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Abstract. An aerosol time-of-flight mass spectrometer
(ATOFMS) was deployed at a semi-rural site in southern
Ontario to characterize the size and chemical composition
of individual particles. Particle-type-based receptor mod-
elling of these data was used to investigate the determinants
of aerosol chemical composition in this region. Individual
particles were classified into particle-types and positive ma-
trix factorization (PMF) was applied to their temporal trends
to separate and cross-apportion particle-types to factors. The
extent of chemical processing for each factor was assessed by
evaluating the internal and external mixing state of the char-
acteristic particle-types. The nine factors identified helped
to elucidate the coupled interactions of these determinants.
Nitrate-laden dust was found to be the dominant type of lo-
cally emitted particles measured by ATOFMS. Several fac-
tors associated with aerosol transported to the site from in-
termediate local-to-regional distances were identified: the
Organic factor was associated with a combustion source to
the north-west; the ECOC Day factor was characterized by
nearby local-to-regional carbonaceous emissions transported
from the south-west during the daytime; and the Fireworks
factor consisted of pyrotechnic particles from the Detroit re-
gion following holiday fireworks displays. Regional aerosol
from farther emissions sources was reflected through three
factors: two Biomass Burning factors and a highly chemi-
cally processed Long Range Transport factor. The Biomass
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Burning factors were separated by PMF due to differences
in chemical processing which were in part elucidated by the
passage of two thunderstorm gust fronts with different air
mass histories. The remaining two factors, ECOC Night
and Nitrate Background, represented the night-time parti-
tioning of nitrate to pre-existing particles of different ori-
gins. The distinct meteorological conditions observed dur-
ing this month-long study in the summer of 2007 provided a
unique range of temporal variability, enabling the elucidation
of the determinants of aerosol chemical composition, includ-
ing source emissions, chemical processing, and transport, at
the Canada-US border. This paper presents the first study
to elucidate the coupled influences of these determinants on
temporal variability in aerosol chemical composition using
single particle-type-based receptor modelling.

1 Introduction

Ambient particulate matter (PM) has been implicated in car-
diopulmonary morbidity and decreased lung function (Dock-
ery et al., 1993; Pope and Dockery, 2006; Nel, 2005; Brook
et al., 2010), significant reduction in atmospheric visibil-
ity (Watson, 2002), and climate change (IPCC, 2007). Es-
tablishing direct links between these effects and emissions
sources has proven challenging because of the wide array
of source types and atmospheric processing mechanisms.
Source apportionment techniques attempt to bridge this gap
by assigning particles and/or particle components to specific
sources and processes via mathematical analysis of ambient
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data. Such models have proven to be useful tools for identify-
ing emissions sources and characterizing them according to
their temporal contributions and chemical profiles. Further,
source apportionment models may assess the determinants of
particulate matter composition and loading, namely source
emissions, chemical processing, and atmospheric transport.
Such information is crucial for policy-makers to identify and
ultimately control source emissions.

Classes of source apportionment models include both
chemical transport models (CTMs) and receptor models, dis-
cussed below. Chemical transport models, such as Environ-
ment Canada’s AURAMS model (A Unified Regional Air-
quality Modelling System) (Gong et al., 2006; Makar et al.,
2010), use emissions inventories that contain source profiles
and emissions trends to determine the chemical processing
and transport of emissions. However, their predictive power
with respect to air quality modelling and climate scenario
testing is limited by inaccuracies in the inventories, as well as
by mechanistic parameters. Receptor models provide a com-
plementary means of evaluating source characteristics and
other determinants influencing air quality at a given location
or receptor site. Receptor-only models such as the EPA’s UN-
MIX (Lewis et al., 2003) and positive matrix factorization or
PMF (Paatero and Tapper, 1994; Paatero, 1997), which in-
terpret field measurements through factor analysis methods,
have become popular because they do not require a-priori in-
formation on source profiles.

Traditionally, receptor modelling has been performed us-
ing long-term, low time-resolution data obtained from 24-h
integrated filters. However, low time-resolution data does not
allow the contributions of some factors affecting air quality
to be investigated because the characteristic time of these fea-
tures (e.g. fugitive emissions from local point sources, rapid
changes in meteorology, photochemistry) is shorter than the
time required to obtain a sufficient number of measurements
(Wexler and Johnston, 2008). Thus higher time-resolution
instrumentation is required to obtain a more accurate repre-
sentation of all determinants affecting air quality at a given
receptor site through receptor modelling.

Although many instruments are available to measure
aerosol composition with high time-resolution, online mass-
spectrometry techniques provide a breadth of chemical in-
formation in conjunction with high time-resolution that in-
creases factor identification power. Chemical speciation
information from the non-refractory component of PM1
(PM< 1.0 µm in diameter) using the Aerodyne aerosol mass
spectrometer (AMS) has been widely studied through the ap-
plication of receptor modeling to the organic fraction of the
aerosol (e.g. Zhang et al., 2005; Lanz et al., 2007; Aiken et
al., 2009; Ulbrich et al., 2009). While this method has the
capacity to differentiate between primary (e.g. hydrocarbon-
like organic aerosol or HOA and biomass burning organic
aerosol or BBOA) and secondary organic aerosol (e.g. oxy-
genated organic aerosol or OOA), it is limited in its ability
to be source-specific. This is mainly due to a lack of source-

specific information gathered by the AMS, such as individual
organic compounds, and refractory species. This limitation
can be overcome by utilizing instruments that provide such
information, such as the thermal desorption aerosol gas chro-
matograph (TAG), which provides the molecular composi-
tion of organic aerosol (OA) (Williams et al., 2006). When
PMF is applied to measurements from this instrument, it
can provide more detailed apportionment of the primary and
secondary organic aerosol source contributions (Williams et
al., 2010). Single particle mass spectrometers (SPMS), such
as the aerosol time-of-flight mass spectrometer (ATOFMS),
also have the potential to overcome this limitation through
the use of relatively high-powered lasers to desorb and ionize
particles, thereby providing perhaps the most specific par-
ticle composition information (Noble et al., 1994; Gard et
al., 1997). While most other instruments collect bulk aerosol
samples, SPMS instruments provide chemical and physical
information on single particles, thus allowing for the distinc-
tion between internally and externally mixed aerosol. Be-
cause these instruments measure a large number of particles
during a typical field campaign, an effective strategy is re-
quired to reduce the dimensionality of these data for in-depth
analysis. A popular method to achieve this result is the ap-
plication of clustering techniques such as ART-2a (Carpenter
et al., 1991; Song et al., 1999) and K-Means (MacQueen,
1967; Lloyd, 1982). These clustering methods assign par-
ticles to particle-types based on similarities between mass
spectra. Interpretation of particle-types is useful for the de-
termination of PM sources, as well as the chemical and phys-
ical processes that affect aerosol composition at a receptor
site.

Multivariate receptor models can be applied to particle-
type data to further relate particle-types to PM sources and
processes, though few studies have made such attempts.
Owega et al. (2004) first applied PMF to ART-2a generated
particle types from SPMS data produced by a laser ablation
mass spectrometer (LAMS) (Owega et al., 2004). Nine fac-
tors were resolved from this analysis and each was identified
as having a primary aerosol source having undergone some
degree of chemical processing. PMF has also previously
been applied to particle-types obtained by ART-2a clustering
of ATOFMS data (Eatough et al., 2008). In the SOAR 2005
study, Eatough et al. (2008) found that the number of factors
influencing PM composition increased from 6 to 16 with the
addition of 19 particle-types to semi-continuous measures
of PM composition (Eatough et al., 2008). Another study
in Cork Harbour, Ireland, used a similar approach by com-
bining comparable semi-continuous PM measurements with
ATOFMS particle-types determined using the K-Mean clus-
tering algorithm (Healy et al., 2010). The combined dataset
yielded a 6 factor solution, with each factor again represent-
ing primary aerosol emissions having undergone some de-
gree of chemical processing.
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This paper describes the application of PMF to ATOFMS
data collected during the summer of 2007 in south-western
Ontario, Canada, as part of the Border Air Quality and Me-
teorology Study (BAQS-Met). The overarching objective
of BAQS-Met was to understand the determinants affecting
air quality in this border region, particularly with respect to
source emissions, chemical processing, and transport. Be-
cause this area experiences highly variable meteorology in-
duced by the presence of the Great Lakes (e.g. lake breezes)
(Sills et al., 2011), particular emphasis was placed on under-
standing how these determinants were influenced by complex
meteorology.

Central to the particle-type PMF analysis presented in
this paper is the expectation that there is not necessarily a
unique one-to-one correspondence between a particle-type
and a source. The implications of this are that: (a) a given
source or process may be characterized by a variety of dif-
ferent particle-types, as has been shown in several previ-
ous single particle source characterization studies (Silva and
Prather, 1997, 2000; Silva et al., 1999; Spencer et al., 2006;
Drewnick et al., 2008) and (b) a given particle-type may
originate from different sources (thus resulting in the ap-
portionment of one particle-type to different factors). Thus
PMF was used to investigate the external mixture of particle-
types describing a given factor, as well as the internal mixing
state of those characteristic particle-types. It was hypoth-
esized that this cross-apportionment of particle-types based
on their temporal covariance would allow the relative roles
of the determinants affecting aerosol composition to be re-
solved. This paper presents the first study to elucidate the
coupled influences of these determinants on temporal vari-
ability in aerosol chemical composition using single particle-
type-based receptor modelling.

2 Methods

2.1 Sampling site and measurements

During the BAQS-Met campaign (20 June–10 July 2007),
three supersites were set up to obtain high time-resolution
measurements of particle chemical speciation and size as
well as trace gases. The supersite of interest for this work
is Harrow, Ontario (42◦1′58.95′′ N, 82◦53′35.61′′ W), which
was located 5 km north of Lake Erie at a semi-rural Agri-
culture Canada facility (Fig. 1). In addition to expected
emissions arising from agricultural activity from within the
region, Harrow was influenced by many PM sources and
precursor gases whose geographic origins could be catego-
rized by three spatial scales: local, local-to-regional, and re-
gional. Local emissions were expected from sources within
and near Harrow, namely agricultural practices and light traf-
fic. Local-to-regional scale emissions were expected from
nearby urban centres such as the Windsor/Detroit metropoli-
tan area, Toledo and Cleveland, as well as numerous coal-

fired power plants around Lake Erie. Regional emissions
were mostly expected from coal-fired power plants along
the US Ohio River valley as well as more distant cities.
Aerosol measurements were made aboard MAPLE (Mobile
Analysis of Particulate in the Environment), a mobile lab-
oratory operated by the Southern Ontario Centre for Atmo-
spheric Aerosol Research. Ambient air was sampled through
a 2.5 cm inner diameter stainless steel inlet at approximately
30 l min−1 through a PM2.5 cyclone (URG, Chapel Hill, NC,
USA), and was subsequently transferred to several instru-
ments located along a 2.5 cm inner diameter, 5 m long stain-
less steel sampling line. Measurements of PM2.5 mass con-
centration were made at one minute intervals using a TSI
DustTrak (TSI, Inc., Shoreview, MN, USA). Elemental and
organic carbon mass concentrations were measured simul-
taneously and reported at two hour time intervals using a
thermal/optical semi-continuous organic carbon and elemen-
tal carbon analyzer (Sunset OCEC analyzer) (Sunset Lab-
oratory, Tigard, OR, USA). An Aerodyne Time-of-Flight
Aerosol Mass Spectrometer (c-ToF-AMS) (Aerodyne, Bil-
lerica, MA, USA) was used to characterize the non-refractory
aerosol fraction, and a TSI 3800-100 Aerosol Time-of-Flight
Mass Spectrometer (ATOFMS) (TSI, Inc., Shoreview, MN,
USA) was used to characterize both the non-refractory and
refractory aerosol fractions. Results from the c-ToF-AMS
have been reported in another publication (Slowik et al.,
2011).

This publication focuses on receptor modeling results ob-
tained by ATOFMS, which has been described in detail
elsewhere (Prather et al., 1994; Gard et al., 1997). In
brief, ambient air is sampled at 0.1 l min−1, from which the
aerosol is focused into a tightly collimated beam and acceler-
ated through an aerodynamic focusing lens (AFL). Particles
emerge from the aerodynamic lens at their terminal veloci-
ties, and pass through two 532 nm diode-pumped solid-state
lasers used to measure their vacuum aerodynamic diame-
ter (Dva). A high-powered pulsed Nd:YAG (266 nm) des-
orption/ionization laser is then fired at each particle once it
enters the mass spectrometer region. Positive and negative
ions produced from the laser desorption ionization are ac-
celerated by an electromagnetic field through two opposing
flight tubes towards micro-channel plate detectors, thereby
producing both positive and negative ion mass spectra. The
ATOFMS is known to experience size-dependent transmis-
sion losses, which can be accounted for by comparing par-
ticle counts to collocated instruments (Wenzel et al., 2003;
Jeong et al., 2011a). However, ATOFMS mass spectra pro-
vide only semi-quantitative information on particle compo-
sition due to matrix effects during ionization (Reilly et al.,
2000). The quantification of certain PM species and particle-
types measured by ATOFMS during this study is described in
another manuscript (Jeong et al., 2011a). The ATOFMS was
operated from 19 June–11 July 2007, and measured particles
in the approximate range of 0.1 to 3 µm using the AFL100
aerodynamic focusing lens, except for a brief period from
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Fig. 1. Location of the receptor site, Harrow, Ontario within North America (42◦1′58.95′′ N, 82◦53′35.61′′ W). The distribution of coal-fired
power plants is illustrated by SO2 emissions in(a). Shown in(b) is the location of the receptor site within the BAQS-Met region relative to
several large cities, including Windsor, Ontario, where the CRUISER mobile laboratory was stationed (42◦16′59.00′′ N, 83◦5′5.00′′ W).

28–30 June 2007 when the ultrafine lens (AFL030) was used.
Only ATOFMS measurements made with the AFL100 were
used for this publication.

Measurements of other trace gases were made at Harrow
using several TECO gas monitors (ThermoElectron Corpo-
ration, Hampton, NH, USA): NOx (TECO 42c), O3 (TECO
49i), SO2 (TECO 43i), and CO (TECO 48i). Meteorolog-
ical parameters (i.e. wind direction, wind speed, tempera-
ture, and relative humidity) were assessed using an Orion
weather station from Columbia Weather Systems installed
on a telescopic tower on MAPLE at an elevation of approxi-
mately 10 m above ground level (a.g.l.) The spatial extent of
aerosol composition in the BAQS-Met region was also eval-
uated by comparing measurements from Harrow with mea-
surements from another BAQS-Met study site in Windsor,
Ontario (40 km northeast of Harrow). The Windsor measure-
ments of interest were made by a quadrupole Aerodyne AMS
(Q-AMS) (Aerodyne Research, Inc., Billerica, MA, USA)
which was housed by Environment Canada’s CRUISER mo-
bile laboratory, stationed at 42◦16′59.00′′ N, 83◦5′5.00′′ W,
near downtown Windsor.

2.2 Positive Matrix Factorization

Positive matrix factorization, or PMF (Paatero and Tapper,
1993, 1994; Paatero, 1997), is a bilinear factor analysis
model that can be used to interpret aerosol chemical com-
position data. It is applied to ann×m matrix of data,X, by
solving the general receptor equation:

xij =
p

6
k=1

gikfkj +eij , (1)

wheren is the number of samples andm is the number of
species;xij is thej th species concentration measured in the
ith sample;gik is the concentration of thekth source that con-
tributes to theith sample;fkj is thej th species mass fraction

that contributes to thekth source;eij is the residual associ-
ated with thej th species concentration measured in theith

sample; andp is the number of independent sources that are
chosen by the user. The general receptor equation is solved
iteratively using a least-squares algorithm by minimizing the
parameterQ, defined as:

Q =

n∑
i=1

m∑
j=1

(
eij

/
sij
)2

, (2)

wheresij is an element in thei×j matrix,S, of uncertainties
used to weight each element inX when solving the general
receptor equation.

The number of factors used to represent the data, or the
PMF solution, must be carefully chosen by the user. Fore-
most, the robustness of a solution is assessed by determin-
ing whether each factor is physically meaningful (Buset et
al., 2006). This is further supported by evaluating several
mathematical criteria: the quality of fit, the identification of
a global minimum, and the uncertainties in the factor pro-
files and contributions. Quality of fit is determined by ex-
amining the ratio of the calculatedQ value by running PMF
in the robust mode to the theoretical or expectedQ value
(Qrobust/Qexp), whereQexp = mn − p(m + n), and a good
fit exists whenQrobust/Qexp∼ 1. The existence and identi-
fication of a global minimum can be supported by initiat-
ing the PMF algorithm from different random matrix starting
points or seed values (Paatero, 2007); 100 seeds are recom-
mended by the EPA PMF 3.0 Use’s Manual (Norris et al.,
2008). The uncertainty in each solution’s factor profiles and
contributions can be partially assessed through bootstrapping
(Ulbrich et al., 2009). Once a reasonable solution has been
identified, FPeak analysis, which involves controlled rota-
tions of theF andG matrices, can be performed to investigate
the rotational ambiguity of the solution, and to determine
whether an improved solution can be identified by making
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such a rotation. In this study, PMF analysis was performed
using the PMF2 algorithm, which along with all diagnostic
checks, was executed using the custom software PMF Eval-
uation Tool (PET) (University of Colorado at Boulder, Boul-
der, CO) (Ulbrich et al., 2009) operated from within Igor Pro
(version 6.1.2.1, WaveMatrics, Inc., Portland, OR, USA).

2.3 Clustering ATOFMS single particle mass spectra

A total of 183 410 particles were sized by ATOFMS during
BAQS-Met, of which 66 920 particles were ionized (36 %
hit efficiency). Figure S2 in the Supplement shows that the
ionized particles were slightly bi-modally distributed, with
a larger mode at 0.65 µm, and a smaller mode at 0.35 µm.
The mass spectra of the ionized particles were peak listed us-
ing TSI’s MS-Analyze software (TSI, Inc., Shoreview, MN,
USA). A peak was identified if its height exceeded 20 ar-
bitrary units (AU) above the mass spectral signal baseline,
if its peak area was greater than 20 squared AU, and if its
fractional contribution to the total peak area was greater than
0.001. A database was created with this data using the cus-
tom MATLAB toolkit Yet Another ATOFMS Data Analyzer
(YAADA v2.11, modified as described below), from which
the ART-2a clustering algorithm was executed (Carpenter et
al., 1991; Song et al., 1999). This clustering algorithm as-
signs particles to different clusters based on spectral similar-
ity. Normalized particle mass spectra are compared to the
average mass spectra of existing clusters by calculating the
dot product between them. If the largest dot product with
any pre-existing cluster is greater than a user-defined maxi-
mum (the vigilance factor), the particle of interest is assigned
to that cluster; otherwise a new cluster is created. Hence,
higher vigilance factors result in more clusters.

Prior to clustering, the mass spectral peak areas were log-
transformed to allow for less intense, yet important peaks
to inform the clustering (e.g.m/z−195, an indicator of sul-
phuric acid). As a consequence, lower than typical (e.g. 0.8)
vigilance factors were explored, as typical ones resulted in
too many clusters (herein referred to as particle-types) for
interpretation and PMF analysis. For instance, using a vig-
ilance factor of 0.8 produced 606 particle-types, which was
not only far too many for interpretation, but each one also
contained an insignificant number of particles for a robust
PMF analysis (i.e. too few particles per hour). While man-
ually recombining the particle-types based on their spectral,
temporal, and particle size similarities is a common method
for reducing their number, for this study this technique was
avoided as it yielded PMF solutions without global minima.
This was probably caused by the sensitivity of PMF towards
small errors in the recombination process from subjective
comparisons between particle-types: re-combining the time-
series of particle-types inherently changes the co-linearity
between particle-types in the PMF matrix. It follows that
inaccurately recombining particle-types directly affects the
extent to which useful factors can be extracted using PMF.

Hence, errors in the subjective manual recombination pro-
cess, which cannot be easily accounted for in the PMF er-
ror model, likely result in undue errors in the PMF analy-
sis. A lower vigilance factor was ultimately chosen to ensure
that an interpretable number of particle-types was obtained,
and that enough of these contained a significant amount of
signal for PMF analysis (specifically, that>95 % of parti-
cles were captured in particle-types with>500 particles). A
vigilance factor of 0.3 satisfied this criterion by producing
46 particle-types, of which the top 33 were used for PMF
analysis. Particle-types 34 through 46 each contained an
insufficient number of particles per hour for analysis. For
brevity, the particle-types are generally referred to herein us-
ing a name based on their abundance alone (C1 through C33,
where C1 contained the most particles and C33 the fewest).

As the ATOFMS is known to experience size-dependent
transmission biases (Allen et al., 2000; Wenzel et al., 2003),
the possibility of correcting for these losses was investigated
for the purpose of performing semi-quantitative particle ap-
portionment using the enhanced scaling method presented by
Jeong et al. (2011a). This scaling method corrects for the
size-resolved transmission bias by scaling up ATOFMS par-
ticle number concentrations using independent, collocated
APS and FMPS particle number size distributions, both of
which were available during this campaign. The methods,
results and discussion of this analysis are presented in Sect. 3
of the Supplement. In summary, particle number scaling to
account for the transmission bias did not lead to robust PMF
solutions. A 9 factor solution, which was chosen to compare
with that chosen for the unscaled PMF analysis, was found
to have higher residuals, a lowerR2 (0.92), and a global
minimum was not produced from the 100 seed values that
were tested (as judged from theQ/Qexp value). Furthermore,
the factor profiles differed significantly from those from the
unscaled analysis, without providing any new logical under-
standing of particle-type mixing.

This undesirable result was attributable to the large scaling
factors required to scale up particles from the smallest size
bin (Dva < 0.52 µm), which experienced the greatest trans-
mission losses. Effectively, scaling caused the times series
of each particle type to be dominated by the portion of that
particle type within the smallest size bin. Given the lower
efficiency of the ATOFMS for these small particles, these
time series were often the noisiest. Comparing Figs. S2 and
S10 it can be seen that particles withDva < 0.52 µm were
scaled up by about 2 orders of magnitude more than larger
particles. Thus, PMF analysis was essentially performed on
scaled particle-type time series that were dominated by the
convolution between a very large scaling factor and a noisy
time trend from the smallest hit particles. More details and
discussion on the PMF analysis of scaled particle-types can
be found in the Supplement. In the end, as this method did
not lead to robust PMF solutions, particles were left unscaled
for PMF analysis, leading to a qualitative receptor model-
ing study. In summary, the unscaled PMF solution presented
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in the manuscript emphasizes the characteristics of parti-
cles in the size ranges efficiently detected by the ATOFMS,
rather than those ofDva < 0.52 µm which were measured
with lower efficiency.

2.4 PMF analysis of ATOFMS particle-types

The data matrix used in this study was constructed from the
hourly summed time series of the ATOFMS particle-types,
which resulted in 474 rows (hours) and 33 columns (particle-
types). The error matrix (S) for PMF modelling is typically
constructed by the user using the PMF default error model
(Error Model= −12), which specifies that:

sij = tij +C3
∣∣xij

∣∣, (3)

where the elements (tij ) of T represent the analytical uncer-
tainty of the measurement, and C3 is a coefficient used to
downweight the influence of large and sporadicxij values on
the solution (Paatero, 2007). Several options for pre-treating
the data and constructing the error matrices were explored,
including those used in the few studies that have been pub-
lished for similar data (Owega et al., 2004; Eatough et al.,
2008; Healy et al., 2010). As analytical uncertainties and
detection limits are not commonly reported with ATOFMS
data, relying on only a C3 value to provide a constant per-
centage error of the data has been used in some studies
(Eatough et al., 2008; Healy et al., 2010). Applying this er-
ror matrix construction using the previously used C3 of 0.15
(or 15 % of the data matrix) revealed that these errors were
too low, and not specific enough for these data, as it yielded
solutions with very high residuals and low correspondingR2

values (e.g.Qrobust/Qexp= 9.9 and anR2 of 0.93 for a nine
factor solution). The method outlined by Owega et al. (2004)
provided a better solution as it resulted in lower residuals and
an improved quality of fit over the method outlined above
(e.g.Qrobust/Qexp= 0.55 and anR2 of 0.96, for a nine factor
solution), and as such was used in this analysis.

To summarize the data and error matrix preparation pro-
cess for the method of Owega et al. (2004), the time series
of each particle-type was first smoothed to remove spurious
noise by box-smoothing the 1-h summed particle counts us-
ing a 5-h averaging period. The error matrix,S, was con-
structed using only theT matrix, which was calculated as the
standard deviation of the hourly particle counts within the 5-
h period. A detection limit (DL) policy was also applied to
account for observations with no particles. The DL for each
particle-type was calculated as the fraction of hours with no
measured particles divided by 5 given that one particle in the
five hour averaging period was the lowest non-zero observa-
tion rate. The error associated with below DL observations
was set to 5/6DL (Reff et al., 2007). Abrupt, yet sustained in-
creases in the particle-type hourly counts (i.e. increases that
were well beyond the data noise), were permitted to appro-
priately influence the PMF solution by applying an exponen-

tial decay function to the error matrix for these observations
(Owega et al., 2004). The decay function is given by:

f (sij ) = exp

(
−sij

b

)
, (4)

wheresij is the error value andb is the maximum observed
hourly particle count for the given particle-type. Lastly, the
signal to noise (S/N ) ratio of all particle-types was calculated
to determine if downweighting of noisy particle-types was
required (Paatero and Hopke, 2003). However, all particle-
types introduced to the PMF model displayedS/N > 2, and
thus no down-weighting was applied. From this method, the
average error applied to any particle-type was 50 %, with a
range of 32 to 79 % of the average of each variable.

Inclusion of other online measurements (e.g. PM2.5 mass,
EC/OC, trace gases) has been a useful method in previous
PMF of previous ATOFMS PMF studies towards improving
source characterisation (Eatough et al., 2008; Healy et al.,
2010). Given the potential benefits of including other online
measurements, this practice was considered for this analysis.
However, in order to ensure good cross-apportionment of the
external online measurements and ATOFMS particle types, a
good degree of correlation is required between them. Since
most of the correlation coefficients (85 %) between the ex-
ternal online measurements and ATOFMS particle-type time
series did not exceed a moderate level (Pearsonr = 0.4), their
inclusion in the PMF analysis would result in the creation of
new factors. Without moderate cross-apportionment to other
factors, their inclusion could not be justified. As such, post-
PMF correlation analysis was deemed to be the best method
for including other online variables in the analysis.

2.5 Geographic origins

The geographic origins of the PMF factors were explored us-
ing the conditional probability function (CPF), and the po-
tential source contribution function (PSCF). The CPF utilizes
wind direction measurements to identify wind sectors of high
source probability relative to the receptor site (Ashbaugh et
al., 1985; Kim et al., 2003), and is given by:

CPF=
m1θ

n1θ

, (5)

wherem1θ is the number of occurrences from the wind sec-
tor 1θ (15◦ in this study) that exceed a given threshold (here
the 50th percentile), which is then normalized ton1θ , the
total number of occurrences from that wind sector. Occur-
rences with wind speeds<1 m s−1 were deleted, and CPF
values for sectors with≤5 observations were downweighted
by a factor of three to prevent over-interpretation of results
from infrequently observed wind sectors.

The regional character of PMF factors is typically inves-
tigated by applying PSCF to air mass backtrajectories (Ash-
baugh et al., 1985). The PSCF is given by:

PSCF=
mij

nij

, (6)
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wheremij is the number of times a factor contribution ex-
ceeds a predefined threshold (here the 50th percentile) when
traveling through geographic grid cellij , andnij is the num-
ber of times that an air mass is observed to have passed
through cellij .

Two different backtrajectory models were employed. The
HYSPLIT model was used to investigate regional scale
sources (Draxler, 1997; Draxler and Rolph, 2011; Rolph,
2010) using 48-h backtrajectories retrieved from the EDAS
40 km resolution meteorological dataset. The Canadian Me-
teorological Service of Canada’s (CMC) high resolution tra-
jectory model (D’Amours, 1998) was used for local-to-
regional scale emissions sources: using 24-h backtrajecto-
ries, the CMC model provided high temporal resolution,
achieved by the two minute sequential increments in which
each hourly backtrajectory was calculated. A high spa-
tial resolution (2.5 km) was obtained by supplying a local
area model (LAM) to the CMC model; the LAM contained
high resolution meteorological data derived from the CMC’s
Global Environmental Multiscale (GEM) model (Cote et al.,
1998). This trajectory analysis was limited to the local-to-
regional scale as it only covered an area of 39.5◦–46.6◦ lat-
itude (north) and 86.5◦–77.7◦ longitude (west). All trajec-
tories were calculated arriving at Harrow at 500 m above
ground level.

3 Results and discussion

3.1 ATOFMS particle-types

Forty-six particle-types were identified using ART-2a. Ex-
amination of the chemical characteristics, temporal patterns,
and size distributions of the 33 most populous of these indi-
cated that they tended to fall into seven broad families of
particle-types. These families were named based on their
chemical composition or source class, and these names were
used to help describe the PMF results. The families were:
EC OC (elemental carbon internally mixed with organic car-
bon, size modes from 0.67–0.69 µm), EC (elemental carbon,
size modes of 0.32 and 0.76 µm), OCS N (organic carbon
internally mixed with sulphate and nitrate, size modes from
0.51–0.69 µm), OC (organic carbon, size modes from 0.56–
0.75µm), AMINE (amine-containing, size modes of 0.65 and
0.67 µm), FIREWORKS (size modes from 0.84–0.88 µm),
and DUST (size modes from 0.64–1.42 µm). Table 1 sum-
marizes their characteristic ions, and a brief account of their
general composition is provided below. It can be seen from
Table 1, as well as Figs. S3–S9 in the Supplement that some
families exhibit a broader range in particle-type internal mix-
ing states than others. A detailed description of the particle-
types, as well as their mass spectra and size modes can be
found in the Supplement.

3.2 ATOFMS single particle-type families

Figure S3 shows that the ECOC family was characterized
by elemental carbon internally mixed with organic carbon,
which was likely oxidized. Each particle-type within this
family displayed different relative amounts of sulphate, in-
dicating that they were moderately to highly chemically pro-
cessed. Two particle-types were attributed to the EC fam-
ily (Fig. S4) based on their significant elemental carbon con-
tent: one particle-type appeared to be relatively fresh as it had
the smallest size, while the other appeared more aged given
its larger geometric mean particle diameter and significant
sulphate content. The OCS N family consisted of particle-
types with significant organic carbon content, along with sig-
nificant sulphate and/or nitrate, as shown in Fig. S5. Most of
these appeared to be biomass burning particles with different
chemical processing histories, except for one particle-type,
C5, whose likely origins could not be determined. Particle-
types grouped into the OC family (Fig. S6) contained sig-
nificant organic carbon levels, including aromatics, and rel-
atively little secondary inorganic material, indicating they
had experienced less chemical processing than other OC rich
particle-types, such as those in the OCS N family. Two
particle-types were typified by a prominent amine peak at
m/z +59, and as such were grouped into the AMINE fam-
ily (Fig. S7). Their amine content was hypothesized to be
the result of gaseous uptake during periods of high relative
humidity onto pre-existing acidic particles (Rehbein et al.,
2011). The FIREWORKS family (Fig. S8) was defined by
several large-diameter particle-types containing ions, which
suggested a pyrotechnic source. The final family was DUST
(Fig. S9), whose particle-types were the largest in diameter
among all those measured. All of these particle-types showed
prominent peaks in the positive mass spectrum related to in-
organic dust components; the lack of ammonium combined
with elevated nitrate content suggested that the nitrate was
neutralized by the inorganic cations. Particle-types were re-
grouped into factors through PMF analysis, with only some
factors found to be similar to the particle-types families iden-
tified a-priori.

3.3 Nine factor PMF solution

PMF analysis of the 33 ATOFMS particle-types was per-
formed for solutions ranging from 1 to 12 factors. A nine
factor solution was chosen as it produced the most physically
meaningful factors, and the highest quality result in terms
of mathematical diagnostics. The following information in-
formed the identification of the nine factors: (i) the allocation
of particle-types to each factor to provide their overall chem-
ical composition, (ii) the mean sizes of particle-types con-
tained therein, and (iii) the factor’s temporality and covari-
ance with external measurements. The nine factors are sum-
marized in Table 2, listed according to their particle number
contribution. The temporal variability and apportionment of
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Table 1. Particle counts and major ions describing each particle-type and their corresponding families for the top 33 ATOFMS particle-types.
The details of each of the C1-C33 particle-types are provided in the Supplement, including Figs. S3–S9.

Particle-
type
Family

Particle
Counts

Contri-
bution
(%)

Particle-
types

Positive Ion Mass Spectra Negative Ion Mass Spectra

EC OC 14 402 21.7 C1, C4 12nC+

n (n=1−5)
, 18NH+

4 , 27C2H+

3 ,
43C3H+

7 / 43C2H3O+/ 43CHNO+

46NO−

2 , 62NO−

3 , 97HSO−

4

C3, C8 12nC+

n (n=1−5)
, 27C2H+

3 ,
43C3H+

7 / 43C2H3O+/ 43CHNO+

−

EC 4232 6.4 C11 12nC+

n (n=1−11),
23Na+ 12nC−

n (n=1−8)
, 16O/17OH−,

26CN−, 46NO−

2

C16 12nC+
n ,39K+ 12nC−

n (n=1−8)
, 46NO−

2 , 62NO−

3 ,
97HSO−

4

OC S N 17 639 26.6 C2, C6, C7 18NH+

4 , 27C2H+

3 , 39K+/ 39C3H+

3 ,
43C3H+

7 / 43C2H3O+/ 43CHNO+

26CN−, 42CNO−, 46NO−

2 ,
62NO−

3 , 89(COO)2H−, 97HSO−

4 ,
195H(HSO4)−2

C5, C10,
C14

18NH+

4 , 27C2H+

3 , 39K+/ 39C3H+

3 ,
43C3H+

7 / 43C2H3O+/ 43CHNO+

26CN−, 42CNO−, 46NO−

2 ,
62NO−

3 , 89(COO)2H−, 97HSO−

4

OC 7826 11.8 C13, C15,
C18

18NH+

4 , 27C2H+

3 , 39K+/ 39C3H+

3 ,
43C3H+

7 / 43C2H3O+/ 43CHNO+,
51C4H+

3 , 63C5H+

3 , 77C6H+

5

97HSO−

4

C27 27C2H+

3 , 39K+/ 39C3H+

3 ,
43C3H+

7 / 43C2H3O+/ 43CHNO+

26CN−, 42CNO−, 46NO−

2 ,
62NO−

3 , 97HSO−

4

C30 27C2H+

3 , 39K+/ 39C3H+

3 ,
43C3H+

7 / 43C2H3O+/ 43CHNO+

26CN−, 46NO−

2

AMINE 4274 6.5 C9, C20 18NH+

4 , 27C2H+

3 , 39K+/ 39C3H+

3 ,
43C3H+

7 / 43C2H3O+/ 43CHNO+,
59C3H9N+

46NO−

2 , 62NO−

3 , 97HSO−

4 ,
195H(HSO4)−2

FIRE-
WORKS

6183 9.4 C12, C23 23Na+, 24Mg+, 39K+, 138Ba+/
155BaOH+,140K2NO+

3

16O / 17OH−, 35Cl−, 46NO−

2 ,
62NO−

3 , 125H(NO3)−2 ,
147KNO3NO−

2 , 163K(NO3)−2 ,

C19, C28 27Al+, 39K+, 140K2NO+

3
46NO−

2 , 62NO−

3 , 125H(NO3)−2

DUST 11 668 17.6 C17, C22,
C24, C25,
C31, C33

23Na+, 39K+,40Ca+, 56CaO+ 16O/17OH−, 46NO−

2 , 62NO−

3

C21, C26,
C32

23Na+, 39K+ 16O/17OH−, 46NO−

2 , 62NO−

3

C29 23Na+,62Na2O+,165Na3SO+

4
16O/17OH−, 46NO−

2 , 62NO−

3 ,
131NaNO2NO−

3
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Table 2. Average factor contributions as measured by the ATOFMS
and resolved by PMF during the BAQS-Met campaign.

Particle Number Concentration

Factor (Particles/Hour) (%)

Long Range Transport 12.6 9.8
Fireworks 14.6 11.3
Organic 15.1 11.8
Biomass Burning 1 14.7 11.4
Biomass Burning 2 12.6 9.8
ECOC Day 19.5 15.1
ECOC Night 17.2 13.4
Nitrate Background 10.8 8.4
Nitrate Dust 11.5 9.0

60
40
20
0

6/21/2007 6/25/2007 6/29/2007 7/3/2007 7/7/2007 7/11/2007

Day of Year

80
60
40
20
0

300
200
100

0

150
100
50
0

100

50

0

200
100

0

A
T

O
F

M
S

 P
M

F
 F

ac
to

r 
H

ou
rly

 P
ar

tic
le

 C
ou

nt
s

200

100

0

600
400
200

0

80
60
40
20
0

50
40
30
20
10
0P

M
2.

5 
M

as
s 

(µ
g 

m
-3

)

1000

500

0

Long Range Transport

Fireworks

Biomass Burning 1

Biomass Burning 2

Organic

ECOC Day

ECOC Night

Nitrate Background

Nitrate Dust

DustTrak

 Measured Particle Counts
 PMF Reconstruction

No
Data

Fig. 2. Time series of the nine PMF factors’ hourly particle counts
and the DustTrak PM2.5 mass. No ATOFMS data was available for
PMF analysis between approximately 12:00, 28 June and 12:00, 30
June as the ultrafine aerodynamic focusing lens (AFL030) was used
at that time.

particle-types to the factors from the nine factor solution are
shown in Figs. 2 and 3 respectively. Given that some factors
appeared to be related, an objective justification for this PMF
solution is provided below.

In general, a PMF solution is chosen as the solution for
which increasing the number of factors ceases to explain any
more significant variability in the dataset. Beyond this point
there is a risk of factor splitting (Ulbrich et al., 2009), which
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Fig. 3. Factor particle-type profiles of the nine PMF factors. To fa-
cilitate discussion of the particle-type apportionment, particle-types
have been grouped on the lower axis based on their corresponding
families.

may lead to less physically meaningful, or even uninter-
pretable results. First, the explained variance was analyzed
by comparing the reconstructed data with measured parti-
cle counts per hour by performing linear regression analysis.
The coefficient of determination (R2) from regression analy-
sis was used to examine the degree to which additional fac-
tors impacted the explained variance in the measured particle
counts. The explained variance was also examined in terms
of the uncertainties through examination of theQrobust/Qexp
parameter. Second, to obtain further insight into the tem-
poral “contribution” of the variability captured by additional
factors, the time-resolved difference inQ (1Qcont) between
two adjacent solutions, as detailed by (Slowik et al., 2010),
was examined:

1Qcont=

(
m∑
j

(eij/sij )
2

)
p

−

(
m∑
j

(eij/sij )
2

)
p+1

(7)

Third, the effect of the addition of factors on existing ones
was determined by performing correlation analysis. In this
analysis, the Pearson product-moment correlation coeffi-
cient (r) was calculated between the time series of highly
comparable factors in adjacent PMF solutions (Table 3). An
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Table 3. Pearsonr correlation coefficients for the time series of factors of PMF solutionp andp+1.

Factor Transition

Factor Name p = 4 → p = 5 p = 5 → p = 6 p = 6 → p = 7 p = 7 → p = 8 p = 8 → p = 9 p = 9 → p = 10

ECOC Day 1.00 0.94 0.98 1.00 0.98 1.00
Biomass Burning 1 1.00 1.00 1.00 0.94 0.99 1.00
Nitrate Background 0.96 0.95 0.98 0.98 1.00 0.84
Nitrate Dust 0.98 0.97 0.83 1.00 0.93 1.00
Organic New 1.00 1.00 1.00 1.00 1.00
ECOC Night New 0.94 1.00 0.99 1.00
Fireworks New 1.00 1.00 1.00
Biomass Burning 2 New 1.00 1.00
Long Range Transport New 1.00
Nitrate New New

Note: shaded correlation coefficients imply that an existing factor’s time series has been moderately (0.90< r < 0.95) or significantly (r < 0.90) influenced by the addition of a new

factor.

effect was observed if ther value decreased with the fac-
tor addition; a moderate effect was determined if 0.90< r <

0.95, and a significant effect ifr < 0.90. Hence two different
coefficients were used: the coefficient of determination (R2)

to ascertain the variance in the measured particle counts that
was explained by PMF modelled particle counts, and Pear-
son’s r to compare the degree of similarity between time-
series of like factors from adjacent PMF solutions. Lastly,
bootstrapping was performed, and each PMF solution was
initiated from 100 random starts or “seeds” to help determine
its degree of uncertainty.

As seen in Fig. 4a, a minimum of four factors was re-
quired to explain greater than 60 % of the explained vari-
ance (R2) in the measured particle counts. These factors
were named based on their contributing particle-types as well
as their temporality and were: ECOC Day, Biomass Burn-
ing 1, Nitrate Background and Nitrate Dust. Moving from
p = 4 to p = 5 resulted in the addition of the Organic fac-
tor, and a small increase in the overallR2 to 62 %. How-
ever, Fig. 4b shows via the1Qcont that this factor captured
significant temporality in the signal at the beginning of the
campaign. Correlation analysis with the previous factors
showed that none were even moderately affected by the ad-
dition of the Organic factor, indicating that it was almost en-
tirely pulled from the residuals. Adding a sixth factor led
to the appearance of the ECOC Night factor. While this
could be attributed to factor splitting of the ECOC Day fac-
tor, this original factor was only moderately affected by the
addition of ECOC Night, as evidenced byr = 0.94 between
the p = 5 and p = 6 ECOC Day time series. The large
1R2 observed (0.09) also indicated that the ECOC Night
was largely added from the residuals. Increasing top = 7
resulted in the largest increase in the explained variance in
the measured particle counts (1R2

= 0.24, R2
= 0.95); this

was the result of a large spike on 5 July being captured, and
as such it was termed the Fireworks factor. Comparison with

the Nitrate Dust factors forp = 6 andp = 7 showed that
this factor was significantly affected by the addition of the
Fireworks factor. Further factor additions did not affect the
R2 as greatly and consequently a minimum of seven factors
was required to provide an adequate explanation of variance.
Shifting from p = 7 to p = 8 produced the most direct ex-
ample of factor splitting: the Biomass Burning 1 factor was
split into a slightly modified version of itself as well as the
Biomass Burning 2 factor. Biomass Burning 1 was moder-
ately affected by this new factor, as evidenced by the Pear-
son r of 0.94 when comparing its temporality between the
7 and 8 factor solutions. No significant1R2 in explaining
the measured particle counts occurred with this factor ad-
dition, although Fig. 4b shows that some temporality from
the residuals was captured which is similar in temporality to
the Biomass Burning 2 factor. While factor splitting gener-
ally indicates too many factors have been chosen, this par-
ticular split could be physically justified, as outlined later in
Sect. 3.3.4. Furthermore, increasingp to 9 factors produced
the Long Range Transport factor. While this factor could
be interpreted as splitting of the Nitrate Dust factor (Pearson
r for p = 8 to p = 9 of 0.93 between like factors in these
PMF solutions, with a1R2=0.02 in the explained variance),
a meaningful physical explanation could also be provided for
this factor (Sect. 3.3.1). Beyondp = 9, factor splitting con-
tinued to occur, particularly for the Nitrate Background fac-
tor which was significantly affected by the addition of a 10th

factor, and the additional factors could no longer be physi-
cally justified.

The mathematical robustness for the 8, 9 and 10 factor so-
lutions was further examined through initiating PMF from
100 random starts, or “seed” values, as well as bootstrap-
ping. The 9 factor solution appeared to provide a global
minimum as the 100 different “seed” values produced iden-
tical Q values (Qrobust/Qexp = 0.579). A similarly stable
solution in terms of seeds was found for the 10 factor solution
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(Qrobust/Qexp of 0.542 for 100 % of the seed values). By con-
trast, the 8 factor solution displayed two minima in theQ

values withQrobust/Qexps of 0.644 (36 %) and 0.669 (64 %).
Bootstrapping was performed to further assess solution sta-
bility and uncertainty. This provided support for the 9 factor
solution as it demonstrated the highest degree of similarity
possible for these data and uncertainties between the boot-
strapped results: 75 % of the bootstrapped solutions were
sufficiently similar to be “remapped” to the base case, while
the same applied for only 52 % and 54 % of the 8 and 10
factor solutions.

Figure 4c shows the ratio of theQrobust/Qexp over time.
Two spikes are noticeable where the solution has failed to
capture adequate temporality: first on 21 June at 04:00, and
second on 5 July at 04:00 (all times are given in eastern day-
light time (EDT)). In the first case, the residual was attributed
to two particle-types which were not adequately modeled:
C13 (OCS N family) and C30 (OC family). In the second
case, it was attributed to a single particle-type, C9 (Amine).
Regardless of downweighting these particle-types by 300 %,
these two spikes could not be captured forp ≤ 12, and as
such they were left unweighted.

Rotational freedom was investigated by varying the FPeak
parameter from−2.5 to 2.5 in increments of 0.5. All solu-
tions in this range were examined, although the solutions for
FPeak of−0.5 and +0.5 were investigated most closely as
they only resulted in aQrobust/Qexp difference of 5 and 15 %
respectively, which was within the recommended exploration
range (Ulbrich et al., 2009). Neither of these solutions pro-
vided an improved physical interpretation or mathematically
robust solution for the 9 factor solution, and consequently the
central rotation withFPeak= 0 was chosen.

The characteristics and possible origin(s) of the nine
reported factors were assessed systematically based on:
particle-type external mixture; internal mixing state of the
contributing particle-types; particle-type size distributions;
factor temporality; and geographic origins. A factor was said
to be weakly externally mixed if either one particle-type, or
several highly similar particle-types (i.e. from the same fam-
ily and similar in internal mixing state), dominated its factor
profile. Conversely, if particle-types from several different
families contributed to a factor, or if the particle-types within
a contributing family were significantly different in their in-
ternal mixing (i.e. their single particle composition), it was
deemed as strongly externally mixed. The following sections
summarize the receptor modeling findings for each factor.

3.3.1 Long Range Transport Factor

The Long Range Transport Factor consisted of signifi-
cantly aged, homogeneous aerosol transported from regional
sources. This factor was generally observed at elevated con-
centration during the PM episodes (Fig. 2), suggesting these
particles played a significant role in diminishing air quality
during these periods. The PMF factor particle-type profile
(Fig. 3) showed that it was mostly characterized by three
highly-aged particle-types: C1 (ECOC), along with smaller
amounts of larger diameter particle-types C22 (DUST: aged
sea-salt) and C29 (DUST: aged soil dust). Given the sig-
nificant contribution from the most common particle-type,
C1, as shown in Fig. 3, this factor appeared to be weakly
externally mixed. Chemical processing was assessed based
on internal mixing with secondary material within these
particle-types. In particular, C1 contained the highest sul-
phate and ammonium content relative to EC among all
particle-types containing a clear EC contribution (Fig. S3).
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four or more days of significant particle counts are shown.

This particle-type also exhibited significant mass spectral
contributions from oxidized organic fragments, namelym/z
+43 [C2H3O+] and m/z −89 [(COO)2H−]. As particles
are coated by secondary reaction products and agglomerate
with one another during transport, they become less distin-
guishable by ATOFMS based on characteristic source tracer
species (Pratt and Prather, 2009). Thus it is reasonable that
at a semi-rural site the most aged particles in this size range
would also be the most common. Significant chemical pro-
cessing was also observed in both C22 and C29 as a result
of their high nitrate contributions (Fig. S9), indicating reac-
tion with nitric acid. This type of chemical processing of
dust particle-types has been observed by ATOFMS at several
other locations (Dall’Osto and Harrison, 2006; Sullivan et
al., 2007; Healy et al., 2010).

The significant chemical processing and weak external
mixing of this factor, suggested regional origins. To refine
the geographic spatial scale, the CPF (Fig. 5a) and PSCF
(Fig. 6a) were examined. The CPF showed directionality

between the west to south of the site, which was also con-
sistent with the synoptic, south-westerly regional air masses
that typically influence south-western Ontario (OME, 2008).
Due to the wide band of probable wind sectors between the
west and the south, the CPF suggested that the emission loca-
tion was likely regional. This was confirmed using the low-
resolution PSCF, which identified numerous, high probabil-
ity emission locations to the south and southwest. These po-
tential source regions contain vast swaths of the Midwestern
US, including Ohio, Illinois, Indiana and Missouri. The areas
of highest probability were closer to the measurement site,
and included regions containing either large cities or large
coal-fired power plants.

In general, this factor was mostly associated with trans-
port of air masses corresponding to backtrajectories from
the south and southwest. Similar long range transport fac-
tors have been found in the few other PMF studies of SPMS
particle-types. In Toronto, a sporadic, intercontinental dust
factor was discovered, which was attributed to Saharan dust
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Fig. 6. Low resolution PSCF plot for the Long Range Transport
factor(a) and high resolution PSCF plots for the Biomass Burning 2
(b) and ECOC Day(c) factors. Areas of higher probability indicate
more probable source regions.

from Africa (Owega et al., 2004). A factor named Long
Range Transport was also identified by Healy et al. (2010) in
a receptor modelling study in Cork, Ireland on the Irish coast.
In that study, the transported particles contained similar com-
ponents as those found in the present study (e.g. elemental
carbon, organic carbon, sulphate), yet due to transport over a

marine environment, they also contained significant sea salt
and methanesulphonate.

An interesting feature of this Long Range Transport factor
was its similarity, in both chemical profile and geographic
origins, to a regional Secondary Sulphate factor extracted
through a long-term receptor modelling of 24-h filter mea-
surements from nearby Windsor (Jeong et al., 2011b). Such
a similarity across measurement sites reinforced the regional
nature of this factor. In summary, the Long Range Transport
factor consisted of particle-types from a variety of distant
sources to the south and southwest that had undergone signif-
icant chemical processing during transport, ultimately lead-
ing to greater homogeneity in their composition (i.e. weaker
external mixing).

3.3.2 Fireworks factor

The Fireworks PMF factor temporal trend and particle-type
profile are shown in Figs. 2 and 3 respectively. A large spike
in ATOFMS particle counts recorded in the early morning
on 5 July was attributed to the Fireworks factor (Fig. 7a).
This factor was mostly associated with this one spike, which
occurred at Harrow only several hours after 4 July US In-
dependence Day fireworks displays across the international
border. Due to the episodic appearance of this factor, the
CPF and PSCF could not be used to determine its geographic
origins; accordingly CMC generated high-resolution back-
trajectories corresponding to the 5 July episode were used
(Fig. 7b). Figure 7b shows that the 5 July episode air mass
swept over the Detroit metropolitan area at approximately
22:00 on 4 July, which corresponded to the expected time
of holiday fireworks displays. Data to support the claim that
this factor was associated with emissions from in and around
Detroit was provided by the c-ToF-AMS in Harrow, and the
Q-AMS deployed in Windsor. Each of these instruments
registered extreme spikes in K+ measurements around the
same time, as shown in Fig. 7a. At Harrow, the K+ spike
occurred simultaneously with the Fireworks factor; at Wind-
sor, the spike occurred at 22:00, consistent with the expected
timing of fireworks deployment (note that K+ is provided in
arbitrary units because of the semi-quantitative nature of the
measurement). While K+ is emitted in high concentration
with biomass burning (Qin and Prather, 2006), K+ is also a
good marker for fireworks emissions (Drewnick et al., 2006).
These data suggested that emissions associated with this fac-
tor originated around Detroit, or upstream, and swept over
Harrow several hours later.

The size distribution and internal mixing state of the con-
tributing particle-types provided evidence for an associa-
tion with pyrotechnic emissions. Each of the Fireworks
factor particle-types displayed a large geometric mean di-
ameter (averageDva = 0.86 µm). In terms of composition,
as detailed in Fig. S8, these particle-types were internally
mixed with inorganic cations such asm/zs +39 [K+], m/z+23
[Na+], +24 [Mg+], +27 [Al+], +40 [Ca+], which when taken
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in (b) are high-resolution Harrow backtrajectories during the 5 July
Fireworks factor spike.

together in such high mass spectral contributions, were con-
sistent with ambient fireworks emissions (Liu et al., 1997;
Moreno et al., 2007; Vecchi et al., 2008; Joly et al., 2010).
Moreover, the dominant particle-type C12 (FIREWORKS),
contained all the aforementioned ions, as well as minor con-
tributions from ions more characteristic of fireworks emis-
sions (e.g.m/zs +63/65 [Cu+], +88 [Sr+], +138 [Ba+], and
+154 [BaO+]); this particle-type was highly similar to parti-
cles measured in a fireworks plume in Riverside, California
(Liu et al., 1997). These particle-types were notably different
from the DUST family types due to these ionic contributions,
as well as a smaller diameter range (0.84–0.88 µm) as com-
pared to that of the DUST family (0.64–1.42 µm). Some pri-
mary nitrate contributions were also suspected as KNO3, or
“black powder”, is used as the pyrotechnic oxidizing agent in
fireworks (Drewnick et al., 2006). Evidence suggesting such
contributions was given by peaks atm/z+140 (K2NO+

3 ), m/z
−147 (KNO3NO−

2 ), andm/z−163 (K(NO3)
−

2 ). Thus given
their distinct mass spectra, their diameter relative to other
particle-types, and episodic appearance early on 5 July, it
can be concluded that this PMF factor and its correspond-
ing particle-types were related to Independence Day fire-

works emissions, likely from the Detroit metropolitan area
and south-east Michigan.

3.3.3 Organic factor

PMF analysis identified a factor consisting of particle-types
arising from an organic emissions source class that could
not be positively identified; as such, this factor was named
Organic. Its particle-type PMF factor temporal trend and
profile are shown in Figs. 2 and 3 respectively. This factor
contained significant organic material, and was likely emit-
ted by a combustion source relatively close to the measure-
ment site. Figure 8 describes the organic nature of this fac-
tor. When this factor was present, it was highly correlated
with measurements of organic carbon and elemental carbon
measurements from collocated EC/OC measurements (Sun-
set OCEC Analyzer), as well as NO2, the latter two being
tracers for combustion emissions. Examination of the three
dominant particle-types (e.g. C13, C15, and C18 – OC fam-
ily), all illustrated in Fig. S6, revealed that they all had sim-
ilar size distributions (meanDva = 0.55–0.58 µm), and very
similar mass spectra. Thus, taken together, they exhibited
weak external mixing. Significant chemical processing was
unlikely for these particle-types given the lack of signal in the
negative ion mass spectrum. Most of the organic fragments
contained in these particle-type mass spectra were similar to
those from other particle-types enriched in organic carbon,
such asm/zs +27 [C2H+

3 ] and +43 [C2H3O+], indicative of
oxidized organic species. However these particle-types were
distinct due to significant peaks atm/z +63, 77, and 91, a
fragmentation pattern consistent with fresh aromatic hydro-
carbon emissions (Liu et al., 2003; Qin and Prather, 2006).
These particle-types, which were entirely apportioned to this
factor, displayed high [K+] peaks in their mass spectra, in ad-
dition to the positive organic carbon ion contributions. Such
a combination typically suggests a biomass burning combus-
tion source (Silva et al., 1999; Qin and Prather, 2006). Yet
the expected associated levoglucosan peaks in the negative
ion mass spectrum were insignificant, preventing a positive
identification as such.

The identity of the Organic factor was further explored us-
ing the PSCF and CPF, so as to discern its geographic origins
relative to the receptor site. As the PSCF’s were inconclu-
sive, probable areas of regional sources could not be deter-
mined. However, this factor’s CPF (Fig. 5b) highlighted the
possibility of either a local or local-to-regional source to the
north-west. A source location within this spatial scale was
further supported by the inferred lack of significant chemi-
cal processing in this factor’s dominant particle-types. Ulti-
mately, the source was not suspected to be highly local, as
this factor was better correlated with NO2 than shorter-lived
NO. Even though this unknown combustion emissions factor
was observed only at the beginning of the campaign, from
19–23 June 2007, it dominated by far the particles measured
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Fig. 8. Temporal trend of the Organic factor in relation to the hourly average NO2 mixing ratio and Sunset organic carbon and elemental
carbon mass concentrations. Only the first few days of the study period when this factor’s concentrations were high are shown.

by the ATOFMS during this time, and thus likely had a sig-
nificant bearing on air quality in the region.

3.3.4 Biomass burning factors

Two biomass burning factors, Biomass Burning 1 (BB1) and
Biomass Burning 2 (BB2) were identified by PMF analysis
and their factor temporal trends and PMF particle-type pro-
files are shown in Figs. 2 and 3 respectively. These factors
both appeared to originate from forest fires, yet were sep-
arated by PMF due to differences in chemical processing.
While the exact locations of the forest fires contributing to
these factors could not be identified, a case study for 5 July
showed that at least on that day, these factors were impacted
by fires in Northern Ontario and Manitoba. Furthermore, a
meso-analysis of meteorology on that day revealed that thun-
derstorm activity may have led to the observed differences in
chemical processing. The following paragraphs discuss these
findings in further detail.

The particle-types associated with the biomass burning
factors arose almost exclusively from one family, namely
OC S N, and they all displayed similar size distributions (av-
erageDva = 0.59 µm). Figure 3 demonstrates that of the
two factors, BB1 appeared to be more strongly externally
mixed in that it was characterized by a mixture of numer-
ous particle-types from this family, specifically C2, C6, C7,
C10, and C14. By contrast, BB2 appeared to be a weaker
external mixture, as it was defined by fewer particle-types,
namely C2, C6, and C7 (all also OCS N). The particle-
type PMF factor profiles and their corresponding temporal
trends indicated that these two factors were related. Their
shared particle-types from the same family, suggested that
they originated from a common source class. Biomass burn-
ing emissions were proposed as the source class given that

all the corresponding particle-types closely resembled par-
ticles generated from source characterization studies (Silva
et al., 1999; Healy et al., 2010), and satisfied three defin-
ing criteria: large [K+] peaks, large organic carbon sig-
nals in the positive ion mass spectrum, and clear contribu-
tions from organic acid fragments, such as formate,m/z−45
[CHO−

2 ], and acetate,−59 [C2H3O−

2 ]. These organic acid
ions are consistent with the fragmentation of levoglucosan,
a product of biomass combustion, upon desorption and ion-
ization by the ATOFMS (Silva and Prather, 2000). Signif-
icant contributions from secondary inorganic species, such
asm/z−97 [HSO−

4 ], m/z−46 [NO−

2 ], andm/z−62 [NO−

3 ],
indicated that these factors’ characteristic particle-types ex-
perienced chemical processing. Oxidized organic fragment
ions, such asm/z +43 [C2H3O+], suggested the presence
of secondary organic compounds. The degree of chemical
processing observed in these two factors indicated that they
were likely not local biomass burning emissions, thus exclud-
ing any local agricultural burning. Accordingly these factors
were likely from either local-to-regional or regional forest
fire emissions. A similar factor has been previously iden-
tified through PMF of ATOFMS particle-types obtained in
Toronto and was found to be the result of regional forest fires
in Québec and the Canadian Prairies (Owega et al., 2004).

Although the BB1 and BB2 factors were chemically
similar, and seemingly resulted from factor splitting (see
Sect. 3.3), there were distinct differences in the internal mix-
ing state of their characteristic particle-types. It was first
noted that, on the whole, particle-types characterizing BB2
exhibited a higher [HSO−4 ]/[K +] ratio in comparison to those
describing BB1, indicating greater chemically processing.
This conclusion was supported by a weaker external mixture
observed for BB2, whereby the accumulation of secondary
species caused the particles to appear more similar. Second,
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the characteristic particle-types of the BB2 factor, C2, C6,
and C7, all exhibited markedly higher peaks atm/z −195
[H(HSO−

4 )2], a marker for sulphuric acid. Sulphuric acid
originates either from homogeneous oxidation of SO2(g) in
the gas phase with subsequent condensation onto particle sur-
faces (Seinfeld and Pandis, 2006), from heterogeneous pro-
duction on particle surfaces from fresh, local emissions (Ault
et al., 2010), or from uptake of SO2(g) and subsequent oxida-
tion in the aqueous phase (Whiteaker and Prather, 2003). For
this study, uptake and subsequent aqueous phase oxidation of
SO2(g) was hypothesized to be the dominant mechanism, as
will be discussed below. The BB1 factor exhibited its highest
concentrations on 5 July, and its decrease in concentration
later in that day corresponded with an increase in the BB2
factor. Given this inverse temporality on 5 July, as well as
BB2 exhibiting a greater degree of chemical processing than
BB1, it was hypothesized that particles from the BB1 factor
(which was predominant on 5 July) may have been chemi-
cally transformed into those representative of the BB2 factor.

In addition to the CPF and PSCF, the geographic origins
of these factors were investigated satellite fire detection data.
Fire detects were obtained from NASA’s Geostationary Op-
eration Environmental Satellite (GOES) processed through
the Automated Biomass Burning Algorithm (ABBA). Only
the BB2 factor was used for statistical analysis as it ap-
peared in significant concentration over the duration of the
campaign. Given the complex meteorological conditions ob-
served on 5 July, when these two factors temporality ap-
peared inversely, the high resolution (HR) PSCF was used.
The CPF for the BB2 factor suggested a source region to the
south-east (Fig. 5c). While this was supported by hotspots
observed in that direction in the HR PSCF (Fig. 6b), many of
these hotspots were constrained to directly over Lake Erie,
suggesting stagnation over the lake. Many local-to-regional
and regional scale fires were burning during the BAQS-Met
campaign in all directions at various times during the cam-
paign, including the south-east. However, PSCF hotspots
were also noted to the northwest of the measurement site
over Michigan, hotspots which were influenced by the high
concentrations recorded on 5 July. No forest fires were de-
tected in these regions on or before 5 July, although very
large fires were burning for the majority of the campaign
in northern Ontario and Manitoba, further to the north-west.
The “analyzed smoke” fire product from ABBA showed that
smoke plumes from these fires influenced the BAQS-Met re-
gion only on a few occasions, one of which was 5 July. The
hotspots observed to the north-west of Harrow in the PSCF
appear to follow a trajectory in line with air masses which
passed over the Canadian Prairies 48-h previously. Thus,
as BB1 was only observed in significant concentration on 5
July, it is possible that these particles originated mostly from
these fires to the distant north-west, while BB2 may have also
had contributions from other fires in the region.

The spike in the BB1 factor’s temporal trend, as well as
the transition to the BB2 factor on 5 July, could be physically

explained by examining the impacts of thunderstorms, which
are commonly observed in the BAQS-Met study region (Sills
et al., 2011). Mesoscale meteorological analyses were used
to illustrate the impacts of thunderstorms on 5 July (details
on how these analyses were produced can be found in Sills et
al., 2011). Figure 9a highlights the passage of two gust fronts
at the Harrow site, each marking the leading edge of thun-
derstorm downdraft air at the surface. These gust front pas-
sages were characterized by rapid temperature decreases (up
to 5◦C), large increases in RH (up to 25 %), and winds gust-
ing up to 7 m s−1. The first gust front passage was associated
with a thunderstorm that developed north-west of Detroit af-
ter 13:00 EDT. This front moved rapidly southeast and was
observed at Harrow at 16:30 (Fig. 9b), corresponding with
the rapid rise in the BB1 factor. As mentioned previously,
forest fire emissions from distant fires over northern Ontario
and Manitoba were observed over northern Michigan mainly
on 5 July. It is possible that downdrafts associated with this
thunderstorm brought these particles to ground level from
aloft. A second thunderstorm developed, again to the north-
west of Detroit, after 16:00, and its gust front also moved
rapidly to the south-east, passing Harrow at 20:30 (Fig. 9c).
This was coincident with the onset of the shift to the BB2 fac-
tor. Two explanations can describe how these thunderstorms
may have led to the differences in chemical processing ob-
served in BB1 and BB2, namely that BB2 was enhanced sec-
ondary species such as sulphate, and was more acidic. First,
the 4-h difference between these two factors may have pro-
vided enough time for particles, even aloft, to have become
more chemically processed. Second, a slight difference in
path taken for these two storms may have provided the neces-
sary conditions:the most intense area of the first storm passed
just south of Detroit, while the second travelled through its
industrialized core. Thus, emissions of SO2(g) from sources
in Detroit may have led to enhanced levels of sulphate depo-
sition onto BB2 particles. As the BB2 factor was more com-
mon than BB1, this particle-type chemistry appeared more
typical for the region. These two biomass burning factors
provide not only an example of how thunderstorms can bring
rapid changes in particle composition, but also demonstrate
the power of particle-type-based PMF analysis for eliciting
such changes.

3.3.5 ECOC factors

The ECOC Day and ECOC Night factors were found to have
similar emissions origins, namely a carbonaceous local-to-
regional source emitted around Lake Erie. Although as with
the biomass burning factors these two factors appear to have
been justifiably separated by PMF. The following paragraphs
describe the reasons for this separation in more detail.

In general, the strongest evidence for a similar emissions
origin was the concurrent appearance of these factors during
PM episodes (Fig. 2), and the respective cross-apportionment
of particle-types from the same particle-type family (ECOC)
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Fig. 9. Stacked time series of the two Biomass Burning factors(a), and meso-analysis images showing the passage of two thunderstorm gust
fronts over Harrow on 5 July 2007 at 17:00 EDT(b) and 21:00 EDT(c).

(Fig. 3). Furthermore, all particle-types from this family
displayed very similar size distributions, with a geometric
meanDva of 0.68 µm. However, the strongly opposing di-
urnal trends of these factors indicated that they were differ-
ent (Fig. 10), a difference which gave rise to their respective
names. Whereas a mathematical justification for this separa-
tion was provided in Sect. 3.1, the following paragraphs aim
to describe the physical reasons supporting this separation.

As shown in Fig. 10, the ECOC Day factor, on aver-
age, showed rapid rises in its concentration at around 09:00.
These rises were, for the most part, consistent with the onset
of the nocturnal inversion break down, as indicated by in-
creased wind speeds beginning at approximately 08:00. This
suggested that higher concentrations aloft may have been
mixed in through the depth of the developing boundary layer.
However, on several mornings (i.e. 26 and 27 June, and 9

July), these rises also corresponded to lake breeze front pas-
sages observed at Harrow, suggesting this factor may have
been associated with the entrainment of particles into the
Lake Erie basin and subsequent stagnation during the night-
time. The spatial scale of emission was examined using the
CPF and PSCF; the HR PSCF was used as both the poten-
tial lake breeze and nocturnal inversion influences suggested
the emission location may have been relatively close. The
CPF indicated a potential source direction to the south-west
(Fig. 5d) which was confirmed through backtrajectory analy-
sis by the HR PSCF (Fig. 6c). The locations of highest emis-
sion probability were limited primarily to the western and
southern shores of Lake Erie, suggesting contributions from
large industrial sources, including coal-fired power plants,
and large cities such as Toledo. However, the HR PSCF also
indicated that influences from more far reaching sources to
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the south-west were also possible. As such, the ECOC Day
factor appeared to result from local-to-regional scale emis-
sions from around Lake Erie which were transported to Har-
row either through down-mixing from the breakdown of the
nocturnal boundary layer, or transport across Lake Erie from
lake breezes.

The mass spectra of the ECOC Day factor’s characteris-
tic particle-types were examined to identify potential source
classes. As shown in Fig. 3, all of these particle-types were
members of the ECOC family, each showing a different de-
gree of chemical processing. This strongly implied a car-
bonaceous source class, although refinement of this iden-
tification without the availability of additional mass spec-
tral tracers proved impossible. Hence the geographic origins
and particle-type profile for this factor indicated that it was
likely emitted by a diversity of local-to-regional carbona-
ceous sources around Lake Erie.

Unlike the ECOC Day factor, the temporality of the ECOC
Night factor (Fig. 2) was not dictated strictly by transport
as it only appeared during the night-time when the winds
were stagnant (<1 m s−1). Furthermore, it appeared to be
locally derived as its CPF (Fig. 5e) showed less directional-
ity than the ECOC Day factor, and its PSCF’s (not shown)
were inconclusive. Consequently, the ECOC Night factor
was believed to result either from chemical processing of
pre-existing particles or local night-time emissions. As this
factor appeared strongly related to the ECOC Day factor
due to its sequential appearance during PM episodes and
opposing diurnal trend, night-time chemical processing of
the pre-existing ECOC Day factor was the more plausible
interpretation. This hypothesis was reinforced by similar-
ity in their particle-type profiles, as shown in Fig. 3. On
the whole, the ECOC Night particle-types contained sig-
nificant amounts of nitrate and ammonium, in contrast to
the relatively low amounts of these species observed in the
dominant particle-types of the daytime factor. This sug-
gested that night-time nitrate uptake may have been the rea-

son for their temporal separation. This effect of nitrate par-
titioning to pre-existing particles has been previously re-
ported by Dall’Osto et al. from the REPARTEE-I field cam-
paign in London (2009). In the aforementioned study, two
particle-types showed anti-correlated temporal trends, simi-
lar to the ECOC factors reported here: a Long Range Trans-
port (LRT) Nitrate particle-type peaked at night, while a LRT
Nitrate core particle-type peaked during the day. During
the REPARTEE-I study, the two particle-types were distin-
guished by nitrate uptake at night, and volatilization dur-
ing the day, the same effect which led to the two ECOC
(Day and Night) factors in this study. In both studies, these
particle-types were transported to the site from either local-
to-regional or regional sources during PM episodes, were
mainly carbonaceous in nature, and displayed similar geo-
metric mean sizes (approximately 0.60 µm). In summary,
the ECOC Day and Night factors appeared to have origi-
nated from carbonaceous emissions from multiple local-to-
regional sources around Lake Erie, transported to Harrow ei-
ther through down-mixing during break-up of the nocturnal
boundary layer, or lake breezes. The ECOC Night factor ap-
peared to have been separated from the ECOC Day factor by
PMF due to night-time chemical processing, namely nitrate
uptake.

3.3.6 Nitrate Background and Nitrate Dust Factors

The Nitrate Background and Nitrate Dust factors displayed
moderate differences in their temporal trends (Fig. 2), yet
substantial differences in their particle-type profiles (Fig. 3).
Similar to the ECOC Night factor, both contained significant
amounts of nitrate, however, unlike the ECOC Day and Night
factors, these two nitrate factors were not thought to be re-
lated in their source class. Rather, their temporal trends were
believed to be the result of chemical processing in the case
of Nitrate Background, and a physical process in the case of
Nitrate Dust.

Figure 3 shows that particle-types from several families
defined the Nitrate Background factor. With contributions
from the EC, OCS N, OC, and DUST families, and mean
particle-type diameters ranging from as low as 0.32 µm to
0.64 µm, this factor was strongly externally mixed (Fig. 3).
Although these particle-types were all quite different in com-
position, each was internally mixed with nitrate and am-
monium, as evidenced by mass spectral peaks atm/z −46
[NO−

2 ], −62 [NO−

3 ], and +18 [NH+

4 ]. Thus, as with the
ECOC Night factor, the Nitrate Background factor likely re-
sulted from nitrate uptake to pre-existing particles. How-
ever, in this case, these were likely background particles due
to their regular appearance over the duration of the cam-
paign, and strong external mixing. Nitrate uptake was first
supported by the correlation with NO2(g) (Pearsonr = 0.35,
p < 0.05), a particulate nitrate precursor (Seinfeld and Pan-
dis, 2006); this was the highest observed NO2(g) correlation
among all the PMF factors. Second, the diurnal trend for
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this factor, as shown in Fig. 11, displayed an early morn-
ing peak at 05:00, with a subsequent decrease over the next
few hours consistent with nitrate evaporation as the tem-
perature rose. A lack of dominant wind directionality, as
demonstrated by the CPF (Fig. 5f) and inconclusive results
from the PSCF (not shown) reinforced local chemical pro-
cessing of background particles. Interestingly, particle-type
C11 (EC), which mostly resembled particles from source
diesel fuel emission studies (Spencer et al., 2006), was
mostly apportioned to this factor. This implied that diesel
emissions were mostly observed at night at Harrow, contrary
to expected daytime local emissions, and local-to-regional
scale transport patterns. Yet two physical explanations were
possible. It was possible that the shallow, night-time bound-
ary layer enhanced diesel particle concentrations in this semi-
rural region, or that these small particles were only mea-
sured by the ATOFMS once they had grown to a detectable
size through nitrate coating. Nighttime partitioning of ni-
trate in locally derived particles has been previously reported
during the REPARTEE-I campaign in London (Dall’Osto,
et al., 2009). In the aforementioned study, a Local Nitrate
particle-type was observed, which contained significant K
and EC, and was designated as locally produced due its small
modal diameter (0.30 µm). This Local Nitrate particle-type
displays some similarities to those from the Nitrate Back-
ground factor, mainly in the nitrate uptake to pre-existing lo-
cally emitted particles. However, some differences are ob-
served. In this study, particles from the dominant particle-
type C11, may not have been strictly locally emitted as the
largest source of diesel emissions is located on the local-
to-regional scale in Windsor. Furthermore, the methodol-
ogy presented in this study highlighted the strong external
mixing in this factor, suggesting that nitrate uptake was non-
discriminatory, partitioning to pre-existing background par-
ticles from a range of particle-types from different source-
classes, both carbonaceous and non-carbonaceous.

In contrast to the Nitrate Background factor, as presented
in Fig. 3, the Nitrate Dust factor was less externally mixed:
it was composed overwhelmingly of large geometric mean
diameter particle-types (0.96 to 1.41 µm) from the DUST
family. A high correlation between the Nitrate Dust factor
and PM2.5 mass concentration (Pearsonr = 0.39, p < 0.05)
suggested a crustal material contribution. Each dominant
particle-type contained significant amounts of nitrate, simi-
lar to the Nitrate Background factor. However, this nitrate
was believed to be non-volatile as the dominant cations in
mass spectra of these particle-types were Na+, Ca2+, and
K+ rather than ammonium (i.e. products from the reaction
of nitrate with crustal minerals, such as CaCO3 to form
Ca(NO3)2, Pratt and Prather, 2009). The CPF for this fac-
tor, shown in Fig. 5g, demonstrated an association with the
south-westerly direction, which was in line with the direc-
tionality of higher wind speeds, and indicated the possibility
of wind entrained dust. Its low resolution PSCF (not shown)
was highly similar to that of the Long Range Transport factor,
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Fig. 11. Stacked diurnal trends for the Nitrate Background and Ni-
trate Dust factors along with wind speed, relative humidity and tem-
perature.

indicating possible contributions from distant regions to the
south-west. A peak in its diurnal trend at 09:00, simultane-
ous with the rapid morning rise in wind speed (Fig. 11), was
also consistent with local wind liberated dust. However this
increase was not sustained throughout the day with increas-
ing wind speeds, and an alternative explanation was sought.
Given the abundance of dirt roads and cultivated fields in
the region, it is possible that anthropogenic activities, rather
than wind, were the major cause for re-suspension of this
dust. Accordingly, the decrease in the concentration of these
particles after the morning peak could have been due to ei-
ther decreased anthropogenic activity or greater removal by
wind-related atmospheric mixing resulting from breakup of
the nocturnal boundary layer.

4 Atmospheric implications and conclusions

PMF analysis of ART-2a determined ATOFMS particle-
types from the BAQS-Met campaign has resolved nine dis-
tinct factors. Through cross-apportionment of particle-types
to these factors, the coupled interactions of the atmospheric
determinants affecting PM composition in semi-rural south-
western Ontario (the Harrow BAQS-Met supersite) have
been elucidated. These determinants were emission source,
chemical processing, and transport. This was accomplished
via a systematic analysis of the following factor features:
the external mixing state of the factors in terms of particle-
type cross-apportionment; the internal mixing state of those
particle-types; and the temporal variability of the factors as
related to meteorological conditions.

The determinant that most commonly affected PM com-
position at Harrow was transport distance and/or time, an
observation not surprising given its semi-rural location. Ex-
amples of local-to-regional aerosol transport were found in
three factors, including carbonaceous emissions from around
Lake Erie (ECOC Day factor), fireworks emissions from
the Detroit region (Fireworks factor), and predominantly or-
ganic emissions from a local-to-regional unknown source to
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the north-west (Organic factor). Regional aerosol transport
was distinguished by the Long Range Transport and Biomass
Burning factors; the Long Range Transport factor appeared
during periods of sustained, synoptic flow from the south and
southwest, while the biomass burning factors were in part as-
sociated with air masses from the Canadian Prairies. Several
locally derived factors were also identified, whose variabil-
ity was associated with either primary source emissions from
mechanical entrainment (Nitrate Dust), or chemical process-
ing (Nitrate Background and ECOC Night).

Information regarding the source classes, as well as the de-
gree of chemical processing, was ascertained by each factor’s
external mixing of particle-types and those particle-types’ in-
ternal mixing state. The greatest degree of chemical pro-
cessing was observed in the Long Range Transport factor,
which, logically, showed the weakest external mixing. The
significant amount of secondary species that coated these
particles likely obscured any distinguishing tracer species,
resulting in a more homogeneous aerosol, at least as mea-
sured by ATOFMS.

Despite the relatively short duration of this campaign, its
distinctive meteorological conditions resulted in the variabil-
ity in PM composition essential for elucidating stages along
the continuum of chemical processing. For instance, the
chemical processing of common particle-types was noted for
two factor pairs: the Biomass Burning and ECOC factors. In
the case of the Biomass Burning factors, a change in particle-
type chemistry leading to factor separation was attributed to
sulphate enrichment. From an analysis of thunderstorm gust
front passages, this difference in chemistry was attributable
to two possible reasons: either more time for chemical pro-
cessing, or from one storm having moved just south of De-
troit before reaching Harrow, and the other having travelled
directly through Detroit’s industrialized core. In the case of
the ECOC factors, a change in particle-type composition was
attributed to nitrate uptake to pre-existing ECOC Day par-
ticles. A similar chemical process was observed for back-
ground particles in the Nitrate Background factor.

Although this sampling campaign provided the variable
meteorological conditions necessary to distinguish stages
in chemical processing, resolving this effect using other
datasets, while maintaining a mathematically robust solu-
tion, requires further study. Hence three recommendations
emerge for future PMF analyses of ATOFMS particle-types.
First, researchers should ensure that PMF solutions are both
mathematically robust and physically meaningful. Second,
as for any other receptor modelling study, mathematical di-
agnostic details of the solution should be reported to provide
the receptor modelling community with the opportunity to
improve upon this method (Reff et al., 2007; Ulbrich et al.,
2009). The last recommendation involves the need for more
ATOFMS particle-type receptor modelling studies in tandem
with receptor modelling of long-term, lower time-resolution
data. It is anticipated that the methodology presented in
this study, comprising the systematic examination of inter-

nal mixing states and the external mixtures of factor-defining
particle-types, can greatly enhance the understanding of fac-
tors resolved by low time resolution chemical composition
measurements.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/8133/2011/
acp-11-8133-2011-supplement.pdf.
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