

Retrieved from DalSpace, the institutional repository of Dalhousie University
http://dalspace.library.dal.ca/handle/10222/74955

Version: Post-print

Publisher's version: Baker, A. E., Marchal, E., Lund, K. L. A., \& Thompson, A. (2014). The use of tin (IV) chloride to selectively cleave benzyl esters over benzyl ethers and benzyl amines. Canadian Journal of Chemistry, 92(12), 1175-1185.
https://doi.org/10.1139/cjc-2014-0364

The Use of Tin (IV) Chloride to Selectively Cleave Benzyl Esters over Benzyl Ethers and Benzyl Amines

Alexander E. G. Baker, Estelle Marchal, Kate-lyn A.R. Lund and Alison Thompson*
Department of Chemistry, Dalhousie University, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
*alison.thompson@dal.ca

ABSTRACT: Benzyl esters are cleaved upon reaction with SnCl_{4}, resulting in isolation of the corresponding carboxylic acid. Importantly, benzyl ethers, amines and amides do not undergo debenzylation under these conditions, nor do a variety of other common protecting groups for alcohols, thereby rendering SnCl_{4} selective amongst Lewis acids. The scope, tolerance and limitations of the strategy are demonstrated through the analysis of several multi-functional substrates, including those bearing Cbz groups.

Keywords

Benzyl ester, deprotection, protecting group, chemoselective debenzylation.

Introduction

The use of protecting groups is essential to much of modern organic chemistry, despite admirable examples of natural product syntheses that lean to the contrary. ${ }^{1}$ The benzyl protecting group is of particular interest courtesy of the fact that it may be easily removed using hydrogenolysis, by virtue of properties inherent to the benzylic position. ${ }^{2,3}$ Although there is a plethora of reported conditions under which debenzylation may be achieved, ${ }^{2,3}$ palladium-catalyzed hydrogenolysis is the most commonly adopted tactic. As such, benzyl-protected ethers, amines and acids may be deprotected in a manner that is or-
thogonal to methods employed for alkyl-protected functional groups. However, hydrogenolysis falls short of being the ideal deprotection strategy. For most substrates and routine sets of conditions, the reaction set-up for hydrogenolysis may also effect the hydrogenation of unsaturated bonds. Furthermore, benzyl ethers, amines and esters are often hydrogenolyzed concurrently. Additionally, safety considerations are essential when manipulating hydrogen gas and hydrogenolysis apparatus. We herein report the scope and limitations of using SnCl_{4} to selectively debenzylate esters and carbamates. Benzyl (and some other) ethers, benzyl amines, benzyl amides, alkyl esters, double bonds and triple bonds are inert to these reaction conditions. Although it is widely understood that Lewis acids often effect O-R cleavage, the selectivity of SnCl_{4} to induce benzyl ester and carbamate cleavage over benzyl ethers and amines has not yet been realised.

Results and discussion

Benzyl esters are often used in pyrrole syntheses to protect, and easily deprotect, the 2-position of pyrroles. ${ }^{4}$ Deprotection is routinely achieved via hydrogenolysis, enabling facile and orthogonal pyrrole 2carboxylate deprotection over alkyl ester substituents. We were thus intrigued when a Friedel-Crafts acylation of $\mathbf{2}$ resulted not only in the anticipated product $\mathbf{3}$ but also the debenzylated analog $\mathbf{4}$ after acidic work-up (Scheme 1, note that the ethyl ester moiety within $\mathbf{4}$ was intact).

Scheme 1. Benzyl ester cleavage accompanied SnCl_{4}-promoted Friedel-Crafts acylation

A careful review of literature pertaining to the cleavage of esters and ethers using Lewis acids (Table 1) revealed that each reagent promotes its own characteristic reactivity. For example, AlCl_{3} in combination with anisole or N, N-dimethylaniline is the most commonly used Lewis acid for the cleav-
age of benzyl esters, ${ }^{5-7}$ yet this system exhibits poor selectivity as it also cleaves tert- Bu^{5} esters as well as benzyl and PMB ethers ${ }^{8,9}$ (entry 1). Alkyl esters can be hydrolyzed using a combination of AlCl_{3} and N, N-dimethylaniline, thereby only the use of AlCl_{3}-anisole ${ }^{6}$ allows for the selective deprotection of benzyl esters and ethers in the presence of alkyl esters. BCl_{3} has been used for benzyl ether debenzylation, ${ }^{10}$ and has some application for benzyl ${ }^{11-14}$ and alkyl ester ${ }^{11}$ cleavage (Entry 2). Indeed, the hydrolysis of alkyl esters requires higher loading of BCl_{3} and/or longer reaction times, ${ }^{11,15}$ and thus selective benzyl ether cleavage is possible in the presence of alkyl esters. ${ }^{10}$ It is also possible to selectively deprotect a benzyl ester in the presence of an alkyl ester using BCl_{3}, ${ }^{16,17}$ but no selectivity seems possible between a benzyl ester and a benzyl ether. ${ }^{18,19} \mathrm{TiCl}_{4},{ }^{5,20-22} \mathrm{FeCl}_{3},{ }^{23-25}\left(\mathrm{Re}(\mathrm{CO})_{4} \mathrm{Br}\right)_{2}{ }^{23}$ and $\mathrm{Sc}\left(\mathrm{CTf}_{3}\right)_{3}{ }^{26}$ are used to a lesser extent to remove the benzyl moiety from esters, and their selectivity towards other functionalities is not evident from the literature (Entries 3-6): however, they all cleave benzyl ethers. CeCl_{3} is highly selective for the hydrolysis of tert-Bu esters and PMB ethers, leaving benzyl esters and benzyl ethers untouched (Entry 7). ${ }^{27-29}$ It is nevertheless possible to reduce an alkyl or benzyl ester to its corresponding alcohol using a combination of CeCl_{3} and $\mathrm{NaBH}_{4} \cdot{ }^{30,31}$ The use of ZrCl_{4} was also studied for its ability to cleave PMB esters and PMB ethers selectively over other ethers (Entry 8). ${ }^{32}$
SnCl_{4} has been shown to induce the de- O-benzylation ${ }^{33}$ of particular polybenzyl ethers in monosaccharides, whereby precise stereochemical orientation of multiple ethereal groups is essential to precomplexing the Lewis acid to achieve the desired reactivity (Entry 9). The use of SnCl_{4} was also reported for the hydrolysis of cephalosporin tert-Bu esters. ${ }^{20}$ Furthermore, a dimeric tin adduct has been used to cleave acetates of substituted uridines, ${ }^{34}$ and TBTO [bis(tri- n-butyltin)oxide] has been used to cleave alkyl and benzyl esters of amino acids. ${ }^{35}$ However, to the best of our knowledge, SnCl_{4} has not been reported as a reagent by which to achieve the debenzylation of benzyl esters. Furthermore, Table 1 reveals that Lewis acids have not previously been reported to effect selective debenzylation of esters over ethers.

Table 1. Literature review of alkyl and benzyl ester and ether cleavage using Lewis acids; " \checkmark " indicates complete conversion to the corresponding acid or alcohol; n.r. $=$ no reaction.

Entry	Lewis acid	$\mathrm{RCO}_{2} \mathrm{Bn}$	$\mathrm{RCO}_{2} \mathrm{PMB}$	$\mathrm{RCO}_{2} t \mathrm{Bu}$	$\mathrm{RCO}_{2} \mathrm{Me}$	ROBn	ROPMB
1	AlCl_{3}	${ }^{\mathrm{a}} \boldsymbol{J}^{5,6}$	${ }^{\mathrm{b}} \checkmark^{7}$	${ }^{\mathrm{b}} \checkmark^{5}$	${ }^{c}{ }^{6}$	${ }^{\mathrm{a}} \boldsymbol{J}^{8,9}$	${ }^{c}{ }^{\prime}{ }^{9}$
2	BCl_{3}	$\checkmark^{12,16,17}$		\checkmark^{14}	$\checkmark^{11,15}$	\checkmark^{10}	\checkmark^{13}
3	TiCl_{4}	\checkmark^{5}		\checkmark^{20}		\checkmark^{21}	\checkmark^{22}
4	FeCl_{3}	\checkmark^{23}			\checkmark^{24}	$\boldsymbol{J}^{23,25}$	
5	$\left(\mathrm{Re}(\mathrm{CO})_{4} \mathrm{Br}\right)_{2}$	\checkmark^{23}				incomplete ${ }^{23}$	
6	$\mathrm{Sc}\left(\mathrm{CTf}_{3}\right)_{3}$	\checkmark^{26}				\checkmark^{26}	\checkmark^{26}
7	CeCl_{3}	n.r. ${ }^{27}$		\checkmark^{28}	n.r. ${ }^{28}$	n.r. ${ }^{29}$	\checkmark^{29}
8	ZrCl_{4}		\checkmark^{32}			n.r. ${ }^{32}$	\checkmark^{32}
9	SnCl_{4}			\checkmark^{20}		${ }^{\text {d }}{ }^{33}$	

a in combination with anisole or N, N-dimethylaniline; bin combination with anisole; cin combination with N, N-dimethylaniline; donly
with elaborate polyol substrate.

To investigate the utility of SnCl_{4} as a reagent for the debenzylation of esters, benzyl benzoate was used as a model substrate. At room temperature and using 1.2 equiv SnCl_{4}, benzoic acid was thus isolated in 79 \% yield (Table 2, Entry 1). We then discovered that just 0.5 equiv SnCl_{4} was sufficient for the debenzylation to be achieved in good yield. Furthermore, the reaction was tolerant to the presence of trace amounts of water. The use of DCE as solvent gave comparable results, yet the reaction yielded only starting material when THF and $\mathrm{CH}_{3} \mathrm{CN}$ were employed, presumably due to Lewis ac$\mathrm{id} /$ base adduct formation. With 0.5 equiv SnCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the reaction proceeded efficiently at reflux temperature (Table 2, Entry 2), and so these became our conditions of choice, although complete conversion was also observed using either hexane or toluene at $40^{\circ} \mathrm{C}$. To verify that the observed benzyl
deprotection was not caused by hydrolysis of SnCl_{4} and thus liberation of HCl , benzyl benzoate was reacted with 2.4 equiv of an anhydrous hydrochloric acid solution in ether with 1 equiv water. After 24 h, no reaction was observed and the benzyl ester was isolated with 98% recovery. We also ascertained that SnO_{2} (the byproduct of the quench of SnCl_{4} with water) was not the reaction catalyst: reacting 0.5 equiv of SnO_{2} with benzyl benzoate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 16 h did not result in cleavage of the benzyl ester.

Table 2. SnCl_{4}-induced ester debenzylation

entry	equiv	temperature	time	isolated yield
	SnCl_{4}	$\left({ }^{\circ} \mathrm{C}\right)$	(h)	of $\mathbf{6 a}(\%)$
1	1.2	25	19	79
2	0.5	40	6	80

To further explore the scope of SnCl_{4}-induced ester debenzylation, compounds incorporating additional functionality were explored. Aryl esters bearing electron-withdrawing and electron-donating groups underwent smooth cleavage to give excellent yields of the corresponding benzoic acids (Table 3, Entries 2-3). Benzyl alkanoates were debenzylated in an equally successful manner (entries 4-6), as was a benzyl phenyl acetate (Entry 7). Remote and conjugated double bonds were stable to the SnCl_{4} induced debenzylation reaction conditions, and enabled isolation of unsaturated carboxylic acids as well as cinnamic acid (Entries 8 and 9). Triple bonds also proved stable (Entry 10). p-Methoxybenzyl esters underwent smooth deprotection (Entries 11-13).

Table 3. Scope of SnCl_{4}-induced debenzylation of esters
$\mathrm{R}^{1} \stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{OR}^{2} \xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}]{\mathrm{SnCl}_{4}} \mathrm{R}_{6}^{\stackrel{\mathrm{O}}{\|}} \mathrm{OH}$

entry	5	6 (yield, \%) ${ }^{\text {a }}$	entry	5	6 (yield, \%) $^{\text {a }}$
1	5a	6a (80)		5h	6h (quant)
2	5b	6b (quant)		$5 i$	6 i (90)
3	5c	6c (92)	10	5j	6j (quant) $^{\text {c }}$
4	5d	6d (82)		5k	6d (85)
5	5e	$6 \mathrm{e}(80)^{\text {b }}$	12	5I	6 f (80)
6	5f	6 f (quant)	13	5m	6a (86)
7	5g	6 g (96)			
${ }^{\text {a }}$ isolat	yie	ete reaction of 5	ng to an	lysis	uiv SnCl_{4}; ${ }^{\text {perfo }}$

5d

5b

$5 e$

5h

5k

$5 f$

5 g

5j

$5 m$

To further study the scope of cleaving benzyl esters using SnCl_{4}, several β-carbonyl- α-benzyl ester pyrroles were subjected to the reaction conditions. However, only moderate yields of the corresponding acids could be obtained, and analysis using TLC suggested that decomposition of the products occurred under the reaction conditions, making the purification challenging. A recent study reported the ability of $\mathrm{SnCl}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ to promote the ring-opening of 4,5-dihydropyrroles, ${ }^{36}$ supporting the notion that this Lewis acid can invoke a multitude of mechanisms involving the carbonyl moiety.

Nevertheless, with efficient conditions in hand we investigated whether the cleavage strategy was general for esters or selective to the benzyl moiety and subjected several substrates to our optimised reaction conditions (Table $4, \mathrm{SnCl}_{4} 0.5$ equiv, $\mathrm{DCM}, 40^{\circ} \mathrm{C}, 6 \mathrm{~h}$). In agreement with the literature, a tertBu ester was cleaved in the presence of SnCl_{4}, but with only 0.5 equiv (Lit: ${ }^{20} 4$ equiv SnCl_{4} used, Entry
1). Gratifyingly, only starting material was returned when ethyl benzoate 7b (Entry 2) was treated with SnCl_{4}, even when the stoichiometry was increased to 1.2 equiv SnCl_{4}. Thus a benzyl ester could be easily removed in the presence of an ethyl ester (Entry 3). Benzyl amines and amides are inert to the deprotection reaction conditions (Entry 4-5). In contrast, the benzyl carbamate $7 \mathbf{f}$ was successfully cleaved, albeit using 1.5 equiv SnCl_{4}, to presumably allow for non-productive complexation to the nitrogen heteroatom (Entry 6). Importantly, no reaction occurred using the same conditions with the Troc-like benzyl carbamate 7 g and the starting material was completely recovered after 20 h (Entry 7).

Table 4. Scope of the reactivity of SnCl_{4} with various protecting groups

	7	$\xrightarrow[\substack{\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C} \\ 6 \mathrm{~h}}]{\mathrm{SnCl}_{4} 0.5 \text { equiv }}$
entry	substrates	recovered compounds (yield, \%) ${ }^{\text {a }}$
1	7a	6 a (76)
2	7b	SM ${ }^{\text {b }}$ (96)
3	7c	8c (79)
4	7d	SM ${ }^{\text {b }}$ (99)
5	7e	SM ${ }^{\text {b }}$ (quant)
6	7f	$8 \mathrm{f}(79)^{\text {c }}$
7	7g	SM (quant) ${ }^{\text {c }}$

7a

7b

$7 c$

7f

$8 f$

79

We then assessed the stability/reactivity of other alcohol protecting groups in the presence of SnCl_{4} (Table 5). Primary benzyl alkyl ethers were inert to the reaction conditions (Entry 1). Although the secondary benzyl alkyl ether $\mathbf{7 h}$ was recovered in 95% yield, traces of the alcohol were observed using TLC (Entry 2). Phenol benzyl ethers substituted with an electron withdrawing group remained untouched in the presence of SnCl_{4} (Entry 3), yet phenol benzyl ethers substituted with electron donating groups were quantitatively cleaved (Entry 4-5), indicating that the use of benzyl groups to protect (poly)phenols can be engineered so that selective deprotection may be achieved via the use of SnCl_{4}. The tosyl protecting group was inert under the reaction conditions (Entry 6). THP was readily removed in just a few minutes (Entry 7). Removal of the MOM group under the reaction conditions was observed, as were several side products (Entry 8). The TBDMS protecting group was partially cleaved in
the presence of SnCl_{4}, but more robust TIPS-protected alcohol was recovered (85%) after 6 h of reaction and only traces of the alcohol were observed using TLC (Entry 9-10).

Table 5. Scope of the reactivity of SnCl_{4} with alcohol protecting groups

 plete conversion according to analysis using TLC; ${ }^{e} 5$ minutes of reaction; ${ }^{f}$ partial conversion and formation of sideproducts

The orthogonal deprotection of benzyl-protected carboxylic acids within difunctional substrates was then attempted, first in the presence of a benzyl ether ($\mathbf{7 r}$, Table 6 , Entry 1) and also in the presence of a benzyl amine ($7 \mathbf{s},{ }^{37,38}$ Entry 2). However, although complete consumption of the starting materials was observed in both cases, intractable mixtures resulted, with the ${ }^{1} \mathrm{H}$ NMR spectra of the crude reaction mixtures suggesting only decomposition. Fuelled by recent work regarding the relevance of evaluating the scope and tolerance of new methodology by using multi-functional substrates vs. using multiple additives each bearing different functional groups, ${ }^{39}$ we were intrigued by our results, given that the benzyl ethers $7 \mathbf{h}$ and $\mathbf{7 i}$ (Table 5), and the benzyl amine 7d (Table 4), had been stable in the presence of
SnCl_{4}. We thus performed an experiment involving benzyl benzoate and SnCl_{4}, dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ alongside one equivalent of diethyl ether as an additive. The reaction did not reach completion after the expected 5 h at $40^{\circ} \mathrm{C}$, despite the fact that benzyl benzoate underwent complete cleavage in the absence of diethyl ether (Table 3, Entry 1). Instead, ${ }^{1} \mathrm{H}$ NMR analysis of the reaction mixture after 24 h indicated a benzyl benzoate/benzoic acid ratio of 1:7.3, alongside complexation of the diethyl ether to SnCl_{4} as suggested by the chemical shift of the CH_{2} protons (cf. Supporting Information). Clearly the complexation of the ether to the SnCl_{4} reagent slowed down the desired ester debenzylation process. This was confirmed when using the dibenzyl-containing serines $7 \mathbf{t}$ and $\mathbf{7 u}$ (Table 6, Entries 3 and 4, respectively), both of which required 1 equivalent of SnCl_{4} to produce the expected substrates via chemoselective debenzylation, albeit in moderate yield. Although mono benzyl ethers are stable under our reaction conditions (Table 5), a poly benzyl ether ($\mathbf{7 u}$) was partially deprotected, and 57% of starting material was recovered (Table 6, Entry 5) presumably because of the close proximity of functional groups capable of complexation to the Lewis acid. ${ }^{33}$ Those experiments demonstrate the limitations of the use of SnCl_{4} as a debenzylating agent for some substrates. Indeed, the strong Lewis acid properties of this reagent, as well as its complexation properties, should always be anticipated when considering the use of SnCl_{4} to effect debenzylation.

$$
{ }^{\mathrm{a} \text { isolated yield; }{ }^{\mathrm{b}} 1 \text { equiv of } \mathrm{SnCl}_{4}, \text { overnight; }{ }^{\mathrm{C}} \mathrm{SM}=\text { starting material; }{ }^{\mathrm{d}} \alpha / \beta 1: 6.2 ;{ }^{\mathrm{e}} \alpha / \beta 3.2: 1} \mathrm{SM}^{\mathrm{d}} \text { recovered }(57)^{\mathrm{e}}
$$

$7 u$

7v

Table 6: Scope of the reactivity of SnCl_{4} with substrates bearing multi-functionality.

Turning to the potential mechanism for SnCl_{4}-induced ester debenzylation, we used NMR studies (Figure 1) to follow the course of benzyl benzoate deprotection. As expected, ${ }^{1} \mathrm{H}$ spectra recorded over time revealed the decrease of the CH_{2} signal of the benzyl ester (originally at 5.4 ppm), alongside the gradual appearance of aryl signals corresponding to benzoic acid. Curiously, the characteristic benzylic signal of benzyl chloride appeared at 4.6 ppm , yet the signal intensity decreased with extension of the reaction time (compare Figure 1c recorded after 1 hour to Figure 1e recorded after 6 h). The formation of benzyl chloride was previously observed upon the deprotection of poly benzyl ethers using $\mathrm{SnCl}_{4},{ }^{33}$ and this Lewis acid has been reported to induce calixarene formation from 4-tertbutyl phenol, ${ }^{40}$ lending support to the belief that the liberated benzyl moiety undergoes further reaction to form a polymeric species.

Figure 1. ${ }^{1} \mathrm{H}$ NMR (300 MHz) of benzyl benzoate deprotection at $30^{\circ} \mathrm{C}$; (a) benzyl benzoate in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$; (b) addition of SnCl_{4} (0.5 equiv); (c) reaction after 1 h ; (d) reaction after 3 h ; (e) reaction after 6 h ; (f) benzoic acid and SnCl_{4} (0.5 equiv) in $\mathrm{CD}_{2} \mathrm{Cl}_{2} ;(\mathrm{g})$ benzoic acid in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Note that the broad areas $\operatorname{across}(\mathrm{d})$ and (e) at $\delta 3.8$ and 7.1 ppm are indicative of the by-product (9).

We also noted that the reactions produced a by-product (9). Upon isolation as a crystalline white solid, compound 9 exhibited ${ }^{1} \mathrm{H}$ NMR characteristics (see Supporting Information) that matched the
broad aryl and benzylic signals that appeared as the ester debenzylation proceeded (see Figure 1d and 1e). Analysis using APCI^{+}mass spectrometry revealed that 9 was polymeric, with a repeating benzylic unit (mass $90 \mathrm{~m} / \mathrm{z}$, see Supporting Information). Furthermore, the reaction of benzyl chloride with 0.5 equiv of SnCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 21 hours, gave a crystalline white solid. The corresponding ${ }^{1} \mathrm{H}$ NMR spectrum exhibited the same two broad signals as the material isolated after the ester debenzylation reaction (7.1 and 3.8 ppm), with similar polymeric mass spectral data (see Supporting Information). A related polybenzyl species was observed after benzyl ester cleavage using a rhenium catalyst, and can be prevented using mesitylene as a scavenger of the benzylic cation. ${ }^{23}$ Anisole has been shown to play the same role when using AlCl_{3} for removal of the benzyl moiety from benzyl esters. ${ }^{5}$

The coordination of SnCl_{4} to ethyl esters has previously been demonstrated using IR spectroscopy. ${ }^{41}$ Based on the postulated mechanism for SnCl_{4}-induced debenzylation of polybenzyl ethers, ${ }^{33}$ we propose an ester debenzylation mechanism whereby pre-coordination of tin to the oxygen atoms of the benzyl ester facilitates delivery of chloride to the electrophilic benzylic position. Such delivery would not occur in the case of alkyl esters, since the corresponding $\mathrm{O}-\mathrm{CH}_{2} \mathrm{R}$ functionality would be insufficiently activated. In this respect, the distinguishing electronic properties of the benzylic position render benzyl esters, and not benzyl ethers, uniquely susceptible to SnCl_{4}. However, the presence of other moieties capable of coordinating to SnCl_{4} would evidently disrupt the desired coordination to the ester functionality thus slowing the debenzylation and/or altering the course of the reaction and so, as for most deprotection strategies, each substrate should be considered for its functionality and its likelihood to interact with SnCl_{4} in the desired manner. We analysed NMR data for signs of coordination of SnCl_{4} to benzyl carboxylates. The ${ }^{119} \mathrm{Sn}$ NMR spectrum of a sample of benzyl benzoate and 2.5 equiv SnCl_{4} reveals an upfield shift (Figure 2b) c.f. SnCl_{4} alone (Figure 2a), and significant signal broadening. Such broadening and coordination is less dramatic for SnCl_{4} and benzoic acid (Figure 2c), indicating much greater Sn interaction with benzyl esters than carboxylic acids.
\qquad

Figure 2. ${ }^{119} \mathrm{Sn}$ NMR (112 MHz), $-80^{\circ} \mathrm{C}$; (a) SnCl_{4} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta-155.4 \mathrm{ppm}$; (b) ten mins after addition of benzyl benzoate, $\delta-204.1 \mathrm{ppm}$; (c) benzoic acid and SnCl_{4} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ after ten mins, $\delta-155.7 \mathrm{ppm}$.

Conclusion

In summary, SnCl_{4} cleaves benzyl esters and carbamates yet leaves benzyl amides, double bonds and triple bonds intact. Benzyl alkanoates and aryl esters were successfully cleaved in high yields. While simple benzyl ethers remain unreacted, the suitability of SnCl_{4} should be considered carefully when the substrate presents multiple benzyl ethers as tin complexation to multiple oxygen atoms can induce benzyl ether cleavage. The orthogonality of cleaving benzyl esters and carbamates, cf. benzyl ethers, is substrate dependant, presumably due to the intrinsic strong Lewis acid properties of SnCl_{4}. NMR analysis suggests that a crucial coordination of SnCl_{4} with the oxygen atoms of the ester facilitates chloride attack at the benzylic position to cleave the $\mathrm{O}-\mathrm{CH}_{2} \mathrm{Ph}$ bond. Alongside the requisite carboxylic acid, the reaction produces a polybenzylic material. Although the method suffers some limitations we believe that benzyl deprotection using SnCl_{4} offers an alternative route for the debenzylation of esters for organic and total synthesis. The potential to use SnCl_{4} for the chemoselective cleavage of benzyl esters and carbamates, over benzyl ethers, amides and amines complements strategies that use catalytic transfer hydrogenation, ${ }^{42} \mathrm{NBS},{ }^{43}$ silica-supported $\mathrm{NaHSO}_{4},{ }^{44} \mathrm{NiCl}_{2} / \mathrm{NaBH}_{4}{ }^{45}$ and Raney $\mathrm{Ni} .{ }^{46}$

EXPERIMENTAL SECTION

General Experimental Procedures: All reactions were carried out under a nitrogen atmosphere using septa-sealed solvents under anhydrous conditions. All reagents and solvents, including anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, were used as received unless otherwise stated. SnCl_{4} (99\%) was anhydrous and fuming, hexanes and dichloromethane used for chromatography were obtained crude and were purified via distillation under air and at 1 atm . before use. Column chromatography was performed using 230-400 mesh ultra pure silica gel. Mass spectra were obtained using TOF and LCQ Duo ion trap instruments operating in ESI + or APCI + mode. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{119} \mathrm{Sn}$ spectroscopy were used for chemical characterization and purity analysis using 300 and 500 MHz spectrometers. All chemical shifts are expressed in parts per million (ppm). The CDCl_{3} singlet was calibrated to 7.26 ppm for ${ }^{1} \mathrm{H}$ NMR and 77.36 ppm for ${ }^{13} \mathrm{C}$ NMR; the CDCl_{2} signal was set to 5.31 ppm for ${ }^{1} \mathrm{H}$ NMR and 53.80 ppm for ${ }^{13} \mathrm{C}$ NMR; the DMSO signal was set to 2.50 ppm for ${ }^{1} \mathrm{H}$ NMR; the $\mathrm{CD}_{3} \mathrm{OD}$ signal was set to 3.31 ppm for ${ }^{1} \mathrm{H}$ NMR; ${ }^{119} \mathrm{Sn}$ spectra were referenced against SnMe_{4} set to 0 ppm as an internal reference. Coupling constants (J) are reported in Hertz (Hz). Splitting patterns are indicated as; broad (br), singlet (s), doublet (d), triplet (t), apparent triplet (at), quartet (q), apparent quartet (aq), quintet (qn), sextet (se), multiplet (m).

The following compounds were prepared via established procedures: monoethyl glutarate (1), ${ }^{47}$ benzyl 3,5-dimethyl-1 H -pyrrole-2-carboxylate (2), ${ }^{48}$ benzyl benzoate (5a), ${ }^{49}$ benzyl 4-nitrobenzoate (5b), ${ }^{50}$ benzyl 4-methoxybenzoate (5c), ${ }^{51}$ benzyl pentanoate (5d), ${ }^{52}$ benzyl tetradecanoate (5e), ${ }^{53}$ benzyl pivalate (5f), ${ }^{54}$ benzyl 2-(4-methoxyphenyl)acetate (5g), ${ }^{55}$ benzyl pent-4-enoate (5h), ${ }^{56} \quad 4$ methoxybenzyl pivalate (51) ${ }^{57}$ and 4-methoxybenzyl benzoate (5m), ${ }^{50}$ tert-butyl benzoate (7a), ${ }^{58}$ ethyl benzoate (7b), ${ }^{59} \mathrm{~N}$-benzyl- N -methyl-2-phenylethanamine (7d), ${ }^{60} \mathrm{~N}$-benzyl-3-methylbutanamide (7e), ${ }^{61}$ benzyl (3-phenylpropyl)carbamate (7f), ${ }^{62}$ (3-(benzyloxy)propyl)benzene (7h), ${ }^{63}$ ethyl 4(benzyloxy)benzoate (7j), ${ }^{64}$ 1-(benzyloxy)-4-methylbenzene (7k), ${ }^{65}$ 1-(benzyloxy)-4-methoxybenzene (7l), ${ }^{66}$ 3-phenylpropyl 4-methylbenzenesulfonate (7m), ${ }^{67}$ 2-(3-phenylpropoxy)tetrahydro-2H-pyran $(\mathbf{7 n}){ }^{68}$ (NMR data were in agreement with the literature), ${ }^{69}$ triisopropyl(3-phenylpropoxy)silane $(\mathbf{7} \mathbf{p})$ and
tert-butyldimethyl(3-phenylpropoxy)silane $(\mathbf{7 q}),{ }^{70}$ benzyl 2,3,4,6-tetra- O-benzyl-D-glucopyranoside (7v). ${ }^{71}$

Preparation of starting material $3,4,5$ and 7:

Benzyl 4-(5-ethoxy-5-oxopentanoyl)-3,5-dimethyl-1 H -pyrrole-2-carboxylate (3) and 4-(5-ethoxy-5-oxopentanoyl)-3,5-dimethyl-1 H -pyrrole-2-carboxylic acid (4): To monoethyl glutarate 1^{47} ($3.75 \mathrm{~g}, 23.4$ mmol), thionyl chloride ($2.1 \mathrm{~mL}, 29.3 \mathrm{mmol}$) was added. The reaction was heated to $60^{\circ} \mathrm{C}$ for 30 minutes and then $80^{\circ} \mathrm{C}$ for 1 h . Thionyl chloride was removed in vacuo to afford the acid chloride as a yellow oil which was used without further purification (4.2 g , quantitative).

Benzyl 3,5-dimethyl-1 H -pyrrole-2-carboxylate $\mathbf{2}(4.8 \mathrm{~g}, 21 \mathrm{mmol})$ was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ under nitrogen. While stirring at $0{ }^{\circ} \mathrm{C}, \mathrm{SnCl}_{4}(3 \mathrm{~mL}, 25 \mathrm{mmol})$ was slowly added. The resulting solution was stirred for 10 min at $0^{\circ} \mathrm{C}$. The previously synthesized acid chloride $(3.75 \mathrm{~g}, 21$ $\mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was then added. The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ then quenched via the addition of $\mathrm{HCl}(1 \mathrm{M}, 35 \mathrm{~mL})$. After 15 min stirring the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent under reduced pressure the crude material was purified using flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexane $3 / 7$ to $4 / 6$) to give compound $\mathbf{3}$ as an off white solid (5.1 g , 66%) and compound 4 as a white solid ($1.2 \mathrm{~g}, 24 \%$). Benzyl 4-(5-ethoxy-5-oxopentanoyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate (3): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.02-2.04(\mathrm{~m}$, $2 \mathrm{H}), 2.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) 2.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$ $5.31(\mathrm{~s}, 2 \mathrm{H}), 7.33-7.42(\mathrm{~m}, 5 \mathrm{H}) 8.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 13.2, 14.6, 15.6, 19.7, 33.9, 42.0, 60.6, 66.5, 117.9, 123.8, 128.6, 128.7, 129.0, 130.0, 136.3, 138.5, 161.5, 173.7, 197.4; HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{5}$, 394.1625; found, 394.1605. 4-(5-Ethoxy-5-oxopentanoyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid (4): ${ }^{1} \mathrm{H}$ NMR (DMSO, 300 MHz) $\delta 1.17(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.85(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) 3.30(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 4.06(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 11.7(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO, 125 MHz) δ 12.3, 14.1, 14.4, 19.2,
32.9, 40.7, 59.7, 122.2, 128.0, 137.9, 142.6, 162.4, 172.8, 196.2; HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{5}, 304.1155$; found, 304.1143.
(E)-Benzyl 3-(p-tolyl)acrylate 5i: To a suspension of (E)-4-methylcinnamic acid (500 mg, 3.08 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added EDC ($525 \mathrm{mg}, 3.39 \mathrm{mmol}$), DMAP ($414 \mathrm{mg}, 3.39 \mathrm{mmol}$) followed by benzyl alcohol ($480 \mu \mathrm{~L}, 4.62 \mathrm{mmol}$). The resulting solution was stirred for 18 h , and then water was added $(50 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. Then the combined organic layers were washed with brine and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent under reduced pressure the crude was purified using flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexanes $\left.1 / 9\right)$ to give a white solid (380 mg, 49\%). Mp $86{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=15.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.43(\mathrm{~m}, 7 \mathrm{H}), 7.71(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz) $\delta 21.6,66.4,116.9,128.2,128.4$ (2C), 128.7, 129.8, 131.7, 136.3, 140.9, 145.3, 167.1; HRMSESI $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Na}_{1} \mathrm{O}_{2}, 275.1043$; found, 275.1050.

Benzyl propiolate 5 j: To a suspension of potassium carbonate $(4.47 \mathrm{~g}, 32.3 \mathrm{mmol})$ in DMF $(15 \mathrm{~mL})$, propiolic acid ($2.00 \mathrm{~mL}, 32.3 \mathrm{mmol}$) in DMF $(8 \mathrm{~mL})$ was added and stirred at $0^{\circ} \mathrm{C}$. After 10 minutes, benzyl bromide ($3.20 \mathrm{~mL}, 26.9 \mathrm{mmol}$) was added and reaction mixture was warmed to $25^{\circ} \mathrm{C}$. The resulting solution was stirred for 2 h , then water was added $(45 \mathrm{~mL})$. The mixture was extracted with EtOAc/hexanes $1 / 1(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent under reduced pressure the crude material was purified using flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexanes $\left.1 / 19\right)$ to give a colorless oil (4.31 g , quantitative). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}\right) \delta 2.96(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 7.35-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125 \mathrm{MHz}\right) \delta$ 68.3, $74.8,75.2,128.9,129.01,129.04,135.2,152.8 ; \operatorname{HRMS}-E S I(m / z):[M+N a]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NaO}_{2}$, 183.0417; found, 183.0417.

4-Methoxybenzyl pentanoate 5k: To a stirring solution of 4-methoxybenzyl alcohol ($0.30 \mathrm{~mL}, 2.42$ $\mathrm{mmol})$ in $\mathrm{DCM}(8.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, triethylamine $(0.49 \mathrm{~mL}, 4.83 \mathrm{mmol})$ and valeroyl chloride $(0.29 \mathrm{~mL}$, 2.42 mmol) was added. The reaction was stirred for 1 h and then a further aliquot of valeroyl chloride
$(0.17 \mathrm{~mL}, 1.45 \mathrm{mmol})$ was added. The reaction mixture was quenched with water $(15 \mathrm{~mL})$, and then extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent under reduced pressure the crude material was purified using flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexanes $\left.1 / 9\right)$ to give a colorless oil ($336 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}\right) \delta 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) 1.33(\mathrm{se}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{qn}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125 \mathrm{MHz}\right) \delta 13.8,22.6,27.4,34.4,55.6,66.1,114.2,128.9,130.2,160.0,173.8$; HRMSESI $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{Na}_{1} \mathrm{O}_{3}, 245.1148$; found, 245.1137.

Benzyl ethyl adipate 7c: to a solution of 6-ethoxy-6-oxohexanoic acid ($1.1 \mathrm{~g}, 6.3 \mathrm{mmol}$) in anhydrous DCM (5 mL) was added $\mathrm{SOCl}_{2}(570 \mu \mathrm{~L}, 7.9 \mathrm{mmol})$ and the reaction mixture was heated at $4{ }^{\circ} \mathrm{C}$ for two hours. Then benzyl alcohol ($720 \mu \mathrm{~L}, 6.9 \mathrm{mmol}$) was added at room temperature. The reaction mixture was heated at $40^{\circ} \mathrm{C}$ for 3 hours then cooled to room temperature. An aqueous solution of NaOH $(10 \%, 20 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine $(50 \mathrm{~mL})$, and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent under reduced pressure the crude material was purified using flash chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc/hexanes $1 / 9$) to give a colorless oil ($600 \mathrm{mg}, 36 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.24(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.65-1.70(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) 2.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}$, 2H), $5.11(\mathrm{~s}, 2 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.3,24.5,34.0,60.4,66.3,128.3$, 128.7, 136.1, 173.2, 173.4; HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Na}_{1} \mathrm{O}_{4}, 287.1254$; found, 287.1259.

2,2,2-Trichloro-1-phenylethyl (3-phenylpropyl)carbamate $7 \mathbf{g}$: To a solution of 3-phenylpropan-1amine $(314 \mu \mathrm{~L}, 2.2 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added CDI $(390 \mathrm{mg}, 2.4 \mathrm{mmol})$ and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 2 h 30 . It was cooled to room temperature, then water (30 mL) was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic layers were
washed with brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent were removed under reduced pressure to give N -(3-phenylpropyl)-1 H -imidazole-1-carboxamide as a white solid (500 mg , quant.)

To a solution of 2,2,2-trichloro-1-phenylethanol ($250 \mathrm{mg}, 1.1 \mathrm{mmol})^{72}$ in anhydrous THF (2 mL) was added $\mathrm{NaH}(60 \%$ in oil, 1.33 mmol$)$ at $0^{\circ} \mathrm{C}$. The reaction was run at this temperature for 30 min then a solution of N-(3-phenylpropyl)-1 H -imidazole-1-carboxamide ($250 \mathrm{mg}, 1.1 \mathrm{mmol}$) in anhydrous THF (2 mL) was added. The reaction mixture was stirred 3 h at room temperature then quenched by the addition of water $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine $(50 \mathrm{~mL})$, and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent under reduced pressure the crude material was purified using flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $\left.5 / 5\right)$ to give a colorless oil ($311 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.86$ (quint., $\left.J=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.65(\mathrm{t}, J=$ 7.6 Hz, 2H), 3.17-3.31 (m, 2H), $4.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 2 \mathrm{H})$, 7.38-7.41 (m, 3H), 7.59-7.62 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 31.5,33.1,41.0,83.3,126.2$, 128.0, 128.5, 128.6, 129.7, 129.8, 133.6, 141.3, 154.2. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{2}, 408.0295$; found, 408.0278.
(2-(Benzyloxy)propyl)benzene 7i: Following a literature procedure, ${ }^{73}$ 1-phenylpropan-2-ol (500 mg , 3.67 mmol) was dissolved in $\mathrm{MeNO}_{2}(20 \mathrm{~mL})$ then benzaldehyde ($440 \mu \mathrm{~L}, 4.3 \mathrm{mmol}$), $\mathrm{FeCl}_{3}(35 \mathrm{mg}, 5$ $\mathrm{mol} \%$) and $\mathrm{Et}_{3} \mathrm{SiH}(590 \mathrm{~mL}, 3.67 \mathrm{mmol})$ were added under N_{2}. The reaction mixture was stirred two hours then quenched through the addition of phosphate buffer $(\mathrm{pH}=7,20 \mathrm{~mL})$. The reaction mixture was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$ and the combined organic layers were washed with brine (50 $\mathrm{mL})$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvents under reduced pressure the crude material was purified using flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexanes $\left.0.3 / 99.7\right)$ to give a colorless oil (730 $\mathrm{mg}, 94 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.70(\mathrm{dd}, J=13.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (dd, $J=13.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74($ se. $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19-7.38(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.7,43.4,70.7,76.3,126.2,127.5,127.7$,
128.3, 128.4, 129.7, 139.0, 139.2; HRMS-ESI (m / z) : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Na}_{1} \mathrm{O}_{1}, 249.1250$; found, 249.1253.
(3-(Methoxymethoxy)propyl)benzene 7o: To a solution of 1-phenylpropan-2-ol ($500 \mathrm{mg}, 3.67 \mathrm{mmol}$) in anhydrous THF (15 mL) was added DIPEA ($1.4 \mathrm{~mL}, 8.07 \mathrm{mmol}$) followed by $\mathrm{MOMCl}(300 \mu \mathrm{~L}, 4.01$ mmol). The reaction mixture was stirred for 16 h then quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ for 15 min . The reaction mixture was then extracted with EtOAc $(3 \times 30 \mathrm{~mL})$ and the combined organic layers were washed with brine $(50 \mathrm{~mL})$ and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent under reduced pressure the crude material was purified using flash chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc/hexanes $0.5 / 99.5$) to give a colorless oil $(450 \mathrm{mg}, 68 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.88-$ $1.97(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 7.16-7.21(\mathrm{~m}$, $3 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 31.6,32.6,55.3,67.3,96.6,126.0,128.5,128.6$, 142.0; HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{Na}_{1} \mathrm{O}_{2}$, 203.1043; found, 203.1043.

Benzyl 2-(4-((benzyloxy)methyl)phenyl)acetate $\quad \mathbf{7 r}:^{73}$ To a solution of benzyl 2-(4(hydroxymethyl)phenyl) acetate ${ }^{74}(500 \mathrm{mg}, 3.67 \mathrm{mmol})$ in nitromethane (20 mL) under nitrogen was added benzaldehyde ($440 \mu \mathrm{~L}, 4.3 \mathrm{mmol}$), $\mathrm{FeCl}_{3}(35 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and then triethylsilane $(590 \mu \mathrm{~L}, 3.67$ mmol). The reaction mixture was stirred for 2 h under nitrogen then was quenched by the addition of a phosphate buffer $(50 \mathrm{~mL}, \mathrm{pH}=7)$. The crude mixture was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$ and the combined organic layers were washed with brine and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent under reduced pressure the crude material was purified using flash chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc/hexanes $0.5 / 99.5$) to give a colorless oil ($730 \mathrm{mg}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.68(\mathrm{~s}$, $2 \mathrm{H}), 4.56(\mathrm{~s}, 4 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.38(\mathrm{~m}, 14 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 41.2,66.8,71.9$, $72.2,127.8,127.9,128.1,128.3,128.4,128.5,128.7,129.5,133.4,136.0,137.4,138.4,171.5$. HRMSESI $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Na}_{1} \mathrm{O}_{3}, 369.1461$; found, 369.1448 .

Benzyl 3-(3-(benzylamino)propoxy)benzoate 7s: To a solution of benzyl 3-hydroxybenzoate ${ }^{37}$ (500 $\mathrm{mg}, 2.2 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under nitrogen was added $\mathrm{NaH}(60 \%$ in grease, 2.6 mmol$)$. The
suspension was stirred for 30 min at room temperature then cooled to $0{ }^{\circ} \mathrm{C}$. A solution of 3-((tertbutoxycarbonyl)amino)propyl 4-methylbenzenesulfonate ${ }^{38}$ in DMF (10 mL) was then added and the reaction mixture was stirred for a further 3 h at room temperature. The reaction was quenched through the addition of water $(100 \mathrm{~mL})$ and the reaction mixture was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with water $(50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$ and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent under reduced pressure the crude material was purified using flash chromatography $\left(\mathrm{SiO}_{2}, \quad \mathrm{EtOAc} /\right.$ hexanes $2 / 8$ then $\left.3 / 7\right)$ to give benzyl 3-(3-((tertbutoxycarbonyl)amino)propoxy)benzoate as a white solid (570 mg, 67\%). $\mathrm{Mp} 80{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.99(\mathrm{qn}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 7.09(\mathrm{ddd}, J=8.4,2.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.58(\mathrm{dd}, J=2.7$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dt}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 28.5,29.7,38.1,66.1,66.9$, 115.1, 120.0, 122.4, 128.3, 128.4, 128.7, 129.6, 131.6, 136.2, 156.1, 158.9, 166.4; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{5}, 408.1781$; found, 408.1795.

Benzyl 3-(3-((tert-butoxycarbonyl)amino)propoxy)benzoate ($520 \mathrm{mg}, 1.34 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ then TFA $(1 \mathrm{~mL})$ was added. The reaction mixture was stirred for 3 h at room temperature then water $(50 \mathrm{~mL})$ was added. The crude mixture was then extracted with DCM $(3 \times 20$ $\mathrm{mL})$ then the combined organic layers were washed with $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$ and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The obtained oil ($430 \mathrm{mg}, 1.34 \mathrm{mmol}$) was dissolved in $\mathrm{DCM}(3 \mathrm{~mL})$ and $\mathrm{MgSO}_{4}(160$ mg , benzaldehyde ($180 \mu \mathrm{~L}, 1.8 \mathrm{mmol}$) and triethylamine $(250 \mu \mathrm{~L}, 1.8 \mathrm{mmol})$ were added under nitrogen. The reaction was stirred overnight then filtered through a pad of Celite using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated under reduce pressure then the resulting oil was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL}) . \mathrm{NaBH}_{4}$ $(68 \mathrm{mg}, 1.8 \mathrm{mmol})$ was added in portions at $0^{\circ} \mathrm{C}$ then the reaction mixture was stirred at room temperature for 1 h . The reaction was quenched through the addition of water $(20 \mathrm{~mL})$ and the reaction mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (50 $\mathrm{mL})$ and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent under reduced pressure the crude mate-
rial was purified using flash chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ neutral Brockman type III, $\mathrm{CH}_{2} \mathrm{Cl}_{2} 100 \%$ then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99 / 1$) to give 7 s colorless oil ($300 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.46$ (br s, $1 \mathrm{H}), 2.00(\mathrm{qn}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{~s}$, $2 \mathrm{H}), 7.08$ (dd, $J=8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.40(\mathrm{~m}, 8 \mathrm{H}), 7.44-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$) $\delta 29.9,46.3,54.2,66.7,66.9,115.1,120.0$, 122.2, 127.1, 128.2, 128.3, 128.4, 128.5, 128.7, 129.5, 131.6, 136.2, 140.5, 159.1, 166.5. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{1} \mathrm{O}_{3}, 376.1907$; found, 376.1915.

N-Benzylcarbamate-O-Benzyl-L-serine methyl ester 7t: (S)-Methyl 2-(((benzyloxy)carbonyl)amino)-3-hydroxypropanoate ${ }^{75}$ ($200 \mathrm{mg}, 0.79 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ then $\mathrm{BnBr}(100 \mu \mathrm{~L}, 0.87$ mmol) and silver oxide ($274 \mathrm{mg}, 1.18 \mathrm{mmol}$) were added. The suspension was stirred in the dark for 20 h then filtered. After evaporation of the solvent under reduced pressure the crude material was purified using flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexanes $3 / 7$) to give a colorless oil ($150 \mathrm{mg}, 55 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.70(\mathrm{dd}, J=9.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{dd}, J=9.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-$ $4.56(\mathrm{~m}, 3 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.63(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.37(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ $\delta 52.7,54.5,67.2,69.9,73.4,127.7,128.0,128.2,128.3,128.6,128.7,136.4,137.6,156.1,170.9 ;$ HRMS-ESI (m / z) : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{5}, 366.1312$; found, 366.1299.
\boldsymbol{N}-Benzyl-O-Benzyl-L-serine benzyl ester 7u: Following the previous procedure and starting from (S)benzyl 2-(benzylamino)-3-hydroxypropanoate, ${ }^{76} 7 \mathbf{u}$ was obtained as a colorless oil ($110 \mathrm{mg}, 20 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.60-3.67(\mathrm{~m}, 3 \mathrm{H}), 3.73-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $2 \mathrm{H}), 5.25(\mathrm{aq}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.33(\mathrm{~m}, 10 \mathrm{H}), 7.39-7.43(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $55.0,59.5,62.0,66.6,127.6,128.6,128.7,128.8,129.1,135.8,138.8,171.3$ (6 carbon signals non accounted for); $\mathrm{HRMS}-\mathrm{ESI}(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{3}, 398.1727$; found, 398.1720 .

Compounds from Table 3:

General procedure for deprotection of benzyl esters/carbamates (GPD): The benzyl protected material (5) ($0.826 \mathrm{mmol}, 1$ equiv) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ under nitrogen. While stirring, SnCl_{4} ($0.413 \mathrm{mmol}, 0.5$ equiv) was added. The reaction vessel was then sealed and heated to $40^{\circ} \mathrm{C}$ overnight (for convenience, although analysis using TLC indicated that many reactions progressed at room temperature and/or were complete in just a few hours). The reaction was quenched with $\mathrm{HCl}(1 \mathrm{M}$, $1 \mathrm{~mL})$ then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the product was purified via recrystallization or column chromatography.

Benzoic acid 6a from benzyl benzoate 5a: Following GPD, 6a was synthesized from 5a (white crystalline solid, $80 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.46-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.66(\mathrm{~m}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=9$ $\mathrm{Hz}, 2 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{77}$

Benzoic acid 6a from 4-methoxybenzyl benzoate 5m: Following GPD, 6a was synthesized from $\mathbf{5 m}$ (white crystalline solid, 86%). ${ }^{1} \mathrm{H}$ NMR (DMSO, 300 MHz) $\delta 7.50(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 12.96(\mathrm{~s}, 1 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{77}$

4-Nitrobenzoic acid 6b: Following GPD, $\mathbf{6 b}$ was synthesized from 5b (white yellow/white crystalline solid, quantitative). ${ }^{1} \mathrm{H}$ NMR (DMSO, 300 MHz$) \delta 8.17(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $13.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{77}$

4-Methoxybenzoic acid 6c: Following GPD, $\mathbf{6 c}$ was synthesized from $\mathbf{5 c}$ (off-white solid, 92%). ${ }^{1} \mathrm{H}$ NMR (DMSO, 500 MHz$) \delta 3.82(\mathrm{~s}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 12.65(\mathrm{br} \mathrm{s}$, 1H). NMR data matches that previously reported for this compound. ${ }^{77}$

Pentanoic acid 6d from benzyl pentanoate 5d: Following GPD, 6d was synthesized from 5d (colorless oil, $82 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{qn}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.63$ (qn, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{78}$

Pentanoic acid 6d from 4-methoxybenzyl pentanoate 5k: Following GPD, 6d was synthesized from $\mathbf{5 k}$ (colorless oil, $85 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{qn}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.63(\mathrm{qn}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{78}$

Tetradecanoic acid 6e: Following GPD, $\mathbf{6 e}$ was synthesized from $\mathbf{5 e}$ (white crystalline solid, 80%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.33(\mathrm{~m}, 20 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{79}$

Pivalic acid 6f from benzyl pivalate 5f: Following GPD, $\mathbf{6 f}$ was synthesized from $\mathbf{5 f}$ (white/colorless crystalline solid, quantitative). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.22(\mathrm{~s}, 9 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{80}$

Pivalic acid 6f from 4-methoxybenzyl pivalate 51: Following GPD, 6 f was synthesized from 51, white/colorless crystalline solid (80%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.24(\mathrm{~s}, 9 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{80}$

2-(4-Methoxyphenyl)acetic acid $\mathbf{6 g}$: Following GPD, $\mathbf{6 g}$ was synthesized from $\mathbf{5 g}$ (off-white flaky solid, $96 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}$, $J=9 \mathrm{~Hz}, 2 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{81}$

Pent-4-enoic acid 6h: Following GPD, $\mathbf{6 h}$ was synthesized from $\mathbf{5 h}$ (colorless solid, quantitative). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.37-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.48(\mathrm{~m}, 2 \mathrm{H}), 5.02-5.10(\mathrm{~m}, 2 \mathrm{H}), 5.80-5.88(\mathrm{~m}$, 2H). NMR data matches that previously reported for this compound. ${ }^{82}$
(E)-3-(p-Tolyl)acrylic acid 6i: Following GPD, 6i was synthesized from $\mathbf{5 i}$ (white solid, 90%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 6.41(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$. NMR data matches that previously reported for this compound ${ }^{83}$ Propiolic acid 6j: Since propiolic acid is highly water soluble, rendering product isolation challenging and thus the yield inaccurate, this reaction was performed and monitored in an NMR tube. Benzyl propiolate $\mathbf{5 k}(0.132 \mathrm{~g}, 0.826 \mathrm{mmol})$ was dissolved in deuterated dichloromethane $(1.0 \mathrm{~mL})$ in an NMR
tube. At $25^{\circ} \mathrm{C}$ the reaction was initiated via the addition of $\mathrm{SnCl}_{4}(47 \mu \mathrm{~L}, 0.413 \mathrm{mmol})$. Reaction progress was monitored via collection of ${ }^{1} \mathrm{H}$ NMR and ${ }^{119} \mathrm{Sn}$ NMR spectra immediately after initiation and then after 1, 3, 5 and $21 \mathrm{~h} . \mathrm{A}^{13} \mathrm{C}$ NMR spectrum was collected after $21 \mathrm{~h} .100 \%$ conversion based on NMR data. The data for this crude sample was compared to commercially obtained propiolic acid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}\right) \delta 3.17(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{br} \mathrm{s}$, polymer), $7.14(\mathrm{br} \mathrm{s}$, polymer), $10.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125 \mathrm{MHz}\right) \delta 73.9,78.4,126.3$ (polymer), 128.7 (polymer), 129.1 (polymer), 129.2 (polymer), 157.3.

Compounds from Table 4:

Benzoic acid 6a from tert-butyl benzoate 7a: Following GPD, 6a was synthesized from 7a (white crystalline solid, 76%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.46-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.66(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.15$ $(\mathrm{m}, 2 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{77}$

Ethyl benzoate 7b: Was subjected to GPD conditions and isolated after extraction as a white solid (340 $\mathrm{mg}, 96 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.38(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.51-7.56(\mathrm{~m}, 1 \mathrm{H}), 8.03-8.06(\mathrm{~m}, 2 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{59}$

6-Ethoxy-6-oxohexanoic acid 8c: Following GPD, 8c was synthesized from 7c (white solid 79\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.71(\mathrm{~m}, 4 \mathrm{H}), 2.30-2.41(\mathrm{~m}, 4 \mathrm{H}), 4.13(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{84}$
N-Benzyl- N-methyl-2-phenylethanamine 7d: Was subjected to GPD conditions and isolated after extraction (yellow film, 99\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.83$ $(\mathrm{m}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.27(\mathrm{~m}, 7 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{60}$
N-Benzyl-3-methylbutanamide 7e: Was subjected to GPD conditions and isolated after extraction (colorless oil, quant). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.10-2.23(\mathrm{~m}, 3 \mathrm{H}), 4.45 \mathrm{~d}$,
$J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 5 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{61}$

3-Phenylpropylamine $\mathbf{8 f}$: Following GPD but using 1.5 equiv of SnCl_{4}, $\mathbf{8 f}$ was synthesized from $\mathbf{7 f}$ (colorless oil, 79%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.25(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.75-1.81(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 2 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{85}$

2,2,2-Trichloro-1-phenylethyl (3-phenylpropyl)carbamate 7g: Was subjected to GPD conditions and isolated after extraction (colorless oil, quant). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.86(\mathrm{qn}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{qn}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.28-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.62(\mathrm{~m}, 2 \mathrm{H})$. NMR data matches that of the starting material.

Compounds from Table 5

(3-(Benzyloxy)propyl)benzene 7h: Was subjected to GPD conditions and isolated after extraction (colorless oil, quant). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.81-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 7.08-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.27(\mathrm{~m}, 7 \mathrm{H}) . \mathrm{NMR}$ data matches that previously reported for this compound. ${ }^{63}$
(2-(Benzyloxy)propyl)benzene 7i: Was subjected to GPD conditions and isolated after purification using column chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc/hexanes $\left.1 / 9\right)$ (colorless oil, quant). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.70(\mathrm{dd}, J=13.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=13.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ $(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.31(\mathrm{~m}, 10 \mathrm{H})$. NMR data matches that of the starting material.

Ethyl 4-(benzyloxy)benzoate 7j: Was subjected to GPD conditions and isolated after purification using column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexanes $\left.1 / 9\right)$ (white solid, $\left.95 \%\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.45(\mathrm{~m}$, $5 \mathrm{H}), 8.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{64}$

1-(Benzyloxy)-4-methylbenzene 7k: Was subjected to GPD conditions and followed by TLC. TLC showed complete conversion of $\mathbf{7 k}$ to p-cresol.

1-(Benzyloxy)-4-methoxybenzene 71: Was subjected to GPD conditions and followed by TLC. TLC showed complete conversion of $\mathbf{7 1}$ to 4-methoxyphenol along with byproducts.

3-Phenylpropyl 4-methylbenzenesulfonate 7 m : Was subjected to GPD conditions and isolated after extraction (colorless oil, quant). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.91-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{67}$

3-Phenylpropan-1-ol 8n: Following GPD, 8n was synthesized from 7n and isolated after purification using column chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc/hexanes 6/4) (colorless oil, 84\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.90-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{t}, J=6.4,2 \mathrm{H}), 7.23-7.26(\mathrm{~m}$, $3 H), ~ 7.30-7.36(\mathrm{~m}, 2 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{86}$

Triisopropyl(3-phenylpropoxy)silane 7p: Was subjected to GPD conditions and isolated after purification using column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexanes $\left.0.3 / 99.7\right)$ (colorless oil, 85\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.05-1.09(\mathrm{~m}, 21 \mathrm{H}), 1.81-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H})$, 7.17-7.31 (m, 5H). NMR data matches that previously reported for this compound. ${ }^{70}$

Tert-butyldimethyl(3-phenylpropoxy)silane 7q: Was subjected to GPD conditions and isolated after purification using column chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc/hexanes 1/9) (colorless oil, 36\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.79-1.89(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.70(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 3 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{70}$

Compounds from Table 6:

O-Benzyl-L-serine methyl ester hydrochloride 8t: Following GPD conditions from 7t but using 1.0 equiv of SnCl_{4}. The reaction was quenched with $\mathrm{HCl}(1 \mathrm{M})$, and the pH then adjusted to pH 7 using NaHCO_{3}. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent, the crude product was dissolved in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ and a solution of $\mathrm{HCl}(2 \mathrm{M})$ in $\mathrm{Et}_{2} \mathrm{O}(300 \mu \mathrm{~L})$ was added. The white solid obtained was collected using filtration (white solid, $55 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.76(\mathrm{~s}, 3 \mathrm{H})$, 3.94-4.00 (m, 1H), 4.08-4.11 (m, 1H), $4.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) 4.49(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23-7.31(\mathrm{~m}, 5 \mathrm{H}), 8.86(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{87}$
N-Benzyl-O-Benzyl-L-serine 8u: Following GPD conditions, from 7u but using 1.0 equiv of SnCl_{4}. The reaction was quenched with a saturated aqueous solution of NaHCO_{3} and purified using flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9 / 1\right)$ (colorless oil, $\left.30 \%\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.65(\mathrm{t}$, $\mathrm{J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.99(\mathrm{~m}, 4 \mathrm{H}), 4.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.26(\mathrm{~m}, 10 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 55.3$ (2C), 59.0, 63.6, 128.6 (2C), 129.1 (2C), 129.6 (2C), 135.5 (2C), 172.4; HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{3}, 308.1257$; found, 308.1259.

Benzyl 2,3,4,6-tetra-O-benzyl-D-glucopyranoside 7v: Was subjected to GPD conditions and isolated after purification using column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexanes $\left.1 / 9\right)$ (white solid, $\left.57 \%\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ selected data on $\alpha-7 \mathrm{v} 4.04(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$. NMR data matches that previously reported for this compound. ${ }^{88}$

ASSOCIATED CONTENT

Supporting Information. NMR spectra for new compounds and mass spectral data. This material is available free-of-charge via the Internet at http://pubs.acs.org.

ACKNOWLEDGMENT

A.E.G.B. was supported by Cancer Care Nova Scotia (CCNS), by way of a Norah Stephen Oncology Scholars Award through the Beatrice Hunter Cancer Research Institute (BHCRI). E.M. was BHCRIsupported with funds provided by CCNS as part of The Terry Fox Foundation Strategic Health Research Training Program in Cancer Research at CIHR.

REFERENCES

(1) Crouch, R. D. Tetrahedron 2013, 69, 2383.
(2) Greene, T. W.; Wuts, P. G. M. Greene's Protective Groups in Organic Synthesis, Fourth Edition; Wiley-Interscience: Hoboken, NJ, 2007.
(3) Kocienski, P. J. Protecting Groups; Thieme: Stuttgart, Germany, 2005.
(4) Jones, A. R.; Bean, G. P., Eds. The chemistry of pyrroles; Academic Press: London, 1977.
(5) Tsuji, T.; Kataoka, T.; Yoshioka, M.; Sendo, Y.; Nishitani, Y.; Hirai, S.; Maeda, T.; Nagata, W. Tetrahedron Lett. 1979, 2793.
(6) Akiyama, T.; Hirofuji, H.; Hirose, A.; Ozaki, S. Synthetic Commun. 1994, 24, 2179.
(7) Ohtani, M.; Watanabe, F.; Narisada, M. J. Org. Chem. 1984, 49, 5271.
(8) Pinchuk, A. N.; Rampy, M. A.; Longino, M. A.; Skinner, R. W. S.; Gross, M. D.; Weichert, J. P.; Counsell, R. E. J. Med. Chem. 2006, 49, 2155.
(9) Akiyama, T.; Hirofuji, H.; Ozaki, S. Tetrahedron Lett. 1991, 32, 1321.
(10) Williams, D. R.; Brown, D. L.; Benbow, J. W. J. Am. Chem. Soc. 1989, 111, 1923.
(11) Manchand, P. S. J. Chem. Soc. D. 1971, 667.
(12) Schmidt, U.; Kroner, M.; Griesser, H. Synthesis 1991, 294.
(13) Wakabayashi, T.; Mori, K.; Kobayashi, S. J.Am.Chem. Soc. 2001, 123, 1372.
(14) Han, S.; Moore, R. A.; Viola, R. E. Bioorg. Chem. 2002, 30, 81.
(15) Carroll, W. A.; Altenbach, R. J.; Bai, H.; Brioni, J. D.; Brune, M. E.; Buckner, S. A.; Cassidy, C.; Chen, Y.; Coghlan, M. J.; Daza, A. V.; Drizin, I.; Fey, T. A.; Fitzgerald, M.; Gopalakrishnan, M.;

Gregg, R. J.; Henry, R. F.; Holladay, M. W.; King, L. L.; Kort, M. E.; Kym, P. R.; Milicic, I.; Tang, R.; Turner, S. C.; Whiteaker, K. L.; Yi, L.; Zhang, H.; Sullivan, J. P. J. Med. Chem. 2004, 47, 3163.
(16) Kaasgaard, T.; Andresen, T. L.; Jensen, S. S.; Holte, R. O.; Jensen, L. T.; Jørgensen, K. Chem. Phys. Lipids 2009, 157, 94.
(17) Comber, M. F.; Sargent, M. V.; Skelton, B. W.; White, A. H. J. Chem. Soc. Perk. T. 1 1989, 441.
(18) Chen, W.; Sim, L.; Rose, D. R.; Pinto, B. M. Carbohyd. Res. 2007, 342, 1661.
(19) Brown, M. F.; Mitton-Fry, M. J.; Arcari, J. T.; Barham, R.; Casavant, J.; Gerstenberger, B. S.; Han, S.; Hardink, J. R.; Harris, T. M.; Hoang, T.; Huband, M. D.; Lall, M. S.; Lemmon, M. M.; Li, C.; Lin, J.; McCurdy, S. P.; McElroy, E.; McPherson, C.; Marr, E. S.; Mueller, J. P.; Mullins, L.; Nikitenko, A. A.; Noe, M. C.; Penzien, J.; Plummer, M. S.; Schuff, B. P.; Shanmugasundaram, V.; Starr, J. T.; Sun, J.; Tomaras, A.; Young, J. A.; Zaniewski, R. P. J. Med. Chem. 2013, 56, 5541.
(20) Valencic, M.; Van, D. D. T.; De, V. E. Tetrahedron Lett. 1998, 39, 1625.
(21) Surivet, J.-P.; Vatele, J.-M. Tetrahedron Lett. 1998, 39, 9681.
(22) Sharma, G. V. M.; Mallesham, S.; Chandra Mouli, C. Tetrahedron: Asymm. 2009, 20, 2513.
(23) Davies, T. J.; Jones, R. V. H.; Lindsell, W. E.; Miln, C.; Preston, P. N. Tetrahedron Lett. 2002, 43, 487.
(24) Lian, X.; Fu, S.; Ma, T.; Li, S.; Zeng, W. Appl. Organomet. Chem. 2011, 25, 443.
(25) Huang, W.; Zhang, X.; Liu, H.; Shen, J.; Jiang, H. Tetrahedron Lett. 2005, 46, 5965.
(26) Ishihara, K.; Hiraiwa, Y.; Yamamoto, H. Synlett 2000, 80.
(27) Yadav, J. S.; Reddy, B. V. S.; Rao, C. V.; Chand, P. K.; Prasad, A. R. Synlett 2002, 137.
(28) Marcantoni, E.; Massaccesi, M.; Torregiani, E.; Bartoli, G.; Bosco, M.; Sambri, L. J. Org. Chem. 2001, 66, 4430.
(29) Cappa, A.; Marcantoni, E.; Torregiani, E.; Bartoli, G.; Bellucci, M. C.; Bosco, M.; Sambri, L. J. Org. Chem. 1999, 64, 5696.
(30) Xu, Y.; Wei, Y. Synth. Commun. 2010, 40, 3423.
(31) Zhu, X.; Wei, Y. Adv. Mater. Res. 2012, 396-398, 1936.
(32) Sharma, G. V. M.; Reddy, C. G.; Krishna, P. R. J. Org. Chem. 2003, 68, 4574.
(33) Hori, H.; Nishida, Y.; Ohrui, H.; Meguro, H. J. Org. Chem. 1989, 54, 1346.
(34) Taylor, S. D.; Mirzaei, F.; Bearne, S. L. J. Org. Chem. 2008, 73, 1403.
(35) Salomon, C. J.; Mata, E. G.; Mascaretti, O. A. J. Chem. Soc., Perk. T. 1 1996, 995.
(36) Zhang, Z.; Wang, D.; Wang, B.; Liu, Q.; Liu, T.; Zhang, W.; Yuan, B.; Zhao, Z.; Han, D.; Zhang, G. Tetrahedron 2013, 69, 9063.
(37) Laursen, B.; Denieul, M.-P.; Skrydstrup, T. Tetrahedron 2002, 58, 2231.
(38) Simoni, E.; Daniele, S.; Bottegoni, G.; Pizzirani, D.; Trincavelli, M. L.; Goldoni, L.; Tarozzo, G.; Reggiani, A.; Martini, C.; Piomelli, D.; Melchiorre, C.; Rosini, M.; Cavalli, A. J. Med. Chem 2012, 55, 9708.
(39) Collins, K. D.; Glorius, F. Nat. Chem., 5, 597.
(40) Bew, S. P.; Sharma, S. V. Chem. Commun. 2007, 975.
(41) Bystrov, D. S. J. Struct. Chem. 1963, 4, 638.
(42) Bajwa, J. S. Tetrahedron Lett. 1992, 33, 2299.
(43) Anson, M. S.; Montana, J. G. Synlett 1994, 219.
(44) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465.
(45) Khurana, J. M.; Arora, R. Synthesis 2009, 1127.
(46) Hashimoto, S.; Miyazaki, Y.; Shinoda, T.; Ikegami, S. Tetrahedron Lett. 1989, 30, 7195.
(47) Kobayashi, K.; Kondo, Y. Org. Lett. 2009, 11, 2035.
(48) Regourd, J.; Comeau, I. M.; Beshara, C. S.; Thompson, A. J. Heterocycl. Chem. 2006, 43, 1709.
(49) Li, L.; Sheng, H.; Xu, F.; Shen, Q. Chin. J. Chem. 2009, 27, 1127.
(50) Nowrouzi, N.; Mehranpour, A. M.; Rad, J. A. Tetrahedron 2010, 66, 9596.
(51) Hu, Y.; Liu, J.; Lü, Z.; Luo, X.; Zhang, H.; Lan, Y.; Lei, A. J. Am. Chem. Soc. 2010, 132, 3153.
(52) Li, X.; Eli, W.; Li, G. Catal. Commun. 2008, 9, 2264.
(53) Tummatorn, J.; Albiniak, P. A.; Dudley, G. B. J. Org. Chem. 2007, 72, 8962.
(54) Suresh, V.; Suryakiran, N.; Rajesh, K.; Selvam, J. J. P.; Srinivasulu, M.; Venkateswarlu, Y. Synthetic Commun. 2007, 38, 92.
(55) Aoyama, T.; Shioiri, T. Chem. Pharm. Bull. 1981, 29, 3249.
(56) Pirtsch, M.; Paria, S.; Matsuno, T.; Isobe, H.; Reiser, O. Chem. Eur. J. 2012, 18, 7336.
(57) Rao, M. R.; Tiwari, M. D.; Bellare, J. R.; Ravikanth, M. J. Org. Chem. 2011, 76, 7263.
(58) Wright, S. W.; Hageman, D. L.; Wright, A. S.; McClure, L. D. Tetrahedron Lett. 1997, 38, 7345.
(59) Schmidt, A.; Habeck, T.; Snovydovych, B.; Eisfeld, W. Org. Lett. 2007, 9, 3515.
(60) Horrillo-Martínez, P.; Hultzsch, K. C.; Gil, A.; Branchadell, V. Eur. J. Org. Chem. 2007, 2007, 3311.
(61) Starkov, P.; Sheppard, T. D. Org. Biomol. Chem. 2011, 9, 1320.
(62) Yang, B.-L.; Tian, S.-K. Eur. J. Org. Chem. 2007, 2007, 4646.
(63) Kurita, T.; Hattori, K.; Seki, S.; Mizumoto, T.; Aoki, F.; Yamada, Y.; Ikawa, K.; Maegawa, T.;

Monguchi, Y.; Sajiki, H. Chem. Eur. J. 2008, 14, 664.
(64) Venkataramanan, B.; James, W. L. G.; Vittal, J. J.; Suresh, V. Cryst. Growth. Des. 2004, 4, 553.
(65) Ohsawa, K.; Yoshida, M.; Doi, T. J. Org. Chem. 2013, 78, 3438.
(66) Chakraborti, A. K.; Chankeshwara, S. V. J. Org. Chem. 2008, 74, 1367.
(67) Mulpuri, S. V.; Shin, J.; Shin, B.-G.; Greiner, A.; Yoon, D. Y. Polymer 2011, 52, 4377.
(68) Bernady, K. F.; Floyd, M. B.; Poletto, J. F.; Weiss, M. J. J. Org. Chem. 1979, 44, 1438.
(69) Kavala, V.; Samal, A. K.; Patel, B. K. ARKIVOC 2005, 20.
(70) Yeom, C.-E.; Kim, Y. J.; Lee, S. Y.; Shin, Y. J.; Kim, B. M. Tetrahedron 2005, 61, 12227.
(71) Lu, W.; Navidpour, L.; Taylor, S. D. Carbohydrate Research 2005, 340, 1213.
(72) Mellin-Morlière, C.; Aitken, D. J.; Bull, S. D.; Davies, S. G.; Husson, H.-P. Tetrahedron: Asymm. 2001, 12, 149.
(73) Iwanami, K.; Yano, K.; Oriyama, T. Chem. Lett. 2007, 36, 38.
(74) Fushimi, N.; Teranishi, H.; Shimizu, K.; Yonekubo, S.; Ohno, K.; Miyagi, T.; Itoh, F.; Shibazaki, T.; Tomae, M.; Ishikawa-Takemura, Y.; Nakabayashi, T.; Kamada, N.; Yamauchi, Y.; Kobayashi, S.; Isaji, M. Bioorg. Med. Chem. 2013, 21, 748.
(75) Koch, S.; Schollmeyer, D.; Löwe, H.; Kunz, H. Chem. Eur. J. 2013, 19, 7020.
(76) Hempel, C.; Weckenmann, N. M.; Maichle-Moessmer, C.; Nachtsheim, B. J. Org. Biomol. Chem. 2012, 10, 9325.
(77) Sodhi, R. K.; Paul, S.; Clark, J. H. Green Chem. 2012, 14, 1649.
(78) Dintzner, M. R.; Mondjinou, Y. A.; Pileggi, D. J. Tetrahedron Lett. 2010, 51, 826.
(79) Narayanaswamy, A.; Xu, H.; Pradhan, N.; Kim, M.; Peng, X. J. Am.Chem.Soc. 2006, 128, 10310.
(80) Grill, J. M.; Ogle, J. W.; Miller, S. A. J. Org.Chem. 2006, 71, 9291.
(81) Cafiero, L. R.; Snowden, T. S. Org. Lett. 2008, 10, 3853.
(82) Blenderman, W. G.; Joullie, M. M.; Preti, G. J. Org. Chem. 1983, 48, 3206.
(83) Moore, L. R.; Western, E. C.; Craciun, R.; Spruell, J. M.; Dixon, D. A.; O’Halloran, K. P.; Shaughnessy, K. H. Organometallics 2008, 27, 576.
(84) Regourd, J.; Al-Sheikh Ali, A.; Thompson, A. J. Med. Chem. 2007, 50, 1528.
(85) Senyel, M.; Uenal, A.; Alver, O. C. R. Chim. 2009, 12, 808.
(86) Duarte, C. d. M.; Verli, H.; Araújo-Júnior, J. X. d.; Medeiros, I. A. d.; Barreiro, E. J.; Fraga, C. A. M. Eur. J. Pharm. Sci. 2004, 23, 363.
(87) Tullberg, M.; Grøtli, M.; Luthman, K. Tetrahedron 2006, 62, 7484.
(88) Yao, Q.; Wei, F.; Huali, C.; Nian, Y.; Wenwei, T.; Jie, T.; Wenmin, Y.; Rui, K.; Zhirong, Z.; Yong, W.; Qin, H. J. Drug Target. 2010, 18, 536.

Table of Contents artwork

