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ABSTRACT 

 

Despite the recent data explosion, many optimization and decision making processes are 

constrained with detailed and/or expensive simulation runs. Therefore, original 

simulation models are replaced with a light-weight model that captures the underlying 

input-output relationship plausibly nonlinear and complex, known as proxy. The focus of 

this study is to develop a Gaussian Process based proxy model and apply it to porous 

media flows. Porous media flows are ubiquitous and, the study of groundwater virus 

transport and petroleum reservoir flows, are crucial for health and economic impacts. 

Experimental design plays an important role in extracting the most information from 

limited data. Optimization is always required for selecting the best design. On the other 

hand ‘covariance function’ or ‘kernel’ is the most important ingredient for constructing a 

Gaussian process model. In this study, all these elements are carefully considered and 

new methods or modifications to the existing method(s) are proposed. A new and 

efficient method for experimental design is proposed. Modification to an existing 

heuristic optimization technique is also implemented to improve its performance. An 

algorithm is proposed to produce composite kernels, which can select the optimal kernel 

given some base kernels and the initial design. Eventually, the proposed methods are 

applied to different case studies. Parameters of 1-dimensional groundwater virus 

transport problem and the porosity of a small-size industrial reservoir are estimated 

successfully using a limited number of simulation runs. In the optimal well placement 

problem, despite limited data, optimal well locations were calculated for two production 

wells of a real reservoir. The locations predicted using proxy models were found to be 

reasonably close to the original well sites of the reservoir, validating the proposed proxy 

models.     
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CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND 

With the explosion of availability of data, the use of ‘Big Data’ is becoming increasingly 

popular. One reason for the data explosion is that the users became data producers using the 

Internet. Moreover, cheaper sensors and advances in telemetry resulted in huge bursts of data in 

engineering, earth sciences, and medical/health sciences, etc., Ranganathan (2011); Grolinger et 

al. (2016); Zhou & Yang (2016); Clark et al. (2016). However, scarcity of data is still a niche for 

many scientific and engineering applications. For example, very few monitoring wells are 

generally available for groundwater flow studies, Kim (2015) and similarly, a limited number of 

wells are drilled for oil and gas reservoirs compared to the extent of a field due to economic 

reasons or other constraints. As drilling costs of oil and gas wells vary from 5.5 – 9.5 million 

dollars depending on location, Ziomek-Moroz (2012), a well is drilled only when it is 

economically viable. As a result, measured properties of an aquifer/reservoir, like porosity and 

permeability, are available for a very tiny fraction of the whole field. Virus transport in 

groundwater and petroleum reservoir flows however, are important fields of porous media flows 

due to their impacts on health and economy. On the other hand, a simulation is an indispensable 

tool for many engineering and scientific projects, including groundwater flow, Seethaa et al. 

(2015) and petroleum reservoirs, Zaydullin et al. (2014), where these properties are an integral 

part for the modeling. Missing data in the model are filled using inference and are validated by 

comparing the known production data and the simulated results.  This process is known as 

parameter estimation in groundwater flow modeling while the same is known as ‘history 

matching’ in the reservoir engineering discipline. In any case, parameter estimation is an inverse 

process, Oliver et al. (2008); Xavier et al. (2013) and is hard to solve as different values of the 
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model parameters may be consistent with the available data (non-uniqueness) and it might 

require the exploration of a huge parameter space, potentially multimodal (finding a needle in a 

haystack). Usually a large number of simulation runs are carried out with known parameter 

values and the simulated results are compared with the known production/measured data, mostly 

corrupted with noise. The difference between the observed and simulated results is optimized 

(minimized) in terms of some distant metric. Unfortunately, optimization needs thousands of 

simulation runs. Moreover, the objective functions are multimodal in general and can be 

deceptive. Detailed porous media flow simulation is expensive in terms of time and computing 

resources. Therefore, the calculation of objective function for optimization using direct 

simulation becomes prohibitive for most cases. To circumvent the problem of using expensive 

simulation models, a model of the simulation model can be used instead Forrester et al. (2008). 

The resulting model developed using the data produced by the original simulation model is 

known as a surrogate or proxy model.  

1.2 OBJECTIVE 

The objective of this thesis is to develop an efficient proxy model for porous media flow 

simulation. The rationale for developing a surrogate is to replace an expensive simulation model 

with a cheaper model that can be used for further applications, like, optimization and decision 

making. There are different ways to develop a proxy model. For example, polynomial functions, 

radial basis functions, artificial neural networks (ANN), Gaussian Process (GP), and support 

vector machines (SVM) to name a few, Cranganu et al. (2015). In this thesis, the GP regression 

methods are used. The GP models have been extensively used for diverse fields of applications. 

It has fewer numbers of hyper-parameters to tune compared to ANN and inherent capacity to 

incorporate uncertainty with the measured parameters, a huge difference compared to many 
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popular alternatives. Although, it is considered as a linear model, the kernel can capture any 

underlying process, if selected properly. Therefore, in most cases, modeling nonlinearity is a 

matter of selecting a nonlinear kernel. However, selecting an appropriatekernel for the GP model 

is not a trivial issue.  With the proper selection of a kernel and the judicious selection of 

experimental data points, an efficient Gaussian Process-based proxy model can be developed 

using a limited number of simulation runs. This can replace the use of an expensive simulator for 

further analysis and experimentation.   

In the following section, the organization of the thesis is outlined.     

1.3 ORGANIZATION OF THE THESIS 

The organization of this thesis is shown in Figure 1.1. This chapter outlines the overall rationale, 

goal and objective of the thesis. This section in particular establishes the connections between 

different chapters. In Chapter 2, the design of experiment is discussed and a new method is 

presented with a nearly orthogonal space-filling design. As our objective is to create a proxy 

model from the data obtained by running a limited number of simulations, selection of proper 

parameter values for the simulation is a crucial factor. Selecting parameters efficiently is part of 

the research field known as ‘Design of Experiment’. Similarly, parameters of the GP model, also 

known as hyper-parameters, are to be selected using some optimization algorithm. In most cases, 

these hyper-parameters are multimodal and it is difficult to find a global optimum. Therefore, in 

Chapter 3, an improved optimization heuristic algorithm is proposed based on existing quantum-

behaved particle swarm optimization (QPSO). Krigging or GP models are introduced in Chapter 

4 and the feasibility of using GP models as a proxy is carried out in the context of parameter 

estimation for a groundwater virus transport problem. The encouraging results from Chapter 4 

led us to study GP models more deeply in Chapter 5. An algorithm was proposed to identify 
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proper kernel to capture the underlying process of the problem to be modeled using GP.  

Parameter estimation of a groundwater virus transport problem is carried out again with the new 

composite kernel. This approach is also applied for history matching of a reservoir problem. 

Further, the problem of optimal well placements in North Triumph gas reservoir was also solved 

using the proposed GP proxy model. In all cases, the results are promising. Detailed background 

information available in the literature for Design of Experiments and optimization using QPSO, 

is described in chapters 2 and 3 respectively, and in Chapters 4 and 5 for the GP Modeling. 

Conclusions from this study are presented in Chapter 6.     
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Figure 1.1: Organization of the Thesis 

1.4 CONTRIBUTION TO NEW KNOWLEDGE 

This study contributes finding a better proxy model for expensive simulators. Following 

outcomes contribute to improve GP-based proxy modeling. 

 Distance correlation as a new measure for creating design of experiment (DoE). As 

distance correlation can unveil correlation between variables beyond linear relations, the 

proposed method can produce better DoE. 
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 Proposed perturbation and re-initialization as a remedy for one swarm-based algorithm 

and found it to be an effective tool.  

 To our knowledge, Gaussian Process based proxy has not been used for parameter 

estimation in groundwater virus transport problem. Our work shows that it can be used as 

an effective tool. 

 Combining different covariance functions can be a versatile tool for modeling different 

phenomenon effectively. An algorithm is developed to combine different basis kernels 

and is successfully applied to porous media flow problems.   
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CHAPTER 2 EFFICIENT DESIGN OF EXPEIRMENT BASED ON DISTANCE 

CORRELATION  

In many real-world applications of optimization, the required model (function) evaluations are 

determined by expensive and time-consuming physical experiments or numerical procedures. 

Within this context, the objective of experimental design is to obtain meaningful information 

based on a strongly limited number of experiments or function evaluations. In order to generate 

informative designs, space-filling and orthogonality are widely considered to be essential. In this 

chapter, we review several design performance metrics that address these criteria, and the 

distance correlation-based metric is proposed for achieving improved experimental design. Three 

closely related randomized sampling schemes are proposed to generate nearly orthogonal designs 

with good space-filling properties in real time. The effectiveness of our approach is demonstrated 

by numerical examples and an illustrative borehole model case study. 

2.1  INTRODUCTION 

Experimental studies, whether based on actual physical experiments or on computer-assisted 

analysis, are frequently constrained by safety, money, resources and time. To give a few 

examples, it is evidently impossible to carry out full-scale experiments related to dangerous, 

hazardous or catastrophic events such as the failure of an industrial plant, nuclear reactor or 

spacecraft – even if, unfortunately, such accidents have occurred and do occur. Another, less 

dramatic example is the development of new engineering design alternatives that can be time-

consuming and/or expensive to create and to test: hence, only a limited number of designs can be 

considered. Frequently, computer-based systems simulation tools are developed and used in such 

cases. Notice, however, that even sufficiently detailed simulation models may require substantial 

computational time. For example, a reservoir simulation model – used in the oil and gas industry 

to support decision making – may require hours to run, for each decision alternative considered.   
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In similar circumstances to the ones outlined above, a surrogate or proxy mathematical model is 

developed that approximately maps the input-output relationships of the underlying real-world 

processes.  

The aim of the Design of Experiments (DoE) discipline is to develop efficient strategies to 

explore the design space on the basis of a strongly limited number of experiments. For 

discussions and case studies regarding DoE and/or resource-constrained optimization, consult 

Barthelemy and Haftka (1993), den Hertog and Stehouwer (2002), Simpson et al. (2004), 

Rikards and Auzins (2004), Biles et al. (2007), Horváth et al. (2007), Kleijnen (2009), Pintér and 

Horváth (2012), and references therein.  

Specifically, we will consider here the problem of estimating a real-valued function 𝑓(𝒙): ℝ𝑘 →

ℝ; here 𝑓 is the outcome of some experiment that depends on the 𝑘-component real vector 

(input) 𝒙. Function 𝑓 will be assessed (approximated) on the basis of selected input variable 

settings called design points. We shall assume that 𝑛 design points will be chosen 

simultaneously. Then the corresponding DoE is specified by a 𝑛 ×  𝑘 size design matrix 𝑋. Each 

column of 𝑋 represents the settings for a given component of 𝑥 (called also a factor), and each 

row of 𝑋 specifies an experiment defined by the complete set of input variable values chosen for 

evaluation. 

Let us point out that advanced nonlinear – specifically, global – optimization methodology is 

often required to create good designs, as well as to handle the resulting proxy decision problems 

correctly since the unknown response surface of a single modeled function 𝑓(𝑥) may well be 

multimodal. Various criteria for selection of a good design is discussed in section 2.2. Without 

going into technical details at this point regarding the subject of global optimization, we only 
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mention a few topical books by Horst and Pardalos (1995), Pintér (1996), and Pardalos and 

Romeijn (2002). 

It is to be noted that DoE methods targeted for use in computer experiments differ significantly 

from the classical DoE methods as the output from the former method is deterministic while the 

later method assumes the presence of random error in the output. Therefore, classical DoE 

methods seek to minimize the variance of the parameters and generally place the design points at 

the extremes of the experimental region. On the other hand, DoE for computer experiments are 

mainly concerned with reducing the bias in the estimated model or metamodel. Moreover, 

concepts of blocking and replication, extensively used in classical DoE, are irrelevant for the 

DoE for computer experiments.  Some of the efficient classical DoE include 2𝑘 Factorial Design, 

Fractional Factorial Design (Mukerjee & Wu, 2006), Central Composite Design (Demirel & 

Kayan, 2012), Response Surface Methodology (Kleijnen J. P., 2015), Taguchi method (Wolf, 

Henes, Bogdanski, Lutz, & Krämer, 2013), etc.  Modern DoE includes but not limited to Monte 

Carlo Sampling (Kroese & Chan, 2013), Orthogonal Arrays (Ma, Fang, & Liski, 2000), Latin 

Hypercube Design etc. 

In this study, we will specifically deal with Latin hypercube designs (LHDs). In the two-

dimensional unit interval [0,1]2 an 𝑛 × 𝑛 grid of equally sized square cells with 𝑛 chosen sample 

point positions is a Latin square design if there is exactly one sample point in each row and in 

each column. The sample points can be simply chosen as the centers of the selected grid cells. 

LHD is the direct generalization of this sampling concept to arbitrary dimension 𝑘. Following the 

notation used by Husslage et al. (2011), a 𝑘-dimensional LHD is a set of 𝑛 design points 𝑥𝑖 =

(𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑘) ∈ {0, ⋯ , 𝑛 − 1}𝑘 such that all 𝑥𝑖𝑗 are distinct for each dimension 𝑗 = 1, … , 𝑘. 

Originally proposed by McKay et al. (1979), LHD based sampling plans are considered to be one 
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of the most efficient DoE strategies – when used properly. The principal virtue of LHDs is to 

offer a flexible sampling plan which, by construction, is non-overlapping, since a LHD in each 

dimension 𝑗 = 1, … , 𝑘 gives exactly 𝑛 distinct sample values. All LHDs will not be 

automatically suitable designs, however. To give an extreme example, if we take a completely 

diagonal design (in which all 𝑘 components are equidistantly sampled along the main diagonal of 

the design space) then this will give a very poor sample for two reasons. First of all, the design 

factors are perfectly correlated; therefore we will not be able to distinguish among the effects of 

the design factors. Second, a large portion of the experimental region will not be explored at all, 

especially when we are “far” from the main diagonal. Hence, a proxy model based on such a 

design cannot be expected to be acceptable (i.e., to do well) over the entire design space. Many 

other LHD instances could be inferior choices for similar reasons. 

To eliminate evidently poor LHDs, various performance criteria have been introduced to reward 

sampling plans which give good coverage of the design space and also offer low correlation 

among the design points selected. These criteria will be expressed respectively by the space-

filling and orthogonality properties of a given LHD. Designs that spread points evenly 

throughout the experimental region is known as space-filling designs while orthogonal designs 

offer uncorrelated input values that help to independently assess effects of individual inputs on 

the response. Both properties are widely considered to be key characteristics of good designs.  

Unfortunately, good space-filling properties do not necessarily imply good orthogonality and 

vice versa. For example, two instances of 5×5  LHDs are shown in Figure 2.1. By simple 

inspection, it can be conjectured that the first design seems inferior to the second, in terms of the 

orthogonality criterion. However, an orthogonal design can provide a stepping stone towards 

space-filling designs, and space-filling designs can be used to find nearly orthogonal designs.  
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Figure 2.1: Two LHD examples 

 

To find high-quality designs – or the “best possible” LHD – is far from trivial. For a given pair 

of 𝑘 and 𝑛, the set of all possible LHDs is finite, of course. However, the cardinality of the entire 

LHD design option set quickly becomes astronomical with increasing 𝑘 and 𝑛, since – for (by 

assumption) interchangeable input parameters – this set contains 
𝑛!𝑘−1

(𝑘−1)! 
 essentially different 

designs: consult Pronzato and Müller (2011). To illustrate this point, if we take just 𝑛 =  20 and 

𝑘 =  2 (a rather small DoE instance) then we should consider 20!  =

 2,432,902,008,176,640,000 >  2.43 × 1018 LHD choices. Therefore, instead of finding the 

best possible design based on a suitable performance criterion (or criteria), in many cases an 

optimized design is used that is expected and sometimes proven to perform well. Due to the 

outlined difficulties associated with finding the best possible LHD, nearly orthogonal designs 

(NOLHDs) can be used with optimized space-filling and orthogonality properties. 

The construction of space-filling LHDs has been discussed extensively in van Dam et al. (2007), 

Grosso et al. (2009), van Dam et al. (2009), Pintér and Horváth (2012). Ankenman et al. (2010) 

analyze the issue of correlation among design points in the context of simulation metamodeling. 

Orthogonal Latin hypercube designs (OLHDs) are discussed in Ye (1998), Steinberg and Lin 

(2006), Cioppa and Lucas (2007), Nguyen (2008), Joseph and Hung (2008).  
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Following the introduction, this chapter is organized as follows: Several relevant performance 

metrics are reviewed in Section 2.2 including the proposed metric. In Section 2.3, three 

algorithms are introduced to find good designs. Section 2.4 describes our numerical experiments 

and the analysis of the results obtained. An illustrative case study using Borehole Model follows 

Section 2.5. 

2.2   DOE PERFORMANCE METRICS 

A number of apparently non-equivalent design performance criteria have been proposed in the 

DoE literature. Three of the most frequently used metrics are reviewed in Sections 2.2.1 to 2.2.3, 

followed by a proposed new criterion in Section 2.2.4. The criteria discussed in Sections 2.2.1 

and 2.2.2 are targeted for space-filling design while the same in Sections 2.2.3 and 2.2.4 are 

focused on design orthogonality.  

2.2.1 The Maximin (MM) Design Criterion 

The Maximin (MM) criterion is used frequently, to assess the space-filling quality of designs. 

For a given 𝑘 and sample size 𝑛, the MM design is attained when the smallest separation 

distance between all pairs of design points 𝑚𝑖𝑛𝑖≠𝑗𝑑(𝑥𝑖, 𝑥𝑗) is maximal among all possible 

designs X. Formally, we define the Euclidean distance between columns 𝑖 and 𝑗, 𝑖 < 𝑗 of the 

design matrix as shown below: 

    𝑑𝑖𝑗 = 𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖𝑙 − 𝑥𝑗𝑙)
2𝑘

𝑙=1 = √(𝑥𝑖1 − 𝑥𝑗1)
2

+ ⋯ + (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2
  (2.1) 

Where  and  are the positions of the -th and -th design points of -th factor.  
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The MM design maximizes min 𝑑𝑖𝑗 for all possible design matrices. The fact that in an MM 

based design the distance between all possible pairs of design points is bounded from below by 

the value 𝑑 = max min 𝑑𝑖𝑗  indicates a good space-filling property. 

Let us note here that analogously to (2.1) the distance between two points can also be based on 

distance concepts other than Euclidean. As an example, the rectangular distance 𝑑𝑅(𝑠, 𝑢) of two 

points 𝑠 and 𝑢 of the design matrix 𝑋 is defined using the 𝐿1-norm: 

    𝑑𝑅(𝑠, 𝑢) = ∑ |𝑠𝑖 − 𝑢𝑖|𝑛
𝑖=1          (2.2) 

Alternatively, the Euclidean distance of 𝑠 and 𝑢 is defined using the 𝐿2-norm, leading to (2.1): 

    𝑑𝐸(𝑠, 𝑢) = √∑ (𝑠𝑖 − 𝑢𝑖)2𝑛
𝑖=1          (2.3) 

For a given design and a selected (rectangular or Euclidean) distance, we can define a distance 

list 𝐷 = (𝐷1, ⋯ , 𝐷𝑘), in which the list elements are the distinct values of pair-wise distances, 

sorted from the smallest to the largest. The value of the index can be as large as 𝑛(𝑛 − 1)/2. Let 

𝐽𝑖 be the number of pairs of runs in the design that have distance 𝐷𝑖. Then, a design 𝑋 is called a 

MM design if it sequentially maximizes the values 𝐷𝑖 and minimizes the values 𝐽𝑖 in the 

following order:(𝐷1, 𝐽1, 𝐷2, 𝐽2, ⋯ , 𝐷𝑘, 𝐽𝑘). A related scalar-valued function proposed by Morris 

and Mitchell (1995) to rank competing designs is given below, for a given positive integer p. 

     𝜙𝑝 = [∑ 𝐽𝑖𝑑𝑖
−𝑝𝑘

𝑖=1 ]
1

𝑝         (2.4) 

The criterion function 𝜙𝑝 is easier to compute as it does not require the ordering of inter-site 

distances. Hence, it is widely used in literature for searching optimized LHDs as indicated by 

Morris and Mitchell (1995), Jin et al. (2002), Grosso et al. (2009), Viana et al. (2010), Moon et 

al. (2011).  
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2.2.2 The Audze-Eglais (AE) Criterion 

Audze and Eglais (1997) proposed a criterion function which is based on the analogy of 

minimizing the total pair-wise Coulomb potential force considering all design points as charged 

particles. The AE criterion based optimal design points are hence obtained by minimizing the 

following criterion function over a feasible set such as the unit hypercube: 

     ∑ ∑
1

𝑑(𝑥𝑖,𝑥𝑗)
2

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1          (2.5) 

Where,  is the distance between  and design points and can be calculated using 

Equation 2.1. Search for optimized designs using the AE criterion has been conducted by many 

researchers, such as Bates et al. (2003), and Fuerle and Sienz (2011).  

To conclude our brief discussion of space-filling criteria, let us point out that finding MM or AE 

based optimized designs leads to increasingly difficult global optimization problems as the 

number of points grows, since the model instances based on these criterion are highly 

multimodal.  

2.2.3 Maximum Absolute Pairwise Correlation (MC) Criterion 

The maximum absolute pairwise correlation measure (𝜌𝑚𝑎𝑝) has been proposed by Cioppa and 

Lucas (2007) to distinguish between designs by measuring their orthogonality. There are (
𝑘
2

)  

pairwise correlation coefficients between any two columns in a design matrix 𝑋. Using Pearson's 

equation, the correlation between 𝑋𝑖 and 𝑋𝑗 is given by 

       𝜌𝑖𝑗 =
∑ [(𝑥𝑏

𝑖 −𝑥̅𝑖)(𝑥𝑏
𝑗

−𝑥̅𝑗)]𝑛
𝑏=1

√∑ (𝑥𝑏
𝑖 −𝑥̅𝑖)𝑛

𝑏=1 ∑ (𝑥𝑏
𝑗

−𝑥̅𝑗)𝑛
𝑏=1

        (2.6) 

Here 𝑥̅𝑖  and 𝑥̅𝑗  are the mean values of the 𝑖th and 𝑗th columns respectively and 𝑥𝑏
𝑖  is the 𝑏th value 

of the 𝑖th column.  
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The largest absolute correlation among the columns gives the most extreme pairwise correlation. 

This value provides the degree of orthogonality of a design. By minimizing the worst-case 

pairwise correlation, all pair-wise correlations are indirectly controlled. Therefore the chosen 

control parameter regarding the orthogonality of OLHD or NOLHD designs is to minimize 

     𝜌𝑚𝑎𝑝 = max
𝑖≠𝑗

{|𝜌𝑖𝑗|}          (2.7) 

Following Harnandez (2008), a design is somewhat arbitrarily, but plausibly defined as nearly 

orthogonal if 𝜌𝑚𝑎𝑝 ≤ 0.05. 

2.2.4 Maximum Distance Correlation (DC) Criterion 

Distance correlation (DC) is a measure of statistical dependence between two random variables 

or two random vectors of arbitrary dimensions. It was proposed by Székely et al. (2007) and 

Székely and Rizzo (2009), as a measure of independence. The key property of DC is that its 

value is 0, if and only if the two random variables are statistically independent. Distance 

covariance is a natural extension of product-moment covariance and proved to give better results. 

Székely and Rizzo (2009) presented six examples and compared results in terms of distance 

correlation and conventional Pearson correlation. In their study distance correlation always 

provided better insight regarding the data used. Similarly, using distance correlation a nonlinear 

association between the random variables can also be identified. Therefore we propose distance 

correlation as a new metric to identify good designs. In order to obtain a good design in terms of 

orthogonality, our objective is to minimize the maximum distance correlation between a 

particular column to the rest of the columns in a design matrix. 

The distance correlation 𝑅(𝑥, 𝑦) between two random vectors 𝑥 and y with finite first moments 

is defined by 
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     𝑅2(𝑥, 𝑦) = {

𝜈2(𝑥,𝑦)

√𝜈2(𝑥)𝜈2(𝑦)
, if 𝜈2(𝑥)𝜈2(𝑦) > 0

0,                         if 𝜈2(𝑥)𝜈2(𝑦) = 0
       (2.8) 

Here 𝜈 is the distance covariance of the random vectors and the calculation method is outlined 

below. 

For an observed random sample (𝑥, 𝑦) = {(𝑥𝑘, 𝑦𝑘): 𝑘 = 1, ⋯ , 𝑛} from the joint distribution of 

random vectors 𝑥  in ℝ𝑝 and 𝑦 in ℝ𝑞, define 

     𝑎𝑘𝑙 = |𝑥𝑘 − 𝑥𝑙|𝑝          (2.9a) 

     𝑎̅𝑘. =
1

𝑛
∑ 𝑎𝑘𝑙

𝑛
𝑙=1            (2.9b) 

     𝑎̅.𝑙 =
1

𝑛
∑ 𝑎𝑘𝑙

𝑛
𝑘=1            (2.9c) 

     𝑎̅.. =
1

𝑛2
∑ 𝑎𝑘𝑙

𝑛
𝑘,𝑙=1           (2.9d) 

     𝐴𝑘𝑙 = 𝑎𝑘𝑙 − 𝑎̅𝑘. − 𝑎̅.𝑙 + 𝑎̅..         (2.10) 

𝐵𝑘𝑙 is defined similarly. Then the empirical distance covariance is defined by 

     𝑉𝑛
2(𝑥, 𝑦) =

1

𝑛2
∑ 𝐴𝑘𝑙

𝑛
𝑘,𝑙=1 𝐵𝑘𝑙         (2.11) 

Finally, the empirical distance correlation is defined as 

   𝑅𝑛
2(𝑥, 𝑦) = {

𝑉𝑛
2(𝑥,𝑦)

√𝑉𝑛
2(𝑥)𝑉𝑛

2(𝑦)

, 𝑉𝑛
2(𝑥)𝑉𝑛

2(𝑦) > 0

0,                         𝑉𝑛
2(𝑥)𝑉𝑛

2(𝑦) = 0

             (2.12) 

The test statistic 𝑛𝑅𝑛
2(𝑟𝑎𝑛𝑘(𝑥), 𝑟𝑎𝑛𝑘(𝑦)) can be used to test whether the variables are 

independent or not. In Appendix B of Székely and Rizzo (2009), critical values of test statistics 

are provided. As an example, for a sample size of 100, the critical values are 4.24 and 5.26, for 

the significance levels 5% and 10%, respectively. Therefore, if the calculated statistic is greater 

than these values, then the hypothesis regarding their independence can be rejected with 95% 

and 90% confidence level, respectively. 
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To conclude this section, let us remark that in addition to the performance criteria reviewed here, 

other indicators are also used. For topical discussions consult Franco et al. (2009), Jourdan and 

Franco (2010), Pronzato and Muller (2012). 

2.3 FAST ALGORITHMS TO GENERATE GOOD DESIGNS 

In order to obtain a high-quality space-filling and/or nearly orthogonal design, two different 

approaches have been followed. Researchers have been using transformation algorithms or 

optimization methods to find designs based on the above discussed performance metrics or their 

suitable combinations.  

Optimized LHDs have been intensively studied in recent years, partly based on applying 

heuristic methods (simulated annealing, evolutionary optimization, iterated local search and tabu 

search) or exact (combinatorial, continuous global and mixed integer-continuous) optimization 

approaches. For details, consult Morris and Mitchell (1995), Jin et al. (2005), Husslage et al. 

(2011), Liefvendahl and Stocki (2006), Grosso et al. (2009), Jourdan and Franco (2010), Chen et 

al. (2012) and the references therein. 

Here we will use a different (not optimization based) approach based on orthogonalization. The 

methods of Owen adopted from Owen (1994) and Tang (1998), and Florian (1992) are described 

below since these will be used in the present study. 

2.3.1 Owen's Algorithm 

Let 𝑟𝑎𝑛𝑘(𝑥)  denote the ranks of the components of a vector 𝒙. The notation 𝑡𝑎𝑘𝑒𝑜𝑢𝑡(𝑦, 𝑥) 

denotes the vector of residuals from the linear regression model 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖. Then for a 

given initial Latin hypercube 𝐿 = (𝑙1, … , 𝑙𝑚),  Owen's algorithm proceeds by alternating between 

the forward and backward steps in the following. 
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• Forward step:for 𝑗 = 1, … , 𝑚 − 1,  and for 𝑘 = 𝑗 + 1, … , 𝑚, set 𝑙𝑘 =

𝑟𝑎𝑛𝑘(𝑡𝑎𝑘𝑒𝑜𝑢𝑡(𝑙𝑘, 𝑙𝑗) 

• Backward step: for 𝑗 = 𝑚, … , 𝑚 − 1,  and for 𝑘 = 𝑗 − 1, … ,1, set 𝑙𝑘 =

𝑟𝑎𝑛𝑘(𝑡𝑎𝑘𝑒𝑜𝑢𝑡(𝑙𝑘, 𝑙𝑗) 

 The central idea is that for a fixed 𝑗, 𝑘  we want to update 𝑙𝑘 = 𝑟𝑎𝑛𝑘(𝑟𝑘) such that the new 𝑙𝑘  

has a small correlation with 𝑙𝑗 . It is clear that the correlation between 𝑙𝑘 and 𝑙𝑗 should be small, 

as 𝑟𝑘 is based on the error terms of regression.   

2.3.2 Florian’s Algorithm 

Let us consider that the design matrix 𝑅(𝑛 × 𝑘) is based on the rank of the factors in each 

column. The correlation matrix 𝑇(𝑘 × 𝑘) based on the correlation of a pair of columns is created 

with entries  

      𝑇𝑖𝑗 = 1 −
6 ∑ (𝑅𝑙

𝑖−𝑅𝑙
𝑗
)

2
𝑛
𝑙=1

𝑛(𝑛2−1)
         (2.13) 

Here 𝑅𝑙
𝑖 is the rank of the 𝑙th element in the 𝑖th column. Since 𝑇 is a symmetric positive definite 

matrix, it can be factorized using Cholesky’s factorization method.  

     𝑇 = 𝑄𝑄′                (2.14) 

The inverse of the lower left triangular matrix is obtained by Equation 2.14 if 𝑆 = 𝑄−1. Florian’s 

algorithm states that new design 𝑅𝑛𝑒𝑤 will have better orthogonality if the current design is 

multiplied by 𝑆′ as shown below. 

     𝑅𝑛𝑒𝑤 = 𝑅𝑆′ 
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2.4 NUMERICAL EXAMPLES AND DISCUSSION 

As noted earlier, using an optimization algorithm to find the best design can also become a 

daunting task when the number of experiments (also called runs) n and factors k are increased 

even moderately. Therefore it is rare to find computationally tractable complete numerical 

examples with more than 100 runs and 10 factors.  

To test the efficiency of the proposed index maximum distance correlation, a 25 × 4 design was 

obtained using a simple randomized sample based algorithm summarized below. 

 

ALGORITHM 2.1: Ad hoc algorithm to compare different performance criteria 

 

1. Create an initial randomly generated LHD 𝑋 of given dimension 

and apply Owen’s algorithm. Calculate the performance index 

of the design, then copy design 𝑋 to design 𝑌. 

2. Randomize 𝑌  by swapping two random elements in each column to 

generate a new design. Calculate the performance index of 𝑌 

as well. 

3. Compare the performance of the two designs and assign the 

better design to 𝑋 and the other to 𝑌. 

4. Repeat steps 2 and 3, until a given termination condition is 

reached (see below). 

 

Initially, four performance criteria (indices) are studied, namely: maximin criterion (MM), 

Audze-Eglais criterion (AE), maximum absolute pairwise correlation (MC) and maximum 

distance correlation (DC). Recall that AE and MM are aimed at good space-filling, while MC 

and DC are aimed at design orthogonality. In all cases, one of these four objectives is used to 

find an optimized design. As a stopping criterion in the ad hoc algorithm, the total number of 
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perturbations was selected as 𝑛 × (𝑛 − 1) × 𝑘 × 10; here 𝑛 and 𝑘 are the number of runs and 

number of factors, respectively. In each experiment, the performance of the best design found is 

calculated in terms of all 4 metrics. This process is repeated 50 times, and for each metric the 

resulting statistics of these experiments are presented in Tables 2.1 to 2.4. In our numerical 

experiments, we used a personal computer which has an Intel i7 core, 2.8 GHz speed, 4 GB 

RAM and it runs under the Windows 7 Enterprise 64-bit OS. 

From the results it can be seen that, in general, orthogonality might not be properly preserved 

when space-filling criteria are considered, and vice versa. Although in our study the use of AE 

produces better results than MM, the result fails to meet the nearly orthogonal design criterion 

𝜌𝑚𝑎𝑝 ≤ 0.05 suggested by Hernandez (2008). Notice that the resulting performance does not 

differ very much using either of these criteria, while AE is easier to calculate than MM. A better 

design is obtained when DC is used in comparison to MC, while DC is computationally more 

expensive than MC.  

Based on the above discussion and our results, we state that space-filling and orthogonality 

criteria should be simultaneously used to find better designs. This can be done in a proper multi-

objective optimization framework by placing a constraint on the expected level of selected 

quality criterion/criteria, and optimizing the value of the chosen primary criterion. Such 

optimization problems can be highly nonlinear, in line with our earlier comment regarding the 

necessity of using advanced (global) optimization techniques.  

We also tried simulated annealing (SA) in order to find optimized designs. However, SA took a 

long runtime compared to the ad-hoc randomization module outlined above. For example, for a 

25 × 4 design, SA took more than 13 minutes, whereas the ad-hoc method proposed took less 

than 15 seconds to generate the same quality design. (It should be noted that the codes for both 
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SA and the ad-hoc algorithm are written by the author and that these are not optimized for 

performance.)  Notwithstanding this note, we can state that for larger dimensions SA is expected 

to take such a huge amount of time that it might not be acceptable in many applications. 

Moreover, in our tests SA did not always produce better design for all runs. For many computer 

experiments, pseudo-real-time DoE is required, which is not always possible to attain using 

optimization alone. This observation remains valid with respect to many other easy-to-implement 

heuristic optimization approaches to this problem; at the same time, state-of-the-art global 

optimization methods and software can help to find highly optimized designs. 

Table 2.1: Statistics of performance for the experiment where the AE criterion is the objective 

Metric Minimum Mean Maximum Standard 

deviation 

AE 1.032889 1.120621 1.577317 0.078413 

DC 0.231187 0.337589 0.755229 0.088784 

MM 2.645751 5.163882 7.141428 1.074393 

MC 0.055384 0.237708 0.463077 0.100892 

 

Table 2.2: Statistics of performance for the experiment where the MM criterion is the objective 

Metric Minimum Mean Maximum Standard 

deviation 

AE 1.014567 1.243763 7.100276 0.838989 

DC 0.211223 0.381275 0.810663 0.095766 

MM 2.0 5.645614 7.810250 0.983381 

MC 0.006154 0.2914 1.0 0.165409 

 

Table 2.3: Statistics of performance for the experiment where the DC criterion is the objective 

Metric Minimum Mean Maximum Standard 

deviation 

AE 1.042522 1.154269 1.510888 0.085081 

DC 0.223996 0.305991 0.494722 0.057231 

MM 2.0 4.572216 6.244998 0.997416 

MC 0.001538 0.176508 0.379231 0.084378 
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Table 2.4: Statistics of performance for the experiment where the MC criterion is the objective 

Metric Minimum Mean Maximum Standard 

deviation 

AE 1.061892 1.163774 1.325872 0.065611 

DC 0.247085 0.373979 0.588166 0.084802 

MM 2.645751 4.869554 6.782330 0.887383 

MC 0.033846 0.167246 0.452308 0.098185 

 

Based on the experimental results presented and discussed above, our key observations are 

summarized below. 

 There is no established pattern between the change in points of a design and the performance 

indices. However, one can expect that shifting a point to neighboring grid point does not 

change design uniformity drastically. 

 Optimizing a design based on orthogonality does not guarantee good space-filling, and vice 

versa. 

 Starting with a good design evidently ensures that a design of at least such quality (if not better) 

will be returned by the randomized sampling algorithms, using the same design criterion, of 

course. For example, if the initial design is based on Owen’s, Tang’s, and one of the 

orthogonality criteria is used for optimization, then a better result is rightly expected in terms 

of orthogonality. However, if the space-filling criterion is used in the algorithm, then the 

resulting design might not preserve as good orthogonality as the initial design.  

 For a good quality space-filling criterion based design, one can start with a Sobol or other 

quasi-random sequence of designs, or apply the computationally efficient design generator 

method described in Pintér and Horváth (2012). 

Based on the above observations, the following more efficient algorithm is proposed to generate 

nearly orthogonal space-filling designs. 
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ALGORITHM 2.2: Algorithm based on Florian’s method + randomization + swapping schemes 

 

1. Initialization: Create 50 random LHDs and select the best one 

based on performance index of choice. Say it is𝑋. 

2. Florian’s Step: 𝑌 = 𝐹𝑙𝑜𝑟𝑖𝑎𝑛(𝑋)  

3. Compare the performance of the two designs: 

a. If 𝑌 is better than 𝑋, exchange 𝑋 and 𝑌. GOTO step 2 

b. Increment counter notUpdated 

4. Randomization Step: If notUpdated > 5 

a. 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒(𝑌). Calculate performance. 

i. If 𝑌 is better than 𝑋, exchange 𝑋 and 𝑌. 

ii. notUpdated = 0. GOTO step 2 

b. Perturb(𝑌). Calculate performance of 𝑌. 

i. If 𝑌 is better than 𝑋, exchange 𝑋 and 𝑌. 

ii. notUpdated = 0. GOTO step 2 

5. Repeat step 2 until terminating condition is reached. 

 

Algorithm termination can be based on a prefixed total number of sampling experiments. A 

simple statistical basis for choosing the number of experiments is given below and a termination 

criterion is fixed accordingly for the proposed algorithm. Note that we assume that Y is 

generated uniformly through randomization in steps 1 and 4(a) over the entire design space.  

After initialization, it is crucial to limit the number of iterations to find a better design. As noted 

earlier, the number of possible designs increases rapidly with the increase of 𝑛 (number of 

sample points) and/or 𝑘 (dimension of the problem). Reducing the time to find a good design 

without missing all potentially good designs is an essential point to consider. Let us assume that 

high quality designs are a (perhaps rather small) fraction 0 < 𝜖 < 1 of all possible designs. We 

also assume that a randomly chosen good design is required with 1 − 𝛿 reliability. Here 0 < 𝛿 <
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1 is another small parameter. Then for given 𝜖 and 𝛿, the sample size 𝑛 should be based on the 

criterion (1 − 𝜖)𝑛 ≤ 𝛿. This inequality is satisfied, if 𝑛 𝑙𝑛(1 − 𝜖) ≥ 𝑙𝑛 𝛿. As an example, for 

𝜖 = 0.005 and 𝛿 = 0.005, this relation results in the requirement 𝑛 ≥ 1058. Consequently, 𝑛 =

1058 was chosen and used as termination criterion.  

Different swapping schemes are used in the proposed algorithm. For random swapping, for each 

column, two random elements are swapped. On the other hand, the Perturb method in step 4(b) 

of the algorithm is targeted to push the random design towards the best design found so far. To 

do so, first an element is selected at random index in a column at the current design, then the 

index of the same value is searched in the same column at the best design. The values at these 

two indices are swapped and thereby the new design becomes more similar to the best design. 

For comparison, two designs published in literature are compared with the designs generated 

using our algorithm in terms of different performance indices. First we selected a 14 × 12 design 

presented by Hernandez (2008) shown in Table 2.5. This author used maximum absolute 

pairwise correlation as performance index and Florian’s method. We calculated different 

performance indices of the Hernandez design shown below. 

In Table 2.6 the performance of this design is compared with the design obtained by our 

algorithm, using different design criteria.  
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Table 2.5: A 14×12 design from Hernandez (2008) 

3 6 1 6 14 5 5 6 10 6 14 6 

1 7 9 10 5 14 2 8 8 14 4 4 

12 8 3 14 4 7 13 2 11 13 8 11 

9 5 4 3 3 2 3 12 6 9 2 14 

10 1 7 1 10 8 14 9 7 12 6 2 

11 12 10 13 12 1 6 11 9 7 3 1 

6 3 14 11 11 11 12 10 4 4 7 13 

4 11 11 7 7 6 9 14 12 11 13 12 

2 4 5 12 9 4 7 4 3 5 5 8 

14 2 12 8 6 9 1 5 13 3 11 7 

7 10 13 4 2 3 8 1 2 8 12 5 

5 13 8 2 8 10 11 3 14 2 1 9 

8 9 2 9 1 12 10 13 5 1 10 3 

13 14 6 5 13 13 4 7 1 10 9 10 

 

Table 2.6 : Comparison of 14×12 designs in terms of different performance indices 

 Performance 

Metric of DoE 

Reference DoE 

from Hernandez 

(2008) 

Obtained DoE using proposed algorithm with different 

performance criteria 

MC DC AE 

DC 0.3588 0.3676 0.3633 0.3681 

AE 0.2205 0.2192 0.2203 0.2188 

MC 0.0461 0.0813 0.0725 0.0769 

 

From the results we can see that, in terms of orthogonality, optimization based on DC performs 

better compared to the results obtained based on MC in terms of orthogonality. The AE based 

approach gives the best space-filling design. In comparison to the reference design, the proposed 

algorithm gives better space-filling DoE in all cases. Although the orthogonality obtained is 

somewhat inferior and it does not conform with Hernandez’s limit (0.05), it is still less than the 

critical value for orthogonality based on distance correlation. Namely, the critical value of 

distance correlation with 14 design points is 4.25 (or 5.16) with 90% (or 95%) confidence 

respectively, while the calculated value of 𝑛𝑅𝑛
2 for the highest DC (using AE) is 1.897. It should 

also be mentioned that the algorithm based on the criterion DC took around 4 seconds, using the 
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MC criterion took around 2 seconds, and using the AE criterion took less than a second for this 

particular design. 

Table 2.7: Comparison of 25 × 24  design in terms of different performance indices  

Performance 

Metric of 

DoE 

Reference DoE 

from  

Hernandez 

(2008)  

DC index  

(24.96 s) 

AE index 

(1.37 s) 

MC index 

(6.7 s) 

DC 0.3147 0.3170 0.3191 0.3209 

AE 0.1155 0.1155 0.1155 0.1156 

MC 0.0477 0.0631 0.0669 0.0885 

 

Another design of dimension 25 × 24 from Hernandez (2008) has been considered for 

comparison. The results are shown in Table 2.7.  Similar observations to the ones stated above 

apply for this case as well. 

2.5 AN ILLUSTRATIVE CASE STUDY: FITTING A BOREHOLE MODEL 

In this section, we discuss a borehole model (BHM) which will be used to illustrate our design 

selection approach. The BHM considered here serves to describe the flow rate of water from an 

upper aquifer to a lower aquifer through a borehole. By assumption, the two aquifers are 

separated by an impermeable rock layer and the borehole is drilled from the ground surface (see 

Figure 2.2).   
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Figure 2.2: Borehole Model 

 

The BHM has been studied by many researchers in the context of engineering applications and 

experimental designs, as in Worley (1987), Chin (1991), Morris and Mitchell (1995), Ahn and 

Owen (2001), Li (2002), Fang and Lin (2003), Fang et al. (2006).  

The BHM determines the flow rate measured in cubic meters per year (m3/yr.) through the 

borehole drilled from the ground surface through the two aquifers. The analytical BHM 

formulation used here is derived from Bernoulli’s law in fluid mechanics, as discussed in Kundu 

and Cohen (2008), under the following assumptions: steady-state flow from the upper aquifer 

into the borehole and from there into the lower aquifer, laminar and isothermal flow through the 

borehole, and the absence of groundwater gradient.  

We shall use the following notation, with the corresponding units shown in brackets. We also 

provide ranges for the experimental domain considered for each parameter. This information will 

be used in the sampling based verification of the calculated surrogate model.  

𝑟𝑤(𝑚) ∈ [0.05, 0.15] radius of the borehole 

𝑟 (𝑚) ∈ [100, 50000] radius of influence  

Upper aquifer 

Lower aquifer 

Impermeable rock 

Borehole | | 
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𝑇𝑢(
𝑚2

𝑦𝑟
) ∈ [63070, 115600] transmissivity of the upper aquifer 

𝑇𝑙(
𝑚2

𝑦𝑟
) ∈ [63.1, 116] transmissivity of the lower aquifer 

𝐻𝑢(𝑚) ∈ [990, 1110] potentiometric head of the upper aquifer  

𝐻𝑙(𝑚) ∈ [700, 820] potentiometric head of the lower aquifer  

𝐿(𝑚) ∈ [1120, 1680]  length of the borehole 

𝐾(
𝑚

𝑦𝑟
) ∈ [9855, 12045] hydraulic conductivity of the borehole 

If the entire input information vector is expressed as, 𝒙 = (𝑟𝑤, 𝑟, 𝑇𝑢, 𝑇𝑙, 𝐻𝑢, 𝐻𝑙, 𝐿, 𝐾𝑤) then the flow 

rate is calculated using the following equation (based on Bernoulli’s law): 

    𝑦 = 𝑦(𝒙) =
2𝜋𝑇𝑢(𝐻𝑢−𝐻𝑙)

ln (
𝑟

𝑟𝑤
)(1+

2𝐿𝑇𝑢

ln (
𝑟

𝑟𝑤
)𝑟𝑤

2 𝐾𝑤
+

𝑇𝑢
𝑇𝑙

)

        (2.15)  

Let us note that, in accordance with Equation 2.15, we will use ln(𝑟) and ln(𝑟𝑤), instead of 𝑟 

and 𝑟𝑤 when searching for an appropriate model form. 

Next, we discuss the issue of surrogate model selection to approximate the flow rate for this case. 

We will postulate a 1 + 8 + 8 = 17-term simplified quadratic polynomial response surface 

surrogate model, without considering interaction terms. In other words, the response calculated 

from the surrogate model is approximated as follows: 

   𝑦(𝑥)~ 𝑔̂(𝑥, 𝛽) = 𝛽0 + ∑ 𝛽𝑘𝑥𝑘 + ∑ 𝛽𝑙𝑥𝑙
28

𝑙=1
8
𝑘=1         (2.16)   
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Denote by  𝒙𝑖, 𝑖 = 1, … , 𝑛 the input points used the design dataset; 𝒚𝒊 𝑖 = 1, … , 𝑛 the output value 

of the “true” model (2.15) at point 𝒙𝒊, and 𝒈̂𝒊 = 𝒈(𝒙𝒊), 𝑖 = 1, … , 𝑛 is the output value received 

using the quadratic model in (2.16). Our goal is to select the parameter vector 𝛃 to obtain a close 

approximation of the model (2.15) by (2.16) over the experimental domain.  

The quality of the surrogate model will be measured in terms of the square root of the mean 

square error (RMSE) shown below. 

    𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑔̂𝑖)2𝑛

𝑖=1

𝑛
          (2.17)  

There are 17 parameters in the quadratic proxy model. These parameters will be fitted applying 

the widely used Levenberg-Marquardt algorithm (LMA). It is well known that LMA provides a 

robust numerical solution approach to locally minimizing an unconstrained (nonlinear) function. 

Hence, it is often used in least squares curve fitting and in other areas of nonlinear programming 

as described in Kelley (1999).  

For comparison purposes, we will cite and use an existing design, in addition to our design in 

order to create a proxy. The existing design is taken from Deng-et al. (2012). Our design points 

are created using algorithm 2 introduced based on the maximum distance correlation criterion. In 

total, 30 sample points were used for two reasons, namely, i) to be able to compare our results 

with the reference design and ii) as the proxies are created to minimize the number of simulation 

runs, a limited number of evaluations of the actual function/simulation is desired. However, in 

general, the better the calibration of the model is expected, the more points are desirable.  

In order to evaluate the quality of the approximation generated, 10000 random input points have 

been generated within the given experimental ranges and then we calculated the resulting RMSE 
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values. Using the reference design in Deng et al. (2012) and solving for the coefficient vector 𝛃 

using the LMA, the following polynomial response surface model has been obtained. 

   𝑔̂(𝒙, 𝛽) =  −40592.70 + 184.11 ln(𝑟𝑤) + 39.60 ln(𝑟𝑤)2 − 38.28 ln(𝑟) + 2.03 ln(𝑟)2 +

0.002𝑇𝑢 − 1.16 × 10−8 𝑇𝑢
2 + 0.802𝑇𝑙 − 0.005𝑇𝑙

2 + 8.32𝐻𝑢 − 0.004𝐻𝑢
2 + 4.42𝐻𝑙 − 0.003𝐻𝑙

2 +

0.12𝐿 − 6.03 × 10−5𝐿2 + 6.30𝐾𝑤 − 0.0003𝐾𝑤
2   

The RMSE value calculated for this response surface model equals approximately 2.37.  

Applying our proposed design selection method, we obtain the model shown below. 

𝑔̂(𝒙, 𝛽) =  −15.46 − 11.32 ln(𝑟𝑤) − 1.52 ln(𝑟𝑤)2 − 12.26 ln(𝑟) + 0.89 ln(𝑟)2 − 0.00016𝑇𝑢 −

8.24 × 10−10 𝑇𝑢
2 + 0.165𝑇𝑙 − 0.0014𝑇𝑙

2 + 0.244𝐻𝑢 − 0.0002𝐻𝑢
2 − 0.082𝐻𝑙 + 0.00013𝐻𝑙

2 +

0.0297𝐿 − 2.26 × 10−5𝐿2 + 0.0154𝐾𝑤 − 1.82 × 10−6𝐾𝑤
2   

The RMSE value calculated for this model equals 2.06; this represents an approximately 15% 

improvement over the design used here for comparison.  

Let us remark finally that in a real-world setting further modelling steps would be warranted 

such as model interpretation, sensitivity analysis and if appropriate an importance ranking of the 

input variables with respect to the output.  

2.6 CONCLUSIONS 

In many real-world applications of optimization, the required model function evaluations are 

determined by expensive procedures. The objective of experimental design is to obtain 

meaningful information based on a limited number of function evaluations. In this study, we 

review several design performance metrics that address space-filling and orthogonality, and 
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propose a new method of measuring the performance of experimental design using an existing 

metric - distance correlation (DC) – to evaluate the orthogonality of experimental designs. 

Unlike the classic correlation concept,  DC  is able to capture hidden interdependence features, it 

is expected that using this criterion will give superior designs, in terms of orthogonality.  

The numerical experiments and their results support our expectation. A simple optimization 

algorithm based on Florian’s method along with different randomization methods is proposed for 

obtaining good designs rapidly. The time requirement of running the proposed algorithm has 

been tested for up to 100×27 design dimension, and it can produce nearly orthogonal designs in 

less than a minute using a personal computer as mentioned earlier. For comparison, we mention 

that in the study of Hernandez, Lucas and Carlyle (2012), the generation of a 16×12 design takes 

approximately 36 minutes (median runtime) using a laptop with 2 GB RAM, and using the 

General Algebraic Modeling System (GAMS Development Corporation, 2013) with CPLEX (a 

state-of-the-art integer programming solver engine from IBM). 

In our numerical experiments, the best space-filling designs are obtained when the AE criterion 

is used but the designs obtained using the DC criterion produce designs with AE values that are 

very close to the AE-based search. This finding indicates that by using DC one can obtain nearly 

orthogonal as well as good space-filling designs quickly. The results can be used for proxy 

design and the latter can be used for subsequent optimization studies and other purposes.  

To illustrate our approach, we also presented a borehole model. For this case based on our design 

approach we obtain improved results when compared to a recent topical study.   
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CHAPTER 3  A MODIFIED QUANTUM-BEHAVED PARTICLE OPTIMIZATION 

ALGORITHM FOR IMPROVED  SINGLE OBJECTIVE OPTIMIZATION 

 

Single objective optimization is an important field of research due to its fundamental role in 

complex problems, such as, multi-objective optimization. Quantum-behaved particle swarm 

optimization is an efficient heuristic optimization algorithm used for solving many diverse 

complex problems. However, like many other heuristics, it suffers from premature convergence 

resulting in suboptimal solution. In this paper, potential causes of local trapping are identified 

and relevant solutions are proposed accordingly. The proposed new algorithm incorporates Sobol 

initialization, re-initialization of algorithm parameter, perturbation of mean best positions and re-

positioning of the particles. Numerical experiments are carried out using several simple to 

complex test functions each of 10, 30 and 50 dimensions, respectively. Performance of the 

proposed algorithm is compared with that of the standard QPSO algorithm. Where available, the 

best results found in the literature for different test functions are also compared. Experimental 

results show that the proposed algorithm shows promising performances. However, the proposed 

algorithm still suffers from dimensional issues that might be resolved by fine tuning the 

parameter(s). Two schemes are proposed for the proposed algorithm to extend for constrained 

optimization with mixed variables. A typical engineering problem has been solved and the 

results are compared with the results found in the literature. The proposed algorithm showed 

excellent performance in solving the mixed variable constrained engineering problem.  

3.1 INTRODUCTION 

Particle swarm optimization (PSO) was proposed as a heuristic optimization algorithm by 

Kennedy & Eberhart (1995) and Clerc & Kennedy (2002) emulating the success of searching 

behaviour of flocks of birds or schools of fishes. PSO algorithm is very simple to understand, 
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easy to implement and robust in operation while exhibiting excellent performance and, as a 

result, has been successfully used in many complex optimization problems as described in Fang 

et al. (2010) and the references therein. There is a vast and growing literature related to PSO and 

review articles by Banks et al. (2007), Banks et al. (2008) and Fang et al. (2010). Over time, 

many analyses of the algorithm have been carried out and different modifications to improve the 

performance of the algorithm have been proposed accordingly. These modifications meant to 

improve any or all of the categories that include stability, premature termination, local 

entrapment, speed and parameters of the algorithm.  

Using discrete time-domain system theory, dynamic behaviour and convergence of simplified 

PSO algorithm was analyzed in Trelea (2003). It provided qualitative guidelines for parameter 

selection. Particles’ trajectories were analyzed by van den Bergh and Engelbrecht (2006), 

stochastic convergence analysis was done by Jiang et al. (2007) and the conditions for selecting 

parameters are outlined accordingly. In Schutte et al. (2004) and Koh et al. (2006) parallelization 

or in Plevris and Papadrakakis (2011) hybridization with local search algorithms are incorporated 

to speed up the algorithm as well. However, van den Bergh (2001) showed that canonical PSO is 

not a global search algorithm. Moreover, like many other heuristic algorithms, PSO suffers from 

premature convergence resulting in suboptimal solutions. Different schemes have been proposed 

to overcome the entrapment at a local solution. For example, Suganthan (1999) divided the 

swarm into multiple ‘neighborhoods’, each maintaining its own local best solution that in turn 

makes the algorithm less prone to be trapped in local minima with slower convergence. 

Similarly, several other neighborhood topologies are proposed to enhance the exploration ability 

of PSO. Some researchers incorporated other mechanisms, like, chaotic behavior in Kaveh et al. 

(2014), and Levy process in Cai et al. (2007) to achieve the same goal. Inspired by quantum 
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mechanics and trajectory analysis of PSO, Sun et al. (2004) proposed a new version of PSO that 

samples new particles around the previous best particles utilizing the quantum 𝛿 potential well, 

known as quantum-behaved particle swarm optimization (QPSO). Later, QPSO algorithm is 

analyzed and improved by many researchers and a detailed discussion can be found in the review 

paper of Fang et al (2010). The iterative equation of QPSO is very different from that of PSO.  

Despite yielding better performance than PSO algorithm, QPSO also suffers from premature 

convergence to local optima. Therefore, like PSO, many schemes have been proposed for QPSO 

as well. Unfortunately, many proposed solutions increase computational demands of the 

algorithm significantly, like, calculations of diversity of particles’ positions at each iteration. 

Moreover, initialization of the particles is rarely considered and to our knowledge, uniform 

initialization is invariably adopted in all the variants of QPSO algorithm. In this chapter, to 

enhance the performance, modifications are proposed to the basic QPSO algorithm addressing all 

the problems identified including initialization. The rest of the paper is organized as follows: In 

Sections 3.2 and 3.3, classical PSO and the basic QPSO algorithms are discussed, accordingly. In 

Section 3.3, different improvement schemes are described. Detailed analysis of QPSO algorithm 

is carried out in Section 3.4. Thereby, causes of local entrapment and suboptimal solution are 

identified. In Section 3.5, modifications are proposed considering all the identified problems in 

Section 3.4. In Section 3.6, numerical experiments are carried out using several well-known test 

functions. A mixed variable constrained pressure vessel design problem is considered to examine 

the efficacy of the proposed algorithm. The results obtained are compared with that of the basic 

QPSO algorithm and those obtained from literature using different algorithms and are analyzed 

accordingly.  

3.2 PARTICLE SWARM ANALYSIS 
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In standard PSO, a swarm of 𝑁 particles flies over the 𝐷-dimensional problem space to find the 

optimal solution where the position of each particle represents a potential solution of the 

optimization problem. The dimension of the problem is defined as the number of unknown 

variables considered for optimization. The velocity and position of each particle is updated 

according to the following equation at each iteration step. 

      𝑣𝑖𝑑(𝑡 + 1) = 𝜔𝑣𝑖𝑑(𝑡) + 𝑐1𝜑1(𝑃𝑖𝑑(𝑡) − 𝑥𝑖𝑑(𝑡)) + 𝑐2𝜑2 (𝑃𝑔𝑑(𝑡) − 𝑥𝑖𝑑(𝑡))   (3.1) 

      𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡 + 1)        (3.2) 

Where, 𝑣 and 𝑥 denote the velocity and position of a particle, 𝑡 denotes the number of iterations. 

So, 𝑥𝑖𝑑(𝑡)  is the position of 𝑖th particle in 𝑑th dimension at 𝑡th time. Similar notation is used for 

velocity. 𝜔, 𝑐1 and  𝑐2 are algorithmic parameters and are known as inertia, cognitive and social 

constants, respectively. 𝜑1 and 𝜑2 are two independent random numbers uniformly distributed in 

(0,1) for each dimension. 𝑃𝑖𝑑 is the position with the best fitness found so far in 𝑑th dimension 

for the 𝑖th particle, also known as personal best or pbest. Similarly, 𝑃𝑔𝑑 is the position with the 

best fitness found so far in 𝑑th dimension for all the particles or swarm, also known as global 

best or gbest. In Clerc and Kennedy (2002), an alternative velocity update equation was proposed 

using constriction coefficient. According to Jiang et al. (2007), convergence property and 

performance of PSO depends on algorithmic parameters, velocity clamping, position clamping, 

topology of neighbourhood, etc. For high dimensional optimization problems, PSO algorithm 

can easily be trapped in local minima. Through different analyses, it is shown that if personal 

best (𝑃𝑖𝑑) is not improved, change in global best (𝑃𝑔𝑑) does not take place and there is no change 

in searching direction. As a result, PSO cannot jump out from local minima. Different 

mechanisms are proposed to overcome the entrapment by 𝑖) changing control parameters, 𝑖𝑖) 
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combining with other algorithms 𝑖𝑖𝑖) perturbing current state of the particle, and 𝑖𝑣) discarding 

old and introducing new particles. 

However, linear equations in PSO cannot capture the complex interaction and quantum 

behaviour is incorporated to overcome the limitations of classical PSO accordingly, named 

quantum-PSO (QPSO).   

3.3 QUANTUM-BEHAVED PARTICLE SWARM OPTIMIZATION (QPSO) 

Like quantum models, in QPSO, the state of a particle is described by wavefunction 𝜓(𝑥̅, 𝑡), as 

such, position and velocity of a particle cannot be determined simultaneously in quantum 

mechanical sense. Instead, particles are considered in quantum state and position of each particle 

is determined probabilistically using probability density function |𝜓(𝑥̅, 𝑡)|2.  

Using trajectory analysis of basic PSO algorithm Clerk and Kennedy (2002) showed that each 

particle converges to a local attractor point 𝑝𝑖𝑑.  The local attractor point depends on based on 

pbest and gbest positions, and is defined as:  

   𝑝𝑖𝑑 =
𝑐1𝜑1𝑃𝑖𝑑+𝑐2𝜑2𝑃𝑔𝑑

𝑐1𝜑1+𝑐2𝜑2
       (3.3) 

Or 

   𝑝𝑖𝑑 = 𝜑𝑃𝑖𝑑 + (1 − 𝜑)𝑃𝑔𝑑,      𝜑~𝑈(0,1)  (3.4) 

Assuming the particle follows quantum behavior, the probability distribution function of the 

location of a particle at any dimension can be obtained by solving Schrödinger equation for that 

dimension considering one dimensional Delta potential well centering at local attractor defined 

by equation 3.3 or 3.4. The probability distribution function F is: 
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   𝐹(𝑦) = ∫ 𝑄(𝑦)𝑑𝑦 = 𝑒−2|𝑞−𝑥|/𝐿𝑦

−∞
 (3.5) 

Where, 𝑞 is the center of the potential well and 𝐿 is the search scope of the particle. Using Monte 

Carlo method the position of each particle is obtained: 

   𝑥 = 𝑞 ±
𝐿

2
ln(1

𝑢⁄ ),     𝑢~𝑈(0,1) (3.6) 

In Sun et al. (2004), the parameter 𝐿 is evaluated as  

   𝐿 = 2𝛽|𝑞 − 𝑥|  (3.7) 

Where, 𝛽 is called contraction-expansion (CE) coefficient, which controls the exploration and 

exploitation behavior of the swarm and plays an important role for the algorithm. Using the usual 

notations, the position update equation of QPSO algorithm becomes: 

   𝑥𝑖𝑗
𝑡+1 = 𝑝𝑖𝑗

𝑡 ± 𝛽|𝑝𝑖𝑗
𝑡 − 𝑥𝑖𝑗

𝑡 | ln(
1

𝑢
)  (3.8) 

Equation 3.8 is the basic QPSO algorithm with one algorithmic parameter 𝛽. 

Later, individual local attractors were replaced with the mean of the personal best positions of 

the swarm, known as ‘mainstream thought’ or ‘mean best position’ as described in Sun et al. 

(2004) and Equation 3.8 for position update is changed accordingly, 

    𝑥𝑖𝑗
𝑡+1 = 𝑝𝑖𝑗

𝑡 ± 𝛽|𝑚𝑏𝑒𝑠𝑡𝑗
𝑡 − 𝑥𝑖𝑗

𝑡 | ln(
1

𝑢
)    (3.9) 

Where, mean best position (mbest) is defined as 

   𝑚𝑏𝑒𝑠𝑡 = (
1

𝑀
∑ 𝑃𝑖1,𝑀

𝑖=1  
1

𝑀
∑ 𝑃𝑖2,𝑀

𝑖=1 ⋯ ,
1

𝑀
∑ 𝑃𝑖𝐷

𝑀
𝑖=1 ) (3.10) 
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Where, 𝑀 is the population size and 𝑃𝑖 is the personal best position of particle 𝑖. 

Exponential distribution of positions gives QPSO a wider search capability compared to normal 

distribution, resulting from quantum harmonic oscillator potential well and incorporating mbest 

position makes it more cooperative behavior as it does not leave lagged particles, eventually 

makes the algorithm better in global search ability as claimed in Fang et al. (2010).   

The basic QPSO algorithm is described below. 

Input: Swarm size (number of particles), Problem dimension, 

Initial and final 𝛽, (and maximum number of iterations (maxIter)). 
Initialize particle positions randomly, uniformly in each 

dimension. Calculate maxIter. 

For 𝑡= 1 to maxIter 
 Compute the mean best position (mbest) using equation 3.10.  

 𝛽 = 𝑓𝑖𝑛𝑎𝑙𝛽 + (𝑓𝑖𝑛𝑎𝑙𝛽 −  𝑖𝑛𝑖𝑡𝛽)
(𝑚𝑎𝑥𝐼𝑡𝑒𝑟−𝑡)

𝑚𝑎𝑥𝐼𝑡𝑒𝑟
 

    For 𝑖 = 1 to population size 𝑀 

 If 𝑓(𝑥𝑖) < 𝑓(𝑃𝑖) then 𝑃𝑖 = 𝑥𝑖  Endif 

 𝑃𝑔 = min(𝑃𝑖) 

 For 𝑗 = 1 to dimension 𝐷 
 𝜑 = 𝑟𝑎𝑛𝑑(0,1); 𝑢 = 𝑟𝑎𝑛𝑑(0,1); 
 𝑝𝑖𝑗 =  𝜑. 𝑃𝑖𝑗 + (1 − 𝜑). 𝑃𝑔𝑗 

 If (𝑟𝑎𝑛𝑑(0,1) > 0.5) 

  𝑥𝑖𝑗 = 𝑝𝑖𝑗 + 𝛽. 𝑎𝑏𝑠(𝑚𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑖𝑗). ln(1
𝑢⁄ ) 

 Else 

  𝑥𝑖𝑗 = 𝑝𝑖𝑗 − 𝛽. 𝑎𝑏𝑠(𝑚𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑖𝑗). ln(1
𝑢⁄ ) 

 Endif 

 Endfor //end for loop j 

 Endfor //end for loop i 

Endfor //end for loop t 

 

Convergence analysis of QPSO particles in Sun et al. (2012) shows that 𝛽 ≤ 𝑒𝛾 ≈ 1.781 can 

prevent explosion of the particles’ position. The most commonly used values for 𝛽 is to initially 

setting it to 1.0 and is reduced linearly to 0.5, Fang et al. (2010). 
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Different schemes have been proposed for improving the global search ability, convergence 

speed, solution precision, and robustness of the basic QPSO algorithm.  These schemes range 

from changing the algorithmic parameter 𝛽  proposed by Sun et al. (2005), Sun et al. (2012), by 

controlling the swarm diversity in Sun et al. (2006a, 2006b),  Wang et al. (2013), and  Sun  et al. 

(2011), using a different distribution function in Sun et al. (2006), Coelho (2010), utilizing 

cooperative methods in Li et al. (2012), perturbing local attractor Sun  et al. (2011), introducing 

mutation operator (Singh & Mahapatra, 2016),incorporating elititist breeding of the personal and 

global best particles (Yang, Wu, & Min, 2015), hybridizing with other algorithms, like quasi-

Newton and QPSO by (Liu, Shen, & Lu, 2014), Bacterial Foraging Algorithm and QPSO by 

(Pradhan & Patra, 2015) and incorporating novel search methods, like chaotic search in Coelho 

(2008), Li et al. (2012). In the following section, evolution of different particles’ positions is 

studied to find the causes for sub-optimal solution. 

3.4 ANALYSIS OF QPSO 

QPSO algorithm is analyzed through inspecting evolution of particles’ positions at different time 

steps in Section 3.4.1. Impact of 𝛽 is analyzed further to find out how it affects wasted function 

evaluation in Section 3.4.2. 

3.4.1. Evolution of Particles’ Positions 

In this sub-section, evolution of particles’ positions is studied visually for a 2-dimensional 

Shekel function with 10 local maxima using QPSO algorithm and different aspects of this 

algorithm is analyzed. The function and the corresponding contour map is shown in Figure 3.1.    
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Figure 3.1: Surface and contour plot of 2D Shekel function with 10 local optima 

 

In Figure 3.2, positions of different particles are shown just after initialization. Positions of the 

particles are initialized using uniform distribution (Mersenne-Twister algorithm) for each 

dimension. Each particle provides information about the problem space and uniform sampling 

provides best information in the absence of a priori knowledge of the problem. However, as seen 

in the figure, particles are not distributed uniformly over the whole region of the problem space. 

This problem might be more severe for higher dimensional cases. Global optimum is located 

near a local optima. As expected, the mean best position does not coincide with the gbest. 

In Figure 3.3, evolution of the positions of different particles is shown over different iteration 

level. It is evident that initially (Figures 3.3a & 3.3b), particles are attracted towards a local 

optimum as no particle was within the basin of the global optimum point. However, once a 

particle reaches within the basin of attraction of the global optimal point, all the particles along 

with their personal bests start moving towards the global optimum point (Figures 3.3c & 3.3d). 

Even if one or more particles reaches global/local optimal point, the exploration capability of the 

swarm persists at an earlier stage of the optimization process (Figure 3.3e) due to random part of 

update Equation 3.9 and higher 𝛽 value. However, eventually, diversity of particles’ positions 
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diminishes (Figure 3.3f) and as the contraction-expansion coefficient  𝛽 decreases at each 

iteration level, particles are unlikely to escape from the trapped position at the later stage of the 

optimization process (Figure 3.3g). Due to low 𝛽 value, the swarm loses its exploration 

capability and can exploit only the local domain. Ultimately, all the particles reached an 

optimum location (Figure 3.3h). Even if the found optimal point is merely local, the algorithm 

can’t escape the local entrapment due to small multiplication factor or flight range, as described 

below.     

 

 
Figure 3.2: Locations of particles along with mean best, global best at initialization using  uniform 

distribution
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Figure 3.3: Evolution of particle positions along with personal best, mean best and global best positions at different iteration level
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For further investigation, histogram of multiplication factor or flight range is shown in 

Figure 3.4, where, multiplication factor is defined as the multiplication of the random 

term and the contraction-expansion factor in QPSO algorithm in Equation 3.9 (𝑙𝑛 (
1

𝑢
) ×

𝛽). The histogram is shown in blue, green and red for 𝛽 = 1.7, 1.0 and 0.4, respectively. 

As expected, the larger the 𝛽 value is, the farther a particle can be placed from its current 

position at each iteration.  Therefore, the searching capability of QPSO algorithm is 

localized as 𝛽 decreases.  

 
Figure 3.4: Histogram of multiplication factor for different contraction-expansion factor 𝛽 for 

10000 random samples 

 

3.4.2. Impact of 𝜷 on Function Evaluation 

Apart from searching capacity, 𝛽 might also affect the number of wasted function 

evaluations, explained below. It is common practice to place a particle at the boundary 

once the updated position using Equation 3.9 goes below or above the lower limit or 

upper limit of the search space, respectively. Depending on the locations of the particles 

and value of 𝛽, clipping to the limiting value can be quite frequent, as such, function 

evaluation is done using the same argument/position resulting in a wasted function 

evaluation. A simple experiment is carried out to understand the impact of 𝛽 and the 
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location of global optimum (gbest) on the number of particles that exceeds the limits of a 

given search range. 

Two possible global optimum locations are considered in this experiment, if the gbest is 

located closest to the minimum/maximum value, or to the centre (mean) of the given 

range. The value of 𝛽 is changed from 1.7 − 0.2. For a particular 𝛽, 40 uniformly random 

numbers are generated and those closest to the minimum and the mean value particles are 

considered as gbest particles for the two cases considered above. Following Equation 3.9, 

the new position of each particle is calculated and the number of particles that exceeds 

any of the limits is counted accordingly. The simulation is carried out for 106 times and 

the average number of occurrences recorded. In Figure 3.5, a fraction of particles that 

cross the limit after position update is plotted if the global best position is located nearest 

i) to the minimum (blue), and ii) to the centre (green) for 1D case. All 40 particles are 

assigned uniformly [-100, 100]. As seen in Figure 3.5, if the global best position is 

located near the minimum, the number of particles that exceed the limit is more than if 

the gbest is located near the centre. The experiment is carried out if gbest is located near 

the 1st and 3rd quartile and the maximum too. Results for the maximum case are similar to 

that of the minimum case and shows symmetry in quartile cases as well. As the value of 

𝛽 increases, the fraction of particles that overflow the boundaries increases.         
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Figure 3.5: Fraction of particles exceeds limit based on 𝛽 value for 1D case, 40 particles and range 

[-100, 100] 

 

The same experiment is carried out for multiple dimensions with varying ranges. We did 

not find any noticeable difference in results due to changes in the boundary values. We 

tried the following ranges in our experiments: [-0.5, 0.5], [−𝜋, 𝜋], [-5, 5] and [-100, 100]. 

However, as the number of dimensions is increased, the fraction of particles exceeding 

limits increases too. In our simulation, the particle that exceeds the boundary for at least 

one dimension is considered violating boundary restriction. In Figure 3.6, the effect of 

dimension on the fraction of particles exceeds the limits when plotted for 2, 10 and 30 

dimensions. As the number of dimension increases, the number of particles increases, 

violating boundary restrictions. As in a one dimensional case, if the global optimum is 

located near the boundary (solid lines), the fraction is always greater than that of the 
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cases where the optimal location is closer to the centre of the search space (dotted lines). 

However, it is evident that once a particle exceeds the limit of the search space, it is not a 

good idea to put the value just at the limit, especially, if the 𝛽 is large, as a good number 

of particles might have the same upper/lower limit value resulting in wasteful function 

evaluation.   

 
Figure 3.6: Fractions of particles exceeds limit for multidimensional cases with 40 particles and 

range [-100, 100] 

 

3.4.3. Observations  
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 If  𝛽 is kept within a stable region (< 1.781) and a sufficient number of iterations 

is allowed, QPSO algorithm guarantees converge to an optimal location. 

 At earlier stages of the experiment, when 𝛽 has a larger value, the algorithm can 

escape from the local trap, but is unable to do so at later stages, as it loses the 

exploration capability depicted in Figure 3.4. 

 While searching, if none of the particles reaches within a basin of attraction, the 

algorithm is unable to search that basin, even if the global optimum is located there. 

So, reaching all the basins should be the primary objective of any population-based 

heuristics. However, to our knowledge, no algorithm guarantees this 100% and 

QPSO is not an exception.   

 It is not a good idea to put the particle position at the limiting value once the 

calculated new position exceeds the limit, especially, in multidimensional 

problems.    

 The reasons particles converged to a local optimum can’t escape even at high 𝛽 

could be because of the following reasons or their combinations: 

o The basin of the local optimum extends beyond the maximum jump 

provided by the algorithm. Though, 2 or more jumps in one direction might 

be sufficient to overcome this distance, due to the random nature of the 

algorithm, the consecutive jumps might change the direction, contributing 

to a very small change at each iteration or both. 

o The problem might have a very narrow region to search for global optimum 

(needle in a haystack) and very easy to be missed by any search algorithm. 
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o Due to curse of dimensionality, high dimensional problems are more prone 

to be trapped to local optimum as the change in one dimension might ruin 

all the gains achieved through changes in other dimensions. 

Based on the above observations, the new algorithm should have the following 

characteristics: 

1. Initial distribution of the particles should be as uniform as possible to cover the 

whole search domain. 

2. For each iteration level, there should be some mechanism to search the unsearched 

region systematically. 

3. Sufficient number of function evaluations should be carried out at each 𝛽 level 

before decreasing it (exploitation), which depends on the dimension of the 

problem, to allow a complete search around a particular point. In this regard, 𝛽 acts 

like the temperature in annealing method. 

4. Once the particles converges to an optimum (local or global) and 𝛽 is small enough 

to escape the trap, it should be reassigned to a larger value for exploration.  

5. A method should be used to put the particle inside the feasible range other than 

putting it on the boundary once it exceeds the limit, like reflection.   

3.5 PROPOSED MODIFICATIONS 

A number of modifications are proposed to incorporate the aforementioned 

characteristics in basic QPSO algorithm and implemented in C# language. Sobol 

sequence is used for initialization for better uniformity (Sobol, 1967). C# code is 

developed based on Joe and Kuo (2003, 2008) that supports up to 21201 dimensions. 

Moreover, after initialization, a new point can be generated preserving finer uniformity. 
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Therefore, if new particles are generated using Sobol sequence generator the unsearched 

locations can be probed systematically. Unlike traditional QPSO where 𝛽 is decreased 

after each iteration, if a better pbest is found at a certain iteration level, it is left 

unchanged. In fact, 𝛽 is preserved for a certain number of iterations even if there is no 

improvement of any pbest. The number of iterations to preserve 𝛽 is dimension-

dependent and for this study, it is set at half the number of dimensions of the problem to 

be solved. Though, diversity of particles’ position is a good indicator of convergence of 

particles to a global/local optimal point, it is computationally expensive. On the other 

hand, from the above analysis, we know that once the 𝛽 value is small, QPSO can only 

do the local search efficiently. Therefore, once the 𝛽 value reaches its minimum and for a 

certain number of iterations (for this study, number of dimensions), if there is no 

improvement for any of the pbests, 𝛽 is re-initialized to its initial higher value to boost up 

the exploring capability of the swarm. Once the second cycle is completed and the 

number of function evaluations still left, positions of the particles are either re-assigned 

using Sobol sequence generator or perturbed current positions using Stable distribution 

with 𝛼 < 2.0. It is to be noted that 𝛼 = 1, and 𝛼 = 1
2⁄  correspond to Cauchy and Lévy 

distributions, respectively. Moreover, calculated mean best at each iteration is based on 

some finite samples (number of particles). According to the Central Limit Theorem, this 

mean is not the true mean of the population, therefore, mbest is perturbed using Gaussian 

distribution with calculated mean as the mean, and 𝑐𝑎𝑙_𝑠𝑡𝑑/𝑛 as the standard deviation, 

where cal_std is the calculated standard deviation of all the pbests and n is the number of 

particles. The flowchart of the proposed algorithm is shown in Figure 3.7. 
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Figure 3.7: Flowchart of the proposed algorithm 

 

In many cases, factors in an optimization problem contain both continuous and discrete 

values. Moreover, different constraints are also present in most engineering design and/or 

optimization problems. QPSO is targeted for the continuous value problems alone. To 

cope with the mixed-integer constrained optimization problems, different approaches are 

taken and interested readers might find them for PSO algorithm in the review paper by 

Jordehi and Jasni (2012). In our study, all the variables are considered continuous for 

position update equation. Once the position is calculated, the nearest discrete value is 

adopted for that discrete factor. For constraint handling either penalty is assigned to the 
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objective function for each constraint violation or priority is given to the particles without 

any constraint violation even if the calculated objective function is worse than that of the 

particles with violated constraints. More details follow in the constrained mixed-variable 

problem provided in Section 3.6.2. 

3.6 EXPERIMENTAL STUDY 

Performance of the proposed algorithm is tested using several benchmark functions 

discussed in Section 3.6.1. In Section 3.6.2, the performance of the proposed algorithm is 

compared with that of the basic QPSO and other algorithms found in literature in terms of 

the benchmark functions. 

3.6.1 Benchmark Functions 

Several scalable benchmark functions are considered in this paper. These functions are all 

widely used minimization problems in literature like, IEEE Congress on Evolutionary 

Computation (CEC10). These problems contain some basic functions and their shifted / 

rotated / shifted and rotated / hybrid combinations of other functions. In Table 3.1, all 

these functions are defined, along with their search domains.  

 

Table 3.1: Benchmark function definition and search range 

Function Name Function expression 
Search 

Range 

Sphere 𝑓1(𝒙) = ∑ 𝑥𝑖
2

𝐷

𝑖=1

 [−100, 100]𝐷 

Rosenbrock 𝑓2(𝒙) = ∑ 100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2

𝐷

𝑖=1

 [−100, 100]𝐷 

Rastrigin 𝑓3(𝒙) = ∑ 𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)

𝐷

𝑖=1

+ 10 [−5, 5]𝐷 

Non-continuous Rastrigin 𝑓4(𝒙) = ∑ ⌊𝑥𝑖⌉2
− 10 sin(2𝜋⌊𝑥𝑖⌉)𝐷

𝑖=1 + 10        [−5, 5]𝐷 
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Function Name Function expression 
Search 

Range 

Schwefel 1.2 𝑓5(𝒙) = ∑ (∑ 𝑥𝑗

𝑖

𝑗=1

)

2
𝐷

𝑖=1

 [−100, 100]𝐷 

Griewangk 𝑓6(𝒙) =
1

4000
∑ 𝑥𝑖

2 − ∏ cos (
𝑥𝑖

√𝑖
)

𝐷

𝑖=1

+ 1

𝐷

𝑖=1

 [−600, 600]𝐷 

Ackley 
𝑓7(𝒙) = −20𝑒

(−0.2√1
𝐷

∑ 𝑥𝑖
2𝐷

𝑖−1 )
− 𝑒

(
1
𝐷

∑ cos(2𝜋𝑥𝑖)𝐷
𝑖−1 )

+ 20 + 𝑒 
[−32, 32]𝐷 

Schaffer F6 𝑓8(𝑥, 𝑦) = 0.5 +
(sin √𝑥2 + 𝑦2)

2
− 0.5

[1.0 + 0.001(𝑥2 + 𝑦2)]2 
[−100, 100]𝐷 

Weierstrass 

𝑓9(𝒙) = ∑ (∑ 0.5𝑘 cos(2𝜋. 3𝑘 . (𝑥𝑖 + 0.5))

20

𝑘=0

)

𝐷

𝑖=1

− 𝐷 ∑ 0.5𝑘 cos(2𝜋. 3𝑘 . 0.5)

20

𝑘=0

 

[−0.5, 0.5]𝐷 

Shifted Sphere 𝑓10(𝑥) = ∑ 𝒛𝑖
2 + 𝑏𝑖𝑎𝑠,   𝒛 = 𝒙 − 𝒐

𝐷

𝑖=1

, 𝑏𝑖𝑎𝑠 =  −450 [−100, 100]𝐷 

Shifted Schwefel 1.2 𝑓11(𝒙) = ∑ (∑ 𝑧𝑗

𝑖

𝑗=1

)

2

+ 𝑏𝑖𝑎𝑠2,   𝒛 = 𝒙 − 𝒐,   𝑏𝑖𝑎𝑠2 =  −450   

𝐷

𝑖=1

 [−100, 100]𝐷 

Shifted Rotated High 

Conditional Elliptic Function 
𝑓12(𝒙) = ∑(106)

𝑖−1
𝐷−1𝑧𝑖

2 + 𝑏𝑖𝑎𝑠3,   𝒛 = (𝒙 − 𝒐) ∗ 𝑴,   𝑏𝑖𝑎𝑠3 =  −450   

𝐷

𝑖=1

 [−100, 100]𝐷 

Shifted Schwefel 1.2 with 

Noise 

𝑓13(𝒙) = (∑ (∑ 𝑧𝑗

𝑖

𝑗=1

)

2

  

𝐷

𝑖=1

) ∗ (1 + 0.4|𝑁(0,1)|)

+ 𝑏𝑖𝑎𝑠4,                             𝒛 = 𝒙 − 𝒐,   𝑏𝑖𝑎𝑠4 =  −450  

[−100, 100]𝐷 

Shifted Schwefel 2.6 𝑓14(𝒙) = max{|𝑨𝑖𝒙 − 𝑩𝑖|} + 𝑏𝑖𝑎𝑠5, 𝑏𝑖𝑎𝑠5 = −310 [−100, 100]𝐷 

Shifted Rosenbrock 
𝑓15(𝒙) = ∑ 100(𝑧𝑖+1 − 𝑧𝑖

2)2 + (𝑧𝑖 − 1)2 + 𝑏𝑖𝑎𝑠6

𝐷

𝑖=1

,

𝒛 = 𝒙 − 𝒐,             𝑏𝑖𝑎𝑠6 =  390  

[−100, 100]𝐷 

Shifted Rotated Griewank 
𝑓16(𝒙) =

1

4000
∑ 𝑧𝑖

2 − ∏ cos (
𝑧𝑖

√𝑖
)

𝐷

𝑖=1

+ 1

𝐷

𝑖=1

+ 𝑏𝑖𝑎𝑠7,

𝒛 = (𝒙 − 𝒐) ∗ 𝑴,   𝑏𝑖𝑎𝑠7 =  −180      

[−600, 600]𝐷 

Shifted Rotated Ackley 𝑓17(𝒙) = −20𝑒
(−0.2√1

𝐷
∑ 𝑧𝑖

2𝐷
𝑖−1 )

− 𝑒
(

1
𝐷

∑ cos(2𝜋𝑧𝑖)𝐷
𝑖−1 )

+ 20 + 𝑒 + 𝑏𝑖𝑎𝑠8,   𝒛

= (𝒙 − 𝒐) ∗ 𝑴,   𝑏𝑖𝑎𝑠8 =  −140       

[−32, 32]𝐷 

Shifted Rastrigin  
𝑓18(𝒙) = ∑ 𝑧𝑖

2 − 10 cos(2𝜋𝑧𝑖)

𝐷

𝑖=1

+ 10 + 𝑏𝑖𝑎𝑠9,

𝒛 = (𝒙 − 𝒐),   𝑏𝑖𝑎𝑠9 =  −330     

[−5, 5]𝐷 
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Function Name Function expression 
Search 

Range 

Shifted Rotated Rastrigin 
𝑓19(𝒙) = ∑ 𝑧𝑖

2 − 10 cos(2𝜋𝑧𝑖)

𝐷

𝑖=1

+ 10 + 𝑏𝑖𝑎𝑠10,

𝒛 = (𝒙 − 𝒐) ∗ 𝑴,   𝑏𝑖𝑎𝑠10 =  −330     

[−5, 5]𝐷 

Shifted Rotated Weierstrass 

𝑓20(𝒙) = ∑ (∑ 0.5𝑘 cos(2𝜋. 3𝑘 . (𝑥𝑖 + 0.5))

20

𝑘=0

)

𝐷

𝑖=1

− 𝐷 ∑ 0.5𝑘 cos(2𝜋. 3𝑘 . 0.5)

20

𝑘=0

+ 𝑏𝑖𝑎𝑠10,

𝒛 = (𝒙 − 𝒐) ∗ 𝑴,   𝑏𝑖𝑎𝑠11 =  90       

[−0.5,0. 5]𝐷 

Schwefel 2.13 𝑓21(𝒙) = ∑(𝑨𝑖 − 𝑩𝒊(𝒙))2 + 𝑏𝑖𝑎𝑠12

𝐷

𝑖=1

, 𝑏𝑖𝑎𝑠12 = −460,  [−𝜋, 𝜋]𝐷 

Shifted Expanded Griewank 

plus Rosenbrock 

𝑓22(𝒙) = 𝑓6(𝑓2(𝑧1, 𝑧2)) + 𝑓6(𝑓2(𝑧2, 𝑧3)) + ⋯ + 𝑓6(𝑓2(𝑧𝐷−1, 𝑧𝐷))

+ 𝑓6(𝑓2(𝑧𝐷 , 𝑧1)) + 𝑏𝑖𝑎𝑠13,

𝒛 = 𝒙 − 𝒐 + 𝟏,           𝑏𝑖𝑎𝑠13 =  −130      

[−3,1]𝐷 

Shifted Rotated Expanded 

Schaffer F6 

𝑓23(𝒙) = 𝑓8(𝑧1, 𝑧2) + 𝑓8(𝑧2, 𝑧3) + ⋯ + 𝑓8(𝑧𝐷−1, 𝑧𝐷) + 𝑓8(𝑧𝐷 , 𝑧1)

+ 𝑏𝑖𝑎𝑠14,

𝒛 = (𝒙 − 𝒐) ∗ 𝑴,           𝑏𝑖𝑎𝑠14 =  −300      

[−100,100]𝐷 

Hybrid Composition 𝑓24(𝒙)= Hybrid composition of functions 𝑓1, 𝑓3, 𝑓6, 𝑓7, and 𝑓9. [−5, 5]𝐷 

 

Different features of the test functions are shown in Table 3.2 along with their true global 

optimum. The feature list includes whether the function is unimodal/multimodal (U/M), 

shifted (Sh), rotated (Ro), separable/Non-separable (Se/Ns), scalable (Sc), and if noise 

(No) is added. Comments are included for special features of a particular test function, if 

there are any. 

Table 3.2: Different features of the standard test functions studied in this paper 

Function Global 

Optimum 

Features Comment 

𝑓1 0 U, Convex  

𝑓2 0 U, valley/banana 

function 

Global minimum lies in narrow, 

parabolic valley and convergence is 

difficult. 
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Function Global 

Optimum 

Features Comment 

𝑓3 0 M Highly multimodal 

𝑓4 0 M  

𝑓5 0 M Complex with many local minima 

𝑓6 0 M Many widespread local minima 

𝑓7 0 M Nearly flat outer region and a large 

hole at the centre. 

𝑓8 0 U  

𝑓9 0 M  

𝑓10 -450 U,Sh, Se, Sc  

𝑓11 -450 U, Sh, Ns, Sc  

𝑓12 -450 U, Sh, Ro, Ns, Sc  

𝑓13 -450 U, Sh, Ns, Sc, No  

𝑓14 -310 U, Ns, Sc Global optimum is located at 

boundary 

𝑓15 390 M, Sh, Ns, Sc Very narrow valley from local to 

global minimum 

𝑓16 -180 M, Ro, Sh, Ns, Sc  

𝑓17 -140 M, Ro, Sh, Ns, Sc Global optimum at boundary 

𝑓18 -330 M, Sh, Se, Sc Huge number of local optima 

𝑓19 -330 M, Sh, Ro, Ns, Sc Huge number of local optima 

𝑓20 90 M, Sh, Ro, Ns, Sc  

𝑓21 -460 M, Sh, Ns, Sc  

𝑓22 -130 M, Sh, Ns, Sc  

𝑓23 -300 M, Sh, Ns, Sc  

𝑓24 120 M, Sc Separable near global optimum, 

huge number of local optima, two 

flat areas due to sphere function 
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3.6.2 Comparison with Standard QPSO and Other Algorithms 

Each function is tested with three different dimensions, 10, 30 and 50. The maximum 

number of function evaluation (FE) is set as 10000 × 𝐷, where 𝐷 is the dimension of the 

problem. So, maximum 100000, 300000 and 500000 number of function evaluations are 

allowed for dimensions 10, 30 and 50, respectively. For each set of experiments, 50 trial 

runs are carried out and 40, 60 or 80 particles are used as a single swarm depending on 

the 10, 30 or 50 dimensions of the problems, respectively. 

In Table 3.3, results from the functions with 10 dimensions are shown. Mean and 

standard deviations of multiple runs of the results are tabulated. From the tabulated 

results, it is evident that, in most cases, the proposed algorithm outperformed the basic 

QPSO algorithm due to better exploration capability of the proposed algorithm and better 

initial distributions of the particles.  

 

Table 3.3: Numerical results for different functions of dimension 10 

 

Function QPSO Proposed QPSO 

Mean Std Mean Std 

𝑓1 1.71 × 10−61 5.47 × 10−61   0 0 

𝑓2 6.4544 6.8249 0.8832 0.5340 

𝑓3 0.7431 0.8434 0 0 

𝑓4 2.5427 0.9202 0 0 

𝑓5 6.89 × 10−10 1.72 × 10−09 0 0 

𝑓6 0.0811 0.0286 0 0 

𝑓7 4.14 × 10−15 6.96 × 10−16 𝟒. 𝟒𝟒 × 𝟏𝟎−𝟏𝟔 0 

𝑓8 0.5161 0.4231 0 0 

𝑓9 0 0 0 0 

𝑓10 -450 0 -450 8.74 × 10−14 
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Function QPSO Proposed QPSO 

Mean Std Mean Std 

𝑓11 -449.9999 𝟑. 𝟒𝟏 × 𝟏𝟎−𝟏𝟑 -449.9999 1.55 × 10−07 

𝑓12 -450 0 -450 0 

𝑓13 0.0124 0.0162 𝟑. 𝟐 × 𝟏𝟎−𝟎𝟔 𝟒. 𝟖𝟐 × 𝟏𝟎−𝟎𝟔 

𝑓14 -30.9487 352.6168 -309.9999 𝟑. 𝟔𝟗 × 𝟏𝟎−𝟎𝟖 

𝑓15 399.9332 18.5156 396.5553 6.3414 

𝑓16 -179.5205 0.3167 -179.8151 0.1005 

𝑓17 -119.6312 0.0721 -119.6366 0.0661 

𝑓18 -326.3515 1.6716 -329.6870 0.7646 

𝑓19 -318.2585 5.0180 -321.0837 4.9333 

𝑓20 92.2605 0.9549 92.4116 1.0949 

𝑓21 321.4152 1328.9292 58.0019 694.4023 

𝑓22 -129.3747 0.2638 -129.311 0.3122 

𝑓23 -297.2250 0.5305 -297.5159 0.5478 

𝑓24 365.1386 157.8967 147.1859 79.9920 

 

For functions 𝑓10, 𝑓11, 𝑓17 and 𝑓20, the results of the proposed algorithm are inferior to 

that of the standard QPSO algorithm. However, the results are very close. For example, 

the mean results are the same but the standard deviations are larger by 8.7447 × 10−14  

and 1.554 × 10−07 for the functions 𝑓11 and 𝑓12, respectively. Similarly, for function 𝑓17, 

the mean value of QPSO is smaller by 0.0054 but the standard deviation is larger by 

0.006. However, for function 𝑓20, both the mean and the standard deviation of the 

proposed algorithm are inferior to that of the standard QPSO (off by 0.1511 and 0.14 for 

the mean and standard deviation, respectively). The proposed algorithm reinitializes 𝛽 to 

a higher value. As stated earlier, larger 𝛽 enhances exploring capacity but reduces 

exploitation ability. Therefore, if a new optimal location is found at the later stage with 
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larger 𝛽 (due to re-initialization), there might not be enough iteration available for local 

search with smaller 𝛽.  Moreover, for a few functions, namely 𝑓13, 𝑓21 and 𝑓24, global 

optimal positions were not found by both the algorithms. However, for function 𝑓14, 

though the basic QPSO failed, the proposed algorithm could overcome the local trap.   

In Table 3.4, the same experiments are carried out for the functions with 30 dimensions. 

However, apart from our experiments alone, the best results obtained using different PSO 

variants found in Sun  et al. (2011) for different functions are also presented for better 

comparison. In this case, unlike Table 3.3 for dimension 10, the mean value is the 

differences between the best fitness value found by the algorithm and the actual global 

optimum after Suganthan, et al. (2005) and for better comparison. Although, the results 

show similar trends as dimension 10, the results are inferior in general due to the increase 

in number of dimension. For the basic functions, the proposed algorithm performed very 

well. For other functions, the proposed algorithm performed better for 𝑓12, 𝑓13, 𝑓19, 𝑓21, 

and 𝑓24. The functions, namely, 𝑓20, 𝑓22 and 𝑓23, where the basic QPSO algorithm 

performs better, the results of the proposed algorithm are comparable. It is to be noted 

that, the best results from the reference are not from the same algorithm. Therefore, 

although the proposed algorithm looks inferior to the published results for many 

functions, the results are comparable, if not better, compared to that of the basic QPSO 

algorithm. However, as evident from the results, both algorithms suffer from the curse of 

dimensionality.  
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Table 3.4: Numerical results for different functions of dimension 30 

 

Function QPSO Best results found 

in Sun et al (2011) 

Proposed QPSO 

Mean Std Mean std Mean Std 

𝑓1 1.75e-62 6.43e-62 - - 0 0 

𝑓2 41.1027 35.1226 - - 19.458 1.3775 

𝑓3 18.4399 5.3564 - - 0 0 

𝑓4 24.1694 5.0847 - - 0 0 

𝑓5 0.3498 0.2915 - - 0 0 

𝑓6 0.0063 0.0062 - - 0 0 

𝑓7 1.18e-14 4.04e-15 - - 4.44e-16 0 

𝑓8 6.8719 0.9151 - - 0 0 

𝑓9 0 0 - - 0 0 

𝑓10 5.49e-14 1.02e-14 1.27e-27 3.71e-28 1.10e-06 4.34-07 

𝑓11 0.2068 0.2075 0.0988 0.3362 1.0445 0.3507 

𝑓12 0 0 4.16e06 1.87e06 0 0 

𝑓13 2109.5229 1175.1658 2.35e03 1.85e03 1161.7485 636.8994 

𝑓14 4446.4296 944.3803 2.53e03 947.8740 2964.9074 570.9447 

𝑓15 47.7386  51.0449 56.6257 90.6767 80.3121 67.5664 

𝑓16 0.0214 0.0173 0.0152 0.0125 0.0456 0.0145 

𝑓17 60.9444 0.0480 1.56e-14 3.11e-15 20.9492 0.0536 

𝑓18 22.5524 5.2166 0.6990 0.7983 12.6554 3.7234 

𝑓19 51.7090 15.0923 112.8426 71.2957 46.3868 14.1507 

𝑓20 13.7164 2.4156 25.8903 3.1488 19.7979 5.5980 

𝑓21 9299.2134 6996.2582 6.87e03 6.32e03 5490.0109 4482.3580 

𝑓22 3.0005 0.5495 - - 3.9647 2.3682 

𝑓23 11.8154 0.5993 - - 12.3577 0.4170 

𝑓24 341.5774 171.2591 - - 334.3574 111.6796 
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In Table 3.5, performance of the test functions are evaluated for 50 dimensions. Like 30 

dimension cases, results are compared with that of Lim and Isa (2014). As seen, for basic 

functions except 𝑓7, the proposed algorithm performs best among the 3 algorithms. The 

proposed algorithm shows mixed performance (better for the functions 𝑓12 − 𝑓14, 𝑓17, 𝑓19 

and 𝑓24 but worse for other functions) for the more complex problems. However, the 

overall performance is degraded due to increased dimension.      

Table 3.5: Numerical results for different functions for dimension 50 

 

Function QPSO Best found results Proposed QPSO 

Mean Std Mean Std Mean Std 

𝑓1 2.34e-54 1.05e-53 0 0 0 0 

𝑓2 71.9562 42.0583 4.22e01 2.39-01 39.4252 0.6480 

𝑓3 35.8589 5.4041 0 0 0 0 

𝑓4 54.4401 11.9407 0 0 0 0 

𝑓5 73.4037 50.5503 0 0 0 0 

𝑓6 0.0025 0.0044 0 0 0 0 

𝑓7 2.82e-14 6.70e-15 0 0 4.44e-16 0 

𝑓8 15.2902 1.5363 - - 0 0 

𝑓9 2.55e-06 7.94e-06 0 0 0 0 

𝑓10 1.04e-13 2.57e-14 5.68e-14 0 0.0079 0.0017 

𝑓11 160.3748 80.3082 - - 351.7737 88.3264 

𝑓12 0 0 1.62e06 7.45e05 0 0 

𝑓13 12917.1865 3916.1453 - - 10187.7415 2355.2127 

𝑓14 7700.4212 1308.0993 - - 5307.2841 716.7731 

𝑓15 81.7782 44.9233 - - 152.8812 137.0062 

𝑓16 4.37e-03 0.0102 4.96e-03 7.37e-03 0.9675 0.1036 

𝑓17 21.1472 0.0273 - - 21.1280 0.0261 

𝑓18 46.1662 8.1667 1.75e-07 5.88e-08 35.7007 8.1550 
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Function QPSO Best found results Proposed QPSO 

Mean Std Mean Std Mean Std 

𝑓19 99.4096 32.3581 - - 89.2391 40.1354 

𝑓20 26.6565 3.6851 - - 44.8142 9.9422 

𝑓21 38860.1489 23254.1061 - - 46930.9206 24413.3730 

𝑓22 5.3212 0.8404 1.15e00 4.49e-01 7.6654 2.7459 

𝑓23 21.0124 0.6774 - - 22.1908 0.3805 

𝑓24 302.7078 103.2192 - - 276.6212 75.9773 

 

3.7 PRESSURE VESSEL DESIGN – A MIXED INTEGER OPTIMIZATION PROBLEM 

Pressure vessels usually hold gases or liquids at higher than the ambient pressure. A 

cylindrical pressure vessel with hemispherical caps at both ends is used as an engineering 

design and optimization problem. The objective of this problem is to minimize the total 

cost which includes welding cost, material cost and forming cost of the pressure vessel. 

There are four design variables: the shell thickness (𝑇𝑠), the thickness of the head (𝑇ℎ), 

the inner radius (𝑅), and the length of the cylindrical section (𝐿). Both thicknesses (𝑇𝑠 

and 𝑇ℎ) can have only integer multiples of 0.0625 in., in accordance with the available 

thickness of rolled steel plates while 𝑅 and 𝐿 are continuous. 

Being a well-known benchmark, the pressure vessel design problem is used extensively for 

validating optimization algorithms and details can be found in Yang et al. (2013) and the 

references therein. The optimization problem can be expressed as follows: 

Minimize: 𝑓(𝑇𝑠, 𝑇ℎ, 𝑅, 𝐿) = 0.6224𝑇𝑠𝑅𝐿 + 1.7781𝑇ℎ𝑅2 + 3.1661𝑇𝑠
2𝐿 + 19.84𝑇𝑠

2𝑅  

Subject to (for minimum volume of 750 ft3): 

𝑔1 = −𝑇𝑠 + 0.0193𝑅 ≤ 0 
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𝑔2 = −𝑇ℎ + 0.0095𝑅 ≤ 0 

𝑔3 = −𝜋𝑅2𝐿 −
4

3
𝜋𝑅3 + 750 × 11728 ≤ 0 

𝑔4 = 𝐿 − 240 ≤ 0 

Where, 1 × 0.0625 ≤ 𝑇𝑠, 𝑇ℎ ≤ 99 × 0.0625 and 10 ≤ 𝑅, 𝐿 ≤ 200 

To incorporate discrete variables in QPSO algorithm, a discrete variable is updated like a 

continuous variable. However, once a new value is obtained, the closest discrete value is 

used for the calculations of objective function and constraints. For handling of 

constraints, two different schemes were adopted. In the first method, an augmented 

objective function is used. 

    𝐹(𝑥) = 𝑓(𝑥) + 𝑟 ∑ max[0, 𝑔𝑘(𝑥)]𝑛𝑐𝑜𝑛
𝑘=1        (3.11) 

Where, 𝐹(𝑥) is the augmented objective function, 𝑓(𝑥) is the original objective function, 

𝑟 is the penalty parameter for the constraints and 𝑔𝑘 is the 𝑘-th constraint. In this study, 

𝑟 = 108 is used. 

In the second scheme, no penalty function is used but an objective function without 

constraint violation is preferred over the same with violated constraint(s). 

In Table 3.6, results for pressure vessel design are given for the proposed QPSO 

algorithm with 2 schemes of modification for discrete variables and constraint handling. 

Results from other algorithms, namely, PSO, QPSO and QPSO with chaotic mutation (C-

QPSO), are used from Coelho (2008) for comparison purpose. For this study, 20 particles 

and 40000 function evaluations are used for each run and 50 trial runs are carried out for 
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each proposed scheme. It should be mentioned that, Coelho (2008) used 1000 function 

evaluation for the study. For fair comparison, results from both proposed schemes using 

1000 function evaluations are provided in brackets. It is seen that, using both schemes, 

the obtained results are very close to the best result obtained by Hu et al. (2003) using 

200000 function evaluation as shown in Table 3.7. Though obtained best results are 

inferior to that of those obtained using C-QPSO algorithm when only 1000 function 

evaluations are used, others indicators, like worst, mean and standard deviations are far 

better for both schemes.  In Table 3.7, the best results obtained from our algorithm are 

compared with those of obtained by other researchers, like Coelho (2008); Hu et al. 

(2003). It can be concluded from the results that both schemes with proposed new QPSO 

algorithms are highly efficient to mixed discrete-continuous optimization problem, at 

least for pressure vessel design problem. Most importantly, the results are more 

consistent (smaller standard deviation) with the proposed algorithm. However, scheme 2 

performs better if the number of function evaluations is smaller.   

  

Table 3.6: Result of pressure vessel design problems in 50 runs 

Algorithm Worst Best Mean Std 

PSO 37206.3491 8329.4908 20327.7221 5601.1564 

QPSO 34457.1969 6183.4325 11301.6617 6540.5048 

C-QPSO 48505.9499 6112.5619 12352.7764 7610.4237 

Proposed QPSO with scheme 

1 

7332.8415 

(7854.8346) 

6059.7143 

(6209.5090) 

6570.6340 

(7036.4172) 

375.4103 

(361.5791) 

Proposed QPSO with scheme 

2  

7332.8415 

(8471.6174) 

6059.7163 

(6171.5080) 

6479.3052 

(6759.0852) 

364.1335 

(372.8248) 
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Table 3.7: Comparison of results for the design of a pressure vessel 

Parameters Hu et al PSO QPSO CQPSO Scheme 1 Scheme 2 

Ts 0.8125 1.00 0.8125 0.8750 0.8125 0.8125 

Th 0.4375 0.6875 0.4375 0.4375 0.4375 0.4375 

R 42.0985 51.1288 51.1137 45.2802 42.0984 42.0984 

L 176.6366 117.7362 189.2375 141.4063 176.6366 176.6368 

g1 0.00 -1.32e-2 -1.9e-2 -1.09e-3 0.00 0.00 

g2 -0.0359 -1.99e-1 -4.53e-2 -5.55e-3 -0.0859 -0.0859 

g3 -5.82e-11 -2.31e5 -2.04e1 -3.70e3 -0.2640 -0.2640 

g4 -63.3634 -1.22e2 -5.08e1 -9.86e1 0.00 0.00 

f(x) 6059.1313 8329.4908 6183.4325 6112.5619 6059.7143 6059.7163 

 

3.8 CONCLUSIONS 

Modifications to the basic QPSO algorithm are proposed in terms of initialization, 

particle positioning, 𝛽-update and exploration enhancement. Initialization using low 

discrepancy number sequence using Sobol generator is proposed for more uniform 

distribution of the particles. Experimental design, like LHD or other low discrepancy 

numbers can be used instead. If the calculated new position crosses the given boundary, 

the usual practice of putting it on the boundary might result in wasted function 

evaluation. Therefore, reflected positioning is proposed for these particles. Contraction-

expansion coefficient (𝛽) plays a very crucial role for QPSO algorithm and controls the 

extent of randomness. In this study, it is considered as temperature and is allowed to 

decrease only when better solutions are not found for a few iterations, following 

simulated annealing method. However, once 𝛽 is reduced to a very low value, it loses 

exploration capability. Therefore, it is re-initialized to a higher value. To explore a new 

location, new points are generated using Stable distribution or Sobol sequence. 
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Numerical experiments are carried out to find the efficiency of the proposed algorithm 

using several standard test functions along with their shifted, rotated and hybrid 

composition versions of dimensions 10, 30 and 50, respectively.  Complexity of finding 

the global minimum in these test functions ranged from very simple to quite complex. 

Proposed modifications improve the performance of the basic algorithm in general but 

still suffer from curse of dimensionality. In many experiments, if the number of function 

evaluations is increased 10 times, the global optimum is found. Impact of threshold 

values to decrease 𝛽 and the choice of re-initialization using Sobol or Stable distribution 

are not carried out in this study and will be considered in the future. Modifications are 

proposed for discrete constrained optimization and a practical problem is solved. Results 

are compared with that of the published results. Proposed algorithm is observed to 

perform better in most occasions.  
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CHAPTER 4 PARAMETER ESTIMATION OF VIRUS TRANSPORT USING 

KRIGGING METHOD 

 

Simulation of virus transport process in groundwater is a valuable tool for prediction of 

movement and remediation of viruses in an aquifer. However, parameters of the 

governing equation of the virus transport process are to be estimated from the collected 

data of the observation wells. Being an inverse method, parameter estimation is a difficult 

problem and needs an optimization algorithm to find a proper solution. Moreover, in 

virus transport process in saturated porous media, the four parameters, namely, the linear 

distribution coefficient, the dispersion coefficient, the inactivation coefficients of aqueous 

and adsorbed viruses are known to be nonlinear and nonconvex and thus imposing more 

difficulties for estimation. Most importantly, almost all the optimization algorithms need 

a high number of simulation-runs that might be very expensive if a detailed model is used 

for forward simulation. As a remedy, a proxy model can be generated using the results 

from a limited number of expensive but detailed simulation-runs and the inexpensive 

proxy model is used for the optimization. In this paper, a kriging or Gaussian process 

(GP)-based proxy model is proposed to estimate the parameters of a virus transport 

process in saturated aquifer. The temporal vector data is converted to scalar objective 

function for the kriging model. The model is updated sequentially to improve the quality. 

The estimated parameters are comparable to that of other published results.  
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4.1 INTRODUCTION 

Groundwater contamination with colloids including virus and bacteria might pose a risk 

to public health where it is used as the source of water for consumption. The sources of 

the contamination include but are not limited to leakage from septic tanks, sanitary 

landfills, sewerage pipes, and wastewater disposal from industrial and agricultural 

practices. However, septic tanks are considered to be the main source of virus 

contamination, Robertson et al. (1991). Once the water contaminated with pathogens 

reaches the water table through the vadose zone, the migration of pathogens follows the 

groundwater flow. Usually, the groundwater is consumed without any treatment. 

Therefore, it is crucial to know the range and level of spreading of viruses for prevention 

and remediation to avoid health hazards. The spatial and temporal spread of a virus can 

be numerically simulated by solving proper governing equations.    

Virus transport in groundwater is a complex process and depends on various factors. For 

example, ionic strength and pH of soil water, physiochemical makeup of virion capsid 

(outer protective shell of virus), mineralogy of soil, composition and amount of organic 

matter in soil affects the sorption of virus while temperature, dissolved O2, and saturation 

levels play an important role on survival of viruses Yates et al. (1985), Yates & Jury 

(1988), Powelson et al. (1990), Powelson et al. (1991), Powelson & Gerba (1994). 

Electrostatic attraction and repulsion, van der Waals forces, covalent-ionic interactions, 

and hydrophobic effects play roles for sorption of viruses Yates & Jury (1988). For 

modeling, it is considered that the fate and transport of viruses in groundwater are 

governed by four main processes:  advection, hydrodynamic dispersion, inactivation 

processes, and adsorption by the solid matrix (Bhattacharjya et al. (2014). The first two 
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processes are related to the fluid flow through porous media while the last two processes 

are considered the most important processes controlling virus mobility directly related to 

the virus itself. Accordingly, several mathematical models have been proposed 

considering virus attachment onto the solid matrix and inactivation constants in solid and 

aqueous media respectively  Vilker et al. (1978),  Tim & Mostaghimi (1991), Powelson 

et al. (1993),  Redman et al. (2001), Yates & Yates  (1988), and Sim & Chrysikopoulos 

(2000).     

It is known that the pathogenic viruses might travel a large distance at field scale and  

detailed numerical simulation of virus transport would take a long time. On the other 

hand, the parameters of the processes must be estimated from the available data for 

predicting the fate and transport of viruses in an aquifer. Parameter estimation can be 

carried out using an inverse optimization model. In this approach, the difference between 

the virus concentration of observed and simulated cases are minimized using an 

optimization model. However, as reported in the literature, gradient-based optimization 

methods are not suitable for estimating all the parameters simultaneously of the virus 

transport process  Bhattacharjya et al. (2014), Ratha et al. (2009), Prasad et al. (2012). 

Moreover, local search methods, like simplex method, might fail as they cannot avoid 

local optima. As a result, as an efficient heuristic, genetic algorithm (GA) has been used 

to find the global near-optimal solution and further refined by simplex method to find the 

true parameters by Bhattacharjya et al. (2014). Unfortunately, heuristic optimization 

methods, including GA, typically require thousands of function evaluations. Therefore, 

objective function evaluation for optimization using straightforward field scale 

simulation might be computationally demanding and excessively time consuming; as 
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such, parameter estimation might not be feasible for such cases. In this chapter, a kriging 

or Gaussian process (GP)-based surrogate or proxy model is proposed to circumvent this 

problem. Our proposed method is tested for virus transport in one-dimensional, 

homogeneous and saturated porous media. The results from numerical models are used to 

create the proxy model and the light-weight proxy model is used for optimization. The 

developed method shows promising results to be used for field-scale parameter 

estimation for virus transport problems.         

4.2 GOVERNING EQUATION AND SIMULATION 

Virus transport in groundwater is based on advection-dispersion equation, with terms for 

retention in solid-water interface, and inactivation. The one-dimensional virus transport 

in homogeneous, saturated porous media with first order adsorption and inactivation can 

be written following Sim & Chrysikopoulos (1995): 

    
𝜕𝐶

𝜕𝑡
+

𝜌

𝜃

𝜕𝐶∗

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2 − 𝑉
𝜕𝐶

𝜕𝑥
− 𝜆𝐶 − 𝜆∗ 𝜌

𝜃
𝐶∗       (4.1) 

Where 𝐶 is the concentration of virus in aqueous phase [𝑀/𝐿3], 𝐶∗ is the concentration of 

virus adsorbed in solid matrix [𝑀/𝑀], 𝐷 is the hydrodynamic dispersion coefficient 

[𝐿2/𝑇], 𝑉 is the average interstitial velocity [𝐿/𝑇], 𝜌 is the bulk density of the solid 

matrix [𝑀/𝐿3], 𝜆 is the inactivation constant of suspended viruses [𝑇−1], 𝜆∗ is the 

inactivation constant of adsorbed viruses [𝑇−1], 𝜃 is the porosity of the soil media 

[𝐿3/𝐿3], and 𝑡 is time [𝑇]. 
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Assuming equilibrium adsorption process, the solid phase concentration 𝐶∗ is linearly 

proportional to the equilibrium liquid phase concentration 𝐶, i.e., 𝐶∗ = 𝑘𝑑𝐶, where, 𝑘𝑑 is 

the linear distribution coefficient. Then the virus transport equation reduces to, 

   𝑅
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
− 𝑉

𝜕𝐶

𝜕𝑥
− 𝜆𝐶 − 𝜆∗ 𝜌𝑘𝑑

𝜃
𝐶       (4.2) 

Where 𝑅 = 1 +
𝜌𝑘𝑑

𝜃
 is the retardation coefficient. 

Initial virus concentration is assumed to be zero, i.e.,  

   𝐶(𝑥, 0) = 0  

At the upstream boundary, constant concentration is assumed which implies, 

   𝐶(0, 𝑡) = 𝐶0  

Where, 𝐶0= concentration at source. 

The downstream boundary condition is  

    
𝜕𝐶(∞,𝑡)

𝜕𝑥
= 0  

That preserves concentration continuity for a semi-infinite system. 

The MATLAB partial differential equation (PDE) solver is used to solve 1-dimensional 

initial-boundary value problems in this study. The governing equation to be solved by the 

MATLAB PDE solver has to be written in the standard form specified in The MathWorks 

Inc. (2014). Comparing the standard form required by Matlab and the virus transport 
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equation, the following equations are obtained to solve the initial-boundary value 

problem. 

   𝑐 (𝑥, 𝑡, 𝑢,
𝜕𝑢

𝜕𝑥
) = 𝑅  

   𝑓 (𝑥, 𝑡, 𝑢,
𝜕𝑢

𝜕𝑥
) = 𝐷

𝜕𝐶

𝜕𝑥
         (4.3) 

   𝑠 (𝑥, 𝑡, 𝑢,
𝜕𝑢

𝜕𝑥
) = −𝑣

𝜕𝐶

𝜕𝑥
− 𝜆𝐶 − 𝜆∗ 𝜌

𝜃
𝐶∗  

   𝑚 = 0  

4.2.1 Kriging / Gaussian Process (GP) Methodology 

In kriging/GP metamodeling, the simulation output is considered as a random 

process 𝑍(𝒙), where 𝒙 = (𝑥1, ⋯ , 𝑥𝑝)
𝑇
 is a 𝑝-dimensional input vector for the simulation.  

Suppose the simulation model is run for 𝑚 combinations of the input and gives the 

outputs of vector 𝒚 = (𝑦1, ⋯ , 𝑦𝑚)𝑇. Like most authors in simulation, ordinary kriging is 

used in this study as shown in Equation 4.4. 

   𝑌(𝑥) = 𝜇 + 𝑍(𝑥)         (4.4) 

Where, 𝜇 represents unknown constant trend or mean output, also known as large scale 

variation and  𝑍(∙) is a zero-mean stationary Gaussian process. Being stationary, 𝑍(∙) has 

an unknown but constant variance 𝜎𝑧
2 and its covariance 𝜎𝑖𝑗 (𝑖, 𝑗 = 1, ⋯ , 𝑚) between the 

outputs of the input combinations 𝒙𝑖 and 𝒙𝑗 are solely determined by the distance 

between these 𝑝-dimensional points. The elements of the resulting covariance matrix are 

considered as the products of the 𝑘 individual correlation functions. For example, a 
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Gaussian correlation function implies the elements of the following correlation matrix 

where 𝜎𝑖𝑗 = 𝜎𝑧
2𝑅𝑖𝑗 and, 

   𝑅𝑖𝑗 = 𝜎𝑧
2𝑒𝑥𝑝 (− ∑ 𝜃𝑘(𝑥𝑖𝑘 − 𝑥𝑗𝑘)

2𝑝
𝑘=1 ) = 𝜎𝑧

2 ∏ 𝑒𝑥𝑝 |−𝜃𝑘(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

|𝑝
𝑘=1   (4.5) 

Where, 𝜃𝑘 ≥ 0 measure the importance or sensitivity of the 𝑘th input dimension; 𝑥𝑘𝑖 is 

the 𝑖th entry of the 𝑘th input and |𝑥𝑘𝑖 − 𝑥𝑘𝑗| is the distance between the 𝑖th and 𝑗th entry 

at 𝑘th dimension. The symmetric and positive-definite 𝑚 × 𝑚 covariance matrix 𝚺 has 

entries from covariances 𝜎𝑖𝑗 and is related to the correlation matrix 𝑹 as 𝚺 = 𝜎𝑧
2𝑹. It 

should be noted that for any 𝜃𝑘 → ∞ the correlation reduces to zero implying the outputs 

at locations 𝑖 and 𝑗 are independent. On the other hand, if  𝜃𝑘 = 0 then changes in input 𝑘 

has no effect on the correlation. These two extreme values result in a singular matrix due 

to identical columns as mentioned in Kleijnen and Mehdad (2014). 

Although kriging predictors assumes known parameters of the model, in reality, mean and 

covariance structure are estimated from the known/given data. Considering Gaussian 

process (GP), the density function 𝑓 of output 𝒚 is expressed as multivariate normal: 

   𝑓(𝒚) =
1

(2𝜋)
𝑚
2 (|Σ|)

1
2

exp [
1

2
(𝒚 − 𝜇𝟏)𝑇𝚺−1(𝒚 − 𝜇𝟏)]     (4.6) 

             =
1

(2𝜋𝜎𝑧
2)

𝑚
2 (|R|)

1
2

exp [
1

2𝜎𝑧
2 (𝒚 − 𝜇𝟏)𝑇𝐑−1(𝒚 − 𝜇𝟏)]  

Where, |Σ|(|R|) denotes the determinant of 𝚺(𝑹) and 𝟏 denotes the 𝑚-dimensional 

vector of ones. 
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Once a particular correlation model is selected, the parameters (𝜃  in a Gaussian 

correlation model, for example) are estimated using maximum likelihood estimation 

(MLE) method following Santner (2003). According to Cressie (1993) the likelihood 

function for the deterministic kriging model is: 

   𝑙(𝜃) =
𝑚

2
ln 𝜎𝑧

2 +
1

2
ln|𝑹| +

1

2

(𝒚−𝜇𝟏)𝑇𝐑−1(𝒚−𝜇𝟏)

𝜎𝑧
2        (4.7) 

Removing the constant term and following Forrester and Keane (2009), the concentrated 

log-likelihood function that is to be minimized can be written as: 

   min
𝜃̂

[𝑚 ln 𝜎𝑧
2̂ + ln|𝑹̂|]        (4.8) 

The likelihood function is minimized using the following steps: 

1. Initialize: select preliminary values of 𝜃 (𝜃1̂, ⋯ , 𝜃𝑝̂) and 

calculate 𝐑̂ accordingly 

2. Compute GLS estimation of mean using  

                     𝜇̂ =
𝟏𝑇𝑹̂−1𝒚

𝟏𝑇𝑹̂−1𝟏
              (4.9) 

3. Substitute estimated mean and correlation for variance 

estimate: 

                           𝜎𝑧
2(𝐱) =

(𝒚−𝜇̂𝟏)𝑇𝐑̂−1(𝒚−𝜇̂𝟏)

𝑚
      (4.10) 

   Note that, for calculation of 𝜎𝑧
2, unlike classic unbiased 

estimator 𝑚 is used instead of  𝑚 − 1 at the denominator. 

4. Solve the minimization problem using Equation 4.7 

5. Use the optimized 𝜃 values to calculate mean and variance 

using Equations 4.9 & 4.10 in steps 2 and 3, 

respectively. 
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Minimization problem of likelihood function in step 4 is a difficult task as it is non-

convex and multimodal in nature. The estimated kriging parameters are used for 

prediction and variance calculation of the predicted value. 

In Ordinary Kriging (OK) methodology, the predicted response 𝑦̂0 at point 𝒙0 can be 

calculated using best linear unbiased predictor (BLUP) in terms of mean squared 

prediction error (MSPE), 

   𝑦̂0 = 𝜇̂ + 𝒓𝑇𝑹−1(𝒚 − 𝟏𝜇̂) (4.11) 

         = 𝜇̂ + 𝒄𝟎
𝑇𝚺−1(𝒚 − 𝟏𝜇̂)  

Where, 𝜇̂ is the generalized least square estimator of the mean 𝜇 shown in Equation 4.9, 

𝒓(𝒄𝟎) is the vector of correlations (covariance) between the outputs at new and the old 𝑚 

locations, and (𝒚 − 𝟏𝜇̂) is the vector of residuals. If one of the known points is used for 

prediction, then the predictor 𝑦𝑖̂ equals the observed output 𝑦𝑖, which implies that Kriging 

is an exact interpolator.  

One of the key benefits of kriging is its ability to provide an estimated error along with 

the prediction. The estimated MSPE of the kriging predictor is calculated based on 

Forrester and  Keane (2009); Kleijnen and  Mehdad (2014). 

   𝑀𝑆𝑃𝐸̂ = 𝜎𝑧
2̂ + (𝟏𝑇𝚺̂−1𝒄̂0)

𝑇
(𝟏𝑇𝚺̂−1𝟏)

−1
(𝟏𝑇𝚺̂−1𝒄̂0) − (𝒄̂0

𝑇𝚺̂−1𝒄̂0) (4.12) 

               = 𝜎𝑧
2̂ [1 − 𝒓̂𝑇𝑹̂−1𝒓̂ +

1−𝟏𝑇𝑹̂−1𝒓̂

𝟏𝑇𝑹̂−1𝟏
] 
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4.3 SEQUENTIAL DESIGN 

Initial experiments are carried out using DoE as mentioned in Chapter 2. However, the 

main objective of DoE is to capture the underlying process as uniformly as possible. 

Therefore, many interesting features of the problems are not properly addressed as the 

response is not known a priori for DoE. However, once the experiments/simulations are 

carried out according to the DoE, the underlying behavior is known better and the 

interesting feature space in explored and/or exploited according to the objective. In 

Section 4.3.1, the mechanisms of adding new experimental points in the design are 

explained.     

4.3.1 Infill Criteria for Sequential Design: 

Surrogates are used in place of detailed simulation as the latter is expensive and should 

be used as little as possible. Therefore, an initial surrogate is made based on the data 

available and more experimental points are added sequentially after judicious selection 

using the surrogate model. These new experimental points are known as infill points. A 

simulation run is called using the infill data and the surrogate model is updated 

accordingly. Associated data, like the correlation function parameters, is updated as well. 

This process is continued until the stopping criterion is met, for example, MPSE is less 

than a threshold value. Therefore, optimization and search for a new design point goes 

hand in hand. Actually, success or failure of surrogate-based optimization rests on the 

correct choice of model and infill criteria as mentioned by Forrester and Keane (2009). 

Optimization using surrogate model and updating the model sequentially in fact falls 

under Bayesian optimization approach and can be described by the following algorithm. 
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1. For 𝑡 = 1, 2, ⋯ Do   

2. Find 𝒙𝑡 from the posterior (surrogate model) that 

maximizes the utility function 𝑢:max
𝑥

𝑢(𝒙|𝐷1:𝑡−1).  

3. Sample the objective function: 𝑦𝑡 = 𝑓(𝒙𝒕) + 𝜺𝒕 

4. Augment the data, 𝐷1:𝑡 = {𝐷1:𝑡−1, (𝑥𝑡, 𝑦𝑡)} and update the model 

5. End For 

The utility function in step 2 is also known as acquisition function, infill criteria or figure 

of merit in the literature. Each infill criterion combines exploration (high-variance 

regions) and exploitation (high-mean regions). Several infill criteria for sequential 

surrogate improvement are proposed in literature and expected improvement (EI) is one 

of the most efficient methods. In this study, EI is used to verify the efficacy of parameter 

estimation of virus transport problems using kriging surrogate models.  

EI is a popular infill criteria and has been shown to be efficient if the initial design is not 

too sparse or deceptive, Forrester and Jones (2008). However, EI function is often 

multimodal and difficult to maximize, Franey et al. (2011). 

Let the best function evaluated so far be 𝑦𝑚𝑖𝑛. The response of the function is considered 

as a realization of Gaussian random variable 𝑌(𝒙) with variance 𝑠2(𝒙) 

implying  𝑦(𝑥)~𝒩(𝑦̂(𝒙), 𝑠2(𝒙)). The improvement over the current best point is defined 

as, 

   𝐼(𝒙) = max{0, 𝑦𝑚𝑖𝑛 −  𝑦(𝒙)}       (4.13) 

 Using kriging to predict 𝑦̂ (estimated response) and 𝑠̂ (estimated mean prediction error) 

the expected improvement at point 𝒙 is defined as 
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   𝐸[𝐼(𝒙)] = {
(𝑦𝑚𝑖𝑛 − 𝑦̂(𝑥))Φ(𝑢) + 𝑠̂(𝒙)𝜙(𝑢)      𝑖𝑓 𝑠̂ > 0 
0                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (4.14) 

Where, Φ(∙) and 𝜙(∙) are cumulative distribution function (cdf) and probability density 

function (pdf) of standard normal distribution, respectively and 

   𝑢 =
𝑦𝑚𝑖𝑛−𝑦̂(𝑥)

𝑠̂(𝑥)
          (4.15) 

EI criterion exhibits balance between ‘local’ and ‘global’ search. The first term in EI 

equation supports local search around the current best (exploitation) while the second 

term emphasizes the regions with greater uncertainty or the unexplored regions and thus 

the global search (exploration). 

4.4 ESTIMATION OF PARAMETERS 

The parameters of the virus transport process can be estimated using an inverse 

technique, where a forward simulation model that solves the governing equation of virus 

transport process in groundwater is incorporated with an optimization model.  In 

simulation-optimization technique, the optimization model calls the simulation model 

when it requires any information from the simulation model and has been successfully 

applied to large-scale groundwater management models as described in Finney et al. 

(1992),  Emch and Yeh (1998),  and Bhattacharjya and Datta (2005). The simulation 

model calculates virus concentration using different transport parameters while the 

optimization model minimizes the difference between the simulated and observed virus 

concentration at given observation locations. The optimization formulation may be 

written as 
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   min 𝑓(𝑘𝑑 , 𝐷, 𝜆, 𝜆∗) = ∑ ∑ (𝐶𝑜𝑖𝑗 − 𝐶𝑠𝑖𝑗)
2𝑇

𝑗=1
𝑁
𝑖=1      (4.16) 

Subject to the following constraints,  

𝑘𝑑
𝑚𝑖𝑛 ≤ 𝑘𝑑 ≤ 𝑘𝑑

𝑚𝑎𝑥 

𝐷𝑚𝑖𝑛 ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥 

𝜆𝑚𝑖𝑛 ≤ 𝜆 ≤ 𝜆𝑚𝑎𝑥 

𝜆∗𝑚𝑖𝑛 ≤ 𝜆∗ ≤ 𝜆∗𝑚𝑎𝑥 

Where, 𝐶𝑜𝑖𝑗 and 𝐶𝑠𝑖𝑗 are the observed and simulated virus concentration at 𝑖th location 

and 𝑗th time, respectively and {𝑘𝑑 , 𝐷, 𝜆, 𝜆∗} is the parameter vector with respective lower 

and upper bounds represented as constraints.  

However, as mentioned before, calling the expensive simulation module too many times 

for optimization might not be a feasible task. Therefore, a kriging based proxy model is 

created using the results from limited number of simulation runs. Design of experiment 

(DoE) methodology is applied to the parameter vectors considering their limits and 

number of simulation budget. A proxy model is created based on the available simulation 

data. However, kriging-based proxy models deal with scalar output while the virus 

transport simulation produces vector(s) of temporal output. The number of such vectors 

depends on the number of observation locations and the length of each vector depends on 

the number of temporal steps taken for each observation. Therefore, the vector(s) of 

output is(are) converted to a scalar by aggregating the error using different distance 

metrics, namely, Manhattan distance or ℓ1 norm, Euclidean distance or  ℓ2 norm, 

Chebyshev distance or infinity norm and Hausdorff distance. Eventually, the error 
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surface is created against the parameters of interest and the above optimization problem 

in Equation 4.16 is converted to find the minimum error in the fitted kriging model.   

4.5 NUMERICAL EXPERIMENTS & RESULTS  

The parameter estimation procedure discussed in Section 4.4 is carried out in this section. 

First, the simulator for virus transport in groundwater is validated in Section 4.5.1 

followed by the results of the estimated parameters in Section 4.5.2. 

4.5.1 Validation of Simulation Model 

The Matlab PDE solver is used to simulate the virus transport process in a saturated, 

homogeneous aquifer. If the inactivation constants are ignored in Equation 4.2, the 

governing equation for virus transport in groundwater, the resulting equation becomes the 

governing equation for chemical transport with advection, dispersion and retardation with 

available analytic solution for the later (van Genuchten & Alves, 1982). For the following 

governing equation and related initial-boundary conditions  

𝑅
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
− 𝑉

𝜕𝐶

𝜕𝑥
 

𝐶(𝑥, 0) = 0, 𝐶(0, 𝑡) = 𝐶0  0 < 𝑡 ≤ 𝑇,
𝜕𝐶(𝐿, 𝑡)

𝜕𝑥
= 0 

The analytic solution is given by van Genuchten and Alves (1982, p. 12), 
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𝑐(𝑥, 𝑡) =
𝐶0

2
[erfc (

𝑅𝑥 − 𝑉𝑡

2√𝐷𝑅𝑡
) + exp (

𝑉𝑥

𝐷
) erfc (

𝑅𝑥 + 𝑉𝑡

2√𝐷𝑅𝑡
)

+ [2 +
𝑉(2𝐿 − 𝑥)

𝐷
+

𝑉2𝑡

𝐷𝑅
] exp (

𝑉𝐿

𝐷
)] erfc (

𝑅(2𝐿 − 𝑥) + 𝑉𝑡

2√𝐷𝑅𝑡
)

− 2 (
𝑉2𝑡

𝜋𝐷𝑅
)

1
2

exp [
𝑉𝐿

𝐷
−

𝑅

4𝐷𝑡
(2𝐿 − 𝑥 +

𝑉𝑡

𝑅
)

2

] 

The parameters used for the numerical simulation are flow velocity of 34 cm/day, density 

of soil 1.1 g/cm3, length of aquifer 120 cm, 𝑘𝑑 = 0.02 ml/gm, hydrodynamic dispersion 

coefficient 34 𝑚2/𝑠 and porosity of 0.4. The inactivation coefficients are set to zero in 

order to compare the results with that of the analytic solution found in van Genuchten and 

Alves (1982). In Figure 4.1, both the simulation results and analytic solutions for virus 

concentration profiles at times 2 days and 2.5 days are plotted along the aquifer length. 

From the figure, it is evident that the results obtained from the numerical simulation are 

in good agreement with that of the analytic solutions. Moreover, the concentration profile 

of virus after 2 and 2.5 days are obtained numerically considering inactivation 

coefficients and plotted in Figure 4.2. In this case the value of both 𝜆 and 𝜆∗ are set to 

0.58/day. The results are intuitive. Therefore, the numerical model developed with 

Matlab PDE solver is capable of simulating the virus transport process in an aquifer. 
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Figure 4.1: Comparison of analytical and numerical solution of 1d virus transport equation after 2 

and 2.5 days 
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Figure 4.2: Virus concentration profiles considering inactivation constants 𝜆 = 𝜆∗ = 0.58/𝑑𝑎𝑦 

4.5.2 Parameter Estimation 

For parameter estimation, we consider the same model used for validation purpose with 

non-zero inactivation constants. However, we consider that observations are taken at  two 

discrete locations,  at 11 cm and 22 cm, respectively and the samples are taken at the 

discrete instances as well, namely  0.5, 1.0, 1.5, 2.0 and 2.5 days. The actual parameters 

used for the simulation to generate the observed data at the known locations and times 

are, 𝑘𝑑 = 0.02 𝑚𝑙/𝑔, 𝐷 = 34 𝑚2/𝑠, 𝜆 = 0.58/𝑑𝑎𝑦 and 𝜆∗ = 0.50/𝑑𝑎𝑦. It is to be noted 

that as reported by Ratha et al. (2009), four parameters cannot be estimated 

simultaneously using classical gradient-based method. 
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For this study, ooDACE package by Couckuyt et al. (2012, 2014) is used for ordinary 

kriging. Built-in default optimization modules are used for estimation of kriging meta-

model parameters. Initially, 20 design points are created following our DoE algorithm 

discussed in Chapter 2 and in Shamsuzzaman et al. (2015) considering the upper and 

lower limits of the parameters  as {0.04, 40, 0.6, 0.55} and {0.01, 30, 0.5, 0.4} for 

{𝑘𝑑 , 𝐷, 𝜆, 𝜆∗}, respectively.  

As mentioned before, the observed values are 2 vectors corresponding to 2 observation 

locations and the length of each vector depends on the sampling frequency. The 

simulation results are obtained at the same locations and times. The error is calculated by 

finding the difference between the observed and simulated values using four distance 

metrics, namely, ℓ1 (Manhattan distance), ℓ2 (Euclidean distance), ℓ∞ (Chebyshev 

distance) and ℓℎ (Hausdorff distance). The model is developed using resulting errors and 

the objective is to find the minimum error for the estimated parameters.  

The initial model is updated by adding a new point found using EI criterion and the 

process is repeated until 40 simulations (10x4) in total are carried out. Once the final 

model is achieved after the allotted simulation budget (40 runs), the optimal parameters 

are found finding the minimum from the resulting final GP model. However, being 

stochastic in nature, different runs might result in varying outcomes, if a fixed seed is not 

used for the random number generator.  

Therefore, 50 experiments were carried out for each distance metric and the error is 

calculated by subtracting the corresponding known parameter values. The root mean square 

errors for each parameter are shown in Table 4.1(corresponding standard deviations are 

shown in the brackets). It is evident that on average, the estimated parameter values are 
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satisfactorily identified using all 4 distance measures as the calculated error is not very 

large. For better understanding and fair comparison, the errors are normalized with their 

known values. The average normalized errors are shown in the last column in Table 4.1. 

Performance of ℓ2 and ℓ∞ norms are comparable and ℓ∞ norm performed best in terms of 

average normalized error. Although, numerical value of error due to  𝑘𝑑  terms looks small, 

it has the highest impact on calculated average normalized error followed by  𝜆∗. 

Table 4.1: Error statistics for estimated parameters using different distance measures 

Distance 

metric 

𝑘𝑑 (0.02) D (34.0) 𝜆 (0.58) 𝜆∗ (0.50) Average of 

normalized 

errors 

 ℓ1 0.004 

(0.002) 

2.771 

(1.602) 

0.01 

(0.004) 

0.043 

(0.018) 

0.096 

 ℓ2  0.003 

(0.126) 

0.8 

(0.024) 

0.007 

(0.002) 

0.062 

(0.024) 

0.072 

 ℓ∞  0.002 

(8.19e-4) 

0.839 

(0.339) 

0.003 

(0.002) 

0.064 

(0.06) 

0.066 

 ℓℎ 0.005 

(0.005) 

3.304 

(3.237) 

0.016 

(0.008) 

0.055 

(0.053) 

0.122 

 

In Figure 4.3, boxplots for the estimated parameters are shown for the same experiment. 

Estimated average values for different parameters using ℓ∞ norm are seen to be closest to 

the real values. The performance of estimation using ℓ2 norm is similar to that of using 

ℓ∞ norm. However, ℓ∞ norm shows greater spread (standard deviation), especially for 𝜆 

and 𝜆∗, compared to that of  ℓ2 norm.  
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In this virus transport experiment, only 5 temporal data for each location are used to 

calculate the errors using different distance metric. Sparse data might lose some 

important information relevant to parameter estimation. Therefore, we doubled the 

observation frequency and carried out the same experiment to test the impact of adding 

more observations on parameter estimation using GP-based metamodel.  

In Table 4.2, the calculated errors are shown and the boxplot for the estimated parameters 

are shown in Figure 4.4 after doubling observation frequency. It is evident from both the 

table and figure that increasing the observation frequency improves the quality of 

parameter estimation. 

 

Figure 4.3: Estimated parameters using low density simulation 
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Table 4.2: Estimated parameters when observation frequency doubled 

Distance 

metric 

𝑘𝑑 (0.02) D (34.0) 𝜆 (0.58) 𝜆∗ (0.50) Average of 

normalized 

errors 

ℓ1 0.001 

(0.0012) 

1.032 

(0.968) 

0.006 

(0.003) 

0.079 

(0.038) 

0.066 

ℓ2 0.002 

(8.68e-4) 

0.448 

(0.333) 

0.009 

(0.003) 

0.06 

(0.028) 

0.067 

ℓ∞ 0.5.6e-4 

(1.97e-4) 

0.569 

(0.176) 

0.002 

(0.002) 

0.057 

(0.052) 

0.041 

ℓℎ 0.005 

(0.005) 

3.26 

(3.242) 

0.019 

(0.015) 

0.051 

(0.049) 

0.121 

 

 

Figure 4.4: Boxplot of estimated parameters using different distance norms 
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To accommodate kriging meta-model, temporal information is lost due to aggregation of 

results (transforming from vector to scalar metric), therefore, sensitivity of the parameters 

over time horizon cannot be depicted using this model. To overcome this, either spatio-

temporal model should be developed or different kriging models for each time-step with 

fitted hyper-parameters for that instance should be considered. 

4.6 CONCLUSIONS  

Possibility and efficacy of parameters estimation of virus transport phenomenon in 

groundwater flow using GP models with basic kernels is carried out. Multiple temporal 

output from the developed model are converted to a scalar quantity as basic GP models 

are designed in this manner. Different distance metrics were tested. The Chebyshev 

distance measure (ℓ∞-norm) and the Euclidean distance measure (ℓ2-norm) provide 

balanced results considering all 4 parameters. The obtained results are encouraging and 

conform to the results published by other researchers. However, temporal information is 

lost and sensitivity of parameters over the time horizon cannot be done using this method. 

Modification to the basic GP structure is recommended for experiments those require 

vector output from GP models. 
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CHAPTER 5 COMPOSITE KERNEL GAUSSIAN PROCESS 

 

 In the previous chapter, we introduced kriging or GP for parameters estimation. In this 

chapter, GP models are elaborated further and model selection criteria is incorporated for 

efficient proxy design. It is well known that incorporating extra terms (e.g., more power 

in polynomial regression) in a model is always prone to overfitting, i.e., provides low 

error with the training data while giving high error in actual or test data. In this chapter, 

an appropriate kernel selection method is proposed to overcome this limitation thereby 

avoiding overfitting and being capable of capturing underlying signals. In general, it is 

very difficult, if not impossible to guess the underlying signal that truly describes the real 

data. Therefore, intuition about the underlying process, like smoothness, periodicity or 

other trends might help to start with a set of base processes and combining them, 

resulting in a composite process that is closer to the underlying signal. As a result, better 

models can be obtained for further analysis. 

5.1 INTRODUCTION 

A model is defined by its structure and associated parameters. Hence, model selection is 

related to finding the structure of the model and associated parameters given the training 

data. A GP is fully defined by the mean and covariance functions (Rasmussen & 

Williams, 2006). Therefore, selection of a GP model translates to finding the proper 

structure of mean and covariance functions and their associated hyper-parameters. 

Usually, a 0 (zero)-mean GPs are used without loss of generality and selecting a GP 

model becomes the problem of finding proper covariance function and its hyper-

parameters.   
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A simple model can explain relationships well only for small data sets while complex 

models can explain large data sets but somewhat poorly, so a proper model is selected that 

is neither too simple nor too complex (Rasmussen & Williams, 2006, p. 110). In the 

following section, GP models are elaborated further followed by the model selection 

procedure.  

5.2 GAUSSIAN PROCESS 

A stochastic process is generalization of probability distribution. A GP can be defined as a 

distribution over functions and inference taking place directly in the function-space 

(Rasmussen & Williams, 2006, p. 7). It is a collection of random variables,𝑥1, 𝑥2, ⋯, any 

number of which is Gaussian distributed. In GP, instead of the distribution of the random 

variables, the distribution over the function 𝑓(𝑥) is considered. The covariance matrix 

required for the multi-variate Gaussian is obtained through the kernel function, 𝑘 that must 

be symmetric and positive definite. The kernel function computes the covariance between 

two function values 𝑓(𝑥𝑖) and 𝑓(𝑥𝑗) by just looking at the corresponding inputs 𝑥𝑖 and 𝑥𝑗. 

    Σ𝑓𝑓
(𝑖,𝑗)

= 𝐶𝑜𝑣[𝑓(𝑥𝑖), 𝑓(𝑥𝑗)] = 𝑘(𝑥𝑖 , 𝑥𝑗)       (5.1) 

Using the definition of GP it can be written in the following form: 

   𝑓(𝑥)~𝒢𝒫(𝑚(𝑥), 𝑘(𝑥, 𝑥′))         (5.2) 

Where, mean 𝑚(𝑥) = 𝔼[𝑓(𝑥)] and covariance is defined in Equation 5.1.  

It implies that any collection of function values, evaluated at any points, is jointly Gaussian: 

   [𝑓(𝑥1), ⋯ , 𝑓(𝑥𝑁)]~𝒩(𝝁, 𝐾)        (5.3) 
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With mean vector 𝝁𝑖 = 𝔼[𝑓(𝑥𝑖)] and covariance 𝐾𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗). 

It is evident that GP can be fully specified using the mean function 𝑚 and the 

kernel/covariance function 𝑘. The kernel incorporates structural information of the latent 

function 𝑓, like, smoothness and differentiability. For example, the popular Gaussian or 

squared exponential (SE) covariance function,  

   𝑘𝐺𝑎𝑢𝑠𝑠(𝑥𝑖 , 𝑥𝑗) = 𝜃1
2𝑒

−
1

2

(𝑥𝑖−𝑥𝑗)
𝑇

(𝑥𝑖−𝑥𝑗)

𝜃2
2

       (5.4) 

 𝜃1 defines the magnitude of the latent function and controls the variability from the mean 

while 𝜃2denotes length scale – that governs significant changes of the function due to 

change in length, i.e., 𝜃2 determines how wiggly the function is. The covariance function 

also express that the values at nearby locations are more correlated than the values at 

locations far away from each other. Interested readers can consult any topical book for GP, 

like Rasmussen & Williams (2006). 

The kernel trick in Equation 5.1 yields predictive distribution resulting GP regression as 

Bayesian inference problem. If the training data 𝓓(𝑿, 𝒚) is available, the prior is a GP 

𝒢𝒫(𝑚, 𝑘) with mean 𝑚 and kernel 𝑘. The posterior is also a GP and can be obtained using 

Bayes’ theorem. 

   𝒢𝒫(𝑚𝑝𝑜𝑠𝑡, 𝑘𝑝𝑜𝑠𝑡) = 𝑝(𝑓|𝑿, 𝒚) =
𝑝(𝒚|𝑓, 𝑿)𝑝(𝑓)

𝑝(𝑦|𝑿)
      (5.5) 
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Where the likelihood or noise model is 𝑝(𝒚|𝑓, 𝑿) = 𝒩(𝑓(𝑿), 𝜎𝜖
2𝑰),    𝜖~𝒩(0, 𝜎𝜖

2), the 

marginal likelihood or evidence is 𝑝(𝑦|𝑿) = ∫ 𝑝(𝒚|𝑓, 𝑿)𝑝(𝑓)𝑑𝑓. The predictive 

distribution of GP 𝑝(𝑓∗|𝑿, 𝒚, 𝒙∗) at test inputs 𝒙∗ yields: 

   𝑝(𝑓∗|𝑿, 𝒚, 𝑥∗) = 𝒩(𝔼[𝑓∗], 𝕍[𝑓∗])        (5.6) 

   𝔼[𝑓∗|𝑿, 𝒚, 𝒙∗] = 𝑚𝑝𝑜𝑠𝑡(𝑥∗) = 𝑚(𝑥∗) + 𝑘(𝑿, 𝑥∗)𝑇(𝑲 + 𝜎𝜖
2𝑰)−1(𝒚 − 𝑚(𝑥∗))  (5.7) 

   𝕍[𝑓∗|𝑿, 𝒚, 𝒙∗] = 𝑘𝑝𝑜𝑠𝑡(𝑥∗, 𝑥∗) = 𝑘(𝑥∗, 𝑥∗) − 𝑘(𝑿, 𝑥∗)𝑇(𝑲 + 𝜎𝜖
2𝑰)−𝟏(𝑘(𝑿, 𝑥∗)  (5.8) 

In Figure 5.1(a) different functions are sampled from 0 mean GP prior. The probability 

mass around the mean is shown shaded gray. The darker shade implies more probability of 

finding a sample and vice versa. The effect of adding known data points on posterior 

distributions reflected in Figures 5.1(b-c) for incorporating 1-3 data points respectively. As 

the data points are added, the uncertainties shrink around those points. The remaining 

uncertainty around the known data points is due to the noisy measurements.   

If the likelihood 𝑝(𝒚|𝒇) is not Gaussian, the predictive distribution cannot be obtained 

using an analytic form and a sampling method is used instead, like Monte Carlo method. 

However, Gaussian likelihood is considered in this study where analytic form is available 

and no approximation was considered Rasmussen & Williams(2006).  
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Figure 5-1: Sample functions from a) GP prior, b), c) and d) from posterior, given 1, 2 and 3 data 

points with an SE kernel. Probability mass around the mean is shown with gray shade and the data 

are presented by '+' symbol 

 

5.2.1 Model Selection 
 

In Chapter 4, the hyper-parameters of the GP model were selected by maximizing the 

marginal likelihood or evidence using Equation 4.7. Logarithm of marginal likelihood 

incorporates both data fit and model complexity terms. While, the model fit term 

(
1

2
𝒚𝑇(𝐾𝜃 + 𝜎2𝐼)−𝟏𝒚) incorporates data, complexity penalty (

1

2
log |𝐾𝜃 + 𝜎2𝐼|) relies on the 

amount of data the model can accommodate. For example, complexity penalty depends on 

the length scale hyper-parameter of GP model with SE kernel. The trade-off between the 

data-fit and model complexity in GP is automatic if marginal likelihood is used Rasmussen 

& Williams (2006, p. 110). Therefore, optimizing the marginal likelihood for hyper-

(a) (b) 

(c) (d) 
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parameter estimation is used in most cases, including this study. It is to be noted that 

marginal likelihoods for hyper-parameters suffer from multiple local optima but do not 

pose devastating problems in practical applications Rasmussen & Williams (2006, p. 115).  

However, a GP model can use any valid kernel out of many available alternatives but not 

all the kernels capture the underlying process to be modeled. Therefore, there is a need to 

find a suitable kernel for modeling using GPs. As a result, researchers investigated different 

approaches to find proper kernels for different reasons, like, pattern discovery and 

extrapolation Wilson & Adams (2013), linear system identification Pillonetto & Nicolao 

(2011) .  

If several alternative models 𝑀𝑖 are available with corresponding mean function 𝑚𝑖 and 

kernel 𝑘𝑖, finding a model can be carried out using a similar approach such as hyper-

parameter selection. So, if a prior 𝑝(𝑀𝑖) is assigned to the 𝑖th model, the posterior model 

probability can be written as  

    𝑝(𝑀𝑖|𝑿, 𝒚) =
𝑝(𝑀𝑖)𝑝(𝑦|𝑋, 𝑀𝑖)

𝑝(𝑦|𝑋)
        (5.9) 

A model that maximizes the marginal likelihood can be selected as the preferred model. 

Various proposals for model selection from Bayesian-theoretic perspective are discussed 

in Kadane & Lazar (2004). In Section 5.4 cross-validation will be discussed as an 

alternative for model selection.  

Using multiple kernels instead of a single one is useful for support vector machines Gönen 

& Alpaydın (2011). Being a kernel method, GP is expected to behave in a similar manner. 

Linear combination of complex Gaussian kernels is more reasonable too Gönen & 
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Alpaydın (2011). In the following section, properties of kernels and different kinds of GP 

kernels are described.   

5.3 KERNELS FOR GP 

Covariance function or kernel 𝑘 plays a very important role in GP modeling. In fact, 

covariance functions control the power of the GP models. Kernel is a general term used for 

a function that maps any pair of inputs (could be vectors) into ℝ (a scalar quantity). The 

covariance function is a kernel that is used in GP models, therefore, covariance function 

and kernel are used interchangeably in this thesis. A necessary and sufficient condition for 

a valid covariance function is that the covariance matrix must be positive semi-definite 

Bishop (2006, p. 295). A new valid covariance function can be constructed using the 

existing kernels following the properties of covariance function as described in Bishop 

(2006, p. 296). Therefore, more complex kernels can be constructed using some available 

basis kernels. In Table 5.1, some commonly used basis kernels are mentioned mainly taken 

from Chapter 4 of the GP book and its companion gpml-package by Rasmussen & 

Williams (2006). 

Table 5.1: Example of some basis covariance functions 

Covariance function  Expression 

Constant 𝑎0 

Linear 𝑥. 𝑥′ 

Polynomial (𝑥. 𝑥′ + 𝑎0)𝑝 

𝛾-Exponential 
exp (− (

|𝑥 − 𝑥′|

𝑙
)

𝛾

)   

Matérn 21−𝜈

Γ(𝜈)
(

√2𝜈|𝑥 − 𝑥′|

𝑙
)

𝜈

𝐾𝜈 (
√2𝜈|𝑥 − 𝑥′|

𝑙
) 
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Covariance function  Expression 

Ornstein-Uhlenbeck 
exp (−

|𝑥 − 𝑥′|

𝑙
) 

Rational Quadratic 
(1 +

|𝑥 − 𝑥′|2

2𝛼𝑙2
)

−𝛼

 

Periodic 

exp (−
2 sin2 (

𝑥 − 𝑥′

2  )

𝑙2
) 

Neural network 
sin−1 (

2𝑥̅𝑇∑𝑥̅′

√(1 + 2𝑥̅𝑇∑𝑥̅)(1 + 2𝑥̅′𝑇∑𝑥̅′)
) 

 

5.4 CROSS-VALIDATION 

Cross-validation (CV) is one of the most commonly used methods for evaluating predictive 

performance of a model due to its simplicity and its (apparent) universality, Zhang & Yang 

(2015); Arlot & Celisse (2010). The main idea of cross-validation is to split the whole 

available dataset into training and validation sets where the former set is used to identify 

the hyper-parameters of the model and the later set is used for the calculation of error 

predicted by models developed using the training sample. As the training and testing 

samples are independent, CV can avoid overfitting.  A detailed discussion on CV can be 

found in Arlot & Celisse (2010). 

The generalization error of a GP model is defined as  

    𝜖 = 𝔼[(𝑓(𝑿) − 𝑓(𝑿))
2
        (5.10) 

Where, 𝑓 and 𝑓 are the original and predicted values using the GP model, respectively. 
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In case of small sample (which is the case of this study), it is difficult to estimate the 

generalization error. Therefore, out-of-sample cross validation is more appropriate for the 

assessment of a GP model. However, for a small number of experiments, it is difficult 

(unreasonable) to divide the data-set into training and test set. Therefore, only one sample 

is left for testing to measure the error resulting in leave-one-out cross-validation technique 

(LOOCV). To calculate LOOCV error, each data point is successively kept aside from the 

sample for validation. A model is developed using the rest of the training sample and 

prediction error is calculated using the left-out validation sample. The process is repeated 

for all the sample points and the generalization error is estimated by averaging leave-one-

out error. Therefore, if there are 𝑁 samples, Prediction error at 𝒙𝑖 is: 

    Δ𝑖 = 𝑓(𝒙𝑖) − 𝑓−𝑖(𝒙𝑖)         (5.11) 

Predicted residual sum of squares (PRESS) is a credible criterion based on the leave-one-

out prediction error and can be defined as Allen (1974): 

    𝑃𝑅𝐸𝑆𝑆 = ∑ Δ𝑖
2𝑁

𝑖=1          (5.12) 

Performance of CV for model selection is comparable to other information-criteria based 

methods. CV was found asymptotically equivalent to Akaike information criterion (AIC)  

Peng et al. (2013). CV on the original models behaves somewhere between AIC and 

Bayesian information criterion (BIC) and LOOCV typically performs optimally for the 

infinite-dimensional case Zhang & Yang (2015). 

However, PRESS in Equation 5.12 depends on the data size and therefore, comparing the 

performance of different models for varying data size is not possible. One can use root 

mean square PRESS and the corresponding statistics to overcome this problem. The leave-
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one-out prediction error statistics can be considered as an adjusted sum of square error and 

can be defined as:  

   𝜖𝐿𝑂𝑂𝐶𝑉 = √(
1

𝑛
𝑃𝑅𝐸𝑆𝑆) = √(

1

𝑛
∑ Δ𝑖

2) 𝑁
𝑖=1        (5.13) 

   𝑅𝐿𝑂𝑂𝐶𝑉
2 = 1 −

𝑃𝑅𝐸𝑆𝑆

∑(𝑓(𝒙𝑖)−𝑓̅−𝑖)2         (5.14) 

The 𝑓−̅𝑖 indicates the average of the  leave-one-out (LOO) response in Equation 5.14 and 

the denominator can be considered as PRESS of 𝑦’s mean value. The 𝑅𝐿𝑂𝑂𝐶𝑉
2 -statistics in 

Equation 5.14 adjusts the estimate of how much variation the model can explain. Therefore, 

the closer  𝑅𝐿𝑂𝑂𝐶𝑉
2  is to 1, the better the generalization capacity of the GP model. If the 

model is very poor, the 𝑅2-statistics can be negative. 

In this study, Equation 5.14 is used for selecting a suitable covariance function, basis or 

composite in nature. Please note that a number of covariance functions might have very 

similar performance. We selected the one with the least number of hyper-parameters. One 

can go for model averaging but this is beyond the scope of this thesis. In the following 

sections, an algorithm is proposed to find the optimal GP kernel based on Equation 

5.14followed by the applications of resulting GP models in Sections 5.6 and 5.7.  

5.5 A NEW METHOD FOR FINDING PROPER KERNEL IN GP 

Combining kernels in a different manner to find a new optimal kernel for GP is a 

combinatorial optimization problem. Combining more than one valid kernel in different 

ways can produce new valid kernels as mentioned in (Bishop, 2006, p. 296). For our 

proposed algorithm based on QPSO described in Chapter 3, three basic operations are 
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carried out, namely, add, multiply, and swap. Deleting a part from a composite kernel is 

like swapping operation with null. So, if 𝑘1, 𝑘2, 𝑘3 are valid kernels then a new valid kernel 

𝑘𝑛 can be obtained using 𝑘𝑛 ← 𝑘1 + 𝑘2 using add operator and   𝑘𝑛 ← 𝑘1 × 𝑘2 = 𝑘1𝑘2 

using multiply operator. However, from the properties of the kernels we know 

that (𝑘1 + 𝑘2)𝑘3 = 𝑘1𝑘3 + 𝑘2𝑘3. In the proposed algorithm, the composite kernels are 

always expressed in the later form or sum of product form of the basis kernels. Moreover, 

two kernels are considered the same if 𝑘1𝑘2 = 𝑘2𝑘1. The proposed algorithm is shown in 

Figure 5.2.  

5.6 CASE STUDY 1: REVISITING VIRUS TRANSPORT PROBLEM  

In the previous chapter parameters were estimated using sequential GP. However, the 

kernel was arbitrarily chosen, despite its promising result. Following the outline 

discussed in previous sections, the LOOCV errors and the corresponding 𝑅𝐿𝑂𝑂𝐶𝑉
2  values 

using Equations 5.13 and 5.14, respectively are calculated for the initial DoE data of 

virus transport problem. In Table 5.2, 𝜖𝐿𝑂𝑂𝐶𝑉 and  𝑅𝐿𝑂𝑂𝐶𝑉
2  values for different basis 

kernels are shown. Among the simple kernels considered, neural network (NN) kernel 

performs best. Surprisingly, performance of linear kernel is next to NN. Isotropic kernels 

in general could not capture the underlying process and should not be used as a kernel to 

model the GP proxy for virus transport problem at hand. 

Our next goal is to find the best GP kernels using our proposed algorithm. Our algorithm 

provided the composite kernel composed of multiplication of NN and Linear kernel as 

the best.  To verify the accuracy of our algorithm, performance of some of the composite 



 

98 

 

kernels were calculated and the results are shown in Table 5.3. It is clear from the results 

that composite kernels perform better, and our algorithm could find a better kernel for  

 

Figure 5.2: Flowchart to generate efficient composite kernel 

this particular problem. Some interesting observations can be drawn from the data shown 

in Table 5.3. For example, simple isotropic SE kernels were very poor performing but 

adding these kernels for each variable separately shows better performance. On the other 
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hand simple linear kernels performed better as shown in Table 5.2, but multiplication of 2 

linear kernels results in poor performance. This happens as the underlying processes have 

linear strong trends but higher order terms in the kernel affect the relation negatively. 

Performance of different composite kernels varies a lot and therefore a kernel of GP 

modeling should be selected judiciously.  

 

   Table 5.2: LOOCV error and related RLOOCV
2  values of different simple kernels for virus transport 

problem 

 

Kernel Name 𝜖𝐿𝑂𝑂𝐶𝑉 𝑅𝐿𝑂𝑂𝐶𝑉
2  

Isotropic SE 0.0011  −0.0283 

SE ARD 0.0006 0.3945 

Linear 0.0004 0.5949 

Isotropic Matern, 3 0.0009 0.1167 

Matren ARD, 5 0.0007 0.3247 

Isotropic RQ 0.0011 −0.0371 

Neural Net 0.0004 0.6630 

   

Table 5.3: LOOCV error and related 𝑅𝐿𝑂𝑂𝐶𝑉
2  values of different composite kernels for virus 

transport problem  

Composite Kernel Name 𝜖𝐿𝑂𝑂𝐶𝑉 (× 10−3) 𝑅𝐿𝑂𝑂𝐶𝑉
2  

SE ADD 0.6371 0.3967 

Linear × Linear 0.7785 0.2628 

Linear + SEard 0.4233 0.5991 

 Linear × SEard 0.6278 0.4055 

Linear + Mattern 5 0.4664 0.5583 

 Linear × Mattern5 0.7353 0.3037 

Linear + RQard 0.4554 0.5688 

Linear× RQard 0.7283 0.3103 

 Linear + NN 0.4682 0.5567 

Linear × NN 0.3354 0.6824 
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Following the kernel selection metric, a composite kernel based on multiplication of a 

linear kernel and a neural network kernel is used for parameter estmation of virus transport 

in groundwater flow. Other than replacing the kernel, the same procedure is used as in 

Chapter 4. However, this time the gpml toolbox is used (Rasmussen & Williams, 2006). In 

Table 5.4, the estimated parameters are shown. As expected, the quality of estimation 

improved both in terms of average value and spread (standard deviation) of the results.  In 

Table 5.4, estimated parameters are shown using the composite kernel (Linear × NN).  

Table 5.4: Estimated parameters using composite kernel 

 

  𝐤𝐝 (0.02) D (34.0) 𝛌 (0.58) 𝛌∗ (0.50) 

L1 norm 0.0199 

(0.0001) 

33.92 

(0.1182) 

0.5812 

(0.008) 

0.4701 

(0.0172) 

L2 norm  0.0198 

(0.0009) 

34.1692 

(0.1321) 

0.5798 

(0.0030) 

0.4933 

(0.0279) 

L inf 0.0197 

(0.0002) 

33.7591 

(0.157) 

0.5872 

(0.0021) 

0.4884 

(0.0601) 

Hausdorff 0.0191 

(0.0055) 

33.8152 

(1.4212) 

0.5897 

(0.0091) 

0.5103 

(0.0512) 

 

5.7 CASE STUDY 2: HISTORY MATCHING OF PUNQ-S3 

In this section, the porosity of layer 5 of PUNQ-S3 reservoir model is predicated using 

GP proxy model. Production forecast uncertainty quantification (PUNQ)-S3 model was 

developed from a real field data, extensively studied for reservoir engineering cases and 

is qualified as a small-size industrial reservoir engineering model (Department of Earth 

Science and Engineering, 2015). The model is obtained as Eclipse® datafile containing  

19 × 28 × 5 gridblocks, of which 1761 blocks are active from (Department of Earth 



 

101 

 

Science and Engineering, 2015). The obtained model is converted to Petrel® model and is 

shown in Figure 5.3.  

In this study, only the porosity of layer 5 is considered. Therefore, in our GP model about 

400 (exactly, 396 cells are defined and 136 cells are inactive) independent variables are 

considered. The porosity at the location of six wells are known. Rest of the 390 values are 

to be estimated through inference. Original porosity distribution at layer 5 is shown in 

Figure 5.4.  

   

 

Figure 5.3: PUNQ-S3 Model 
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Figure 5.4: Porosity distribution at layer 5 in PUNQ-S3 model 

 

The original porosity in layer 5 of the defined cells has the following statistics are: 

Minimum: 0.0108, Maximum: 0.2982, Mean: 0.1791, and Std.: 0.0857. 

The locations of 6 wells and the porosity at these locations are shown in Table 5.5. 

Table 5.5: Locations of wells and the porosity values at well-locations 

Location (grid) Location (m) Porosity 

I J K x y z 

17 11 5 2970 -3149 -2366.908 0.078950 

15 12 5 2610 -2969 -2361.656 0.096693 

9 17 5 1530 -2069 -2391.26 0.240232 

10 22 5 1710 -1169 -2407.046 0.286667 

17 22 5 2970 -1169 -2397.611 0.050042 

11 24 5 1890 -809 -2410.651 0.165366 

 

The corresponding statistics of the known porosity values are: 

 Minimum: 0.0500, Maximum: 0.2867, Mean: 0.1530, and Std: 0.0947 

Estimation of porosity is a two-stage process for this study. In the first phase of the 

estimation, known porosity values are used to build a GP model to populate the porosity 
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in rest of the gridcells. Therefore, estimated porosity values with associated uncertainty 

will be known before using any production data. The kernel based on Linearard + 

Matternard + Neural Network gives the best kind of result in terms of LOOCV using the 

known porosity values. The unknown porosities are predicted using the resulting GP 

model. We calculated the error due to estimation in the first stage and found that 

maximum prediction error occurs at (2, 6) gridcell. This make sense as we can see from 

Figure 5.2 that grid (2, 6) is one of the farthest grids from the wells. However, the error 

statistics (minimum: 0.0014, mean: 0.1068, standard deviation: 0.0846, maximum: 

0.4018) suggests that prediction using known porosities at well-locations alone is not 

sufficient for parameter estimation. Therefore, parameters (in this case, porosity) are to 

be conditioned on the available production data to predict it more reliably. However, in 

the latter case, the values predicted in stage 1 are used along with their associated 

variance. For example, at grid (2,6), the predicted mean porosity is 0.4191 with variance 

of 0.0011. So, different realization for simulation run will produce a porosity value for 

this particular grid is normally distributed with mean 0.4191 and standard deviation of 

0.0662.  

In the second phase, bottom-hole pressure, oil production rate and water cut of each well 

are considered as dynamic data. Dynamic data of one of the wells are shown in Figure 

5.4.  
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Figure 5.5: Dynamic production data for a typical well (PRO-4) showing water cut (WCT), gas-

oil ration (GOR), bottom-hole-pressure (BHP) and oil production rate (OPR). First 3 production 

data are used for history matching in this study 

 

For different porosity distribution, the error is calculated between the original production 

data and the simulated data. Forty simulation cases were considered for GP model 

development and same procedure is followed as described for other cases. 

 

After the second phase of experiment, the dynamic data are compared and is shown in 

Figure 5.5. 
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Figure 5.6: Comparison of dynamic data after history match 

 

It is evident from Figure 5.5 that the predicted dynamic data conform to that of the 

observed data. Therefore, resulting porosity distribution at layer 5 is accepted as the 

history matched or valid porosity with associated uncertainty.   

5.8 CASE STUDY 3: OPTIMAL WELL PLACEMENT AT NORTH TRIUMPH 

Determination of optimal locations for injection and production wells in petroleum 

reservoir has immense industrial interest as it has potentially high economic impact, see 

for instance Bangerth et al. (2006), Yetenet al (2003), Donget al (2011). For vertical 

wells, location of a well is determined by its (𝑥, 𝑦) coordinates alone. Fluid production 

from a reservoir can be determined by complex reservoir simulation that needs 

predefined well locations apart from settings of other parameters. In our case, the 

reservoir model is developed using Petrel® and the simulations are carried out using 
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Eclipse® reservoir simulator, both from Schlumberger®.  The objective for optimization 

could be the economic parameter net present value (NPV), cumulative oil/gas production, 

sweep efficiency or any other metric that represents the performance of a reservoir. In 

this case, we considered cumulative gas production from the North Triumph reservoir, 

discussed in the following sections. 

5.8.1 North Triumph Reservoir  

The North Triumph gas field is located in the Sable Island Delta, Nova Scotia, Canada. It 

was discovered in 1986 and developed by ExxonMobil. According to ExxonMobil 

(1999), the North Triumph reservoir is a rollover anticline that is bounded by major listric 

faults and divided by minor en echelon faults.  Closure to the north and west is provided 

by rollover into the listric normal fault.  Closure to the south and east is provided by 

cross-fault and/or fault smear.  Two minor en echelon growth faults partially dissect the 

reservoir. It is sealed on the top by Logan Canyon Formation shale.   

 In Figure 5.6, the contour map of the top of the Mississauga Formation, with reservoir 

extent and faults are shown. The highest elevation is at a depth of 3600 m below sea level 

in the east. The formation dips to the north, south and west.  The free water level is 

estimated to be 3771 meters below sea level. The field is extends over an area of 19 sq. 

kilometers.  
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Figure 5.7: Top of the Mississauga Formation of North Triumph (ExxonMobil, 1999) 

 

Very limited geophysical information is publicly available for the North Triumph Field. 

Two exploratory wells, B-52 and G-43 and two development wells NT-1, and NT-2 were 

drilled. The logs from the development wells are used to develop the reservoir simulation 

model. Based on the log data, 8 different layers were selected with the properties shown 

in Table 5.6. Initial PVT properties of gas and water are shown in Table 5.7. These data 

were available from Canada-Nova-Scotia Offshore Petroleum Board (CNSOPB) and 

personal contact with ExxonMobil. 
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Table 5.6: Summary of layer information of NT at development wells 

 

Layer/  

Well ID 
NT-1 NT-2 

 h 

(m) 

k 

(mD) 

𝝓 Sg h        

(m) 

k   

(mD) 

𝝓 Sg 

1 3.5 5 0.14 0.50 4.7 5 0.10 0.50 

2 3.0 0.1 0.01 0 3.3 0.1 0.01 0 

3 7.5 1 0.15 0.70 8.5 10 0.15 0.50 

4 2.0 0.1 0.01 0 1.9 0.1 0.01 0 

5 13 300 0.20 0.75 16.5 100 0.20 0.75 

6 14.5 100 0.15 0.70 16.0 50 0.15 0.60 

7 23 100 0.17 0.60 18.9 100 0.18 0.80 

8 3.5 1 0.18 0.55 3.8 10 0.15 0.20 

Mean NA 115 0.160 0.62 NA 61 0.158 0.60 

Abbreviations: h = layer thickness   NA = not applicable 

  k = permeability (horizontal)  Mean = thickness weighted arithmetic average 

   = porosity   Sg = gas saturation 

Based on the available data, the top contour map was digitized manually and a reservoir 

model was developed accordingly using Petrel® in Newman-Bennett et al. (2008). The 

resulting grid is composed of 101 × 54 × 8 cells and is shown in Figure 5.7 including the 

production wells. 

Table 5.7: Initial fluid properties of NT reservoir 

 

 

Well ID 

 

Formation 

Compressibility 

(kPa-1) 

 

Initial 

Gas 

Viscosity 

(𝝁Pa.s) 

Initial Gas 

FVF 

(m3/m3) 

 

Initial 

Water 

Viscosity 

(mPa.s) 

 

Water 

Compressibility 

(kPa-1) 

NT1 5.8176E-07 25.2416 3.8033E-03 0.22876 4.2535E-07 

NT2 5.9273E-07 24.7124 3.8306E-03 0.23186 4.1917E-07 
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Figure 5.8: The simulation grid for North Triumph gas reservoir 

 

5.8.2 Well Placement Using GP Model 

The X-coordinate of the modelled reservoir extends from -736609.05 to -726326.35 and 

the Y-coordinate from 4838629.59 to 4844163.64 in global coordinate system. Therefore, 

the location for each well requires 2 variables (𝑥, 𝑦) and must satisfy −736609.05 <

𝑥 < −726326.35 and 4838629.59 < y < 4844163.64, for X- and Y-coordinates, 

respectively to be within the reservoir. Moreover, the well should not be located at the 

faults. As 2 production wells are to be placed for North Triumph reservoir, 4 variables are 

to be identified in this problem. Roughly, as rule of thumb, 10 × 4 = 40 simulation runs 

are required for a proxy design. We started with 30 initial simulation runs for 10 years 

production and recorded cumulative gas production of the field. Considering the faults, 

the reservoir is divided into two parts both in X and Y direction, resulting in 4 quadrants. 

The first well is randomly chosen and the second well is placed randomly at any location 

in the remaining 3 quadrants, avoiding the same quadrant. Once the continuous location 



 

110 

 

values are selected, the closest (I, J) locations in Eclipse® data file is assigned for the 

wells, accordingly. If the simulation grid does not allow such well locations, a nearby 

grid is assigned. If that process does not allow the case to run successfully, a new set of 

random locations are chosen until the case can be run successfully. Again, a GP model is 

developed using the combination of a linear and a neural network kernels. The GP model 

is updated using EI in a similar manner, described in Section 5.6. 

This above process is repeated 10 times. Each time the porosity, permeability, initial water 

saturation values are reassigned using Petrel®’s built-in geostatistical module to capture 

the uncertainty of these variables. 

The error is calculated based on the distance between the calculated optimal wells’ 

locations using the GP proxy and actual wells’ locations. The statistics of the error for 10 

sets of experiment is given below for NT2: 

Table 5.8: Statistics of error for optimum well location using GP proxy in North Triumph reservoir 

 

Error  NT2 NT1 

RMS 327 250 

Maximum  830 690 

Minimum  50 45 

 

There are several reasons, why our method could not identify the exact or very close well 

locations. First, the available data was not sufficient to build a very accurate model. This 

is true for geological structure and rock properties (like, porosity, permeability, etc.), 

fluid properties and SCAL data. Moreover, while the well locations calculated using the 
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GP model is continuous, corresponding wells are assigned at the centre of a grid in 

Eclipse® data file and the grid size is ~100.45𝑚 × 99.75 𝑚  for this study. Therefore, 

800m represents roughly 8 grid-blocks. Considering the above conditions, we consider 

that the optimal location of wells found by the GP model is quite satisfactory. 

5.9 CONCLUSIONS 

Kernels or covariance functions in Gaussian process play the most important role. 

Efficiency of a GP model is highly dependent on the structure of a kernel. As new valid 

kernels can be generated from existing valid kernels through some algebraic operations, a 

new combinatorial algorithm is proposed using a swarm of basis kernels. The efficiency 

of the resulting kernel is measured using leave-one-out cross-validation. The operation is 

expensive but for the small number of simulation runs, the overall cost is justified. 

The algorithm was tested against the parameter estimation of groundwater virus transport 

problem discussed in Chapter 4, history matching of PUNQ-S3 oil reservoir and optimal 

well placement problem in North Triumph gas reservoir. In the first case, better results 

were obtained compared to the basic covariance function used in Chapter 4. In history 

matching, the predicted porosity of a layer were very close to the original and the 

simulated data matched with the historical production data closely. In the last case, 

different reservoir parameters were used to honor the uncertainty of the parameters. The 

optimized well locations were reasonably close to the real production wells in all cases, 

considering the model was developed using limited amount of available information 

about the reservoir. It proves the efficacy and robustness of GP meta-models.  
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CHAPTER 6 CONCLUSIONS  

 

In this research, steps were taken to develop efficient proxy models for porous media 

flow simulators which tend to be very expensive. Effective nearly orthogonal space 

filling design of experiment is proposed for the initial set of simulation. Appropriate 

kernel is identified for the GP modeling using the proposed algorithm that utilizes leave-

one-out cross-validation. As the number of simulation required is small, use of LOOCV 

is justified. In the case studies considered, neural network kernels showed the most 

promising results among the basis kernels. Following are the conclusions from this study.     

6.1 CONCLUSIONS 

 The distance correlation-based method to measure the performance of Design of 

Experiment is proposed along with different algorithms to generate efficient 

experimental designs. Several designs generated using the proposed algorithms 

are compared in terms of existing and proposed metrics. The performance of these 

designs are compared with that of the designs published in literature. The 

proposed methods are capable of generating nearly-orthogonal space-filling 

designs quickly.  Improved  results are obtained when the proposed design 

approach is applied to the ‘borhole’ model in comparison to a recent topical study.  

 Several modifications are proposed to the existing quantum-behaved particle 

swarm optimization (QPSO) algorithm. Performance of the proposed algorithm is 

compared with that of the other algorithms for different standard benchmark 

functions with 10, 30 and 50 dimensions. Modifications are proposed for discrete 



 

113 

 

value constrained optimization as well. The modified optimization algorithm is 

applied to pressure vessel design problem, a standard test problem for 

optimization, as well. Results from the benchmark functions and the test problem 

are promising and shows the efficacy of the proposed algorithm. 

 Simultaneous estimation of four parameters of the virus transport problem using 

Gaussian Process-based proxy models with squared exponential kernel is carried 

out succesfully using different distance metrics to convert several temporal 

vectors to a scalar quantity. Increasing the observation frequency improved the 

quality of the solutions of this inverse problem. 

 An algorithm is proposed to find the proper composite kernel for a GP model that 

can capture the underlying process more efficiently. Leave-one-out cross-

validation is used to compare the performance of different kernels (including the 

composite ones). The proposed method is successfully applied to three different 

problems. For parameter estimation of the virus transport problem, the estimated 

parameters are closer to the known values when compared with the GP method 

with a base kernel. Composite kernel GPs are also applied for the history 

matching problem of a standard oil reservoir and the placement of wells at 

optimal locations in a gas reservoir. Results from both studies are promising. As 

such, GP models can be used as effcient proxy when proper kernels are used.  
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6.2  FUTURE RESEARCH RECOMMENDATIONS 

The use of GP-based proxy models for several porous media flow problems show 

promising results in this thesis. In the future, the following research should be carried out 

to establish it as an efficient tool. 

 In this research, the proxy models have been created with the simulator 

output data. By nature, output generated from computer programs are 

noiseless. However, in general, obtained data from real problems are 

corrupted with noise. The governing equations for GP-model incorporate 

the noise term and the current research can be tested for noisy data easily. 

 So far, both inference and prediction are considered to be Gaussian. The 

GP model can be extended to incorporate other distributions as well. 

However, in such cases, analytic solutions might not be available and the 

approximation of the integrals in the governing equation should be carried 

out. 

 In this research, multiple temporal outputs are converted to a scalar 

quantity to honor a single output GP model. This can be extended to 

multiple output GP models by incorporating spatio-temporal kernels or 

convolution of kernels. 
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