of the follow statements is always true:

e the knapsack is at least half full,

e there is space for the next item,

e there are no more items.
If the knapsack is less than half full, then either it is completely empty (in which case any
single remaining item fits), or the last item we put in took less than half the capacity, in which
case the next item we consider takes less than half the capacity (because we’re considering the
items in non-decreasing order by weight). If we must stop because we’ve more than half-filled
the knapsack, then we already have at least half the possible profit. If we must stop because
we’ve run out of items, then we already have all the possible profit.

IWhen I wrote before “Don’t worry, this is the last time I’m going to write this”, I meant it was the last time that
day.
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Assignment 5 Solutions

1. Write a program that takes two strings S and T and outputs an optimal alignment in
O(|S||T|) time, displayed as in the lecture notes. For example, if S = AGATACATCA and
T = GATTAGATACAT, then an optimal alignment is

AGAT-ACAT-CA-
-GATTAGATACAT

(I think). You need not analyze your algorithm nor prove it correct.

Solution:

#include <stdio.h>
#include <stdlib.h>

#tdefine MIN(a, b) (a < b ? a : b)
#define MIN3(a, b, c) (MIN(a, b) < ¢ ? MIN(a, b) : c)

void align(char #S, char *T, int m, int n) {
int A[m + 1][n + 1];
char D[m + 1]1[n + 1];
char *top, *bottom;

Afo] [o0]
D[0] [0]

0;
’s?; // we start at A[0][0]

for (dnt i = 1; i <= m; i++) {

Alil[o] = i;

D[i]l[0] = ’v’; // we arrive at A[i][0] vertically
}
for (int j = 1; j <= n; j++) {

Afol[3] = j;

D[0]1[j] = ’h’; // we arrive at A[0][j] horizontally
}

for (dnt i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
ATil[j] = MIN3(A[i - 11[j] + 1, A[i1(j - 11 + 1,
Ali - 1105 - 11 + (S[i - 1] == T[j - 11 72 0 : 1));

if (A[i103] == A[i - 11031 + 1) {

D[il[j] = °v’; // we arrive at A[i][j] vertically
} else if (A[i]1[j] == A[i][j - 11 + 1) {

D[il[j] = ’h’; // we arrive at A[i][j] horizontally
} else {
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D[i][j] = ’d’; // we arrive at A[i][j] diagonally
}
}
}

top = (char *) malloc(m + n + 1);
bottom = (char *) malloc(m + n + 1);
toplm + n] = ’\0’;

bottom[m + n] = ’\0’;

int 1
int j n;
int p=m+n - 1;

m;

int g =m+n - 1;

while (D[i][j] != ’s’) {
if (D[i1[j] == ’v’) {

top[p--1 = S[i - 1];
bottom[gq--] = ’-7;

i--;

} else if (D[i][j] == ’h’) {
toplp-—-1 = ’-’;
bottom[gq--]1 = T[j - 11;
j==;

} else {
toplp--1 = S[i - 1];
bottom[gq--]1 = T[j - 11;
1==;

i

printf ("%s\n%s\n", &topl[p + 1], &bottom[q + 1]);

return;

}

int main() {
char *S = "AGATACATCA";
char *T = "GATTAGATACAT";

align(s, T, 10, 12);

return(0) ;

}
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2. Write a linear-time dynamic-programming algorithm for https://leetcode.com/problems/
maximum-subarray and EXPLAIN IT.

Solution:

int maxSubArray(int* nums, int numsSize){
long int old, new, max;

old
max

nums [0] ;
nums [0] ;

for (int 1 = 1; i < numsSize; i++) {
if (old > 0) {
new = old + nums[i];
} else {
new = nums[i];

if (new > max) {
max = new;

}

old = new;
}
return(max) ;

3

The sum of the max-sum non-empty subarray ending at nums[0] is just nums[0]. If the
sum of the max-sum non-empty subarray ending at nums [i - 1] is positive, then the sum of
the max-sum non-empty subarray ending at nums[i] is the sum of the max-sum non-empty
subarray ending at nums[i - 1] plus nums [i]; otherwise, it’s just nums [i].

(T realized after posting this assignment that the terrible explanations I was remembering
were for the linear-time solutions to Question 4, which don’t use a range-max data structure.
Sorry for the confusion!)

3. Suppose your professor has assigned a “profit” to each of several indivisible food items,
expressing how much he likes each item. He’s now filling his knapsack and trying to select
items to maximize the total profit. The food items are light but bulky, so the key constraint
now is the volume the knapsack can hold, rather than the weight. Even though the food items
cannot be cut, they can be squashed, which reduces their volume by a factor of 2 — but also
reduces their profit by a factor of 2 (since squashed food is not as appetizing).

Write a dynamic-programming algorithm that runs in time polynomial in the number of items
and the capacity of the knapsack (in litres) and tells your professor which food items to select
and, of the selected ones, which ones to squash. You can assume the knapsack’s capacity and
the original volume in litres of each item are integers. Explain why your algorithm is correct.
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Solution: Suppose there are n items and let v; and p; be the volume and profit of the
unsquashed ith item, for 1 < ¢ < n. Let ¢ capacity of the knapsack. For 0 < i < n and
0 < j < 2¢, we want to compute the maximum profit A[i, j] we can get from the first i items
with volume exactly j/2.

When computing A[i, j], we can either take the ith item unsquashed, in which case A[i, j] =
Ali—1,j —2v;] 4+ p; (considering A[i, j] = —oo for j < 0); or we can take it squashed, in which
case Ali,j] = Ali — 1,j — v;] + p;/2; or we can leave it, in which case A[i, j] = A[i — 1, j].
(Again, I should have just asked for the optimal profit, not the actual list of items to take
and squash.)

A [i, 0] = 0 for i from O to n

A [0, j] = -infty for j from 1 to 2 ¢
B [i, 0] = "leave" for i from O to n
B [0, j] = "?!" for j from 1 to 2 ¢

for i from 1 ton
for j from 1 to 2 ¢
Ali, j] = max(A [i -1, j - 2 v_i] + p_i,
Afi-1,j-v.il +p.i/ 2,
A [i, j1 = AL - 1, jD
if (A[i, jl == A[i -1, j - 2 v_i] + p_1i)
B [i, jl = "take"
else if (A [i, jl == A [1i -1, j - v_i]l + p_i / 2)
B [i, jl = "squash"
else
B [i, j] = "leave"
end if
end for
end for

let j be the column with the maximum value in A[n, 0..2 c]

for i fromn to 1
print B [i, j] " item " i "\n"

if B [i, j] == "take"
j=3-2v.i
else if B [i, j] == "squash"
j=3-vi
end if
end for
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4. Write pseudo-code — you don’t have to code this — for an O(nlogn)-time algorithm that
takes a sequence of n integers and finds the longest slowly increasing subsequence (LSIS),
where an LSIS is a sequence in which each number after the first is larger than it’s predecessor
but not by more than 10. Explain why your algorithm is correct.

Solution: Let x1,...,x, be the sequence of integers.

To find the length of the LSIS of 1, ..., z,, we maintain the invariant that, when processing
x;, we have inserted into a dynamic range-max data structure each point (zp,ys) for h < i,
where y;, is the length of the LSIS of z1,...,z that includes x,.

The length of the LSIS of z1, ..., x; that includes z;, is the length of the LSIS of x1,...,z;1
that ends at a values xj with z; — 10 < z;, < z;. Therefore, we query the range-max data
structure with [x; — 10, z;). If it returns (zp,yn), then we insert (x;,yp + 1) into the data
structure. If it doesn’t return a point, then there are no entries in 1, ..., z;_1 in the desired
range, and we insert (z;,1).

After processing x,, we query the data structure with [—oo,+00]; the y-component of the
returned point is the length of the LSIS of x4, ..., zy,.

To find the LSIS itself, and not just its length, we can either

e when inserting the point (x;,yx + 1), store with it as satellite data a pointer to the point
(zh, ypn) from which we calculated y;, 4+ 1 (and store a null pointer with (x;, 1));

e when inserting the point (x;,y, + 1), insert the key (z;,yn + 1) into an O(logn)-time
dynamic dictionary data structure (such as an AVL tree) with (xp,yp) as satellite data
(and store (NULL, NULL) with (z;,1)).

(I should have asked only for the length; finding the actual LSIS is optional.)

RMQ_structure Q
dictionary D

for i from 1 ton
(x_h, y_h) = Q.query [x_i - 10, x_i)
if (y_h !'= NULL)
Q.insert (x_i, y_h + 1)
D.insert (x_i, y_h + 1) with (x_h, y_h) as satellite data
else
Q.insert (x_i, 1)
D.insert (x_i, 1) with NULL as satellite data
end if
end for

(x_h, y_h) = Q.query [-infty, +infty]

print x_h

while x_h != NULL
(x_h, y_h) = satellite data of D.query (x_h, y_h)
print x_h

end while
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5. Modify the code in the lecture notes for building an optimal binary search tree such that it
runs in O(n?) time instead of O(n?) time. You need not analyze your algorithm nor prove it
correct.

Solution:

#include <stdio.h>

#define MIN(a, b) (a < b 7?7 a : b)
#define MAX(a, b) (a > b ? a : b)

int optBST(int *F, int n) {
int A[n][n];
int R[n][n];
int S[n + 1];

S[o]l = 0;

for (int i = 0; 1 < n; i++) {
A[il[i] = F[il;
R[i] [i] = i;
S[i + 1] = S[i] + F[i];

}

for (int size = 2; size <= n; size++) {
for (dint i = 0; 1 < n - size + 1; i++) {
int j = i + size - 1;

Ali1[5]
R[i] [j]

Ali + 11([31;
i;

for (int r = MAX(R[i][j - 1], i + 1); r <= MINQR[1 + 1131, j - 1); r++) {
if (A[il[r - 1] + Alr + 11[j]1 < A[iI(3D) {
ATil[j]1 = A[il[r - 11 + A[r + 11([j1;
R[i1[j] = r;
}
}

if (A[L][ - 11 < A[LI 03D o
A[il[3] = ALLILG - 11;
R[i1[j] = j;

}

A[i][j] += S[j + 11 - s[il;

}
}

// printing the matrix is optional
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fprintf (stderr, "\t");

for (int j = 0; j < m; j++) {
fprintf (stderr, "\thi", j);

}

fprintf (stderr, "\n");

for (int i = 0; 1 < n; i++) {
fprintf (stderr, "\t#%i", i);
for (int j = 0; j < n; j++) {
fprintf (stderr, "\t");
if (j >= 1) {
fprintf (stderr, "%i", A[i]1[j1);
}
}
fprintf (stderr, "\n");
}

return(A[0] [n - 1]1);
}

int main() {
int F[] =45, 3, 4, 1, 1, 2, 1};

printf ("%i\n", optBST(F, 7));

return(0);

}
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Assignment 6 Solutions

1. Show that SUBSET SUM is self-reducible: that is, if you have an algorithm that, given a set
S of integers and a target ¢, in polynomial time (in the cardinality of S) determines whether
a subset of S sums to t, then you can use it to design an algorithm that, given S and ¢, in
polynomial time (in the cardinality of S) returns such a subset.

Solution: Choose a number x € S and check if S — {z} has a subset that sums to ¢ — z; if so,
add z to the solution and recursively find a subset of S — {z} that sums to t — z; otherwise,
discard x and recursively find a subset of S — {z} that sums to ¢.

2. A grid graph is a graph whose vertices are labelled with distinct pairs of integers such that a
vertex u labelled (x,y) is adjacent to a vertex v if and only if v is labelled (x —1,y), (z+1,¥),
(x,y — 1) or (xz,y +1). HAMPATH is known to be NP-complete even when restricted to grid
graphs.

For the problem WORDZ 2, we are given an n x n grid of characters, a dictionary of strings
and an integer k and asked if the grid contains at least k sequences of characters such that
e if a character in a sequence has coordinates (x,y), then the next character must have
coordinates (z — 1,y), (z+1,y), (z,y —1) or (x,y + 1),
e cach character in the grid appears at most once across all of the sequences,
e cach sequence is a distinct string in the dictionary.
The image below shows an instance of WORDZ 2 with a 5x 5 grid and the dictionary of English
words, with 4 sequences indicated with blue, red, green and purple. (The grey characters are
not a sequence, although they could be.)
Give a polynomial-time reduction from HAMPATH ON GRID GRAPHS to WORDZ 2. (You can
assume all the coordinates in the vertices’ labels in the graph are polynomial in the number
of vertices.)

=] Level 15
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Solution: Suppose we are given an instance G of HAMPATH ON GRID GRAPHS on n vertices.
Notice that if the difference between the maximum and minimum z-coordinates is more than
n — 1, or the difference between the maximum and minimum y-coordinates is, then there
can be no Hamiltonian path (so, trivially, there is one if and only if an instance of WORDZ
2 consisting of a grid with a single letter N, a dictionary containing a single string Y and
kE=1).
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Otherwise, we shift all the x-coordinates by the same amount so the smallest is 1, and all
the y-coordinates by the same amount so the smallest is 1, and then create an n x n grid in
which the cell (7, ) contains a Y if there is a vertex now labelled (7, j), and an N otherwise.
We create a dictionary with one string, consisting of n copies of Y. That string corresponds
to a non-self-crossing path in the grid if and only if G has a Hamiltonian path.

. For the problem INTEGER LINEAR PROGRAMMING (ILP) we are given a set of linear con-
straints such as

3x1 + 5x2
43;2 — 23;3

IA
o

10
6x1 —x2+3x3 > 6

and asked if there is a solution with all of the variables’ values integers. Give a polynomial-
time reduction from 3-SAT to ILP.

Solution: Suppose we are given a 3-Sat formula F' on n variables with m clauses. For each
variable z in I’ we create variables z and z_ in the ILP, with the constraints

e —1< Ty < 2

o —1l<x_<2

e v +r_ <2
so that any solution to the IPL must set exactly one of x4 and z_ to 1 and the other to
0. For each clause in F' we add a constraint saying the sum of the variables in the ILP that
correspond to the literals in that clause sum more than 0, so that one of them must be 1. For
example, for the clause (z V -y V z), we add the constraint x4 + y_ + z4 > 0. Building the
IPL takes polynomial time and there is a solution to it if and only if F' is satisfiable.

. We can reduce 3-COL to PLANAR 3-COL in polynomial time. Why doesn’t our 30(n!/?logn)_
time divide-and-conquer algorithm for PLANAR 3-CoOL give us a 30(n'/?logn) time algorithm
for 3-CoL?

Solution: The reduction from 3-COL to PLANAR 3-COL increases the number of vertices (see
Figure and the size n’ of the resulting instance of PLANAR 3-COL can be sufficiently
larger than the size n of the original instance of 3-CoL that 30("/*logn) w(3™n). (It’s
enough to answer that n’ can be bigger than n.)

. We saw a 2-approximation algorithm for the search version of VERTEX COVER, and the
complement of a vertex cover is an independent set; does that mean we have a 2-approximation
algorithm for the search version of INDEPENDENT SET? Why or why not?

Solution: Suppose a graph G on n vertices has a minimum vertex cover of size 3n/8, so its
maximum independent set has size 5n/8. A 2-approximation for vertex cover can return a
subset of size 3n/4, the complement of which is an independent set of size n/4 — which is
less than half as big as the maximum independent set.
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Midterm 2 Solutions

1. Suppose your class is on a field trip to an island with n towns on it, connected by m town-
to-town buses (which run in both directions), run by ¢ companies. Each company’s buses
are a different colour, and there can be buses from two or more companies running between
two towns. You have a map showing which companies run buses between which towns. The
drivers have a relaxed attitude to schedules and the buses run often, so there’s no telling
which buses will be arriving and leaving next.

Your classmate Ryan has wandered off and got lost and you're (somewhat reluctantly) trying
to find him. You’d told him which buses the class was supposed to take during the day, and
given him tickets from the appropriate companies, the same colours as the buses and stapled
together in the right order. Ryan didn’t remember which towns the class was going to visit,
however, so he always took the first bus he saw of the colour of the next ticket, tearing off
that ticket and giving it to the driver.

Design a polynomial-time dynamic-programming algorithm that, given the map of the bus
routes, Ryan’s starting point and the colours of the buses he took, calculates the probability
Ryan is in each of the n towns.

For example, if the map is as shown below on the left and Ryan started in town A and took
a red bus, a green bus, a blue bus and another green bus, then his itinerary could be any of
those shown below in the center, and the probability of him being in a certain town after a
certain number of steps and of taking trips between cities is as shown in the DAG below on
the right.

A A-B-C-D-B,
A-B-D-A-C,
A-B-D-C-A,
A-B-D-C-B,
A-C-A-B-C,
D A-C-A-B-D,
A-C-A-D-B,
C A-C-B-A-C. 0%{?25 04@5 04(?75 0%5

The probability Ryan went first from A to B is 0.5, and the probability he went first from A
to C is 0.5. Therefore, after one trip, the probability he was in B is 0.5 and the probability
he was in C is 0.5.

The probability Ryan’s second trip took him from B to C is 0.5 times the probability he was
in B, or 0.25. The probability it took him from B to D is also 0.5 times the probability he
was in B, or 0.25. The probability it took him from C to A is 0.5 times the probability he
was in C, or 0.25. The probability it took him from C to B is 0.5 times the probability he
was in C, or 0.25. Therefore, after two trips, the probability is 0.25 he was in any particular
town.
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The probability Ryan’s third trip took him from A to B is 0.5 times the probability he was
in A, or 0.125. The probability it took him from A to D is 0.5 times the probability he was
in A, or 0.125. The probability it took him from B to A is the probability he was in A, or
0.25. The probability it took him from C to D is the probability he was in C, or 0.25. The
probability it took him from D to A is 0.5 times the probability he was in D, or 0.125. The
probability it took him from D to C is 0.5 times the probability he was in D, or 0.125.

Therefore, after three trips, the probabilities Ryan was in A, B, C, D are, respectively, 0.25+
0.125 = 0.375 (the probability his third trip took him from B to A plus the probability it
took him from D to A), 0.125, 0.125 and 0.125 4 0.25 = 0.375 (the probability his third trip
took him from A to D plus the probability it took him from C to D).

You can compute the probability of Ryan being in a particular town after four trips similarly.
Isn’t it lucky you're on an island, so you can’t accidentally lose Ryan forever?

(Hint: first design an algorithm that computes the number of ways Ryan could have ended
up in a town, and then modify it to compute the probability.)

Solution: The example didn’t show how to deal with situations such as Ryan starting in
town A of the map shown, and then taking a blue bus and a red bus. In that case, he can
only take both trips by travelling to B and then back to A; if he takes a blue bus from A to
D, then he’s stuck there.

We can still use the dynamic program suggested by the example, but we should normalize
the distribution we get at the end (because the question says “given ...the colours of the
buses he took”, so we can assume he didn’t get stuck partway through the sequence). Not
normalizing costs 20% of the mark.

Suppose there are b tickets. We fill an array M]0..b, 1..n], starting by setting the entry of
M]0,1..n] corresponding to Ryan’s starting point to 1 and the other entries in M to 0. For
i from 1 to b and j from 1 to n, we take the value in M[i — 1, 7], divide it by the number
of ways to leave the jth town on a bus with the ith colour and, for each of those ways, add
the quotient to M[i, j'] where j’ is the number of the town reached by that bus. When we’ve
propagated the values to M b, 1..n], we normalize the distribution in that row.

To see why this is the correct distribution, suppose we let millions of Ryans wander. Some
may get stranded along the way and lost, alas, but of those who manage to make all b trips,
the fraction arriving at each town after those b trips gives us an idea of the probability a
single Ryan will end up there. Normalizing gives us that fraction.

2. Your professor Travis told your TA Sarah that he was going to ask you to modify the solution
to the alignment question on Assignment 5, to compute an optimal alignment using only one
pass through the matrixm In contrast, that assignment question allows filling in the matrix
and then walking back from the bottom right corner to the top left corner to compute the
alignment.

Travis claimed it was possible by keeping two more arrays, top[0..m, 0..n] and bottom|0..m, 0..n],
where topli, j] is a pointer to a string of length at most m +n+1 (including the end-of-string
delimiter) containing the top line in an optimal alignment of S[1..7] to T'[1..j], and bottom][s, j]
is a pointer to a string of length at most m+n+1 containing the bottom line in that alignment.

I'Yes, this question is based on a true story.
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To compute topli, j], we sprintf into an empty string either top[i — 1, j] or top[i — 1,5 — 1]
or top[i,j — 1], followed by either S[i — 1] or ‘=’. To compute bottom[i, j], we sprintf into
an empty string either bottom[i — 1, j] or bottom[i — 1, j — 1] or bottom[s, j — 1], followed by
either T[j — 1] or -.

Sarah correctly pointed out that mallocing and sprintfing a string of length Q(m +n + 1)
takes Q(m + n + 1) time, so Travis’s solution takes cubic time. Help Travis by figuring out

how to modify his solution (shown below) to use quadratic time again.

(Hint: pointers are your friends!)

#include <stdio.h>
#include <stdlib.h>

#define MIN(a, b) (a < b ? a : b)
#define MIN3(a, b, c) (MIN(a, b) < ¢ ? MIN(a, b) : c)

void align(char *S, char *T, int m, int n) {
int Alm + 1] [n + 1];
char *top[m + 1][n + 1];
char *bottom[m + 1][n + 1];

ATol[0] = 0;

top[0] [0] = (char *) malloc(m + n + 1);
bottom[0] [0] = (char *) malloc(m + n + 1);
sprintf (top[0] [0], "");

sprintf (bottom[0] [0], "");

for (dnt i = 1; i <= m; i++) {
ATi][0] = 1i;
top[i] [0] = (char *) malloc(m + n + 1);
bottom[i] [0] = (char *) malloc(m + n + 1);
sprintf (top[i] [0], "%slc", topli - 1]1[0], S[i - 11);
sprintf (bottom[i] [0], "%s-", bottom[i - 1]1[0]);

}
for (int j = 1; j <= n; j++) {
A0l 3] = 33
top[0] [j] = (char *) malloc(m + n + 1);

bottom[0] [j] = (char *) malloc(m + n + 1);
sprintf (top[0] [j1, "¥s-", topl[0][j - 11);
sprintf (bottom[0] [j1, "%s%c", bottom[0][j - 11, T[j - 11);

for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
A[il[j] = MIN3CA[i - 11[j] + 1, A[Ll[j - 1] + 1,
Ali - 110 - 11 + (S[i - 1] ==T[j - 11 72 0 : 1));
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top[il [j1 = (char *) malloc(m + n + 1);
bottom[i] [j] = (char *) malloc(m + n + 1);

if (A[i1[3]1 == A[i - 11[3]1 + 1) {
sprintf (top[i] [j], "%s%c", topli - 11[j]1, S[i - 11);
sprintf (bottom[i] [j], "%s-", bottom[i - 1]1[j1);
} else if (A[il1[j] == A[i][j - 11 + 1) {
sprintf (top[i]l [j1, "%s-", toplill[j - 11);
sprintf (bottom[i] [j1, "%skc", bottom[il[j - 11, T[j - 11);
} else {
sprintf (top[il [j]1, "%s%c", topli - 11[j - 11, S[i - 11);
sprintf (bottom[i] [j1, "%s%c", bottom[i - 11[j - 11, T[j - 11);

printf ("%s\n¥%s\n", topl[m] [n], bottom[m] [n]);

return;

3

int main() {
char *S = "AGATACATCA";
char *T = "GATTAGATACAT";

align(s, T, 10, 12);
return(0) ;

3

Solution: The key idea is to use linked lists instead of strings, as in the code below. You
can describe your solution precisely instead of giving code!

#include <stdio.h>
#include <stdlib.h>

#define MIN(a, b) (a < b ? a : b)
#define MIN3(a, b, c) (MIN(a, b) < ¢ ? MIN(a, b) : c)

typedef struct node {
char letter;
struct node *pointer;
} node;
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void printList(node *L) {
if (L '= NULL) {
printList(L -> pointer);
printf("%c", L -> letter);
}
return;

}

void align(char *S, char *T, int m, int n) {
int Alm + 1]1[n + 1];
node *top[m + 1]1[n + 1];
node *bottom[m + 1] [n + 1];

A[0][0] = 0;
top[0] [0] = NULL;
bottom[0] [0] = NULL;

for (dnt i = 1; i <= m; i++) {
Afil[0] = i;
top[i] [0] = (node *) malloc(sizeof (node));
top[i] [0] -> letter = S[i - 1];
top[i] [0] -> pointer = topl[i - 1][0];
bottom[i] [0] = (node *) malloc(sizeof (node));
bottom[i] [0] -> letter = ’-’;
bottom[i] [0] -> pointer = bottom[i - 1] [0];

for (int j = 1; j <= n; j++) {
A0l 03] = 33
top[0] [j] = (node *) malloc(sizeof (node));
topl[0] [j] —> letter = ’-7;
top[0] [j] -> pointer = top[0][j - 1];
bottom[0] [j] = (node *) malloc(sizeof(node));
bottom[0] [j] -> letter = T[j - 1];
bottom[0] [j] -> pointer = bottom[0][j - 1];

for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
A[il[j] = MIN3(A[i - 1][j] + 1, A[L][j - 1] + 1,
Ali - 1] - 1] + (8[1 - 1] ==T[j - 11 20 : 1));

top[il [j] = (node *) malloc(sizeof (node));
bottom[i] [j]1 = (node *) malloc(sizeof (node));
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if (A[i1[3] == A[i - 1131 + 1) {
topl[il [j] = (node *) malloc(sizeof (node));
top[i] [j1 -> letter = S[i - 1];
topl[i]l [j1 -> pointer = topli - 1][j];
bottom[i] [j] = (node *) malloc(sizeof (node));
bottom[i] [j] -> letter = ’-’;
bottom[i] [j] -> pointer = bottom[i - 1][j];

} else if (A[il1[j] == A[i][j - 11 + 1) {
top[il [j] = (node *) malloc(sizeof(node));
topl[i] [j1 -> letter = ’-’;
top[il [j1 -> pointer = topl[il[j - 11;
bottom[i] [j] = (node *) malloc(sizeof (node));
bottom[i] [j1 -> letter = T[j - 1];
bottom[i] [j] -> pointer = bottom[i]l[j - 1];

} else {
topl[il [j]1 = (node *) malloc(sizeof (node));
topl[i]l [j1 -> letter = S[i - 1];
topl[il [j1 -> pointer = topl[i - 11[j - 1];
bottom[i] [j] = (node *) malloc(sizeof (node));
bottom[i] [j] -> letter = T[j - 1];
bottom[i] [j] -> pointer = bottom[i - 1][j - 1];

}

}
+

printList (top [m] [n]);
printf("\n");

printList (bottom[m] [n]);
printf ("\n");

return;

}

int main() {
char *S = "AGATACATCA";
char *T = "GATTAGATACAT";
align(s, T, 10, 12);

return(0) ;

Bonus (worth 10% of the midterm): Can you reduce the space usage to O((m + n)k),
assuming you’re given the edit distance k between S and 77

(Hint: banded dynamic programming and garbage collections are your friends!)
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Solution: The first part of the solution is not to keep the whole two-dimensional arrays A,
top and bottom at once since, of each one, we need only the row we are currently computing
and the preceding row. The linked lists we’re still using will not be lost, because we still have
pointers to them; the others will be handled by garbage collection. The second part of the
solution is not to compute alignment costs or lists for pairs of strings whose lengths differ by
more than k. This way, at any point we have pointers to O(k) top lists and O(k) bottom
lists, each of length at most m + n, so they take O((m + n)k) space.

#include <stdio.h>
#include <stdlib.h>

#define MIN(a, b) (a < b ? a : b)
#define MIN3(a, b, c) (MIN(a, b) < ¢ ? MIN(a, b) : c)
#define MAX(a, b) (a>b ? a : b)

typedef struct node {
char letter;
struct node *pointer;
} node;

void printList(node *L) {
if (L !'= NULL) {
printList (L -> pointer);
printf("%c", L -> letter);
}
return;

3

void align(char #S, char *T, int m, int n, int k) {
int *A[m + 1];
node **xtop[m + 1];
node **bottom[m + 1];

A[0] = (int *) malloc((n + 1) * sizeof(int));
top[0] = (node **) malloc((n + 1) * sizeof(node *));
bottom[0] = (node **) malloc((n + 1) * sizeof(node *));

A[o][0] = 0;
top[0] [0] = NULL;
bottom[0] [0] = NULL;

for (int j = 1; j <= n; j++) {
A0l [3] = 33
top[0] [j] = (node *) malloc(sizeof (node));
top[0] [j] -> letter = ’-7;
top[0] [j] -> pointer = topl[0][j - 11;
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bottom[0] [j] = (node *) malloc(sizeof (node));
bottom[0] [j1 -> letter = T[j - 1];
bottom[0] [j] -> pointer = bottom[0][j - 1];

}

for (dnt i = 1; i <= m; i++) {
Ali] = (int *) malloc((n + 1) * sizeof(int));

top[i] = (node **) malloc((n + 1) * sizeof(node *));
bottom[i] = (node **) malloc((n + 1) * sizeof(node *));
Afi] [0] = 1i;

top[i] [0] = (node *) malloc(sizeof (node));
top[i] [0] -> letter = S[i - 11;

top[i] [0] -> pointer = topl[i - 1][0];
bottom[i] [0] = (node *) malloc(sizeof(node));
bottom[i] [0] -> letter = ’-’;

bottom[i] [0] -> pointer = bottom[i - 1][0];

if (i - k >=0) {
A[i][i - kx - 1]

m+n+ 1;

3

if (i + k <= n) {
Ali - 1]J[1 + k]

m+n+ 1;

}

for (int j = MAX(i - k, 1); j <= MIN(i + k, n); j++) {
A[il[j] = MIN3(A[i - 1]1[j] + 1, A[i1(j - 11 + 1,
Ali = 11[j - 1] + (S[i - 1] ==T[j - 11 2 0 : 1));

topli] [j] = (node *) malloc(sizeof (node));
bottom[i] [j] = (node *) malloc(sizeof (node));

if (A[iI[3] == A[1 - 11031 + 1 {
topl[il [j] = (node *) malloc(sizeof (node));
top[i] [j1 -> letter = S[i - 1];
top[i]l [j]1 -> pointer = topli - 1][j];
bottom[i] [j] = (node *) malloc(sizeof (node));
bottom[i] [j] -> letter = ’-7;
bottom[i] [j] -> pointer = bottom[i - 1][j];

} else if (A[il1[j] == A[i][j - 11 + 1) {
topl[il [j1 = (node *) malloc(sizeof (node));
topl[il [j]1 -> letter = ’-’;
topl[il [j]1 -> pointer = toplil[j - 1];
bottom[i] [j] = (node *) malloc(sizeof (node));
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bottom[i] [j] -> letter = T[j - 11;
bottom[i] [j] -> pointer = bottom[i]l[j - 11;

} else {
top[i]l [j]1 = (node *) malloc(sizeof (node));
top[i] [j1 -> letter = S[i - 1];
top[i] [j]1 -> pointer = topli - 1]1[j - 1];
bottom[i] [j] = (node *) malloc(sizeof (node));
bottom[i] [j] -> letter = T[j - 1];
bottom[i] [j] -> pointer = bottom[i - 1]1[j - 1];

}

}

free(A[i - 1]);

free(topli - 11);

free(bottom[i - 1]);
}

printList (top[m] [n]);
printf ("\n");

printList (bottom[m] [n]);
printf("\n");

return;

}

int main() {
char *S = "AGATACATCA";
char *T = "GATTAGATACAT";

align(s, T, 10, 12, 6);

return(0) ;

3

. For the problem LONGEST KIND-OF INCREASING SUBSEQUENCE (LKOIS), we're given a
sequence S[1..n] of integers and asked to find the longest subsequence S’ of S such that
S'i— 1] =3 < S'[i] for 1 < i < |S'|. Give an O(nlogn) algorithm for LKOIS.

Solution: To find the length of the LKOIS of S, we maintain the invariant that, when
processing S|i], we have inserted into a dynamic range-max data structure each point (S[h], yn)
for h < i, where yy, is the length of the LKOIS of S[1..h] that includes S[h].

The length of the LKOIS of S[1..7] that includes S[i], is the length of the LKOIS of S[1..i —1]
that ends at a value S[h] with S[h] — 3 < S[i]. Therefore, we query the range-max data
structure with [—oo, S[i] + 3). If it returns (S[h],yp), then we insert (S[i],ys + 1) into the
data structure. If it doesn’t return a point, then there are no entries in S[1..i — 1] in the
desired range, and we insert (S[i], 1).
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After processing S[n], we query the data structure with [—oo, +00]; the y-component of the
returned point is the length of the LKOIS of S.

To find the LSIS itself, and not just its length, we can either
e when inserting the point (S[i],yn + 1), store with it as satellite data a pointer to the
point (S[h],yp) from which we calculated yp, + 1 (and store a null pointer with (S[i],1));
e when inserting the point (S[i], yp + 1), insert the key (S[i],y, + 1) into an O(logn)-time
dynamic dictionary data structure (such as an AVL tree) with (S[h], y) as satellite data
(and store (NULL, NULL) with (S[i],1)).

. For the problem PARTITION, we’re given a set S of positive integers that sums to 2¢ and asked
if there is a subset of S that sums to exactly t. Prove PARTITION is NP-complete by

e showing PARTITION is in NP,

e reducing one of the NP-complete problems we’ve seen in class to PARTITION.

Solution: Partition is in NP because, given a set S’ of integers, in polynomial time we can
check that S’ C S and the sum of 5" is T.

We reduce SUBSET SUM with only positive integers to PARTITION. We know SUBSET SUM
with only positive integers is NP-complete because our reduction from 3-SAT to SUBSET SUM
maps formulas to instances of SUBSET SUM with only positive integers.

(There is no penalty for considering SUBSET SuM with only positive integers with no expla-
nation of why it is NP-complete, or even with no explicit mention that all the integers are
assumed to be positive.)

Assume we are given a set X of positive integers x1,...,z,, and a target n, and asked if a subset
of X sums to n. Let h be half the sum of X. We add two numbers z,,4+1 and x,,,+2 to X, where
Tm+1 = Oh —n and x,,42 = 3h +n.

Suppose there is a subset of X that sums to n. Then that subset plus x,,4+1 sums to 5h. The rest of
X sums to 2h — n, so the rest of X plus z,, 2 also sums to 5h.

Now suppose there is a subset of X U {11, Zm+2} that sums to half the sum of X U {z11,Tma2},
that is, (2h + (5h — n) + (3h + n))/2 = 5h. If that subset includes z,,+1 = 5h — n, then the rest of
that subset sums to n. If that subset includes x,,12 = 3h + n, then the rest of that subset sums to
2h —n. Since 2h —n < 5h — n, the rest of that subset does not include z,,41; therefore, it is a subset
of X which, when removed, leaves a subset that sums to 2h — (2h — n) = n.

. Write a program that, given a list of the edges in a connected graph G on the vertices 1,...,n, in
polynomial time outputs a Boolean formula F' that is satisfiable if and only if G has a Hamiltonian
path. You can assume the list of edges looks something like

1, 2)
(1, 3
4, 2)
(6, 5)
(5, 3)

with one pair per line, and your output should consist of a single line containing copies of space, (, ),
AND, OR, NOT and variables that look something like x1, x2, etc.

Solution: This is actually discussed in one of the lectures. I should have made life easier for every-
one by saying n is given at the beginning of the input, and that you can use variables of the form

x_{i, j} . You can convert a variable in that form into a variable with a single number by writing
xi where 1 is i * (n + 1) + j, but it’s annoying. I told someone who asked that you can use two
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numbers, and we won’t look at it while marking. Actually, I've used two numbers in the code below,
because it makes the output more intelligible.

The idea is to write subformulas saying that every vertex appears in the path somewhere, every
position in the path has a vertex associated with it, the same vertex can appear in two positions, two
vertices can’t appear in the same position (I think this is actually redundant — if follows from the
previous constraints?), and if there isn’t an edge between u and v then if u appears jth in the path
then v can’t appear (j + 1)st. (The true is there because add that is simpler than getting rid of the
last AND.)

#include <stdio.h>
#include <stdlib.h>

#define MAX(a, b) (a>b 7 a : b)

typedef struct node {
int u;
int v;
struct node *pointer;
} node;

int main() {
node *L = NULL;
int u, v, n = 0;

while (scanf("(%i, %i)\n", &u, &v) '= 0) {
node *temp = (node *) malloc(sizeof (node));
temp -> u = u;
temp -> v = v;
temp -> pointer = L;

L = temp;
n = MAX(n, u);
n = MAX(n, v);

}
int M[n + 1]1[n + 1];

for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
M[il[j]1 = O;
}
}

while (L !'= NULL) {
u="L->u;
v =L -> v;
M[u] [v] 1;
M[v] [u] 1;
L = L -> pointer;

3

for (int 1 = 1; i <= n; i++) {
printf (" (x_{%i,1} OR ", 1i);
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for (int j = 2; j < n; j++) {
printf ("x_{%i,%i} OR ", i, j);
}
printf ("x_{%i,%i}) AND\n", i, n);
}

for (int j = 1; j <= n; j++) {
printf ("(x_{1,%i} OR ", 1, j);
for (int i = 2; i < n; i++) {
printf ("x_{%i,%i} OR ", i, j);
}
printf ("x_{%i,%i} AND\n", n, j);
}

for (int 1 = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
for (int k = 1; k <= n; k++) {
if (3 '= k) {
printf ("NOT (x_{%i,%i} AND x_{%i,%i}) AND\n",
i, i, i, k);
}
}
}
}

for (int j = 1; j <= n; j++) {
for (int i = 1; i <= n; i++) {
for (int k = 1; k <= n; k++) {
if (1 '= k) {
printf ("NOT (x_{%i,%i} AND x_{%i,%i}) AND\n",
i, j, k, 3);
}
}
}
}

for (u = 1; u <= n; u++) {
for (v = 1; v <= n; v++) {
for (int j = 1; j < mn; j++) {
if (MMul vl == 0) {
printf ("NOT (x_{%i,%i} AND x_{%i,%i}) AND\n",
u, j, v, j o+ 1);
}
}
}
}

printf("true\n");

return(0) ;
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Assignment 7 Solutions

1. You may have seen the standard BFS-based algorithm that, given a set of n jugs with capac-
ities c1,...,c, in litres, a target of ¢ litres and access to a tap, finds the fastest way of using
the jugs to measure out ¢ litres of water, or that it’s not possible. If the ¢;s are integers then
this takes O((c1 +1) - (2 +1)--- (¢, + 1) - (n + 1)?) time.

How can you modify the standard algorithm such that it runs in
O(le1+1) - (ca+1) - (cn+1)-(n+1)* - log((c1 +1) - (ca+1)--- (cn + 1))

time and, instead of the fastest way (fewest pours), it finds the way to measure out ¢ litres
which involves the least total lifting? For example, pouring 2 litres from 5-litre jug containing
4 litres into a 3-litre jug containing 1 litre, and then pouring the remaining 2 litres from the
5-litre jug into a 6-litre jug containing 1 litre, involves lifting a jug containing 4 litres and
then lifting a jug (the same one) that contains 2 litres, so the total cost is 6. (You can assume
the tap has a hose so you can fill a jug without lifting it.)

Solution: We run Dijstra’s algorithm on the graph whose vertices are the (¢; + 1) - (e2 +
1)---(cn + 1) states of the jugs (the ith just can contain between 0 and ¢; litres) and whose
edges are the possible operations. There is an edge from u to v with weight w > 0 if we can
change the state of the jugs from u to v with a pour from a jug containing w litres; there is an
edge from u to v with weight 0 if we can change the state from u to v by filling a jug. There
are at most (n + 1) outgoing edges from each vertex, since each operation can be expressed
as a pair in {1,...,n} UNULL x {1,...,n} U NULL, with (i, j) indicating we pour water
from the ith jug into the jth until the ith is empty or the jth is full, (i, NULL) indicating we
pour out the contents of the ith jug, and (NULL, ) indicating we fill the ith jug. Therefore,
Dijkstra’s algorithm takes time

O((er +1) - (ca+1) - (en +1)- (n+1)*-log((e1 + 1) - (2 + 1) - (e + 1)) -

2. Suppose you're given a list of statements such as “FACTORING polytime reduces to SAT”,
“CLIQUE polytime reduces to INDEPENDENT SET”, “INDEPENDENT SET polytime reduces to
SAT” and “SAT polytime reduces to CLIQUE”. How can you divide the mentioned problems
up into the minimum number of equivalence classes such that, for any equivalence class C and
any two problems P and @ in C, you know only from the statements that P polytime reduces
to @ and vice versa? (In the example above, there are two equivalence classes: { FACTORING }
and {SAT, CLIQUE, INDEPENDENT SET}.)

Solution: We build a graph whose vertices are mentioned problems, with an edge from u to
v if one of the statements says u polytime reduces to v, and then find the strongly-connected
components of that graph. Each strongly-connected component is an equivalence class.

3. How can you modify Dijkstra’s (without making it much slower) such that it works even when
there’s one directed negative-weight edge in the graph?

Solution: Suppose the graph is G and the negative-weight edge is from u to v and has cost
—w. We use Dijkstra’s algorithm to find the the shortest paths in G — (u, v) from the starting
vertex s to u, and from v to u.
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e If there is no way to get from s to u, then we just run Dijkstra’s on G.

e [f there is a way to get from s to u and total weight of the shortest path from v to u
is less than w, then there is a negative-weight cycle reachable from s, so the distance
from s to any vertex reachable from v is undefined, and the distance from s to any other
vertex is the same as in G — (u, v).

e If there is a way to get from s to u and the total weight of the shortest path from v to u
is w or more, then we replace (u,v) by an edge (s,v) whose weight is the distance from
s to w in G — (u,v) minus w, and run Dijkstra’s on G — (u,v) + (s, v).

4. How can you determine if there’s a negative-weight cycle of length at most k in time O(kn?),
where n is the number of vertices in the graph?

Solution: We use repeated matrix multiplication (with min and + replacing + and X,
respectively) to compute the minimum distance from the ith to jth vertices across exactly ¢
edges, for 1 <i,j <nand 1 < /¢ < k. The distance from the ith vertex to itself across exactly
£ edges is negative, for some i < n and ¢ < k, if and only if there is a negative-weight cycle
of length at most k.

5. Give an O(n?log k)-time algorithm that, given an integer k and the n x n adjacency matrix
of a graph on n vertices, returns the n x n matrix in which cell (7, j) is the number of ways
of going from the ith vertex to the jth vertex in exactly k steps.

(Hint: First figure out how to do this when k is a power of 2, and then consider the binary
representation of general k.)

Solution: We start with the binary adjacency matrix M of the graph. Assume each cell (h, %)
of matrix M? stores the number of ways to go from the hth to the ith vertices in exactly
a steps, and each cell (i,75) of matrix M? stores the number of ways to go from the ith to
the jth vertices in exactly b steps. (This is clearly true for a = b = 1, for simple graphs.)
The number of ways to go from the Ath vertex to the jth vertex in exactly a + b steps is
the sum over ¢ of the number of ways to go from the hth vertex to the ith vertex in exactly
a steps, times the number of ways to go from the ith vertex to the jth vertex in exactly b
steps. This sum is the number in the cell (h,5) of M*M?". (So, by induction, our assumption
is true for simple graphs.) Therefore, in O(kn3) time we can compute MF¥, by k repeated
matrix multiplications. To speed this up, we can use repeated squaring to compute M 2" for
0 <i < |lgk|. To obtain M*, we multiply together all the matrices M2 such that the ith bit
from the right (counting from 0) in the binary representation of k is a 1. (I guess we could
also speed up the computation with Strassen’s algorithm.)
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Assignment 8 Solutions

1. Consider the map from Assignment 1, shown below. Suppose you and lots of your friends
have decided to celebrate the end (?7) of the pandemic with trips from Dal to Eastern Europe.
To maintain the feeling that the world is big and wide, you don’t want to travel in big groups,
nor keep running into each other while you’re travelling.

You’ve decided to stay spread out with the following rule: on any particular day, if region
A is labelled with the number x and region B is labelled with the number y, then at most
min(z, y) people can travel from A to B, and at most min(z,y) can travel from B to A. (You
can assume movements are synchronous.)

The first few days may be a little chaotic, but then things should stabilize for a while, with
the same number of people leaving each region as entering, until the last people are leaving
Dal and eventually making their way to Eastern Europe. During this intermediate period of
stability, how many people are leaving Dal each day (or, equivalently, how many are arriving
in Eastern Europe)?

(Hint: can you find a matching cut?)

FEach day,
e 2 people go from Atlantic Canada to Greenland,
2 people go from Greenland to Iceland,
2 people go from Iceland to Norway / Sweden,
2 people go from Norway / Sweden to Eastern Europe,
1 person goes from Atlantic Canada to Ontario,
1 person goes from Ontario to Western Canada,
1 person goes from Western Canada to Alaska,
1 person goes from Alaska to Kamchatka,
1 person goes from Kamchatka to Yakutsk,
1 person goes from Yakutsk to Siberia,
1 person goes from Siberia to the Urals,
1 person goes from the Urals to Eastern Europe,
2 people go from Atlantic Canada to the Eastern US,
2 people go from the Eastern US to Central America,
2 people go from Central America to northern South America,
2 people go from northern South America to Brazil,
2 people go from Brazil to West Africa,
2 people go West Africa to Southern Europe,
2 people go from Southern Furope to Eastern Europe,
so 5 people leave Atlantic Canada and 5 people arrive in Eastern Europe. This is the most
possible, because the lines from Greenland to Iceland, from Alaska to Kamchatka and from
Brazil to West Africa are a cut between Atlantic Canada and Eastern Europe with total
capacity 5.
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South
Ametica

2. Suppose you're organizing a dinner at an event with n students from k& universities and trying
to choose a seating plan. Eight people can sit at each table and you don’t want more than
three people from the same university sitting at the same table. How can you efficiently find
the minimum number of tables you’ll need? The input is the number of people from each
university, ni,...,ng with n; + -+ + n, = n, and the output is the number of tables.

(Hint: to test if ¢ tables are enough, create a graph G; with a source, a sink, a vertex for each
university, and a vertex for each of ¢ tables.)

Solution: We start with ¢ = 1 and incrementing ¢ until we find a solution with everyone
seated. For each value ¢, we build a graph with a source vertex s, k vertices ui,...,ug, t
vertices v1, ..., v, and a sink vertex t. We add an edge between s and each u; with capacity
n;; an edge between each vertex u; and each vertex v; with capacity 3; and an edge between
each vertex v; and ¢ with capacity 8. We then find a maximum flow in the graph with Ford-
Fulkerson algorithm, so the flow on each edge is integer. If the flow is n, then everyone is
seated: we put as many people from the ¢th university at the jth table as there is flow on the
edge (ui,vj).

3. We saw in the Lecture 19 that if we assume there’s a C routine P that, given any string .5,
returns the length in characters of the shortest C program that outputs S and then stops,
then we reach a contradiction.

Specifically, if the code for P looks like

int P (char *S) {
...SOME CODE GOES HERE...
}

(with the code to compute P replacing ...SOME CODE GOES HERE...), then we can write a
program () that has P as a subroutine and loops through all possible strings in increasing
order by length until it finds one that P says requires a program much longer than @, at
which point @ stops and outputs that string. (P must eventually say some string requires a
program much longer than @, by counting arguments.) An example of such a program @ is
shown below.
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##include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct node {
char *string;
struct node *next;
} node;

char *stringP = "int P (char *S) {\n ...SOME CODE GOES HERE...\n}";
int lenP = strlen(stringP);

int P (char *S) {
...SOME CODE GOES HERE...

int main() {
node *head
node *tail

(node *) malloc(sizeof (node));
head;

tail -> string = (char *) malloc(1);
sprintf (tail -> String, iy ;
tail -> next = NULL;

while (1) {
if (P(head -> string) > 2 * lenP + 1000000) {
// Notice P appears twice in this program:
// once as a string and once as a subroutine.
// The number 1000000 only has to be more than
// the length of the rest of the program.
printf("%s", head -> string);
return(0) ;
} else {
for (int ¢ = 0; c < 256; c++) {
tail -> next = (node *) malloc(sizeof (node));
tail = tail -> next;
tail -> string = (char *) malloc(strlen(head -> string) + 2);
sprintf (tail -> string, "%s¥%c", head -> string, (char) c);
tail -> next = NULL;
}
head = head -> next;
}
}
}
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Adapt that argument to show it’s not possible even to approzimate within a factor of 10 the
length of the shortest C program that outputs S and then stops. How does the code for Q
above change?

Solution: Assume P approximates within a factor of 10 the length of the shortest C program
that outputs S and then stops. If we change the line

if (P(head -> string) > 2 * lenP + 1000000) {
to
if (P(head -> string) > 10 * (2 * lenP + 1000000)) {

in the program above, then the program loops through all possible strings in increasing order
by length until it finds one that P says requires a program more than 10 times longer than
the program itself, at which point it outputs that string and stops. Since this contradicts our
assumption, P doesn’t exist.
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Final Exam Solutions

1.

2.

Suppose you are given a rooted tree T on n vertices, each of which is assigned a colour.
(In this problem, both endpoints of an edge can have the same colour.) Give an efficient
divide-and-conquer algorithm to find the longest path in T" whose vertices are all the same
colour. (Paths can ascend and then descend, as long as they don’t revisit vertices.) What is
the complexity of your algorithm? You need not prove your algorithm correct.

Solution: Working bottom-up, for each vertex v of T" we compute

e the longest monochromatic path in v’s subtree that starts at v,

e the longest monochromatic path in v’s subtree that includes v,

e the longest monochromatic path in v’s subtree.
If v is a leaf, then all three of these paths are just v itself.
If v is an internal vertex with no children the same colour as v, then the longest monochromatic
path in v’s subtree that starts at v, is just v itself.
If v is an internal vertex with at least one child the same colour as v, we find the longest
monochromatic path in v’s subtree that starts at v by finding the child w of v such that

e w is the same colour as v,

e the longest monochromatic path in w’s subtree that starts at w is at least as long as the

longest monochromatic path in z’s subtree that starts at x, for any other child x of v
that is the same colour as v.

We prepend (v, w) to the longest monochromatic path in w’s subtree that starts at w.
If v has at most one child the same colour as itself, then the longest monochromatic path in
v’s subtree that includes v is the longest monochromatic path in v’s subtree that starts at v.
Otherwise, let w and x be the two children of v with the same colour as v, that have the two
longest monochromatic paths P, and P, in their subtrees and starting at them. The longest
monochromatic path in v’s subtree that includes v is the reverse of P, followed by (w,v),
followed by (v, x), followed by P,.
To find the longest monochromatic path in v’s subtree, we compare the longest monochromatic
path in v’s subtree that includes v, to the longest monochromatic path in w’s subtree, for
each child w of v; we choose the longest of all those paths.
This algorithm takes O(n) time since, for each vertex v, the time we spend at v is proportional
to the number of v’s children.
(Students’ solutions needn’t be as detailed as this; as long as it’s clear they understand the
basic idea, they should get most of the marks. Some students may also say they delete all the
edges whose endpoints have different colours, and then find the longest path in the resulting
forest, ignoring colours. As long as they correctly say how to find the longest path in a tree
— using divide-and-conquer! — that’s fine too. If that explanation is missing, some marks
should be deducted.)

(a) Give an efficient greedy algorithm that, given a sequence A[l..n] of integers, partitions A
into the minimum number of kind-of increasing subsequences. A subsequence is kind-of
increasing if, for each consecutive pair of numbers A[h] and A[i] in the subsequence, with
h < i, we have A[h| — 3 < A[i]. Prove your algorithm correct.
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Solution: As with Supowit’s algorithm, we build the subsequences as linked lists, with
the last integer of each list in a dynamic predecessor data structure, such as an AVL
tree. We process A from left to right and, for each number A[i], we use the predecessor
structure to find the largest integer = currently at the end of a list such that 2 —3 < A[i];
append A[i] to a’s list; delete  from the predecessor data structure; and insert A[i]. If
there is no such number x, we create a new list initially containing only A[i], and insert
Ali] into the predecessor data structure.
Before we take any steps, our empty subsolution can be extended to an optimal solution.
Suppose that after i steps our subsolution can be extended to an optimal solution S.
We show that after ¢ 4+ 1 steps our subsolution can be extended to an optimal solution
S’
If none of the current lists end with a number z such that = —3 < A[i] when we process
Ali + 1] in the (i + 1)st step, then S too must start a new subsequence with A[i + 1], so
S extends our subsolution after ¢ + 1 steps.
If S also puts A[i + 1] after the largest integer  currently at the end of a list such that
x —3 < Afi + 1], then S extends our subsolution after i + 1 steps.
If S puts A[i + 1] after another integer y, then y —3 <z — 3 < A[i + 1]. Let « be the
rest of the subsequence after y in S, and let 8 be the rest of the subsequence after x in
S. Since a starts with A[i + 1], we can move « to after z; since the first integer in
is at least # — 3 > y — 3, we can move [ to after y. This results in a solution S’ which
extends our subsolution after ¢ + 1 steps, and which has no more subsequences than S
and is thus also optimal.

(b) What goes wrong if you try to partition S into the number of slowly increasing subse-
quences the same way? A subsequence is slowly increasing if, for each consecutive pair
of numbers S[i] and S[j] in the subsequence, with i < j, S[i] < S[j] < S[i] + 107

(Hint: consider the two sequences 8, 1, 9, 2 and 8, 1, 9, 18, 18.)

Solution: The exchange argument in the proof breaks down. In the example from the
hint, after we process the 1 we must have two partial subsequences, 8 and 1. If we put
the 9 after 1 and then we see a 2, we must start a new subsequence with that 2, even
though the optimal partition is 8-9 and 1-2. If we put the 9 after the 8 and then we see
18 and 18, then we can put one copy of 18 after the 9 but must start another subsequence
with the other 18, even though the optimal partition is 8-18 and 1-9-18.

3. Suppose you are given a directed acyclic graph G on n vertices, each of which is assigned
a colour. (In this problem, both endpoints of an edge can have the same colour.) Give an
efficient dynamic-programming algorithm to find the length of the longest directed path in
G whose vertices are all the same colour. What is the complexity of your algorithm? You
need not prove your algorithm correct.

(Hint: start with a topological sort.)

Solution: We first perform a topological sort of G and number the vertices from 1 to n such
that, if there is an edge from v to w, then v’s number is bigger than w’s number. We build an
array A[l..n] such that A[i] is the length of the longest monochromatic directed path starting
at the vertex numbered 3.
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If the ith vertex v is a leaf or there are no edges from v to other vertices the same colour as
v, then the longest monochromatic directed path starting at v is just v itself, so A[i] = 0.
Otherwise, the length of the longest monochromatic directed path starting at v is

max{A[h]|+1 : the hth vertex w is the same colour as v and there is an edge from v to w}.

This algorithm takes O(m + n) time, where m is the number of edges and n is the number of
vertices.

(Again, some students may say they delete edges whose endpoints are different colours, and
then find the longest directed path in the resulting DAG, ignoring colours. That’s fine as
long as they correctly say how to find the longest directed path in a DAG using dynamic
programming.)

. Suppose you are given a graph G on n vertices, each of which is assigned a colour. (In
this problem, both endpoints of an edge can have the same colour.) Either give an efficient
algorithm to find the longest monochromatic path in G or justify your inability to do so. If
you give an algorithm, you need not prove it correct.

Solution: This is NP-hard, by a reduction from HAMPATH. Suppose we are given a graph
G and asked if there is a Hamiltonian path. If we colour all the vertices of G the same colour,
then there is a monochromatic path of length n — 1 if and only if there is a Hamiltonian path.

. We reduced 3-CoL to PLANAR 3-COL in polynomial time using a crossing gadget. Why can’t
we reduce 4-COL to PLANAR 4-COL in polynomial time the same way (assuming P # NP)?
What goes wrong in the reduction?

Solution: Assuming P # NP, there is no polynomial time reduction from 4-CoL (which is
NP-complete) to PLANAR 4-CoL (which is in P, by the 4-Colour Theorem). We can’t use the
same crossing gadget from the reduction from 3-CoOL to PLANAR 3-CoOL because the leftmost
and rightmost vertices are the same colour, and the topmost and bottommost vertices are the
same colour, when the gadget is 3-coloured, not when it’s 4-coloured.

. Suppose you are given a directed graph G on n vertices, each of which is assigned a colour.
(In this problem, both endpoints of an edge can have the same colour.) Give an efficient
algorithm to find the length of the longest monochromatic directed walk in G. (In a walk we
can revisit vertices and recross edges, whereas in a path we cannot.) Your algorithm should
return “undefined” if there is a directed cycle whose vertices are all the same colour.

Solution: For each colour, we consider the induced subgraph on the vertices with that colour
(that is, the subgraph remaining after deleting all edges except those with both endpoints
that colour, and deleting all vertices of different colours). We check each such subgraph to
see if it contains a directed cycle (using the topological-sort algorithm, for example) and, if
so, we return “undefined”. Otherwise, we use our solution to Question 3 on that subgraph,
and return the length of the longest directed path in any of the subgraphs.

(This can also be done with matrix multiplication.)
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