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ABSTRACT

Determining the taxonomic lineage of DNA se-
quences is an important step in metagenomic
analysis. Short DNA fragments from next-generation
sequencing projects and microbes that lack close
relatives in reference sequenced genome data-
bases pose significant problems to taxonomic
attribution methods. Our new classification
algorithm, RITA (Rapid Identification of Taxonomic
Assignments), uses the agreement between
composition and homology to accurately classify
sequences as short as 50nt in length by assigning
them to different classification groups with varying
degrees of confidence. RITA is much faster than
the hybrid PhymmBL approach when comparable
homology search algorithms are used, and
achieves slightly better accuracy than PhymmBL
on an artificial metagenome. RITA can also
incorporate prior knowledge about taxonomic
distributions to increase the accuracy of assign-
ments in data sets with varying degrees of taxo-
nomic novelty, and classified sequences with
higher precision than the current best rank-flexible
classifier. The accuracy on short reads can be
increased by exploiting paired-end information, if
available, which we demonstrate on a recently
published bovine rumen data set. Finally, we
develop a variant of RITA that incorporates
accelerated homology search techniques, and
generate predictions on a set of human gut
metagenomes that were previously assigned to dif-
ferent ‘enterotypes’. RITA is freely available in Web
server and standalone versions.

INTRODUCTION

Culture-independent sequencing is rapidly filling the gap
in our physiological and ecological understanding of the
world. For instance, 148 new bacterial phylotypes and
over 1.2 million novel genes were found by direct
sampling of environmental sequences in the Sargasso
Sea (1). Studies of the human gut microbiome have
revealed large wvariation in taxonomic community
profiles, but stronger apparent conservation of function
at the molecular level (2). Assembly of complete
genomes from metagenome samples is typically only
feasible for abundant members of a community (3-5),
and many organisms in complex communities are repre-
sented only by short contiguous regions or singletons.
Communities as a whole can be characterized using
small-subunit rDNA (SSU or 16S) or an expanded range
of taxonomic markers (6-7), but doing so may lead to
a skewed view of a microbial community’s composition
(8-10) and does not reveal the metabolic potential of
different members of a population. An alternative is to
characterize the functional capabilities of communities
by using random shotgun sequencing of DNA or RNA
(11,12). An important step in this approach is the assign-
ment of short reads to taxonomic lineages using compos-
ition- or homology-based approaches. While genome
composition is an informative trait for the classification
of DNA sequences, the presence of confounding factors
such as G+C variability, novel genomes and inter-group
genetic similarities complicates fragment annotation (13).

Homology-search approaches such as BLAST (14), and
classifiers such as CARMA (15), TreePhyler (16) and
MetaDomain (17) can be used to identify evolutionary
relationships through statistical comparison of a query
fragment to a set of annotated reference sequences.
These methods are highly accurate as long as there is a
similar sequence within the reference set, but sequences
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that are evolutionarily distant from examples in the refer-
ence set can be difficult or impossible to match with
homology-based methods. Composition-based classifiers
based on the k-nearest neighbors (18), support vector
machine (SVM) (19), Naive Bayes (NB) (20-22), or
Markov model (23,24) paradigms compare signatures of
short motifs from a query fragment to models capturing
the motif signature of a complete genome. These
approaches, though inferior to homology when a similar
genome is part of the training set (23), have been used to
find distant taxonomic signal to classify novel sequences
correctly to higher ranks. NB also underpins the classifier
used by the Ribosomal Database Project to assign SSU
rDNA sequences to taxonomic groups (25).

When novel taxonomic groups (i.e. organisms from
genera, families, or even broader groups from which no
sequenced representative is available) are present in a
metagenome, an additional type of error is possible,
where a fragment is classified to a taxonomic group that
is too specific (e.g. a member of a novel family being clas-
sified to a species of the same order). Although part of the
lineage is correct, the overly specific classification could
produce misleading estimates of microbial diversity or
assign critical metabolic reactions to organisms incor-
rectly. Parks et al. (20) distinguish between rank-specific
approaches that target one rank (e.g. genus or phylum) for
all classifications, and rank-flexible methods that can
make precise predictions when strong evidence is avail-
able, but can fall back to higher ranks when such
evidence is lacking. Automatically choosing the appropri-
ate rank of a classification is a more difficult problem, but
is essential when dealing with varying degrees of novelty;
otherwise all classifications may need to be made at a con-
servative rank such as phylum, even though identification
of individual genera may be possible for some fragments.
MEGAN (26) uses a lowest common ancestor (LCA)
approach to assign rank-flexible taxonomic classifications
to DNA sequences analyzed by a rank-specific classifica-
tion algorithm, in this case the assignment of taxonomy
based on best BLASTX matches. TACOA (18) classifies
sequences to an appropriate rank based on evidence from
a modified nearest-neighbor classifier. PhyloPythiaS (19)
also provides rank-flexible attributions by assigning frag-
ments to the LCA in agreement between linear SVMs
trained on genomic fragments of different lengths.

Shorter DNA sequence lengths present a greater chal-
lenge to classifiers and require more-careful modeling of
composition and homology to yield accurate classifica-
tions (15,27). Sequencing technologies that generate
many short reads are now very common: for example,
GS-FLX sequencing was used to study the diversity of a
glacier metagenome, resulting in a set of 1076539 reads
with a median length of 243 nt (26). The bovine rumen
data set of (5), generated with Illumina sequencing,
produced paired-end reads of length 36 to 125nt.
Phymm (23) computes Markov models of sequence
composition on overlapping n-mer windows to learn
taxonomic signatures, and was validated using the
metagenome of an acid mine drainage environment (3).
With 1000-nt fragments and removal of sequences from
other genomes of the same species, Phymm yielded
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accuracies comparable to a best BLAST-based
approach, but with shorter sequences the classification
accuracy is considerably worse than that obtained using
best BLAST. PhymmBL takes a linear combination of
log-scores from BLASTN and Phymm in order to
achieve higher accuracy than can be obtained by using
either approach in isolation.

In this article, we propose a sequential classification
pipeline, RITA (Rapid Identification of Taxonomic
Assignments), which uses homology- and composition-
based approaches to obtain sets of highly confident taxo-
nomic assignments determined by progressively more
time-consuming algorithms. Although it is a hybrid
approach like PhymmBL, RITA uses our previously
developed NB classifier (20) to generate compositional
predictions, and uses an optimized choice of homology
detection algorithms to accelerate the essential homology
assignment step. Furthermore, we present an approach for
using 16S rDNA profiles of a community to help estimate
the novelty in a microbiome which provides a method for
rank-flexible classification of sequences that does not
require multiple taxonomically distinct BLAST hits for a
fragment. RITA is able to achieve very high specificity on
short reads, is robust to sequencing errors, and can deal
with novel sequences by classifying them to an appropriate
taxonomic rank. We also show that exploiting paired-end
information from short reads can substantially increase
the accuracy of classifications, reducing the number of
sequences that are assigned to implausible groups.
Finally, we test a version of RITA that uses USEARCH
(27) as an initial filter to reduce the number of BLAST
comparisons that need to be carried out, and show similar
classifications to the set of gut metagenomes used to
propose the enterotype hypothesis (28).

MATERIALS AND METHODS
The RITA pipeline

The RITA pipeline (Figure 1) is a hybrid classifier that,
like PhymmBL, uses both homology and compositional
information. However, RITA differs from PhymmBL in
three critical ways. First, RITA uses the NB classifier de-
veloped by (20) in place of the interpolated Markov
models of Phymm, which increases the speed over
10-fold with no loss of accuracy. Second, RITA uses an
approach that places greater weight on homology-based
predictions, first testing whether homology and compos-
itional predictions agree, and then checking whether
homology results alone strongly favor one taxonomic
label over all others. Third, a rank-flexible version of
RITA allows the user to provide a list of expected taxo-
nomic groups (e.g. established from a marker-gene study)
to restrict the set of predictions that can be made by
RITA.

Homology-based predictions made with BLAST can be
very time-consuming, and RITA uses three BLAST algo-
rithms (Figure 1) in order to save computational running
time. Discontiguous MEGABLAST (D-BLASTN) is
executed first in our pipeline as it is the fastest of the
BLAST algorithms. The best hits of D-BLASTN are
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Figure 1. RITA pipeline schematic. Input DNA fragments are sorted
into different classification groups based on the outcome of homology
searches and compositional classifications.

combined with the best hits of the NB classifier to generate
our most confident set, Group la. Group 1b is composed
of highly confident D-BLASTN matches that do not agree
with the best-scoring NB model, since homology-based
classification is superior to composition-only classification
(Supplementary Figure S1). The threshold for this group
is based on the orders of magnitude separating the best
overall E-value from the E-value corresponding to the best
model genome from a different taxonomic group. For
example, if the top two matches are to genus
Polaromonas but the third is to genus Streptococcus,
then the magnitude difference is calculated between the
best match and the third match. If this difference
exceeds the pre-specified threshold, then the label of the
best match is assigned to the sequence, otherwise the
sequence is passed to the next step in the pipeline.
Group 2a and b are assembled analogously to Groups
la and 1b, using the BLASTN algorithm. Sequences
still unassigned are considered for Group 3a and b
which are based on the more-sensitive but slower
BLASTX algorithm. Finally, Groups 4 and 5 are
composed of the fragments that share no unambiguous
homology with our training set. These fragments can be
classified with NB and thresholded based on the likelihood
ratio of the best prediction to the next-best prediction of a
different target rank. The modular nature of the RITA
pipeline allows the substitution of different algorithms at
different points in the pipeline: in the analysis of the
‘enterotype’ data set of (29) below, we replaced the three
BLAST homology search steps with an approach that first
identifies potential homologous matches using UBLAST
(30), and then runs BLASTX on the reduced set of candi-
date matches (see Supplementary Methods section for
details).

Nucleic Acids Research, 2012, Vol. 40, No. 14 elll

Genomes, metagenomes and reference models

A total of 2708 completely sequenced and draft bacterial
and archaeal genomes were downloaded from the NCBI
RefSeq database (31) in February 2011. Subsets of these
genomes were selected to generate various validation sets
throughout this work. Genomes were merged at the level
of species, and used to construct reference homology and
compositional models. The homology model consisted of
nucleotide sequence databases containing all contiguous
sequences from all genomes for D-BLASTN and
BLASTN, and a protein sequence database containing
all conceptually translated, predicted open reading
frames from the full set of reference genomes. Individual
NB models were constructed for each species. Each model
consisted of conditional probabilities of n-mers of length
10 estimated by counting observed n-mers over all contigs
within a species on both the forward and reverse DNA
strands (20). N-mers containing characters other than A,
C, G or T were discarded. Phymm ICMs were built for
each species file using the software provided by (23) that
was downloaded on 10 May 2010. PhyloPythiaS models
were built using version 1.1 of the software provided by
(19). Models were trained using two sets of fragments with
varying lengths: (100, 200, 300, 400, 500, 1000, 2000, 3000)
and the default (1000, 3000, 5000). Results are reported
for the set of models obtained using shorter training frag-
ments as these models produce slightly better results.
RAIphy models were built using version 1.0 of the
software provided by (24).

We used the following data sets for the analyses
described in the Results section (see Supplementary
Methods section for further details). The artificial ‘leave-
onc-out’ data set consisted of 534 reference sequenced
genomes from NCBI, covering a total of 334 named
species. The glacier metagenome and associated 16S
profiles of (28) were used as the basis for a simulated
‘pseudometagenome’ analysis and the validation of the
rank-flexible classifier. Paired-end Illumina data from the
bovine rumen data set of (5) were used to test the agree-
ment between paired ends. We also tested the ‘enterotype’
hypothesis of (29) wusing both predictions from
SmashCommunity (32) and RITA.

Classification strategy

Classification by rank-specific RITA was performed by
finding the best-matching compositional (i.e. maximum
likelihood) and homology (i.e. best BLAST match)
models from among the set of reference models. Rank-
specific classification was carried out with a uniform
target taxonomic rank; a true positive prediction occurs
when the model chosen is a member of the correct taxo-
nomic group at the appropriate rank. Agreement among
compositional and homology classifiers is assessed at the
target rank We used a maximum FE-value threshold of
107 to assign BLAST matches, and set the interval for
assigning sequences to Groups 1b, 2b and 3b to 20 orders
of magnitude.

Rank-flexible classification with RITA follows the same
procedure for finding a best-matching model, but uses
additional information from a 16S phylogeny to assign
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models to appropriate taxonomic groups and ranks (see
Supplementary Methods section for details). One 16S
rDNA sequence was selected from each genome in our
2708-genome set by best BLAST match with sequences
from the Ribosomal Database Project (25) with the fol-
lowing parameters: strain = type; source = isolates; qual-
ity = good; size > 1200. These sequences, along with the
16S reads associated with a metagenome sample, were
aligned and hypervariable regions were masked using
mothur 1.15.0 (33). A phylogenetic tree was constructed
from the alignments using FastTree 2.1 (34) and rooted
between Archaea and Bacteria. The best-matching
homology model was used to set the appropriate target
taxonomic rank and group for classification; agreement
was concluded if the best-matching compositional model
belonged to the same taxonomic group.

Sensitivity, specificity, false negative rate and unclassi-
fied rate are defined appropriately for multi-class
problems (35). We use P, TP;, FP,, TN;, FN; and U, to
represent the total positives, true positives, false positives,
true negatives, false negative, and unclassified samples of
class label i respectively. Measures of accuracy are then
defined as follows: sensitivity (Sn;) = TP;/P;, specificity
(Sp;) = TP;/(TP;+ FP,), false negative rate (FNr;) = FN;/
P, and unclassified rate (Urate;) = U;/P;, where
P;=TP;+FN;+ U, is the set of examples for class i.
Summary statistics over all class labels of a taxonomic
rank are the mean of the rate over each class label.

RESULTS
Leave-one-out synthetic data set

We performed a detailed evaluation of three variants of
the BLAST algorithm and several leading composition-
based classifiers on a synthetic ‘leave-one-out’ data set
built from 534 completely sequenced genomes. While the
genomes in this set do not constitute a real community,
using reference genomes allows us to vary the simulated
read length, introduce different amounts of error into
sequences, and control the degree of taxonomic novelty
(and hence the difficulty) in the data set. Our NB classifier
and Phymm showed similar sensitivity at different
fragment lengths at both the genus and phylum prediction
levels, and both were more accurate than RAIphy and
outperformed PhyloPythiaS on the subset of fragments
that were classified by this algorithm for all fragment
lengths <1000 (Figure 2). Furthermore, PhyloPythiaS
had a significant advantage in that the same genomes
used for testing were present in the training set: this was
not the case for either NB or Phymm. Our NB implemen-
tation is considerably faster than Phymm, requiring only
1 min for NB versus 26 min for Phymm to classify 33400
fragments of length 200nt [see also (20)]. Since the
homology and composition-based approaches are comple-
mentary and can lead to higher-confidence predictions, we
also benchmarked approaches that combine these two
types of classifier (see Supplementary Methods section
and Supplementary Figures S1-S3). The combined
scoring scheme of PhymmBL has lower specificity than
the agreement-based classifier defined here largely due to
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Figure 2. Sensitivity of composition-based classifiers on a synthetic
‘leave-one-out’ test set. Results are reported for both phylum (A) and
genus (B) predictions. PhyloPythiaS (PPS) is a rank-flexible classifier so
may not provide a prediction for all fragments at a given taxonomic
rank. To compare against this classifier, the sensitivity of NB and
Phymm over the subset of fragments classified by PPS are given.

the Phymm classifications being used in isolation
whenever there are no BLAST matches. This also leads
to a higher sensitivity at the expense of a greatly increased
number of false negative classifications.

The accuracy of RITA on the leave-one-out data set is
shown at the genus and phylum levels, with self-matching
species excluded, in Figure 3a and b and for all levels in
Supplementary Tables S1-S4. The only parameters that
need to be set in RITA are the E-value interval that
defines Groups 1b, 2b and 3b, and the likelihood ratio
used to distinguish Groups 4 and 5. We chose 20 as the
E-value interval to enforce a strong preference of one
group over another in homology terms, and for the
purposes of reporting accuracy here did not distinguish
Groups 4 and 5 (see Supplementary Methods section
and Supplementary Figure S4 for an exploration of ratio
settings). A user of RITA might wish to use only the
highest-confidence set consisting of Group la and b,
an ‘all-homology’ set which includes Group 1-3, or
a set that also includes some (Groups 1-4) or all
(Groups 1-5) of the predictions that are based on com-
position only. Similarly, one can take the full set of
PhymmBL predictions, or only the subset of PhymmBL
predictions that are based on homology as well as
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Figure 3. Performance comparison of RITA and PhymmBL on leave-one-out data set. Sensitivity and specificity of different subsets of RITA
predictions, full PhymmBL predictions, and the subset of PhymmBL predictions that are based on both homology and composition are shown.
Simulated DNA fragments of lengths 50, 100, 200 and 1000nt are reported; sensitivity increases with increasing fragment length such that the
leftmost symbol of a particular group always corresponds to the 50-nt fragment. (A) Genus-level predictions with same-species matches excluded;
(B) phylum-level predictions with same-species matches excluded; (C) phylum-level predictions with same-class matches excluded.

composition (which we refer to as the ‘PhymmBL subset’).
A common feature of homology-inclusive sets of predic-
tions is their relatively high specificity: RITA Group 1,
Groups 1-3 and the PhymmBL subset all have specificity
in excess of 90% in Figure 3a—b, with the lone exception of
the PhymmBL subset of genus-level predictions on frag-
ments of length 1000. The PhymmBL subset and RITA
Groups 1-3 have similar accuracy, although at the genus
level the PhymmBL subset tends to have higher sensitivity
but lower specificity. The full prediction sets (RITA
Groups 1-5 and PhymmBL) tend to have similar sensitiv-
ity and specificity that increases from ~50% on fragments
of length 50nt, to ~80% on fragments of length 1000 at
the genus level, and from ~60% to 90% at the phylum
level. PhymmBL showed slightly higher sensitivity and
specificity on the longest fragments. However, RITA
tends to have much higher specificity than PhymmBL on
fragments of length 50 and 100 nt: accuracy across differ-
ent genera is highly variable (20), and the main reason for
this appears to be the tendency of RITA to assign many
false positive predictions to five genera in particular,
namely Rhizobium, Bacillus, Staphylococcus, Clostridium
and Streptomyces. Since the majority of genera have a
very small number of false positives assigned to them,
the overall average specificity is very high. In (20) the
composition-only approaches Phymm and NB were
shown to have very similar accuracy properties, albeit
with somewhat different performance on some genera:
the difference in specificity between the hybrid approaches
seen here is likely due to RITA’s use of agreement as a
criterion, which will discard some sequences that would be
classified by PhymmBL’s combined scoring function.
Since RITA Groups 4-5 have very low accuracy, and
are enriched in non-coding and unclassified sequences
(Supplementary Figure S5), for many applications we rec-
ommend the use of Groups 1-3 for classification, espe-
cially if reads are short. However, NB often ranks the
correct taxonomic group near the top in cases where an
incorrect prediction is given (Supplementary Figure S6),
so Groups 4-5 may still be useful if combined with other
information such as taxonomic priors or read depth.
Classification at the phylum level with exclusion of
species-level lineages (Figure 3b) can be successful if

informative homology and compositional information is
present in reference genomes from the same genus, family,
order, class or phylum as the test genome. A much more
challenging problem is classification at the phylum level
with removal of all members of the same class as the test
genome, since members of different classes (e.g. Alpha-
proteobacteria and Gammaproteobacteria, or Clostridia
and Firmicutes) must provide enough compositional and
homology information to classify the fragment. The
results in Figure 3c confirm that this is an extremely dif-
ficult problem: regardless of the choice of classification
algorithm, subset and fragment length, the sensitivity
and specificity scores are appallingly low. Specificity
never exceeds 13% and sensitivity is always <10%.
From these results it is evident that the compositional
profiles from one taxonomic class are not likely to be char-
acteristic of the entire phylum, which is consistent with the
observations of (13). Homology information is clearly un-
helpful too, as lateral gene transfer, lineage-specific
proteins and highly divergent sequences are very likely
to occur at these deep taxonomic levels.

Glacier ice metagenome: rank-flexible classification
and the effects of sequencing errors

The results in the previous section suggest that RITA pre-
dictions are comparable in accuracy to a carefully chosen
subset of PhymmBL predictions, but highlight the con-
founding role that is played by taxonomic novelty. To
evaluate a data set with varying and realistic degrees of
novelty but still with a known true origin for each
fragment, we created a pseudometagenome with simulated
reads sampled from sequenced genomes in a way that
mirrors the read length and taxonomic distribution of
the glacier ice metagenome of (28). This data set consists
of short reads and is sampled from a diverse community
with varying degrees of taxonomic novelty: 16S rDNA
sequence analysis suggested the presence of 11 bacterial
phyla, with ~60% of the reads from phylum
Proteobacteria, and a large proportion of those from the
genera Sphingomonas, Stenotrophomonas, Cryobacterium
and Polarmonas. A similar profile was found with
a random read analysis by the developers of CARMA
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(15) and Treephyler (16). We randomly sampled reads
from 56 reference genomes to mimic the composition of
this metagenome (Supplementary Table S5), and removed
these genomes from the set of reference models in our
database. The resulting data set has varying degrees of
novelty with respect to our reference database at all taxo-
nomic ranks from species to phylum: the extensive novelty
in this data set means that many community members
cannot be correctly classified at more-precise ranks such
as genus or family. We compared two rank-specific clas-
sifiers (RITA and PhymmBL) at the level of phylum, and
two rank-flexible classifiers (RITA and PhyloPythiaS),
which can classify sequences to any taxonomic level, and
tested the effects of introducing sequence changes that
mimic different degrees of DNA sequencing error. A test
of sequencing error rates of up to 5% (Supplementary
Figure S7) on the leave-one-out data set used above
showed little difference between either the base classifica-
tion accuracy or the sensitivity to error of NB versus
Phymm [see also (20)], but differences may arise due to
the different ways in which RITA and PhymmBL combine
homology and compositional information.

Rank-specific classifications at the phylum level for
both PhymmBL and RITA are shown in Figure 4a.
RITA Group 1 is a very conservative subset, with specifi-
city = 69.8% and sensitivity only 37%. Expanding the
RITA set to include all homology-based Groups 1-3
increased sensitivity by 11.1%, while decreasing the spe-
cificity by only 3.5%. Including all RITA predictions
(Groups 1-5) increased sensitivity and decreased speci-
ficity by a further 2-3%. Applying RITA to pseu-
dometagenome fragments with introduced errors showed
some sensitivity to sequencing ‘noise’, but the overall sen-
sitivity decreased by <6% as error rates increased from
0% to 5%, and specificity remained stable. The sensitivity
of the PhymmBL subset on error-free sequences was less
than the RITA Group 1-3 subset, even when RITA was
classifying sequences with error rates of 5%. The full set of
PhymmBL predictions had the highest overall sensitivity
(11.9% greater than the PhymmBL subset, and 5.4%
greater than RITA Groups 1-3), but with a specificity
~20% lower than that of the other classifiers.

Given the composition of our reference database and
the set of reference genomes, it is in many cases impossible
to classify a sequence correctly to a taxonomic level more
precise than order or family. The choice to classify at the
phylum level above reflects this limitation, but ignores
cases where precise matches can be made at more-precise
taxonomic ranks. We therefore modified RITA to perform
rank-flexible classification that uses a user-provided file
containing representative 16S rDNA sequences to map
reference genome models to appropriate taxonomic
ranks (see Supplementary Methods section and
Supplementary Figure S8). For comparative purposes,
we also applied PhyloPythiaS in a way that limits its taxo-
nomic predictions to categories that are expected based
on the 16S profile. The performance of these two rank-
flexible classifiers, broken out by phylum, is compared in
Figure 4b. PhyloPythiaS is very conservative on this
data set, with most fragments classified on average to
either the phylum or domain level. Greater distances
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Figure 4. Performance of RITA in comparison with other leading
methods on a glacier pseudometagenome. (A) Comparison of sensitivity
and specificity of different RITA subsets and PhymmBL (rank-specific,
phylum-level classifications). Dashed ovals surround different RITA
subsets with varying amounts of random sequence error introduced.
(B) Precision and accuracy of rank-flexible RITA and PhyloPythiaS
on the glacier ice pseudometagenome. Values on the x-axis indicate
the average taxonomic precision for each phylum on a scale from
root = 0 to genus = 6, while the y-axis indicates the average number
of ranks that were correct. The dashed line is equivalent to y = x and
shows the theoretical maximum accuracy.

from the diagonal line indicate a greater degree of
over-classification. RITA assigned fragments from some
phyla such as Gemmatimonadetes (one reference genome)
and Verrucomicrobia (seven reference genomes) to an
overly specific rank relative to PhyloPythiaS which made
less-precise calls on these same phyla. However, RITA
dramatically outperformed PhyloPythiaS on two critical
phyla, Proteobacteria and Actinobacteria, increasing the
precision of assignment by nearly two full ranks (e.g. from
phylum to order) with negligible loss of accuracy. An add-
itional two phyla, Deinococcus-Thermus and Chloroflexi,
were classified with extremely high precision and accuracy
by RITA, possibly owing to the relatively sparse
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taxonomic representation of these phyla in the set of
sequenced genomes.

Finally, we ran the RITA pipeline on the actual
metagenome data collected by (28), in rank-flexible
mode and in rank-specific mode at the taxonomic levels
of phylum and genus. Of the 1076539 reads, a total of
599048 (55.6%) were classified in Groups 1-3, with
219366 (20.4%) classified at a rank more precise than
domain by the rank-flexible classifier. Although this set
is a small fraction of the total reads, these are
high-confidence predictions and are summarized in
Figure 5a and Supplementary Table S6. The distribution
of assignments to different ranks between class and
genus was roughly equal, with phylum-level predic-
tions slightly more numerous and dominated by
Bacteroidetes, and every other rank dominated by
Proteobacteria. Highly precise predictions were made
for the genera Polaromonas, Flavobacterium, Pedobacter
and Deinococcus, and the species Stenotrophomonas
maltophila: in addition, many predictions at ranks higher
than genus corresponded to the taxonomic lineage of
Polaromonas. For the rank-specific classifier, the
phylum-level breakdown of predictions was similar
whether predictions were made at the level of phylum or
genus (Figure 5b and Supplementary Table S7). A total of
295880 reads were assigned to Groups 1-3 at the genus
level, and 574029 at the phylum level. Frequently
observed genera include Polaromonas (41187 reads,
13.9% of all assignments made at the genus level),
Methylibium, Variovorax, Burkholderia and Leptothrix
(9000-12000 reads each) from the Proteobacteria;
Chitinophaga, Flavobacter and Pedobacter from the
Bacteroidetes (6000—11000 reads each); Deinococcus
(4264 reads); Gemmata (3415 reads); and Gemmatimonas
(4388 reads). Of the other major genera identified by (28),

A B

Phylum

Chloroflexi
Verrucomicrobia
Gemmatimonadetes
Acidobacteria
Planctomycetes ——————
Deinococcus / Thermus
Firmicutes =——————— ol

Cyanobacteria

Actinobactei
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Sphingomonas had 1594 associated reads. While
Cryobacterium was absent from our reference set of
genomes, Clavibacter, a member of the same family
(Microbacteriaceae), had 1889 associated reads, second
in the Actinobacteria after Mycobacterium.

Bovine rumen metagenome: using paired-end,
short-read data

The metagenome of a cellulose-degrading cow rumen
community was studied wusing paired-end Illumina
sequencing technology (5), which generated reads of
length 75 and 125nt, with spacers of length 200, 300,
3000 and 5000 nt. Although the read lengths are extremely
short for the purpose of taxonomic identification, the
presence of paired ends in the data suggests two alterna-
tive approaches to improve classification accuracy. This
arrangement allows the combination of predictions
associated with both ends in a more-stringent way, for
instance by requiring both ends to match the same
reference genome in order to mark the fragment as classi-
fied. We explored the impact on classification of using
such an agreement-based approach by constructing a
pseudometagenome from reference genomes with
varying degrees of taxonomic novelty which mimics the
sequence and spacer length distribution of the rumen
metagenome. Our pseudometagenome incorporated frag-
ments from fifteen genomes, five of which were novel at
the levels of strain, species and genus. Each genome was
sampled in the same proportion (see ‘Materials and
Methods’ section and Supplementary Table S8). We also
examined the degree of agreement and frequency distribu-
tion of different taxonomic groups for a subsample of the
rumen data set of (5), consisting of 200 000 reads lacking
ambiguous characters.

Proteobacteria:
1 Polaromonas
2 Methylibium

3 Variovorax

4 Burholderia

5 Leptothrix

Bacteroidetes:
6 Chitinophaga
7 Flavobacterium
8 Pedobacter

Figure 5. RITA classifications of the glacier metagenome of (26). (A) Rank-flexible classifications in Groups 1-3 to ranks between species and
phylum. The inner ring identifies the rank at which different fragments were classified, while the outer ring shows the distribution across different
labels at that rank, colored by the phylum to which the taxon belongs. Phylum colors: blue = Acidobacteria, green = Bacteroidetes,
red = Proteobacteria, orange = Actinobacteria, black = other. Alternating shades of the same color are used to distinguish different taxa at the
same rank from the same phylum. The taxonomic lineage of Polaromonas is identified with asterisks. (B) Rank-specific classifications at the phylum
(outer ring) and genus (inner ring) levels, with color scheme as in panel A. Deepest red and green represent aggregated ’other’ genera of

Proteobacteria and Bacteroidetes.
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A comparison of classification accuracy on
pseudometagenome sequences, separated by degree of
taxonomic novelty and the inclusion or exclusion of a
paired-end agreement criterion, is shown in Figure 6a
(genus-level classification) and 6b (phylum-level classifica-
tion). Given the accuracy of the Group 1-3 set in previous
analyses, we required at least one of the two ends in an
agreeing pair be assigned to one of these groups to suc-
cessfully classify both ends. Using the paired-end con-
straint in classification invariably has the effect of
decreasing the number of sequences that are both correctly
and incorrectly classified. The benefits of this approach are
dependent on the degree of taxonomic novelty: since the
classification accuracy of genome fragments from ‘known’
species (i.e. novel strains) is extremely high, little benefit is
achieved by adding the paired-end constraint. When clas-
sifying novel species, the total number of classified
sequences drops by >10%: when classifying fragments at
the genus level, this reduced the false negative rate by a
factor of >10, from 5.8% to 0.5%. However, when

A 100 1 — —
Genus
80
OUnclassified
mFalse negatives
B True positives
0 I

UN PE UN PE UN PE

B 100 — =
Phylum
80
OUnclassified
mFalse negatives
W True positives
0

UN PE UN PE UN PE

Figure 6. Classification accuracy of rank-specific RITA on constituents
of a rumen pseudometagenome at the genus (A) and phylum (B) levels.
Accuracy is shown for three levels of genomic novelty: genomes that
are novel at the level of genus (leftmost pair of bars), novel at the level
of species (middle pair), and novel at the level of strain (rightmost
pair). Paired bars for each combination of classification rank and
degree of novelty represent the scoring of reads in an unconstrained
way (UN) and using a paired-end constraint (PE).
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classifying at the phylum level, the false negative rate
was only 1% in the absence of the paired-end restriction,
so many more true positive than false negative classifica-
tions were discarded. Classifying novel genera at the genus
level is impossible, so all predictions in this set are incor-
rect: the paired-end constraint reduced the false negative
rate from 31.1% to 19.9%. When classifying to the
phylum level, the false negative rate dropped from 5.5%
to 0.6%.

We also applied RITA to a sample of 200000 reads
from the bovine rumen metagenome data of (5).
Although accuracy cannot be assessed given the lack of
ground truth, we can evaluate the effect of applying or not
applying the paired-end requirement for classification, in
terms of the effect on the total number of classified se-
quences, the agreement with the broad taxonomic results
(considered only at the taxonomic level of order) of (5),
and the reported taxonomy in light of known rumen or-
ganisms. Rank-specific RITA classified a relatively small
number (39 149/200 000, with a total of 608 genera pre-
dicted) of reads from the sample, and this number
dropped even further (14016/200000, with a total of
178 genera predicted) with the use of the paired end re-
quirement. The tighter distribution of genera was reflected
in the percentage of reads that were mapped to the top 15
most frequent genera: in the absence of the paired-end
constraint, only 67.1% of classified reads were assigned
to this set, while 91.3% were assigned to the top 15
genera when the paired-end constraint was used. Genera
are shown, sorted by decreasing number of assignments, in
Supplementary Table S9. Not surprisingly, there is strong
agreement between the two lists, with 13 genera appearing
in the top 15 of each list. Nine of these fifteen genera fall
into the two orders highlighted in the original paper
(Clostridiales, including Butyrivibrio which was identified
by the original authors, and Bacteroidetes), while five
of the remaining genera (Fibrobacter, FEubacterium,
Methanobrevibacter, Victivallis and Slackia) are frequently
found in rumen or gut samples. Genus Acinetobacter is not
normally associated with the gut and is aerobic, in
contrast with the other identified groups, and its drop in
rank from tenth (587 total reads) in the unconstrained set
to 99th (one paired set of reads) in the constrained set may
indicate that it is a frequent false positive that is effectively
filtered using the paired-end constraint. Two orders
identified in the original study, Spirochaectales and
Myxococcales, do not appear in the top 15 genera from
the unconstrained classifications, but the Spirochaete
Treponema was ranked 12th in the constrained list; fur-
thermore, the composition-based approach used by (5)
may have misassigned some novel lineages to the incorrect
order. We note that the Myxococcales contain several
large genomes (>5Mb) including members of genus
Anaeromyxobacter,  Myxococcus and  the titanic
Sorangium cellulosum, which have been impacted by ex-
tensive LGT (36,37); consequently, rumen-associated or-
ganisms of many other lineages may share a great deal of
compositional and genetic similarity to members of this
order.
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Increasing the speed of predictions and hypothesis testing
on a set of gut microbiomes

Although our NB classifier is considerably faster than
Phymm, the homology search component (particularly
BLASTX, which needs to search six-way conceptual
translations of nucleotide sequences) is the principal
limiting step. USEARCH (30) attempts to optimize
homology search using a range of techniques including
k-mer based prioritization of search candidates, and
search termination when a target number of successes or
failures have been observed. Since RITA is only concerned
with best and near-best matches, and since the majority of
BLASTX runtime is spent comparing query sequences
with non-homologous targets in the large reference
database, the USEARCH strategy may be ideal for the
RITA pipeline. Comparison of the UBLASTX and
BLASTX algorithms showed that USEARCH was ap-
proximately 14 times faster than BLASTX, with similar
accuracy (Supplementary Figure S9). Since BLASTX
reports E-values with higher precision than UBLASTX,
our variant of the pipeline identifies all the best hits for
each fragment, rebuilds a BLASTX database with just
these genomes, and searches that database with the frag-
ments. We applied our modified RITA pipeline (RITA-
UB), which replaces the three BLAST steps of RITA
(RITA-BL) with a single step that screens sequences
with UBLASTX before running a reduced BLASTX
search, to the data set used by (29). The authors of this
article used a series of statistical techniques to assess the
similarity of gut microbiome samples from individuals in
several countries, and claimed the discovery of three
distinct ‘enterotypes’ that differed substantially in their
taxonomic composition. Here we assign taxonomic infor-
mation to these sequences using RITA-UB to assess the
feasibility of applying RITA to this large data set, and use
clustering and ordination techniques to assess whether the
three enterotypes can indeed be recovered.

The total running time to assign all 6 734462 reads was
approximately 2.1 days on 100 CPU cores, as compared
with an estimated 13.7 days (based on a trial run with
enterotype sample A) that would have been required by
RITA-BL. A total of 5134129 reads received taxonomic
assignments, and we examined the frequency of predicted
genera in comparison with the results of (29), which were
generated using SmashCommunity which uses thresh-
olded homology searches to assign taxonomic labels to
sequence reads (32). Although some amount of variation
in the frequency of Bacteroides, Prevotella, Ruminococcus
(Figure 7a and Supplementary Figure S10) and other
genera (Supplementary Table S10) was observed between
the RITA and SmashCommunity results, the relative
frequencies of particular genera across the set of samples
was largely consistent. Similarly, principal components
analysis (PCA) applied to both sets of taxonomic predic-
tions (Figure 7b) showed that the relative positioning of
different samples was similar in spite of differences in the
predicted frequencies of genera. While hierarchical clus-
tering of RITA profiles using UPGMA (Figure 7¢) sug-
gested some amount of sample clustering by reported
enterotype, none of the three sets of samples assigned to
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a single enterotype constituted a single cluster within the
tree. Hierarchical clusters based on SmashCommunity
profiles (Supplementary Figure S11) were slightly more
cohesive, but still failed to resolve the three enterotypes.
Differences in frequencies are likely due to both the use of
a different annotation pipeline (i.e. RITA versus
SmashCommunity) and the normalizations performed by
(29), but PCA and UPGMA clustering of either set of
predictions fails to recover the proposed enterotypes.
Instead of the standard PCA technique which is unsuper-
vised, the original authors provided the enterotype assign-
ments as an ‘instrumental variable’ which serves as an
optimality criterion for construction of the ordination
plot. This choice of technique therefore yielded greatly
enhanced visual separation of the clusters, whereas our
completely unsupervised approach does not give clear sep-
aration between the three reported enterotypes.

Runtime comparison of PhyloPythiaS, PhymmBL
and RITA variants

Using the same enterotype sample (sample ‘A’, which con-
tained 116244 sequences) that was used above for bench-
marking, we compared the performance of PhyloPythiaS,
PhymmBL and several RITA variants developed in this
article (Supplementary Figure S12). While the RITA
variant developed in the section above coupled an initial
pass with UBLASTX with a subsequent reanalysis using
BLASTX in order to achieve more-precise E-value esti-
mates, we also benchmarked a ‘Fast” series of variants
which omitted the followup BLASTX step in order to
reduce computation time. Since the ‘maxaccepts’ and
‘maxrejects’ parameters of UBLASTX can influence the
thoroughness of the search and the corresponding
runtime, we tried setting these values in tandem to 5, 10
and 100. We used the same query data set as above,
sample ‘A’ from the enterotype data set, and in this case
used a reduced reference database of 428 draft and com-
pletely sequenced genomes of known gut-associated or-
ganisms. Our composition-only approach (NB)
completed in Smin53s, 152 times faster than
PhyloPythiaS. Among hybrid classifiers, five RITA
variants were faster than PhymmBL (16.4h), including
the three ‘Fast’ variants and a further ‘Fast’ approach
coupled with D-BLASTN, and a variant in which
D-BLASTN was the only homology search algorithm
used. Notably, the ‘Fast’ variants with ‘maxaccepts’ and
‘maxrejects’ set to 5 or 10 required 3—4h to run, and
adding a follow-up D-BLASTN step increased the
runtime to 7.36h, still less than half of that of
PhymmBL. The three RITA variants that included a full
BLASTX step ran in considerably longer time,
demonstrating the time-consuming nature of the
translated homology search: all required in excess of
300h to complete, and the UBLASTX variant required
over 500 h. The advantage of using UBLASTX followed
by BLASTX in this instance is negligible, which we attri-
bute to having a much more ecologically focused
database: since an increased proportion of reference
database genomes are likely to have hits to query se-
quences, UBLASTX will filter out far fewer genomes
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Figure 7. Taxonomic attributions obtained with RITA and SmashCommunity for the gut microbiota of 32 individuals from Japan, France, Italy,
Spain, Denmark and America. (A) Comparison of the proportion of fragments within each sample assigned to the genus Bacteriodes by RITA
(R; light colors) and SmashCommunity (S; dark colors). (B) PCA plot of genus-level profiles obtained with RITA and Smash Community.
(C) UPGMA clustering of genus-level profiles obtained with RITA. Coloring is consistent across all three panels and corresponds to the enterotypes

proposed by Arumugam er al. (2011).

and the majority of searches will still need to be performed
by BLASTX.

The choice of homology algorithm(s) will influence the
recovery of homologous matches. Since homology-based
predictions are in general better than those based on com-
position alone, we examined the proportion of the 116244
sequences in sample ‘A’ that were assigned to homology

categories by different RITA variants (Supplementary
Figure S13). There is a clear distinction between
approaches that use only one type of homology search
algorithm (i.e. nucleotide-nucleotide, or translated nu-
cleotide—protein), and approaches that combine both.
Fewer than 80000 sequences were assigned homology-
based classifications by RITA variants based only on
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D-BLASTN, BLASTX, or Fast UBLASTX. PhymmBL,
which uses BLASTN only, classified over 84 000 sequences
because it does not require agreement between homology
and composition, or a strong homology preference for one
group over another. By contrast, hybrid approaches
that use both types of homology-based prediction clas-
sified 89744 (Fast UBLASTX+ D-BLASTN), 101456
(D-BLASTN + UBLASTX followed by BLASTX) and
110594 (Full RITA pipeline) sequences using homology
information. Although wusing two homology-based
approaches rather than one imposes an additional
runtime cost, the results of the leave-one-out analysis
above and the comparative benchmarking here demon-
strate the value of using both approaches.

DISCUSSION

The RITA pipeline uses agreement among homology and
composition-based classifiers as a measure of confidence
to produce a subset of read classifications that are more
accurate than those obtained from either type of classifier
alone. NB, due to its fast run-time, simple model and
similar performance to the state-of-the-art compositional
classifier Phymm (23), makes it the perfect candidate for
compositional analysis. Discontiguous MEGABLAST,
BLASTN and BLASTX give us different sets of assign-
ments with different levels of sensitivity, specificity and
run-time, while UBLASTX (30) provides an effective
filter to further accelerate classification. Through several
steps of validation on sequenced genomes and
pseudometagenomes, we found that predictions based
only on composition (i.e. Groups 4 and 5, and similarly
the PhymmBL predictions that were based on Phymm
alone) tended to be highly inaccurate, and we recommend
that only predictions that include both a strong homology
component and potential agreement with composition (i.e.
RITA Groups 1-3) be used for any classification task.
However, the accuracy of compositional classifiers such
as Phymm, NB and PhyloPythiaS increase with increasing
sequence length, Group 4 and 5 assignments of fragments
several thousand nucleotides in length might be treated
with greater confidence. Also, since the correct model is
still often highly ranked by NB in cases where the
best-scoring model is incorrect, additional information
might be used to select the correct classification from a
list of the best-scoring NB models for a given fragment.
Thus the compositional predictions can be considered
valuable in their own right. One promising type of
approach is that of (38), who use taxonomic information
from all reads to improve the taxonomic precision of
sequence assignments. In the context of RITA, predictions
from the higher-confidence groups might be used to select
appropriate assignments from the list of possibilities
identified for lower-confidence groups.

The simulated and real data sets we examined were
challenging for two important reasons. The short reads
generated by sequencing machines such as the Illumina
platform provide very little information with which to
assign sequence reads to the correct genome. Since these
sequencers typically yield very deep coverage (>10x or

Nucleic Acids Research, 2012, Vol. 40, No. 14 elll

even 100x) of dominant community members, one
solution is to perform assembly prior to taxonomic assign-
ment, as was done by (5), which will yield longer contigu-
ous regions which can be assigned with higher confidence.
We have shown that RITA retains high specificity on
short reads, so although many such reads may remain
unclassified, those assigned to RITA Groups 1-3 have a
high probability of being correct. Our paired-end classifi-
cation strategy, tested on the rumen data set, provides an
additional mechanism to increase the confidence of pre-
dictions: we showed that this strategy removes many im-
plausible genera from the set of classifications. The other
significant challenge posed by metagenomes is that of
taxonomic novelty: although members of the same
species and genus are very likely to have similar gene
content and compositional biases, Figure 3c in particular
shows that the essential signals for classification are no
longer present due to compositional change, gene gains
and losses and lateral gene transfer when the closest rela-
tives of the organism being classified are from a different
class in the same phylum. To deal with such cases, we
recommend the use of a rank-flexible classifier such as
our 16S-restricted version of RITA, which can at least
limit the set of predictions to lineages that are known to
be present based on well-sampled marker gene data. An
alternative is to use an unsupervised technique in order to
identify sets of reads with strong affiliations to one
another, without the need for closely related reference
genomes and without assigning explicit taxonomic labels
to inferred clusters. If a community consists of a mix of
taxonomically well-sampled and poorly sampled organ-
isms, it may be worthwhile to use a supervised classifier
to associate reads with strongly matching reference
genomes, and then used an unsupervised approach to
cluster the remaining reads.

Analysis of the ‘enterotype’ data set of (29) showed how
taxonomic assignments can be used to identify patterns of
similarity among many sampled microbial communities.
Although there was reasonable agreement between
RITA predictions and those of SmashCommunity, our
use of a completely unsupervised ordination technique
did not support the recovery of the three enterotypes as
distinct clusters. This raises the question of whether
enterotypes are truly distinct, or whether they represent
a continuum of diversity that can shift gradually in
response to a number of factors. More-intensive
microbiome sampling and the use of additional statistical
techniques will be necessary to confirm or refute the
enterotype hypothesis.

Metagenome projects now cover a wide range of
communities with varying degrees of taxonomic novelty,
use sequencing technologies that generate massive
numbers of reads of varying length, and produce data
that can be analyzed in various ways, e.g. with or
without the use of sequence assembly. Our RITA
pipeline has several properties that make it useful for a
wide range of projects. First, it is fast, making use of
simplified statistical models and fast homology searching
such as UBLASTX to expedite the classification process.
Second, the requirement for either agreement among dif-
ferent types of classifier or a strong homology result leads
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to very high specificity in relation to other published clas-
sifiers. Third, the rank-flexible approach of RITA allows
the classification of fragments from metagenomes with
varying degrees of taxonomic novelty relative to the ref-
erence database. Finally, the modular nature of RITA
makes it adaptable to new tools and techniques. As we
demonstrated with the comparison of homology search
techniques, the use of multiple search algorithms yields
more high-confidence classifications than any single
method alone, and heuristics such as those in
UBLASTX can be used to offset the increased computa-
tional cost. As new algorithms emerge, they can be
incorporated into the RITA pipeline to complement
existing approaches.

AVAILABILITY

RITA can be downloaded as a standalone Python
program at (http://kiwi.cs.dal.ca/Software/RITA). The
standalone version allows the user to implement the com-
ponents of the RITA pipeline (i.e. the BLAST algorithms,
Fast UBLASTX and NB) in any order, with custom
homology and NB thresholds. Users can also add new
elements to the RITA pipeline by writing small Python
classes to execute and parse the results of other
programs. RITA has also been made available as a web
application available at (http://ratite.cs.dal.ca/rita). Users
can submit FASTA formatted metagenomic read files to
the server, along with an optional set of 16S rDNA se-
quences which are aligned with mothur (33) and subse-
quently placed in a tree with the reference genomes
using FastTree (34). The application emails the user
when the processing has completed at which point they
can download a list of classifications and pipeline group
assignments for each fragment.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1-10, Supplementary Figures
1-13, Supplementary Methods and Supplementary
References [39—41].
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