
COMPROMISED TWEET DETECTION USING WEIGHTED
SUB-WORD EMBEDDINGS

by

Mihir Joshi

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

July 2019

c© Copyright by Mihir Joshi, 2019

To my mother and my sister

ii

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . vii

List of Abbreviations Used . viii

Acknowledgements . x

Chapter 1 Introduction . 1

Chapter 2 Related Works . 5

2.1 Company’s Disclosure . 5

2.2 IP or Location Data Analysis . 6

2.3 Authorship Attribution . 7
2.3.1 Text Classification . 8
2.3.2 Text Similarity . 10
2.3.3 Word Movers Distance . 11
2.3.4 Variational Autoencoder . 11
2.3.5 Universal Sentence Encoder 11
2.3.6 Siamese Networks . 12

2.4 Summary . 13

Chapter 3 Methodology . 14

3.1 Approach . 14

3.2 Algorithms . 17
3.2.1 TF-IDF . 18
3.2.2 Skip-Gram Embeddings . 19
3.2.3 Multilayer Perceptron . 21

3.2.4 Other Machine Learning Algorithms Used 24
3.2.5 Siamese Networks . 26
3.2.6 Student’s T-test . 27

3.3 Datasets . 27
3.3.1 Twitter Corpus From Schwartz 28

iii

3.3.2 Twitter Corpus From Phan 29
3.3.3 Dataset Preprocessing . 32

3.4 Feature Extraction . 33

3.5 Word and Character N-grams . 33

3.6 Flexible Patterns . 34

3.7 TF-IDF Weighted Word Embeddings 35
3.7.1 Embedding Visualization . 37

3.8 Summary . 38

Chapter 4 Experiments And Results 40

4.1 Tweet Classification . 40

4.2 Tweet Similarity . 48

Chapter 5 Conclusion . 54

Bibliography . 56

iv

List of Tables

Table 3.1 TF-IDF of two documents . 19

Table 3.2 One hot encoding for four authors 22

Table 3.3 Authors selected from [1] . 32

Table 4.1 Accuracy for 5 users with 2000 tweets using different classifiers 40

Table 4.2 Accuracy for 5 users with 2000 tweets each using proposed sys-
tem with different feature sets 42

Table 4.3 Accuracy for 50 users with 1000 tweets each 45

Table 4.4 Accuracy and Standard deviation for 50 users from 1000 to 50
tweets . 46

Table 4.5 Accuracy for 50 users from 500 to 50 tweets for each 46

Table 4.6 Accuracy and Time taken for 50 User for MLP and SVM . . . 48

Table 4.7 Accuracy for 50 users as the number of tweets changes. 51

Table 4.8 Accuracy for different users, each trained with 100 tweets. . . . 53

v

List of Figures

Figure 1.1 Cost associated with different types of network attacks [2] . . 1

Figure 1.2 Data breaches and account exposed in United States [3] 2

Figure 3.1 Overview of the classification model 16

Figure 3.2 Skip-gram model . 20

Figure 3.3 A simple MLP with input layer, one hidden layer and out layer 22

Figure 3.4 SVM with decision boundry [4] 25

Figure 3.5 Typical Siamese network . 27

Figure 3.6 Tweets Dataset from Schwartz et al. [5] 28

Figure 3.7 Tweets Dataset from Phan and Zincir-Heywood [1] 29

Figure 3.8 One of the Frequent phrases in bradshaw1984 Tweets 30

Figure 3.9 One of the Frequent phrases in terrymarvin63 Tweets 31

Figure 3.10 Skip-Gram word embeddings 39

Figure 4.1 Confusion matrix for 5 authors 41

Figure 4.2 Overview of the proposed model using a Multi-Layer Perceptron 43

Figure 4.3 Epochs vs Loss for 50 epochs 44

Figure 4.4 Epochs vs Accuracy for 50 epochs 45

Figure 4.5 Number of tweets vs Accuracy for MLP and SVM 48

Figure 4.6 Number of tweets vs Time Taken for MLP and SVM 49

Figure 4.7 Siamese network model for compromised tweet learning. . . . 50

Figure 4.8 Test accuracy vs the number of tweets. 52

Figure 4.9 Test accuracy vs the number of users (authors) 53

vi

Abstract

Extracting features and writing styles from short text messages for compromised

tweet detection is always a challenge. Short messages, such as tweets, do not have

enough data to perform statistical authorship attribution. Besides, the vocabulary

used in these texts is sometimes improvised or misspelled. Therefore, in this thesis,

I propose combining four feature extraction techniques namely character n-grams,

word n-grams, Flexible Patterns and a new sub-word embedding using the skip-gram

model. The proposed system uses a Multi-Layer Perceptron to utilize these features

from tweets to analyze short text messages. This proposed system achieves 85%

accuracy, which is a considerable improvement over previous systems. Furthermore,

Siamese networks are employed to model the representation of user tweets in order

to identify them based on a limited amount of ground truth data. The results show

that the proposed system achieves a promising accuracy as the number of authors

increase.

vii

List of Abbreviations Used

RAT Remote Administration Tool.

CNN Convolutional Neural Network.

MLP Multilayer Perceptron.

IP Internet Protocol.

CIDR Classless Inter-Domain Routing.

SMTP Simple Mail Transfer Protocol.

VPN Virtual Private Network.

AA Authorship Attribution.

SPI Simplified Profile Intersection.

SVM Support Vector Machines.

RCVI Reuters Corpora.

LSTM Long Short Term Memory.

EMD Earth Mover’s Distance.

DAN Deep Averaging Network.

PTB Penn Treebank.

GRU Gated recurrent units.

KNN K-nearest Neighbors.

TF-IDF Term frequency-inverse document frequency.

BOW Bag of Words.

viii

CBOW Continous Bag of Words.

ReLU Rectified Linear Unit.

TanH Hyperbolic Tangent.

ADAM Adaptive Moment Estimation.

RMSProp Root Mean Square Propagation.

AdaGrad Adaptive Gradient.

MSE Mean Square Error.

CW Content Word.

HFW High-Frequency Word.

t-SNE t-distributed Stochastic Neighbor Embedding.

ix

Acknowledgements

Firstly, I want to express my heartfelt gratitude to my supervisor, Dr. Nur Zincir-

Heywood for accepting me as her student, providing me with a graduate funding which

makes it easier for me to put the focus on my research, and helping me throughout the

thesis with her ideas and feedback. She constantly assisted me with suggestions and

technical details and patiently worked with me whenever I was slow in understanding

somethings.

I would also want thank my friend Parmeet Singh who used to come up with

some outrageous ideas and was always ready to discuss my problems which ultimately

helped me out whenever I was stuck with something.

Lastly, I want to thank my mother for giving me the support I needed to come

to Dalhousie University and study and my sister for saying words of encouragement

throughout my thesis.

x

Chapter 1

Introduction

With the advancement in network technologies and the vast amount of freely available

resources over the internet, it is easier even for an unskilled person to hack someone’s

online account. Where an advanced attacker could use sophisticated resources like

keyloggers, Remote Administration Tool (RAT) [6] and Trojan horses [7], an inexpe-

rienced person could use phishing pages or various GUI based brute force tools readily

available online. Figure 1.1 depicts the cost associated with the network attacks.

Figure 1.1: Cost associated with different types of network attacks [2]

In addition to all of that, nowadays there are various instances of data breaches

which is increasing quite linearly every year exposing millions of user accounts as

shown in Figure 1.2. These compromised user accounts are then being sold on the

1

2

black market. Although websites employ security measures to prevent unauthorized

access, once the account credentials are acquired, the attacker can masquerade as

the user and then there are no provisions to separate him from the real owner of

the account. The attacker would generally use the compromised account to send

phishing links, spam, or fraudulent messages to the victimized account’s friend list

for the purpose of asking money or make them click on a link of an unwanted website

or a piece of unwanted or malicious application.

Figure 1.2: Data breaches and account exposed in United States [3]

Earlier, the stolen accounts are generally e-mail accounts but now they can belong

to any social media websites like Twitter, Facebook or YouTube as well. Due to the

restriction on the length of a text on these websites, one can write something that is

only a couple of lines long. Also, the number of words in these social media messages

ranges from a mere five to a maximum of twenty. Some of these websites like Twitter

even restricts the user to post texts that are less than 140 characters. These type

of shot texts are also called micro-messages. As the length of the text decreases,

it’s harder to find a pattern in the text and learn the writing style of the person to

correctly identify whether the message belongs to them or someone else.

Most of the current systems [8, 9] aims to classify longer text corpora such as PAN-

2018[10].The text analysis and natural language processing approaches employed by

3

these systems use statistical feature extraction techniques such as term frequency,

inverse document frequency and a bag of words approach. Due to the feature extrac-

tion process being statistical in nature, all these techniques require a certain amount

of data to use them effectively for determining patterns or perform authorship at-

tribution and alone would not perform effectively in case of micro-messages. Thus,

having short text messages such as tweets which are around 140 characters or less

makes it difficult to identify the patterns on a given text and make predictions about

the author.

Even the neural network approaches like the one implemented by Shrestha et al.

[11] used a convolutional neural network (CNN) architecture using character em-

beddings instead of word embeddings for short texts showed less than five percent

improvement on previous researches [5, 12] in this area.

In this thesis, I explore four feature extraction techniques - word n-grams, charac-

ter n-grams, flexible patterns and TF-IDF weighted sub-word embeddings for effective

classification of micro-messages. My goal is to identify users based on their writing

styles. Such a system can be leveraged for compromised user detection. To this end,

I start by implementing a simpler approach; training a multilayer perceptron (MLP)

[13] after combining the two consecutive records from the same author just using the

word and character n-grams to train my model. Then I apply the feature known as

Flexible patterns [5] after modifying the existing method and finally introducing the

new feature based on the word vector approach [14]. To the best of my knowledge,

this is the first time the combination of these four feature extraction techniques is

used for the classification of micro messages for modeling the writing styles of users.

Another contribution of my system is demonstrating how the word embedding and

modification of existing flexible pattern approach not only works well with the exist-

ing dataset by Schwartz et al. [5] but and can be easily transposed to other datasets

as well. My system [15] is a significant improvement over previous works in this area.

Afterwards, I also work on a model that learn latent representations from the

text. The latent similarity between two documents is the semantic closeness between

them and is based on the context they are used. In this paper, I employ Siamese

Networks[16] to analyze and identify two texts either from the same author or from

different authors and showing how accuracy changes when I increase the number

4

of tweets and the number of authors. To evaluate my system, I also conduct the

student’s T-test on the data to see if the difference in the results are statistically

significant or not. The T-test results show that the decrease in the performance of

the user detection system is not significant as the number of authors increases.

The thesis is organized into the following sections. Chapter 2 introduces the

related works. In Chapter 3, I present my model and the architecture followed by the

datasets and the feature extraction techniques. Chapter 4 shows the results of the

proposed system compared with the previous works. Lastly, in Chapter 5, I discuss

conclusions and future work directions.

Chapter 2

Related Works

One of the most remarkable inventions of the twentieth century is Virtual Identities

[17]. The virtual identity or as some websites (like Twitter) call it a ’handle’ is

an online personification of someone using that website. In this age, where there

are a plethora of social media websites, most people have multiple virtual identities

or online accounts which they use to communicate with each other over the internet.

Although, there are various provisions to safeguard these accounts, like everything else

on the internet these accounts are can be hacked and the user is compromised. In this

chapter, I looked at the previous work done on identifying if the user is compromised

or not. There are mainly three approaches to do that, first is the disclosure by the

parent company that they have been compromised, second is to recognize whether

the account is hacked based on the IP data of the account and lastly is to classify

and separate the compromised account from the original user of that account based

on textual data shared between the users, i.e. attributing the text to the original

user of that text. This is called authorship attribution [18]. The following is a brief

summary of these systems to the best of my knowledge.

2.1 Company’s Disclosure

There are two types of incidences, one when only a single account is compromised

and the other where there is a website-wide attack. The attacks on an individual

account like the one on Home Box Office’s (HBO) twitter account [19] are often

discreet and reported by the person whose account is compromised. On the other

hand, the data breaches on a company’s website cause thousands of compromised

accounts if not millions. One of the biggest data breaches is in 2013 when data

related to three billion Yahoo accounts [20] is leaked. Even recently, when there are

more sophisticated security algorithms, there are still frequent cases of a data breach.

Some of the famous ones are -

5

6

• Marriott International [21]

• Truecaller [22]

• Facebook [23]

Although, it is always better to learn from the official source about the account breach

before the information is released by the parent company the attacker might already

miss using the information obtained from these accounts.

2.2 IP or Location Data Analysis

The idea behind this approach is that all the email data and in some cases, social

media data (Twitter) is tagged with the geolocation which can be used to identify

the compromised user messages. Lin et al. [24] proposed a system to detect a forgery

in e-mails using this method. The assumption of their approach is that a user is most

likely to receive emails from a limited number of locations. Any e-mails received

from an account that usually sends messages from one location claiming to be from

a different place could likely be a compromised account. They captured IP address

from the headers of an e-mail sample and map it to the physical location of the server

where the message is generated. Finally, they created an email classifier for known

senders based on these properties of a sender -

• Limited IP addresses

• Limited CIDR1 addresses

• Consistent city geolocation

• consistent country geolocation

Using the combinations of these four properties, they built a client-side script that

would mark emails of known senders.

Similarly, Schäfer [25] proposed another approach for identifying compromised

email accounts using the information available in the meta-data of an email without

using the actual body of the email messages. They extracted the time and source of

1Classless Inter-Domain Routing

7

the IP of an account that is used to send an email. Using this data they implemented

a system that detects anomalies based two features -

• Country Counting - Using the geolocation data they counted the number of

locations from where the same account is connected to an SMTP server in a

given time period. The shortcoming of this approach is when the person is

traveling the system might identify the user’s account as a bot.

• Theoretical Geographical Travelling Speed - To overcome the above problem

they proposed this feature. They argued that there would be an ample amount

of time gap when a person travelling between countries would access the account

whereas in case of the bot it would be rather frequent.

The flaw in their approach is that there are cases when an actual bot is accessing

the account from different locations within a single country. Moreover, sometimes the

user has multiple devices that connect using different IPs or a user themselves use a

proxy or a VPN to hide their original location.

2.3 Authorship Attribution

The process of associating the original author of a text with the given text, based on

the other messages of that author, is called Authorship Attribution (AA) . Apart from

other applications of authorship attribution, such as detecting plagiarism in text, and

identifying the author of the anonymously written old unknown books, it can be used

to identify a compromised user account based on the messages sent by that account

and comparing them with previous messages received from the same user. Authorship

attribution is an unstructured data classification problem but it is different from other

such classifications as it not only dependents on the nuances of the writing style of

an author, but the process is very different for short texts compared to longer texts

[26]. There are two ways to identify the author of an unknown text -

• Text Classification - It is a process of assigning a label (author name) to an

unknown text document from the existing set of labels. In machine learning,

a text classifier would take text input and determine the approximate function

based on that data that could suitably put an unlabelled sample into an existing

8

category. Naive Bayes [27], Support Vector machines [28], Decision trees [29]

and various deep learning approaches can be used as a classifier.

• Text Similarity - It is a process to identify the sameness between two text

document. It is a process to separate text which are different not only lexically

but also semantically. For example, the sentences “Is leopard a fast animal?”

and “How fast is a leopard?” are lexically close but semantically are very

different from each other.

2.3.1 Text Classification

Although there is a vast amount of research on authorship attribution, my only focus

is on the research on short texts analysis. Research on classifying authors of short text

messages based on the writing styles primarily started after the advent of social media

websites like Twitter and Facebook. Layton et al. [30] carried out one of the earlier

researches on the short text using Twitter data. They proposed the lazy learning

approach using character n-grams. Their approach is based on the previous work by

Kešelj et al. [31], which uses character n-grams to make profiles of different authors.

To determine an unknown document, the profile of that document is compared with

all the authors using a distance metric that uses top M n-grams and how frequently

they appear in the document. The premise behind this approach is that an author has

the same frequency of n-grams in all its documents. Layton et al. [30] worked on the

variation of this approach called the Simplified Profile Intersection (SPI) [32]. The

SPI is a less complex approach approach that calculates the intersection size between

the author and the document profile instead of the relative distance. It equals and

sometimes outperforms the approach by Kešelj et al. [31] for smaller n (character

n-grams) and higher values of m (profile size). The approach follwed by Layton et al.

[30] summarized into following steps -

• combined all author documents

• calculate top m n-grams for the author and the unknown document

• Calculate the SPI similarity to identify the unknown document.

9

Their system achieved an accuracy of 70% for 50 authors keeping @replies in tweets

and dropped upto 27% when they removed it.

One of the most significant works in this area is done by Schwartz et al. [5].

They extended the character n-gram approach when they proposed the supervised

learning model using Support Vector Machines (SVM) . They presented the concept

of k-signatures, which is the unique signature that appears in k% of an author’s

document. They argued that there is at least one signature, in each author, and it

successfully captures the writing style of an author. They extracted three features

from each tweet -

• Character n-grams

• Word n-grams

• Flexible pattern

The last feature extraction technique (Flexible pattern) is based on functional words

Koppel et al. [33]. Flexible patterns are obtained from the plain text in an unsuper-

vised way. Finally, using all these features, they trained their SVM classifier with

10-fold cross-validation. Their system achieved an accuracy of 71% for 50 authors.

Combining deep networks with supervised learning, Rhodes [34] implemented a

model based on convolutional neural networks (CNN) using word embeddings [35].

They created word vectors that are trained using the skip-gram approach and negative

sampling from the Google news dataset while using random initialization for unseen

words. They feed the resulting vector to a CNN [36]. The CNN model was based on

a similar model [37] for language processing, where the activation function is changed

to rectified linear units and introducing dropouts. Their approach demonstrated that

the system performs well on longer text sequences. Although their research was

based on longer texts [38], it formed the foundation for the system implemented by

Shrestha et al. [11]. They make use of a similar architecture; a convolutional neural

network (CNN) using character embeddings instead of word embeddings for short

texts. The CNN model takes character unigram or bigram as an input that passes

through the character embedding layer before feeding it to the convolutional layer.

The architecture for their system -

10

• Character unigrams or bigrams as input

• Embedding layer that is initialized with random weights

• Three convolutional layer and max pooling after every layer

• A fully connected layer for classification

Similar datasets and evaluation criteria as Schwartz et al. [5] are used to determine

the performance of the system. This approach increases the overall accuracy to ap-

proximately 76%.

A more recent study on this field [1] used word embeddings and the neural network

to identify the authors of short text messages. They used the three different datasets

namely Reuters Corpora (RCVI) [39], Enron dataset [40], and Twitter dataset [41].

The used the most frequent hundred thousands words from the RCVI to train the em-

beddings. These embeddings in turn generated the high-level features from the other

two corpora by concatenating the vector of means and standard deviations. They then

used the feed forward neural network to identify the authors. They used five authors

(Ashley Nunn75, bradshaw1984, shawnevans81 , terrymarvin63, and WhieRose65)

from the twitter dataset and calculated the results averaged over twenty runs. Their

system achieved 84% validation accuracy.

Finally, Jain et al. [42] proposed a system for Spam detection social media texts

such as Facebook by using a combination of Convolutional Neural Network (CNN)

and Long Short Term Memory (LSTM) network architectures. They argue that

this system better captures diverse text by using pretrained embeddings. The CNN

extracts the n-gram features from the text whereas LSTM detects the long-term

dependencies. Their model performs better than each neural network architecture

used on its own. They also compared the model against others from the literature

with promising results.

2.3.2 Text Similarity

Most of the previous works are carried out on longer texts. In this section, I look at

various techniques that measure text similarity based on the context, i.e., how two

documents relate to each other semantically.

11

2.3.3 Word Movers Distance

Kusner et al. [43] proposed this system that calculates dissimilarity between two text

documents based on Earth Mover’s Distance (EMD) [44]. They showed that the

semantic similarity can be measured as the sum distance between word embeddings

in one document to the word embeddings of the other document. To calculate word

embeddings, they vectorized the words using word2vec [35] after removing the stop

words.

2.3.4 Variational Autoencoder

Chaidaroon and Fang [45] implement a system for text similarity by text hashing

using variational autoencoders. The autoencoder can learn a low dimensional la-

tent representation of the high dimensional data. They explained this by giving word

examples - ”government”, ”mafia” and ”playboy” would be closer to the word Berlus-

coni in the non-linear distribution of the data. They used the bag of words approach

before feeding the document into the encoder. The encoder itself has two hidden

layers, followed by a stochastic layer and the decoder module. They used various

datasets including Reuters Corpus Volume I (RCV1) [39] to train their system. For

similarity evaluation, they query the relevant document to the hashed document in

the test set using hamming distance [46].

2.3.5 Universal Sentence Encoder

Using transfer learning, Cer et al. [47] presented a system that produces sentence

embeddings. They argued that although word2vec has a limited scope and perfor-

mance can be further improved using sentence level embeddings. They proposed two

encoder models -

• Transformer - This encoding architecture is based on the attention mechanism

introduced by Vaswani et al. [48]. It works by considering both context of the

word, i.e., the order of the words in a sentence and the identity of all the other

remaining words. Therefore, it is more accurate but complex compared to the

other model.

12

• Deep Averaging Network (DAN) - In this architecture, the word and bi-gram

embeddings are averaged before using them in the feedforward deep neural

network. It is less accurate than the Transformer model but has a linear runtime.

Both of these variations take Penn Treebank styled (PTB) tokenized the input and

produces a 512-dimensional output. Finally, they concluded that though sentence

level embeddings performed better compared to word embeddings alone, the combi-

nation of both would result in a better model.

2.3.6 Siamese Networks

Recently, there are several systems that implemented another form of artificial neural

networks called Siamese networks [16]. Qian et al. [49] used them to verify the result

of authorship attribution on C50 [50] and Gutenberg [38] datasets. Their model

consists of a GRU followed by an average pooling layer. The input layer takes word

vectors as inputs that are formed using 50-dimensional Glove [51] embedding. For

the similarity measure, they used cosine distance.

Subsequently, Parikh et al. [52] implemented an architecture where they used

skip-gram embeddings of words, character trigrams and combinations of these two

approaches to train their encoder and learn the embeddings from the data. For

training, they created 200 pairs, where 100 pairs belong to the same author and

the other 100 are of different authors. They experimented with both BiLSTM and

CNN as the encoders. Later the embeddings that are extracted from the network

are used for classification using SVM, KNN , their cohort algorithm which is the

binary classification of one author against each of the other authors, and a dense

neural network. They experimented on CCAT-50 [53] dataset and their word based

ensemble model produced the best results.

More recently, Boenninghoff et al. [54] constructed a hierarchical LSTM based

siamese networks to compare the text from two authors. They used 300-dimensional

GloVe [51] embeddings as the input vector. They evaluated their results on the

dataset used by Halvani et al. [55]. Their hierarchical LSTM based Siamese network

was proved to be effective even when the data is cross-topic and outperformed the

previous work, that uses the same data, by 15%.

13

2.4 Summary

I presented here three approaches to detect the compromised account with increasing

levels of difficulty. Each of the approaches has its own advantages and disadvantages

-

• The first method doesn’t require any analysis as the information about the

compromised account is coming directly from the parent company. Although,

this information is highly accurate, until the organization discloses these attacks,

the attacker would have already caused damage by sending spam messages from

that account. Thus, a machine learning base system could help automate the

identification process.

• IP and geolocation based methods are only good in case of emails when there

is IP data presents in the document header. Even then, there is no guarantee

that the compromised account is not mimicking the original users IP.

• Author attribution approach seems the most plausible method to identify the

compromised account. Although this method is not a hundred percent accurate,

it works without the involvement of the human. The process is based on the

identification of the writing style of the user which is not easily distinguished.

Therefore, sophisticated machine learning algorithms that are efficient in finding

hidden patterns from the data are used. Also, this method generalizes well on

any type of data irrespective of the account type.

Chapter 3

Methodology

In this section, I describe my proposed approach and the features I use to train my

system. I employ four feature extraction techniques and the combinations thereof to

train my model. As my model design, I build two artificial neural network architec-

tures - a Multilayer Perceptron (MLP) as my classification model and an MLP based

siamese network for detecting text similarity. As my research is primarily focused on

short text analysis, I only worked on the data from Twitter (Tweets).

3.1 Approach

As mentioned earlier, static data analysis is not enough to detect a compromised

account. I need more advanced methods that could automate this process and works

without human intervention. In this age, where I have a vast amount of data, ma-

chine learning algorithms seems like a most fitting approach. Machine learning based

systems can identify patterns in unstructured data which otherwise be impossible for

a human to find. Based on the learned patterns, they can calculate an approximate

function that can accurately generalize most, if not all, the data. Besides that, the

accuracy of this method is directly proportional to the amount of data and increases

further as the data grows in size. To this end, I present an authorship attribution

a.k.a text classification system using a neural network called an MLP. The intuition

behind my approach is that if there is a substantial amount of short text data, I can

extract sufficient features from that data. This can uniquely identify the writing style

of an author. So, whenever there is an account breach, and it sends a new message,

my model that is trained over the old messages of that account could predict that it

is a compromised account.

Apart from classification, deep neural networks are also proficient in capturing la-

tent representation from the text. I can use these representations to detect similarity.

In the real-world scenario, one would have two messages from the same user which

14

15

could look very similar. This happens because the compromised account would try

to mimic the writing style of the original user. After learning these hidden represen-

tations, the system can compare these messages and could tell if these are actually

similar or not, i.e., they belong to the same or different authors. To this end, I im-

plement siamese networks, using MLPs which I am also using for classification. The

architecture of the MLPs are a little different from what I used for classification but

I used the same feature extraction techniques to train my model.

Any machine learning requires numeric data as an input. Therefore, textual data

is first converted in to fixed length integers or real numbers before feeding it to

the model. This is known as feature extraction. Therefore, to generate numeric

vectors from the data I employ two approaches - Term frequency-inverse document

frequency (TF-IDF) and word embeddings [35]. Whereas TF-IDF assigns values

(weights) to a word based on its relevancy in the document, word embeddings is

the vector representation that captures context of the word. In word embeddings,

words that are semantically similar are close to each other in the vector space. This

is achieved by unsupervised training on the large corpus. The advantage with word

embeddings is that it make use of transfer learning [56] and one could even use them

on a smaller dataset by training the embeddings on the large text data like Wikipedia.

After learning the embeddings, an n dimensional vector representation for each word

is obtained from the corpus. It is 300 in my case. In the following sections I will

explain what modified approach of the vanilla TF-IDF and word embedding I used.

Figure 3.1 shows an overview of my classification system.

• I extract the text from the dataset. The raw data from the Twitter also contains

other information like id, date of creation and geolocation which is of no use for

us. After extracting text from the data I learned embeddings from it.

• Next I prepossess the data for both cleaning it and reducing the vocabulary

size.

• After that I extract four types of features from the text. For the first three

features namely word n-grams, character n-grams and flexible patterns I used

the TF-IDF approach as mentioned earlier.

16

Figure 3.1: Overview of the classification model

17

• The output of the feature extraction step is used as an input for the learning

models. I use four learning algorithms for the sake of comparison.

• I try optimize my neural network (MLP) by tuning the parameters and chose

those which gave the best results.

• Lastly, I evaluate my model based using 10-fold cross validation.

In my similarity detection system everything remains as is except the fourth phase

where I used siamese network as the learning model. Important thing to note here is

that in both the cases - TF-IDF and word embeddings, the size of the feature vectors

remains same for irrespective of the size of the document. This happens because

the TF-IDF vectorizations gives a sparse representation of the data and the size of

the input depends of the vocabulary size. In case of word embeddings, I get a 300-

dimensional vector for each word in a tweet but I am taking weighted TF-IDF mean

resulting in the final feature vector as the same size. I also showed how the learned

embeddings could take advantage of the transfer learning on a different database

3.2 Algorithms

In this section, I define all the feature extraction techniques and the classification

models I used for the classification. As shown in 3.1, I used three different classifiers

apart from MLP. I also explain the statistical test I performed to test my results.

• TF-IDF

• Skip-Gram embeddings

• Multilayer Perceptron

• Support Vector Machines

• Naive Bayes

• Decision Trees

• Siamese Networks

• Student’s t-test

18

3.2.1 TF-IDF

TF-IDF, which stands for term frequency-inverse document frequency, is the succes-

sor for the bag of words (BOW) approach. BOW assigns a count to a word based on

the number of times it occurs in the document. This approach has a flaw as some-

times words like ′the′,′ so′,′ there′ which are also called stop words appears the most.

Even after removing these stop words, there are other words that have a higher fre-

quency. BOW will assign these words, numbers, according to their frequency instead

of how relevant they are in capturing the uniqueness of the text. TF-IDF handles this

problem by also taking into account the number of times that word has appeared in

the entire corpus. Hence, if a word appears in a single document and rarely appears

in the entire corpus, it would have a higher count as it gives more information about

the context of that document.

• Term Frequency (TF) - As the name suggests, it is the frequency of each word

in a document. The word frequency is divided by the total number of words in

document. Thus, TF value of a word is proportional to its occurrence in the

document and inversely proportional to the number of words in the document.

• Inverse Document Frequency (IDF) - It is to counteract the importance of high

occurring word in the corpus. Rare words have a higher IDF score compared

to frequent words.

In a text document d, the frequency of term t with total number of words n, where

�N is the total number of documents D in the corpus, the TF-IDF is given by -

TF − IDF =
t

n
× log

N

t ∈ D
(3.1)

Let’s take an example of these two sentence -

• Document 1 - The boy calls the father

• Document 2 - The girl calls the mother

19

Vocab
TF

IDF
TF - IDF

Document 1 Document 2 Document 1 Document 2

The 2/4 2/4 0 0 0

boy 1/4 0 log(2/1) 0.075 0

girl 0 1/4 log(2/1) 0 0.075

calls 1/4 1/4 0 0 0

the 2/4 2/4 0 0 0

father 1/4 0 log(2/1) 0.075 0

mother 0 1/4 log(2/1) 0 0.075

Table 3.1: TF-IDF of two documents

Table 3.1 shows how to calculate TF-IDF of the above sentences. The advantage with

this feature extraction approach is that not only one don’t have to worry about the

stop words but the unique and context relevant word in the document will get higher

weighting than others.

3.2.2 Skip-Gram Embeddings

Word embedding [35] is a semantic parsing technique used to create the vector rep-

resentation of a text in a smaller dimensional space compared to the classic Bag of

words approach [57]. The idea behind word embedding is that semantically similar

words should be close to each other or I can say that words that appears in the same

context would have the same vector value. That is, in an n-dimensional space, the

angle between the similar words should be close to zero. For example, vector of word

budapest would be closer to vector of word like Hungary, city, country and London

because they are used in the similar context. The similarity between these words can

be measured by cosine of the angle between their vectors. There are two types of

methods to achieve this; namely, Continuous Bag of Words (CBOW) and Skip-Gram

methods [35].

• Continuous Bag of Words (CBOW) - It predicts the target words by taking the

context word as input. The input can be a single word or a window of size n

before and after the word.

20

Figure 3.2: Skip-gram model

• Skip-gram - It is the opposite of CBOW model. Skip-gram predicts the prob-

ability of the context words using the target words. So, the outcome is the

context of the target word by predicting n neighbouring words. Here n is a

positive integer. Figure 3.2 shows the skip-gram model. Therefore, given a

the words w1, w2....wk, where n is the window size and V denotes the number

of training words, the skip-gram model maximizes the average log probability

which is given by equation 3.2 -

1

V

V∑
v=1

n∑
j=−n,j �=0

logP (wv+j|wv) (3.2)

Although, CBOW is a faster method, the reason for choosing Skip-gram is that it

works better with the small amount of data. Also, I am dealing with tweets and the

vocabulary used in them is sometimes improvised or misspelled; the skip-gram model

works well to represent these rare words.

21

3.2.3 Multilayer Perceptron

Multi-Layer Perceptron (MLP) [58] is a supervised learning algorithm, which is a class

of feed-forward artificial neural networks. An MLP consists of at least three layers

of nodes: an input layer, a hidden layer and an output layer. The input is a single

vector which is modified in series by a set of hidden layers. The hidden layers consist

of neurons that provide an output value from applying a function to the input values

from the previous layers. This function is essentially a matrix of weights and a bias.

The neural network learns through small changes to these weights and bias using back

propagation. Except for the input nodes, each node is a neuron that uses a nonlinear

activation function. Fig. 3.3 shows the basic MLP with only one hidden layer. MLP

is applied to data, usually unstructured, that is non-linear an cannot be classified

using the linear perceptron. Training in MLP consists of adjusting the weights and

the bias to minimize the error. Two of the most used methods to calculate the loss

are -

• Mean Square Error - This is the performance measure of the regression model.

It is the average of square difference between the actual value over the predicted

value for all labels. In eq. 3.3, N represents the total samples having value yi

and the predicted value yp,i for the ith label.

s(y, yp) =
1

N

i∈N∑
i

(yi − yp,i)
2 (3.3)

• Cross Entropy - It is the performance measure for the classification problem.

In classification, neural network predicts the probability of each output label.

Cross entropy loss value increases non-linearly with the increase in difference

of the predicted score from the actual label value. For a predicted score yp for

samples N having the actual score of y is given by Eq. 3.4. That is why it is

also called log loss.

s(y, yp) =
i∈N∑
i

yilog
1

yp,i
(3.4)

22

Figure 3.3: A simple MLP with input layer, one hidden layer and out layer

Author1 Author2 Author3 Author4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Table 3.2: One hot encoding for four authors

For a multi-class problem like my work, categorical cross entropy loss is used which

is a variation of cross entropy. In such problems, loss is calculated over the one hot

encoded value of the positive classes as all the negative ones are zero. To better explain

this imagine four authors author1, author2, author3 and author4. These authors are

represented in the bits equals to the number of labels. As shown in table 3.2 the loss

term for negative classes is zero.

23

Activation functions

Next, I talk about activation functions [59]. As I already discussed, the neural network

is just a function approximater based on the weight matrix and the bias. This could

result in the value of Y to exist between negative infinity to infinity. An activation

function helps the neuron to decide for what value of Y it should get ”fired”. In my

approach I used ReLU and TanH for my hidden layers and SoftMax for the output

layer.

• Rectified Linear Unit (ReLU) - It is a linear function when the input is positive

and zero otherwise. It is denoted by f(x) = max(0, x). ReLU works well for

most neural networks and it is faster to train as most of the negative inputs

produces zero output.

• Hyperbolic Tangent Function (TanH) - It is another non-linear activation func-

tion whose value lies between -1 and 1. It is given by f(x) = ex−e−x

ex+e−x . The

advantage of using TanH function is that it helps the back propagation process

by producing output that centers around zero [59].

• SoftMax - This is used in the output layer as it predicts the probabilities of each

class label. It is represented by f(x) = exi∑
i e

xj . The sum of the probabilities of

the class labels are one with predicted class having the highest probability and

is retrieved by using argmax.

Optimizer

I used Adaptive Moment Estimation (ADAM) [60] as my optimization algorithm to

update network weights. ADAM differs from the conventional stochastic gradient

descent as the method computes different learning rate for different parameters in-

stead of maintaining the same one. According to Kingma and Ba [60], ADAM is the

combination of two existing optimization algorithms -

• Root Mean Square Propagation (RMSProp) - This algorithm maintains sepa-

rate learning rate for each parameter based on how quickly the average weight

gradient is changing.

24

• Adaptive Gradient Algorithm (AdaGrad) - AdaGrad also have a different learn-

ing rate based on different parameters which makes it suitable for NLP problems

having sparse gradients.

ADAM differs from RMSProp that it not change the learning rate based on average

weight gradient of the mean but also the average weight gradient of the variance. It

computes the exponential moving average of the gradients. Below is the list of four

parameters while using ADAM optimizer. Important thing to note here is that I used

the default value for these.

• learning rate - It is the magnitude by which weights are updated. The default

value is 0.001.

• beta1 - The exponential decay rate for the first moment estimates having default

as 0.9

• beta2 - The exponential decay rate for the second moment estimates with the

default value 0.999

• epsilon - A constant having the default value as 1e − 07 to prevent divide by

zero errors.

3.2.4 Other Machine Learning Algorithms Used

As shown in Figure 3.1, apart from MLP, three different machine learning algorithms

are employed at the learning phase of the proposed system in this work. The following

gives an overview of these algorithms, namely SVM, Naive Bayes, Decision Tree.

SVM

The Support Vector Machine (SVM) [28] classifier is a supervised learning algorithm

for classification and regression analysis. In the literature, SVM has been employed in

document classification. It is a discriminative classifier, which employs hyperplanes

to separate data samples. The hyperplane is the decision boundary between two

classes, which is obtained in such a way that it maximizes the distance between

the elements of those classes. The optimal hyperplane is determined in the training

25

Figure 3.4: SVM with decision boundry [4]

process (supervised learning), and used to classify new data samples (testing). As

shown in fig. 3.4, the data points that are at the separation boundary are called

support vectors.

Naive Bayes

The Naive Bayes Classifier [27] is a supervised learning algorithm based on the

Bayesian theorem with the assumption that the features are conditionally indepen-

dent of each other. It is able to work with high dimensional input data. Naive Bayes

is one of the most well known machine learning algorithms, which has been employed

in numerous studies since the mid - 1990s. Despite its simplicity, the Naive Bayes

algorithm is able to solve complicated tasks, such as text classification. Equation 3.5

shows that the features xi, ..., xn are conditional independent.

P (y|xi, .., xn) =
P (y)

∏n
i P (xi|y)

P (xi, ..., n)
(3.5)

Decision Tree

Tree based classification algorithms are supervised learning algorithms, which employ

a divide and conquer strategy to model the given data. A decision tree [29] is a tree

structure where each decision node represents a feature and the leaf node represents

the classification label. A decision tree splits the data samples based on the features

26

that provide the maximum information gained. In this research, Random Forest

(ensemble classifier) of decision trees is used to implement this model.

I implemented SVM, Naive Bayes and Random Forest (Decision Trees) classifiers

using the Scikit-Learn Python machine learning library [61]. As discussed earlier, the

goal is to classify micro-text. In doing so, I aim to choose the most suitable classifier

using the extracted features proposed in the previous section.

3.2.5 Siamese Networks

Siamese networks were used for one-shot image classification by Koch et al. [16].

They used Siamese networks which consist of two sub-CNNs with shared weights.

Pairs of images from the same class and also from different classes were created in

equal proportion for a single batch of training. They presented the image pairs to the

CNNs in the Siamese network. The structure of the CNN was a series of convolution

and pooling layers. The feature representations from the layers are flattened to a

one-dimensional vector. The flattened vector represents the projection of the image

onto a continuous vector space. They calculated the distance between the two vectors

using the Euclidean distance [62]. This distance is fed into a fully connected layer

and then finally, optimized using the cross-entropy loss function. The results showed

that the network was correctly differentiating pairs that are from the same class and

those that are from different classes.

I used contrastive [63] loss as my loss function. This loss function is based on

the distance compared to previously mentioned losses such as MSE and is suitable

for pair-wise learning. It learns parameters in such a way that semantically closer

samples stays together. As shown in equation Eq. 3.6, fi and fj are representations

of tweets i and j. yij is a boolean variable which is 1 when both tweets are from

the same user, and 0 when the tweets are from different users. The contrastive loss

requires the distance between embedded representations of tweets to be larger than

a margin, m. The margin is decided in a way that limits the penalty to dissimilar

samples.

Loss =

1

2
||fi − fj||2

2 if yij = 1

1

2
∗max(0,m− ||fi − fj||2

2) ifyij = 0
(3.6)

27

Figure 3.5: Typical Siamese network

3.2.6 Student’s T-test

Student’s T-test [64] is a statistical method that is used to check relationship between

the mean of two normally distributed samples. In my similarity detection approach

using Siamese networks, I used this to measure that there is a difference between the

mean of two different calculated results and it doesn’t happen due to experimental

error which is also called the null hypothesis [65]. There are two values associated

with the T-tests -

• T score - It is the inter group vs intra-group difference ratio. A large T score

translates to a larger difference between the groups.

• P value - P value is the probability value which denotes the chance of occurring

the different results. A P value of 0.05 denotes that there is only 5% chance

that the results happened because of experimental errors or sampling problems.

In my experiments, I took accuracy groups based on different authors and tweets.

Based on the T test, if I am getting the P value of less than 0.05, I concluded that the

mean accuracy of any two of these independent groups rejects the null hypothesis.

3.3 Datasets

In this thesis, I work on two datasets one from Schwartz et al. [5] and the other

one from [1]. As discussed earlier, I use the first dataset to train my skip gram

embeddings. The purpose here is to train the word embedding model and used it on

28

Figure 3.6: Tweets Dataset from Schwartz et al. [5]

test data as well as the other dataset. Moreover, I use the same embeddings in my

text classification and similarity model. In this section, I would discuss the datasets

used by my system.

3.3.1 Twitter Corpus From Schwartz

This dataset is collected by Schwartz et al. [5]. It has over 7000 authors with every

author having a thousand tweets each. The name of the authors are anonymized

using a number. This is probably done for privacy reasons. There are ten files under

every author having hundred tweets in each one. Fig. 3.6 shows an excerpt from the

dataset. Apart from the condition that each tweet should have atleast three words,

there is no other restriction on the tweet size or content. A Tweet can have following

attributes -

• �@user - These are called mentions, and it alerts the user whose name is included

in the tweet.

• #hashtags - This is a part of the tweet that identify a topic and make it search-

able on twitter. For e.g., during elections, tweets could include #election2019

hashtag.

• URL - This could be a website link.

• [pic] - This is an image reference followed by a link to that image.

29

3.3.2 Twitter Corpus From Phan

This corpus is originally collected by Yilu et al. [41]. It consists total of 970 authors

with a varied number of tweets. Some users have over 3000 tweets while others have

less than 1000. In this dataset the name of the original authors are captured as the

purpose of this dataset was linking tweets to real world entities. Moreover, there is

no restriction on the size of tweets. For the purpose of uniformity I followed the same

tweet size as mentioned earlier. Fig. 3.7 shows the sample from of the authors. Each

line has following components -

Figure 3.7: Tweets Dataset from Phan and Zincir-Heywood [1]

• id - A unique tweet id assigned by Twitter.

• created at - The date at which this tweet is posted at the website.

• text - The actual body of the tweet.

• Geo - The co-ordinates of the location from which this tweet is posted.

As my focus is to identify user from their writing style, I only extract text data

from the samples. It is important to not that location could better identify authors but

as mentioned earlier a user could tweet from more than one location. Subsequently,

not every tweet contains the location data. I chose same five user accounts as Phan

and Zincir-Heywood [1] with each having 2000 tweets. Table 3.3 shows the name of

selected five authors.

I can see in fig. 3.8 and 3.9 one of the most used phrases by bradshaw19840 and

Ashley Nunn75 respectively. Even looking at the phrase construction I could say that

bradshaw19840 tweets are more opinionated and about his views on various sports

whereas terrymarvin63 are more about greetings. My system will find other such

patterns in the data with the help of sophisticated feature extraction techniques.

30

Figure 3.8: One of the Frequent phrases in bradshaw1984 Tweets

31

Figure 3.9: One of the Frequent phrases in terrymarvin63 Tweets

32

Authors

Ashley Nunn75

bradshaw1984

shawnevans81

terrymarvin63

WhieRose65

Table 3.3: Authors selected from [1]

3.3.3 Dataset Preprocessing

Before applying any feature extraction technique or creating word embeddings I re-

fined my data and made it suitable to better capture the writing style. Although,

five users are selected from [1], I consider all 7026 authors from [5]. These are the

changes I made to the corpus -

• I replace all mentions (@user) with the text user. This is important to prevent

overfitting and make the system generalize the prediction on basis of writing

style rather than on the names used by the author.

• Stemming to reduce the vocabulary size.

• All instances of date and time are replaced by the word date and time, respec-

tively.

• I also replace all number and the URLs with the word num and URL, respec-

tively.

• Punctuation are considered as valid tokens but a space is put between them

and any other words.

• Apart from that I remove any special characters.

• Sometimes there are multiple spaces, tabs or newline character. I replace all of

them with a single space character.

33

• Lastly, I mark the start of the message with the word ”BEGIN” and the end of

the message with the word ”END”

3.4 Feature Extraction

There are a total of four features that are obtained from the text namely word n-

grams, character n-grams, flexible patterns and word embeddings.

3.5 Word and Character N-grams

N-grams are consecutive sequences of words and characters in text which can poten-

tially capture repeating phrases shown to be useful for authorship attribution. For

example, in the phrase - ”This is a sentence” -, a word unigram would be - ”This”,

”is”, ”a” - and a word bigram would be ”this is”, ”is a”, ”a sentence” - and so on.

On the other hand, character n-grams are similar to word n-grams except, they are

a sequence of characters. For instance, if I use the previous example, ”This is a sen-

tence”, a character unigram would be - ”T”, ”h”, ”i”, ”s” - and a character bigram

would be - ”th”, ”hi”, ”is”. I made following considerations while extracting n-grams

-

• I choose word n-grams of length 2 6 n 6 5

• For character n-grams - 3 6 n 6 4

• I also take into consideration the maximum occurrence of the n-grams. For

example, a pattern including prepositions (as shown in 1 below) or a masked

username (as shown in 2 below) are very common in tweets.

1. for a

2. <User> I

This is even more common in character n-grams. For this reason, I keep the

upper limit of the n-grams to 0.9, which means I do not consider any word or

character n-grams that appear in more than 90 percent of the documents. This

further helps us identify the unique writing style of an author.

34

• I restrict each feature to a maximum of 50,000 in my experiments. To assign

weights to the n-grams, I used TF-IDF. Moreover, I employed sub-linear scaling

to the TF-IDF by taking the log of the term frequency, Eq.1.

wft,d =

1 + logtf td, if tftd = 1

0, otherwise
(3.7)

3.6 Flexible Patterns

Next I extract flexible patterns from the text. Flexible patterns were introduced by

Schwartz et al. [5]. The idea behind flexible patterns is that some users tend to use

the same sequence of words in their writing style and only change a few keywords

called content words (CW). For example, the flexible pattern of the following phrases

-

1. ”I read the paper today”

2. ”I drove the car yesterday”

Flexible pattern - ”I CW the CW CW”.

The words read, paper, today, drove, car and yesterday are replaced by the word CW

based on the pre-defined condition. Therefore, masking some words, would create a

pattern and separate the texts of some users from other users. I modify the existing

approach [5] to make it suitable for smaller datasets and also to make it easier to

implement.

According to Schwartz et al. [5] flexible patterns are a branch of word n-grams,

where each word is either a high-frequency word or a content word and some words

can be both. For a corpus size s if a word appears more than 10−4 × s times it is a

High-Frequency Word (HFW) and if it appears less than 10−3×s times it is a Content

Word (CW). Also, the previous method takes into consideration that flexible patterns

start/end with an HFW and there can be no consecutive HFWs. The problem with

this approach is that it does not work with a smaller corpus. For a corpus where the

value of s is 1000, no word is a CW. Thus, to overcome this limitation, Eq.2 is used

to calculate the CW for a bigger corpus. Therefore in a corpus with a vocabulary size

35

n, the CW is calculated as the common log of the threshold for CW is selected as

twice of log of s which are total number of words in the training dataset vocabulary.

This method is based on the various experiments I carried out to choose the optimum

number.

CW 6 2log10n (3.8)

Algo 1 describes the algorithm for generating the flexible pattern of a tweet. First,

the total number of tokens for a user (author) is calculated along with frequency of

each token. Next, I replace words whose count is less than the threshold with a

keyword ”CW”. These words are rare in occurrences and are called Content Words

(CW). For example, the sentence ”I have a bat” will converted to ”I have a CW” if

bat is the content word. After replacing all the CWs in the corpus, I then used the

same approach for vectorization as I did for word n-grams by applying the TF-IDF

scheme to those flexible n-grams before inputting them into the model.

3.7 TF-IDF Weighted Word Embeddings

Now, I talk about the word embeddings feature set I used the word embedding ap-

proach from Bojanowski et al. [14], which is called fastText. It is an extension of the

original word embedding approach by Mikolov et al. [35]. FastText models can be

trained to create a word embedding by making use of character level representations.

These models learn a vector representation for a word by learning a representation for

each of its character n-grams. Therefore, the overall word embedding is a weighted

sum of the embeddings of these character n-grams. For example, for n=3, the vector

for the word hello would be represented by a sum of trigrams: < he, hel, ell, llo, lo >

where < and > denote the beginning and end of a word.

Tweets contain several words, including, but not limited to, hashtags that are rare

and sparsely occur in a corpus. To address this sparsity issue, each word is represented

by the sum of the vector representations of its n-grams. Having a dictionary as size

D and a word w belongs to this dictionary having Dw ⊂ {1, ..., D}, the set of n-grams

appearing in w. Associating a vector representation of zd to each n-gram d, the scoring

function for w can be represented by Eq. 3.9:

36

Data: T = given tweet

C = corpus

V = vocabulary of corpus

Result: Find the flexible pattern for the tweet

freq ← {}

for word in V do

freq[word]← count of word in C

end

thresh← 2 log10 V

flex pattern← []

for word in tweet do

if freq[word] 6 thresh then

flex pattern← flex pattern + ”CW”

else

flex pattern← flex pattern + word

end

flex pattern← flexible pattern for tweet T

Algorithm 1: Pseudo-code for the flexible pattern

37

s(w, c) =
∑
d∈Dw

zTd vc (3.9)

For the value of n, I chose 2 6 n 6 6. Empirically, instead of using pre-trained

embedding, I train it on my corpus with a 300-dimension vector space. I construct

the embedding using the Skip Gram approach which works better for a smaller amount

of data and is preferable when there are a greater number of rare words in the corpus

[5]. The weights of this network are learned giving as input a word in the middle of

a sentence and use the surrounding words in a specific window size as supervisory

signal. Figure 3.10 shows the created vector representation from the dataset.

Before using this as an input feature for my model, I weighted the embedding of

each word in a text with the IDF value of that word. The resulting dimension is the

same as the dimension of each word, which in my case is 300. Ultimately, I calculate

the mean of the words to keep the dimensionality of the entire text the same as my

vector space. Having a text of size T and words w where Tw ⊂ {1, ..., T}, the TF-IDF

weighted embedding feature f(w) of a word wT is given by using Eq.4:

f(w) =

∑
w∈Tw idf(wT)× emb(wT)

T
(3.10)

3.7.1 Embedding Visualization

I use t-distributed Stochastic Neighbor Embedding (t-SNE) [66] technique, which is a

way to visualize high-dimensional data, into a low dimensional space, for visualization.

Figure 3.10 shows the representation of 300-dimensional data in a two-dimensional

space. Because of space constraints, I only visualized random 150 word vectors on

the graph.

The graph shows the words which are used in the same context are grouped closer

to each other. The idea behind this approach is that a particular author would use

38

the same combination of words in his/her tweets and therefore, they should be close

to each other.

3.8 Summary

In this chapter, I discussed the methodology behind my proposed system and means

to implement it. I gave an overview of my model which includes -

• List of algorithms I used in my system.

• An outline of the dataset and how to process that data before extracting features

from it.

• Four feature extraction techniques, and the importance of each one of them.

• Various visual elements that provide a better interpretation of the proposed

approach.

39

Figure 3.10: Skip-Gram word embeddings

Chapter 4

Experiments And Results

In this section, I will explain about the experiments in detail. This will include all

the model specific techniques and parameters I chose for my system. Apart from that

I also explain the results I get for both tweet classification and similarity approaches.

4.1 Tweet Classification

As discussed earlier, the goal is to classify micro-text. In doing so, I aim to choose the

most suitable classifier using the extracted features proposed in the previous section.

To this end, I employ the same small dataset used in Phan and Zincir-Heywood [1].

It is important to note here that before extracting features and feeding data into

the MLP or any other classifier, I concatenated sets of two adjacent records. For

example, the first text is combined with the second, the third with the fourth and so

forth. Though the initial number of records remains the same, combining the original

texts enables us to have a larger sequence, which achieves better accuracy even with

the earlier approaches of feature extraction [5, 11]. The larger sequence also helps us

to achieve more meaningful patterns which is not otherwise possible.

Table 4.1 shows the 10-fold cross validation accuracy of the four classifiers on that

dataset for the 5 authors previously mentioned, where 2000 tweets are used for each

author. In this case, TF-IDF word Embedding system (Table 4.1) achieves more

than 99% 10-fold cross-validation accuracy which is 15% more than the best result

reported in Phan and Zincir-Heywood [1].

MLP SVM Naive Bayes Random Forest

.99 .979 .96 .82

Table 4.1: Accuracy for 5 users with 2000 tweets using different classifiers

Although, word embeddings are extracted both in this thesis and the work in Phan

40

41

Figure 4.1: Confusion matrix for 5 authors

and Zincir-Heywood [1], my embeddings are formed using sub-words from a Twitter

corpus. In Phan and Zincir-Heywood [1], the embeddings are formed using words

from the Reuters Corpus Volume I (RCV1) [50]. Moreover, their word embeddings

do not contain the TF-IDF weights. In this thesis, besides word embeddings, I also

added three other feature extraction techniques - word n-grams, character n-grams

and flexible patterns.

Moreover, Figure 4.1 (confusion matrix) demonstrates that these results are not

biased to any specific author in the dataset used. Additionally, Table 4.2 shows how

the 10-fold cross-validation accuracy improves the proposed MLP classifier as the

different feature extraction techniques are used, where the first three columns show

the accuracy of the combination of extraction techniques and the last column is the

best test results given in Phan and Zincir-Heywood [1].

42

TFIDF Embedding Flexible Patterns Joining records Phan2018

.99 .983 .972 .841

Table 4.2: Accuracy for 5 users with 2000 tweets each using proposed system with
different feature sets

Given the above observations, MLP is chosen as the most suitable classifier for

my research purpose: classifying the tweets according to their authors. Figure 4.2

presents the overview of the proposed MLP model. Here are the salient features of

my model -

• The number of nodes in the input layer depend on the size of the input feature.

None represents that the dimension is variable, and in this case, it is 86121.

The size would increase as the number of tweets increases to train the model.

• Then, there is a dense layer, which is a fully connected layer, where each input

node is connected to each output node.

• One of the dense layer is a hidden layer of 1000 nodes.

• The Tanh activation function [67] is used for the hidden layer.

• The other dense layer is the output layer of 50 nodes, which corresponds to

50 authors. This can be changed depending on the number of authors (output

classes).

• The SoftMax activation function [59] is used for the output layer.

• In between the two dense layers, there is a dropout layer for regularization.

• Furthermore, I have a 30% dropout.

• ADAM [60] is adapted as the optimization algorithm with a learning rate of

0.001.

• I divided the data into batches of 64.

• The model is trained for the total of 40 epochs.

43

Figure 4.2: Overview of the proposed model using a Multi-Layer Perceptron

44

Figure 4.3: Epochs vs Loss for 50 epochs

Figure 4.3 and Figure 4.4 show the number of epochs vs loss, and the number of epochs

vs accuracy graphs for training and validation data, respectively. These results show

that both the loss and accuracy are optimal at around 40 epochs.

In the following experiments, I incrementally apply all three feature extraction

techniques using the MLP classifier and observe the improvements compared to the

previous research results (see Section 2). To this end, I first combine the subsequent

tweets and apply the approach presented by Schwartz et al. [5], then I improve that

method to calculate flexible patterns and their effect on the accuracy of the system.

Last but not the least, I build weighted TF-IDF embeddings and combine them with

the improved flexible patterns to form the combined set of features as input into

the proposed MLP model. Ten-fold cross-validation approach is used to evaluate

the performance of the proposed system. I evaluate the proposed system on the same

dataset as used by Schwartz et al. [5], Shrestha et al. [11], where the dataset consisted

of 50 authors, each having 1000 tweets.

Columns 1-3, in Table 4.3, shows the results of all three feature extraction tech-

niques used with the MLP, and columns 4-7 represents the results from the previous

45

Figure 4.4: Epochs vs Accuracy for 50 epochs

TFIDF Emb. Flex Joining rec. CNN-C SCH Char LSTM-2

.852 .829 .81 .761 .712 .703 .645

Table 4.3: Accuracy for 50 users with 1000 tweets each

46

#tweets Accuracy Std dev

50 .589 .03

100 .648 .02

200 .730 .02

500 .791 .01

1000 .852 .01

Table 4.4: Accuracy and Standard deviation for 50 users from 1000 to 50 tweets

TFIDF Emb. Mod. flex Joining rec. CNN-C SCH Char LSTM-2

500 .791 .76 .748 .724 .672 .655 .597

200 .730 .694 .679 .665 .614 .585 .528

100 .648 .619 .608 .617 .565 .517 .438

50 .589 .563 .53 .562 .505 .466 .364

Table 4.5: Accuracy for 50 users from 500 to 50 tweets for each

works on the same dataset. My results are mutually inclusive, and the results are

build upon combining all the feature extraction techniques. For example, I use the

weighted TF-IDF embeddings in combination with the flexible patterns. Table 4.4

represents the mean accuracy and standard deviation for different number of tweets

keeping the number of authors as 50.

• Shrestha (CNN-C): CNN-C, shown in Table 4.3, represents the best result

obtained by Shrestha et al. [11] where a convolutional neural network architec-

ture is proposed using character n-grams, specifically unigrams and bigrams as

input. The convolutional model use is a three-level architecture with the input

layer as the character embedding layer, a convolutional module, and finally, a

dense layer with a Softmax activation function for classification. The unigram

model performed well on the smaller dataset. Alternatively, the bigram model

had better accuracy on the bigger dataset.

• Schwartz (SCH): SCH, shown in Table 4.3, represents the best result obtained

by Schwartz et al. [5]. They used a linear SVM for classification and their model

47

was a combination of word and character n-grams along with a new feature set

called flexible patterns (see section 3.3), which is modified and used in my

system as well.

• Char: Char, shown in Table 4.3, represents one of the systems used by Shrestha

et al. [11] in which they compared the performance of their system based on the

earlier character n-gram approaches [5, 30] and proposed a logistic regression

model that employed character n-grams of sizes two to four.

• LSTM-2: LSTM-2, shown in Table 4.3, represents the state-of-the-art LSTM

model based on the success of previous implementations [68, 69]. This model was

also used with bigrams as input to evaluate the performance of those systems,

with respect to other models on the same dataset.

Introducing the concatenation of the consecutive records enables the accuracy of

the proposed system to be improved by 5% compared to the previous approaches.

Then applying the flexible patterns, further improves the accuracy by approximately

2%. Finally, implementing the weighted TF-IDF word embedding, and combining it

with all the other features increases the accuracy of the proposed system to approxi-

mately 85%, Table 4.3.

In Table 4.5, I also compare the proposed system’s accuracy to other approaches

as I reduced the number of tweets from 500 to 50 for each author (50). After reducing

the number of tweets, the proposed system still outperformed all the other previous

approaches and performs well even when the dataset became as small as 50 tweets

per author.

MLP vs SVM

Although, I already compared the SVM and MLP on the dataset used in Phan and

Zincir-Heywood [1], the accuracy does not represent a clear difference between the

two approaches as there are only 5 authors. So, in table 4.6, I compare the accuracy

and time (computational cost) taken by SVM and MLP for different number of tweets

where the number of authors is 50. The accuracy is better in all cases but the time

is better for SVM only when there are less number of tweets. As the data increases,

48

there is a steep rise in the time taken by SVM compared to MLP. Figure 4.5 and 4.6

show the accuracy and time taken by the two models, respectively.

#tweets
Accuracy Total time (sec)

MLP SVM MLP SVM

100 .648 .40 28.65 24.65

200 .730 .49 76.38 75.41

500 .791 .57 321.03 351.24

1000 .852 .68 600.68 1112.22

Table 4.6: Accuracy and Time taken for 50 User for MLP and SVM

Figure 4.5: Number of tweets vs Accuracy for MLP and SVM

4.2 Tweet Similarity

The proposed system is trained for 200 epochs with a patience number of 50. For

feature extraction, I combine the word, character and flexible n-grams in a single

stack and consider this as one input. In comparison to this, I also consider just the

49

Figure 4.6: Number of tweets vs Time Taken for MLP and SVM

tf-idf weighted word embedding feature set as the input. The word embeddings have

a maximum of 100 dimensions as I am taking the mean of every word in the dataset.

The training process is divided into two phases. In phase 1, the total number of

users is 50 and the number of tweets ranges from 10 to 100. This is done to compare

the aforementioned extraction techniques. In phase 2, the total number of tweets is

100 and the number of users ranges from 10 to 100 to test whether the performance

of the model is impervious to the number of users.

It should be noted here that 90% of the dataset is used for training and 10% for

testing. While training, I combine all the tweets from a particular user and when I

pair them with the same user, the label is 1. On the other hand, if the tweets from

the same user are combined with a randomly selected tweet from any other user, then

the label is 0. I keep an equal number of positive and negative samples to keep the

training set balanced. Although, after every epoch, I include more random samples

to make my network more robust [16].

Fig 4.7 shows the architecture of the Siamese network containing two branches of

a MLP. The MLP has four fully connected layers, where three of them have 128 units

50

Figure 4.7: Siamese network model for compromised tweet learning.

51

#tweets
Word, Char and Flexible patterns FastText Embeddings

p-value
mean std dev mean Std dev

10 .57 .03 .60 .04 0.14

20 .65 .02 .70 .05 0.02

30 .66 .02 .69 .05 0.06

50 .66 .01 .71 .03 0.002

100 .71 .01 .73 .04 0.12

Table 4.7: Accuracy for 50 users as the number of tweets changes.

with Tanh activation function, while the last layer having 512 units. I use dropout

layers with rate 0.1 for regularization. The last layer is a lambda layer which uses

output from both branches as input and calculates the euclidean distance between

the two representations. I pass the combined representation of users into the left

network and the user tweet that is tested for compromised detection into the right. I

use contrastive loss with a margin of 1. I use ADAM optimizer [60] with a learning

rate of 0.001.

Fig 4.8 shows the test accuracy as the number of tweets changes for 50 users using

Siamese networks. I employ two types of features as input to the Siamese network.

First, I vectorize the tweets using word n-grams, character n-grams and flexible pat-

terns. Secondly, I use the fastText word embedding tweets with a dimension of 100.

I train both models 10 times and calculate the mean test accuracy as shown in Fig

4.8. The mean test accuracy increases as the number of tweets increases.

A student t-test between test accuracies for word, char and flexible pattern models

with 10 tweets and 20 tweets gives a p-value of 2.5 × e−5. This p-value is less than

0.05, showing that the I can reject the null hypothesis and data have been drawn

from different distributions. Therefore, the test accuracy for 20 tweets is greater than

10 tweets. Although, there is no major difference between the test accuracies of 20,

30 and 50 tweets. However, when I increase the number of tweets to 100, I observe

an increase in the mean test accuracy to 71% (1% std). A student t-test between

test accuracies of 50 tweets and 100 tweets gives p-value of 2.8 × e−10, rejecting the

null-hypothesis. This shows that there is a difference between the test accuracies for

52

Figure 4.8: Test accuracy vs the number of tweets.

50 and 100 tweets.

Table 4.7 shows a comparison between test accuracies for word, char and flexible

pattern model and fastText word embedding model. The test accuracies are similar

for 10,30 and 100 tweets with p-value greater than 0.05. However, fastText word

embedding model performs better with 20 and 50 tweets. The fastText model input

has a lower dimension than the word, char and flexible pattern models.

Fig 4.9 shows the test accuracy as the number of users (each trained with 100

tweets) changes using Siamese networks. I use the fastText word embedding of tweets

with a dimension of 100 as input to the Siamese networks. I ran the training process

10 times and calculated the mean test accuracy as shown in Table 4.8. The increase

in the number of users does not impact the performance of the Siamese networks.

The mean test accuracy is similar for 10, 20 and 30 user. The test accuracies of 50

and 100 authors exceed the test accuracy of 30 users. A student t-test between test

accuracies with 50 tweets and 30 tweets gives a p-value of 0.001. This p-value is less

than 0.05, showing that I can reject the null-hypothesis and data have been drawn

from different distributions. Therefore, the test accuracy for 50 tweets is greater than

the accuracy for 30 tweets.

53

Figure 4.9: Test accuracy vs the number of users (authors)

#authors
FastText Embeddings

mean Std dev

10 .69 .01

20 .69 .01

30 .69 .01

50 .71 .01

100 .72 .01

Table 4.8: Accuracy for different users, each trained with 100 tweets.

Chapter 5

Conclusion

In this research, I implemented a detection system for identifying users based on

their writing styles. To this end, I employed two models, an MLP for classification

of messages and a Siamese networks that identify text similarity. I also explored

four feature extraction techniques. Apart from word n-grams and character n-grams,

I introduced a feature extraction technique that was based on a word embedding

model, namely sub-word embeddings, weighted by TF-IDF for short text messages.

Additionally, I worked on modifying and improving the existing implementation of

flexible patterns and proposed a neural network architecture that makes use of a

combination of these features to perform authorship attribution based on writing

styles of authors (users). To evaluate my model, I used two Twitter datasets: one

from Schwartz et al. [5] and the other one from [1]. The salient features of my system

are -

• It is trained using one dataset and the transfer learning can be applied to other

corpa.

• Since I trained my embeddings from scratch my system performs equally well,

irrespective of the language.

• It works exceptionally well for short texts and my model outperformed all the

existing systems based on similar testing criteria and using the same datasets.

• It can also learn latent representation from the data and gives good results even

when there is limited data.

For siamese network approach, I observed that it performs well as the number of

tweets increases. The mean test accuracy improves as the number of tweets increases,

Fig. 4.8. Moreover, the test accuracy does not degrade as the number of users

increase as shown in Fig. 4.9. I also perform a comparison between the fastText

54

55

word embedding model and the model that used word, character and flex n-grams

as the feature representations, Table 4.7. The test accuracies are similar across both

models except the fastText model has a lower dimensional input resulting in a lower

computational cost.

With the success of sub-word embeddings, potential future work directions are:

working with new word embedding techniques such as Elmo [70] and Bert [71], which

are based on the context of a word in a corpus. Alongside that, I am also interested

in improving my neural network architecture using transfer learning models such as

ULMFit. I also plan to use auto-encoder models to create another latent representa-

tion of the tweets before passing them as input to a Siamese neural network.

Bibliography

[1] Tien D Phan and Nur Zincir-Heywood. User identification via neural network
based language models. International Journal of Network Management, page
https://doi.org/10.1002/nem.2049, 2018.

[2] HP Enterprise Security. Micro focus security on twitter: ”which types of cyber
security attacks are most common to your business? http://t.co/4hhrt5nr1d
#hp #infosec http://t.co/psmlji4co7”.

[3] Statista. U.s. data breaches and exposed records 2018 — statistic. https:

//www.statista.com/markets/424/topic/1065/cyber-crime/. (Accessed on
06/08/2019).

[4] Support vector machines for binary classification -
matlab. https://www.mathworks.com/help/stats/

support-vector-machines-for-binary-classification.html. (Accessed
on 06/21/2019).

[5] Roy Schwartz, Oren Tsur, Ari Rappoport, and Moshe Koppel. Authorship attri-
bution of micro-messages. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 1880–1891, 2013.

[6] Shawn Denbow and Jesse Hertz. pest control: taming the rats. Matasano Secu-
rity, www. steptoecyberblog. com/files/2012/11/PEST-CONTROL1. pdf, 2012.

[7] Carl E Landwehr, Alan R Bull, John P McDermott, and William S Choi. A
taxonomy of computer program security flaws, with examples. Technical report,
NAVAL RESEARCH LAB WASHINGTON DC, 1993.

[8] Mike Kestemont, Michael Tschuggnall, Efstathios Stamatatos, Walter Daele-
mans, Günther Specht, Benno Stein, and Martin Potthast. Overview of the
author identification task at pan-2018: cross-domain authorship attribution and
style change detection. In Working Notes Papers of the CLEF 2018 Evaluation
Labs. Avignon, France, September 10-14, 2018/Cappellato, Linda [edit.]; et al.,
pages 1–25, 2018.

[9] Efstathios Stamatatos. Authorship attribution using text distortion. In Pro-
ceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers, pages 1138–1149, 2017.

[10] Pan @ clef 2018 - author identification. https://pan.webis.de/clef18/

pan18-web/author-identification.html. (Accessed on 05/27/2019).

56

57

[11] Prasha Shrestha, Sebastian Sierra, Fabio Gonzalez, Manuel Montes, Paolo Rosso,
and Thamar Solorio. Convolutional neural networks for authorship attribution of
short texts. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers, volume 2,
pages 669–674, 2017.

[12] Tie-Yun Qian, Bing Liu, Qing Li, and Jianfeng Si. Review authorship attribution
in a similarity space. Journal of Computer Science and Technology, 30(1):200–
213, 2015.

[13] Nick Gillian. Mlp nickgillianwiki. http://www.nickgillian.com/wiki/

pmwiki.php/GRT/MLP, 2014. (Accessed on 04/25/2019).

[14] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-
ing word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5:135–146, 2017.

[15] Mihir Joshi and Nur Zincir-Heywood. Classification of micro-texts using sub-
word embeddings. Accepted for publication in RANLP 2019.

[16] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural net-
works for one-shot image recognition. In ICML Deep Learning Workshop, vol-
ume 2, 2015.

[17] Booz Allen Hamilton. Virtual identity. http://federalnewsnetwork.com/

wp-content/uploads/pdfs/VirtualIdentity.pdf. (Accessed on 06/13/2019).

[18] Ilker Nadi Bozkurt, Ozgur Baglioglu, and Erkan Uyar. Authorship attribution.
In 2007 22nd international symposium on computer and information sciences,
pages 1–5. IEEE, 2007.

[19] Alex Johnson. Hbo investigating hack of its twit-
ter accounts. https://www.nbcnews.com/tech/security/

hbo-investigating-hack-its-twitteraccounts-n793391, 2017. (Accessed
on 06/13/2019).

[20] Nicole Perlroth. All 3 billion yahoo accounts were affected by 2013 attack
- the new york times. https://www.nytimes.com/2017/10/03/technology/

yahoo-hack-3-billion-users.html, 2017. (Accessed on 06/13/2019).

[21] David Sanger. Marriott data breach is traced to chinese hackers as u.s.
readies crackdown on beijing - the new york times. https://www.nytimes.

com/2018/12/11/us/politics/trump-china-trade.html, 2018. (Accessed on
06/13/2019).

[22] Sohini Mitter. Truecaller user data for sale? company says in-
vestigating ”illegal activity”. https://yourstory.com/2019/05/

truecaller-data-sale-company-launches-investigation, 2019. (Ac-
cessed on 06/13/2019).

58

[23] Jason Silverstein. Facebook data breach: Hundreds of millions of
records exposed on amazon server, according to upguard cyberse-
curity research firm - cbs news. https://www.cbsnews.com/news/

millions-facebook-user-records-exposed-amazon-cloud-server/, 2019.
(Accessed on 06/13/2019).

[24] Eric Lin, John Aycock, and Mohammad Mannan. Lightweight client-side meth-
ods for detecting email forgery. In International Workshop on Information Se-
curity Applications, pages 254–269. Springer, 2012.

[25] Carlo Schäfer. Detection of compromised email accounts used by a spam botnet
with country counting and theoretical geographical travelling speed extracted
from metadata. In 2014 IEEE International Symposium on Software Reliability
Engineering Workshops, pages 329–334. IEEE, 2014.

[26] Kim Luyckx and Walter Daelemans. The effect of author set size and data size
in authorship attribution. Literary and linguistic Computing, 26(1):35–55, 2011.

[27] TIBCO. Naive bayes classifier. http://www.statsoft.com/textbook/

naive-bayes-classifier, 2019. (Accessed on 04/26/2019).

[28] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard
Scholkopf. Support vector machines. IEEE Intelligent Systems and their appli-
cations, 13(4):18–28, 1998.

[29] Lior Rokach and Oded Maimon. Decision Trees, volume 6, pages 165–192. 01
2005. doi: 10.1007/0-387-25465-X 9.

[30] Robert Layton, Paul Watters, and Richard Dazeley. Authorship attribution for
twitter in 140 characters or less. In 2010 Second Cybercrime and Trustworthy
Computing Workshop, pages 1–8. IEEE, 2010.

[31] Vlado Kešelj, Fuchun Peng, Nick Cercone, and Calvin Thomas. N-gram-based
author profiles for authorship attribution. In Proceedings of the conference pacific
association for computational linguistics, PACLING, volume 3, pages 255–264.
sn, 2003.

[32] Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis, Carole E Chaski,
and Blake Stephen Howald. Identifying authorship by byte-level n-grams: The
source code author profile (scap) method. International Journal of Digital Evi-
dence, 6(1):1–18, 2007.

[33] Moshe Koppel, Jonathan Schler, and Shlomo Argamon. Computational meth-
ods in authorship attribution. Journal of the American Society for information
Science and Technology, 60(1):9–26, 2009.

59

[34] Dylan Rhodes. Author attribution with cnns. Avaiable online:
https://www. semanticscholar. org/paper/Author-Attribution-with-Cnn-s-
Rhodes/0a904f9d6b47dfc574f681f4d3b41bd840871b6f/pdf (accessed on 22 August
2016), 2015.

[35] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[36] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks, 3361(10):
1995, 1995.

[37] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of machine learning research, 12(Aug):2493–2537, 2011.

[38] Michael Hart. Project gutenberg. https://www.gutenberg.org/wiki/Main_

Page, 1971. (Accessed on 06/02/2019).

[39] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new benchmark
collection for text categorization research. Journal of machine learning research,
5(Apr):361–397, 2004.

[40] Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for email
classification research. In European Conference on Machine Learning, pages
217–226. Springer, 2004.

[41] Zhou Yilu, Alsarkal Yaqoub, and Zhang Nan. Linking virtual and real-world
identities twitter dataset, 2016.

[42] Gauri Jain, Manisha Sharma, and Basant Agarwal. Spam detection in social
media using convolutional and long short term memory neural network. Annals
of Mathematics and Artificial Intelligence, 85(1):21–44, 2019.

[43] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word
embeddings to document distances. In International Conference on Machine
Learning, pages 957–966, 2015.

[44] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric for distribu-
tions with applications to image databases. In Sixth International Conference
on Computer Vision (IEEE Cat. No. 98CH36271), pages 59–66. IEEE, 1998.

[45] Suthee Chaidaroon and Yi Fang. Variational deep semantic hashing for text
documents. In Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 75–84. ACM, 2017.

[46] Peter Danziger. Linear codes. https://math.ryerson.ca/~danziger/

professor/MTH108/Handouts/codes.pdf. (Accessed on 06/17/2019).

60

[47] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al.
Universal sentence encoder. arXiv preprint arXiv:1803.11175, 2018.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008, 2017.

[49] Chen Qian, Tianchang He, and Rao Zhang. Deep learning based authorship
identification. 2017.

[50] T.G. Rose, M. Stevenson, and M. Whitehead. The reuters corpus volume 1-
from yesterdays news to tomorrows language resources. Proceedings of the Third
International Conference on Language Resources and Evaluation, pages 29–
31, 2002. URL http://about.reuters.com/researchandstandards/corpus/

LREC_camera_ready.pdf.

[51] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, 2014. URL http://www.aclweb.org/

anthology/D14-1162.

[52] Kieran Sagar Parikh, Vinodini Venkataram, and Jugal Kalita. Towards a uni-
versal document encoder for authorship attribution. 2018.

[53] John Houvardas and Efstathios Stamatatos. N-gram feature selection for author-
ship identification. In International conference on artificial intelligence: Method-
ology, systems, and applications, pages 77–86. Springer, 2006.

[54] Benedikt Boenninghoff, Robert M Nickel, Steffen Zeiler, and Dorothea Kolossa.
Similarity learning for authorship verification in social media. In ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2457–2461. IEEE, 2019.

[55] Oren Halvani, Christian Winter, and Anika Pflug. Authorship verification for
different languages, genres and topics. Digital Investigation, 16:S33–S43, 2016.

[56] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research on
machine learning applications and trends: algorithms, methods, and techniques,
pages 242–264. IGI Global, 2010.

[57] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model:
a statistical framework. International Journal of Machine Learning and Cyber-
netics, 1(1-4):43–52, 2010.

[58] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning inter-
nal representations by error propagation. Technical report, California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

61

[59] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall.
Activation functions: Comparison of trends in practice and research for deep
learning. arXiv preprint arXiv:1811.03378, 2018.

[60] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
Learning in Python . Journal of Machine Learning Research, 12:2825–2830, 2011.

[62] Per-Erik Danielsson. Euclidean distance mapping. Computer Graphics and image
processing, 14(3):227–248, 1980.

[63] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by
learning an invariant mapping. In null, pages 1735–1742. IEEE, 2006.

[64] Joost CF De Winter. Using the student’s t-test with extremely small sample
sizes. Practical Assessment, Research & Evaluation, 18(10), 2013.

[65] B Everitt. The cambridge dictionary of statistics cambridge university press.
Cambridge, UK, 1998.

[66] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605, 2008.

[67] Eric W Weisstein. Inverse hyperbolic tangent. 2002.

[68] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic
representations from tree-structured long short-term memory networks. arXiv
preprint arXiv:1503.00075, 2015.

[69] Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated recurrent
neural network for sentiment classification. In Proceedings of the 2015 conference
on empirical methods in natural language processing, pages 1422–1432, 2015.

[70] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-
tations. arXiv preprint arXiv:1802.05365, 2018.

[71] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

