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ABSTRACT
Collaborative documents can be worked on synchronously
(collaborators see updates as they happen) and asynchronously
(collaborators see updates after they are shared). Synchronous
updates are useful when collaborators are working together
in real-time on the details of a document. Asynchronous up-
dates are more appropriate for sharing larger sets of changes
or for publishing a particular version. Furthermore, although
web-based collaboration is ideal for real-time updates, often
authors wish to use software installed on their local com-
puter to edit documents. As such, this note will outline
an approach for merging synchronous and asynchronous up-
dates across both the WWW and the user’s local file system
using Operational Transforms and Conflict-Free Replicated
Data Types.

1. INTRODUCTION
Remote file synchronization is the process of replicating a

file system across multiple devices. Recently, services such as
Googe Drive, Dropbox and Microsoft OneDrive have made
the concept widely available, but the literature shows work
as far back as the early 1980s [18].

The system we will demonstrate is both synchronous, so
that close collaborators can see and respond to updates in
real time, and asynchronous, so that the files can be propa-
gated to external locations on the user’s request. This sys-
tem is useful for example in an academic publishing model
where authors can write a paper while collaborating in re-
altime on a departmental server, then push it to a server
provided by a journal. Reviewers can see the file, add com-
ments, and after the review period is over, the commented
version can be sent back to the authors for revisions. The
authors can again collaborate on their revisions in real-time,
before pushing them back to the journal for final review.

A synchronous solution means that any changes made to
the files must be propagated as quickly as possible to all
clients. The CAP Theorem [2] states that we cannot have
consistency, availability and tolerance to partitions, but for
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a synchronous file system, we need all three. To achieve
this, we use a weaker form of consistency called “eventual
consistency,” meaning roughly that if all users stop making
edits to files, eventually the files on all clients will match.
Saito and Shapiro [12] give a more formal definition.

The approach we take is optimistic, in that it assumes that
conflicts (where two users edit the same part of the same
file) are rare, and can be fixed after they happen [12]. Thus,
users can edit any part of file at any time, and if two users
happen to independently edit the same part of the same
file simultaneously, the result is arbitrary, but eventually
consistent.

The solution we propose is in user space, meaning that
it runs as an application on the user’s device, rather than
being integrated directly into the operating system. It also
allows for synchronization between a web interface and local
files.

2. BACKGROUND
In our work, we bring together two approaches for achiev-

ing eventual consistency: Conflict-Free Replicated Data Types
(CRDT) [16] and Operational Transformation (OT) [4].

2.1 Conflict-Free Replicated Data Types
Conflict-Free Replicated Data Types are constructed in

such a way that operations on them cannot produce con-
flicts, regardless of their order, and so can be easily proven
to result in consistent replicas for every user.

Shapiro et al. [16] have suggested several practical data
types with this property, in particular, the Observed-Remove
Set (OR-set) which will form the backbone of our file tree
replication component. A set S has two operations, add(e)
and remove(e). If e is already in S then add(e) has no
effect. If e is not in S then remove(e) has no effect.

Set operations seem like they might be commutative, but
inconsistencies can arise. For example (borrowed from Shapiro
et al.[16]), suppose user α adds the element 5 to the set, then
removes it, resulting in the operation [add(5), remove(5)].
Meanwhile user β has also added the element 5 to his set,
resulting in the operation [add(5)]. Now, when α and β
swap their operations, alpha will have [add(5), remove(5),
add(5)] resulting in Sα = {5}, whereas β will have [add(5),
add(5), remove(5)] resulting in Sβ = {}.

OR-Sets circumvent this problem by applying a unique to-
ken to each element. Operation add(e) generates a unique
token and appends it to the element. This pair is then
what is transmitted to all replicas. Operation remove(e)
on the other hand removes all pairs containing e and trans-



Client α Client β
Operation Result Operation Result
Initial abc Initial abc
delete(1, 1) bc insert(4, “ba”) abcba
insert(3, ‘e’) bce delete(3, 1) abba

transmit operations
insert(4, “ba”) bceba delete(1, 1) bba
delete(3, 1) bcba insert(3, ‘e’) bbea

(a) Without OT

Client α Client β
Operation Result Operation Result
Initial abc Initial abc
delete(1, 1) bc insert(4, “ba”) abcba
insert(3, ‘e’) bce delete(3, 1) abba

transmit and transform operations
insert(4, “ba”) bceba delete(1, 1) bba
delete(2, 1) beba insert(2, ‘e’) beba

(b) With OT

Figure 1: Example of operations with and without
Operational Transformation

mits those pairs to the other replicas. So, in the above ex-
ample, the operations that α performs would be [add((5,
t1)), remove((5, t1)), add((5, t2))] resulting in Sα =
{(5, t2)}, whereas β will have [add((5, t2)), add((5, t1),
remove((5, t1)] resulting in Sβ = {(5, t2)}, where t1 and
t2 are randomly generated tokens.

Although it is possible to apply a CRDT approach to edit-
ing a text buffer (e.g. [11]), this approach generates a lot
of overhead and is not appropriate for binary files, as it in-
volves assigning each byte a unique ID. There have been
attempts to reduce the amount of bookkeeping CRDT re-
quires in these cases (e.g. [9]), but a substantial amount of
overhead remains. So, for operations on files themselves, we
now consider Operational Transformation.

2.2 Operational Transformation
Operational Transformation was first proposed by Ellis

and Gibbs in 1985 [4], but has seen renewed focus in the
last decade and a half. Operational Transform allows for
data types with non-commutative operations, but achieves
consistency by transforming the operations when they are
commuted.

For example, suppose that each user has a buffer B of
data they wish to keep in sync. This buffer defines two
operation insert(pos, data), which inserts data at position
pos, shifting the buffer after pos up by the length of data and
delete(pos, length), which removes length data from the
buffer at position pos, shifting the buffer beyond pos+length
down by length.

In Operational Transformation, the operations from a re-
mote replica are transformed to take into account all prior
operations before being applied. Figure 1 shows the differ-
ence between applying the operations as they are received
(Figure 1a) or transforming them prior to applying them
(Figure 1b). In particular, note how the position of each
insert and delete maintains the intended meaning of the op-
eration (e.g. the delete operation from Client α is intended
to delete the ’c’.)

OT is more flexible than CRDT, but much harder to guar-

1. Divide FB into M equally size blocks of size n.

2. For each block at byte F jB , compute signatures Rj and
Hj (where R is an easy to compute signature with
many possible collisions, and H is a more complex sig-
nature with a lower probability of collisions).

3. Transmit the signatures to A.

4. At each byte offset i in FA, compute Ri on the block
starting at i

5. Compare Ri to each Rj . If there is a match, compute
Hi and compare it to Hj .

(a) If Hi matches Hj then record a block match be-
tween i and j.

(b) Otherwise, if either Ri does not match Rj or Hi

does not match Hj record the byte at F iA

6. Transmit the recorded matches and bytes to B

7. F ′
B is constructed from merging the block matches

from FB and the new bytes transmitted from A.

Figure 2: The rysnc algorithm (based on Tridgell
[17])

antee consistency. In 2006, Imine et al. [7] showed that
many OT algorithms (in fact, all the algorithms they tested,
including the original by Ellis and Gibbs [4]) were not guar-
anteed to converge to a consistent state. However, since then
work has been done on achieving an algorithm with a prov-
able guarantee on consistency. In particular, we shall use
the Admissibility Based Sequence Transformation (ABST)
algorithm proposed by Shao, Li and Gu [15] because of its
linear running time and proof of correctness.

ABST is too complex to explain in detail here, but the fun-
damental principle is to maintain the operations performed
in order first by type (inserts then deletes) and then by their
position in the buffer. This allows for a transformation of
operations similar to a two way merge, resulting in an al-
gorithm linear in the number of operations to process and
the number of operations in the history, as opposed to the
original OT algorithm, which is quadratic.

2.3 rsync
The rsync [17] algorithm can be used to keep two files on

separate machines in sync with each other. The idea of rsync
is to divide each file into blocks of a particular size and then
compare the signatures of each block across the two files to
see what changes have been made.

Suppose we have two computers, A and B, which each
have a copy file F on them (FA and FB). Then if we wish
to update FB based on FA, follow the steps in Figure 2

We will use this algorithm for finding how files have been
updated on a local machine in Section 4.3.

3. RELATED WORK
The first attempts at remote file synchronization were

based around networked file systems, such as Sun’s Network
File System (NFS) [13] and IBM’s Server Message Block
(SMB) [6], both of which are still in operation today, al-
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Figure 3: The architecture of the system

though NFS has largely been replaced by (also created by
Sun) zFS.

Other research has built on these systems, such as Coda
[14], which allows workstations to continue working on re-
mote files in the event of a disconnect and then synchronizes
later, or Bayou [3], which allowed for a more peer-to-peer
synchronization strategy.

Although rsync was and remains popular, other user space
file synchronization approaches, such as Unison [10], or more
recent commercial products such as Dropbox (which uses
a modified rsync algorithm) and Google Drive (which uses
Diff-Merge-Patch [5]) have cropped up and are widely in use.

Mehdi et al have suggested merging the Operational Trans-
form and CRDT algorithms [8], but they use OT for keep-
ing files synchronized between the client and the server, and
CRDT for propagating changes between servers. Ahmed-
Nacer et al. discuss applying CRDT to a file system [1],
but focus on methods for resolving conflicts, and do not give
more than a high level overview of how the file system might
work. Our approach of treating Operational Transform as
a commutative operation within CRDT is novel, and is the
first contribution of this demo.

Furthermore, although the idea of version control (RCS,
CVS, SVN, etc.) and even distributed version control (Git,
Mercurial, Bitkeeper, etc.) is well established, combining
real-time synchronization with asynchronous version control
in this way is the second contribution of this demo.

4. APPROACH

4.1 Architecture
The system is comprised of five components: a web client,

a web server, a native client, a real-time router and asy-
chronous versioning (see Figure 3).

The web client provides web based editing and collabo-
ration on files and folders as well as control over the asy-
chronous versioning, while the native client runs on users’
machines to broadcast changes to files made locally to other
users.

The real-time router receives updates from the web and
native clients, and distributes them to other users, while
also keeping the most recent version of each file and folder
updated and available.

At the user’s request, the asynchronous versioning com-
ponent uses the most recent version of the files and folders

File Watcher CRDT

ABST

Serialization WAMP Pub

(a) Process on file change

WAMP Sub Deserialization CRDT

ABST

File Updater

(b) Process on receiving remote changes

Figure 4: Flow of data

from the real-time router to create a snapshot of the files
as they currently are, along with the difference between this
and the previous snapshots. This history of file revisions
can then be pushed or pulled to other servers, allowing for
asychronous updates to be shared.

The web server is a standard web server that simply serves
the static files used for the web client.

Communication between the clients and the realtime router,
as well as between the asynchronous versioning components
is provided by the Web Application Messaging Protocol (WAMP)1.
WAMP is a protocol for both remote procedure call (RPC)
and publish subscribe (pubsub) communications. It is avail-
able over websockets, and so provides two way communica-
tion for both the web and native clients.

4.2 Process
The file system is represented as an OR-Set, with each file

having a unique token assigned to it that is independent of
its filename or path. The token is generated from a locally
unique value, alongside the ID of the client that created the
file. The system is implemented as a map from the unique
token to its corresponding file and meta-data. Alongside
its binary octet stream, a file F has associated meta-data
MDF , represented as an Last Write Wins (LWW) Set [16].
This meta-data contains information such as filename, file
path, and file type. Changes to the meta-data are made
according to a simple timestamp based overwrite algorithm,
described in Section 4.2.4.

The web client, when starting up, will subscribe to all
updates for the object it is currently looking at (either a
folder or a file F ) from the real-time router, and also request
the most recent version of F (using RPC).

The native client, when starting up, will scan all the files
in its fileset, subscribe to changes to any file in the set, and
request all remote changes to all files from the real-time
router since the latest version it has received (using RPC).
Upon receiving the remote changes, it will merge them with
the local changes, and then publish all of the local changes
for other users to see.

From here, both clients will track any changes to any file
or folder F made locally (in either the web interface or to the
file from an application on the local system). Any changes
that are made will be published to the real-time router. Fig-
ure 4 describes the flow of data through the clients when the
file changes. At present, all files are treated based on their

1See http://wamp-proto.org/



binary content, regardless of their file type.
Running alongside the router is a special client which

keeps track of the canonical form of the object. This client
is identical to a native client except that it exposes a proce-
dure through RPC that allows other clients to retrieve the
list of transactions since a partcular time.

When the user requests the version control component to
take a snapshot of the current file, it consolidates all changes
made to the file since the last snapshot, and stores those
changes. If the user wishes, those changes can be sent to
another server to apply to its own copy of the file. These
changes are applied exactly as if they had come from another
local machine, and so follow the same procedure as below.

We shall now discuss the operations on the files in more
detail. There are four possible operations on a file system:
create, delete, update and move.

4.2.1 Creating
A file F is created differently on a web and native client.

On a web client, the user requests the file’s creation, whereas
on the native client, the user creates the file using some
external application. In either case, a new, globally unique
token tF is generated for that file (as outlined above), and
an add(tF ) operation is published to the real-time router,
along with the relevant meta-data (name and path).

The token tF and its meta-data are stored in the file set
locally, all subscribers add it to their local set and any native
clients will physically create the file. If two users indepen-
dently create a file with the same name on different systems,
they will not overwrite each other, since each file will be cre-
ated with a unique token. However, when the client receives
the add command, if a file with the same name already ex-
ists, the filename will be modified locally to indicate that
it is a different file that happens to have the same name.
For example, if client A and client B each created a file
called “info.txt” before synchronizing, then after the opera-
tions had propagated, client A would have two files, named
“info.txt” and “info (from B).txt” and client B would have
two files, named “info.txt” and “info (from A).txt”.

Each client is responsible for keeping track of the map-
pings between actual filenames and what is displayed.

4.2.2 Delete
When a file F with token tF is deleted, the client will

remove it from its local set, then publish a remove(tF )
message. Upon receiving it, the router and every subscriber
will physically delete F from the file system and remove tF
from its local map.

4.2.3 Move
Moving a file on the file system can be represented either

as a change to the meta-data map if they remain within the
tracked folder or a delete if it is leaving the tracked area.

4.2.4 Update Meta-data
When changes to the meta-data take place, an updateMD(t,

k, v, ts) message is published, where t is the token corre-
sponding to that file, k is the meta-data key (such as ‘file-
name’ or ‘path’), v is the new value for that meta-data el-
ement, and ts is the local timestamp. When the router or
any other client subscribing to that file system receives the
update message, the meta-data entry k in t is changed, so
long as the timestamp ts is more recent than the timestamp

on the previously stored value. In this way, the value stored
in the meta-data map will be the one with the most recent
timestamp. This may cause some strange behaviour when
the clocks on the computers are out of sync, but most com-
puters are close enough that it shouldn’t be a problem.

If the meta-data update changed the path or filename of
a file, then that file is renamed or moved, unless there is
already a file in the new location. If that is the case, then
the file name is changed according to the rules outlined in
section 4.2.1.

4.2.5 Update Data
As mentioned earlier, when updating data within files, we

use Operational Transform to maintain consistency. Since
the goal of Operational Transform is to end with the same
result regardless of the relative order of operations, we can
treat Operational Transform as a kind of Conflict Free Repli-
cated Data Type.

When updating a file, there are two possible operations:
insert and remove. change is a possible operation as well,
but can be expressed as a delete followed by an insert.

For each file F , on every client and on the router, each
operation since the previous snapshot is stored. Following
the ABST algorithm [15], we store the operations in file
order, rather than the order they were received, first the
inserts, then the deletes. This means that each operation
happens earlier in the file than the one that follows it.

When receiving a series of operations from a remote site,
the file is locked locally, the remote operations are compared
against the local operations, and ‘merged in,’ so that the new
sequence of actions retains the property of being stored in
the order they occur in the file. The merged operations are
performed on the file itself, and the file is unlocked. Shao,
Li and Gu [15] give the precise details of the merge.

4.3 Detecting Changes
On the web interface, changes can be detecting by tracking

events, but this is not possible in the native client when the
changes are made in external applications. Instead, we apply
a modification of the rsync algorithm outlined above to find
the changes. For each file, we store block hashes of the latest
version. When a file is modified, the client treats the existing
hashes as FB according to the algorithm in figure 2, except
line 4.(a) is modified to read If Hi matches Hj and i ≥ j
then record a deletion of i− j bytes.

This change removes the ability to handle re-ordering within
the file gracefully, but the OT algorithm does not deal well
with re-ordering (treating it instead as a delete and insert).

5. CONCLUSION
The system as described brings together two consistency

approaches (OT and CRDT) to synchronize changes across
local files and a web client. It is also able to propagate those
changes to other remote servers.

Before the system can be truly useful, several more prob-
lems must be resolved. The large size of operation history,
more appropriate difference algorithms for tree and text
based files, and improved conflict resolution for the asyn-
chronous component are all areas of future improvement.
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Oster, and Pascal Molli. Formal design and
verification of operational transformation algorithms
for copies convergence. In Theoretical Computer
Science, volume 351, pages 167–183, 2006.

[8] Ahmed-Nacer Mehdi, Pascal Urso, Valter Balegas, and
Nuno Perguiça. Merging OT and CRDT algorithms.
In Proceedings of the First Workshop on Principles
and Practice of Eventual Consistency, pages 8–11,
New York, New York, USA, 2014. ACM.
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