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An introduction is given to the symmetrical square and triangular two-dimensional Bravais lattices. 
Next the two most symmetric two-dimensional, non-Bravais regular lattices are introduced - the 
honeycomb and the kagome . each derived from the triangular lattice. These four lattices have 
coordination numbers of four, six, three and four respectively. A third high symmetry two d imensional 
non-Bravais regular laltice, also derived from the triangular janice is introduced. The remarkable fact 
about thi s previously unknown lattice is thai its coordination number is five, 

O n introdui! des treillages Bravais sYll"Iftriques qui sont cam~s et Irjangulaires et qui ont deux 
dimensions. On presente ensuite des treillages non-Bravais r~gu l iers les plus symetriques qui ont deux 
dimensions, Ie rayon de miel et Ie kagone, chacun desquelsdkoule du treillage triangulaire. Ces quatre 
treillages ont des num~ros de coordination de valeur quatre, six, trois et quatre respectivement. On 
presente enfin un treillage regulier, de haute symetrie, bidimensionne et non-Bravais, une derivation 
du treillage triangulaire. l 'aspect remarquable de ce treillage, prealablement inconnu, est Ie fait que 
cinq est son numero de coordination. 

IntrodueHon 

Bulk solid materials are most commonly found in a crystalline state. Their 
constituents - atoms, molecules or ions - typically occupy the sites or vertices of a three 
dimensional lattice. Familiarexamples are the simple cubic, body centered cubic, face 
centered cubic, hexagonal close packed and diamond lattices. Descript ions and 
drawings of these lattices can be found in most textbooks on solid state physics. 

Less familiar but not uncommon are two-dimensional lattices. Kittel (1956) provides 
an exceptionally good introduction to them. They may occur as monatomic layers well 
separated from one another within the structure of a complex three-dimensional crystal 
and these have become of greater interest since the discovery of high temperature 
superconductors (Bednorz and Muller, 1986). In typical high T, cupratesuperconduc­
tors such as YBa,Cu,O ... or La, .• Sr.CuO, two-dimensional layers of CuO, within the 
parent compound appear to serve as the medium in which the current flows without 
resistance (Manousakis, 1991). 

For many years it has been accepted that there are four regular two-dimensional 
lattices of high symmetry - the square, triangular, honeycomb and kagome; if' each, all 
vertices are equivalent. In the four lattices each vertex has four, six, three or four nearest 
neighbour vertices or sites respectively. In this paper a prev iously unknown two­
dimensional lattice of high symmetry in which all the vertices are equivalent and each 
vertex has five neighbours is presented. 

Two Bravais latHee. - square and triangular 
A Bravais lattice is a simple lattice in which any two vertices are equivalent under 

translation alone (in more complex lattices two vertices are in general equivalent only 
under a combination of translation and rotation). The two most symmetric and 
common two dimensional Bravais lattices are the square (Fig 1 a) and triangular (Fig 1 b) . 
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Fig 1 The two most symmetric two-dimensional Bravais lattices (a) the square 
lattice; (b) the triangular lattice. 

Suppose you were a small but highly intelligent insect. You could walk along the 
nearest neighbour bonds from one vertex of a Bravais lattice to any other vertex and 
your view, facing the same direction, would be identical to that from the first vertex. 
This is a demonstration of the translational invariance of a Bravais lattice. 

Next suppose that you, the intelligent insect, remain at the same vertex of the square 
lattice but you rotate counter<lockwise by 90·, 180· or 270·, your view does not 
change at any of the four positions. This demonstrates the rotational invariance of the 
square lattice. Similarly rotation by 60·, 120·, 1 BO·, 240· or 300· at a vertex of a 
triangular lattice provides an identical view. Thus the square lattice has fourfold 
rotational invariance and the triangular lattice has sixfold rotational invariance. This 
rotational invariance is intimately related to the fact that a vertex on the square lattice 
has four nearest neighbours (coordination number four) while a vertex on the triangular 
lattice has coordination number six. 

These two lattices each have a third type of invariance. If several fellow insects 
erected a large mirror perpendicular to the lattice plane and orientated along one of 
the nearest neighbour bonds the reflection in the mirror would be identical to the view 
before it was obscured by the mirror. This is reflection invariance. 

Fig 2 The two most symmetric two-dimensional non-Bravais lattices (a) the honey­
comb lattice; (b) the kagome lattice. 
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Two non-Braval. lat1tce. - the honeycomb and the kagome 
The two most symmetric two-dimensional non-Bravais lattices are the honeycomb 

and the kagome lattices illustrated in Fig 2a and Fig 2b respectively. Note that the 
honeycomb lattice has coordination number 3 and that the kagome lattice has 
coordination number four. Now if you, bright insect. standing on the honeycomb 
lattice, walk from your initial vertex to one of its three nearest neighbour vertices 
without tuming. the appearance of the lattice in front of you appears different. 
However, if you also tum through 60·, 180· or 300· at the second vertex the lattice 
looks the same as you saw it initially. This is a manifestation of the invariance of the 
honeycomb lattice under a combination of translation and rotation. 

If you are standing on a vertex of the kagome lattice and walk to the next vertex you 
must also tum through an angle of 60· or 240·, clockwise or counter-clockwise 
depending on which vertex you walked to, for the lattice scenery to remain the same. 
This is a second example of a non-Brevais lattice being invariant under a combination 
of translation and rotation. If you now stand althe center of one of the hexagon "holes", 
the lattice from this vantage point is more symmetric for it is invariant under rotation 
about 60·, 120·, 180·, 240· or 300·. That is, it has sixfold rotational invariance. The 
honeycomb lattice also has reflection invariance in any mirror erected to run through 
the center of a hexagon and anyone of the 6 vertices nearest to the center. The kagome 
lattice has the same reflection and sixfold rotation invariances when observed from the 
center of one of its hexagons. 

The reader may observe in Fig 2a that the honeycomb lattice is invariant under 
translation if the translation is to a second-nearest neighbour of the initial vertex. 
Similarly, an examination of Fig 2b reveals that the kagome lattice is invariant under 
translation if the translation is to a third-nearest neighbour. . 

Construction of other lat1tce. tram the triangular lattice 
Fig 3a demonstrates that the triangular lattice may be considered as consisting of 3 

identical triangular sublattices whose vertices are labelled A, B, and C. Deleting any 
one of three sublattices produces a honeycomb lattice consisting of two triangular 
sublattices as illustrated in Fig 3b. The triangular lattice may be considered also as 
consisting of four identical triangular sublattices. Eliminating anyone of the four 
sublattices yields the kagome lattice. Thus the kagome lattice consists of 3 triangular 
sublattices. 

• • • • • • • • • • • • A S C A S C A A S A S A 

• • • • • • • ·s ·A • C A S C A. S A S 

• • • • • • • • • • ·s • A S C A S C A A S A A 

• • • • • • ·A ·s ·A ·8 C A S C A S 

• • • • • • • • • • • • A S C A S C A A S A S A 

• • • • • • C A S C A S 

Fig 3 Deriving the honeycomb lattice from the triangular lattice (a) the triangular 
lattice as composed of three triangular sublattices A, B, and C; (b) the 
honeycomb lattice as composed of triangular sublattices A and B. 
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The triangular lattice can not be considered as consisting of two, five, six or eight 
triangular sublattices, but it can be considered as consisting of seven equivalent 
triangular sublattices as shown in Fig 4a. To make this comparison more obvious the 
vertices of sublattice G have been joined by solid lines. If anyone of the seven 
sublattices is eliminated (e.g. G) a lattice of coordination number five,· illustrated in Fig 
4b, is obtained. It is like the honeycomb and kagome lattices in containing an array 
of hexagonal "holes" created by the deletion of one of the triangular sublattices. 

Fig 4 Deriving the new lattice from the triangular lattice (a) the triangular lattice as 
composed of seven triangular sublattices A, B, C, D, E, F, and G; (b) the 
coordination five lattice as composed of all but one of the seven sublattices 
in Fig 4a. 

Consider the symmetry of this new lattice; seen from the center of one of the 
hexagons it is, like the honeycomb and kagome lattices, invariant under rotation 
through a multiple of 60·. However, unlike the other two non-Bravais lattices, the new 
lattice does not have invariance under reflection in any line through the center of a 
hexagon. Indeed it does not have reflection invariance in any straight line drawn 
anywhere on the lattice. What .is important for any lattice is its symmetry with respect 
to the vertices of the lattice. 

To facilitate understanding ofthetranslation-rotation invariance ofthe new coordi­
nation five lattice, it has been decorated in Fig 5 with stylized maple leaves. 

Each vertex is now directly underneath the point on the leaf where its veins meet, 
the leaf's vertex. ,Pick any leaf as central, and notice that each of its five nearest 
neighbours is orientated at 60·, 120·, 180·,240· and 300· with respect to it. Suppose 
once more that you are an intelligent insect. What the leaves are telling you, for 
example, is that if you are initially standing on the vertex of a leaf facing the end point 
of the leaf and walk in that direction to the vertex of the next leaf, you must then turn 
counter-clockwise by 120· for the lattice with all its leaves to look identical to its 
appearance when you left your starting point. If you walk to anyone of the other four 
nearest leaves then the angle you must rotate through for the lattice to appear 
unchanged is one of 60·, 180·, 240· or 300· depending on which neighbouring leaf 
you reach. 

The translation-rotation invariance relation between any pair of nearest neighbour 
vertices means that this coordination five lattice is regular and has point group 
symmetry 6 and space group symmetry p6 (Kittel, 1956). 
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fig 5 The new lattices decorated with stylized maple leaves. All leaves on each 
sublattice point in the same direction. but the leaf orientations on different 
sublattices differ in direction by a multiple of 60°. 
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Discussion 

In this paper it has been shown that the honeycomb (Fig 2a) and kagome (Fig 2b) 
lattices can be derived from the triangular lattice by deleting sublattices. This led to 
the derivation of a new lattice by first regarding the triangular lattice as being composed 
of 7 sublattices and then deleting one of the latter. The remarkable feature of this new 
lattice is that it is a regular lattice with coordination number five. The symmetry of this 
lattice has been described in part by decorating the lattice vertices with stylized maple 
leaves oriented in a different direction on each sublattice. This lattice has half the 
symmetry of its triangular parent and three quarters the symmetry of the square lattice. 

One may predict that real physical systems having the structure of the coordination 
fi ve lattice will be found and/or made. The physical properties of such systems a re 
likely to be of interest and two possible examples in the field of magnetism are worth 
mentioning. The Ising model of nonconductingferromagnetsor antiferromagnets is the 
only phYSically realistic model of magnetic systems whose properties have been 
calculated exactly on two-dimensional lattices (the properties of several magnetic 
models have been calculated exactly on one dimensional lattices or chains). These 
exact solutions (Baxter, 1982) are of interestto theorists and experimentalists and it can 
be expected that the Ising model will be solved exactly on the coordination five lattice. 

The properties of other magnetic models e.g. the Heisenberg model, that are 
somewhat more complex than the Ising model , have not been calculated exactly on 
any two-dimensional lattice, and it appears unlikely that exact solutions will be found 
in the near future. However, several different methods have been developed to 
calculate the properties of such models to high precision on standard lattices and the 
same methods are applicable to these models on the new lattice. 
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