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Abstract

The all terminal reliability of a graph G is the probability that at least a spanning tree

is operational, given that vertices are always operational and edges independently

operate with probability p ∈ [0, 1]. In this thesis, an investigation of all terminal

reliability is undertaken. An open problem regarding the non-existence of optimal

graphs is settled and analytic properties, such as roots, thresholds, inflection points,

fixed points and the average value of the all terminal reliability polynomial on [0, 1]

are studied.

A new reliability problem, the k -clique reliability for a graph G is introduced. The

k-clique reliability is the probability that at least a clique of size k is operational, given

that vertices operate independently with probability p ∈ [0, 1] . For k-clique reliability

the existence of optimal networks, analytic properties, associated complexes and the

roots are studied. Applications to problems regarding independence polynomials are

developed as well.
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Chapter 1

Introduction

1.1 Introduction

We are a society that is surrounded by networks. Whether we are surfing the web,

tagging friends in pictures on Facebook, or making a call on our cellphone, we use

networks every day. Though society’s dependency on networks is somewhat recent,

the study of them is not. As far back as the 1950’s, long before cellphones and Twitter

existed, the structure and resilience of networks was an area of mathematical research.

When studying a network it is important to know how reliable it is. Depending

on the structure and purpose of the network, there are different criteria for a network

to be reliable. It may be that two specific vertices must have the ability to com-

municate (send and receive information to and from each other), or that all vertices

can communicate. One of the more commonly studied models is that of all terminal

reliability. In this model, vertices are assumed to be operational and edges operate

independently with probability p ∈ [0, 1]. The all terminal reliability of a graph G,

Rel(G), is the probability that all the vertices can communicate with each other. This

model has been well studied. Areas of research surrounding all terminal reliability

include bounding [20, 23, 31], the existence of optimal networks [13, 15, 40, 67], the

location of the roots [21, 70], and analytic properties [27, 38, 39].

In this thesis, we will disprove a conjecture regarding the existence of optimal

networks. We will also look at the roots, thresholds, inflection points and fixed points

of the all terminal reliability polynomial and answer some open problems regarding

1
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these topics. We will also look at the average reliability, that is, the integral of the

reliability polynomial on [0, 1] and applications this has to optimal networks.

Besides an investigation of all terminal reliability, we will introduce a new relia-

bility problem, which has vertex failures rather than edge failures, that requires for

k ≥ 2 a group of at least k vertices can communicate with each other. The simplicial

complexes associated with this reliability problem, optimal networks and analytic

properties will be studied.

1.2 Graph Theory Background

We will begin with the necessary graph theory terminology. The following definitions,

unless otherwise indicated, are common terms in graph theory and can be found in

any standard textbook, such as [35].

A graph, G, consists of a finite non-empty set, V (G), which are the vertices of G

and a multiset, E(G), of subsets of size 2 of V (G), which are the edges of G (in this

thesis we will be assuming that graphs are loopless, that is, they have no edges of

size 1). The set V (G) is called the vertex set of G and the multiset E(G) is the edge

set of G. For a graph G, the cardinality of the vertex set, |V (G)|, is the order of the

graph. The cardinality of the edge set, |E(G)|, is the size of G. If the edges of G are

not all distinct, then we say that G has multiedges. If the edges are all distinct and

of size 2, then G is a simple graph. Unless otherwise stated, we will assume that a

graph can have multiedges.

Example 1.2.1 Refer to Figure 1.1. The graph G1 is a simple graph of order 6 and

size 10. The graph G2 is a loopless multigraph and the graph G3 is a multigraph with

loops.
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Figure 1.1: A simple graph, loopless multigraph and multigraph

We will let Sn,m denote the set of all simple graphs on n vertices and m edges and

let Gn,m denote the set of all graphs (simple and with multiedges) on n vertices and

m edges.

A directed graph (or digraph), D is a graph with vertex set V (D), edge set E(D),

along with the maps init : E → V and term : E → V . That is each edge e has an

initial and terminal vertex. The edge is directed from init(e) to term(e). A directed

edge is called an arc. This thesis will focus on graphs, but some results regarding

directed graphs will be discussed.

If we say that two vertices, u and v of G are adjacent that means that u and v

are joined by an edge e = {u, v} and we say that e is incident to both u and v. The

degree of a vertex, v, denoted deg(v) is the number of edges that are incident to v.

The open neighbourhood of a vertex v, N(v), is the set of vertices adjacent to v. The

closed neighbourhood of v, N [v] the N(v)∪ {v}. The maximum degree of a vertex of

G is denoted Δ(G) and the minimum degree of a vertex of G is denoted δ(G). If a

graph has a vertex, v, of degree 1, then v is called a leaf.

We can delete an edge, e = {x, y} of a graph to obtain the graph G − e where

V (G − e) = V (G) and E(G − e) = E(G) − {e} or we can contract the edge, e, to

obtain the graph G · e. When an edge is contracted it is removed from the graph and
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the incident vertices, x and y, merge into a new vertex, v, where an edge is incident

to v if it was incident to x or y.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If V (H) =

V (G) and E(H) ⊆ E(G) then we call H a spanning subgraph of G. An induced

subgraph H of G is such that for all the vertices u, v in V (H) ⊆ V (G) we have that

e = {u, v} ∈ E(H) if and only if e = {u, v} ∈ E(G). If S is a subset of vertices of G,

G |S denotes the subgraph of G induced by S.

Example 1.2.2 Refer to Figure 1.2 and let e ∈ E(G), e = {2, 3}. Then G− e is the

graph G with the edge e removed and G · e is the graph G with the edge e contracted.

The graph H1 is a subgraph of G and H2 is a spanning subgraph of G. The graph

H3 is an induced subgraph. It is the subgraph induced by the vertices S = {2, 3, 4, 5},

that is H3 = G |S. We can see that G has a leaf, (so δ(G) = 1) and Δ(G) = 4. For

the vertex 2 in G, N(3) = {2, 4} and N [3] = {2, 3, 4}
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Figure 1.2: The graph in Example 1.2.2

If G is a simple graph, we call G the complement of G (see Figure 1.3). It is the

graph on the same vertex set as G, so V (G) = V (G) and an edge e ∈ E(G) if and

only if e ∈ E(G). The union of two graphs G and H is the graph G ∪ H where
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V (G∪H) = V (G)∪V (H) and E(G∪H) = E(G)∪E(H). If V (G)∩V (H) = ∅ then

we have the disjoint union G∪̇H of G and H.

� �

��

Figure 1.3: A graph G and its complement

A path of length n of a graph G is a finite sequence of vertices and edges

v0e0v1e1 . . . en−1vn, where ei = {vi, vi+1} and no vertex is repeated (a directed path

from v0 to vn is a path from v0 to vn, where each edge is directed from vi to vi+1). A

graph is connected if every pair of vertices is connected by a path and disconnected

otherwise. A subset of edges whose removal disconnects a graph is called a cutset.

The size of the smallest cutset of a graph is called the edge connectivity. A maximally

connected subgraph of a graph G is called a connected component.

A cycle of a graph G is a finite sequence of vertices and edges, v0e0v1e1 . . . ekv0,

where ei = {vi, vi+1} for 0 ≤ i < k and ek = {vk, v0}, where no vertex is repeated,

other than v0. The length of the smallest cycle in a graph is called the girth of the

graph. If G does not contain a cycle, then we say it is acyclic.

Example 1.2.3 Refer to Figure 1.3. The edge connectivity of G is 2 and G has one

connected component. The disconnected graph G has 2 connected components, one of

order 5 and one of order 1.

If G has n vertices and consists of only a cycle on n vertices then we call G an

n-cycle, or just a cycle and denote it Cn. If we remove exactly one edge from Cn,

then the graph that remains is a path of length n and is denoted Pn.

If G is a simple graph on n vertices and every pair of vertices are connected by an

edge then we have a complete graph, denoted Kn. A complete graph on n vertices has
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n
2

)
edges. Every simple graph on n vertices is a subgraph of Kn. The complement

of a complete graph is an empty graph, that is, a graph with no edges. The union of

a graph on n vertices and its complement is Kn.

With respect to complete and empty graphs, we have two graph properties which

will be discussing in this thesis. An independent set of a graph G is a subset of vertices

whose induced subgraph is an empty graph. The independence number of a graph is

the size of the largest independent set. If a graph G has an induced subgraph, H,

which is a complete graph on k vertices, then we call H a k-clique of G. The clique

number of a graph G is the size of the largest clique in G. The complement of a

clique is an independent set. The graph G in Figure 1.2 has an independence number

of 3 and a clique number of 3. The work in the latter half of this thesis will involve

independent sets and cliques.

There are several other families of graphs which we will be used throughout the

thesis. In the optimality section, the following families of graphs will play a large role.

We call a graph, G a d-regular graph if δ(G) = Δ(G) = d. A graph is d-semiregular if

δ(G) = d and Δ(G) ≤ d+ 1 (see Figure 1.4). We should note that a d-regular graph

is a d-semiregular graph.

Another graph which will be referred to is a theta graph Θn1,n2,...,nk
. It is a

graph that consists of two vertices u and v that are connected by k paths of lengths

n1,n2,. . . ,nk (see Figure 1.4).

A tree is a connected acyclic graph. A spanning tree of a graph G is a spanning

subgraph that is a tree. As we will see, spanning trees play a big role in the study of

all terminal reliability.

A k-partite graph is a graph whose vertex set can be partitioned into k independent

subsets. If k = 2 we call G a bipartite graph. A complete k-partite graphk Kn1,n2,...,nk

is one which is k-partite, so the entire vertex set is partitioned into disjoint subsets
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S1, S2, . . . , Sk of sizes n1, n2, . . . , nk respectively, and for every pair of subset Si, Sj, if

x ∈ Si and y ∈ Sj then there is an edge between x and y (see Figure 1.4).

Figure 1.4: In order: K5, empty graph on 5 vertices, Θ4,2,4, a 3-regular graph, a
3-semiregular graph, bipartite graph, K3,2,2, cycle bundle, W5

Throughout the thesis we will refer to several graph operations. Let G be a graph,

then the graph �G, � ≥ 1 represents the disjoint union of � copies of G. If we have

two graphs G and H, the graph G+H has vertex set V (G+H) = V (G)∪V (H) and

edge set

E(G+H) = {e = (x, y) | e ∈ E(G) or e ∈ E(H) or x ∈ V (G) and y ∈ V (H)}.

That is G + H is the graph consisting of G, H and an edge between every pair of

vertices x, y, x ∈ V (G), y ∈ V (H). For example, if G = Cn and H = K1, the graph

which we obtain is a wheel graph Wn = Cn +K1 (see Figure 1.4).
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Figure 1.5: A graph G, the graph G3 which is replacing each edge of G with a bundle
of edges and the graph H which is the graph G with each edge subdivided into paths
of length 3.

For a graph G, the graph Gk is G with each edge replaced with a bundle of k

edges. To subdivide an edge k times is to replace the edge by a path of length k.

An example can be found in Figure 1.5. When each edge of a graph is replaced by a

bundle of edges, we call the resulting graph a graph bundle. For example, a tree with

each edge replaced by bundles is a tree bundle, a cycle with edges replaced by bundles

is a cycle bundle (see Figure 1.4). We will see that cycle bundles play a helpful role

when studying the analytic properties of all terminal reliability polynomials.

1.3 Network Reliability Background

Now that we have the necessary graph theory terminology, we can begin to discuss

the focus of this work, network reliability.

As mentioned in the introduction, the study of network reliability dates back to

the 1950’s. Some of the first papers regarding network reliability are by Shannon and

Moore [65] and Birnbaum, Esary and Saunders [11]. The book “The Combinatorics

of Network Reliability” by Charles Colbourn [31] is a great resource for someone who

is interested in the topic and is the reference for the information remaining in this

chapter.

A typical model for network reliability is that you have a graph or digraph and

it is assumed that the vertices are always operational and that edges or arcs are
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independently operational with probability p ∈ [0, 1]. To say an edge is operational

means that it is in working condition and information can be passed along it. In the

graph theoretical sense, to say that the edge e is operational means that it is present

in a subgraph. An operational subgraph, H, is the subgraph induced by the vertices

of H, that is G |V (H).

Generally, the vertices represent communication hubs, like computers, and the

edges represent the communication links between the hubs. If the communication is

bidirectional, then a graph is the best model, but if communication can be one way

then a digraph is best. For instance, if a sewage treatment plant was the network

of interest, a digraph would be best since sewage can only travel one way down a

pipe. If the network being studied was a power grid, then a graph would be the best

representation, since electricity can travel both ways along the power line.

When we ask if a network is reliable, we are asking whether a certain process can

take place or if the graph has an operational subgraph with a certain property. If our

graph represents a subway system, perhaps we desire that a commuter can reach all

of the stations, no matter where located, so in the graph where the vertices are the

stations and the edges are the rails, we want a path between all pairs of vertices. If

the graph represents a mail processing plant then perhaps we desire that the sorting

machine can send letters to all the other processing equipment. In the graph, where

the equipment are the vertices and arcs are connecting one machine to another, we

want a directed path from the vertex representing the sorting machine to all the other

vertices.

Let P be some graph property, for example connectedness. The reliability of a

(di)graph G is the probability that a subgraph of G with property P is operational.

A subgraph of minimal size which has property P is called a minpath.

As mentioned, in most models the vertices are always operational and the edges

that operate independently with probability p ∈ [0, 1], but models where vertices
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operate independently with probability p ∈ [0, 1] have also been studied [37, 77]. In

the vertex failure model, the operational vertices must induce a connected graph.

The first half of this thesis will look at an edge failure model, the latter half, the

vertex failure model.

Since there are many different properties that could be desired in a network, this

has led to different network reliability models and problems. Below we will list a

few of the well-known models. As mentioned, [31] is an excellent reference for these

models and more.

Two Terminal Reliability and s, t-Connectedness:

In this model, it is assumed that the vertices are always operational and that the

edges can fail independently with probability p ∈ [0, 1]. Suppose we have a graph

G, a source vertex s and target vertex t. The desired property is that s and t can

communicate, so the two terminal reliability of a graph is the probability that there

is a path between two specified vertices, s and t. In the directed graph version it

is required that a directed path exist between s and t. This reliability is called

s, t-Connectedness.

k-Terminal Reliability and s, T -Connectedness:

Again, it is assumed that vertices always operate and that edges can fail indepen-

dently with probability p ∈ [0, 1]. Suppose we have a graph G and a fixed subset of

vertices, T , |T | = k. The desired property is that each pair of vertices u, v ∈ T can

communicate with each other. The k- terminal reliability of a graph is the probabil-

ity that every pair of vertices, u, v ∈ T are connected by a path. A minpath in this

model is a tree containing just the vertices in T . The directed graph version is called

s, T -connectedness and requires that there is a directed path from a vertex s to all

vertices in T .
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All Terminal Reliability and Strongly Connected Reliability:

This is equivalent to the k-terminal reliability, when T = V (G). The directed version

is called the strongly connected reliability and it requires that for every pair of vertices,

x and y, there exists a directed path from x to y and from y to x.

Two-terminal, k-terminal, all terminal reliability and their directed counterparts

are examples of a more general setting for reliability. Let X be a set of elements

and P(X) the powerset of X. Let W ⊆ P(X) be such that if W ∈ W and W ⊆ Y ,

then Y ∈ W , that is, W is closed under supersets. Any such W is called a coherent

system. Assume that the x ∈ X operate independently with probability p ∈ [0, 1].

The probability that a subset of operational elements in X are in W is the coherent

reliability polynomial of W [7, 38].

When we speak of the probability that a graph has an operational subgraph with

property P , this probability can always be expressed as a polynomial in p. This is

what has been referred to as the reliability polynomial. When looking at coherent

systems, we require that property P be closed under supersets. Let W be the set

of subgraphs of G with property P , that is closed under supersets. To obtain the

reliability polynomial, we add up the probability of each W ∈ W being operational

to obtain

Rel(W , p) =
m∑
i=0

Nip
i(1− p)m−i,

where m is the cardinality of the base set (either edge set or vertex set, depending

on the model of interest). The Ni are the number of W ∈ W of size i.

We can also express the reliability polynomial for a graph G (or any coherent

system for that fact) as

Rel(G, p) =
m∑
i=0

Fip
m−i(1− p)i,
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where Fi is the number of ways to remove i edges such that the remaining subgraph

has property P . Note that Fi = Nm−i.

Figure 1.6: Graph for Example 1.3.1

Example 1.3.1 Consider the graph, G in Figure 1.6. Suppose the edges operate

independently with probability p ∈ [0, 1] and the desired property is that the operational

subgraph be spanning connected. This is an example of a coherent system. Then

N0 = N1 = N2 = N3 = 0, N4 = 21, N5 = 19, N6 = 7, N7 = 1 and F0 = 1, F1 =

7, F2 = 19, F3 = 21 and F4 = F5 = F6 = F7 = 0, so

Rel(G, p) = 21p4(1− p)3 + 19p5(1− p)2 + 7p6(1− p) + p7.

Now suppose the vertices operate independently with probability p ∈ [0, 1] and we

require that the subgraph induced by the operational vertices be connected. This is

not an example of a coherent system. We have that N1 = 5, N2 = 7, N3 = 8, N4 =

5, N5 = 1 and F0 = 1, F1 = 5, F2 = 7, F3 = 8, F4 = 5, so

Rel(G, p) = 5p(1− p)4 + 7p2(1− p)3 + 3p3(1− p)2 + 5p4(1− p) + p5
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The Fi, for coherent systems, have additional combinatorial significance. Before

we explain what it is, we need the following definition,

Definition 1.3.2 A simplicial complex C is an ordered pair (E, I) consisting of a

finite ground set E and a collection of subsets, I of E where ∅ ∈ I and if X ∈ I and

Y ⊆ X then Y ∈ I. That is, the elements of I are closed under subsets. The elements

of C are called faces and the maximal elements are called facets. A minimal non-face

is called a circuit. An element found in every facet is called a coloop. The maximum

size, d of a face is called the dimension of the complex. The associated F -vector for a

simplicial complex C is the vector 〈F0, F1, . . . , Fd〉, where Fi is the number of faces of

size i. Let σ1, σ2, . . . , σr be the facets of C. As the faces of C are closed under subsets,

we will represent the complex by its set of facets, that is, C = {σ1, σ2, . . . , σr}.

For every subset, S of edges (or vertices) we remove from G which leaves a sub-

graph with property P (which is closed under supersets), the removal of any subset

of S from G will also leave a subgraph with property P . This means that each graph

has associated with it a simplicial complex whose faces are the subsets of edges (or

verices) whose removal leaves a subgraph with property P . The complements of the

facets of the associated simplicial complex are the minpaths. As we will later see,

knowing about the combinatorial structure of the associated complexes can assist in

calculating the reliability polynomial.

Of the models described, all terminal reliability has garnered much attention. The

first half of this thesis will focus on the all terminal reliability of graphs.
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1.4 Introduction to All Terminal Reliability

Of the various models of network reliability one of the most popular and well-studied

models is that of all terminal reliability, which as previously mentioned, is the prob-

ability that G has at least a spanning tree operational, given that vertices always

operate and edges operate independently with probability p ∈ [0, 1].

The requirement of having at least a spanning tree operational is a global structure

requirement, since all the vertices need to be able to communicate with each other.

For example, consider a transit system in a city centre. There are particular hubs

(vertices) which the transit routes (edges) meet at. If there are outside influences,

such as construction or accidents, which inhibit the use of some routes (so the edge

fails) one still wants to be able to pick up the passengers at each hub. In the graph

which represents the transit system, we need a path between each vertex, so we need

at least a spanning tree operational.

The all terminal reliability for a graph G of order n and size m is an example of

a coherent system. We can calculate the reliability by listing all spanning connected

subgraphs of G and summing together the probability that each one will operate. A

spanning subgraph of size i has probability pi(1− p)m−i of being operational. Some

areas of research surrounding the all terminal reliability of a graph G are finding

explicit formulas for various families of graphs, bounding the polynomial, optimal

graphs and the location of the roots of the polynomial [2–5, 11, 13, 21–23, 29, 31, 40,

65, 67, 69, 70, 74]

Example 1.4.1 Let our graph be a tree, T on n vertices. Then Rel(T, p) = pn−1.

Suppose we replace every edge of our tree with a bundle of k edges to obtain the tree

bundle, T k. For the graph to have at least a spanning tree operational, we require that

at least one edge in the bundle be operational, which occurs with probability 1−(1−p)k,

so Rel(T k, p) = (1− (1− p)k)n−1
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Example 1.4.2 Let our graph be a cycle, Cn. We will calculate the all terminal

reliability of Cn by considering all the possible spanning connected subgraphs of Cn

and the probability that each occurs. There is one spanning connected subgraph of size

n, which occurs with probability pn and there are n spanning connected subgraphs of

size n− 1, which are the spanning trees of Cn. They are operational with probability

npn−1(1− p). A subgraph of size less than n− 1 would not contain a spanning tree,

so Rel(Cn, p) = pn + npn−1(1− p) = (1− n)pn + npn−1.

We can calculate the reliability based on the inclusion\exclusion principle. Let

T be the set of spanning trees of a graph G on n vertices. Since for a graph to be

connected we need at least 1 spanning tree operational, we have that

Rel(G, p) =
∑
t∈T

pn−1 −
∑

1≤i<j≤|T |
p|ti∪tj | +

∑
1≤i<j<k≤|T |

p|ti∪tj∪tk| + . . .

+(−1)|T |−1p|t1∪t2∪...∪t|T ||

For example, with cycles we have

Rel(Cn, p) = npn−1 +
n∑

i=2

(−1)i+1

(
n

i

)
pn = npn−1 + (1− n)pn.

The calculation of the all terminal reliability polynomial for any graph G can also

be expressed in terms of deleting and contracting an edge of G.

Theorem 1.4.3 [31] Let G be a graph and e an edge of G. Then

Rel(G, p) = p · Rel(G · e, p) + (1− p)Rel(G− e, p)

This comes from the fact that a spanning connected subgraph either contains a

particular edge or it doesn’t. If it does not then G − e must have a spanning tree
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operational. If the subgraph does contain e, then we know that the end points of e

can communicate, so we can contract the edge and then we need a spanning tree in

the graph G · e to ensure that everyone can communicate. For example, for cycles we

have Rel(Cn, p) = (1− p)Rel(Pn, p) + pRel(Cn−1, p).

Sometimes, explicit formulas can not be calculated, there exist recursive formulas,

like that for the complete graph on n vertices (for example [31], pg 33):

Rel(Kn, p) = 1−
( n−1∑

i=1

(
n− 1

i− 1

)
(1− p)i(n−i)Rel(Ki, p)

)
.

We have seen that Rel(G, p) is a polynomial in p on the interval [0, 1]. If the edge

probability is known, then the all terminal reliability is a real number between [0, 1].

Clearly, for any graph G, Rel(G, 0) = 0 since we will never have a spanning connected

subgraph operational, and Rel(G, 1) = 1, if G is connected, since every edge is always

operational. The all terminal reliability polynomial is an increasing function on the

interval [0, 1], so we know that the polynomial will not have any zeros in this interval.

It was proved in [11,65] that if for some p0 ∈ [0, 1] we have that Rel(G, p0) = p0 then

Rel(G, p) < p for 0 < p < p0 and Rel(G, p) > p for 1 > p > p0, so if the all terminal

reliability polynomial crosses the line f(p) = p, then it does so in what is called an S-

shape. Other properties regarding the structure of the polynomial, such as inflection

points [27, 39] and thresholds [53, 61] have also been studied.

There are several different ways to compute a reliability polynomial, which results

in there being several different forms of the all terminal reliability polynomial for a

graph G of order n and size m.

N -form:
m∑

i=n−1

Nip
i(1− p)m−i
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where Ni is the number of spanning connected subgraphs of size i.

F -form:
m−n+1∑

i=0

Fip
m−i(1− p)i

where Fi is the number of ways to remove i edges and leave the graph connected.

C-form:

1−
m∑
i=λ

Cip
m−i(1− p)i

where Ci is the number of cutsets of size i and λ is the edge connectivity of the graph.

H-form:

pn−1

m−n+1∑
i=0

Hi(1− p)i

where the Hi are positive integers and will be expanded upon shortly.

Example 1.4.4 Consider a cycle on n vertices:

N-form : pn + npn−1(1− p), Nn = 1, Nn−1 = n

F -form: pn + npn−1(1− p), F0 = 1, F1 = n

C-form: 1−
∑n

i=2

(
n
i

)
pn−i(1− p)i, Ci =

(
n
i

)
, 2 ≤ i ≤ n

H-form: pn−1(1 + (n− 1)(1− p)), H0 = 1, H1 = n− 1

For each different expression of the reliability polynomial, we obtain a sequence

of coefficients. As mentioned above, the Ni count the number of spanning connected

subgraphs of size i, the Ci the number of cutsets of size i, and the Fi the number

of ways to remove i vertices and keep G connected. We have relationships between

the different sequences, for instance, Nm−i = Fi and Ci + Fi =
(
m
i

)
. It has been

conjectured [31] that the sequences of N , C, H and F are always unimodal, that is

non-decreasing then non-increasing. It has recently been proven that the F -sequence

[56] and H-sequence are unimodal [48]. Of the different sequences associated with
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the all terminal reliability of a graph G, the H− and F -sequences are particularly

interesting since they have additional combinatorial significance.

First, we will look at the F -sequence. We know that the F -sequence enumerates

the number of ways to remove edges and keep the graph connected. A subset S

of edges whose removal does not disconnect G is closed under subsets. Since the

sets have this property, the set of subsets whose removal leaves G connected forms

a simplicial complex and the F -sequence is its F -vector. In fact, for all terminal

reliability, there is even more structure and the simplicial complex associated with

this reliability model is actually a matroid.

Definition 1.4.5 A matroid M = (E, I) is a simplicial complex with the exchange

property, which is that for X ∈ I and Y ∈ I if |X| > |Y | then there exists an

x ∈ X \ Y such that Y ∪ {x} ∈ I.

The matroid that is formed is the cographic matroid of G (for example see [31] page

60)

Definition 1.4.6 Let G be a graph. The cographic matroid of G is the matroid whose

faces are sets of edges whose removal leaves G connected. The facets of the cographic

matroid are the complements of the spanning trees of G.

Since the F -sequence is in fact the F -vector for the cographic matroid of G,

then we have that Fm−n+1 is the number of spanning trees in G, since the facets of

the cographic matroid of G are complements of spanning trees. This term can be

calculated in polynomial time via the Matrix Tree Theorem. If we know the edge

connectivity, λ, of the graph, then we can quickly calculate Fi, 0 ≤ i < λ, since the

removal of any subset of size i < λ will not disconnect G.

Example 1.4.7 Consider the graph in Figure 1.7. The set of facets of the cographic

matroid for K4 is
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Figure 1.7: K4

C = {{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, c, f}, {a, d, f}, {a, e, f},

{b, c, d}, {b, c, e}, {b, d, e}, {b, d, f}, {b, e, f}, {c, d, e}, {c, e, f}, {d, e, f}}. The F -vector

for this matroid is 〈1, 6, 15, 16〉, so

Rel(K4, p) = p6+6p5(1−p)+15p4(1−p)2+16p3(1−p)3 = −6p6+24p5−33p4+16p3.

The calculation of the all terminal reliability of a graph G is �P -complete [31], so

it is intractable. It is of interest to find efficient bounds for the all terminal reliability

polynomial. Since simplicial complexes have nice structure, we are able to find bounds

on the F -vector of the cographic matroid of a graph G and hence, obtain bounds for

the all terminal reliability polynomial. For a simplicial complex, M , on a ground set

of size m, we can use Sperner’s Bound [71], (m − i + 1)Fi−1 ≥ iFi, to estimate the

reliability polynomial for various graphs if they can not be calculated explicitly.

There are other bounds which are better than Sperner’s bound, namely the

Kruskal-Katona bounds. Details can be found in [52,55].

As mentioned previously, the H-sequence for a graph G on n vertices and m

edges also has combinatorial significance. There is a relation between the F and

H-sequences. For the coefficients F0, F1, .., Fd and H0, H1, . . . , Hd,

Hi =
i∑

j=0

(−1)i−j

(
d− j

d− i

)
Fi
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and
d∑

i=0

Hi = Fd.

If one can take the faces of a complex, C and put them into intervals

[L,U ] = {S : L ⊆ S ⊆ U},

where every face is in exactly one interval and the U are facets, then C is partitionable.

A complex is called shellable if it is a pure d-dimensional complex, meaning each facet

has size d and if the facets, σ1, σ2, . . . , σs can be ordered such that for 2 ≤ i ≤ s,

P(σi) ∩
⋃i−1

j=1 P(σj), where P(σi) represents the set of all subsets of σi is purely

(d− 1)-dimensional.

Shellable complexes are partitionable and since matroids are shellable, they are

partitionable [31]. The Hi count the number of intervals in the partition of C with

the lower face in the interval having size i.

They also have another combinatorial interpretation. Before we explain it, we

need a few definitions. Let k be a field, then k[x1, x2, . . . , xn] is the polynomial

ring in n variables over k. A monomial is a product of the variables of the form

xd1
1 xd2

2 . . . xdn
n , di ≥ 0. The degree of the monomial is the sum of the di. There is a

bijection between the faces in a shellable complex and a set of Fd monomials, which

are closed under divisibility. This is an order ideal of monomials. The Hi represent

the number of monomials of degree i. Another bijection that maps a monomial

to a multiset, (where the exponent on the variable represents how many times the

variable is in the multiset), also maps the faces in a shellable complex to a collection

of multisets, that is closed under taking submultisets (this is multicomplex) [23]. In

other words, the Hi also count monomials in degree i in a multicomplex [23,62].

It is known that the Kruskal-Katona bounds are better than Sperner’s bounds [71],

but we are looking at a matroid, so there is more structure to take into consideration.



21

There are bounds by Ball and Provan [4–6], which exploit the structure of shellable

complex to provide even better bounds. Details can be found in [4, 5]. The Ball

and Provan bounds are better than the Kruskal-Katona bounds, so shellability is a

desirable property for complexes when dealing with reliability.

Though there has been much research done regarding the all terminal reliability

polynomial, there are still open problems to solve and properties of the polynomial

to study. Now that we have a bit of background regarding all terminal reliability, our

study of this reliability problem can begin. We will start by looking at the existence,

or lack there of, of most optimal networks. We will then proceed to the analytic

properties of all terminal reliability polynomials on the interval [0, 1]. Afterwards,

a new reliability problem, the k-clique reliabiity of a graph, will be introduced and

investigated.



Chapter 2

Most and Least Optimal Graphs

In real-world applications of network reliability one wants to construct the network,

given their particular constraints, that is most resilient to connection failures. That

is, when constructing a network, one wants the best topology possible, so a natural

question to ask is “If given n vertices and m edges, what is the best topology for the

network?” The answer to this question of course depends on the definition of optimal.

This might depend on the value of p, but perhaps not.

2.1 Introduction

In this Chapter will consider two families of graphs, Sn,m and Gn,m. Traditionally, a

graph, G, is called the most optimal graph if it is equally as reliable or more reliable

than any other graph in the same family, for all values of p ∈ (0, 1).

Example 2.1.1 Consider the family of all connected graphs on n ≥ 2 vertices and

m = n edges. The possible connected graphs are a cycle of size at least 2 with a tree

on k vertices attached to it; this has reliability

pk(pn−k + (n− k)pn−k−1(1− p)) = pn + (n− k)pn−1(1− p).

This is clearly optimal for k = 0, so a cycle, and least optimal for k = n− 2, a tree

with one edge replaced by a bundle of 2 edges.

In real-world applications of network reliability one might want to construct,

given certain resources, a network that is most resilient no matter what the failure

22
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rate. That is, given n vertices and m edges, is there an optimal network? Formally,

optimality is defined in the following way.

Definition 2.1.2 Let F be a family of graphs. We call G ∈ F an F-graph, and

say that G is a most optimal F-graph if for any other F-graph H we have that

Rel(G, p) ≥ Rel(H, p) for all p ∈ [0, 1] (for p0 = 0 or 1 we will also talk about G

being a most optimal F-graph sufficiently close to p0 when there is an ε > 0 such that

Rel(G, p) ≥ Rel(H, p) for all p ∈ [0, 1] ∩ (p0 − ε, p0 + ε) and for all other F-graphs

H).

It was conjectured in [12, 13, 16] that, given n and m, there always exist most

optimal Sn,m-graphs and most optimal Gn,m-graphs. Clearly, trees are the unique

family of most optimal Sn,n−1-graphs and cycles are the unique most optimal Sn,n-

graphs. There are unique most optimal Sn,n+1-graphs [13] and they are theta graphs

with path lengths that differ by at most 1.

For m = n + 2 and m = n + 3, it is known that there also exists most optimal

Sn,m-graphs, which turn out to be particular subdivisions of K4 [13] and K3,3 [75],

respectively. It is conjectured that for m = n + 4, m = n + 5, m = n + 6 and

m = n+7 there are most optimal Sn,m-graphs [3]. These graphs are all fairly sparse.

At the other end of the spectrum, for dense graphs in [54] it was shown that for n

and m ≥
(
n
2

)
− �n

2
�, removing a matching from Kn will result in a most optimal

Sn,m-graph. The above results were for simple graphs, but when m = n,m = n + 1

and m = n+2, Gross and Saccoman [40] extended the results to show that the graphs

mentioned above are indeed most optimal Gn,m-graphs.

So there was positive evidence to support both conjectures, but it turns out that

the conjecture for simple graphs failed [54, 67]. There exists an infinite family of

simple graphs such that there does not exist a most optimal Sn,m-graph for a specific

pair of n and m.
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Theorem 2.1.3 [54,67] For n ≥ 6 even and m =
(
n
2

)
− n+2

2
and for n ≥ 7 odd and

m =
(
n
2

)
− n+5

2
a most optimal Sn,m-graph does not exist.

Computationally one can find that for n = 4 and n = 5 there are always most

optimal Sn,m-graphs. When n = 6 and n = 7, computations show that the only

situations where a most optimal Sn,m-graph does not exist is when the conditions of

Theorem 2.1.3 hold. So for each n ≥ 6 there is a single known value of m such that

a most optimal Sn,m-graph does not exist, but are these the only cases where we do

not have most optimal simple graphs? Moreover, if we extend our family to include

all graphs, does a most optimal Gn,m-graph exist? We will show here that given n

there are in fact several m such that a most optimal Sn,m-graph does not exist, and

if we extend our family to include all graphs (that is, including multiple edges), we

will find that there is still not a most optimal Gn,m-graph. The latter provides the

first such counterexamples to the conjecture of the existence of most optimal Gn,m-

graphs. This is in contrast to the directed version of all terminal reliability, strongly

connected reliability, where allowing multiple edges always produced a most optimal

digraph [28].

2.2 New Sn,m Classes with No Most Optimal Graphs

We will show that for a given n ≥ 8 there is more than one value of m such that a

most optimal Sn,m does not exist. To do so we will show that for values of p near

0 there is a most optimal graph and for values of p near 1 there is a most optimal

graph, but it differs from the graph that is most optimal near 0.

Looking at the F -form of the all terminal reliability polynomial we can obtain the

following useful observation. In the following, F (G) denotes the coefficients in the

F -form for the graph G.
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Observation 2.2.1 Let G,H ∈ Gn,m. Consider the F -form of the all terminal reli-

ability polynomials:

Rel(G, p) =
m−n+1∑

i=0

Fi(G)pm−i(1− p)i

Rel(H, p) =
m−n+1∑

i=0

Fi(H)pm−i(1− p)i.

Suppose that Fi(G) = Fi(H) for 1 ≤ i < � and Fi(G) = Fi(H) for k < i ≤ m. Then

1. Fl(G) > Fl(H) implies that Rel(G, p) > Rel(H, p) for values of p sufficiently

close to 1, and

2. Fk(G) > Fk(H) implies that Rel(G, p) > Rel(H, p) for values of p sufficiently

close to 0.

Proof. Let G and H be graphs on n vertices and m edges and consider

Rel(G, p)− Rel(H, p) =
m−n+1∑

i=0

(Fi(G)− Fi(H))pm−i(1− p)i

= pm−k(1− p)�
k∑

i=�

(Fi(G)− Fi(H))pk−i(1− p)i−�

= pm−k(1− p)�
(
(F�(G)− F�(H))pk−� + · · ·

+(Fk(G)− Fk(H))(1− p)k−�
)
.

From this we can see that if F�(G) > F�(H), then for p near 1, Rel(G, p)−Rel(H, p) >

0, that is, Rel(G, p) > Rel(H, p). Likewise, if Fk(G) > Fk(H), then for p near 0,

Rel(G, p) > Rel(H, p). �

It follows from this observation that there are indeed always graphs (in any family)

that are most optimal and least optimal near 0 and graphs that are most optimal

and least optimal near 1. This is since we can order the F -vectors for the graphs in
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Figure 2.1: Figure for Example 2.2.2

the family of interest so that there will be some graph, or subfamily of graphs, whose

F -vector is the largest, or smallest.

Example 2.2.2 Let S1 = 〈F1, F2, . . . , Fn〉 and S2 = 〈E1, E2, . . . , En〉 be F -vectors.

We say that S1 > S2 if Fi = Ei for i < k but Fk > Ek. For example, consider

Figure 2.1. The F -vectors can be ordered in the following way,

〈1, 5, 8〉 > 〈1, 5, 7〉 > 〈1, 5, 6〉 > 〈1, 4, 5〉 > 〈1, 4, 4〉,

so the first graph is the most optimal, not only for p near 1, but overall and the last

graph is the least optimal.

From Observation 2.2.1 we can see that when comparing the all terminal reliability

of two graphs, and considering values of p sufficiently close to 0, it will be a graph

with the most number of spanning trees which is most optimal. When considering

values of p sufficiently close to 1, it is a graph with the largest edge connectivity, λ,

and among all graphs that have the edge connectivity λ, the graphs that have the

least number of cutsets of size λ will contain a most optimal graph near 1. We should

note that if G has Ci cutsets of cardinality i, then Fi =
(
m
i

)
− Ci, so maximizing Fi
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is equivalent to minimizing Ci. The key fact is that, for any family of graphs, if the

graph that is most optimal for values of p near 0 differs from the graph that is most

optimal for values of p near 1, then a most optimal graph for the family does not

exist.

Example 2.2.3 When looking at S6,11 using Maple, we can calculate the reliabilities

of all simple graphs on n = 6 vertices and m = 11 edges and order their F -vectors.

Refer to Figure 2.2. We find that G is most optimal for values of p near 0 and H is

most optimal for values of p near 1, so different topologies are most optimal depending

on the value of p.

Another way to look at this, again using Maple and Observation 2.2.1, is that G is

most optimal for values of p near 0 since G is the unique graph with the most number

of spanning trees (225 of them) and H is the unique graph with the least number of

cutsets of size 3. Since H has 224 spanning trees, G is more optimal than H near

p = 0, but the graphs H and G have the same edge connectivity, 3. The F -vector of G

is 〈1, 11, 55, 163, 309, 368, 225〉 and the F -vector for H is 〈1, 11, 55, 163, 310, 370, 224〉.

We can see that F3(G) = F3(H), so we need to look at the next Fi, i > 3 where they

differ in the number of cutsets of size i. We can see that H has 20 cutsets of size 4

(since
(
11
4

)
− 310 = 20) and that G has 21 cutsets of size 4 (since

(
11
4

)
− 309 = 21).

This makes H the most optimal graph for values of p close to 1, and since this graph

differs from G, which is most optimal near p = 0, no most S6,11 optimal graph exists.

Since for values of p sufficiently close to 0, the graph with the most number

of spanning trees will be most optimal, we will find the following result by Petingi,

Boesch and Suffel [14] regarding simple graphs and the maximum number of spanning

trees to be very useful.
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�
�

Figure 2.2: G is the most optimal S6,11-graph for values of p near 0, and H is the
most optimal S6,11-graph for values of p near 1.

Theorem 2.2.4 [14] Suppose that m =
(
n
2

)
− (n − k) where n ≥ k ≥ 2, or k ≤ 1

and n − k ≡ 0 (mod 3). Consider the graph G ∈ Sn,m where the complement of G

is one of the following (see Figure 2.3):

1. a matching with n− k edges, whenever n > k ≥ n
2
,

2.
(

(n−2k−2)
3

)
C3∪2P3∪ (k−2)K2, whenever n−2k ≡ 2 (mod 3) and 2 ≤ k < n

2
,

3.
(

(n−2k−1)
3

)
C3 ∪P3 ∪ (k− 1)K2, whenever n− 2k ≡ 1 (mod 3) and 2 ≤ k < n

2
,

4.
(

(n−2k)
3

)
C3 ∪ kK2, whenever n− 2k ≡ 0 (mod 3) and k < n

2
, or

5.
(

(n−1)
3

− 1
)
C3 ∪ P4, whenever k = 1 and n ≡ 1 (mod 3).

Then G is the unique simple graph on n vertices and m edges such that it has the

maximum number of spanning trees when compared to any other graph H ∈ Sn,m.

This theorem will be useful since for n and m satisfying the theorem above, we

know the unique graph that is a most optimal Sn,m-graph for values of p sufficiently

close to 0, and thus the unique candidate for a most optimal Sn,m-graph. In this

section we will show that there are cases where the unique Sn,m-graph on n vertices

and m edges with the most number of spanning trees is not the most optimal Sn,m-

graph for values of p near 1 and hence, there is no most optimal Sn,m-graph.
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Figure 2.3: The complements of the graphs in Theorem 2.2.4
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Recall that the minimum and maximum degrees of a graph are denoted by δ and

Δ, respectively. Also recall that a graph is d-semiregular if δ = d and Δ ≤ d + 1

and it called d-regular if δ = Δ = d (the class of d-semiregular graphs include the

d-regular graphs). We will be looking at semiregular simple graphs since we will

show that for our choices of n and m, if a most optimal simple graph exists, then

it is semiregular. In this section we will be focusing on (n − 3)-semiregular simple

graphs. It is important to note that a simple graph G is (n − 3)-semiregular if and

only if G, the complement of G, has no isolated vertices and Δ = 2. This condition is

equivalent to G being the disjoint union of nontrivial paths and cycles, with at least

one cycle or at least one path of length 3. We will now prove some lemmas which

will be needed to prove the non-existence of optimal graphs for several values of m.

Lemma 2.2.5 Let G be a simple (n− 3)-semiregular graph on n ≥ 6 vertices and m

edges, with x vertices of degree n−2 and y vertices of degree n−3, and let aG denote

the number of pairs of vertices of degree n− 3 that are adjacent in G. Let Cj be the

number of cutsets of G of size j. Then Cj = 0 for j < n− 3,

Cj(G) = x

(
m− (n− 2)

j − (n− 2)

)
+ y

(
m− (n− 3)

j − (n− 3)

)
for n− 3 ≤ j ≤ 2n− 9,

and

C2n−8(G) = x

(
m− (n− 2)

n− 6

)
+ y

(
m− (n− 3)

n− 5

)
+ aG.

Proof. The graph G has edge connectivity at most n − 3, as it has a vertex of

degree n − 3. On the other hand, if S is a cutset of G, then there is a partition of

the vertex set of G− S into two parts, X and Y , where X is a component of G− S

of smallest size. Let i = |X|, so that i ≤ |Y | and hence 1 ≤ i ≤ n/2. As S is a

cutset, it contains all edges of G between X and Y . The number of edges between

X and Y is at least i(n− 3− (i− 1)) = i(n− 2− i). The function f(t) = t(n− 2− t)

is a parabola opening downwards that is symmetric about its peak at (n − 2)/2. It
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follows that f(t) attains its minimum, n − 3, on [1, n/2] at 1, so we conclude that

|S| ≥ n − 3. That is, G has edge connectivity exactly n − 3, so clearly Cj = 0 for

j < n − 3. Moreover, as n ≥ 6, i can attain the value of 2, which yields the next

smallest value for f . However, f(2) = 2n− 8, so if |S| ≤ 2n− 9 then i = 1. On the

other hand, if |S| = 2n − 8 then it is possible for i = 2. This occurs if and only if

X consists of a single edge joining two vertices of degree n− 3 and S consists of the

2n− 8 edges joining X to the remainder of G.

Suppose first that |S| ≤ 2n − 9 (and n ≥ 6). The argument in the previous

paragraph shows thatG−S has a component of size 1, say {u} with degree z = n−3 or

n−2; |S| consists of all the edges incident with u, along with |S|−z ≤ 2n−9−(n−3) =

n − 6 other edges. Note that u is the only isolated vertex of G − S, as otherwise S

would have to contain at least (n − 3) + (n − 3) − 1 = 2n − 7 edges. As removing

any set of edges around a single vertex, together with other edges, is a cutset of G,

we find that

Cj(G) = x

(
m− (n− 2)

j − (n− 2)

)
+ y

(
m− (n− 3)

j − (n− 3)

)
.

Finally, if |S| = 2n− 8, then again from above, G− S either has a component of

size 1 or 2. If it has a component of size 1, then as in the previous paragraph, the

component is unique, and there are x
(
m−(n−2)

n−6

)
+ y
(
m−(n−3)

n−5

)
many such cuts sets. If

there is no component of size 1 but a component X of size 2, then X must contain

two adjacent vertices of degree n− 3, and hence S contains all edges between X and

the other vertices (there are exactly (n − 4) + (n − 4) = 2n − 8 such edges). On

the other hand, if u and v are two adjacent vertices of degree n − 3, then the edges

between {u, v} and the rest of the graph form a cutset of size 2n− 8. It follows that

C2n−8(G) = x

(
m− (n− 2)

n− 6

)
+ y

(
m− (n− 3)

n− 5

)
+ aG

and we are done. �
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Lemma 2.2.6 Let G be an (n− 3)-semiregular graph (simple or otherwise) with m

edges. Then the number of degree n− 3 vertices is n(n− 2)− 2m and the number of

degree n− 2 vertices is 2m− n(n− 3) (and hence are only functions of n and m).

Proof. Let x and y be the number of degree n− 2 and n− 3 vertices, respectively.

Then m = x(n−2)+y(n−3)
2

and x + y = n. This gives us that x = n(n − 2) − 2m and

y = 2m− n(n− 3). �

Lemma 2.2.7 For n ≥ 6 and m =
(
n
2

)
− (n − k), k < n

2
, the simple graph that is

most optimal for values of p near 1 is an (n− 3)-semiregular simple graph.

Proof. We show first that there is an (n − 3)-semiregular simple graph G with n

vertices and m edges. One can start with G = Cn, a cycle of length n, and delete

alternating k < n/2 edges so that there are no isolated vertices. By the proof of

Lemma 2.2.5 this graph has edge connectivity n− 3.

Suppose H is a most optimal Sn,m-graph near 1 with a vertex of degree n − 1.

Then clearly δ(H) = n− 3 since if δ < n− 3, the edge connectivity is too low for it

to be optimal near 1 (we have seen that G is a graph with higher edge connectivity)

and if δ > n − 3, then by consideration of degrees, we have 2m ≥ (n − 2)n, which

implies that m =
(
n
2

)
− (n− k) where k ≥ n/2, a contradiction.

We want to argue that H is (n − 3)-semiregular. If not, H has a ≥ 1 vertices of

degree n− 1, b vertices of degree n− 2 and c vertices of degree n− 3. Let G have x

vertices of degree n− 2 and y vertices of degree n− 3. Then we have that

2m = (a(n− 1) + b(n− 2) + c(n− 3)) = (x(n− 2) + y(n− 3))
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where a+ b+ c = n and x+ y = n. This implies the following sequence of equations

holds:

a(n− 1) + b(n− 2) + c(n− 3) = x(n− 2) + y(n− 3)

n2 − n− b− 2c = n2 − n− x− 2y

x+ 2y = b+ 2c

n+ y = (n− c− a) + 2c

y = −a+ c

This means that c > y, and therefore by Lemma 2.2.5 and Lemma 2.2.6 H has more

cutsets of size n − 3 than G. It follows that H is not most optimal for values of p

near 1, a contradiction.

We conclude H has vertices of only degrees n− 2 and n− 3, with at least one of

the latter, which means that H indeed is an (n− 3)-semiregular graph. �

From Lemmas 2.2.5 and 2.2.6, for n ≥ 6, m =
(
n
2

)
− (n− k) and k < n

2
, among all

simple (n−3)-semiregular graphs of order n and size m, the number of cutsets of size

at most 2n−9 will be independent of the graph chosen, and the graph with the fewer

number of pairs of adjacent degree n−3 vertices will have fewer cutsets of size 2n−8.

So if we are looking at which simple graph is most optimal Sn,m-graph for values of

p near 1, by Observation 2.2.1 and Lemma 2.2.7, a simple (n− 3)-semiregular graph

with the fewest number of adjacent degree n− 3 vertices will be most optimal.

Theorem 2.2.8 Let n ≥ 6, m =
(
n
2

)
− (n − k) and k < n

2
(so n(n − 3) ≤ 2m <

n(n− 2)).
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1. If n(n − 2) − 2m = 1 then the graph that is most Sn,m-optimal for values of p

near 1 has as its complement P3 ∪ n−3
2
K2. Moreover, this graph is unique.

2. If n(n− 2)− 2m = 2, then the graph that is most Sn,m-optimal for values of p

near 1 has as its complement P4 ∪ n−4
2
K2. Moreover, this graph is unique.

3. If n(n − 2) − 2m ≥ 3, then a graph that is most Sn,m-optimal for values of p

near 1 has as its complement cycles whose cycle lengths sum to n(n− 2)− 2m

together with
(

2m−n(n−3)
2

)
K2. Moreover, this family is unique (that is, graphs

not belonging to this family are less reliable near 1).

Proof. By Lemma 2.2.7 we know that the most optimal Sn,m-graph for values of p

near 1 will be (n− 3)-semiregular. Let G be an (n− 3)-semiregular simple graph on

m edges; G consists of degree 1 and degree 2 vertices. We know from Lemma 2.2.5

that Ci(G) = Ci(H) for i ≤ 2n− 9 for any other (n− 3)-semiregular graph H, so by

Observation 2.2.1, to be most optimal for values of p near 1, we want to minimize

the number of cutsets of size 2n − 8. By Lemma 2.2.6 there are y = n(n − 2) − 2m

vertices of degree n − 3 and x = 2m − n(n − 3) vertices of degree n − 2. Partition

the vertices into two sets, X and Y , which consist, respectively, of the degree n − 2

and degree n− 3 vertices (so |X| = x and |Y | = y). The subgraph of G induced by

X has maximum degree at most 1, and the vertices of Y in G all have degree 2. By

Lemma 2.2.5, to minimize the number of cutsets of size 2n− 8, we want to minimize

the number of edges of G in the subgraph induced by the vertices of Y , that is we

want to maximize the number of edges in the subgraph of G induced by Y .

If y = 1, that is, we have only one vertex of degree n− 3, then the most optimal

Sn,m-graph for values of p near 1 has as its complement P3 ∪
(

n−3
2

)
K2, since it has

the minimum number of adjacent degree n − 3 vertices (note that n is odd since

n(n− 2)− 2m = 1). This graph is unique.
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If y = 2 we have two vertices of degree n − 3, and the most optimal Sn,m-graph

for values of p near 1 has as its complement P4 ∪
(

n−4
2

)
K2 (note that n is even since

n(n−2)−2m = 2) . This is unique since any other graph would have adjacent degree

n− 3 vertices.

Now consider when y ≥ 3. To minimize the number of adjacent degree n − 3

vertices in G, if possible we want the vertices in Y to be adjacent to all the vertices

in X, so that the two vertices a degree n − 3 vertex is not adjacent to are degree

n − 3 vertices. This means that in G, the subgraph induced by Y should be a 2-

regular graph. We can do so, making this subgraph a disjoint union of cycles and the

subgraph induced by X a matching in G, provided that x = 2m− n(n− 3) is even,

which it is. So in this case a simple graph that is most optimal for values of p near 1

is the graph whose complement are cycles whose lengths sum to y together with x
2
K2.

This graph is not unique, since the complement of the graph induced by Y could be

several small cycles or one large cycle of size y, but the family of (n− 3)-semiregular

graphs whose complements are cycles whose lengths sum to y disjoint with x
2
K2 is

unique, as any other graph would have more adjacent degree n−3 vertices, and hence

be less reliable near 1. �

Now we have the tools to provide some new results involving the non-existence

of most optimal Sn,m networks. As mentioned earlier, the only known result on non-

optimality [54,67] was for m =
(
n
2

)
− n+2

2
and m =

(
n
2

)
− n+5

2
, which when expressed

as m =
(
n
2

)
− (n − k) gives k = n−2

2
and k = n−5

2
respectively. These occur when

n−2k = 2+3j for j = 0, 1. We now extend this result to j > 1 using Theorem 2.2.4.

Theorem 2.2.9 Let G ∈ Sn,m, n ≥ 6 where m =
(
n
2

)
− (n− k), with 2 ≤ k < n

2
. If

n− 2k ≡ 2 (mod 3) then there does not exist a most optimal Sn,m-graph.

Proof. Let n ≥ 6. Suppose that n − 2k ≡ 2 (mod 3), so n − 2k = 2 + 3j,

j ≥ 0. This implies that k = n−2−3j
2

. By Theorem 2.2.4 (part 2) we have that the
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unique simple graph with the most number of spanning trees is the graph whose

complement is
(

n−2k−2
3

)
C3 ∪ 2P3 ∪ (k − 2)K2 and hence it is the unique graph that

is the most optimal Sn,m-graph for values of p sufficiently close to 0. Let H be the

graph whose complement is Cn−2k ∪ kK2. Since n − 2k ≡ 2 (mod 3), n − 2k ≥ 3,

by Theorem 2.2.8, Rel(G, p) < Rel(H, p) for values of p near 1, so no most optimal

Sn,m-graph exists. �

In a similar fashion, we can prove the nonexistence of most optimal Sn,m-graphs

for other choices of n and m.

Theorem 2.2.10 Let G ∈ Sn,m, n ≥ 6 where m =
(
n
2

)
− (n−k), with 2 ≤ k < n

2
and

k = n−1
2
. If n−2k ≡ 1 (mod 3) then there does not exist a most optimal Sn,m-graph.

Proof. As n− 2k ≡ 1 (mod 3), n− 2k = 1 + 3j for some nonnegative integer j, so

k = n−1−3j
2

. Let G be the graph whose complement is
(

n−2k−1
3

)
C3 ∪ P3 ∪ (k − 1)K2.

By Theorem 2.2.4 (part 3), this is the unique graph in Sn,m with the maximal number

of spanning trees, i.e., G is the unique simple graph that is most optimal for values of

p sufficiently close to 0. Let H be the graph whose complement is Cn−2k ∪ kK2. This

graph exists since n− 2k ≡ 1 (mod 3), so n− 2k ≥ 4 as k = n−1
2
. By Theorem 2.2.8,

Rel(H, p) > Rel(G, p) for p sufficiently close to 1, so no most optimal simple graph

exists. �

We should note that the above theorem has the condition that k = n−1
2
. It has not

been proved that if k = n−1
2

most optimal Sn,m-graphs always exist, but calculations

show that for n = 5 and n = 7, most optimal Sn,m-graphs do exist and it is the graph

G whose complement is P3∪ ((n− 3)/2)K2. It can be argued, for general n ≥ 7, that

this graph is most optimal for values of p close to 0, since by Theorem 2.2.4 (part 3),

it has the maximum number of spanning trees, but also near 1 by Theorem 2.2.8.

Our final result on the non-existence of most optimal Sn,m-graphs is the following.
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Theorem 2.2.11 For n ≥ 7, such that n ≡ 1 (mod 3) and m =
(
n
2

)
− (n − 1),

there is no most optimal Sn,m-graph.

Proof. Let n ≥ 7, n ≡ 1 (mod 3) and m =
(
n
2

)
− (n − 1). Let G be the graph

whose complement is (n−1
3

− 1)C3 ∪P4. By Theorem 2.2.4 (part 5) this is the unique

graph in Sn,m with the maximal number of spanning trees and hence is the unique

simple graph that is most optimal for values of p sufficiently close to 0. Let H be the

graph whose complement is Cn−2 ∪K2. Then by Theorem 2.2.8(3) this implies that

Rel(G, p) < Rel(H, p) for values of p sufficiently close to 1, and therefore we do not

have a most optimal Sn,m-graph. �

So for a given n ≥ 8 there is more than onem such that a most optimal Sn,m-graph

does not exist. It would be satisfying to be able to say that, given n, the only m for

which a most optimal Sn,m-graph does not exist is when m satisfies the conditions of

one of the previous theorems, but this is not the case. For example, when n = 8 and

m = 19, calculations show that we do not have a most optimal Sn,m-graph, and this

pair of n and m does not fall into one of the cases considered above.

2.3 The Nonexistence of Most Optimal Gn,m-Graphs

Though for a given n there are m such that no most optimal Sn,m-graph exists, one

may think that extending the family of simple graphs to include graphs with multiple

edges may then introduce a most optimal graph.

If considering when m =
(
n
2

)
, we can show that if a most optimal graph exists,

then it is a simple graph.

Theorem 2.3.1 For a graph on n vertices and m =
(
n
2

)
edges, if a most optimal

graph exists, then it is the complete graph.
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Proof. Consider the graph Kn. Partition the vertex set of Kn into sets, A and B,

|A| = i ≤ |B|. The number of edges between A and B is i(n− i), since each of the i

vertices in A are adjacent to the n− i vertices in B. Let f(t) = t(n− t) = −t2 + nt,

the graph of this function is opening downwards with roots at 0 and n and achieving

a maximum value at t = n/2. For n/2 ≥ t ≥ 2, we find that f(t) ≥ 2n − 4, so to

remove 2n− 5 or fewer edges disconnects at most 1 vertex.

Let G be a graph on m =
(
n
2

)
edges that is (n− 1)-semiregular. Suppose that G

has a multiedge, then there exists at least one pair of vertices with a multiedge of

size at least 2 between them, then those vertices can be disconnected by removing

the edges not in the multiedge, which would be the removal of at most 2(n−1−2) =

2(n− 3) = 2n− 6 edges, therefore by Observation 2.2.1, the complete graph is more

optimal for values of p near 1 and thus if a most optimal graph exits, then it must

be the complete graph. �

In [66], it was shown that for planar graphs with n = 7, m = 14 the most reliable

graph for values of p near 1 was a graph that was not simple, suggesting that it is

possible that graphs with multiedges may be more optimal than simple graphs. We

will now show that the non-optimality results for simple graphs proved in the previous

section can be extended to include graphs with multiple edges, proving for the first

time that the conjecture for the existence of optimal Gn,m-graphs fails as well. To

do so, we will need the following result of Harada, Sun and Nagamochi regarding a

lower bound on the number of cutsets of graphs that may have multiple edges.

Theorem 2.3.2 [42] Let M∗
i (n,m) ⊆ Gn,m denote the set of graphs which have the

minimum number of cutsets of size i. Set α = �2m
n
� and γ = � 2m

n(n−1)
�. Then if

2m
3

≥ n ≥ 5, α ≥ 3 and α ≤ i ≤ 2(α − γ)− 3, we have G ∈ M∗
i (n,m) if and only if

G is α-semiregular and every cutset of size i yields exactly one isolated vertex.
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For the rest of this section, we assume that m =
(
n
2

)
− (n− k) where k < n/2, as

was true in the previous section; we want to show that for the cases of Theorems 2.2.9,

2.2.10 and 2.2.11 there are no most optimal Gn,m-graphs. We know that if there is

one, then it must be at least as reliable as the most reliable simple graph for values

of p near 1. The edge connectivity of a most optimal Sn,m-graph in these cases is

n− 3, so if a most optimal Gn,m-graph, H, exists, it must have edge connectivity at

least n− 3, and hence minimum degree at least n− 3. If the minimum degree were

at least n− 2, then the number of edges would be at least n(n− 2)/2 =
(
n
2

)
− n/2, a

contradiction to the restriction of m. Thus both the edge connectivity and minimum

degree of a most optimal Gn,m-graph, should it exist, is n − 3. In proving that such

a most optimal graph does not exist, the following lemma will also be of use.

Lemma 2.3.3 Let G be a simple graph on n ≥ 6 vertices, m edges and that is (n−3)-

semiregular with the minimum number of adjacent degree n−3 vertices. Furthermore,

let M be a graph on n vertices and m edges, with edge connectivity n−3 that is (n−3)-

semiregular, but with at least one multiple edge between a pair of vertices. Then M

is less reliable than G for values of p close to 1.

Proof. We know from Lemma 2.2.5 that G has edge connectivity n−3 and that any

cutset of G with 2n− 8 edges either disconnects a single vertex or a pair of adjacent

degree n− 3 vertices. Now consider the graph M , with multiedges, and suppose that

it is at least as reliable as G. Recall from Lemma 2.2.6 that M and G have the same

number of vertices of each degree, say x of degree n− 2 and y of degree n− 3. Thus

both G and M have x
(
m−(n−2)
j−(n−2)

)
+ y
(
m−(n−3)
j−(n−3)

)
cutsets of size n− 1 ≤ j ≤ 2n− 9 that

necessarily isolate a vertex.

Now if X denotes the set of vertices with degree n− 2, Y the set of degree n− 3

vertices, and u and v denote a pair of vertices with multiple edges between them,

then both vertices belong to X as per the following argument. If u ∈ X and v ∈ Y
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then the removal of all the edges incident to u and v, with the exception of the bundle

between u and v, yields a cutset of size at most 2n− 9, not accounted for previously.

This contradicts the assumption that M is as reliable as G.

Likewise, if u and v both lie in Y then the cutset alluded to above, having size

at most 2n − 10, produces a contradiction as well. Moreover, the bundle between u

and v must consist of two edges because more than two yields a cutset of order at

most 2n − 10. Next, realize that both G and M have that same number of cutsets

of size 2n − 8 that isolate a vertex, namely x
(
m−(n−2)

n−6

)
+ y
(
m−(n−3)

n−5

)
. Since G has

the minimum number aG of adjacent vertices of degree n− 3, the same must be true

of M , as the subgraph induced by Y is simple in M and |Y | = y in both G and

M . However, the cutset determined by a bundle of two edges between two vertices

of degree n − 2 (consisting of all the edge incident to u and v, save the two in the

bundle) has size 2n−8 and is not accounted for in the above count, thereby providing

the final contradiction. �

We will use these results to show that for some n and m there do not exist most

optimal Gn,m-graphs.

Theorem 2.3.4 Let n ≥ 6.

• If m =
(
n
2

)
−(n−k) where 2 ≤ k < n

2
, there does not exist a most optimal Gn,m-

graph provided either (i) n− 2k ≡ 1 (mod 3) and k = n−1
2
, or (ii) n− 2k ≡ 2

(mod 3).

• If m =
(
n
2

)
− (n−1), where n ≡ 1 (mod 3) there does not exist a most optimal

Gn,m-graph.
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Proof. First let m =
(
n
2

)
− (n − k) where 2 ≤ k < n

2
. Since we will be using

Theorem 2.3.2 which requires that 2m
3

≥ n ≥ 5, we should note that

2m

3
− n =

n(n− 6)

3
+

2k

3
≥ 0

for n ≥ 6. Now we can find α and γ:

α =

⌊
2m

n

⌋
=

⌊
2(n(n− 1)− 2(n− k))

2n

⌋

=

⌊
n(n− 1)− 2(n− k)

n

⌋
=

⌊
(n− 1)− 2 +

2k

n

⌋

=

⌊
n− 3 +

2k

n

⌋
= n− 3

and

γ =
⌊

2m
n(n−1)

⌋
=

⌊
m

(n2)

⌋
= 0

Also, if m =
(
n
2

)
− (n− 1) it is not hard to verify that we get α = n− 3 and γ = 0

as well.

Suppose that M were a most optimal Gn,m-graph. It must then be optimal for

all p close to 1, and hence, as we have seen, must have edge connectivity n − 3. It

must also minimize the number of cutsets of size n − 3, and by Theorem 2.3.2, M

must be (n− 3)-semiregular. From Lemma 2.3.3 it follows that M must be a simple

graph. But we know from Theorems 2.2.9, 2.2.10 and 2.2.11 that M cannot be a

most optimal Sn,m–graph, and hence not a most optimal Gn,m-graph. Thus there are

no most optimal Gn,m–graphs in these cases as well. �
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Figure 2.4: L8,13

2.4 Existence of Least Optimal Gn,m-Graphs

The results of the previous section provided examples of n and m for which a most

optimal Gn,m-graph need not exist. At the other end of spectrum, one could ask

whether, for each n and m ≥ n − 1, least optimal graphs exist (a connected graph

in Gn,m is a least optimal graph if for any other connected Gn,m-graph H we have

that Rel(G, p) ≤ Rel(H, p) for all p ∈ [0, 1]). Previous focus has been exclusively on

least optimal simple graphs. It was conjectured by Boesch et al. in [15] that a least

optimal simple graph has the maximum possible number of 2-connected components,

and Bogdanowicz [17] proved that the simple graph with the least number of spanning

trees is Ln,m, which consists of an (n − k)-clique, joined to k − 1 leaves plus one

other vertex of degree m −
(
n−k
2

)
− (k − 1), where k is the least integer such that

m ≥ (n−k)(n−k−1)
2

+ k. So, if there is a least optimal simple graph on n vertices and

m edges, then Ln,m is a candidate (see Figure 2.4). It is yet unknown as to whether

Ln,m is a least optimal simple graph. In contrast, we shall show that for all n and

m ≥ n− 1, there is indeed always a unique graph that is least optimal. To show that

such a graph exists, we need the following lemma.
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Lemma 2.4.1 [21] Let M be the cographic matroid. If M has exactly r coloops,

then the last r terms in the H-vector are 0 and all other terms are positive (integers).

As the facets of the cographic matroid of any graph G are the complements of

spanning trees, and an edge is in a spanning tree if and only if it is not a loop, we

see that for a loopless graph G, the H-vector of its cographic matroid has all positive

integer terms. As we are assuming that our graphs are loopless, we are now ready to

determine the graphs with the minimum reliability.

Theorem 2.4.2 Given n vertices and m edges, the family of graphs Tn,m which arise

from tree bundles of order n, with one edge replaced by a bundle of m− n+ 2 edges,

are the least optimal Gn,m-graphs. Moreover, this family of graphs is unique.

Proof. Let T ∈ Tn,m. We have that

Rel(T, p) = pn−2(1− (1− p)m−n+2)

= pn−1(1 + (1− p) + (1− p)2 + . . .+ (1− p)m−n+1)

It follows that the H-form of the all terminal reliability polynomial for any T ∈

Tn,m has theH-vector 〈1, 1, . . . , 1〉, this is true as {1, (1−p), (1−p)2, . . . , (1−p)m−n+1}

is a basis for the polynomials of degree m − n + 1, so Rel(T, p)/pn−1 is uniquely

expressible as a polynomial in 1− p.

Let G ∈ Gn,m. As G has no loops, the H-vector of its cographic matroid,

〈H0, H1, . . . , Hm−n+1〉, satisfies Hi ≥ 1 for all 0 ≤ i ≤ m− n+ 1. Thus we have

Rel(G, p) = pn−1

m−n+1∑
i=0

Hi(1− p)i

≥ pn−1

m−n+1∑
i=0

(1− p)i

= Rel(T, p)
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and hence T is a least optimal Gn,m-graph. Equality holds if and only if all Hi = 1.

To show the uniqueness of this family of graphs, let G be a graph with n vertices

and m edges such that for the H-vector of the cographic matroid of G, Hi = 1 for

i = 0, . . . ,m− n+ 1. We know that

Hi =
i∑

j=0

(−1)i−j

(
m− n+ 1− j

m− n+ 1− i

)
Fj.

As F0 = 1, we find that

1 = H1 = (−1)1
(
m− n+ 1

m− n

)
F0 + (−1)0

(
m− n

m− n

)
F1 = −(m− n+ 1) + F1,

therefore F1 = m− n+ 2. So there are precisely m− n+ 2 ways to remove one edge

and leave a spanning connected subgraph, which implies that the graph G has n− 2

bridges. As G is connected, it contains a spanning tree T , so G is T plus m− n+ 2

other edges (none of which are bridges). If G contained a cycle of size at least 3 then

we would have at most n − 3 bridges, and if the graph had more than one bundle

of multiple edges of size larger than 1, then again we would have fewer than n − 2

bridges. It follows that G must arise from T by replacing one edge by a bundle of

m− n+ 2 edges. �

So when considering graphs, there always exists a least optimal graph. But if the

focus is most optimal graphs, for a given n there are positive integers m such that

a most optimal graph does not exist. In situations when a most optimal graph does

not exist, if it is known that the edge probabilities are close to 0, then we can look

for the graph with the most spanning trees. If we know that the edge probabilities

are near 1, we can look for graphs with the largest edge connectivity. If the edge

probability is p = 1
2
then we are interested in the graph with the highest number of

spanning connected subgraphs.



45

Observation 2.4.3 The graph which is most optimal for p = 1
2
is the graph with the

highest number of spanning connected subgraphs.

Proof. Let G be a graph and consider the F -form of the all terminal reliability

polynomial. Then

Rel(G, 1/2) =
m−n+1∑

i=0

Fi(1/2)
m−i(1− 1/2)i

=
m−n+1∑

i=0

Fi(1/2)
m−i(1/2)i

=
m−n+1∑

i=0

Fi(1/2)
m

= (1/2)m
m−n+1∑

i=0

Fi.

Now,
∑m−n+1

i=0 Fi counts the number of spanning connected subgraphs of G. Since

(1/2)m is a constant it follows that the graph that has the highest number of spanning

connected subgraphs is most optimal for p = 1
2
. �

If a most optimal graph exists, then it is best for all values of p ∈ [0, 1]. If we

do not know if a most optimal graph exists, we could look for graphs that are most

optimal for specific values of p, such as near 0, 1 or at 1/2, as we will always have a

most optimal graph in these situations, but these are a local definition of optimality.

It may be of interest to investigate a new global definition of optimality to compare

to the traditional notion.



Chapter 3

Analytic Properties of All Terminal Reliability Polynomials

At their most basic level, reliability polynomials are functions and an aspect of re-

liability polynomials that has been studied, but still has many questions left to be

answered, is that of their analytic properties. With regards to the behavior of reliabil-

ity polynomials on the interval [0, 1], they are increasing functions and are S-shaped,

meaning if they cross y = p, they do so exactly once [65]. It is also known [61] that

graphs with large edge connectivity go from close to 0 to close to 1 over a small

interval. Inflection points of reliability polynomials have also been studied, they may

or may not occur in (0, 1) and it has been shown that reliability polynomials can

have more than one inflection point [27]. The roots of reliability polynomials have

also been studied and are known to be dense in |z − 1| ≤ 1, [21], but this disk is not

their closure as roots can be found slightly outside this disk [70].

In this section, we will look at thresholds, fixed points, inflection points and the

roots of reliability polynomials. We will also investigate another analytic property

which has not been well studied, the integral of the reliability polynomial over [0, 1],

as it is the average value of the polynomial over [0, 1].

We will begin by looking at thresholds, as many of the results in this section will

be used throughout the chapter. We will be looking at the reliability polynomial in

the variable p and in q, where q = 1 − p. Throughout this chapter, we will use the

following notation. For a graph G, Relp(G, p) will denote the reliability polynomial

in the variable p. If we are considering the reliability polynomial in the variable q,

we will denote this with Relq(G, q). This means that Relp(G, p) = Relq(G, 1− p),

46
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and Relq(G, q) = Relp(G, 1− q). If it is clear that we are looking at the polynomial

in the variable p, then we will use Rel(G, p) or Rel(G). If looking at the reliability

polynomial in both p and q, we have

Relp,q(G, p, q) =
m∑
i=0

Fip
m−iqi.

3.1 Thresholds

Suppose you are in charge of a network and you are wondering whether money should

be spent to slightly increase the reliability of the existing connections. If you know

there is a value, p0 such that for values of p < p0 your network is highly unreliable,

but for values of p > p0 your network is highly reliable, then investing a little money

to improve the reliability of the connections in your network could go a long way.

In this section we will look at some families of graphs called t-threshold families of

graphs and introduce a new such family of graphs. These t-threshold families of

graphs will reappear throughout this chapter in order to provide results about other

analytic properties.

3.1.1 Thresholds for Families of Graphs

Margulis [61] looked at families of graphs with large edge connectivity, and how the

reliability goes from close to 0 to close to 1 over a small interval. One question that

can be asked is where can this jump occur? For example, Figure 3.1 shows a plot

of the reliability polynomials for cycles and as n increases, the interval where the

polynomial goes from close to 0 to close to 1 decreases, and moves toward 1. This

suggests that cycles have a threshold at p = 1.
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Figure 3.1: Plot of reliability polynomials for cycles on 3 to 40 vertices

Definition 3.1.1 Let G = {Gn : n ≥ 1} be a family of connected graphs such that

lim
n→∞

Rel(Gn, p) =

⎧⎪⎨
⎪⎩

0 if 0 ≤ p < t

1 if t < p ≤ 1.

Then we call G a t-threshold family of graphs.

We remark that if we are considering the reliability polynomial in the variable q,

then t is a threshold if

lim
n→∞

Relq(Gn, q) =

⎧⎪⎨
⎪⎩

1 if 0 ≤ q < t

0 if t < q ≤ 1.

We will now look at a few examples of families of graphs and the location of their

thresholds. These results will be used in later sections. Kelmans [53] showed that

both the family of complete bipartite graphs, {Kn1,n2 | n2 = can1 , c > 0, a > 1} and

the family of tree bundles, {T loga(n)
n | n ≥ 1, a > 1} are a (1 − 1/a)-threshold family

of graphs. We consider the family of complete bipartite graphs, {Kn,n | n ≥ 2}

and show they are a 0-threshold family of graphs. Since no explicit formulas for the
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reliability of complete or complete bipartite graphs are known, we will bound the

polynomial from below and show that the lower bound has a threshold.

Proposition 3.1.2 We have that

lim
n→∞

Rel(Kn,n, p) =

⎧⎪⎨
⎪⎩

0 if p = 0

1 if p ∈ (0, 1],

so G = {Kn,n : n ≥ 2} is a 0-threshold family of graphs.

Proof. Consider the graph Kn,n with bipartitions (A,B). Let E1 denote the event

that any pair of vertices in A or in B are connected by a path of length 2. First we

show that if E1 holds, then G is connected.

Suppose that E1 holds, but G is not connected. For any pair of vertices, x, y ∈ A,

x and y are in the same component since they are connected by a path of length 2

(similarly for the vertices of B). Now let u ∈ A and v ∈ B be in different components.

Since E1 holds, for any other vertex, z in B, there is some vertex w ∈ A such that

v and z are connected by a path of length 2, which contains w, so v is adjacent to

w and since any pair of vertices in A are in the same connected component, then

u and w are in the same connected component, and hence v and u are in the same

connected component, which is a contradiction.

Note that P (E1) ≤ 2
(
n
2

)
(1−p2)n since if E1 fails, there is a pair of vertices, x, y ∈ A

(or inB) such that there is no path of length 2 with x and y as end points. The number

of ways to pick a pair of vertices, x, y in A (or in B) is 2
(
n
2

)
. The probability that

the other n vertices in the other partition are not incident to both x and y is 1− p2.

It follows that for p ∈ (0, 1], Rel(Kn,n, p) ≥ P (E1) = 1− P (E1) ≥ 1− 2
(
n
2

)
(1− p2)n.
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As n approaches infinity, 2
(
n
2

)
(1 − p2)n approaches 0, so P (E1) approaches 0.

Thus,

lim
n→∞

Rel(Kn,n, p) =

⎧⎪⎨
⎪⎩

0 if p = 0

1 if p ∈ (0, 1],

so the family {Kn,n : n ≥ 2} is a 0-threshold family of graphs. �

In fact, complete graphs also have a threshold approaching 0 since the reliability

polynomial approaches the same step function as that of Kn,n. Before we look at that

example, we will prove a lemma which will be referenced various times throughout

this chapter.

Lemma 3.1.3 Rel(Kn, p) ≥ 1− n2(1− p2)n−2.

Proof. For a graph G, Rel(G, p) = 1 − NC(G) where NC(G) is the probability

that the operational subgraph G is not spanning connected. If every pair of vertices

in a graph are connected by a path of length 2, then the graph is connected. Hence,

if a graph is not connected, then it is the case that there are a pair of vertices, x, y,

not joined by a path of length 2.

Consider the graph Kn. The probability that at least one pair of vertices are not

connected is at most
(
n
2

)
(1 − p2)n−2, so this gives us that NC(G) ≤

(
n
2

)
(1 − p2)n−2,

and it follows that Rel(Kn, p) ≥ 1−
(
n
2

)
(1− p2)n−2 > 1− n2(1− p2)n−2. �

Proposition 3.1.4 We have that

lim
n→∞

Rel(Kn, p) =

⎧⎪⎨
⎪⎩

0 if p = 0

1 if p ∈ (0, 1]

so the family of complete graphs is 0-threshold family of graphs.
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Proof. Let p ∈ (0, 1]. By Lemma 3.1.3 we know that Rel(Kn, p) ≥ 1−n2(1−p2)n−2.

As n approaches infinity 1− n2(1− p2)n−2 approaches 1, so

lim
n→∞

Rel(Kn, p) =

⎧⎪⎨
⎪⎩

0 if p = 0

1 if p ∈ (0, 1]

and thus we have that complete graphs are a 0-threshold family of graphs. �

Of course, not all families of graphs are 0-threshold families. There are also

families of graphs whose thresholds approach 1. As Figure 3.1 suggests, cycles have

a threshold approaching 1, and we will now prove this to be true.

Proposition 3.1.5 The family G = {Cn : n ≥ 3} is a 1-threshold family of graphs.

Proof. We know that Rel(Cn, p) = (1−n)pn+npn−1, and when p = 1, the reliability

is 1. For p ∈ [0, 1), limn→∞ Rel(Cn, p) = 0, so

lim
n→∞

Rel(Cn, p) =

⎧⎪⎨
⎪⎩

0 if p ∈ [0, 1)

1 if p = 1

which means that cycles are a 1-threshold family of graphs. �

The families we have looked at so far are simple graphs, but what can be said

about graphs with multiple edges? If a family of graphs G = {Gn : n ≥ 1} has a

threshold at t ∈ [0, 1], then replacing the edges of each graph, Gn ∈ G with a bundle

of k edges, to obtain a new family of graphs Gk, consisting of graphs Gk
n pulls the

threshold toward 0. This is because for Gn ∈ G, we have that

Rel(Gk
n, p) = Rel(Gn, 1− (1− p)k) and t = 1− (1− p)k when p = 1− (1− t)1/k, thus

lim
n→∞

Rel(Gk
n, p) = lim

n→∞
Rel(Gn, 1− (1− p)k)
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=

⎧⎪⎨
⎪⎩

0 if 0 ≤ p < 1− (1− t)1/k

1 if 1− (1− t)1/k < p ≤ 1.

For fixed t ∈ (0, 1) the limit of 1− (1− t)1/k is 0 as k goes to infinity, hence Gk is

a 0-threshold family of graphs.

We will now proceed to present a family of graphs, with multiedges, whose thresh-

olds will be shown to be dense in [0, 1]. This family of graphs will be used in other

sections of this chapter to obtain results regarding other analytic properties of all

terminal reliability polynomials.

3.1.2 A New Threshold Family of Graphs

In this section we will look at a family of graphs which turns out to be a threshold

family of graphs. As mentioned earlier, Kelmans showed that tree bundles with

bundles of size loga(n) are a (1 − 1
a
)-threshold family of graphs. Unlike the tree

bundles that Kelmans considered, the graphs we will look at are semiregular, have

large edge connectivity, and for n and m will be shown to always be more reliable

than tree bundles. For a later result, we will find it easier to consider the all terminal

reliability polynomial in the variable q. The following lemma, which we state without

proof, allows us to switch variables.

Lemma 3.1.6 Let G = {Gn : n ≥ 1} be a family of graphs. Then

lim
n→∞

Relq(Gn, q) =

⎧⎪⎨
⎪⎩

1 if 0 ≤ q < q0

0 if q0 < q ≤ 1

if and only if

lim
n→∞

Relp(Gn, p) =

⎧⎪⎨
⎪⎩

0 if 0 ≤ p < 1− q0

1 if 1− q0 < p ≤ 1
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Let Ck
n be a cycle on n vertices where each edge is replaced with bundles of k

edges. This graph has reliability polynomial

Relq(C
k
n, q) = Relq(Cn, q

k) = (1− qk)n + n(1− qk)n−1qk,

since either at least one edge in each bundle is operational, or exactly one bundle is

down and at least one edge in the remaining bundles are operational. A nice property

of this family is that we can choose n and k in such a way that they will be a threshold

family of graphs.

Theorem 3.1.7 Fix m ≥ 1 and j ≥ 1. Then the family of graphs

Cm,j = {Ckj
mk : k ≥ 1} is a t-threshold family of graphs, with t = 1−

(
1
m

)1/j
.

Proof. Consider Relq(C
kj
mk , q).

Relq(C
kj
mk , q) = mk(1− qkj)m

k−1 + (1−mk)(1− qkj)m
k

= (1− qkj)m
k−1(mk + (1−mk)(1− qkj))

= (1− qkj)m
k−1(1− qkj +mkqkj)

= (1− qkj)m
k

+mkqkj(1− qkj)m
k−1

= y1 + y2

where y1 = (1− qkj)m
k
and y2 = (mqj)k(1− qkj)m

k−1.

We will first consider what happens to y1 + y2 for fixed values of q > ( 1
m
)1/j as k

approaches infinity. To see what happens to y1 we will look at ln(y1). From Taylor’s

Theorem we have that ln(1− x) = −x+O(x2), so this gives us

ln(y1) = mk ln(1− qkj) = mk(−qkj +O(q2kj)).
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Then

lim
k→∞

mk(−qkj +O(q2kj)) = lim
k→∞

(mqj)k)(−1 +O(qkj)) = −∞.

As q > ( 1
m
)1/j, this implies that m(qj) > 1 , so y1 tends to 0.

To see what happens to y2, consider ln(y2).

ln(y2) = k ln(mqj) + (mk − 1) ln(1− qkj)

= k(ln(m) + j ln(q)) + (mk − 1) ln(1− qkj)

= k(ln(m) + j ln(q)) + (mk − 1)(−qkj +O(q2kj)).

Now, by similar reasoning to that of y1,

lim
k→∞

(k(ln(m) + j ln(q)) + (mk − 1)(−qkj +O(q2kj))) = −∞,

since q > ( 1
m
)1/j. So for q > ( 1

m
)1/j as k approaches infinity, y1 + y2 = Rel(Ckj

mk , q)

tends to 0.

We will now consider what happens to y1 + y2 for values of q < ( 1
m
)1/j as k

approaches infinity. Looking at when q < ( 1
m
)1/j we have that m(qj) < 1 and so

lim
k→∞

mk(−qkj +O(q2kj)) = lim
k→∞

(mqk)k(−1 +O(qkj)) = 0.

Since ln(y1) tends to 0, y1 will approach 1. To see what happens to y2 , as before

let us consider ln(y2):

lim
k→∞

(k(ln(m) + j ln(q)) + (mk − 1)(−qkj +O(q2kj))) = −∞,
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and since q < ( 1
m
)1/j, (mk − 1)(−qkj + O(q2kj)) approaches 0 and k(ln(m) + j ln(q))

approaches −∞. Therefore y2 tends to 0, so for q < ( 1
m
)1/j as k approaches infinity,

y1 + y2 = Rel(Ckj
mk , q) tends to 1.

We have seen, looking at the reliability polynomial in the variable q that t = ( 1
m
)1/j

is a threshold for the family of graphs of Cm,j, so expressing the reliability polynomials

in the variable p, it has a threshold at p = 1−
(

1
m

)1/j
. �

3.1.3 Closure of Thresholds for Cm,j

We have seen that our family of graphs has a threshold at p = 1− (1/m)1/j. We will

now show that these thresholds are dense in [0, 1].

Theorem 3.1.8 The set {t ∈ [0, 1] : Cm,j is a t-threshold family of graphs } is dense

in [0, 1].

Proof. Let r ∈ (0, 1) and ε > 0; without loss of generality we may assume

0 < r − ε < r + ε < 1. We have thresholds at ( 1
m
)1/j, so if we can find m and j such

that |r − ( 1
m
)1/j| < ε, then the family Cm,j will be a t-threshold family of graphs for

t ∈ (r − ε, r + ε).

We want m and j such that

r − ε < ( 1
m
)1/j < r + ε,

that is (r − ε)j < 1
m

< (r + ε)j.

So we want positive integers, m and j, such that (for the given r and ε) we have

− ln(m)

ln(r − ε)
< j <

− ln(m)

ln(r + ε)
.
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Since we can pick m and j, the question is, given r and ε, for what values of m is

there a positive integer in
(

− ln(m)
ln(r−ε)

, − ln(m)
ln(r+ε)

)
? The inequality − ln(m)

ln(r+ε)
− − ln(m)

ln(r−ε)
> 1 would

guarantee this.

One can see that − ln(m)
ln(r+ε)

− − ln(m)
ln(r−ε)

> 1 when ln(m) > ln(r−ε) ln(r+ε)
ln(r+ε)−ln(r−ε)

. Let S =

ln(r−ε) ln(r+ε)
ln(r+ε)−ln(r−ε)

, then we want to know when ln(m) > S, which occurs when m > eS.

So given r and ε, if we pick m > eS then there is a j such that |r − ( 1
m
)1/j| < ε and

we are done. �

In fact, we can obtain, from our family of graphs, a family of simple graphs whose

thresholds are dense in [0, 1]. Before we begin, we will describe a particular graph

construction, which will be used several times throughout this chapter.

Consider a graph G on n vertices and m edges and another graph, H, which we

will call a gadget. For H, we specify two distinct vertices, x and y (which may or

may not be adjacent). We replace each edge e = {z, w} ∈ G with a copy of H,

where x and y identify with z and w. Call this new graph G[H] (see Figure 3.2 and

Figure 3.3).

We can find the reliability of G[H] using the reliabilities of G and our gadget H.

Let pnew(H) be the probability thatH is spanning connected, so pnew(H) = Rel(H).

This is since if the original edge in G is operational, then in G[H], H must be spanning

connected.

For G[H] to be spanning connected, if an edge of G is down, this corresponds to

H being disconnected in G[H], but every vertex of H needs to be able to reach the

other vertices of G[H]. This means the vertices on G need to be able to reach x or y,

but not both (else H is connected). Let qnew(H) be the probability that each vertex

of H can reach x or y, but not both (which is denoted Rel{x,y}(H)). This corresponds

to the original edge of G being non-operational.
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Consider Figure 3.2. We have that G = P3 and our gadget is C3. This gives us

that pnew(C3) = −2p3 + 3p2 and qnew(C3) = (1− p)(2p(1− p)).

Figure 3.2: P3, C3 and the graph P3[C3]

For a graph G and gadget H, we can calculate the reliability of G[H] using

pnew(H), qnew(H) and Rel(G, p). The probability that a spanning connected sub-

graph S of G of size i is operational is piqm−i. Consider the corresponding subgraph

in G[H]. If an edge of G, with end points x and y, is operational, then in G[H] this

corresponds to H being spanning connected. This occurs with probability pnew(H).

If an edge of G is non-operational then in G[H] this corresponds to each vertex of H

being able to communicate with x or y, but not both and this occurs with probability

qnew(H).

So from an operational spanning subgraph S of G, we obtain a family S of span-

ning subgraphs in G[H]. Suppose that we remove i edges from G to obtain S. The

probability that S is operational in G[H] is pnew(H)m−iqnew(H)i. This gives us that

Relp(G[H], p) =
m−n+1∑

i=0

Fi(G)pnew(H)m−iqnew(H)i,

where Fi(G) is the i-th term in the F -vector of the cographic matroid of G.

We can use this construction to obtain a threshold family of simple graphs, whose

thresholds are dense in [0, 1]. Let G be the cycle bundles, Ckj
mk and let our gadget

be a complete graph, Kn, n ≥ 2, with a leaf attached. Call this graph Gn. Identify

the leaf and a vertex (not adjacent to the leaf) in Kn as the endpoints, x, y of the
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edge e in Ckj
mk , so that we obtain the graph Ckj

mk [Gn] (see Figure 3.3). We will let

M = mkkj, which is the number of edges in Ckj
mk .

� �

��

� �

�

�

� �

Figure 3.3: G4, C4 and the graph C4[G4], where the vertex a identifies with x and b
with y.

We have that

Relp(C
kj
mk [Gn], p) = (pnew(Gn) + qnew(Gn))

MRelp

(
Ckj

mk ,
pnew(Gn)

pnew(Gn) + qnew(Gn)

)
.

This comes from the fact that

( pnew(Gn)

pnew(Gn) + qnew(Gn)

)M−i(
1− (

pnew(Gn)

pnew(Gn) + qnew(Gn)
)
)i

=
( pnew(Gn)

pnew(Gn) + qnew(Gn)

)M−i( qnew(Gn)

pnew(Gn) + qnew(Gn)

)i

=
pnew(Gn)

M−iqnew(Gn)
i

(pnew(Gn) + qnew(Gn))M

so

Relp(C
kj
mk [Gn], p) = (pnew(Gn) + qnew(Gn))

MRelp

(
Ckj

mk ,
pnew(Gn)

pnew(Gn) + qnew(Gn)

)
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= (pnew(Gn) + qnew(Gn))
M

M∑
i=0

Fi(C
kj
mk)

pnew(Gn)
M−iqnew(Gn)

i

(pnew(Gn) + qnew(Gn))M

=
M∑
i=0

Fi(C
kj
mk)pnew(Gn)

M−iqnew(Gn)
i

as desired.

We have that

pnew(Gn) = p(Rel(Kn, p))

and

qnew(Gn) = (1− p)Rel(Kn, p) + p(Relx,y(Kn)),

where x is adjacent to the leaf and y is as previously described. From Lemma 3.1.3

we have that

0 ≤ Rel{x,y}(Kn) ≤ n2(1− p2)n−2,

since we require that Kn be disconnected.

Looking at

pnew(Gn) + qnew(Gn) = Rel(Kn, p) + p(Rel{x,y}(Kn)),

we can see that as n approaches infinity, this approaches 1, since complete graphs are

a 0-threshold family of graphs and p(Rel{x,y}(Kn)) goes to 0. From similar reasoning,

we also have that

lim
n→∞

qnew(Gn) = lim
n→∞

((1− p)Rel(Kn, p) + p(Relx,y(Kn)))

= 1− p = q.
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This gives us that

lim
n→∞

pnew(Gn)

pnew(Gn) + qnew(Gn)
= p. (3.1)

We will now consider what happens to (pnew(Gn)+qnew(Gn))
M , as n approaches

infinity. Let A = (pnew(Gn) + qnew(Gn))
M and consider ln(A).

ln(A) = M ln(pnew(Gn) + qnew(Gn))

= M ln(Rel(Kn, p) + pRelx,y(H))

≥ M ln(1− n2(1− p2)n−2)

= M(−n2(1− p2)n−2 +O((−n2(1− p2)n−2)2))

by Taylor’s theorem. Since M = mkkj, we have that as long as n grows at least as

fast as M (so pick n = M), M(−n2(1− p2)n−2 +O((−M2(1− p2)n−2)2)) approaches

0 as n approaches infinity, so ln(A) ≥ 0 and A approaches 1. This means that as n

approaches infinity, (pnew(Gn) + qnew(Gn))
M = 0 for p = 0 and is 1 for p ∈ (0, 1].

We know that

Relp(C
kj
mk [Gn], p) = 0

for p = 0 and for p ∈ (0, 1],

Relp(C
kj
mk [Gn], p) = Relp

(
Ckj

mk ,
pnew(Gn)

pnew(Gn) + qnew(Gn)

)
.

We will now look at

Relp

(
Ckj

mk ,
pnew(Gn)

pnew(Gn) + qnew(Gn)

)
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as n approaches infinity. We know that the family of cycle bundles,

Cm,j = {Ckj
mk : k ≥ 1}

is a t-threshold family of graphs, with t = 1−
(

1
m

)1/j
. So for values of p such that

pnew(Gn)

pnew(Gn) + qnew(Gn)
< t

we have that Relp(C
kj
mk ,

pnew(Gn)
pnew(Gn)+qnew(Gn)

) approaches 0 and for values of p such

that

pnew(Gn)

pnew(Gn) + qnew(Gn)
> t

we have that Relp(C
kj
mk ,

pnew(Gn)
pnew(Gn)+qnew(Gn)

) approaches 1. This means that

Relp(C
kj
mk ,

pnew(Gn)
pnew(Gn)+qnew(Gn)

)

has a threshold at

pnew(Gn)

pnew(Gn) + qnew(Gn)
= t.

Let p < t be such that for some ε > 0, p+ ε < t. Thus, for n large enough,

pnew(Gn)

pnew(Gn) + qnew(Gn)
< p+ ε < t,

so by Equation 3.1 this means that

Relp

(
Ckj

mk ,
pnew(Gn)

pnew(Gn) + qnew(Gn)

)
< Relp(C

kj
mk , p+ ε)

and Relp(C
kj
mk , p+ ε) approaches 0, since p+ ε < t and Cm,j is a t-threshold family of

graphs.
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Now, let p > t be such that for some ε > 0, p− ε > t. Thus, for n large enough,

pnew(Gn)

pnew(Gn) + qnew(Gn)
> p− ε > t,

so by Equation 3.1 this means that

Relp

(
Ckj

mk ,
pnew(Gn)

pnew(Gn) + qnew(Gn)

)
> Relp(C

kj
mk , p− ε)

and Relp(C
kj
mk , p− ε) approaches 1, since p− ε > t and Cm,j is a t-threshold family of

graphs. Thus, we have t-threshold families of simple graphs,

Fm,j = {Ckj
mk [Gn] | n = mkkj, k ≥ 1}

whose thresholds are dense in [0, 1].

As mentioned earlier, Kelmans looked at a threshold family of graphs that are

tree bundles. Let T k1,k2,...,kn−1 denote a tree where edge ei is replaced by a bundle of

size ki. The reliability of this family of graphs is

Relq(T
k1,k2,...,kn−1 , q) =

n−1∏
i=1

(1− qi).

We will show that our cycle bundles are uniformly more reliable than tree bundles

and hence are better in terms of reliability.

Theorem 3.1.9 The most optimal cycle bundle is uniformly more reliable than any

tree bundle on the same number of edges and vertices.

Proof. First we will show that a tree whose edges are bundles of size �m
n
� and �m

n
�

is most optimal over all other trees. We will do so by showing that if there are a pair

of edges whose bundle sizes differ by more than 1, then it is more optimal to shift an

edge from the bigger bundle to the smaller bundle.
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Consider a tree with a bundle of size a and another bundle of size b, a > b + 1.

The reliability of this tree is

(1− qa)(1− qb)
n−1∏
i=3

(1− qki).

Consider the tree where an edge from the bundle of size a is moved to the bundle of

size b. This has a reliability polynomial of

(1− qa−1)(1− qb+1)
n−1∏
i=3

(1− qki).

We can see that

(1− qa−1)(1− qb+1)
n−1∏
i=3

(1− qki) > (1− qa)(1− qb)
n−1∏
i=3

(1− qki)

when

1− qa − qb + qa+b < 1− qa−1 − qb+1 + qa+b.

This inequality holds when qa−1 + qb+1 < qa + qb, so when qb(q − 1) < qa−1(q − 1).

This holds since qa−1 < qb, as a > b + 1. So, if there are a pair of bundles whose

size differ by more than 1, a more reliable tree can be obtained by shifting an edge

from the larger bundle to the smaller one. Thus, the most optimal tree bundle on n

vertices and m edges has bundles of size �m
n
� and �m

n
�.

Now that we know the most optimal tree bundles, we will show that the cycle

bundles are more reliable. Since all tree bundles have the same reliability, for con-

venience, we will look at path bundles. Consider a path bundle, Pn,m (m ≥ n ≥ 2)

which is a path with bundles of size k = �m
n
� and k+1. Also, consider the cycle bun-

dle, C, obtained from shifting one edge from the path to form a cycle (see Figure 3.4).

We will show that Rel(Pn,m, p) < Rel(C, p) for p ∈ (0, 1).
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Figure 3.4: The graph Pn,m and the cycle bundle C obtained from moving one edge
from Pn,m.

Let e be the edge that we moved to form a cycle. Using the deletion and contrac-

tion formula we have that Rel(Pn,m, p) = (1− p)Rel(Pn,m − e, p) + p(Rel(Pn,m · e, p))

and

Rel(C, p) = (1− p)Rel(C − e, p) + p(Rel(C · e, p))

= (1− p)Rel(Pn,m − e, p) + p(Rel(C · e, p))

and since Pn,n · e is a proper subgraph of C · e, (ignoring the loops obtained from

contracting e in Pn,m, since they do not affect the reliability) we have that Rel(C, p) >

Rel(Pn,m, p).

As with the paths, if we have a cycle bundle with two bundles of edges, whose

sizes differ by more than 1, it is more optimal to shift an edge from the larger bundle

to the smaller bundle. We have that a cycle bundle Ck1,k2,..,kn
n with bundles of size

k1, k2, .., kn has reliability polynomial

Relq(C
k1,k2,..,kn
n , q) =

n∏
i=1

(1− qki) +
n∑

i=1

qki
∏
j �=i

(1− qkj).

Let G1 be a cycle bundle with a bundle of size a and another of size b, a > b+1. Let

P (A) =
∏

i≥3(1− qki) and let P (B) =
∑n

i=3 q
ki
∏

j �=i(1− qkj). The reliability of G1 is

Relq(G1, q) = (1− qa)(1− qb)(P (A) + P (B))

+qa(1− qb)P (A) + qb(1− qa)P (A),
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since for G1 to be connected, either you can have at least one edge in the bundle of

size a operational and at least one edge in the bundle of size b operational, and in the

remaining bundles, you can have at least one edge up or you can have exactly one

bundle down and the rest with at least one edge operational. You could also have

the bundle of size a non-operational and the other bundles have at least one edge up

or you can have the bundle of size b non-operational and the other bundles with at

least one edge operational.

Let G2 be the cycle obtained from G1 by shifting an edge from the bundle of size

a to the bundle of size b. The reliability of G2 is

Relq(G2, q) = (1− qa−1)(1− qb+1)(P (A) + P (B))

+qa−1(1− qb+1)P (A) + qb+1(1− qa−1)P (A).

Simplifying the reliability polynomial for G1, we get that

Relq(G1, q) = P (B)(1− qa − qb + qa+b) + P (A)(1− qa+b)

and simplifying the reliability polynomial for G2 we have that

Relq(G2, q) = P (B)(1− qa−1 − qb+1 + qa+b) + P (A)(1− qa+b).

From this, we can see that Rel(G2, q) > Rel(G1, q) when qa + qb > qa−1 + qb+1, which

is true since a > b + 1. So we have that the best tree bundles are uniformly less

reliable than the most reliable cycle bundle. �

We will return to this family of graphs, the cycle bundles, later in this chapter.
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3.2 Internal Fixed Points

Threshold families of graphs, like those discussed in the previous section, go from close

to 0 to close to 1, so it should be clear that these reliability polynomials would have a

fixed point at a value other than 0 and 1. Fixed points for reliability polynomials have

been studied by Shannon and Moore [65] and by Birnbaum, Esary and Saunders [11].

They both show that if a reliability polynomial has a fixed point, p0 in (0, 1) then it is

S-shaped, meaning Rel(G, p) < p for p ∈ [0, p0) and Rel(G, p) > p for p ∈ (p0, 1]. This

means that for p < p0 the graph as a whole is less reliable than a single edge, and for

p > p0 the graph as a whole is more reliable than a single edge. Knowing when and

if these polynomials cross y = p provides further insight as to the behaviour of the

reliability polynomial on [0, 1]. So we turn our attention in this section to the fixed

points of the reliability polynomial. To begin, we need the following definitions.

Definition 3.2.1 [34] The fixed point of a function f(x) is a point x0 for which

f(x0) = x0. Let f ◦k(x) = f ◦k−1(f(x)), with f ◦1(x) = f(x). A fixed point x0 is said

to be an attractive fixed point if there is a neighborhood D of x0 such that if z ∈ D,

then f ◦n(z) → x0 for all n > 0. A fixed point x0 is said to be a repelling fixed point

if there exists a neighborhood D which contains x0 and if z ∈ D − {x0}, then there

exists n > 0 such that f ◦n(z) ∈ D.

Fixed points can also be classified as attractive or repelling by looking the deriva-

tive of the function at the fixed point [34].

• If f(x) has a fixed point at x0 and |f ′(x0)| < 1, then x0 is attractive.

• If |f ′(x0)| > 1, then x0 is repelling.

• If |f ′(x0)| = 1, then x0 is called neutral.
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When specifically looking at the reliability polynomials, since we are not interested

in the fixed points at p = 0 and p = 1, we will call the fixed point of reliability

polynomials in (0, 1) the internal fixed point of the graph.

Definition 3.2.2 The internal fixed point, ifp(G) of a graph G, should it exist, is

the unique point, p0 ∈ (0, 1) such that Rel(G, p0) = p0

Example 3.2.3 Consider the graph Tn, a tree on n vertices. We have Rel(Tn, p) =

pn and pn = p when p = 0 or p = 1, so trees do not have an internal fixed point. (See

Figure 3.5, the red plot).

Example 3.2.4 Consider a cycle on 4 vertices. The reliability polynomial for C4 is

Rel(C4, p) = −3p4 + 4p3. To find when Rel(C4, p) = p we need to find the roots of

Rel(C4, p)− p = −3pp +4p3 − p = −p(p− 1)(3p2 − p− 1). The roots in [0, 1] for this

function are p = 1, p = 0 and p = (1/6)(1+
√
13), so ifp(C4) = (1/6)(1+

√
13). (See

Figure 3.5, the blue plot)

Example 3.2.5 Consider P k
2 , then the all terminal reliability polynomial is 1− (1−

p)k and this has fixed points only at p = 0, 1, so this graph does not have an internal

fixed point. (See Figure 3.5, the green plot)

Recall the N -form of the reliability polynomial,
∑m

i=0 Nip
i(1− p)m−i. Birnbaum,

Esary and Saunders [11] proved that for certain classes of coherent systems the relia-

bility polynomial crosses f(p) = p if and only if N1 = 0 and Nn−1 = n. Below is our

own proof of this result, specific to all terminal reliability, with some restrictions on

the values of n.

Theorem 3.2.6 Let G be a connected graph of order n ≥ 3. Then Rel(G, p) has an

internal fixed point if and only if G has no bridges.
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Figure 3.5: Plot of the reliability polynomials for P4(red), C4(blue), P
4
2 (green) and

the line y = p.

Proof. Let G be a connected graph of order at least 3. If G has a bridge e then

Relp(G, p) = p(Relp(G · e, p)) < p since 0 < Relp(G · e, p) < 1 for p ∈ (0, 1), so G

does not have an internal fixed point.

Now let G ∈ Gn,m be a bridgeless graph on n ≥ 3 vertices. Since G is bridgeless,

Nm = 1 and Nm−1 = m, so

Rel(G, p) =
m∑

i=n−1

Nip
i(1− p)m−i ≥ pm +mpm−1(1− p).

When ismpm−1(1−p)+pm > p for p > 0 ? This occurs whenmpm−2(1−p)+pm−1 > 1.

Let fm(p) = mpm−2(1− p)+ pm−1 = mpm−2+(1−m)pm−1. We know that fm(1) = 1

and

f ′
m(p) = m(m− 2)pm−3 + (1−m)(m− 1)pm−2

= pm−3(m2 − 2m+ (−m2 + 2m− 1)p)

= pm−3(m2(1− p)− 2m(1− p)− p)
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so this gives us that

lim
p→1−

f ′
m(p) = −1

so as we approach p = 1 from the left, we are above the line y = p. So for values of

p < 1 sufficiently close to 1, we are above the line y = p.

It is also the case that for values of p sufficiently close to 0 that we are below the

line y = p. Consider

Rel(G, p) =
m∑

i=n−1

Nip
i(1− p)m−i

≤
m∑

i=n−1

(
m

i

)
pi(1− p)m−i

≤
m∑

i=n−1

(
m

i

)
pn−1

Let

S =
m∑

i=n−1

(
m

i

)
.

If Spn−1 < p then Rel(G, p) < p, and Spn−1 < p when p < S− 1
n−2 . So for values

of p > 0 sufficiently close to 0, we have that Rel(G, p) < p. By the continuity of

Rel(G, p), it must cross y = p for some p ∈ (0, 1), so we have an internal fixed point.

�

We now know when an all terminal reliability polynomial has an internal fixed

point, so we can ask questions like, is it a repelling, attractive or neutral fixed point?

For families of graphs, Fn, what happens to the internal fixed point as n approaches

infinity? And for what r ∈ [0, 1] can we find graphs with internal fixed points close

to r?
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We know at the internal fixed point that the reliability polynomial crosses the

line y = p, since the reliability polynomial is S-shaped, thus the derivative at ifp(G)

is greater than 1, so it is a repelling fixed point.

One may conjecture that the reliability polynomial’s derivative achieves a max-

imum value at the internal fixed point, that is, the maximum increase in reliability

occurs at the internal fixed point, but that is not always the case. For example,

consider C4, which has reliability polynomial Rel(C4, p) = −3p4 + 4p3. We know

that this has an internal fixed point at 1+
√
13

6
, and the derivative of the reliability

polynomial evaluated at the internal fixed point is 22−2
√
13

9
≈ 1.643. However the

derivative attains a maximum value of 16/9 ≈ 1.778 at p = 2/3, which is close to,

but not equal to the internal fixed point.

3.2.1 Bounding Internal Fixed Points

One question that we would like to answer is, what values can the internal fixed

points take on? Before we answer this problem, we will look at bounding the internal

fixed point for a graph G. One bound can be obtained if we know something about

the proportion of spanning subgraphs. Since Rel(G, 1/2) = (1/2m)
∑

(Fi), then for

a graph on n vertices and m edges has the following property: if the proportion

of spanning subgraphs exceeds 1/2, then the internal fixed point is in the interval

(0, 1/2); otherwise it is in (1/2, 1).

We will bound the internal fixed points for a graph by comparing the reliability

polynomial with another function that has a known internal fixed point. To use this

method, the following observation and lemma will be of use. The first observation

will provide some insight as to how the internal fixed point of a graph G behaves in

comparison to an upper or lower bound on the reliability polynomial.

Observation 3.2.7 Let G be a bridgeless graph on n ≥ 3 vertices and f(p) a function

on [0, 1].
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• If Rel(G, p) ≥ f(p) for all p ∈ [0, 1] and f(p′) > p′ then the ifp(G) lies to the

left of p′.

• If Rel(G, p) ≤ f(p) for all p ∈ [0, 1] and f(p′) < p′ then the ifp(G) lies to the

right of p′.

Proof. Let f(p) be a function on [0, 1]. Suppose that for some p′, f(p′) > p′. If

Rel(G, p) ≥ f(p), then Rel(G, p′) ≥ f(p′) > p′, so the internal fixed point of G is to

the left of p′.

Similarly, if we suppose that for some p′, f(p′) < p′. If Rel(G, p) ≤ f(p), then

Rel(G, p′) ≤ f(p′) < p′, so the internal fixed point of G is to the right of p′. �

The next lemma provides an upper bound on the reliability polynomial in terms

of the number of spanning trees the graph has.

Lemma 3.2.8 Let G be a graph, Rel(G, p) ≤ Fm−n+1p
n−1.

Proof. Let T be the set of spanning trees of G. Since for a graph to be connected we

need at least one spanning tree operational, using the Inclusion\Exclusion formula,

we have that

Rel(G, p) =
∑
t∈T

pn−1 −
∑

1≤i<j≤|T |
p|ti∪tj |

+
∑

1≤i<j<k≤|T |
p|ti∪tj∪tk| + . . .+ (−1)|T |−1p|t1∪t2∪...∪t|T ||

≤
∑
t∈T

pn−1,

thus, Rel(G, p) ≤ Fm−n+1p
n−1. �

Using the lemma and observation we can find a general lower bound for the

internal fixed point.
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Theorem 3.2.9 If G is a simple, bridgeless graph on n ≥ 3 vertices, then

ifp(G) ≥ 1/n.

Proof. For any simple graph of order n ≥ 3, we know that Rel(G, p) ≤ Rel(Kn, p).

Thus, by Observation 3.2.7, the internal fixed point of G is to the right of the internal

fixed point of Kn.

Since Rel(Kn, p) < nn−2pn−1, by Lemma 3.2.8, the internal fixed point of Kn is to

the right of that for nn−2pn−1. Since nn−2pn−1 = p when (np)n−2 = 1, which occurs

when p = 1/n, so the internal fixed points of any simple, bridgeless graph on n ≥ 3

vertices is to the right of 1/n. �

For a simple graph G we have that Rel(G, p) < Rel(Kn, p), so the internal fixed

point of G is to the right of the internal fixed point of Kn. Therefore, if the ifp(Kn) →

1 as n → ∞, then by Observation 3.2.7 the internal fixed point of G would tend to 1.

This means that if the internal fixed point of Kn tends to 1, then the internal fixed

point of any simple graph tends to 1. The following will show that this is not the

case, as the internal fixed point of Kn goes to 0, though perhaps slowly.

Theorem 3.2.10 For n sufficiently large, the internal fixed point, ifp(Kn), of the

complete graph on n vertices is to the left of 1
ln(n)

.

Proof. From Lemma 3.1.3 we have that

Rel(Kn, p) > 1− n2(1− p2)n−2.

If we can find a value of p for which 1−n2(1−p2)n−2−p > 0, then by Observation 3.2.7,

ifp(Kn) is to the left of this value. Let p = 1
ln(n)

. We will show that 1 − n2(1 −
1

ln2(n)
)n−2 − 1

ln(n)
> 0 for values of n sufficiently large.
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Now,

lim
n→∞

n2
(
1− 1

ln2(n)

)n−2

= 0

so we have that

lim
n→∞

(
1− n2

(
1− 1

ln2(n)

)n−2

− 1

ln(n)

)
= 1.

Thus 1− n2(1− p2)n−2 > p for p = 1
ln(n)

and n sufficiently large.

�

n ifp(Kn) 1/ ln(n)
3 0.5 0.920
4 0.399 0.721
5 0.335 0.621
6 0.290 0.558
7 0.257 0.514
8 0.231 0.481
9 0.210 0.455
10 0.194 0.434

Table 3.1: The internal fixed points of Kn and 1/ ln(n)

Table 3.1 shows the internal fixed point for complete graphs on n ≤ 10 vertices

and the upper bound of 1/ ln(n). Since the internal fixed points of Kn tend to 0, this

does not force the internal fixed points of any simple graph on n vertices to go to

0. But this is no problem, since it is more interesting to look for families of simple

graphs whose internal fixed points have limits other than 0. While the internal fixed

points of complete graphs tend to 0, we can have families of graphs whose internal

fixed points tend to 1.

Theorem 3.2.11 For cycles Cn we have 1− 1
n
< ifp(Cn) < 1− 1

n2 , for n sufficiently

large.
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Proof. We know that Rel(Cn, p) = npn−1 + (1− n)pn. Let

f(n, p) = npn−1 + (1− n)pn − p.

We will show first that f(n, 1− 1
n
) < 0. Note that

f(n, 1− 1/n) = n(1− 1/n)n−1 + (1− n)(1− 1/n)n − (1− 1/n)

= (1− 1/n)n−1(n+ (1− n)(1− 1/n))− (1− 1/n)

= (1− 1/n)n−1(2− 1/n)− (1− 1/n).

Thus f(n, 1− 1/n) < 0 when (1− 1/n)n−1(2− 1/n) < (1− 1/n), which occurs when

2 <
1

n
+ (

n

n− 1
)n−2.

Since ( n
n−1

)n−2 is an increasing function whose limit is e, we know that for n suffi-

ciently large 2 < 1
n
+ ( n

n−1
)n−2 and so f(n, 1− 1/n) < 0.

We will now show that f(n, 1− 1/n2) > 0.

f(n, 1− 1/n2) = n(1− 1/n2)n−1 + (1− n)(1− 1/n2)n − (1− 1/n2)

= (1− 1/n2)n−1(n+ (1− n)(1− 1/n2))− (1− 1/n2)

= (1− 1/n2)n + (1− 1/n2)n−1(1/n)− (1− 1/n2)

= (1− 1/n2)((1− 1/n2)n−1 + (1− 1/n2)n−2(1/n)− 1)

thus f(n, 1−1/n2) > 0 when (1−1/n2)n−1+(1−1/n2)n−2(1/n)−1 > 0. So we need

(1− 1/n2)n−1 + (1− 1/n2)n−2(1/n) > 1,
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which occurs when

(1− 1/n2)n−2(1− 1/n2 + 1/n) > 1

Since (1− 1/n2)n−2 approaches 1 and 1− 1/n2 + (1/n) > 1 for n ≥ 2, we have that

f(n, 1− 1/n2) > 0 for n sufficiently large. �

Since 1− 1/n < ifp(Cn) < 1− 1/n2 for n sufficiently large, ifp(Cn) approaches 1.

n 1− 1/n ifp(Cn) 1− 1/n2

3 0.667 0.50 0.889
4 0.750 0.767 0.938
5 0.800 0.869 0.960
6 0.833 0.916 0.972
7 0.857 0.942 0.979
8 0.875 0.957 0.984
9 0.889 0.967 0.987
10 0.900 0.974 0.990

Table 3.2: The internal fixed point of Cn and upper and lower bounds

Table 3.2 shows the internal fixed point for cycles on n ≤ 10 vertices and the

upper and lower bounds of 1 − 1/n and 1 − 1/n2. Since we saw in the section on

thresholds that cycles were a 1-threshold family of graphs, it makes sense that the

internal fixed point should tend to 1. In fact, we can say something about when a

family of graphs has an internal fixed point that tends to 1.

Proposition 3.2.12 Let G be a family of bridgeless graphs on at least 3 vertices. If

lim
n→∞

( 1

Fm−n+1

)1/(n−2)

= 1

then the internal fixed point tends to 1.

Proof. By Lemma 3.2.8, we know that for G ∈ G, Rel(G, p) ≤ Fm−n+1p
n−1. We

know that Fm−n+1p
n−1 = p when p = ( 1

Fm−n+1
)1/(n−2), and to the left of this value we
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have Fm−n+1p
n−1 < p, so by Observation 3.2.7, the internal fixed point of G lies to

the right of where Fm−n+1p
n−1 = p. So when

lim
n→∞

(
1

Fm−n+1

)1/(n−2) = 1

then we have that the internal fixed point of G tends to 1. �

If ln(Fm−n+1) grows at a slower rate than n−2, then ln(Fm−n+1)/(n−2) approaches

0, so the family of graphs will have an internal fixed point tending to 1. So for a

family of bridgeless graphs on at least 3 vertices, if we know that the number of

spanning trees is polynomial in n, then the internal fixed point will approach 1. For

example, cycles on n vertices have n spanning trees so the internal fixed points of

these graphs approach 1 (see Figure 3.6). Another example is the theta graphs with

k paths of length n1, n2, .., nk, so the number of vertices is n = 2 +
∑k

i=1(ni − 1).

The number of spanning trees for this graph is
∑k

i=1

∏
j �=i nj, which is polynomial

in n, so the graphs in this family also have internal fixed points that tend to 1 (see

Figure 3.7).

Figure 3.6: Plot of the reliability polynomials for cycles.
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Figure 3.7: Plot of the reliability polynomials for a theta graph with 3 paths of equal
size.

3.2.2 Closure of Internal Fixed Points

Figure 3.8: Plot of the internal fixed points for simple graphs on n ≤ 8 vertices.

We have seen families of graphs whose internal fixed points tend to 0 and to 1,

but can we have them tend to other values in (0, 1)? What is the closure of the values

the internal fixed points can take on? We will show it to be [0, 1]. Figure 3.8 shows

a plot of the internal fixed points for simple graphs on n ≤ 8 vertices.
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We will begin by looking at simple graphs, G with known internal fixed points,

ifp(G) and show that there are graphs with multiedges whose internal fixed points

tend to ifp(G).

Theorem 3.2.13 For any r ∈ (0, 1) such that there exists a simple graph G with

an internal fixed point at r, there exists a family of graphs with multiple edges whose

internal fixed points approach r.

Proof. For every simple graph, G, with an internal fixed point at r we can find

a family of graphs with multiedges, with an internal fixed point approaching r by

attaching a leaf via a bundle of k edges to G to obtain the graph H. We can see that

Rel(H, p) = (1− (1− p)k)Rel(G, p).

We know that Rel(G, r) = r, so clearly for p < r, (1 − (1 − p)k)Rel(G, p) < p.

Consider p > r. Let ε > 0, r+ ε < 1 and let α > 0. Then for p = r+ ε, we have that

Rel(G, r + ε) > r + ε, so let Rel(G, r + ε) = (r + ε+ α), thus

Rel(H, p) = (1− (1− p)k)Rel(G, p)

= (1− (1− (r + ε))kRel(G, r + ε)

= (1− (1− (r + ε))k(r + ε+ α).

We want to show that there is a k such that Rel(H, r + ε) > r + ε. That is, we want

to find a k such that (1− (1− (r + ε))k)(r + ε+ α) > r + ε, and

(1− (1− (r + ε))k)(r + ε+ α) > r + ε ⇔ 1− (1− (r + ε)k) >
r + ε

r + ε+ α

⇔ (1− (1− (r + ε))k) > 1− α

r + ε+ α

⇔ (1− (r + ε))k <
α

r + ε+ α
.
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k Internal Fixed Point

10 0.402111
11 0.401118
12 0.400513
13 0.400147
14 0.399925
15 0.399792
16 0.399710
17 0.399662
18 0.399633
19 0.399615
20 0.399605

Table 3.3: The internal fixed point of K4 with a leaf attached by a bundle of k edges.
ifp(K4) ≈ 0.399589

Since we assumed that r + ε < 1, for a k sufficiently large, it is the case that

(1− (r + ε))k <
α

r + ε+ α
,

so Rel(H, p) has an internal fixed point approaching r. �

For an example of the above result, look at Table 3.3, which consists of values of

the internal fixed point for K4 with a leaf attached by a bundle of k edges. You can

see that when k = 20, the internal fixed point of this graph is very close to ifp(K4).

So, we can have internal fixed points approaching 0, 1, so the closure of the internal

fixed points for all terminal reliability include these values, but what about any

r ∈ (0, 1)? We can prove that the closure of the set of internal fixed points for all

terminal reliability polynomials is in fact [0, 1]. We know from Theorem 3.1.8 that

there is a t-threshold family of graphs for any t ∈ (0, 1), so given any ε > 0, there is a

graph such that Rel(G, t− ε) < t− ε and Rel(G, t+ ε) > t+ ε, thus the internal fixed

point of G is found in the interval (t− ε, t+ ε). This gives us the following result.
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Theorem 3.2.14 The internal fixed points of all terminal reliability polynomials are

dense in [0, 1].

3.3 Inflection Points

We have just finished looking at the internal fixed points of all terminal reliability

polynomials and in that section we saw an example which showed the derivative of

the reliability polynomial may not achieve the maximum value at the internal fixed

point. So, this then draws our attention to the problem of finding where a reliability

polynomial’s derivative can achieve a maximum value, which in turn leads to the

broader study of inflection points. The number of inflection points in (0, 1) and when

an all terminal reliability polynomial has an inflection point has been an active area

of study [27,38, 39]. Brown et al showed in [27] that

Theorem 3.3.1 [27] If G has edge connectivity λ ≥ 2, then the all terminal relia-

bility polynomial of G is concave down near p = 1.

They also showed that

Theorem 3.3.2 [27] If G is a connected graph on at least 3 vertices then Rel(G, p)

is concave up near p = 0.

With regards to the study of inflection points, we know that if a graph has order at

least 3, then when λ ≥ 2, we have an inflection point. What about when λ = 1?

In [27] it was conjectured that the closure of the values that the inflection points of

all terminal reliability polynomials can take on is [0, 1]. We will provide some results

regarding these problems.

Theorem 3.3.3 Let G be a graph of order at least 3 with edge connectivity, 1. If G

has exactly 1 bridge, then it must have an inflection point.
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Proof. Let G be a graph of order at least 3 with exactly one bridge. Then

F0 = 1,F1 = m− 1 and Fi ≤
(
m−1
i

)
for 2 ≤ i ≤ m−n+1, since to remove the bridge

disconnects the graph. In [27] it was shown that

Rel′′(G, p) =
m−n+1∑

i=0

Dip
m−i−2(1− p)i (3.2)

where, Di = (i + 2)(i + 1)Fi+2 − 2(m − i − 1)(i + 1)Fi+1 + (m − i)(m − i − 1)Fi,

Fi = 0 for values of i > m − n + 1. We know by Theorem 3.3.2 that the reliability

polynomial is concave up near p = 0. If we can show that near p = 1 it is concave

down, then we have an inflection point.

The dominant term of (3.2) for values of p near 1 is

(2F2 − 2(m− 1)F1 +m(m− 1)F0)p
m−2

and since F0 = 1 and F1 = m− 1, if F2 <
(
m−1
2

)
then

(2F2 − 2(m− 1)F1 +m(m− 1)F0) < 0

therefore the polynomial is concave down near 1. If F2 =
(
m−1
2

)
then (2F2 − 2(m −

1)F1 +m(m− 1)F0)p
m−2 = 0 and we will need to look at the first term which has a

non-zero coefficient.

Let λ be the edge connectivity of G · e, where e is the bridge of G. For i < λ we

have that Fi =
(
m−1
i

)
since the only way to disconnect the graph would be to remove

the bridge and Fλ <
(
m−1
λ

)
. Consider

((i+ 2)(i+ 1)Fi+2 − 2(m− i− 1)(i+ 1)Fi+1 + (m− i)(m− i− 1)Fi
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for i < λ− 2. We find that

(i+2)(i+1)

(
m− 1

i+ 2

)
−2(m− i−1)(i+1)

(
m− 1

i+ 1

)
+(m− i)(m− i−1)

(
m− 1

i

)
= 0.

The first non-zero coefficient occurs when i = λ−2 and we find that the coefficient

is

(λ)(λ− 1)Fλ − 2(m− λ+ 1)(λ− 1)Fλ−1 + (m− λ+ 1)(m− λ+ 2)Fλ−2

< (λ)(λ− 1)

(
m− 1

λ

)
− 2(m− λ+ 1)(λ− 1)

(
m− 1

λ− 1

)

+(m− λ+ 1)(m− λ+ 2)

(
m− 1

λ− 2

)
= 0.

Therefore the reliability polynomial is concave down for values of p near 1 and thus

we have an inflection point. �

In this section we will be looking at the reliability polynomial in terms of q, and

since q = 1− p the following holds.

Lemma 3.3.4 Let G be a graph, then Relq(G, q) has an inflection point at q0 if and

only if Relp(G, p) has an inflection point at p0 = 1− q0.

It has been conjectured that all terminal reliability polynomials can have at most one

inflection point [32], but this was proven false in [27], as there are infinite families of

graphs, both simple and graphs with multiple edges, were found to have 2 inflection

points. These families, as well as all simple graphs on 8 or fewer vertices which have

2 inflection points, have exactly 2 bridges. This may lead one to think that if a graph

has 2 inflection points, then it has 2 leaves, but for any given number of bridges,

� ≥ 3, there exists a graph with multiple edges with at least 2 inflection points.
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Figure 3.9: Figure for Example 3.3.5

Example 3.3.5 Let � ≥ 3, k ≥ 2. Consider the graph G whose underlying simple

graph is K1,�+k. The � vertices are leaves and the other k are attached to the central

vertex by a bundle of 3 edges (see Figure 3.9). Let q = 1 − p. The all terminal

reliability of G in q is

Relq(G, q) = (1− q)�(1− q3)k.

We show that for a fixed � ≥ 3 we can find a k such that Relq(G, q) has at least 2

inflection points. First we find

Rel′q(G, q) = (−3k)q2(1− q)l(1− q3)k−1− l(1− q)l−1(1− q3)k so that we can calculate

Rel
′′
q (G, q) = �(�− 1)(1− q)�−2(1− q3)k (3.3)

+6kq(1− q)�−1(1− q3)k−1(�q + q − 1)

+9k(k − 1)(1− q)�q4(1− q3)k−2

Since we have at least 3 vertices Theorem 3.3.2 says that for values of p near 0, (so

values of q near 1) (3.3) is positive. We can also see that for values of q near 0, (3.3)

is positive since the dominant term in this case will be �(� − 1)(1 − q)�−2(1 − q3)k

which is positive. If, for some values of q, (3.3) is negative, then we know we have

at least 2 inflection points.

Let q = 1
�2

and k = �5. Then Rel′′(G, 1/�2) = f(l)/g(l) where

f(l) = −(6�10−16�9+�8−8�7+2�6−9�5+6�4−2�3+2�2−�+1)(�5)(�6−1)�
5

(�2−1)�
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and

g(l) = (�6 − 1)2�6�
5

�2�.

The denominator, g(l) is always positive since � > 1 and the numerator, f(l) has real

roots at approximately � = 0.673, 1 and 2.783. Thus for values of � ≥ 3, with k = �5,

(3.3) is less than 0, so we have at least 2 inflection points.

Figure 3.10: Plot of the inflection points for simple graphs on n ≤ 8 vertices.

As mentioned earlier, another open problem regarding inflection points of all

terminal reliability polynomials is their closure [27]. We now proceed to demonstrate

that the inflection points of all terminal reliability polynomials are dense in [0, 1].

Figure 3.10 is a plot of the inflection points for simple graphs on n ≤ 8 vertices.

Theorem 3.3.6 The inflection points of all terminal reliability polynomials are dense

in [0, 1].

Proof. Consider the family of cycle bundles, Cm,j = {Ckj
mk : mk ≥ 2, kj ≥ 1} which

we had previously studied. We know that

Relq(C
kj
mk , q) = (1− qkj)m

k

+mkqkj(1− qkj)m
k−1
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Let a = kj and let b = mk. Then

Rel′q(C
a
b , q) = −ab(b− 1)q2a−1(1− qa)b−2,

and

Rel′′(Ca
b , q) = −ab(b− 1)(1− qa)b−3q2a−2(2a− 1 + qa(1− ab)).

This gives us real roots for Rel′′(Ca
b , q) at q = 0, q = 1 and q = ±(2a−1

ab−1
)1/a. The roots

we are interested in are in the interval (0, 1), so that leaves only (2a−1
ab−1

)1/a. Since the

edge connectivity is at least 2 and our graph has at least 3 vertices, by Theorem 3.3.1

and Theorem 3.3.2, we know that this graph has an inflection point, and as (2a−1
ab−1

)1/a

is the only possible choice, it is an inflection point.

Consider

lim
k→∞

(2a− 1

ab− 1

)1/a
= lim

k→∞

( 2kj − 1

kjmk − 1

)1/kj

We will look at ln
(

2kj−1
kjmk−1

)1/kj
. Since ln(x)− 1 < ln(x− 1) < ln(x) for x > 2, we

have that

(1/kj)(ln(2kj)− 1) < (1/kj) ln(2kj − 1) < (1/kj) ln(2kj).

As the limit of (1/kj)(ln(2kj) − 1) and (1/jk) ln(2kj) as k approaches infinity is 0,

we have that (1/kj) ln(2jk − 1) also approaches 0 as k approaches infinity.

Now looking at (kjmk − 1)1/kj, we have that

(1/kj)(ln(kjmk)− 1) < (1/kj) ln(kjmk − 1) < (1/kj) ln(kjmk).

Since the limit of (1/kj)(ln(kjmk)−1) and (1/kj) ln(kjmk) as k approaches infinity is

ln(m)
j

, we have that (1/kj) ln(jkmk−1) also approaches ln(m)
j

as k approaches infinity.
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So

lim
k→∞

ln
( 2kj − 1

kjmk − 1

)1/kj
= 0− ln(m)

j

and thus

lim
k→∞

( 2kj − 1

kjmk − 1

)1/kj
=
( 1

m

)1/j
.

This shows that as k tends to infinity that the inflection points of the family Cm,j

tend to where the threshold of Cm,j occurs. We know the thresholds for these graphs

are dense in [0, 1]. As the inflection points are dense for q ∈ [0, 1], by Lemma 3.3.4

they are dense for p ∈ [0, 1] as well. �

3.4 Average Reliability

Thus far for the reliability polynomial, we have looked at thresholds, internal fixed

points, and we just finished looking at inflection points. Another analytic property

we could consider is the average value of the reliability polynomial over [0, 1] (the

average value of a continuous function on an interval [a, b] is the definite integral over

[a, b] divided by b− a).

Integration of functions has been utilized in the study of reliability polynomials,

but the functions being integrated were not the reliability polynomials themselves.

In [23] the average value was used as a way to compare upper and lower bounds for

a reliability polynomial. The smaller the difference in the average value of the upper

and lower bounds, the better the pair of bounds were. In [64] the average value was

used as a measure of how well a network had been improved. We will extend this use

of the average value of a function to the study of reliability polynomials.

Definition 3.4.1 The average reliability, avgRel(G), of a graph G is defined as

avgRel(G) =

∫ 1

0

Rel(G, p) dp
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Fi Kruskal-Katona Ball-Provan Actual

0 1 1 1
1 32 32 32
2 496 496 496
3 4940 4940 4940
4 14 949 30 265 35 342
5 65 778 123 559 192 196
6 230 207 370 230 819 228
7 657 568 8 88 401 2 278 207
8 1 560 738 1 826 687 7 517 243
9 3 118 311 332 480 16 079 317
10 5 286 089 5 406 235 26 517 778
11 7 655 362 76 993 46 32 039 959
12 9 501 848 9 510 882 25 500 420
13 10 122 705 10 122 705 10 122 705

Table 3.4: Table of Lower Bounds for Red Arpa

Example 3.4.2 Consider K4. We know that Rel(K4, p) = −6p6+24p5−33p4+16p3

so the average reliability is
∫ 1

0
(−6p6 + 24p5 − 33p4 + 16p3)dp = 19/35

Before we begin our study of the average reliability, we will look at an example

of how the average value of a function was previously used as a way to compare

upper and lower bounds. In [31] a graph depicting a network called Red Arpa was

considered, it has 32 edges and 20 vertices (see Figure 3.11) and bound the F -vector

for that graph using the Ball-Provan bounds and the Kruskal-Katona bounds.

Figure 3.11: Red Arpa

From Table 3.6 we can see that the difference in average values between the

Krustal-Katona bounds is approximately 0.210165 and the difference between the

Ball-Provan bounds is approximately 0.138045.
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Fi Kruskal-Katona Ball-Provan Actual

0 1 1 1
1 32 32 32
2 496 496 496
3 4940 4940 4940
4 35 570 35 552 35 342
5 197 436 197 103 192 196
6 878 997 875 841 819 228
7 3 233 602 3 203 337 2 278 207
8 9 924 736 9 826 707 7 517 243
9 260 13 120 25 636 590 16 079 317
10 58 659 360 50 268 909 265 17 778
11 114 717 340 61 160 797 32 039 959
12 195 747 826 39 317 998 25 500 420
13 101 22 705 10 122 705 10 122 705

Table 3.5: Table of Upper Bounds for Red Arpa

Bound Average Value

Actual 0.295516
Kruskal-Katona LB 0.167462
Kruskal-Katona UB 0.377628
Ball-Provan LB 0.200936
Ball-Proval UB 0.338981

Table 3.6: Table of Average Values for the Bounds of Red Arpa
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In this section, we will study the average reliability of a graph G, avgRel(G). The

average reliability will have two applications, one is to explore the behaviour of the

polynomial on the interval [0, 1] and also representing the reliability polynomial as a

single, unique value will provide a new notion of optimality.

3.4.1 Calculating the Average Reliability of a Graph

For any graph G we have 0 ≤ avgRel(G) ≤ 1, since 0 ≤ Rel(G) ≤ 1. For a connected

graph G, the average reliability is always positive and it is always rational, since

the coefficients of the reliability polynomial are rational. The average reliability also

provides a single measure which can be used to compare reliability polynomials for

different graphs. If the value of p is unknown, then perhaps the average reliability

is ‘the’ measure to use when comparing graphs. The following is an obvious, but

important observation.

Observation 3.4.3 Let H and G be graphs such that Rel(G, p) ≥ Rel(H, p) for

p ∈ [0, 1]. Then avgRel(G) ≥ avgRel(H).

This observation and some of its consequences will be expanded on later in this

section.

Example 3.4.4 For trees on n vertices, Tn, we have Rel(Tn, p) = pn, so the average

reliability for Tn is ∫ 1

0

pndp =
pn+1

n+ 1

∣∣∣1
0
=

1

n+ 1

In fact, for a given n this is a lower bound on the average reliability of order n and

size m, regardless of m. For any other connected graph G of order n, we must have

at least a spanning tree operational, so by Observation 3.4.3, 1
n+1

is a lower bound on

the average reliability.
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Example 3.4.5 The average reliability for cycles is

avgRel(Cn) =

∫ 1

0

((1− n)pn + npn−1)dp =
(1− n)pn+1

n+ 1
+ pn

∣∣∣1
0
=

2

n+ 1

and since this family of graphs is most Gn,n optimal, by Observation 3.4.3 we know

that for any other graph on n vertices and m = n edges, their average reliability will

be less than 2
n+1

.

Example 3.4.6 The all terminal reliability of theta graphs with 3 paths of lengths

n1, n2, n3 is pN + NpN−1(1 − p) + SpN−2(1 − p)2 where N = n1 + n2 + n3 and S =

n1n2+n1n3+n2n3. This has an indefinite integral of pN+1(1−N+S)
N+1

+ pN (N−2S)
N

+ pN−1S
N−1

,

so the average reliability is 2N2−2N+2S
N(N2−1)

. When n1, n2, n3 are such that they differ by

at most 1 then this is the most Gn,n+1 optimal graph so, again by Observation 3.4.3,

for any other graph with m = n+ 1 this average reliability will be an upper bound.

We remark that it is possible for more than one graph to have the same average

reliability. Of course if there are non-isomorphic graphs which have the same reli-

ability polynomial, such as trees, they will have the same average reliability. But

it is possible for two graphs with different reliability polynomials to have the same

average reliability. Consider a tree on n1 vertices and a cycle on 2n1 + 1 vertices.

The average reliability of the tree is 1
n1+1

and the average reliability of the cycle is

2
2n1+2

= 1
n1+1

. More interestingly, we can even find graphs with the same number of

vertices and edges whose reliability polynomials differ, but their average reliability is

the same. For example, consider the graphs G and H in Figure 3.12. The graph G

has reliability polynomial −15p8 + 56p7 − 72p6 + 32p5 and the reliability polynomial

for H is −12p8 + 48p7 − 65p6 + 30p5, and avgRel(G) = avgRel(H) = 8/21.

We can calculate the average reliability of a graph by using the F -form of the relia-

bility polynomial and Bernstein polynomials. A Bernstein polynomial is a positive lin-

ear combination of Bernstein basis polynomials, which are of the form
(
n
i

)
xi(1−x)n−i,
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Figure 3.12: Graphs G and H have different reliability polynomials, but the same
average reliability.

0 ≤ i ≤ n [58]. The integral of a Bernstein basis polynomial on the interval [0, 1] is

∫ 1

0

(
n

i

)
xi(1− x)n−idx =

1

n+ 1
.

Since the F -form of the all terminal reliability polynomial is

m−n+1∑
i=0

Fip
m−i(1− p)i,

the all terminal reliability is a positive linear combination of Bernstein basis polyno-

mials,

Rel(G) =
m∑
i=1

fi

(
m

i

)
pi(1− p)m−i

where fi =
Fi

(mi )
. Using this fact, we can find an interesting way of calculating the

average reliability of a graph.

Lemma 3.4.7 Let G be a graph on n vertices and m edges, whose F -form of the all

terminal reliability polynomial is given by

m−n+1∑
i=0

Fip
i(1− p)m−i.
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Then

avgRel(G) =
1

m+ 1

m−n+1∑
i=0

Fi(
m
i

)
.

Proof. Let G be a graph of order n with m edges and let fi
(
m
i

)
= Fi, 0 ≤ i ≤

m− n+ 1. We derive from the formula for the integral of Bernstein polynomials on

[0, 1] the following,

avgRel(G) =

∫ 1

0

m−n+1∑
i=0

Fip
i(1− p)m−i dp

=
m−n+1∑

i=0

∫ 1

0

Fip
m−i(1− p)i dp

=
m−n+1∑

i=0

∫ 1

0

fi

(
m

i

)
pm−i(1− p)i dp

=
m−n+1∑

i=0

fi

∫ 1

0

(
m

i

)
pm−i(1− p)i dp

=
m−n+1∑

i=0

fi
(m+ 1)

which proves the result, with fi =
Fi

(mi )
. �

This is a nice formulation of the average reliability since it involves the sum of

Fi

(mi )
, which represents what proportion of faces of size i are in the cographic matroid

of G.

Example 3.4.8 The f -vector of the cographic matroid of K4 is 〈1, 6, 15, 16〉. The

total possible number of faces of size i, 0 ≤ i ≤ 6 is
(
6
i

)
. The proportion of faces of

size 0 is 1
1
= 1, size 1 is 6

6
= 1, size 2 is 15

15
= 1 and size 3 is 16

20
= 4

5
, thus the average

reliability will be 1+1+1+(4/5)
7

= 19/35.
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This definition of average reliability will be useful when looking at bounding the

average reliability, since known bounds on the F -vector can be utilized.

We have seen some examples of average reliabilities and they seem to take on a

variety of values across [0, 1]. What can we say about the average of the average

reliability of all simple graphs of order n? Perhaps surprisingly, while the values are

all over [0, 1], they are concentrated at one end.

Before we begin, we need the following proposition from [33].

Proposition 3.4.9 [33] Let {fn} be a sequence of integrable functions defined on

[a, b]. Assume that

• for each x ∈ [a, b] that fn(x) → f(x) (as n → ∞), where f is integrable on

[a, b], and

• there exists a constant K such that |fn| ≤ K for all n.

Then
∫
fn →

∫
f .

Theorem 3.4.10 The average of the average reliability of all simple graphs on n

vertices approaches 1.

Proof. Consider the set Sn,m and the reliability polynomials of all these graphs.

What is the average of the average reliability of all these polynomials?

Let Avg(AvgRel(n, p)) denote the average of the average reliability of all the all

terminal reliability polynomials of simple graphs on n vertices. Let H and S be

spanning connected subgraphs.

Avg(AvgRel(n, p)) =

∫ 1

0

1

2m

∑
H⊆Kn

∑
S⊆H

p|S|(1− p)|H|−|S| dp

=
1

2m

∫ 1

0

∑
H⊆Kn

p|H|
m−|H|∑
j=0

(
m− |H|

j

)
(1− p)j dp
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Figure 3.13: The average reliabilities of complete graphs for n ≤ 50

=
1

2m

∫ 1

0

∑
H⊆Kn

p|H|(2− p)m−|H| dp

=
1

2m

∫ 1

0

∑
H⊆Kn

p|H|2m−|H|(1− p/2)m−|H| dp

=
1

2m

∫ 1

0

∑
H⊆Kn

2m(p/2)|H|(1− p/2)m−|H| dp

=

∫ 1

0

∑
H⊆Kn

(p/2)|H|(1− p/2)m−|H| dp

=

∫ 1

0

Rel(Kn, p/2) dp
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Now consider ∫ 1

0

Rel(Kn, p/2) dp.

Letting t = p/2 we get that

Avg(AvgRel(n, t)) = 2

∫ 1/2

0

Rel(Kn, t) dt.

Using Proposition [33], since as n approaches infinity we have that

lim
n→∞

Rel(Kn, p) =

⎧⎪⎨
⎪⎩

0 if p = 0

1 if p ∈ (0, 1]

so

Avg(AvgRel(n, t)) = 2

∫ 1/2

0

Rel(Kn, t) dt = 2(1/2) = 1,

which proves the theorem. �

See Figure 3.13 for a plot of the average reliabilities of complete graphs.

3.4.2 Bounds on the Average Reliability

Calculating average reliabilities appears to be difficult, as it seems to require knowl-

edge of the precise reliability polynomial, and calculating the latter is #P-hard. In

light of this, there may be situations where we cannot calculate the average reliability

explicitly. We will now look at bounding the average reliability of a graph.

We should note that sometimes it is useful to look at the average of the reliability

polynomial as a function of q, which proves no problem since

∫ 1

0

Relp(G, p) dp =

∫ 0

1

Relq(G, q)(−1) dq

= −
∫ 1

0

Relq(G, q)(−1) dq
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=

∫ 1

0

Relq(G, q) dq.

So when calculating the average reliability, we can consider the graph in the variable

p or q, as convenient and obtain the same results. This fact will be used several times

throughout the rest of the section.

We know that for a graph G, that

avgRel(G) =
∑ Fi

(m+ 1)
(
m
i

) ,
so if we know how the sequence of Fi

(mi )
behaves, we can bound the average reliability.

Lemma 3.4.11 Let G be a graph on n vertices, m edges and with F -vector〈
F0, F1, . . . , Fm−n+1

〉
. Then, Fi

(mi )
≥ Fi+1

( m
i+1)

, for i = 0, . . . ,m − n. That is, setting

fi =
Fi

(mi )
, the sequence

〈f0, f1, . . . , fm−n+1〉

is non-increasing.

Proof. Sperner’s well known bound [71] states that

(m− i)Fi ≥ (i+ 1)Fi+1,

which implies that

i!(m− i)!Fi

m!
≥ (i+ 1)!(m− i− 1)!Fi+1

m!

and this gives us the desired result of

fi =
Fi(
m
i

) ≥ Fi+1(
m
i+1

) = fi+1.
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Using Lemma 3.4.11 and Bernstein polynomials we will look at some bounds for

the average reliability of a graph. We had mentioned earlier that the all terminal

reliability is a linear combination of Bernstein polynomials, and using this we can

obtain the following upper bound on average reliability.

Lemma 3.4.12 Let G be a graph on n vertices and m edges. Then

∫ 1

0

Rel(G, p) dp ≤ 1− n− 1

m+ 1
,

with equality if and only if G is a tree or a cycle.

Proof. Let G be a graph on n vertices and m edges. Noticing that fi =
Fi

(mi )
≤ 1

for all i, we find that

∫ 1

0

Rel(G, p) dp =
m−n+1∑

i=0

∫ 1

0

Fip
m−i(1− p)i dp

=
m−n+1∑

i=0

∫ 1

0

fi

(
m

i

)
pm−i(1− p)i dp

≤
m−n+1∑

i=0

∫ 1

0

(
m

i

)
pm−i(1− p)i dp

=
m−n+1∑

i=0

1

m+ 1

=
m− n+ 2

m+ 1

= 1− n− 1

m+ 1
.

The bound will be tight if and only if Fi

(mi )
= 1 for all i = 0 . . .m − n + 1. We

know from Lemma 3.4.11 as i increases, the ratio Fi

(mi )
is non-increasing. Thus, all
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the ratios being equal to 1 is equivalent to having Fm−n+1

( m
m−n+1)

= 1, that is, every subset

of n − 1 edges induces a spanning tree. This is true for trees and cycles. Suppose

m > n. Then the resulting graph has girth less than n. In such a graph one can find

a set of n − 1 edges that is not a spanning tree, since any (n − 1) subset of edges

containing the smallest cycle will clearly not be a spanning tree. Thus this bound is

only tight for trees and cycles. �

Another set of bounds is the following.

Lemma 3.4.13 Let G be a graph on n vertices and m edges with edge connectivity

λ. Then

λ

m+ 1
+

(m− n+ 2− λ)Fm−n+1

(m+ 1)
(

m
m−n+1

) ≤ avgRel(G) ≤ λ

m+ 1
+

(m− n+ 2− λ)Fλ

(m+ 1)
(
m
λ

)
and

avgRel(G) ≤ 1

n− 1
− 1

(m+ 1)
(

m
n−2

) .
Proof. Let G be a graph on n vertices, m edges and edge connectivity, λ. We will

start by proving the first set of bounds. For i < λ, Fi =
(
m
i

)
, so using the fact that

〈 Fi(
m
i

) : i = 0, ..,m− n+ 1
〉

is non-increasing and letting fi =
Fi

(mi )
, i = 0 . . .m − n + 1, we have that fi = 1 for

i ≤ λ− 1 and

avgRel(G) =

∫ 1

0

m−n+1∑
i=0

Fip
m−i(1− p)i dp

=
m−n+1∑

i=0

∫ 1

0

Fip
m−i(1− p)i dp

m−n+1∑
i=0

∫ 1

0

fi

(
m

i

)
pm−i(1− p)i dp
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n Lower Bound avgRel(Kn) Upper Bound

3 0.5 0.5 0.5
4 0.5428 0.5428 0.5438
5 0.5259 0.5866 0.6299
6 0.4743 0.6245 0.6868
7 0.4135 0.6564 0.7272
8 0.3559 0.6832 0.7586
9 0.3059 0.7058 0.7838
10 0.2643 0.7251 0.8043

Table 3.7: Upper and lower bounds for the average reliability of Kn

=
λ

m+ 1
+

m−n+1∑
i=λ

fi
m+ 1

=
λ

m+ 1
+

m−n+1∑
i=λ

Fi(
m
i

)
(m+ 1)

.

Since the sequence of 〈 Fi

(mi )
| i = 0 . . .m− n+ 1〉, is non-increasing, we have that

λ

m+ 1
+

(m− n+ 2− λ)Fm−n+1

(m+ 1)
(

m
m−n+1

) ≤ avgRel(G) ≤ λ

m+ 1
+

(m− n+ 2− λ)Fλ

(m+ 1)
(
m
λ

) .

To prove the second bound, we will use Observation 3.4.3 and the fact that we

know for a given n and m, there exists a least optimal graph and its structure is

known. By Theorem 2.7.2, we have a least optimal graph on n vertices and m edges,

which consists of a tree with one edge replaced by a bundle of size m− n+ 2. That

graph has a reliability polynomial of pn−2(1− (1− p)m−n+2), so we have that

∫ 1

0

pn−2(1− (1− p)m−n+2) dp =
1

n− 1
− 1

(m+ 1)
(

m
n−2

) ,
and this is a lower bound for avgRel(G). �
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The first set of upper and lower bounds can be tight, for graphs where m − n +

2− λ = 0, so λ = m− n+ 2. These graphs will have to be such that

m ≥ n(m− n+ 2)

2

since each vertex must have degree at least m− n+ 2. This gives us that m ≤ n, so

for m = n− 1 this bound is tight for trees and when m = n we have that λ = 2, so

these bounds are tight for cycles.

The bounds are also tight when

(m− n+ 2− λ)Fλ

(m+ 1)
(
m
λ

) =
(m− n+ 2− λ)Fm−n+1

(m+ 1)
(

m
m−n+1

) .

This occurs when Fλ

(mλ)
= Fm−n+1

( m
m−n+1)

. If m − n + 1 = λ then these bounds are tight; for

example, they will be tight for K4 since m = 6, n = 4 and λ = 3 = 6 − 4 + 1. If

m− n+ 1 = λ, we require that Sperner’s bounds are tight for i = λ, . . . ,m− n+ 1.

This would mean that Fi =
(m−n+1)Fi−1

i
, i > λ. First, this may not always be an

integer. Second, taking a face of the cographic matroid of size i− 1 and adding one

of the m− (i− 1) remaining edges does not guarantee that this new subset of edges

is a face of the cographic matroid. Again, Sperner’s bounds are tight for trees and

cycles.

Table 3.7 gives the upper and lower bounds

λ

m+ 1
+

Fm−n+1(m− n+ 2− λ)

(m+ 1)
(

m
m−n+1

) ≤ avgRel(Kn) ≤
Fλ

(m+ 1)
(
m
λ

) + λ

m+ 1

for n = 3, . . . , 10. These bounds, in particular for the lower bounds are not that good

for n > 5, but if we know more of the Fi, i > λ, then these bounds can be improved

upon.
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Example 3.4.14 Consider the graph we looked at in the beginning of this section,

Figure 3.11, which has 20 vertices, 32 edges and edge connectivity 3. From Table 3.6,

we have that the average reliability for this graph is approximately 0.295516. Using

Table 3.5, we can find bounds on the average reliability. Assuming we know the edge

connectivity λ, the number of cutsets of size λ and the number of spanning trees, we

can use the previously described bounds to get a lower bound of

3

33
+

(32− 20 + 2− 3)(10122705)

33
(
32
13

) = 0.422898

and an upper bound of

3

33
+

(32− 20 + 2− 3)(4940)

33
(
32
3

) = 0.100623.

As mentioned, if we know more Fi then we can obtain better bounds. Suppose we

know Fλ+1 for our graph (and we do, since from Table 3.5 F4 = 35342). Then our

new bounds are

λ

m+ 1
+

Fλ

(m+ 1)
(
m
λ

) + (m− n+ 1− λ)Fm−n+1

(m+ 1)
(

m
m−n+1

) ≤ avgRel(G)

and

avgRel(G) ≤ λ

m+ 1
+

Fλ

(m+ 1)
(
m
λ

) + (m− n+ 1− λ)Fλ+1

(m+ 1)
(

m
λ+1

)
which when substituting in the correct values, we get a lower bound of 0.129920 and

upper bound of 0.418912 which are tighter than the previous ones. If we didn’t know

Fλ+1 we could have used the Kruskal-Katona bounds, which for us, from Table 3.5,

is F4 = 35570 to get an upper bound of 0.450641 for the average reliability.
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Figure 3.14: The average reliability for simple graphs on n ≤ 8 vertices.

3.4.3 The Closure of the Average Reliability

Beyond bounding the average reliability or determining its average value over all

graphs of order n, one might ask what are the possible values that it can take on.

We know that {avgRel(G) | G is a graph} is a subset of the rationals on [0, 1], but

can the set fill out [0, 1]? That is, can we find a graph whose average reliability is

arbitrarily close to any value r ∈ [0, 1] or are there subintervals of [0, 1] which are

“free of” average reliabilities? We will see that in fact the closure of the average

reliabilities of graphs is the entire interval, [0, 1]. Figure 3.14 shows a plot of the

average reliabilities for all simple graphs on n ≤ 8 vertices.

We know that 0 is in the closure since the average reliability for a tree on n vertices

is 1
n+1

and

lim
n→∞

avgRel(Tn) = 0.

We also know that 1 is in the closure since the graph P k
2 , a bundle of k edges, has

reliability 1 − (1 − p)k, so the average reliability is 1 − 1
k+1

, and as k approaches

infinity, the average reliability approaches 1 (also, the reliability of K1 is 1).
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We are ready to show that the closure of the average reliabilities is the entire

interval [0, 1], using, yet again, the cycle bundles.

Theorem 3.4.15 The average reliabilities for all terminal reliability polynomials are

dense in [0, 1].

Proof. We will use Proposition 3.4.9. Let

Fm,j = {Relq(Ckj
mk , q) = (1− qkj)m

k

+mkqkj(1− qkj)m
k−1 | k ≥ 1},

which is the set all terminal reliability polynomials for Ckj
mk , m, j fixed and all k ≥ 1.

We have seen in Theorem 3.1.7 that as k approaches infinity, the reliability poly-

nomials, Fm,j for the family of graph, C = {Ckj
mk : k ≥ 1} approaches the step

function

fm,j(q) =

⎧⎪⎨
⎪⎩

1 : q <
(

1
m

)1/j
0 : q >

(
1
m

)1/j

which has an average value over [0, 1] of 1−
(

1
m

)1/j
. By Proposition 3.4.9, the average

reliabilities of C approach 1−
(

1
m

)1/j
. We have seen that the thresholds, which occur

at
(

1
m

)1/j
are dense in [0, 1], so {1−

(
1
m

)1/j
| m, j ≥ 1} is dense in [0, 1]. �

While Proposition 3.4.9 implies that if a sequence of reliability polynomials has a

limit f (which may, or may not, be a reliability function), then the average reliabilities

for the functions tend to the average value of f . The converse need not be true, but

here we show two cases where it does hold.

Theorem 3.4.16 Let G = {Gn : n ≥ 1} be a family of graphs. Then,

lim
n→∞

Rel(Gn, p) =

⎧⎪⎨
⎪⎩

0 if p = 0

1 if p ∈ (0, 1]
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if and only if avgRel(Gn) tends to 1.

Proof. Suppose that for the family of graphs G, the all terminal reliability of these

graphs tends to 1 for p = 0, as n approaches infinity. Then, clearly the average

reliability tends to 1 as n approaches infinity, since the polynomial approaches the

constant function 1 for values of p = 0. Now, let us suppose that the average reliability

of the family of graphs Gn tend to 1 as n approaches infinity. Let p0 ∈ (0, 1).

Then, since Rel(G) is an increasing function, the following inequalities hold (see

Figure 3.15):

avgRel(Gn) ≤ 1− (1− Relp(Gn, p0))p0 ≤ 1.

Since avgRel(Gn) approaches 1, then this implies that 1 − (1 − Relp(Gn, p0))p0 ap-

proaches 1, so (1−Relp(Gn, p0))p0 approaches 0 and since p0 is fixed, then Relp(Gn, p0)

must approach 1, as desired. �

Similarly,

Theorem 3.4.17 Let G = {Gn : n ≥ 1} be a family of graphs. Then,

lim
n→∞

Rel(Gn, p) =

⎧⎪⎨
⎪⎩

0 if p ∈ [0, 1)

1 if p = 1

if and only if avgRel(Gn) tends to 0.

Proof. Suppose that for the family of graphs G, the all terminal reliability of

these graphs tends to 0 for p = 1, as n approaches infinity. Then clearly the average

reliability tends to 0 as n approaches infinity, since the polynomial approaches the

constant function 0 for values of p = 1. Now, let us suppose that the average reliability

of the family of graphs Gn tend to 0 as n approaches infinity. Let p0 ∈ (0, 1).
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Then, since Rel(G) is an increasing function, the following inequalities hold (see

Figure 3.15):

0 ≤ (Relp(Gn, p0))(1− p0) ≤ avgRel(Gn).

Since avgRel(Gn) approaches 0, then this implies that (Relp(Gn, p0))(1 − p0) ap-

proaches 0, so (Relp(Gn, p0))(1−p0) approaches 0 and since p0 is fixed, then Relp(Gn, p0)

must approach 0, as desired. �

�
�

Figure 3.15: The reliability polynomial for a graph G. The upper shaded area is a
rectangle with height 1− p0 and width p0. The lower shaded rectangle has height p0
and width 1− p0.

3.4.4 Optimality and Average Reliability

We have seen in Chapter 2 that there are situations where a most optimal graph does

not exist. If for a given n and m a most optimal graph does not exist, one can always

choose the graph that is most optimal for values of p near 0 if the network is known

to have low edge probabilities, or near 1 if the network is known to have high edge

probabilities. Using the average reliability, we can have a new notion of optimality,
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that depends on all p ∈ [0, 1]. For instance, we could use a graph with the largest

average reliability as the optimal graph. This new notion of optimality will always

provide an optimal graph. If an optimal graph should exist in the traditional sense,

then it will also be the graph with the largest average reliability. So in search for an

“optimal graph” if a most optimal graph does not exist, or is unknown to exist, the

graph with the largest average reliability would be an appropriate choice.

When looking at simple graphs which have the largest average reliability, initial

thoughts were that it would be the graph that is most optimal for values of p near

1, since the reliability polynomial is an increasing function and therefore the integral

carries more weight near p = 1, but this is not the case. The graph G1 in Figure 3.16

with n = 7, m = 15 has the largest average reliability, 28331
51480

≈ 0.5503, but it is in

fact the graph that is most optimal for values of p near 0, whereas the graph G2 is

the most optimal for values of p near 1, and it has a smaller average reliability of

39623
72072

≈ 0.5497.

�
�

�
�

�
�

�
�

Figure 3.16: Graphs that are best near 0 and best near 1 for their families
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So, perhaps it is the case that it is the graph which is most optimal for values of

p near 0 which has the largest average reliability? Again, this is not the case. For

n = 6, m = 11 we do not have a most optimal graph. The graph H1 in Figure 3.16 is

most optimal for values of p near 0, and it has an average reliability of 239
462

= 0.5173,

but the graph H2 in Figure 3.16 has the largest average reliability with a value of

598
1155

= 0.5177 and it is the graph that is most optimal for values of p near 1.

�

�

���

���

���

Figure 3.17: A cycle graph Cn,m, with bundles of size k = �m
n
� and k + 1

Since the graph with largest average reliability is not always the graph that is

best for p near 0, or p near 1, we are back to the drawing board. Perhaps using the

concept of average reliability we can come up with a ‘good’ family of graphs. We are

unlikely to characterize what graphs have largest average reliability, since for those

n and m where a most optimal graph exists, it will be this optimal graph which has

the largest average reliability, and a characterization of all most optimal graphs is

unknown. In light of this, coming up with a ‘good’ family of graphs is of interest.

A family of graphs, G = {Gk : k ≥ 1}, could be considered good if as k approaches

infinity, the average reliability of this family tends to 1. Another definition of a good

graph and perhaps a more appropriate one is the following,

Definition 3.4.18 Let G be a family of graphs and let G ∈ G be the graph with the

largest average reliability. The graph H is considered a C-good graph if

avgRel(H)
avgRel(G)

≥ C, where C is a given constant between (0, 1).
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n avgRel(Kn) avgRel(Cn,m) Ratio

3 0.5 0.5 1
5 0.5866 0.5541 0.944
7 0.6564 0.6037 0.917
9 0.7085 0.6432 0.911
11 0.7418 0.6748 0.909
13 0.7691 0.7007 0.911
15 0.7905 0.77222 0.914
17 0.8079 0.7405 0.917
19 0.8222 0.7562 0.919
21 0.8343 0.7698 0.923
23 0.8448 0.7818 0.925
25 0.8538 0.7923 0.928
27 0.8617 0.8019 0.931
29 0.8687 0.8106 0.933

Table 3.8: The average reliability for Kn, n odd, the corresponding cycle bundle on
n vertices with bundles of size (n− 1)/2 and their ratio

For example, suppose we are to build a network on n vertices and m edges which

has at least a particular edge connectivity. We do not know the most optimal graph

for this family, or whether one even exists, so we will consider a graph good if its

average reliability is at least 75% that of the largest possible average reliability for

this family. Suppose we find a graph with the desired edge connectivity whose average

reliability is 0.7661. Though we do not know what the largest average reliability is

for this family we have found a graph whose average reliability is at least 75% the

largest possible value, so by our definition, this is a good graph to use.

In this section, we will consider the graph, cycle bundles, of which we are quite

familiar with now, and put it forward as a good graph to use if constructing a network

on n vertices and m edges.

Suppose we fix the order, n, of our graph, then given m edges, m = kn + r,

0 ≤ r < k. Consider the graph with n − r edges of bundles of size k = �m
n
� and r

edges of bundle of size k+1 (See Figure 3.17). Let this graph be denoted Cn,m. Now,

this may not be the most optimal graph, since if m =
(
n
2

)
the complete graph, Kn has
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a higher average reliability, but Cn,m, by our definition, appears to be a (0.9)-good

graph. (see Table 3.8).

To claim that given n and m it is the case that Cn,m is a good graph, with a large

value of C, we will find a lower bound on the average reliability of Cn,m. We will

do so by assuming that all the bundles are the same size, k. This is a lower bound,

since the addition of edges to a graph G increases the reliability. We will consider the

reliability polynomial in the variable q. For each bundle of edges of size k, either all

n bundles have at least one edge operational, which occurs with probability (1− qk)n

or one bundle is completely non-operational and the other n−1 bundles have at least

one edge operational, which occurs with probability nqk(1− qk)n−1.

Relq(Cn,m, q) ≥ (1− qk)n + nqk(1− qk)n−1 (3.4)

=
n∑

i=0

(
n

i

)
(−1)iqki + n

n−1∑
i=0

(
n− 1

i

)
(−1)iqki+k

= 1 +
n∑

i=1

(
(−1)i

(
n

i

)
+ (−1)i−1n

(
n− 1

i− 1

))
qki

and since whether we look at the reliability polynomial in terms of p or q we obtain

the same results, we will continue to consider the polynomial in the variable q.

It turns out that the average reliability of this graph involves the well known

gamma function, Γ(n), (the gamma function is an extension of the factorial function

to real and complex numbers). For natural numbers, Γ(n) = (n − 1)! and since we

will be looking at applying the gamma function on the interval [3,∞) and another

useful property is that it is a continuous, increasing function on this interval [1]. We

find from Equation 3.4 that

avgRel(Cn,m) ≥
∫ 1

0

(
1 +

n∑
i=1

(
(−1)i

(
n

i

)
+ (−1)i−1n

(
n− 1

i− 1

))
qki
)
dq
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= q
∣∣∣1
0
+
( n∑

i=1

((−1)i
(
n
i

)
+ (−1)i−1n

(
n−1
i−1

))
ki+ 1

qki
)∣∣∣1

0

= 1 +
n∑

i=1

(−1)i
(
n
i

)
+ (−1)i−1n

(
n−1
i−1

)
ki+ 1

=
n!Γ(2 + 1

k
)

Γ(n+ 1 + 1
k
)
− 1 + 1

=
n!Γ(2 + 1

k
)

Γ(n+ 1 + 1
k
)

From this we can see if we fix n ≥ 3, we have

lim
k→∞

n!Γ(2 + 1
k
)

Γ(n+ 1 + 1
k
)
= 1

since the numerator approaches n! and the denominator approaches Γ(n + 1) = n!,

so for large values of k this is a good graph. Let us consider this graph for some

particular values of n and m. First consider m such that the graph is forced to have

multiedges, that is, m >
(
n
2

)
, so k > n(n−1)

2n
= n−1

2
.

We can see that

n!Γ(2 + 1
k
)

Γ(n+ 1 + 1
k
)
≥ n!

Γ(n+ 1 + 1
k
)

since Γ(2 + 1
k
) > Γ(2) = 1. We will look at finding values of n!

Γ(n+1+1/k)
for k > n−1

2

and show that Cn,m is at least 0.75 times the largest average reliability for n ≥ 23.

Looking at n!
Γ(n+1+ 1

k
)
as a function of k we see that it is increasing, since Γ(n+1+ 1

k
)

decreases, so for k > (n− 1)/2,

n!

Γ(n+ 1 + 1
k
)
>

n!

Γ(n+ 1 + 2
n−1

)
,

so we will use n!
Γ(n+1+ 2

n−1
)
as a lower bound on the average reliability of Cn,m.

Another useful property of the gamma function is that Γ(z + 1) = zΓ(z), for

complex numbers z whose real parts are non-negative [1]. Using this we can get for
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a positive integer n and x ∈ (0, 1) that

Γ(n+ x) = (n+ x− 1)(n+ x− 2) . . . (1 + x)xΓ(x).

This can be used to show that f(n) = n!
Γ(n+1+2/(n−1)

is an increasing function. We

will show that f(n+ 1)/f(n) > 1,

f(n+ 1)

f(n)
=

(n+ 1)!Γ(n+ 1 + 2
n−1

)

n!Γ(n+ 2 + 2
n
)

=
(n+ 1)Γ(n+ 1 + 2

n−1
)

Γ(n+ 2 + 2
n
)

=
A

B

where

A = (n+ 1)
(
n+

2

n− 1

)(
n− 1 +

2

n− 1

)
. . .
(
1 +

2

n− 1

)( 2

n− 1

)
Γ
( 2

n− 1

)

and

B =
(
n+ 1 +

2

n

)(
n+

2

n

)(
n− 1 +

2

n

)
. . .
(
1 +

2

n

)( 2
n

)
Γ
( 2
n

)
.

We want f(n+1)
f(n)

> 1 and this occurs when

(n+ 2
n−1

)(n− 1 + 2
n−1

) . . . (1 + 2
n−1

)( 2
n−1

)Γ( 2
n−1

)

(n+ 2
n
)(n− 1 + 2

n
) . . . (1 + 2

n
)( 2

n
)Γ( 2

n
)

>
n+ 1 + 2

n

n+ 1

= 1 +
2

n(n+ 1)
.

We know that Γ( 2
n−1

) > Γ( 2
n
) and that n − i + 2

n−1
> n − i + 2

n
, 1 ≤ i ≤ n. With

this and the fact that 2/(n−1)
2/n

= n
n−1

= 1 + 1
n−1

> 1 + 2
n(n+1)

, we have that f(n) is an

increasing function.
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When n ≥ 7 we have n!
Γ(n+1+ 2

n−1
)
≥ 0.5, so for any graph on n ≥ 7 the average

reliability of Cn,m is at least 50% of the largest average reliability for a graph with

n ≥ 7 andm >
(
n
2

)
. For n ≥ 11 we have that n!

Γ(n+1+ 2
n−1

)
≥ 0.6, and for n ≥ 23 we have

that n!
Γ(n+1+ 2

n−1
)
≥ 0.75. This tells us that for values of n ≥ 23 and a given m >

(
n
2

)
,

the average reliability of Cn,m is at least 0.75 times the largest average reliability.

Thus when m >
(
n
2

)
, if a most optimal graph does not exist, or is unknown, then

Cn,m is a good graph to use, for n sufficiently large.

What can be said about simple graphs? When a matching is removed, as men-

tioned earlier, Kelmans proved that the resulting simple graph is most optimal. If a

matching is removed, then at most n/2 edges have been removed, so

m ≥
(
n
2

)
− n/2 = n(n−2)

2
, which means that k ≥ n−2

2
. This gives us a lower bound of

n!
Γ(n+1+ 2

n−2
)
for the average reliability of the corresponding cycle bundle Cn,m. When

n ≥ 9 , n!
Γ(n+1+ 2

n−2
)
≥ 0.5, so we know that for a given n and m, when looking at

simple graphs, the average reliability of Cn,m is at least 50% of the largest average

reliability over all simple graphs on n vertices and m edges. For larger values of n, we

can do even better, for n ≥ 12, n!
Γ(n+1+ 2

n−2
)
≥ 0.6 and for n ≥ 25, n!

Γ(n+1+ 2
n−2

)
≥ 0.75.

So, for values of n ≥ 25, the average reliability of Cn,m is at least 75% of the largest

average reliability over all simple graphs on n vertices and m ≤
(
n
2

)
edges.

As a result of the above computations, we have the following result,

Theorem 3.4.19 For n ≥ 25 the following holds.

1. For m >
(
n
2

)
the cycle bundle graph Cn,m is a (0.75)-good graph.

2. For m >
(
n
2

)
− n

2
, the cycle bundle graph Cn,m is a (0.75)-good graph.

The values of m considered thus far result in fairly dense graphs. What can be said

about sparse graphs? We would not expect sparse graphs to be very reliable. When

m = n − 1 and m = n, the cycle bundle Cn,n is a tree and Cn,n−1 is a cycle. These
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are known to be most optimal in their classes. When m = n + 1, the most optimal

graph is a theta graph whose path lengths differ by at most 1. For a given n and

m = n+ 1, we have that

Rel(Θn1,n2,n3 , p) ≤ pn+1 + (n+ 1)pn(1− p) + 3�2pn−1(1− p)2

= (3�2 − n)pn+1 + (n+ 1− 3�2)pn + 3�2pn−1

where � = �n+1
3
�. The average reliability of a graph on n vertices and n+ 1 edges is

at most 2(n2+n+3�2)
n(n2+3n+2)

.

The corresponding cycle bundle is Cn,n+1, which is a cycle with one edge replaced

by a bundle of size 2, and

Rel(Cn,n+1, p) = pn+1 + (n+ 1)p2(1− p) + (2n− 1)pn−1(1− p)2

= (n− 1)pn+1 + (−3n+ 3)pn + (2n− 1)pn−1

so it has an average reliability of 2(n2+3n−1)
n(n2+3n+2)

. This means for a given n,

avgRel(Cn,n+1)

avgRel(Θn1,n2,n3)
≥ n2 + 3n− 1

n2 + n+ 3�2
.

Setting � = n+1
3
, for a given n, we have that

avgRel(Cn,n+1)

avgRel(Θn1,n2,n3)
≥ n2 + 3n− 1

n2 + n+ 3
(

(n+1)2

3

)
=

3n2 + 9n− 3

4n2 + 5n+ 1

≥ 0.75

for n ≥ 3. This follows from the fact that with f(n) = 3n2+9n−3
4n2+5n+1

we get f ′(n) =

−3(7n2−10n−8)
4n2+5n+1)2

< 0 for n ≥ 2. Since f(3) > 0.75 and as n approaches infinity, f(n)
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approaches 0.75, we have that the cycle bundle is at least 75% the largest average

reliability for m = n+ 1.

Taking into account the results obtain in this section, if given and n and m and

a most optimal does not exist or is unknown to exist, then we conjecture that the

corresponding cycle bundle graph, Cn,m is a C-good graph, with a large C.

3.5 Roots of All Terminal Reliability Polynomials

We have looked at several analytic properties of reliability polynomials. One natural

question, which is algebraic and analytic in nature, concerns the location of the

roots of the polynomial. Besides being an interesting question in its own right, it

can also provide some information regarding the coefficients of the polynomial. For

instance, a result of Newton’s states that for a polynomial f(x) =
∑

aix
i, where ai

are nonzero and real, if we find that the roots of f(x) are always real, then we can

say that the sequence |a0|, |a1|, . . . , |an| is strictly log concave, and hence unimodal

(see for example [43]). That is, the terms of the sequence are non-decreasing, then

non-increasing and |ai|2 > |ai+1||ai−1|. If the coefficients are counting objects, like the

number of independent sets in a graph or the number of faces in a simplicial complex

or matroid, then whether the ai are log-concave or unimodal is useful information to

know, as it gives insight into the behaviour of the sequence and can assist in obtaining

bounds on the terms of the sequence.

The roots of several graph polynomials, including flow polynomials, chromatic

polynomials, and independence polynomials have been active areas of research. The

location of the roots of reliability polynomials have also been studied. The roots

of strongly connected reliability polynomials have been investigated by Brown and

Dilcher [25] and have been proven by Brown and Cox [24] to be dense in the entire

complex plane, answering an open problem.
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Figure 3.18: Real roots for all simple graphs on n ≤ 8 vertices.

Figure 3.19: Complex roots for all simple graphs on n ≤ 8 vertices.

Example 3.5.1 Figure 3.18 and Figure 3.19 show the real and complex roots for all

simple graphs on up to 8 vertices. The complex roots are in the disk |z − 1| ≤ 1.

It was proven in [21] that the real roots for all terminal reliability polynomials are

in {0} ∪ (1, 2]. In contrast to strongly connected reliability, whose roots are dense in

the complex plane, it was conjectured by Brown and Colbourn in [21] that the roots

lie in |z−1| ≤ 1 in the complex plane. There was evidence to support this conjecture.

Wagner [74] showed it to be true for series-parallel graphs, but for an arbitrary graph

G, it was proven false by Royle and Sokal [70]. The counterexample was a subdivision

ofK4 and the root found outside the conjectured disk had modulus 1.04. Whether the

roots are contained within a bounded disk is still an open problem. In this section,
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we prove some results regarding the location of the roots of all terminal reliability

polynomials for graphs with n vertices and m edges.

We will begin by looking at the real roots of all terminal reliability polynomials.

Theorem 3.5.2 Let G be a graph on n vertices and consider the real roots R of

Relp(G, p). For any r ∈ R − {0}, 1 + 1
n−1

≤ r ≤ 2, with equality possible for all

n ≥ 2.

Proof. Let G be a connected graph on n vertices and m edges and consider the

H-form of the all terminal reliability polynomial. So we have that

Relp(G, p) = pn−1

m−n+1∑
i=0

Hi(1− p)i.

Consider
m−n+1∑

i=0

Hi(1− p)i

We will show that (0, 1 + 1
n−1

) is zero free. As we know, for any reliability poly-

nomial there are no zeros in (0, 1] since the reliability polynomial is an increasing

function on this interval, so we need only show that (1, 1 + 1
n−1

) is zero free.

Let q = 1 − p, so we have
∑

Hiq
i = H0 + H1q + . . . + Hm−n+1q

m−n+1. Assume

that m− n+ 1 is odd and consider the grouping

(H0 +H1q) + (H2q
2 +H3q

3) + . . .+ (Hm−nq
m−n +Hm−n+1q

m−n+1).

If m− n+ 1 is even, then consider the grouping

(H0 +H1q) + (H2q
2 +H3q

3) + . . .+ (Hm−n−1q
m−n−1 +Hm−nq

m−n) +Hm−n+1q
m−n+1.

Consider the expressions Hiq
i+Hi+1q

i+1 = qi(Hi+Hi+1q), i even and q ∈ ( −1
n−1

, 0),

which corresponds to p ∈ (1, 1 + 1
n−1

). Since i is even, qi > 0.
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As mentioned in the introduction of the thesis, in [23] it is stated that the Hi count

the number of monomials of degree i in a pure multicomplex with n− 1 variables, so

(n− 1)Hi ≥ Hi+1, since given a monomial of degree i we can add in any of the n− 1

variables to obtain a monomial of degree i+ 1. Thus as q > − 1
n−1

,

Hi +Hi+1q ≥ 1

n− 1
Hi+1 +Hi+1q

= Hi+1(
1

n− 1
+ q)

> 0.

This means that
∑

Hiq
i > 0 for q ∈ (− 1

n−1
, 0). It then follows that Relq(G, q) =

(1− q)n−1
∑

Hiq
i = 0 for q ∈ (− 1

n−1
, 0), that is, Relp(G, p) = 0 for p ∈ (0, 1 + 1

n−1
),

so all roots lie in [1 + 1
n−1

, 2].

The maximum value of 2 is achieved for any graph G whose edges are replaced

by bundles of k edges, where k is an even number, since (1 − (1 − p)k)n−1 can be

factored out of the reliability polynomial, giving us a root at 2.

The lower bound of 1 + 1
n−1

is tight as it is achieved for G = Cn, since

Rel(Cn, p) = pn + npn−1(1− p) = pn−1((1− n)p+ n)

and this has a root at p = 1 + 1
n−1

. �

The proof of Theorem 3.5.2 demonstrates a family of simple graphs, namely cycles,

for which the lower bound of 1 + 1
n−1

for a real root is achieved. By adding a leaf

attached to Cn by bundle of edges, we obtain a graph with multiple edges which also

achieves this lower bound. The proof also mentions a family of graphs with multiple

edges for which the upper bound of 2 is achieved. A complete graph on 75 vertices
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has a root of approximately 1.9, so we can get close to 2, but it would be interesting

to find a simple graph with a real root at 2.

We will now switch our focus to the complex roots of all terminal reliability poly-

nomials. A useful result when investigating roots of polynomials, real and complex,

is the Eneström-Kakeya Theorem, proven independently by Eneström and Kakeya.

Theorem 3.5.3 [36,51] Let f(x) =
∑

bix
i be a polynomial with positive coefficients

bi. Then f(x) has its roots in the annulus min{bi/bi+1} ≤ |z| ≤max{bi/bi+1}.

Investigating roots of reliability polynomials can also be accomplished by look-

ing at the roots of other polynomials and mapping the roots of one polynomial to

another, if possible. When comparing reliability polynomials to other polynomials

linear fractional transformations of the form

g(z) =
az + b

cz + d
, ab− cd = 0,

will be useful.

Definition 3.5.4 The transformation g(z) = az+b
cz+d

, ab − cd = 0 where a, b, c, d are

complex constants is called a linear fractional transformation.

To have the extended z plane as the domain we require that g(∞) = ∞ if c = 0 and if

c = 0 then g(∞) = a
c
and g(−d

c
) = ∞. Under g(z), circles and lines are transformed

into circles and lines. Also, the interiors and exteriors of circles and half-planes are

mapped to the interior or exterior of circles and half-planes.

Thus, if we have a graph G and polynomial f(x) where the roots of f(x) are

found within a certain disk, and mapped to the roots of Rel(G) by a linear frac-

tional transformation, then we have information regarding the location of the roots

of Rel(G).
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Using the H-form of the reliability polynomial, Theorem 3.5.3 and linear fractional

transformations we will investigate the location of the roots and obtain some insight

into their location in the complex plane. While it was conjectured that the roots were

always found in |z−1| ≤ 1, the counterexamples did not provide a disk that contained

the roots. In this section we will provide, for a given n, a disk which contains the

roots of the reliability polynomials for graphs of order n.

Recall that the all terminal reliability of a graph can be expressed in terms of its

H-vector, giving us

Relp(G, p) = pn
m−n+1∑

i=0

Hi(1− p)i.

Consider the polynomial

H(G, z) =
m−n+1∑

i=0

Hiz
i.

The roots of this polynomial are mapped to the non-zero roots of theH-form of the

all terminal reliability polynomial by the linear fractional transformation, g(z) = 1−z,

so if the roots of H(G, z) are found inside the disk |z| ≤ R, then the roots of the

all terminal reliability polynomial of G are found in |z − 1| ≤ R. The question now

becomes, can we bound the roots of H(G, z).

A theorem in Marden’s book ( [60], page 124) says

Theorem 3.5.5 For any real numbers a and b, such that a > 1,b > 1 and (1/a) +

(1/b) = 1, the polynomial f(z) = c0 + c1z + c2z
2 + . . .+ cnz

n, cn = 0 has all its zeros

in the circle

|z| <
(
1 +

( n−1∑
j=0

|cj|a
|cn|a

)b/a)1/b
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We can use this to bound the roots of H(G, z) and thus the roots of all terminal

reliability polynomials. Let a and b satisfy the above conditions. It is known that

m−n+1∑
i=0

Hi = Fm−n+1.

We get that

m−n∑
j=0

|Hj|a
|Hm−n+1|a

= (1/Hm−n+1)
a
(m−n∑

j=0

Ha
j

)

< (1/Hm−n+1)
a
(m−n+1∑

j=0

Ha
j

)

< (1/Hm−n+1)
a
(m−n+1∑

j=0

Hj

)a

=
(Fm−n+1

Hm−n+1

)a
= (1/Hm−n+1)

aF a
m−n+1

So we get that the roots of H(G, z) lie in

|z| < (1 +
(Fm−n+1

Hm−n+1

)a
)b/a)1/b

= (1 + (Fm−n+1/Hm−n+1)
b)1/b

< 1 + Fm−n+1/Hm−n+1

This gives the following result.

Theorem 3.5.6 Let G be a graph of order n and size m. The moduli of the roots of

Rel(G, p) are bounded above by 1 + Fm−n+1/Hm−n+1.
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It appears from Maple programing that for all simple graphs on n ≤ 8 vertices,

complete graphs are the extremal graphs for the ratio Fm−n+1/Hm−n+1 and for com-

plete graphs this ratio equals nn−2

(n−1)!
. So we do have a disk which contains the roots,

which is an improvement, but we can do even better.

Theorem 3.5.7 Let G be a graph of order n. The roots of Rel(G, p) are found in

the disk 1
n−1

≤ |z − 1| ≤ Hm−n

Hm−n+1
≤ n− 1.

Proof. We can also use the fact that the cographic matroid for a graph G has an

H-vector which is a pure O-sequence [62], that is, it is the degree sequence of some

pure multicomplex. In [23] it was shown that a corresponding order ideal for the

cographic matroid of a graph G can be represented as monomials in n− 1 variables

x1, x2, . . . , xn−1 of degrees at most d1 − 1, . . . , dn−1 − 1.

Using the fact that the H-vector comes from a multicomplex, we can see that

(n − 1)Hi ≥ Hi+1, which gives us that 1
n−1

≤ Hi

Hi+1
. This is since we could multiply

the monomials by any of the n− 1 variables to obtain a monomial of size i+ 1.

Now using the fact that the multicomplex is pure, we can see that Hi ≤ (n −

1)Hi+1. This is since we could delete any one of the n − 1 variables, so we get that

1
n−1

≤ Hi

Hi+1
≤ n− 1. By Theorem 3.5.3 and the fact that it was proven by Huh [48]

that the H-vector of the cographic matroid is log concave, hence unimodal, and thus

the modulus of the roots is bounded by Hm−n/Hm−n+1. This gives us that the roots

of H(G, z) are such that 1
n−1

≤ |z| ≤ Hm−n

Hm−n+1
≤ n − 1 and therefore the all terminal

reliability roots are found in 1
n−1

≤ |z − 1| ≤ Hm−n

Hm−n+1
≤ n− 1. �

Again, looking at simple graphs on up to 8 vertices, the ratio Hi/Hi+1 appears

to be largest for complete graphs and is equal to Hm−n/Hm−n+1 = n
2
− 1, which is

better than the previous bound since

nn−2

(n− 1)!
=
( n

n− 1

)( n

n− 2

)
. . .
(n
2

)(1
1

)
>

n

2
,
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but still does not provide a fixed disk which contains all roots for all terminal relia-

bility polynomials.

We will now investigate how various graph operations can affect the location of the

roots of all terminal reliability polynomials. For a graph G, if we apply some graph

operation to obtain a new graph H, the all terminal reliability polynomial of H may

be an evaluation of the all terminal reliability of G. If that is the case, then we could

study the roots of the reliability polynomial of G and map those roots to the roots of

the reliability polynomial for H. For example, if we replace each edge of a graph with

a bundle of k edges to obtain the graph Gk, then Rel(Gk, p) = Rel(G, 1− (1− p)k).

The roots of Rel(Gk, p) then occur when 1 − (1 − p)k = r, where r is a root of

Rel(G, p).

Recall that given a graph G and a gadget H, we can replace the edges of G with

H to obtain the graph G[H]. We will study the roots of Rel(G[H], p) by using linear

fractional transformations. Before we examine the roots of Rel(G[H], p), we will

prove the following lemma, so that we can look at the roots of one polynomial and

compare their location to the roots of a reliability polynomial for a graph G using a

linear fractional transformation.

Lemma 3.5.8 Let G be a graph with reliability polynomial

Rel(G, p) =
m−n+1∑

i=0

Fip
m−i(1− p)i

and let

f(x) =
m−n+1∑

i=0

Fix
i.

The non-zero roots of Rel(G, p) map to the roots of f(x) via the linear fractional

transformation g(z) = 1−z
z
.
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Proof. Note that

Rel(G, p) =
m−n+1∑

i=0

Fip
m−i(1− p)i

= pm
m−n+1∑

i=0

Fip
−i(1− p)i

= pm
m−n+1∑

i=0

Fi

(1− p

p

)i
.

Let

h(p) =
m−n+1∑

i=0

Fi

(1− p

p

)i

and

f(x) =
m−n+1∑

i=0

Fix
i

where Fi is the number of faces of size i in the cographic matroid of G. The roots of

h(p) are the non-zero roots of Rel(G, p). If p = r is a root of h(p) then 1−r
r

is a root

of f(x). This tells us that the roots of h(p) map to the roots of f(x) by the linear

fractional transformation g(z) = 1−z
z
. �

Recall from the thresholds section that for a graph G and gadget H we have

Rel(G[H], p) =
m−n+1∑

i=0

Fi(G)pnew(H)m−iqnew(H)i.

Lemma 3.5.9 Let G be a graph, H a gadget and G[H] as previously defined. If R

is the set of non-zero roots of Rel(G, p) then the roots of Rel(G[H], p) occur when

qnew(G)

pnew(H)
=

1− r

r
for r ∈ R.
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Proof. Let G be a graph on n vertices and m edges and H a gadet. Consider G[H].

We know that

Rel(G[H], p) =
m−n+1∑

i=0

Fi(G)pnew(H)m−iqnew(H)i.

We can use this fact to investigate the roots of Rel(G[H]) in terms of the roots of

Rel(G). We know that

Relp(G, p) =
m−n+1∑

i=0

Fi(G)pm−i(1− p)i

= pm
m−n+1∑

i=0

Fi(G)p−i(1− p)i

= pm
m−n+1∑

i=0

Fi(G)
(1− p

p

)i

Let q = 1− p and consider the polynomial

Relp,q(G, p, q) = pm
m−n+1∑

i=0

Fi(G)
(q
p

)i
. (3.5)

Let R be the set of roots of the polynomial

f(x) =
m−n+1∑

i=0

Fi(G)xi

In Relp,q(G, p, q), replace p with pnew(G) and q with qnew(H) to obtain

Rel(G[H]) = Relp,q(G, pnew(H), qnew(H))

= pnew(H)m
m−n+1∑

i=0

Fi(G)
(qnew(H)

pnew(H)

)i
.
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The roots of Rel(G[H]) correspond to where pnew(H) = 0 or

m−n+1∑
i=0

Fi(G)
(qnew(H)

pnew(H)

)i
= 0,

which meansf
(
qnew(H)
pnew(H)

)
= 0. The latter occurs where

qnew(H)
pnew(H)

= t, for t ∈ R.

We know from Lemma 3.5.8 that the roots of
∑

Fi(G)xi come from the roots

of Relp(G, p) under the mapping h(z) = 1−z
z
, so each t ∈ R is such that t = 1−r

r

for some non-zero root r of Relp(G, p), so the roots of Relp,q(G[H]) occur where

qnew(H)
pnew(H)

= 1−r
r

for r, a non-zero root of Relp(G, p). �

Example 3.5.10 Consider the graph Cn and the graph with multiedges, P k
2 , which

is P2 with k ≥ 1 edges. We know that Rel(Cn, p) = npn−1(1 − p) + pn, so we have

that Rel(Cn, p) = pn−1(n(1− p)+ p). This has roots at p = 0 and p = 1+ 1
n−1

. Under

the linear fractional transformation g(z) = 1−z
z

mentioned in the previous theorem,

the non-zero root 1 + 1
n−1

maps to −1/n.

We have that pnew(P
k
2 ) = 1 − (1 − p)k and qnew(P

k
2 ) = (1 − p)k so Rel(Cn[P

k
2 ])

has roots where pnew(P
k
2 ) = 1− (1− p)k = 0 and (1−p)k

1−(1−p)k
= −1/n.

Example 3.5.11 Suppose now we take Cn and replace each edge with a path, Pk, of

length k ≥ 2 to obtain Cn[Pk]. We know that we end up with a cycle of length nk,

so using the method described, we should obtain roots at p = 0 and p = nk
nk−1

. We

know for cycles that Rel(Cn, p) = npn−1(1 − p) + pn which has roots at p = 0 and

p = 1 + 1
n−1

. For Pk we have that pnew(Pk) = pk and qnew(Pk) = k(1− p)pk−1.

We know that the linear fractional transformation g(z) = 1−z
z

from the previous

theorem sends the non-zero root p = 1 + 1
n−1

to −1/n. The roots of Rel(Cn[Pk], p)

are where pnew(Pk) = pk = 0, so p = 0 and where k(1−p)pk−1

pk
= −1/n, which is when

p = nk
nk−1

as expected.
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Using the types of graph operations we considered in the examples above, we can

show the following.

Theorem 3.5.12 The roots of all terminal reliability polynomials are dense in the

complex plane if and only if the roots are dense in |z − 1| ≤ 2.

Proof.

Clearly if the roots are dense in the entire complex plane, then they are dense in

|z − 1| ≤ 2.

We will be considering the all terminal reliability polynomial in the variable q, so

we can assume that the roots are dense in |z| ≤ 2 and then show they are dense in

the entire complex plane.

Suppose that we know that there is a family of graphs G such that their all

terminal reliability polynomial roots are dense in |z| ≤ 2. Let G ∈ G. We know that

Rel(G, p) =
m−n+1∑

i=0

Fip
m−i(1− p)i

= pm
m−n+1∑

i=0

Fi

(1− p

p

)i

Relp,q(G, p, q) = pm
m−n+1∑

i=0

Fi

(q
p

)i

The pm only gives us a root at 0, so we are interested in the roots of

f(p, q) =
m−n+1∑

i=0

Fi

(q
p

)i

Consider replacing each edge of G with the gadget Pk, k ≥ 2, to obtain the graph

G[Pk]. As seen in the example, pnew(Pk) = pk and qnew(Pk) = k(1−p)pk−1. Looking

at it in the variable q we have that pnew(Pk) = (1−q)k and qnew(Pk) = kq(1−q)k−1.
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If r = 1 is a root of Relq(G, q) = (1 − q)m
∑

Fi(G)(q/1 − q)i then q = r
1−r

is a

root of
∑m−n+1

i=0 Fix
i. To find a root of Relq(G[Pk], q) we must solve

qnew(Pk) − ( r
1−r

)pnew(Pk) = 0. Let R = r
1−r

, then we have the following sequence

of equivalent statements.

kq(1− q)k−1 −R(1− q)k = 0,

(1− q)k−1(kq −R(1− q)) = 0,

kq = R(1− q),

q =
R

k +R
.

We know that the roots of Relq(G, q) are dense in |z| ≤ 2. Under the linear

fractional transformation g1(z) = z
1−z

the roots of Relq(G, q) map to the roots of

f(1− q, q). So under g1(z) the disk |z| ≤ 2 maps to |z + 4
3
| = 2

3
, since the boundary

points of -2,2,2i map to −2
3
,-2 and 2i

5
− 4

5
respectively. Since the roots are dense in

|z| ≤ 2, we want to see where the interior of |z| = 2 maps to under g1(z). Since an

interior point, like 0 goes to 0, the interior of |z| = 2 maps outside the disk |z+ 4
3
| = 2

3
,

thus the roots are dense for |z + 4
3
| ≥ 2

3
.

We can now map the roots of f(1 − q, q) to the roots of Relq(G[P2], q) using

the linear fractional transformation g2(z) = z
2+z

. This gives us that the roots of

Relq(G[P2], q) are dense in 	(z) ≥ −1
2
, because this linear fractional transformation

maps the circle |z + 4
3
| = 2

3
to 	(z) = −1

2
, since the boundary points of -2/3,-2 and

2i
5
− 4

5
map to −1

2
,∞ and −1

2
+ i

2
respectively. Testing a point in the region where

the roots are dense, like z = 0, shows that the outside of |z + 4
3
| = 2

3
lies to the right

of 	(z) = −1
2
. (See Figure 3.20 to see the various linear fractional transformations

discussed.)
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As the roots of Relq(G[P2], q) are dense in 	(z) ≥ −1
2
, we have that for roots z of

Relq(G[P2], q), the closure of their modulus |z| is [0,∞). So given any r ∈ [0,∞) and

ε > 0 there is an all terminal reliability polynomial which has a root whose modulus

is within ε of r.

Let z ∈ C be any nonzero complex number and let θ be the argument of z. We will

show that for any ε > 0 there exists a root w of an all terminal reliability polynomial

such that w is within ε of z.

First, pick L large enough such that for any complex number ρ there is an L-th

root of unity of ρ with argument within ε of θ.

We will show that by replacing the edge of G[P2] with bundles of � > L parallel

edges, we will obtain that the closure of the roots is the entire complex plane. If

G is a graph and G� is G with each edge replaced by a bundle of � edges, then

Relq(G
�, q) = Relq(G, 1− q�). So if w� is a root of Relq(G, q) then any q such that

w� = 1 − q� is a root of Relq(G
�, q). This means that q runs over all the l-th roots

of 1− w� and since the closure of the modulus of the roots of all terminal reliability

polynomials is [0,∞), we can pick w� such that |1 − w�| is within ε of |z|. Since we

picked L such that any complex number has at least one root of unity with argument

within ε of θ, given z there is a root of an all terminal reliability polynomial within

ε of it. As z and ε were arbitrary then the closure is the entire complex plane. �

A corollary of the theorem just proved is

Corollary 3.5.13 If there is a graph G whose all terminal reliability polynomial has

a root arbitrarily close to -1, then there exists a graph, H such that the all terminal

reliability polynomial of H has a root of arbitrarily large modulus.



129

� ���
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�

Figure 3.20: |z| ≤ 2 under the g1(z) = z/(1 − z) and |z + 4
3
| ≥ 2/3 under g2(z) =

z/(z + 2)



Chapter 4

k-clique Reliability

4.1 Introduction

In most of the reliability literature, it is assumed that the vertices are always oper-

ational and that it is the edges that can fail, but this is not the only model. The

vertex failure reliability [37, 77] is a model where the vertices operate independently

with probability p ∈ [0, 1] and the desired property is that the subgraph induced by

the operational vertices is connected. Areas of research regarding this model are the

existence of optimal graphs and bounding techniques [37, 77].

When looking at reliability problems where the vertices operate independently

with probability p ∈ [0, 1], the requirement of having a connected subgraph opera-

tional is not the only model that has been studied. One particular reliability model

that uses vertex failures is that of the k-out-of-n reliability [7, 18], where the com-

ponents of the network are operational with probability p ∈ [0, 1] and the system

is considered functional if at least k of the n components are operational. In the

representative graph, it is equal to the operational components inducing a connected

subgraph. In this reliability problem, sometimes the components are edges, other

times vertices. An example of k-out-of-n reliability is the following. A sewage treat-

ment plant is operational if at least k of the n pumping stations are operational.

The all terminal reliability of a graph focuses on the global structure of the net-

work, as it requires at least a spanning tree to be operational to be considered reliable.

The k-out-of-n systems also have a global focus, as they require that the subgraph

130
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induced by the operational components is connected. Here we introduce an extension

of the k-out-of-n model, which focuses on local structure.

Let k ≥ 2 be fixed. For a given simple graph G, suppose that each vertex is

independently operational with probability p ∈ [0, 1]. What is the probability that

the operational vertices contain a k-clique? We call this probability the k-clique

reliability of a simple graph G, and denote it by crelk(G, p). That is, the system is

considered reliable if there is at least a clique of size k operational.

The clique reliability is focused on a local structure, as it does not require the

operational subgraph to be connected. This type of problem can arise when looking at

small-world networks, such as Facebook, since a structural property of such networks

is the existence of cliques, so one may want to know the probability that at least k

of the vertices can fully communicate with each other. Another example where this

type of problem could arise is the following. A processing plant may require that a

workstation of at least k of the machines can send information directly to and from

each other in order for the plant to be operational.

Example 4.1.1 If considering the k-clique reliability of a complete graph, this prob-

lem becomes that of the well known k-out-of-n reliability. For a complete graph to

have at least a k-clique operational, it is required that at least k of the n vertices be

operational, which occurs with probability crelk(Kn, p) =
∑n

i=k

(
n
k

)
pk(1− p)n−k. This

is the same as asking what the k-out-of-n reliability of Kn is, where the components

are the vertices.

For k = 1, it is rather trivial as we need at least one vertex operational, so

crel1(G, p) = 1− (1− p)n. For k = 2 this is a new and interesting reliability problem.

Example 4.1.2 Consider C4. There are only two subsets of vertices of size at least

2 that do not contain an edge, namely the opposite pairs on the cycle, so it follows

that crel2(C4, p) = 4p2(1− p)2 + 4p3(1− p) + p4 = 4p2 − 4p3 + p4.
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For any graph, one may think that the k-clique reliability of a graph G is re-

ally just a coherent reliability problem in disguise, with minpaths of cardinality k,

but it is in fact a proper subclass of them. For example, suppose C is any coher-

ent reliability problem on a set S, and the minpaths of C are all of the same size,

k. If the graph H is constructed with V (G) = S and edge set E(G) = {xy |

x and y appear together in some element of C}, then the k-clique reliability of H

seems to be the same as the coherence reliability polynomial for C, but this is not

the case. Consider the following counterexample.

�

�

� �

�

Figure 4.1: Graph G in Example 4.1.3

Example 4.1.3 Let C be a coherence reliability problem on the set {a, b, c, d, e} with

the following minpaths, {a, b, c}, {a, c, d}, {b, d, e}, thus

C = {{a, b, c}, {a, c, d}, {b, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e},

{b, c, d, e}, {a, b, c, d, e}}.

This means that the coherence reliability polynomial for C is

3p3(1− p)2 + 5p4(1− p)2 + p5 = −p5 − p4 + 3p3.



133

Create the graph G whose vertex set {a, b, c, d, e} and an edge appears between two

vertices if they appear in the same minpaths of C, so

E(G) = {xy | x and y appear together in the same minpath of C}

(See Figure 4.1). The operational set for this graph is the same as C, with the addition

of 2 new minpaths, as we’ve created two new triangles, namely {b, c, d} and {a, b, d}.

The 3-clique reliability of the G is 5p3(1−p)2+5p4(1−p)+p5 = p5−5p4+5p3, which

clearly differs from the coherence reliability of G, since in forming G, we created those

new triangles.

4.2 Computing k-clique Reliability

As with all terminal reliability, we have a few different forms for which we can express

the k-clique reliability of a graph. One is the F -form,

crelk(G, p) =
n−k∑
i=0

Fip
n−i(1− p)i,

where Fi is the number of ways to have i non-operational vertices such that the

operational vertices induce a subgraph with at least a k-clique. The other is the

N -form,

crelk(G, p) =
n∑

i=k

Nip
i(1− p)n−i,

where Ni is the number of ways to have i operational vertices which induce at least

a k-clique. Note that Ni = Fn−i.

We can also calculate the k-clique reliability based on the inclusion and exclusion

principle. Let K be the set of k-cliques of a graph G. Since we require that we have
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at least a k-clique operational, we have that

crelk(G, p) =
∑
t∈K

pk−
∑

1≤i<j≤|K|
p|ti∪tj |+

∑
1≤i<j<�≤|K|

p|ti∪tj∪t�|+. . .+(−1)|K|−1p|t1∪t2∪...∪t|K||.

If we have a relatively small number of cliques, then this can be calculated quickly.

Example 4.2.1 Consider the graph, G in Figure 4.1 and crel3(G, p). As we saw,

for this graph, N0 = N1 = N2 = 0, N3 = 5, N4 = 5 and N5 = 1. This gives us that

F0 = 1, F1 = 5, F2 = 5. As our cliques are {a, b, c}, {a, b, d}, {b, c, d}, {b, d, e}, we can

use the inclusion and exclusion principle to calculate the reliability.

crel3(G, p) = 5p3 − (8p4 + 2p5) + (4p4 + 6p5)− (p4 + 4p5) + p5 = p5 − 5p4 + 5p3.

As we saw in the introduction of the thesis, for all terminal reliability we can

use the deletion and contraction of an edge to recursively calculate the all terminal

reliability polynomial. Though for a graph G with vertex v the number of cliques

of size k can be calculated recursively by counting the k-cliques in G − v and the

number of k − 1 cliques in G|N(v), this deletion and contraction method does not

extend to the probability of having at least a k-clique operational. When k > 2, we

clearly need a k-clique operational in G−v, but when v is operational, we could have

a k-clique in G− v or a (k − 1)-clique in G|N(v).

Example 4.2.2 Consider the wheel graph W5, crel3(W5, p) = p6 − 5p4 + 5p3. Let v

be a vertex, not the hub; then crel3(W5 − v, p) = −2p4 + 3p3 and crel3(W5 |N(v), p) =

2p2 − p3, and so (1− p)(−2p4 + 3p3) + p(2p2 − p3) = 2p5 − 6p4 + 5p3.

So, we do not have a recursive formula for the k-clique reliability, unless k = 2.

This is since when k = 2, either the edge containing a vertex v ∈ V (G) is operational,
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or not, so for a graph, G and v ∈ V (G) we have,

crel2(G, p) = (1− p)crel2(G− v, p) + p(1− (1− p)deg(v))

+p(1− p)deg(v)crel2(G−N [v], p).

Example 4.2.3 Consider C6. Using the above formula for calculating the 2-clique

reliability, we have that

crel2(C6, p) = (1− p)crel2(P5, p) + p(1− (1− p)2) + p(1− p)2crel2(P3, p)

= (1− p)(p5 + 5p4(1− p) + 9p3(1− p)2 + 4p2(1− p)3

+p(2p− p2) + p(1− p)(p3 + 2p2(1− p))

= −2p6 + 6p5 − 3p4 − 6p3 + 6p3

Although in general for a given G and k, we don’t have a recursive formula for the

k-clique reliability, there are times when we can express the reliability of a graph G

in terms of a subgraph of G.

Proposition 4.2.4 Let graph G. Join a vertex v to each vertex of G to obtain G+v.

Then crelk(G+ v, p) = (1− p)crelk(G, p) + pcrelk−1(G, p)

Proof. Let H be a subgraph of G + v that contains at least a k-clique. Clearly,

either H contains v or it does not. If v is not operational then we need at least a

k-clique operational in G, which occurs with probability crelk(G, p). If v is opera-

tional then we need at least a (k − 1)-clique operational in G, which occurs with

probability crelk−1(G, p), and as having at least a (k − 1)-clique operational in G

includes subgraphs contain at least a k-clique, this gives us that

crelk(G+ v, p) = (1− p)crelk(G, p) + pcrelk−1(G, p).
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Example 4.2.5 Consider the wheel graph, which is Cn + v. By Proposition 4.2.4,

we have that

crel3(Wn, p) = crel3(Cn + v, p)

= (1− p)crel3(Cn, p) + pcrel2(Cn, p)

= pcrel2(Cn, p)

Though there are many ways to express the k-clique reliability of a graph, in

our study of k-clique reliability, we will also make use of two other polynomials, the

k-clique generating polynomial and the k-clique-free polynomial. For a graph G of

order n, the k-clique generating polynomial is

cgenk(G, x) =
n∑

i=0

Nix
i,

where Ni denotes the number of subsets of vertices of size i that induce at least a

k-clique. The k-clique-free polynomial is

cfreek(G, x) =
n∑

i=0

Iix
i,

where Ii is the number of subsets of vertices of size i which do not induce a k-

clique. When k = 2, the 2-clique-free polynomial is the well known and well studied

independence polynomial, I(G, p) [41, 57]. Clearly

cgenk(G, x) + cfreek(G, x) = (1 + x)n

and moreover, we can show the following.
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Lemma 4.2.6 Let G be a graph on n vertices and k ≥ 2. Then

crelk(G, p) = (1− p)ncgenk(G,
p

1− p
)

and

crelk(G, p) = 1− (1− p)ncfreek(G,
p

1− p
)

Proof. Let G be a graph on n vertices, then

crelk(G, p) =
n∑

i=k

Nip
i(1− p)n−i

= (1− p)n
( n∑

i=k

Nip
i(1− p)−i

)

= (1− p)n
( n∑

i=k

Ni

( p

1− p

)i)
= (1− p)ncgenk(G, p

1−p
)

and

crelk(G, p) = (1− p)ncgenk(G, p
1−p

)

= (1− p)n
((

1 +
1− p

p

)n
− cfreek(G, p

1−p
)
)

= (1− p)n
( 1

(1− p)n
− cfreek(G, p

1−p
)
)

= 1− (1− p)ncfreek(G, p
1−p

),

which completes the proof. �

Example 4.2.7 We have seen that crel3(W5, p) = p6−5p4+5p3. Using the formulas

in Lemma 4.2.6, we can get the same results. Since cgen3(W5, x) = 5x3 + 10x4 +
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5x5 + x6 and cfree3(W5, x) = 1 + 6x+ 15x2 + 15x3 + 5x4 + x5 we have that

crel3(W5, p) = (1− p)6cgen3(W5,
p

1− p
)

= (1− p)6
( 5p3

(1− p)3
+

10p4

(1− p)4
+

5p5

(1− p)5
+

p6

(1− p)6

)
= p6 − 5p4 + 5p3

and

crel3(W5, p) = 1− (1− p)6cfree3(W5,
p

1− p
)

= 1− (1− p)6
(
1 +

6p

(1− p)
+

15p2

(1− p)2

+
15p3

(1− p)3
+

5p4

(1− p)4
+

p5

(1− p)5

)
= p6 − 5p4 + 5p3

These relationships will be useful later in this chapter when we are investigating

the location of the roots of these reliability polynomials.

We know that computing the all terminal reliability of a graph is #-P complete.

What can we say about the complexity of k-clique reliability for a fixed k ≥ 2?

(It is trivial for k = 1 since we know that for a graph G of order n, crel1(G, p) =

1 − (1 − p)n.) Let G be a graph and k ≥ 2. As with any reliability polynomial, we

have crelk(G, 0) = 0 and if G has a k-clique, then crelk(G, 1) = 1 (it is 0 otherwise).

But how difficult is it to compute crelk(G, p) for any p ∈ C− {0, 1}? We know that

crelk(G, p) = (1− p)ncgenk(G, p
1−p

)

= (1− p)n
(
(1 +

p

1− p
)ncfreek(G, p

1−p
)
)

= (1− p)n
( 1

(1− p)n
− cfreek(G, p

1−p
)
)

= 1− (1− p)ncfreek(G, p
1−p

),
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therefore if it is #P-hard to compute cfreek(G, s) for any s ∈ C − {0, 1}, then it is

#P-hard to compute crelk(G, s). We will show that it is #P-hard to compute the

k-clique reliability of a graph for any complex number s, s = 0 and s = 1, by looking

at the complexity of computing cfreek(G, s).

Theorem 4.2.8 For a fixed k ≥ 2, computing crelk(G, s), s ∈ C−{0, 1} is #P-hard.

Proof. If G is k-clique free then crelk(G, p) ≡ 0. Suppose G has at least a clique

of size k. We know that crelk(G, 0) = 0 and crelk(G, 1) = 1. Let s ∈ C − {0, 1}.

Consider the case when k = 2; then

crel2(G, s) = 1− (1− s)ncfree2(G, s
1−s

)

= 1− (1− s)nI(G, s
1−s

)

In [47] it was shown that computing the independence polynomial for any non-zero

complex number is #P-hard. Therefore calculating crel2(G, s) for any non-zero com-

plex number is #P-hard.

Let k ≥ 3. Consider the graph G + v and s ∈ C − {0, 1}. By Proposition 4.2.4,

the k-clique reliability of this graph is

crelk(G+ v, p) = (1− p)crelk(G, p) + pcrelk−1(G, p).

This gives us that

crelk−1(G, s) =
(1− s)crelk(G, s)− crelk(G+ v, s)

s
.

This means that if we can compute crelk(G, s) in polynomial time; then we can

compute crelk−1(G, s) in polynomial time. As crel2(G, s) is #P-hard, so is crel3(G, s),

and by induction, crelk(G, s) is #P-hard for all fixed k ≥ 2. �
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4.2.1 Bounding and k-clique Reliability Complexes

We have seen that computing the k-clique reliability is #P-hard for values other than

0 and 1, so it would be of interest to find some bounds for the k-clique reliability of

a graph. We can find some bounds by investigating combinatorial structures related

to the reliability problem. One such example is using the inclusion and exclusion

formula we saw earlier. Cutting the summation off after a positive term gives an

upper bound, and cutting the summation off after a negative term gives a lower

bound.

� � �

���

Figure 4.2: Graph for Example 4.2.9.

Figure 4.3: The green plot is the 3-clique reliability polynomial for the graph in
Figure 4.2; the other plots are the upper and lower bounds achieved from the inclusion
and exclusion formula having terms left off.
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Example 4.2.9 Consider the graph G, in Figure 4.2. We will compute crel3(G, p).

The minpaths (3-cliques) are {1, 2, 5}, {1, 5, 6}, {2, 4, 5}, {2, 3, 4}. Using the inclusion

and exclusion formula to calculate the 3-clique reliability, we have

crel3(G, p) = 4p3 − (3p4 + 2p5 + p6) + (2p6 + 2p5)− p6 = 4p3 − 3p4 + 2p6.

If we cut our formula off after a positive term, say the term 2p6 + 2p5, we have

crel3(G, p) ≤ 4p3 − (3p4 + 2p5 + p6) + (2p6 + 2p5) (see Figure 4.3, the gold curve). If

we cut it off after a negative term, say −(3p4 + 2p5 + p6), we have a lower bound, as

crel3(G, p) ≥ 4p3 − (3p4 + 2p5 + p6) (see Figure 4.3, the red curve).

Another way to bound the reliability polynomial is to bound the coefficients in the

N - or F -form of the reliability polynomial. For example, with all terminal reliability

we have a simplicial complex, the cographic matroid, whose F -vector is the coefficients

of the F -form of the reliability polynomial, so bounds on the F -vector translate into

bounds for the reliability polynomial (for example, see [22,23,31]). A natural question

to ask is: are there any complexes associated with k-clique reliability for which we

can use their combinatorial structure to bound the reliability polynomial?

Recall the general vertex failure problem, where the vertices operate indepen-

dently with p ∈ [0, 1] and the graph is reliable if the graph induced by the operational

vertices is connected. This is not an example of a coherent system, as it is not closed

under supersets. To add a vertex to a subset of vertices, which induce a connected

subgraph, does not guarantee that this larger set of vertices will induce a connected

subgraph. This means when expressing the vertex failure reliability of a graph G

in the F -form, the Fi are not the components of the F -vector of a simplicial com-

plex. For example, consider a 6-cycle with vertices 1, 2, 3, 4, 5, 6. To remove vertices

4, 5 and 6 leaves a connected subgraph, but to remove just 4 and 6 does not. To

look at the subsets that do not induce a connected subgraph still does not provide a
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complex, since a subset of vertices which do not induce a connected subgraph may

have a subset of vertices which do induce a connected subgraph. Again, consider the

example with the C6, the vertices 1, 3, 4 do not induce a connected subgraph, but

the vertices 3, 4 do. The vertex failure model is not a coherent system.

In contrast, though the k-clique reliability problem is a vertex failure reliabil-

ity problem, it is a coherent system and in fact there are two simplicial complexes

associated with this problem that we can look at.

We have seen that we can express the k-clique reliability of a graph as

crelk(G, p) = 1−
∑

Iip
i(1− p)n−i,

where Ii is the number of subsets of vertices of size i which do not contain a Kk.

Since such a subset of vertices is closed under subsets, one complex we can look at

has as faces the subsets of vertices which do not contain a Kk,

Ik(G) = {S ⊆ V (G) | S does not contain a Kk}.

This gives us Ii = Fi, where the Fi’s come from the F -vector of Ik(G). When k = 2,

I2(G) is the well known independence complex. Sometimes this complex is a pure

complex and sometimes it is not.

Example 4.2.10 Consider I2(Kn,n). This is a pure complex, as the maximal in-

dependent sets are the bi-partitions, both of which are size n. If we are looking at

I3(Wn) then this is not a pure complex as we can have a facet consisting of all the

vertices in the cycle or we can have a facet that contains the hub and �n
2
� vertices in

the cycle.
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We also know that the reliability polynomial can be expressed in the F -form as

crelk(G, p) =
∑

Fip
n−i(1− p)i,

where the Fi are the number of ways to remove i vertices and still have at least a

k-clique. This gives us the complex

Δk(G) = {S ⊆ V (G) | G− S contains a Kk},

so the F -vector of this complex consists of the Fi in the F -form of the k-clique

reliability polynomial. This is a pure complex, as the facets are complements of k-

cliques. However, although it is a pure complex, it is not necessarily matroidal or

shellable.

�

�

� �

�

�

�

Figure 4.4: Graph for Example 4.2.11.

Example 4.2.11 Consider W6 (Figure 4.4). We have

I3(W6) = {{7, 1, 3, 5}, {7, 2, 4, 6}, {1, 2, 4}, {1, 2, 5}, {2, 3, 5}, {2, 3, 6},

{3, 4, 6}, {3, 4, 1}, {4, 5, 1}, {4, 5, 2}, {6, 5, 2}, {6, 5, 3}},

thus crel3(W6, p) = 1− (8p3(1− p)4 + 17p4(1− p)3 + 6p5(1− p)2 + p6) and

Δ3(W6) = {{3, 4, 5, 6}, {1, 4, 5, 6}, {1, 2, 5, 6}, {1, 2, 3, 6}, {1, 2, 3, 4}, {2, 3, 4, 5}},
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thus crel3(W6, p) = 6p3(1−p)4+18p4(1−p)3+15p5(1−p)2+6p6(1−p)+p7. We can

see that I3(W6) is not a pure complex and that Δ3(W6) is not a matroid (for example

{1, 2, 3, 6} and {1, 4, 5, 6} do not have the exchange property), but it is shellable. A

shelling order is {1, 2, 3, 4}, {2, 3, 4, 5}, {1, 2, 3, 6}, {3, 4, 5, 6}, {1, 4, 5, 6}, {1, 2, 5, 6}.

There is a connection between these two complexes. The Alexander dual of a

complex, C on a ground set V is

C∨ = {σ ⊆ V | V \ σ ∈ C}.

That is, the Alexander dual C∨ of a complex C has as facets the complements of

the minimal non-faces of C. We know that the facets of Δk(G) are complements of

k-cliques. The minimal non-faces of Ik(G) are the k-cliques. This means that the

Alexander dual of Ik(G) is Δk(G). This relationship will be useful when investigating

the combinatorial structures of these complexes. We should note that (C∨)∨ = C.

Example 4.2.12 Consider the graph, W6 in the previous example. The minimal

non-faces of I3(W6) are {1, 2, 7}, {2, 3, 7}, {3, 4, 7}, {4, 5, 7}, {5, 6, 7}, {1, 6, 7}, which

are the complements of the facets of Δ3(W6), and thus Δ3(W6) = I∨3 (W6).

The reason why one would be interested in the complexes associated with a reli-

ability problem is that for complexes, there are bounds which hold for the F -vector

and therefore these bounds can be used to bound the k-clique reliability polynomial.

As mentioned in the background chapter, there are Sperner’s bounds [71], which state

that for a complex on a ground set of size m, (m−i+1)Fi−1 ≥ iFi. There are also the

Kruskal-Katona bounds (see [52, 55]) which are known to be better than Sperner’s

bounds.
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If we know if a complex C, associated with the k-clique reliability polynomial, is

shellable, then we can express the reliability in the H-form,

crelk(G, p) = pk
n∑

i=0

Hi(1− p)i,

where the Hi are from the H-vector of C. We can then use the Ball-Provan bounds

[4–6] to bound the reliability polynomial.

Example 4.2.13 Consider the complete bipartite graph K2,3. The 2-clique reliability

for this graph is (1− (1−p)2)(1− (1−p)3), since we need at least a vertex operational

in each partition. Let vertices 1 and 2 be in the partition of size 2, and vertices 3, 4,

5 in the partition of size 3. We then obtain the complex

Δ2(K2,3) = {{2, 3, 5}, {2, 4, 5}, {2, 3, 4}, {1, 3, 5}, {1, 4, 5}, {1, 3, 4}}.

This gives us the F -vector 〈1, 5, 9, 6〉 and the H-vector 〈1, 2, 2, 1〉 since an interval

partition of this complex is [{2, 3, 5}, ∅], [{2, 3, 4}, {4}], [{1, 3, 4}, {1}],

[{1, 3, 5}, {1, 5}], [{1, 2, 4}, {1, 2}], [{1, 2, 5}, {1, 2, 5}].

Overall, knowing some information regarding the combinatorial structure of com-

plexes associated with reliability problems is useful, as the Ball Provan bounds can

then be used.

The topological structure of Δ1(G) is somewhat trivial, as it is a sphere. For

k ≥ 2, the structure seems much more delicate. We will investigate the topological

structure of Δ2(G) for a graph G. We will look to see when it is a matroid and when

it is shellable (hence the reliability polynomial has an H-form). We focus on Δk(G)

since it is a pure complex, and hence could be paritionable. It is known that Ball-

Provan bounds are better than the Krustal-Katona bounds (for example, see [31]),
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so it is desirable for an reliability polynomial to have an associated complex that is

partitionable as there are good bounds to apply to the H-vector.

We will begin by investigating when Δ2(G) is shellable by looking at what is

called the strong gcd condition.

Definition 4.2.14 [50] Given a simplicial complex Δ, a strong gcd order is a linear

order M1,M2, . . . ,Mr of the minimal non-faces with the following property: if 1 ≤ i <

j ≤ r and Mi ∩Mj = ∅ then there exists a k > i such that k = j and Mk ⊆ Mi ∪Mj.

A simplicial complex Δ is said to satisfy the strong gcd condition if the minimal

non-faces (circuits) of Δ admit a strong gcd order.
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Figure 4.5: Graphs for Example 4.2.15

Example 4.2.15 Consider the graph C5 and its independence complex, I(C5), which

has maximal faces

{{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}}.

The minimal non-faces are

{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}

(the edges of the graph), and one can check that the independence complex for C5

does not have a strong gcd order. This is because each pair of disjoint edges has one

unique edge in their union and as each circuit (edge) must exceed another in the linear

ordering, we can not have a strong gcd order since the first edge in our ordering will

need to exceed another edge in the ordering.
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Let G be the second graph in Figure 4.5, which is a C5 with a chord. The inde-

pendence complex for this graph has facets {{1, 2}, {2, 4}, {2, 5}, {3, 5}}. The circuits

of this complex are {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}, {1, 3} and they do have a strong

gcd order, which is {1, 2}, {1, 5}, {2, 3}, {4, 5}, {3, 4}, {1, 3}.

A useful theorem regarding the strong gcd condition, a complex and its Alexander

dual is the following.

Theorem 4.2.16 [9] Let Δ be a complex whose circuits are size 2 (a flag complex),

and Δ∨ its Alexander dual. Then to say that Δ satisfies the strong gcd condition is

equivalent to saying that Δ∨ is shellable.

A consequence of this is that when k = 2, I2(G) is the independence complex and

we know the circuits are size 2, so if I2(G) satisfies the strong gcd condition, then

Δ2(G) is shellable.

For a graph G to be such that Δ2(G) is shellable, it is necessary that G have no

induced 2K2, else it would not have the strong gcd condition. It is also necessary

that G not contain an induced C5 since the edges of C5, as we saw in Example 4.2.15,

do not have a strong gcd ordering. Hence if a graph has an induced C5, it cannot

have a strong gcd ordering.

It is not clear whether not containing an induced 2K2 or C5 is sufficient for Δ2(G)

to be shellable, but it is necessary. The next result will show that if we have graphs

G1 and G2 whose independence complex also has the strong gcd condition, then G1

and G2 can be used to create another graph H whose independence complex has the

strong gcd condition and hence Δ2(H) is shellable.

First we need the following definition.

Definition 4.2.17 Let S = {x1, x2, . . . , xn} be a set, and order the elements of S

such that xi > xj if i > j. Let u = xe1
1 xe2

2 . . . xen
n (ei ≥ 0) and v = xf1

1 xf2
2 . . . xfn

n
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(fi ≥ 0). Then u comes lexicographically before v, u >lex v, if for the minimal i such

that ei = fi, 1 ≤ i ≤ n, we have that ei > fi.

Example 4.2.18 Consider K1,6 on vertices {v1, v2, v3, v4, v5, v6}, with central ver-

tex v1. The edges of K1,6 are v1vi, i = 2 . . . 6. Assume the ordering v1 > v2 >

v3 > v4 > v5 > v6 on the vertices. Then the edges, in lexicographic order, are

v1v2, v1v3, v1v4, v1v5, v1v6. If we added the edge {v2, v3} to our graph, then {v2, v3} < e

where e is any other edge in the graph, since e would contain v1 and v1 > v2.

Lemma 4.2.19 Let G and H be graphs such that Δ2(G) and Δ2(H) are shellable.

Then the Δ2(G+H) is shellable.

Proof. We will use Theorem 4.2.16, so we will look at the independence complexes

for these graphs.

Let G be a graph of order nG and size mG and let H be a graph of order nH and

size mH . Let m be the product of nG and nH . Let {g1, g2, . . . , gmG
} be the strong

gcd order for the edges of G. Let {h1, h2, . . . , hmH
} be the strong gcd order for the

edges of H. Let {f1, f2, . . . , fm} be the edges that join G and H.

We want to show that the edges of G +H exhibit a strong gcd order. We know

that we can order the edges of G and H so that they exhibit a strong gcd order. It is

also the case that the edges fi, i = 1 . . .m join G and H, so a pair of disjoint edges,

one from G and one from H are connected by some edge fi, i ∈ {1, . . . ,m}. We

also have that an edge fi, i ∈ {1, . . . ,m} and any edge from G or H are connected

by some other fj,j = i, j ∈ {1, . . . ,m}, so if we list all the edges of G, in their gcd

order, followed by the edges of H in their gcd order, followed by some ordering of

the edges fi, i = 1 . . .m, then this has the potential to be a strong gcd order. It will

be a strong gcd order if we can order the edges fi, i = 1 . . .m so that they exhibit a

strong gcd order.
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Let {a1, a2, . . . , anG
} be the vertices of G and {b1, b2, . . . , bnH

} the vertices of H.

An edge fi has endpoints aj and bk for some 1 ≤ j ≤ nG and 1 ≤ k ≤ nH .

Order the vertices of G such that ai > aj if i > j and order the vertices of H

similarly, so that bi > bj if i > j. If we order the edges fi, i = 1 . . .m lexicographically,

then this is a strong gcd order on the edges between G and H. Suppose fi ∩ f� = ∅,

where fi = (ak, bj) and f� = (ar, bs). Without loss of generality, assume k < r.

We know (ar, bj) is an edge between G and H and (ar, bj) >lex (ak, bj), so the gcd

condition holds.

This means that the independence complex I2(G+H) has a strong gcd order, so

Δ2(G+H) is shellable. �

We can characterize triangle-free graphsG for which the complex Δ2(G) is shellable.

Before we begin, we require the following definition.

Definition 4.2.20 [76] A bipartite graph G with partitions A and B is called chain

bipartite if and only if it is a bipartite graph and the vertices in each partition can be

ordered linearly with respect to inclusion of their neighbourhoods.

Theorem 4.2.21 Let G be a triangle-free graph with no induced 2K2.

• If G is bipartite, then Δ2(G) is shellable.

• If G is not bipartite, then Δ2(G) is not shellable.

Proof. Let G be a triangle-free graph with no induced 2K2 (hence G is connected,

or is the disjoint union of a connected component of size at least 2 and isolated

vertices). If G is not bipartite, then G can be obtained from a 5-cycle where each

vertex, x, is replaced by an independent set (whose neighbours are the neighbours of

x) [30], so it has an induced C5, and so I2(G) does not have the strong gcd condition,

and hence Δ2(G) is not shellable.
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Now suppose that G is a bipartite graph with partitions A and B, with no induced

2K2. It is the case that 2K2-free bipartite graphs are chain bipartite graphs [76]. Then

we have that G is chain bipartite, so it has the property that for vertices x and y,

N(x) ⊆ N(y) or N(y) ⊂ N(x) and the vertices in each partition (A and B) can be

ordered under inclusion of their neighbourhoods.

Let |A| = n1, |B| = n2. Order the vertices in A so that N(a1) ⊇ N(a2) ⊇

. . . ⊇ N(an1) and order the vertices a1, a2, . . . , an1 by inclusion of their neighbours, so

a1 > a2 > . . . > an1 . Now consider the ordering of the edges of G lexicographically.

Suppose we have {ai, bj} ∩ {ar, bs} = ∅ and assume without loss of generality that

i > r. Since i > r, we know that N(ai) ⊆ N(ar), so {ar, bj} is an edge of G and

{ai, bj} < {ar, bj}. Thus we have a strong gcd ordering of the edges of G and so

Δ2(G) is shellable. �

So we know some situations where the complex is shellable. All matroids are

shellable [31]. We will now classify the family of graphs for which Δ2(G) is matroidal.

Theorem 4.2.22 Let G be a graph of order n ≥ 4. Δ2(G) is a matroid if and only

if G is the disjoint union of a complete multipartite graph and �K1, � ≥ 0.

Proof. Let n ≥ 4. Let G be a graph and V = V (G). Assume Δ2(G) is a

matroid. Let σ1 and σ2 be facets of Δ2(G). Since Δ2(G) is a matroid, the exchange

axiom holds, so we know for each x ∈ σ1 − σ2 there exists a y ∈ σ2 − σ1 such that

(σ1 − {x}) ∪ {y} is a facet.

Suppose that G contains an induced graph that is a paw-graph (a triangle on

{x, y, z} with another vertex w, adjacent to z, but not to x or y). We know that

V − {x, y} and V − {z, w} are facets of Δ2(G). Let σ1 = V − {x, y} and let σ2 =

V − {z, w}. Since Δ2(G) is a matroid, then we have that (σ1 − {w}) ∪ {x} or

(σ1 − {w}) ∪ {y} is a facet, therefore either {w, x} or {w, y} is an edge of G, which
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is a contradiction. So G is paw-free, thus by [68] G is triangle-free or a complete

multipartite graph, possibly with isolated vertices.

First suppose that G is triangle-free. As Δ2(G) is shellable, G contains no induced

2K2. By Theorem 4.2.21, if G is not bipartite, then Δ2(G) is not shellable. If G

is a bipartite graph, then Δ2(G) is shellable, but this does not imply that Δ2(G)

is a matroid. If G is a connected bipartite graph, but not a complete bipartite

graph, then there is at least one set of 4 vertices that induce a P4, say with edges

{x, y}, {y, z},{z, w}. Then V − {x, y} and V − {z, w} are facets of Δ2(G) for which

the exchange axiom does not hold (as {w, x} and {w, y} are not edges of G), and

thus Δ2(G) is not a matroid. So if Δ2(G) is a matroid, then G is the disjoint union

of a complete multipartite graph and �K1, � ≥ 0.

Now suppose that G is the disjoint union of a complete multipartite graph and

�K1, � ≥ 0 and consider the complex Δ2(G). Let σ1 and σ2 be facets of Δ2(G). Let

x ∈ σ1 − σ2. We show that there exists a t ∈ σ2 − σ1 such that (σ1 − {x}) ∪ {t} is a

facet.

Let σ1 − e1 = V − {z, w} and σ2 = V − e2 = V − {x, y}. Assume first that

e1 ∩ e2 =. We have that σ1 − σ2 = {x, y} and σ2 − σ1 = {z, w}. It is the case that

(σ1 − {x}) ∪ {z} or (σ1 − {x}) ∪ {w} is a facet if either {x, w} or {x, z} is an edge.

Since the edges of G lie in a complete multipartite subgraph and {z, w} is an edge

and both z and w will not be in the same partition as x, the exchange axiom holds

in this case.

Now assume that e1∩e2 = ∅. Let σ1−e1 = V −{z, w} and σ2 = V −e2 = v−{x, w}.

We have that σ1 − σ2 = {x} and σ2 − σ1 = {z}. We know that (σ1 − {x}) ∪ {z} is a

facet since {x, w} is an edge.

Thus Δ2(G) is a matroid when G is the disjoint union of a complete multipartite

graph and �K1, � ≥ 0. �
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Since we know that Δ2(G) is shellable for graphs G which are complete multipar-

tite graphs with �K1, � ≥ 0, we could use the Ball and Provan bounds to bound the

k-clique reliability polynomial, but this really is not necessary, as we can explicitly

write down the 2-clique reliability polynomial for such a graph. Let G be a graph that

is a complete multipartite graph on n vertices with r partitions of sizes n1, n2, . . . , nr

and �K1, � ≥ 0.

Since the independence polynomials of disjoint graphs can be multiplied [57], the

2-clique free polynomial, or independence polynomial for G is

I(G, x) = (1 + x)�
( n∑

i=0

r∑
j=1

(
nj

i

)
xi
)
.

This comes from the fact that an independent set of the connected component con-

sisting of the complete multipartite graph will consist of a subset of size i from exactly

one of r partitions and the independence polynomial for the �K1 is (1 + x)�. From

this, we can obtain the 2-clique reliability polynomial for G since

crel2(G, p) = 1− (1− p)ncfree2(G, p
1−p

)

= 1− (1− p)nI(G, p
1−p

)

and we know I(G, x).

4.3 Optimality of k-clique Reliability Polynomials

With any reliability problem, one is interested if an optimal graph exists. We have

seen that with all terminal reliability it may be the case that a most optimal graph

does not always exist. For k-clique reliability, we will look at both most and least

optimal graphs. Before we begin, the following lemma will be useful, as it provides
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some information as to the properties of the graphs that are most optimal for values

of p near 0 and near 1.

Lemma 4.3.1 Let G and H be graphs on n vertices and m edges and let k ≥ 2.

Then

crelk(G, p) =
n∑

i=0

Fi(G)pn−i(1− p)i

and

crelk(H, p) =
n∑

i=0

Fi(H)pn−i(1− p)i.

If we have that Fi(G) = Fi(H) for i > j but Fj(G) > Fj(H), then crelk(G, p) >crelk(H, p)

for p close to 0.

If we have that Fi(G) = Fi(H) for i < � but F�(G) > F�(H), then crelk(G, p) >crelk(H, p)

for p close to 1.

Proof. Let G and H be graphs on n vertices and m edges and assume k ≥ 2 and

consider

crelk(G, p)− crelk(H, p) =
n∑

i=0

(Fi(G)− Fi(H))pn−i(1− p)i.

Let � be such that Fi(G) = Fi(H) for 1 ≤ i ≤ � − 1 and let j be such that Fi(G) =

Fi(H) for j + 1 ≤ i ≤ n. Then we have that

crelk(G, p)− crelk(H, p) =

j∑
i=�

(Fi(G)− Fi(H))pn−i(1− p)i

= pn−j(1− p)�
j∑

i=�

(Fi(G)− Fi(H))pj−i(1− p)i−�.
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Let Fi = Fi(G)− Fi(H), then

crelk(G, p)− crelk(H, p) = pn−j(1− p)�
j∑

i=�

Fip
j−i(1− p)i−�

= pn−j(1− p)�(F�p
j−� + F�+1p

j−�−1(1− p) +

. . .+ Fj−1p(1− p)j−�−1 + Fj(1− p)j−�

and from this we can see that for p near 0, Fj(1 − p)j−� is dominant and so if

Fj(G) > Fj(H), then the k-clique reliability of G exceeds that of H for values of p

near 0. For values of p near 1, the dominant term is F�p
j−�, so if F�(G) > F�(H) the

the k-clique reliability of G exceeds H for values of p near 1. �

Therefore, if there is a graph G ∈ Sn,m such that for any other graph H ∈ Sn,m,

we have that crelk(G, p) > crelk(H, p) for p ∈ (0, 1), then G must have the maximum

number of k cliques, that is, it must be most optimal for values of p near 0, and

have the maximum connectivity. This means it is the graph which can have the most

vertices non-operational and still have a Kk operational, so it is optimal for values of

p near 1.

We will begin our study by looking at least optimal 2-clique polynomials. Though

the main goal of a network is for it to be the most reliable, the study of least optimal 2-

clique reliability polynomials tells us about graphs with a most optimal independence

polynomial, which is an interesting problem in its own right.

Recall that for a graph G on n vertices and m edges, the independence polynomial

for G is

I(G, x) =
n∑

j=0

Ijx
j,
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where Ij is the number of independence sets of size j. The independence reliability

polynomial for a graph G is defined as

IRel(G, p) =
n∑

j=0

Ijp
j(1− p)n−j,

it is the probability that an independent set is operational, given that the vertices

independently operate with probability p ∈ [0, 1].

Example 4.3.2 Consider C6. The independence polynomial is

I(C6, x) = 1 + 6x+ 9x2 + 2x3, and the independence reliability polynomial is

IRel(G, p) = (1− p)6 + 6p(1− p)5 + 9p2(1− p)4 + 2p3(1− p)3

= 1− 6p2 + 6p3 + 3p4 − 6p5 + 2p6.

We will show that to maximize crel2(G, p) we want to minimize the indepen-

dence reliability polynomial, and to minimize crel2(G, p) we want to maximize the

independence reliability polynomial. We know that

(1− p)nI(G, p
1−p

) =
n∑

j=0

Ijp
j(1− p)n−j = IRel(G, p),

so this means that for p ∈ [0, 1) we have

IRel(G, p) ≤ IRel(H, p) if and only if I(G, p
1−p

) ≤ I(H, p
1−p

).

Since p ∈ [0, 1], this means

I(G, p
1−p

) ≤ I(H, p
1−p

) if and only if I(G, x) ≤ I(H, x)
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for x ∈ [0,∞). Similarly,

IRel(G, p) ≥ IRel(H, p) if and only if I(G, x) ≥ I(H, x)

where x ∈ [0,∞).

So the question of the existence of optimal graphs for 2-clique reliability poly-

nomials becomes a question of the existence of optimal graphs for the independence

polynomial on [0,∞).

If we can find at least one graph G ∈ Sn,m such that for all H ∈ Sn,m we have

I(G, x) ≥ I(H, x) for x ∈ [0,∞), this graph has the least optimal 2-clique reliability

polynomial. To show that such a graph exists, we will be using commutative algebra.

We know that the independence complex, I2(G), is a simplicial complex whose

faces are the independent sets of G. The F -vector of I2(G) are the coefficents of the

independence polynomial. For all graphs we have F0 = 1, F1 = n and F2 =
(
n
2

)
−m.

One way to maximize the independence polynomial on [0,∞) is to find a family of

graphs such that given F1 and F2, we get the maximum possible values of Fi’s for

3 ≤ i ≤ n.

To show that there exists a graph which, given n andm, has the maximal Fi’s, 3 ≤

i ≤ n, we will look at another complex, the Stanley-Riesner complex and properties

of its F -vector. As mentioned above, we will approach this problem via commutative

algebra, so some background is necessary. A good reference for commutative algebra

and its connections to simplicial complexes is [10].

Let Q = k[x1, . . . , xn]/(x
2
1, . . . , x

2
n) be the Kruskal-Katona ring, where k is a field.

For us, the xi will be variables representing the vertices of a graph G. We will think

of the ring Q as a vector space, where the monomials of Q form a basis for the vector

space. Clearly the monomials in Q are square-free. Each set of degree d monomials
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in our ring Q is also a vector space, called the d-th graded component of Q, denoted

Qd [45].

An ideal I of a ring R is a subring of R that is closed under left and right

multiplication of elements of R. Given an ideal I of Q, the d-th graded component

of I is the vector space Id = Qd ∩ I [45]. This vector space contains 0 and all the

homogeneous polynomials of degree d which are in the ideal, I. The Hilbert function

of a homogeneous ideal I is H(I, d) = dimkId.

Example 4.3.3 Consider the graph C5 with vertices x1, x2, x3, x4, x5 and the Kruskal-

Katona ring Q = k[x1, x2, x3, x4, x5]/(x
2
1, x

2
2, x

2
3, x

2
4, x

2
5). Also, consider the ideal, I of

Q generated by the edges of G, I = (x1x2, x2x3, x3x4, x4x5, x1x5). I2 = Q2 ∩ I and

the dimension of this vector space is 5. I3 = Q3 ∩ I and the dimension of this vector

space is 10, I4 = Q4 ∩ I and the dimension of this vector space is 5, and I5 = Q5 ∩ I

and the dimension of this vector space is 1.

As mentioned above, to find a family of graphs that have the largest possible Fi’s

in the F -vectors of the independence complex, we will consider another simplicial

complex, the Stanley-Reisner complex.

The Stanley-Reisner complex of an ideal, I of a ring R is the complex whose faces

are the square-free monomials of R not in I [72].

Example 4.3.4 Consider the previous example. The Stanley-Reisner complex of

I = (x1x2, x2x3, x3x4, x4x5, x1x5) of Q is Δ = {x1x3, x1x4, x2x4, x2x5, x3x5}.

In our study of optimality, we will look at ideals with a particular property.

Definition 4.3.5 [44] Let I be an ideal of R and (Id) the ideal generated by the d-th

graded component of I. We call (Id) Gotzmann (that is, the d-th graded component

of I is Gotzmann) if for all other ideals J of R with H((Id), d) = H(J, d) we have
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that H((Id), d+ 1) ≤ H(J, d + 1). If each graded component of I is Gotzmann, then

we call I a Gotzmann ideal.

Example 4.3.6 Consider yet again the examples above regarding C5.

The ideal I = (x1x2, x2x3, x3x4, x4x5, x1x5) of Q is not Gotzmann since the ideal

J = (x1x2, x1x3, x1x4, x1x5, x2x3) of Q is such that H((I3), 3) = H(J, 3) = 5, but

H(J, 4) = 8 < H((I3), 4) = 10.

We are considering the Kruskal-Katona ring, Q, which is square-free. Let I be

an ideal of Q. If a monomial is in the d-th graded component of Q, but not in the

d-th graded component of I, then it must be in the Stanley-Reisner complex. That

is, given an ideal I of Q, any monomial in Q is either in I or in the Stanley-Reisner

complex of I. Gotzmann ideals are ideals with the smallest Hilbert function growth,

meaning if an ideal, (Id) of a ring R is Gotzmann, their Hilbert function is smaller

than the other homogeneous ideals of R with the same dimension in degree d. So, if

(Id) is Gotzmann, for any other homogeneous ideal J ⊆ R, if H((Id), d) = H(J, d)

then H((Id), k) ≤ H(J, k) for all k ≥ d [46].

So an ideal of Q which is Gotzmann has the smallest Hilbert function for each d-th

graded component, and thus for each d, then the Fi of the Stanley-Riesner complex

are the largest of the other homogeneous ideals of Q. We can use this to find a family

of graphs for which the independence complex has the largest possible entries in the

F -vector, and hence would have the least optimal 2-clique reliability polynomials.

For a simple graph G with vertex set {x1, x2, . . . , xn}, the edge ideal of G is

IG = (xixj | {xi, xj} ∈ E(G)). We will use the edge ideal in the Kruskal-Katona

ring to show the existence of a graph that has the least optimal 2-clique reliability

polynomial.
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Example 4.3.7 Consider the graph G which is a 5 cycle with a chord, so the edge

set of G is {x1x2, x2x3, x3, x4, x4x5, x5x1, x1x3}. The edge ideal of this graph is

IG = (x1x2, x2x3, x3x4, x4x5, x5x1, x1x3) ⊆ k[x1, x2, x3, x4, x5].

If a monomial of Q, that is a product of vertices of G, is not in IG then that set of

vertices cannot induce an edge in G, therefore it is an independent set. This means

that the Stanely-Reisner complex of our edge ideal in the Kruskal-Katona ring is the

independence complex of our graph G. If we can show that the edge ideal of a graph

is Gotzmann in Q, then this means that each Fi, i ≥ 0, for the independence complex

has the largest entries in the F -vector when compared to any other graph of order n

and size m and thus our graph has an independence polynomial that is most optimal

for Sn,m. We will use some facts about ideals which are known to be Gotzmann in

the Kruskal-Katona ring.

Definition 4.3.8 [63] Let I be an ideal in a ring R with u and v being monomials

of the same degree, with v in I. Then I is a lexicographic ideal if when u >lex v we

have that u is also in I.

It is known that lexicographic ideals are Gotzmann in the polynomial ring and

the Kruskal-Katona ring [59]. We assume the ordering x1 > x2 > . . . > xn, where

the xi represent the vertices of G. We will show that the graph on n vertices and m

edges, with edges added lexicographically, has an edge ideal that is lexicographic and

hence Gotzmann in the Kruskal-Katona ring.

Theorem 4.3.9 Let G be a graph of size m with vertex set {x1, x2, . . . , xn}, whose

edges are added in lexicographic order. Then the edge ideal IG of G in the Kruskal-

Katona ring is a lexicographic ideal and hence Gotzmann.

Proof. Let G be a graph of size m and order n, with vertices {x1, x2, . . . , xn},

whose edges are added in lexicographic order. Let Q be the Kruskal-Katona ring,
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Q =k[x1, . . . , xn]/(x
2
1, . . . , x

2
n) and IG the edge ideal of G. Let u and v be monomials

of Q of degree d, with u ∈ IG. Suppose that v >lex u.

First assume d = 2. Let u = xixj, i < j. Since v >lex u if v = xixk, k < j, this

implies that v is in our edge ideal since v is an edge of G. The other option is that

v = xlxs, where l < i which again implies that v ∈ IG, since v would be an edge of

G, since edges are added in lexicographic order.

Now assume d > 2. Suppose that v >lex u, however, a generator of IG, that is, an

edge of G, does not divide v. Then this means that the vertices of G which divide v,

form an independent set of G. Since we have added our edges in lexicographic order,

then this would imply that u >lex v, which is a contradiction thus v is in our edge

ideal and IG is a lexicographic ideal, so IG is a Gotzmann ideal in Q. �

�

�

�

�

�

Figure 4.6: Example of a graph with edges added lexicographically using the vertex
ordering 1 > 2 > 3 > 4

For m ≤ n − 1 the graphs that are formed by adding edges in lexicographic

order are K1,m with possible isolated vertices. These were shown to be Gotzmann

edge ideals in the polynomial ring (and in the Kruskal-Katona ring) in [46]. For

m > n − 1 we start with a K1,n−1 and the additional edges added lexicographically

(see Figure 4.6). For these graphs, we know for given n vertices and m edges, so given

F1 and F2, that each Fi, 3 ≤ i ≤ n is maximal, since their edge ideals are Gotzmann

in the Kruskal-Katona ring and thus have smallest Hilbert functions in each graded

component of Q. This gives the following result.
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Theorem 4.3.10 A graph with the least optimal 2-clique reliability polynomial exists.

For m ≤ n− 1 the least optimal graph is a K1,m , possibly with isolated vertices, and

for n− 1 < m ≤
(
n
2

)
the least optimal graph is a K1,n−1, with additional edges added

lexicographically.

This also provides a result regarding most optimal independence polynomials.

Corollary 4.3.11 A graph with the most optimal independence polynomial exists.

For m ≤ n− 1 the most optimal graph is a K1,m, possibly with isolated vertices, and

for n− 1 < m ≤
(
n
2

)
the most optimal graph is a K1,n−1, with additional edges added

lexicographically.

When looking for least optimal k-clique reliability polynomials for k > 2, the

technique used for k = 2 will not work. This is because the nice thing about the

case k = 2 is that we knew for a given n and m how many faces of size 1 and size 2

our independence (Stanly-Reisner) complex would have, but this is not the case for

k > 2.

For values of k > 2, if m is such that a subgraph of a Turan graph T (n, k− 1), (a

complete (k − 1)-partite graph) can be made, then this graph has the least optimal

k-clique reliability polynomial, as crelk(T (n, k − 1), p) ≡ 0.

We will now focus our attention to most optimal k-clique reliability polynomi-

als. We start by looking at the existence of graphs with the most optimal 2-clique

reliability polynomial. This corresponds to finding a graph with the least optimal

independence polynomial. For any graph G on n vertices and m edges, we know that

the faces of the independence complex is such that F0 = 1, F1 = n, F2 =
(
n
2

)
− m.

So, if we have a graph that has no independent sets of size 3 then the independence

polynomial is 1+nx+(
(
n
2

)
−m)x2. When a graph G with m edges has independence

number 2, we know that adding edges to G decreases F2 by 1 for each additional

edge and that this graph has an independence complex with the smallest possible
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Fi’s, given n and m. This means that we would like to know what is the least num-

ber, ml, of edges so that there exists a graph on ml edges that does not have an

independence set of size 3 and what such a graph looks like.

Let G be a graph on n vertices. Suppose we have no independence sets of size

3. This means the vertex set of G can be partitioned into two cliques, one of size n1

and one of size n2. Assume n1 ≥ n2, so n1 = n2 + r where r ≥ 0.

ml =

(
n1

2

)
+

(
n2

2

)
= n2

2 + (r − 1)n2 +
r(r − 1)

2
.

We want to minimize ml, so we would like r = 0 or r = 1. If r = 0 then

ml = n2
2 − n2, and if r = 1 then ml = n2

2. We know that n = 2n2 + r, so if n is

divisible by 2 (r = 0) then G is 2Kn2 , and if n is not divisible by 2 (r = 1) then G is

Kn2 ∪Kn2+1, with edges added as needed to achieve m edges.

Overall, what all this means is that for a given n ≥ 2, n = 2d+ r, r ∈ {0, 1}, we

have that if r = 0 for m ≥ d2 − d, the graph with the least optimal independence

polynomial is 2Kd with edges added as needed to achieve m edges. If r = 1 for

m ≥ d2, the graph with the least optimal independence polynomial is Kd ∪Kd+1.

To find other families of least optimal independence polynomials (that is, most

optimal 2-clique reliability polynomials) we will look at a graph operation which can

be done to increase the value of the independence polynomial on [0,∞). Let G1 be

a graph which consists of a subgraph G (which may have more than one component)

and a connected component, which is K2 on vertices y, z. Let v be a vertex of G.

�

�
�

� ���

�

�

�
��

Figure 4.7: Graphs for Lemma 4.3.12. Let H1 be the graph G1 ∪ {z, y} and H2 be
the graph G2 ∪ {z, y}
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Consider the graphs in Figure 4.7. We will show that shifting an edge from a K2

to elsewhere in the graph will increase the independence polynomial.

Lemma 4.3.12 For the graphs in Figure 4.7, we have I(H1, x) ≥ I(H2, x) on [0,∞).

Proof. Note that

I(H1, x) = (1 + 2x+ x2)I(G1, x)

= (1 + 2x+ x2)(I(G1 − v, x) + xI(G1 − [v], x))

= (1 + 2x+ x2)(I(G2 − v, x) + xI(G2 − [v]− w, x))

and

I(H2, x) = (1 + 2x)(I(G2 − v, x) + xI(G2 − [v], x))

We also have that

I(G1 − [v], x) ≤ (1 + x)I(G2 − [v]− w, x) (4.1)

since every independent set of G2 − [v]−w is an independent set of G1 − [v], but we

could also put w in each set to obtain a new independent set.

Consider F (x) = I(H1, x)− I(H2, x). Using the inequality (4.1) we can see that,

F (x) = (1 + 2x)I(G2 − v, x) + x2I(G2 − v, x) +

x(1 + 2x+ x2)I(G2 − [v]− w, x)− (1 + 2x)I(G2 − v, x)

−x(1 + 2x)I(G2 − [v], x)

= x2I(G2 − v, x) + x(1 + x)I(G2 − [v]− w, x)

+x2(1 + x)I(G2 − [v]− w, x)− x(1 + 2x)I(G2 − [v], x)

≥ x2I(G2 − v, x) + xI(G2 − [v], x)
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+x2I(G2 − [v], x)− xI(G2 − [v], x)− 2x2I(G2 − [v], x)

= x2I(G2 − v, x)− x2I(G2 − [v], x)

and since I(G2 − v, x) ≥ I(G2 − [v], x), we have F (x) ≥ 0, so I(H1, x) ≥ I(H2, x). �

Thus, ifm ≤ n−1, then the graph with the least optimal independence polynomial

is the disjoint union of mK2 and (n− 2m)K1. This gives us the following result.

Theorem 4.3.13 Given n, if m ≤ n
2
, the graph with the most optimal 2-clique reli-

ability polynomial consists of the disjoint union of mK2 and (n− 2m)K1.

This also provides a result regarding least optimal independence polynomial.

Corollary 4.3.14 Given n if m ≤ n
2
, the graph with the least optimal independence

polynomial consists of the disjoint union of mK2 and (n− 2m)K1.

We will now look at most optimal k-clique reliability polynomials for k > 2. We

have seen in Lemma 4.3.1 that if a most optimal graph exists, then it must have

the maximum number of k-cliques, since it will be most optimal for values of p near

0. In [19] it was shown that for a graph on n vertices and m =
(
d
2

)
+ r edges, the

maximum number of cliques of size k, k ≥ 3 is
(
d
k

)
+
(

r
k−1

)
. A graph which achieves

such bounds is the graph which consists of a Kd and a vertex, x, with N(x) ⊆ V (Kd)

and n− d− 1 isolated vertices (see Figure 4.8). This graph is not unique for values

of r < k− 1, since the addition of fewer than k− 1 edges will not produce another k-

clique, but for values of r ≥ k−1, this graph is unique, since to obtain the maximum

number of k-cliques, the edges will have to be added to the same vertex.

Theorem 4.3.15 Given n and m =
(
d
2

)
+ r, 0 ≤ r ≤ d − 1, if a graph with a most

optimal k-clique reliability polynomial exists, then for 0 ≤ r ≤ k − 2 it is the graph

which consists of a Kd, and the remaining edges added as needed. If k − 1 ≤ r ≤
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Figure 4.8: The graph with n = 8, m = 13 that has the most optimal 3 and 4-clique
reliability polynomial.

d − 1 then it is the graph which is Kd with a vertex v of degree r, N(v) ⊆ Kd and

(n− d− 1)K1 (see Figure 4.8).

4.4 Analytic Properties of k-Clique Reliability Polynomials

For all terminal reliability, we studied several analytic properties, namely thresholds,

internal fixed points, inflection points, average reliability, and the location of the

roots. We will now extend several of the results obtained in that section to k-clique

reliability.

Recall, when looking at all terminal reliability we constructed graphs G[H] which

replaced each edge of G with a copy of H. We can do a similar type of operation on

the vertices of G. That is we can replace each vertex of G by a copy of H to obtain

the graph G×H. This is the lexicographic product of G and H.

Figure 4.9: The lexicographic product of P3 and C3, P3 × C3.

Definition 4.4.1 Let G and H be graphs. The lexicographic product, G × H of G

and H is the graph whose vertex set is the cartesian product of V (G) and V (H) and
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is such that vertices (u, v) and (x, y) are adjacent if and only if u is adjacent to x in

G or u = x and v is adjacent to y in H.

We will be using complete graphs to extend some of the analytic property results

from the all terminal reliability polynomial to the k-clique reliability polynomial. The

k-clique reliability of the graph Kk+1 is

crelk(Kk+1, p) = (k + 1)pk(1− p) + pk+1

= (−k)pk+1 + (k + 1)pk.

The graph Kk+1 ×Kn has the k-clique reliability polynomial of

crelk(Kk+1 ×Kn, p) = (−k)(1− (1− p)n)k+1 + (k + 1)(1− (1− p)n)k,

since a subgraph of Kk+1 × Kn, which contains at least a k-clique, comes from a

subgraph of Kk+1 (which contains a k-clique), where each operational vertex has at

least one of the vertices in Kn operational.

From this, we can see that

crelmk−1(Kmk ×Kkj, p) = (1−mk)(1− (1− p)kj)m
k

+mk(1− (1− p)kj)m
k−1.

Letting 1 − p = q we obtain the same reliability polynomial as that of the cycle

bundles, namely (1−mk)(1− qkj)m
k
+mk(1− qkj)m

k−1. This gives us the following

results

Theorem 4.4.2 Let Fm,j = {Kmk ×Kkj | k ≥ 1} and let t = 1−
(

1
m

)1/j
. Then

• Fm,j is a t-threshold family of graphs and the set of all such t is dense in [0, 1].

• Fm,j has an internal fixed point tending to t and hence the internal fixed points

of k-clique reliability polynomials over all k are dense in [0, 1].
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• Fm,j has an inflection point approaching t and hence their inflection points

ranging over all m and k are dense in [0, 1].

• The integrals,
∫ 1

0
crelmk−1(Kmk ×Kkj, p) dp approaches t and hence the average

reliabilities of this family is dense in [0, 1]

We will now look at another analytic property of k-clique reliability polynomials,

the location of the roots. Even for a very simple family of graphs, the complete

graphs, the location of the roots is nontrivial.

Recall that

crelk(G, p) = (1− p)ncgenk(G, p
1−p

).

It follows that the roots of the k-clique reliability polynomial are the roots of the

k-clique generating polynomial, under the linear fractional transformation g(z) =

z/(1 + z). Note that the circle |z + 1| = R under g(z) is transformed into the circle

|z − 1| = 1/R, with the insides and outsides flipped.

Most often, the roots of graph polynomials turn out to be trivial for the simple

family of complete graphs. For example, the chromatic polynomial of Kn is
n−1∏
i=0

(x− i)

and hence it has roots at the integers 0, 1, . . . , n − 1. The independence polynomial

of Kn is 1 + nx, which has a single root at x = −1/n. The k-clique reliability of a

complete graph of order n is

1−
k−1∑
i=0

(
n

i

)
pi(1− p)n−i

and the k-clique generating polynomial of the complete graph Kn is given by

cgenk(Kn, x) = (1 + x)n −
k−1∑
i=0

(
n

i

)
xi,
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which is just the binomial expansion with the lower terms removed. The location of

the roots of the polynomial consisting of just the lower terms was studied in [49], but

we need to investigate the binomial expansion where the lower terms are truncated

from the polynomial.

Our first result is a tight annulus that contains the roots of the k-clique reliability

polynomials of complete graphs.

Theorem 4.4.3 For k ≥ 1 the roots of crelk(Kn, z) are found in the annulus 1/k ≤

|z − 1| ≤ 1, with roots occurring on the boundary.

Proof. We show an equivalent result for cgenk(Kn, z), namely that the roots of

cgenk(Kn, z) are in 1 ≤ |z + 1| ≤ k, with roots on the boundary.

For Kn, we have that

cgenk(Kn, z) = (1 + z)n −
k−1∑
i=0

(
n

i

)
zi.

Setting y = z + 1, we now consider the roots of the polynomial

f(Kn, y) = yn −
k−1∑
i=0

(
n

i

)
(y − 1)i

=
n∑

i=k

(
n

i

)
(y − 1)i

= (y − 1)k
n∑

i=k

(
n

i

)
(y − 1)i−k

= (y − 1)k
n−k∑
i=0

(
n

k + i

) i∑
j=0

(
i

j

)
(−1)i−jyj.

As (y − 1)k clearly gives us a root of 1, we are interested in the roots of

n−k∑
i=0

(
n

k + i

) i∑
j=0

(
i

j

)
(−1)i−jyj
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Looking at this sum, we get that the coefficient of yj is

n−k∑
i=j

(
n

k + i

)(
i

j

)
(−1)i−j.

Simplifying this in Maple yields

(
n

k + j

)
Γ(k + j + 1)Γ(n− j)

Γ(k)Γ(n+ 1)
=

(n− j − 1)!

(n− k − j)!(k − 1)!
,

which gives us that

f(Kn, y) =
(y − 1)k

(k − 1)!

n−k∑
i=0

(n− i− 1)!

(n− k − i)!
yi.

Let

g(y) =
n−k∑
i=0

aiy
i =

(k − 1)!f(Kn, y)

(y − 1)k
,

where ai =
(n−i−1)!
(n−i−k)!

.

To locate the roots of g(y), recall Theorem 3.5.3, (the Eneström-Kakeya Theorem)

which states that a polynomial
∑

bix
i with positive coefficients, bi, has its roots in

the annulus min{bi/bi+1} ≤ |z| ≤max{bi/bi+1}. Since ai
ai+1

= n−i−1
n−i−k

≥ 1 we get that

any root r of g(y) satisfies |r| ≥ 1. Also, ai/ai+1 achieves a maximum value of k when

i = n − k − 1, so the Eneström-Kakeya Theorem also gives us that |r| ≤ k. Thus

the zeros of cgenk(Kn, z) lie in the annulus 1 ≤ |z+1| ≤ k, and hence (via the linear

fractional transformation z �→ z/(z + 1)), the roots of crelk(Kn, z) lie in the annulus

1/k ≤ |z − 1| ≤ 1. When n = k + 1, cgenk(Kk+1, z) = zk(k + 1 + z), which gives us

zeros of 0 and −k − 1, which occur on the boundary (and these yield zeros of 0 and

1 + 1/k which occur on the boundary of the annulus for crelk(Kn, z)). �
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Figure 4.10: Roots of cgen2(Kn, z) for 2 ≤ n ≤ 40.

Figure 4.11: Roots of crel2(Kn, z) for 2 ≤ n ≤ 40.

Clearly, the annulus that contains the roots of the k-clique reliability polynomials

of complete graphs cannot be improved, but if we are interested in an asymptotic

result, we find that the roots approach one boundary of the annulus.

Theorem 4.4.4 For a fixed k ≥ 1 and ε > 0, the roots of crelk(Kn, z) lie in the

annulus 1− ε ≤ |z − 1| ≤ 1, provided that n is large enough.

Proof. We show, equivalently, that for a fixed positive integer k and ε > 0, the

roots of cgenk(Kn, z) lie in the disk |z + 1| = 1 + ε, provided that n is large enough.
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We have that

cgenk(Kn, z) = (1 + z)n −
k−1∑
i=0

(
n

i

)
zi.

Rouché’s theorem (see, for example, [73]) states that if two complex-valued functions

f and g are analytic inside and on some closed simple contour γ with |g(z)| < |f(z)|

for all z on γ, then f and f+g have the same number of zeros, counting multiplicities,

in γ. To make use of this theorem, let f(z) = (1+ z)n, g(z) = −
∑k−1

i=0

(
n
i

)
zi and take

γ to be the circle |z + 1| = 1 + ε.

Clearly, f(z) has all of its roots in γ so we would like to show that on γ, we have

|g(z)| < |f(z)|. First, we can see that on γ, |f(z)| = (1 + ε)n, and that

|g(z)| =
∣∣∣∣∣
k−1∑
i=0

(
n

i

)
zi

∣∣∣∣∣ ≤
k−1∑
i=0

(
n

i

)
|zi| ≤

k−1∑
i=0

(
n

i

)
(2 + ε)i.

This means that if we want |g(z)| < |f(z)| on γ then it is sufficient that

(1 + ε)n >

k−1∑
i=0

(
n

i

)
(2 + ε)i,

which is certainly true for n sufficiently large, as k is fixed. �

One may wonder whether the bounding annuli in Theorem 4.4.3 extend to all

graphs. In particular, for complete graphs the k-clique reliability polynomial has all

its roots outside |z − 1| = 1/k, so one may venture to conjecture that crelk(G, z) has

all its roots in |z− 1| ≥ 1/k, or equivalently that cgenk(G, z) for any graph G has its

roots in |z + 1| ≤ k. The next result will be used to demonstrate that this is not the

case.



172

Theorem 4.4.5 Let G and H be graphs on disjoint vertex sets. Then for disjoint

graphs G and H,

cgenk(G ∪H, z) = cgenk(G, z)(1 + z)|V (H)| + cgenk(H, z)(1 + z)|V (G)|

−cgenk(G, z)cgenk(H, z).

Proof. Since G and H are on disjoint vertex sets, in order for G ∪ H to have an

induced subgraph, which contains a clique of size k, we need either G or H to have

a clique of size k operational. Now cgenk(G, z)(1 + z)|V (H)| enumerates subsets of

vertices for which the part in G contains a k–clique, and similarly, cgenk(H, z)(1 +

z)|V (G)| enumerates subsets of vertices for which the part in H contains a k–clique.

What we have over-counted are those subsets of vertices that contain a k-clique in

both G and H, and cgenk(G, z)cgenk(H, z) enumerates those. The result now follows.

�

As a consequence of this theorem we get that

cgenk(2Kk, z) = 2(1 + z)kzk − z2k = zk(2(1 + z)k − zk)

and this has a root at 21/k

1−21/k
. Since

21/k + 22/k + . . .+ 2k/k = 21/k
(
20/k + 21/k + . . .+ 2k−1/k

)
=

21/k

21/k − 1

and 2i/k > 1 for 1 ≤ i ≤ k − 1 and 2k/k = 2, we see that 21/k

21/k−1
> k + 1. It follows

that 21/k

1−21/k
is less than −k − 1 and is therefore outside the disk |z + 1| = k. This

means that crelk(2Kk, z) has a root z that lies in |z − 1| < 1/k.

As Figure 4.12 shows, the roots of cgen2(G, z) can lie outside the disk |z+1| = 2,

but they do not appear to be that far from −3, so perhaps these roots are still
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Figure 4.12: Roots of crel2(G, z) close to z = 0 for all connected graphs on 6 vertices.

bounded in modulus. However, as the next result shows, the roots of the k-clique

reliability polynomial for any k ≥ 2 are unbounded in moduli.

Theorem 4.4.6 For k = 1, the roots of the k-clique reliability polynomials lie on the

circle |z− 1| = 1 (and in fact, the closure of their roots is this circle). For k ≥ 2, the

moduli of the roots of k-clique reliability polynomials are unbounded.

Proof. For k = 1, note that for a graph G of order n, crel1(G, p) = 1 − (1 − p)n,

which has all of its roots on the circle |z− 1| = 1 (and, moreover, over all n the roots

are dense on this circle).
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For k = 2, consider cgen2(Pn, x) where Pn is the path of order n. Now

cgen2(Pn, x) = (1 + x)n − cfree2(Pn, x),

where cfree2(Pn, x) = I(Pn, x) is the independence polynomial of G. In [26] it was

shown that we can write the independence polynomial of paths as

I(Pn, x) = β1λ
n
1 + β2λ

n
2 ,

where

λ1(x) =
1 +

√
1 + 4x

2
, λ2(x) =

1−
√
1 + 4x

2

and

β1(x) =

√
1 + 4x+ (1 + 2x)

2
√
1 + 4x

, β2(x) =

√
1 + 4x− (1 + 2x)

2
√
1 + 4x

.

It follows that

cgen2(Pn, x) = α0λ
n
0 + α1λ

n
1 + α2λ

n
2 , (4.2)

where α0 = 1, α1 = −β1, α2 = −β2, and λ0 = 1 + x.

Beraha, Kahane, and Weiss studied the limit of zeros of such functions (as arising

in recurrences); a limit of zeros of a family of polynomials {Pn} is a complex number

z for which there are sequences of integers (nk) and complex numbers (zk) such that

zk is a zero of Pnk
, and zk −→ z as k −→ 1. The theorem of Beraha, Kahane, and

Weiss (BKW Theorem) [8] (see the original for the full statement) also requires some

nondegeneracy conditions : as no αi is identically 0, and as it is clearly not the case

that λi = ωλk for any i = k and any root of unity ω, these conditions hold. The

BKW Theorem implies that the limit of zeros of (4.2) are precisely those complex

numbers z such that either
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• one of the |λi(z)| exceeds the others, and αi(z) = 0, or

• |λi(z)| = |λj(z)| > |λk| for {i, j, k} = {0, 1, 2}.

Figure 4.13: Roots of cgen2(P60, x)

Using the BKW Theorem to consider the limits of the roots of cgen2(Pn, z), we

will look at the limit of the roots when |λ1| = |λ2| > |λ0|. In [26] it was shown that

|λ1| = |λ2| precisely for z ∈ (−∞,−1/4]. Now we get limit points for the roots of

cgen2(Pn, z), by the BKW Theorem, whenever |λ1(z)| > |λ0(z)| on this interval, that

is, whenever

∣∣∣∣1 +
√
1 + 4z

2

∣∣∣∣ > |1 + z| (4.3)

for z ∈ (−∞,−1/4].
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Setting z = −r, where r ≥ 1/4, we see that 1 + 4z = 1− 4r ≤ 0. It follows that

∣∣∣∣1 +
√
1 + 4z

2

∣∣∣∣ = √
r.

Now |1 + z| = 1 − r if r ≤ 1, and is r − 1 otherwise. Thus for r ∈ [1/4, 1], (4.3) is

equivalent to 1 − r <
√
r, that is, r2 − 3r + 1 < 0; for r ≥ 1 (4.3) is equivalent to

the same inequality. As the inequality is a parabola opening upwards, we need to be

between the roots, and a small calculation shows that (4.3) on (−∞,−1/4] holds on

the interval (
−3 +

√
5

2
,−3−

√
5

2

)

(see Figure 4.13). As this interval contains −1, under the transformation z �→ z/(z+

1), there are roots of crel2(Pn, p) that have unbounded moduli. This proves the k = 2

case.

For k ≥ 3, note that Kk−2+Pn, the graph formed from the disjoint union of Kk−2

and Pn by adding in all edges between them, has

crelk(Kk−2 + Pn, p) = pk−2crel2(Pn, p)

as the k–cliques are precisely those subsets with the vertices ofKk−2 and the endpoints

of an edge of Pn (as Pn has no triangles). Thus the roots of k-clique reliability

polynomials, for k ≥ 3, contain the roots of the 2-clique reliability polynomials of

paths, so we are done by the k = 2 case. �

In addition to proving the existence of roots of arbitrarily large modulus, we can

also show that the entire complex plane is the closure of the roots cgenk(G, x), over

all k, and hence is also the closure of the roots of crelk(G, p) over all k.
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Figure 4.14: Roots of crelk(2Kk, z) for 2 ≤ k ≤ 40 close to 	(z) = −1/2

Theorem 4.4.7 The closure of the roots of crelk(G, p), over all k is the entire com-

plex plane.

Proof. We first show that the closure of the roots of cgenk(G, x) over all k is the

entire complex plane.

To begin, consider the graph Gn ×Km. Let {v1, v2, . . . , vn} be the vertices of Gn

and let Vi be the set of the m vertices of the copy of Km which replace vi in Gn×Km.

The subgraphs of Gn ×Km that contain a k-clique arise precisely from subgraphs H

of Gn that contain a k-clique by replacing each vertex vi of H by a nonempty subset

of Vi. It follows that

cgenk(Gn ×Km, x) = cgenk(Gn, (1 + x)m − 1)
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Using the lexicographic product of paths and Km and of 2Kk and Km, we will

show that the closure of

{|z + 1| : z is a root of a k-clique generating polynomial}

is [0,∞) and then proceed to show that the closure of the roots is indeed the entire

complex plane.

The graph 2Kk has the k-clique generating polynomial,

cgenk(2Kk, x) = 2(x(1 + x))k − x2k

and as Figure 4.14 shows, the roots appear to be dense along 	(z) = −1/2. Using

the BKW Theorem, we can show this to be true for cgenk(2K2, x), since α0(z) = 2,

λ0(z) = z(1+z), α1(z) = 1, λ1(z) = z2 and |λ0(z)| = |λ1(z)| when |z+1| = |z| which

is true when 	(z) = −1/2. It follows that |z + 1|, ranging over all roots of k-clique

generating polynomials, is dense in [1/2,∞).

From the proof of Theorem 4.4.6, we saw that the roots of cgenk(Pn, x) are dense

in
(
−3+

√
5

2
,−3−√

5
2

)
, so the closure of |z + 1| contains the interval [0, 1/2], and hence

the set of all |z + 1| as z ranges over the roots of cgenk(G, x) is [0,∞). We now pick

any complex number z and any ε > 0; without loss of generality, z = 1, ε < r = |z+1|

and ε < 1. We will show that there is a root w of a k-clique generating polynomial,

such that w is within ε of z.

We observe that the region consisting of all z′ whose moduli lie within ρ =

ε/
√
5r2 + 4r + 4 of r and whose arguments are within a band of size 2ρ has diameter

at most ε. To see this, rotate the region so that it lies in the first quadrant, with one

side on the positive x axis. A pair of points furthest apart have cartesian coordinates
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((r − ρ) cos ρ, (r − ρ) sin ρ) and (r + ρ, 0), with a squared distance of

((r + ρ)− (r − ρ) cos ρ)2 + ((r + ρ) sin ρ)2

≤
(
(r + ρ)− (r − ρ)

(
1− ρ2

2

))2

+ ((r + ρ)ρ)2

≤
(
2ρ+

(
(r − ρ)

ρ2

2

))2

+ ((r + ρ)ρ)2

<
(
2ρ+ rρ2

)2
+ ((r + ρ)ρ)2

≤ (2ρ+ rρ)2 + (2rρ)2

≤ ρ2
(
5r2 + 4r + 4

)
= ε2.

(We have used the fact that cos x > 1 − x2/2 for all x and sin x < x for all positive

x.) The result now follows.

We know that cgenk(Gn ×Km, z) = cgenk(G, (z + 1)m − 1), so if zm is a root of

cgenk(G, x) then (zm+1)(1/m)−1 is a root of cgenk(Gn ×Km, x), where (zm+1)(1/m)

ranges over all m–th roots of zm + 1. Set r = |z + 1| > 0. We fix m large enough so

that at least one of them–th roots of unity has an argument within ε/(
√
5r2 + 4r + 4)

of the argument of z + 1. From above, we can pick w a root of a k-clique generating

polynomial, such that |w+1|1/m is within ε/(
√
5r2 + 4r + 4) of |z+1|. One of the m–

th roots of w+1 will also have argument within ε/(
√
5r2 + 4r + 4) of the argument of

z+1. The region described is precisely the difference between two sectors mentioned

in the previous paragraph, translated, and hence z + 1 lies within ε of one of the

m–th roots of w + 1. Thus z lies within ε of one of (w + 1)(1/m) − 1, and is therefore

within ε of a root of a k-clique generating polynomial. As z and ε were arbitrary, we

conclude that the closure of the roots of the k-clique generating polynomials, over all

k, is the entire plane.
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As the image of a dense set under a continuous surjective map is dense, we con-

clude that the roots of k-clique reliability polynomials are also dense in the plane,

and we are done. �

So, as in the case of the all terminal reliability, the thresholds, inflection points,

internal fixed points and average reliability of k-clique reliability are dense in [0, 1].

Unlike all terminal reliability, we have proved that the roots of k-clique reliability

polynomials are dense in the complex plane.



Chapter 5

Conclusions

In this chapter, we will discuss some of the relationships between the various topics

looked at in this thesis and give some suggestions for further research.

5.1 All Terminal Reliability

We know that if a family of graphs G is a t-threshold family of graphs then it has an

internal fixed point approaching t. For ε > 0, we have that for t − ε we are close to

0 and for t+ ε we are near 1, so by the mean value theorem, the derivative near the

threshold can be very large. One may also expect such a family to have an inflection

point there as well. For example, we know that cycles are a 1-threshold family of

graphs, and they have an inflection point at (n− 2)/(n− 1), which approaches 1 as

n approaches infinity.

From computations on simple graphs on n ≤ 8 vertices, it appears that internal

fixed points, and inflection points often occur relatively close together, such as is

the case with graph G1 in Figure 5.1. This graph has the reliability polynomial

14p8 − 72p7 + 142p6 − 128p5 + 45p4 and has an internal fixed point at approximately

0.47949 and an inflection point at approximately 0.47929. However, inflection points

and internal fixed points can also be far apart, such as with the graphG2 in Figure 5.1,

which has reliability polynomial of 9p8 − 24p7 + 16p6; it has an inflection point at

approximately 0.78178 and an internal fixed point at 0.90225. This then raises the

question, can we have graphs with internal fixed points as far apart from all the

inflection points as desired? For families of graphs, what is the asymptotic behaviour
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of the internal fixed points and inflection points? In particular, for t-threshold families

of graphs, will they have inflection points approaching t?

� �

� �

� �

� �

Figure 5.1: The graphs G1, G2, G3, G4.

Looking at inflection points, and specifically graphs with more than 1 inflection

point, we see again that we can have 2 inflection points close together, like G3 in

Figure 5.1 with inflection points at approximately 0.81898 and 0.87866 or they can

be farther apart, like G4 in Figure 5.1, which has inflection points at approximately

0.79002 and 0.90369. Can we have a reliability polynomial whose inflection points

are as close or as far apart as desired (on (0, 1))?

These questions suggest that studying the analytic properties of the derivative of

a nonzero all terminal reliability polynomial may be an interesting topic to pursue.

The study of the derivative of the reliability polynomial is different from just studying

the analytic properties of the all terminal reliability polynomial, since if a connected

graph G has order at least 3, the derivative of the all terminal reliability polynomial
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cannot be a reliability polynomial, by the following argument.

Rel′(G, p) = mpm−1 + F1(−pm−1 + (m− 1)pm−2(1− p)) + (5.1)

F2(−2pm−2(1− p) + (m− 2)pm−3(1− p)2) + . . . (5.2)

+Fm−n+1((−)(m− n+ 1)pn−1(1− p)m−n

+(n− 1)pn−2(1− p)m−n+1

As we can see from Equation (5.1), Rel′(G, 1) = m − F1 and if the derivative is a

reliability polynomial, we’d expect Rel′(G, 1) = 1. This implies that we would need

F1 = m−1, meaning G must have exactly one bridge. We saw in Theorem 3.3.3 that

if a graph has edge connectivity 1, and has at least 3 vertices and exactly 1 bridge

then it has an inflection point in (0, 1), so the derivative is a decreasing function on

some subinterval of (0, 1). Thus it can not be a reliability polynomial.

As we saw in Chapter 2, for n ≥ 8 there is more than one value of m such that

a most optimal graph does not exist, but a characterization of the values of m for

which a given n has no most optimal graph eludes us.

Without a complete characterization of when most optimal graphs exists, we turn

to maximizing the average reliability as an alternative. Can we characterize what

graphs will have the largest average reliability? Is it the graph that is most optimal

for values of p near 0? near 1?

For the conditions studied in this thesis when n ≤ 8 it was the case that either the

graph most optimal near 1 or the graph most optimal near 0 had the largest average

reliability. Of these two graphs, the one with the smallest internal fixed point was the

graph in Sn,m with the largest average reliability. For instance, when n = 6, m = 11

the graph H1 in Figure 5.2 has an internal fixed point of approximately 0.46112 and

is most optimal for p near 0, while H2, which is most optimal for p near 1, has an

internal fixed point of approximately 0.46059, which was the smallest internal fixed
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Figure 5.2: Optimal Graphs near p = 0 and p = 1 for their families

point in S6,11. It is H2 which has the largest average reliability. Again, referring to

Figure 5.2, for n = 7, m = 15 the graph G1, which is most optimal for p near 0, has

an internal fixed point of approximately 0.40844 (smallest for S7,15), while G2, which

is most optimal for p near 1, has one at approximately 0.40954. It is G1 which has

the largest average reliability.

This may lead one to conjecture that if a most optimal graph does not exist, the

graph with the largest average reliability is either most optimal for p close to 0 or p

close to 1, and of these graphs the one with the smallest internal fixed point has the

largest average reliability. This is not the case. For n = 8 and m = 14, computations

show that a most optimal graph does not exist, and even more interestingly, the

graph with the largest average reliability is not the graph that is most optimal for

values of p near 0 and it is not the graph that is most optimal for values of p near 1.

Also, the pair n = 8 and m = 14 does not fall under the non-optimality conditions

studied in this thesis. Refer to Figure 5.3. The graph G1 is most optimal for values
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Figure 5.3: Potential graphs with large average reliability.

of p near 0 and has an internal fixed point of approximately 0.56815. The graph G2 is

most optimal for values of p near 1 and has an internal fixed point at approximately

0.56788, and lastly the graph G3 has an internal fixed point of approximately 0.56782

(which is the smallest of all graphsH ∈ S8,14) and it has the largest average reliability.

For the other n and m pairs with n ≤ 8, where there is no most optimal simple graph,

the graph with the largest average reliability is the graph H ∈ Sn,m with the smallest

internal fixed point. This may be the case since if the internal fixed point is far to

the left, then the reliability polynomial is above y = p longer than the reliability

polynomials of the other graphs and has more time to grow. In fact, for n and m

where a most optimal simple graph does exist, since we know there is a graph G

such that Rel(G, p) ≥ Rel(H, p) for all H ∈ Sn,m, by Observation 3.2.7 the internal

fixed point of G is the smallest for that given n and m. We also know that, given n

and m, a least optimal graph always exists, and this graph has the smallest average

reliability and an internal fixed point that is farthest to the right by Lemma 3.2.7.
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Conjecture 5.1.1 Let n and m be positive integers. The simple graph in Sn,m with

the largest average reliability is the graph with the smallest internal fixed point over

all graphs in Sn,m.

Another interesting observation is that for n ≤ 8 all the simple graphs that are

most optimal for p = 1/2 are also the graphs with the largest average reliability, and

thus are also the graphs with the smallest internal fixed point. This means for n

and m such that a most optimal simple graph does not exist and falls into one of

the situations covered in this thesis, then the graph that is most optimal at p = 1/2

appears to be either the graph that is most optimal for p near 0 or p near 1, depending

on which one has the smaller internal fixed point. For n and m where a most optimal

simple graph does not exist and does not fall into one of the cases covered in the

optimality section, then the graph that is most optimal at p = 1/2 does not appear

to be the one that is most optimal for p near 0 or p near 1, but is still the graph with

the smallest internal fixed point over all graphs in Sn,m.

Conjecture 5.1.2 Let G ∈ Sn,m be the graph that has the largest average reliability.

Then for any other graph H ∈ Sn,m, Rel(G, 1/2) ≥ Rel(H, 1/2) and ifp(G) ≤ ifp(H).

(n,m) Largest Average Reliability Smallest Internal Fixed Point
(6, 11) 0.5177 0.4606
(7, 15) 0.5503 0.4084
(8, 14) 0.4567 0.5678
(8, 19) 0.5661 0.3866
(8, 22) 0.6125 0.3199
(8, 23) 0.6266 0.3015

Table 5.1: The Average Reliability and Internal Fixed Points for the optimal graphs
in Figure 5.4

In Table 5.1 we can see the values for the average reliability and the internal fixed

points for the graphs in Figure 5.4. It may also be of interest to find either a graph

whose reliability polynomial has a root at −1, so by Corollary 3.5.13 there is not a
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fixed disk that contains the roots of the reliability polynomial, or to prove that there

is a fixed disk, which contains the roots of the reliability polynomial.

5.2 k-clique Reliability

When looking at the k-clique reliability and the closure of the thresholds, internal

fixed points, average reliability, and inflection points we took the union over all

k ≥ 2. It would be interesting to see if these results hold for a fixed k. Also, when

investigating the roots, we showed that the closure was the entire complex plane, but

again, we did not fix k. Therefore, finding a family of graphs for which, given a fixed

k, the roots are dense in the complex plane would be a problem to pursue.

With regards to the optimality results surrounding k-clique reliability, we have a

family of graphs which have the least optimal 2-clique reliability polynomials, but it

would be nice to further investigate least optimal graphs for k > 2. When k > 2, if

we know that a most optimal graph exists, then we know which graph it could be.

However, for k = 2, whether a most optimal graph exists or not is an open problem

which is interesting since it is related to least optimal independence polynomials on

[0,∞). It may also be interesting to note that given n and m, the complement of

the graph that has the least optimal 2-clique reliability polynomial for Sn,m is the

conjectured most optimal graph for k > 2 in Sn,(n2)−m. This seems reasonable, as the

least optimal graph for 2-clique reliability has the largest independence set, and the

complement of that set is a clique.

We could also extend the concept of k-clique reliability and the idea of a local

structure being the driving factor as to whether a network is reliable or not. Let G

and H be graphs and assume that vertices operate independently with probability

p ∈ [0, 1]. Let G be operational if at least a subgraph containing a copy of H

is operational. Denote this by RelH(G, p). When H = Kk, we have the k-clique
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reliability and if the order of H is k, then the k-clique reliability is a lower bound for

RelH(G, p), since H ⊆ Kk.

5.3 Extending Results to Other Forms of Reliability

We saw that some of the analytic results regarding all terminal reliability could be

extended to the k-clique reliability. These analytic properties can also be extended

to other notions of network reliability, such as strongly connected reliability and two-

terminal reliability to see what they say regarding the behaviour of those reliability

polynomials on the interval [0, 1].

Consider a tree having mk vertices and replace each edge {x, y} with two sets of

bundles of size kj, one set directed from x to y, the other from y to x, to obtain a

digraph. The strongly connected reliability for such a graph is Rel(T kj
mk , q) = ((1 −

qkj)m
k−1)2. Using very similar proofs as those for the cycle bundles for all terminal

reliability, we obtain the following results.

Corollary 5.3.1 The internal fixed points for strongly connected reliability polyno-

mials are dense in [0, 1].

Corollary 5.3.2 The average reliabilities for strongly connected reliability polynomi-

als are dense in [0, 1].

Corollary 5.3.3 The inflection points for strongly connected reliability polynomials

are dense in [0, 1].

Similarly, we can extend the density results to two-terminal reliability using the

graph Pn with source v0 and sink vn−1. By having mk vertices and by replacing each

edge with bundles of size kj, we obtain the reliability polynomial (1− qkj)m
k−1, and

using a proof very similar to the cycle bundles for all terminal reliability, we get the

following results.
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Corollary 5.3.4 The internal fixed points for two-terminal reliability polynomials

are dense in [0, 1].

Corollary 5.3.5 The average reliabilities for two-terminal reliability polynomials are

dense in [0, 1].

and finally,

Corollary 5.3.6 The inflection points for two-terminal reliability polynomials are

dense in [0, 1].
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Figure 5.4: Optimality Results for some graphs on n vertices and m edges. The
complements of the graphs are shown.
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Rings. J. Pure Appl. Algebra 207, pages 261–298, 2006.

[51] S. Kakeya. On the Limits of the Roots of an Algebraic Equation with Positive
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