

TEST CASES REDUCTION IN SOFTWARE PRODUCT LINE
 USING REGRESSION TESTING

by

Vivek Hari Mugunthan

Submitted in partial fulfilment of the requirements

for the degree of Master of Computer Science

at

Dalhousie University

Halifax, Nova Scotia

March 2012

© Copyright by Vivek Hari Mugunthan, 2012

ii

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the Faculty of

Graduate Studies for acceptance a thesis entitled “TEST CASES REDUCTION IN SOFTWARE

PRODUCT LINE USING REGRESSION TESTING” by Vivek Hari Mugunthan in partial fulfilment

of the requirements for the degree of Master of Computer Science.

Dated: March 28, 2012

Co-Supervisors:

Reader:

iii

DALHOUSIE UNIVERSITY

 DATE: March 28, 2012

AUTHOR: Vivek Hari Mugunthan

TITLE: TEST CASES REDUCTION IN SOFTWARE PRODUCT LINE USING

REGRESSION TESTING

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: MCSc CONVOCATION: October YEAR: 2012

Permission is herewith granted to Dalhousie University to circulate and to have copied

for non-commercial purposes, at its discretion, the above title upon the request of

individuals or institutions. I understand that my thesis will be electronically available to

the public.

The author reserves other publication rights and neither the thesis or extensive extracts

from it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted

material appearing in the thesis (other than the brief excerpts requiring only proper

acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

 Signature of Author

iv

Table of Contents

LIST OF FIGURES .. vii

ABSTRACT .. viii

LIST OF ABBREVIATIONS USED .. ix

GLOSSARY... x

CHAPTER 1: INTRODUCTION .. 1

1.1 CHALLENGES ... 2

1.2 OBJECTIVE ... 3

CHAPTER 2: LITERATURE SURVEY .. 5

2.1 SOFTWARE PRODUCT LINE TESTING .. 5

2.2 MODEL-BASED TESTING FOR SOFTWARE PRODUCT LINES ... 6

2.3 REGRESSION TESTING IN SOFTWARE PRODUCT LINE ... 8

2.4 TEST SELECTION IN SOFTWARE PRODUCT LINE ... 8

CHAPTER 3: A PROPOSED FRAMEWORK FOR SOFTWARE PRODUCT

LINE TESTING .. 11

3.1 OVERVIEW ... 11

3.2 OUTLINE .. 12

3.3 REQUIREMENT SPECIFICATION FOR A SPL .. 14

3.4 LEVEL I: MODELING SOFTWARE PRODUCT LINE USING FEATURE MODEL DIAGRAM

... 14

3.4.1 Concepts of Feature Model .. 15

3.4.2 Derivation of Specific Feature Models from the SPL 16

3.5 LEVEL II: REUSABILITY OF TEST MODELS ... 16

3.5.1 Object Model Diagram .. 17

3.5.2 State Chart diagram ... 18

3.6 LEVEL III: TEST CASE DERIVATION .. 19

3.6.1 Sequence Diagram ... 19

3.7 TEST CASE REPOSITORY .. 21

v

3.8 COMPARATOR .. 21

3.9 LEVEL IV: TEST CASE RUN AND EXECUTION ... 21

CHAPTER 4: OPERATIONS ... 22

4.1 PHASE A .. 22

4.1.1 Pure::variants .. 22

4.1.2 Rational Rhapsody ... 23

4.1.3 Procedure for Phase A ... 23

4.2 PHASE B ... 24

4.2.1 Test Conductor ... 24

4.2.2 Procedure for Phase B ... 25

4.3 PHASE C ... 26

4.3.1 IBM Clear Case ... 26

4.3.2 Procedure for Phase C... 27

4.4 PHASE D ... 29

CHAPTER 5: IMPLEMENTATION ... 30

5.1 MODELING VENDING MACHINE SPL USING FEATURE MODEL DIAGRAM 31

5.2 GENERATING OBJECT MODEL FOR THE FEATURE MODEL OF VENDING MACHINE ... 33

5.3 GENERATING STATE CHART DIAGRAM FOR COMPONENTS OF OBJECT MODEL

DIAGRAM ... 34

5.4 UNIT TESTING FOR EACH COMPONENTS OF OBJECT MODEL DIAGRAM 35

5.5 GENERATION OF SYSTEM TEST CASES BY ATG .. 37

5.6 COMPARATOR .. 37

5.6.1 Graphical Comparison .. 38

5.7 OUTPUT REPORT OF TEST CLASSIFIERS .. 39

5.7.1 Obsolete Test Cases ... 40

5.7.2 Reusable Test Cases ... 40

5.7.3 Re-testable Test Cases ... 41

CHAPTER 6: EVALUATION... 43

vi

6.1 DIFFICULTY IN ASSESSING A CORRECT SEPARATION OF THE COMMON AND PRODUCT

SPECIFICATIONS ... 43

6.2 TEST CASE REDUCTIONS ON THE VENDING MACHINE SPL .. 43

CHAPTER 7: DISCUSSION ... 45

CHAPTER 8: CONCLUSION... 48

REFERENCES .. 50

vii

LIST OF FIGURES

Figure 2-1 Model-based Testing in a SPL [2] ... 6

Figure 3-1 The proposed framework for SPL Testing .. 13

Figure 3-2 Weather Sensor Feature Model ... 15

Figure 3-3 Object diagram for Weather Sensor .. 17

Figure 3-4 State Chart Model for Weather Sensor ... 19

Figure 3-5 Sequence Diagram for Weather Sensor .. 20

Figure 4-2 Test Conductor Features [46] .. 25

Figure 4-3 Comparison window from Diffmerge ... 28

Figure 4-4 Diffmerge Report differences ... 28

Figure 5-1 Feature Model Diagram for Vending Machine SPL. 31

Figure 5-2 Deriving Product Variants... 32

Figure 5-3 Object Model Diagram for Vending Machine SPL .. 33

Figure 5-4 State Diagram for Choice panel of Vending Machine SPL 34

Figure 5-5 State chart diagram for Choice panel of ‘Simple’ Vending Machine 35

Figure 5-6 Test architecture of Vending Machine SPL ‘Choice Panel’ Component 36

Figure 5-7 Test cases of selecting water from Choice panel Component......................... 37

Figure 5-8 Snapshot of Comparator .. 38

Figure 5-9: Graphical Comparison between SPL and a product variant 39

Figure 5-10 Obsolete test case of Water Vending Machine ... 40

Figure 5-11 Reusable test case of Water Vending Machine ... 41

Figure 5-12 Re-testable Test case of Vending Machine SPL and Simple Vending

Machine... 42

viii

ABSTRACT

Application Engineering is a field where software organizations develop software

products from a predefined Software Product Line. The time and cost allotted to

come up with a new product variant is limited. Lack of systematic support in

testing leads to redundancy. Redundancy in this context can be found in test-cases

that do not contribute towards fault-detection and testing leads to an increased

testing effort. This thesis work proposes a framework to reduce the testing effort,

aimed at avoiding testing redundancy. Feature Model diagrams have been

constructed from the assumed specification requirements. These Feature Model

diagrams have been used to derive test models such as Object Model diagram and

State Chart diagram. Unit testing and System testing have been performed on test

models to obtain test cases that have been stored in the repository. Regression

testing has been applied to these test cases to classify them into Reusable, Re-

testable and Obsolete.

ix

LIST OF ABBREVIATIONS USED

SPL - Software Product Line

UML - Unified Modified Language

SysML - Systems Modeling Language

ATG - Automatic Test Generator

SUT - System Under Test

TC - Test Conductor

SCM - Software Configuration Management

x

GLOSSARY

Software Product Line - A Software Product Line (SPL) is a set of software-intensive

systems that share a common, managed set of features satisfying the specific needs of a

particular market segment or mission and that are developed from a common set of core

assets in a prescribed way.

UML (Unified Modeling Language): It is a standard notation for the modeling of real-

world objects as a first step in developing an object-oriented design methodology. Its

notation is derived from and unifies the notations of three object-oriented design and

analysis methodologies.

Regression Testing: Regression testing is performed when changes are made to existing

software; the purpose of regression testing is to provide confidence that the newly

introduced changes do not obstruct the behaviors of the existing, unchanged part of the

software.

Application Engineering in SPL: Application engineering is the phase where an

individual software product is built in accordance with the specific product requirements.

Domain Engineering in SPL: Domain engineering is the phase where the variability and

commonality of a system is identified, and a core set of reusable assets is developed.

The assets include the requirements, design model, implementation, testing and other

assets used in software development.

Variability: The variable components across the structure of Software Product Line

Variation points: the specific representations of the variability in software artefacts.

Variants: The representation of a particular instance of a variable.

Software Components: A software component is a unit of composition with

contractually specified interfaces and explicit context dependencies only. A software

component can be deployed independently and is subject to composition by third parties.

1

CHAPTER 1: INTRODUCTION

The software industry faces variety of challenges, with their main intention being to

deliver quality software to meet the requirements of the customers and clients. The

introduction of Software Development Life Cycles has aided in the development of

reliable software to a great extent but still it has been difficult to provide software that

satisfies the needs of the customer [1] [2]. The process of developing software has been

dependent on three major factors: cost, time and quality. The organizations have followed

the process of combining software that share common features but differ in their purpose.

Software Product Line has been adapted by many software organizations recently with a

view of reducing cost and time, meanwhile improving the quality of the products [3, 4,

5]. In addition to these features, Software Product Lines also ensure low cost

maintenance, mass customization, alignment and improved efficiency of the product [4]

[5]. The method of extracting commonality and variability among products seems to be

practical because organizations tend to produce families of similar systems, differentiated

by features. There also remains the potential for proactive reuse of these systems and

procedures. Software Product Lines have varied from the conventional methods of single

system development in the following two ways. First, the process of development has

been divided into two different procedures: Domain Engineering, where systems are

grouped based on their common features and Application Engineering, where individual

systems are instantiated and built. Second, the differences and variations in these systems

have been recorded and controlled [1].

Testing has been one of the most significant features of the Software Development Life

Cycle that finds faults in the software. Testing of a single system has been primarily

focused on testing the code of the system, identifying problems and rectifying those

problems; but when the concept of testing needs to be applied to a whole family of

systems, code-based testing could prove to be tedious and time-consuming. Hence,

testing can be conducted at a higher level, in addition to the code level and use this higher

level testing to decrease the redundancy among code-level tests. System models provide a

representation of the functionality of the system. Testing these models may be considered

a form of black-box testing as it performs functional tests. This method has been termed

2

‘Model-based Testing’. This method differs from the conventional testing process in that

it provides an abstract test suite from which test cases can be derived. But these test cases

cannot be used to test the actual Software Product Line in question. Equivalent test cases

that represent these abstract test cases need to be identified from the system.

Testing variability is one of the challenges in Software Product Line engineering. The

variability of a product line specifies the differences among systems to be built.

Functionality may be considered as a variant whenever it is not planned to be part of all

applications. For example, credit card payment is a variant in an eShop, because it is not

a part of all applications. There are various methods to cope with variability, but

adaptation of the test models helps in test case derivation, and representation of test

cases[2] [3].

Meanwhile, the testing procedures that apply to an individual product also apply to the

Software Product Line. It helps to identify the differences in system processes that have

developed over time. In practice, these processes are accumulated under a single

component to maintain a semantic relationship between the functions of the system. Unit

testing provides unit of code behaves as expected in the functionality of these

components. These unit tests can then be reused on different versions of the product line

component sets and individual products. System testing is that the entire system is tested

as per the requirements. Black-box type testing that is based on overall requirements

specifications, covers all combined parts of a system. In order to ensure that these

changes do not introduce new errors in the system, regression testing is performed.

Regression testing is testing software that has been modified in order to ensure that

additional bugs have not been introduced. When software is enhanced, testing is often

done only on the new features. However, adding source code to software often introduces

errors in other routines, and many of the old and stable functions must be retested along

with the new ones.

1.1 Challenges

Development of Software Product Line from each component and mass configuration of

each product variant is a complex task. Software Product Line Testing is a tedious

3

process that involves testing test cases that have been generated from the product line and

product variants that tends to evolve over time. Each product variant has to only be

developed according to customer requirements and complete testing is not required for

each product since they share common components from SPL. To test a complete

Software Product Line, it is necessary to test all the components that have been

developed at domain engineering level and also to test all the configured variants

developed using those components at application engineering level. This is not an easy

task as it involves keeping track of each and every component change. To do this, a

certain selection process is helps to extract only specific test cases to test the variants.

All the possible product variants and its components may evolve with time and this

number may grow over a period of time. So, tracking all the variation points distributed

all over the product line and testing them becomes more complex and so it requires more

unit and system level testing. Since components may also tend to evolve from time to

time, unit testing helps to keep track of those components.

Each product is derived from the same product line specification and this gives us

opportunity in locating the redundancy of features that would help reduce the number of

test cases. The research question here is: ‘How to reduce redundant testing in Software

Product Line?’ In conjunction with the above mentioned challenge, there also exists an

unanswered question: How to classify and reduce those redundant test cases from large

pool of test case suite for a Software Product Line. Test cases are derived from the

existing test model which helps to reuse those models in each product variant. The

regression testing approach helps to not only select the test cases from a test suite, but

also to reduce the number of test cases by identifying redundant test cases without

reducing the efficiency of the product line. An effective test selection strategy may help

to avoid the redundant testing activities and to explore the reusable testing scenarios.

Various selection strategies have been studied and compared to determine the right

technique that is more appropriate for the current situation.

1.2 Objective

The main objective of this work is to propose a framework and thereby validate using a

Vending Machine SPL. This thesis work uses regression testing selection method to

4

reduce the testing effort by extracting obsolete, reusable, and re-testable test cases from a

repository of test cases for a Software Product Line. The test selection method has been

adapted only to identify those redundant test cases.

5

CHAPTER 2: LITERATURE SURVEY

Software Product Line Testing is a wide field for researchers to come up with new

methods and approaches to reduce the testing effort with respect to both time and cost.

Efficient selective testing approaches helps in developing a Software Product Line in

many software industries to reduce the development time for product variants by reusing

their components. Identifying the redundant test cases helps to reduce the testing effort in

developing product variants in Software Product Line.

2.1 Software Product Line Testing

A Software Product Line can be defined as a set of software products holding a common

platform [4]. A set of products can be developed from this common structure using its

set of generic product components [5]. The process of developing the platform is named

domain engineering, and the process of deriving specific products from the platform is

named application engineering [5] [6]. Also, domain testing and application testing, are

performed. The variable components across the structure of Software Product Line are

called Variability and the specific representations of the variability in software artefacts

are called variation points, while the representation of a particular instance of a variable

characteristic is called a variant [4, 5, 6].

The main objective of testing approaches for single applications is to write tests that

reveal any faults in the corresponding applications. Many SPL based testing methods are

adapted from strategies of single system based application testing [6] [7]. But, Software

Product Line testing differs from testing single applications in the methods used to create,

manage and reuse those testing assets.

McGregor created a testing process [8] using the specification requirements of core assets

and application of a Software Product Line. This testing strategy completely describes the

management of test assets for the test specification developed within a SPL process.

McGregor faced many problems in Software Product Line testing on reusing the generic

test assets and results, also selecting the variants that need to be tested from large pool of

variants [9] [10]. In order to reduce the test effort, McGregor proposes a combinatorial

test design where pairwise combinations of variants are systematically selected to be

6

tested instead of all possible combinations [9]. His testing strategies in the Software

Product Line reduce the cost and time in generating and maintaining the usage of

reusable test assets across many product variants. McGregor’s was based on UML

designing for SPL and selecting only the appropriate variants that are needed to be tested.

2.2 Model-based Testing for Software Product Lines

Model-based Testing is software testing in which test cases are generated in whole or in

part from a model that describes some (usually functional) aspects of the system under

test (SUT) [11, 12, 13].

Figure 2-1 Model-based Testing in a SPL [2]

Model-based testing can be performed in domain engineering as well as in application

engineering. It is conducted in domain engineering for two reasons. First, the domain test

model and the test cases are used to facilitate an early validation of the domain

requirements. Second, the test cases are created for reuse in application engineering.

There are several advantages of Model-based testing such as test cases can written in

systematic order, e.g. stopping rules and can be used repeatedly [11]. Model-based

Testing can be used easily for automated test case generation which is very useful in

large software applications [12] [13]. The test models are created by test engineers to

validate the specification requirements of the client. Defects in requirements can be

detected during the development of the test model, which is cheaper than correcting them

7

in later development phases. These benefits can be realized in Software Product Line

engineering by adapting Model-based testing [14]. It also helps to keep track of code

based creation of test cases since all the changes in models may not be reflected in the

attributes of the corresponding code. This may lead to many serious errors in the

Software Product Line Testing.

Hartman et al. presented a Model-based testing approach on UML design testing tools

and it was adapted by major Model-based Software Product Line researches [13, 14, 15].

The derivation of test cases for domain engineering from Model-based testing are

represented in use cases, state chart and class diagram which depict the variability in the

test cases [16]. These derivations of models are not enough to describe all the

specification from the client and Feature Model diagrams helps to describe the depth of

requirements. Also, many researches [16, 17, 18] have been proposed and evaluated on

designing test automation software which is based on correspondence of variability and

commonality in a Software Product Line and its product variants. However, adaption of

test automation throughout SPL reduces the testing effort; it is susceptible to errors that

can impact testing process due to traceability of all test cases and it can be avoided by

tracking them with the specification requirements of the clients.

Condron proposed a strategy [19] to generate all test cases in Model-based Software

Product Line Testing using a combination of test automation frameworks from different

locations of testing assets. Two algorithms [20] [21] have been proposed and

implemented to automatically generate product variant test cases from SPL requirements,

expressed in UML design. These proposed techniques were only described on selecting

test variants from large pool of testing variants. Most of these researches were only

concentrated on modeling product variants rather than test cases. So, methods to model

and classify test cases that can reduce the testing effort are required.

Another approach named ScenTED [22] has the detailed analysis of test case generation

from UML models. A few research studies [21, 22, 23] in Software Product Line on

Model-based Testing were using diagrams, stereotypes and tagged values from UML

notations which were illustrated through experimental results. Kang et al. proposed yet

8

another process [23] based on UML use cases describing variability and commonality.

Dueñas et al. proposed another approach [24], based on the UML testing profile. These

methods were based on building a testing profile using only use cases. It is useful to

derive the test cases with more UML diagrams such as State Chart Diagrams, Object

Model diagrams and Sequence diagrams.

2.3 Regression Testing in Software Product Line

Emelie Engström states “Regression testing is not an isolated one-off activity, but rather

an activity of varying scope and preconditions, strongly dependent on the context in

which it is applied” [25]. There exist techniques for regression test selection for single

applications that can be easily adapted on any context of testing process. These

approaches have been implemented in Software Product Line Testing to reduce the

testing effort considering user acceptance in the end. By focusing the testing on changes

to the system and re-executes past tests to ensure that recent changes haven't broken other

parts that the code was _not_ changed, by definition. Regression testing aims at verifying

that previously working software still works after a change [25]. Since many variants

derived from the common platform and testing to each product with respect to variants is

not an easy task.

In order to test the complete product line, all generic components have to be tested for all

the products. A major challenge in Software Product Line testing is that a large number

of test cases will be stored for both product line and product variants [25] [26]. Such

testing throughout the product line is infeasible and a test selection strategy is required.

The variants that are derived from the Software Product Line are closely related and large

amount of testing can be saved and removed by identifying the redundant test cases [26].

Recent research studies have considered the challenge to evaluate possible approaches

aiming to minimize the amount of redundant testing in Software Product Line [25, 26, 27,

28]. The regression test selection approach can be adapted to minimize those redundant

test cases from large pool of test cases.

2.4 Test Selection in Software Product Line

Several techniques for regression test selection are proposed and evaluated empirically by

researchers and have also been used for the Software Product Line context. The adoption

9

of a regression test selection technique is useful in many scenarios of Software Product

Line testing. It selects a set of test cases from existing test suites to test the SPL or its

product variants, avoiding the execution of all test cases [26] [27]. However, extraction of

these test cases may lead to error due to reduction of the test case that is required to find

the fault. The classification of test cases may help to select the test case that can reduce

and reuse effectively. For example, in one Microsoft Product Line, the reduction of one

test case may save testing resources such as cost and time all over the product line or its

one product variant [27]. Also, the test selection technique is only justifiable when the

cost to select test cases is less than running the entire test suite.

In this sense, taking advantage of regression test selection methods, selecting and

classifying test cases helps to reduce testing effort. Research and empirical studies have

been doing regression testing in Software Product Line since 1980 [28, 29, 30]. The main

focus has been on ‘how to select tests based on information about changes in the system

since the latest tested version’ [28]. However, test case selection can be adapted from

single application and needs to be used in SPL with proper methods without reducing its

efficiency. The prioritization, selection and classification of test cases in a regression test

suite helps to reduce the testing effort [20] [31]. To bring structure to the topics,

researchers have typically divided the field of regression testing into test selection,

modification identification, test execution, and test suite maintenance. This review is

focused on test selection techniques for regression testing.

Regression test selection strategies proposed in the literature are not easily applicable in

the product line context [25, 26, 27, 28]. The research strategies discussed above have

mostly concentrated on applying regression testing for a single system. Paulo Anselmoda

et al, came up with an alternative [26] to apply regression testing approach to the entire

Software Product Line and its variants. His work was aimed at identifying reusable test

cases, significant test cases and prioritizing them. This way of identifying reusable test

cases reduced the testing effort considerably. Sebastian Oster et al, proposed and

implemented a tool [32] called Mosopolite, pairwise configuration selection component

on the basis of a Feature Model. This component implements a 100% pairwise interaction

and it uses flattening algorithm. This tool can also be used as plugin in any testing tool

10

while constructing Feature Model diagrams and the product variants that have to be

tested can be reduced. This method helped to keep track of changes in the Model-based

design and ensure its proper working even after the changes were introduced. Such a

framework methodology is required to avoid redundant testing.

11

CHAPTER 3: A PROPOSED FRAMEWORK FOR SOFTWARE

PRODUCT LINE TESTING

The goal of our research is to improve the control of the testing and reduce the amount of

redundant testing in the product line context by applying regression test selection

strategies [25] [26]. Regression testing is highly inviting in the field of SPL since each

product derived from the source and act as different variants [34]. By making use of this

advantage, regression test selection methods can be used to select sets of efficient test

cases that can reduce the testing effort. The test cases for Regression Test Selection are

categorized into three different types as follows [25, 26, 27]

 Reusable Tests: These test cases are used for testing an unmodified portion of the

requirements and that need to be rerun for regression testing.

 Re-testable Tests: A test case that should be rerun as they represent the modified

version in the model and separates those test cases that need not to be rerun for

regression testing.

 Obsolete Tests: A test case that can be ignored in the newer version of the SPL, as it

has become invalid in the context. Classification of tests cases as obsolete means that

they need not be either re-tested or reused.

3.1 Overview

The adaption of Model-based Testing in this proposed framework helps to reduce the

testing effort in SPL since the code based creation would cost more time and money. The

model diagrams such as Feature Model, State chart, Object Model and sequence diagrams

have been used throughout this proposed approach by considering their various

advantages [35]. Software Product Lines are constructed using Feature Models from the

specification obtained from the consumers and their product variants are derived using

the same model. These Feature Models provide a method for commonalities and

variabilities within the SPL.

Each and every product variant is also represented in the Feature Model. Once we have

common and variable features derived from the SPL, corresponding Object Models and

state diagrams can be extracted. An Object Model provides a structural view by each

class/component and it helps to understand the structure and its relationship among

12

different features of a SPL and its variants. A State Chart model gives the behavior view

of each component obtained from the Object Model. These test models can be reused

among SPL and product variants.

Unit testing provides a set of test cases for each component from the Object Model

diagram. Test cases scenarios are obtained from the state chart model for the system

under test. Each test case has been represented using sequence diagram, which depicts the

object interaction in time sequence. Unit Test cases and Test case scenarios are grouped

for SPL and product variants and they are stored in a repository. Regression testing is

performed by comparing the derived SPL test cases with its product variants. These test

cases are categorized into re-testable, obsolete and reusable test cases. The obtained test

suite for each product is then executed through the test run.

3.2 Outline

Figure 3-1 describes complete framework of the proposed approach for testing a Software

Product Line. The procedure has been represented as Figure segregated into four different

levels and four phases describing the complete framework. Level I explain how the

Feature Model for a Product Line is created from the specification and each product

variants are derived. Level II, describes the reusability of test models between SPL and

product variants. Level III and IV deals with test case extraction and derivation from the

test models. The four phases represent the functionality of the framework as follows.

13

Figure 3-1 The proposed framework for SPL Testing

 In Phase A, a Feature Model is used to model the commonality and variability within

the SPL and corresponding Object Model diagram and state diagrams are generated

from Feature Model.

 In Phase B, specific product Feature Models are generated from the SPL and the

Object Model and state diagram are also obtained for each product. Also, reusability

of test models takes place between SPL and variants. Unit test cases are derived for

14

each component from the Object Model diagram for the SPL and product variants.

Also, test case scenarios which are represented as sequence diagrams are derived

from the State Diagram.

 In Phase C is the comparator. It compares and stores all the unit test cases and their

scenarios derived from sequence diagram. Obsolete, Reusable and Re-testable test

cases can be obtained from the comparator are mapped to suit variant products to

construct their test suites.

 Finally in Phase D, test executions for the product are done using their corresponding

test suites.

3.3 Requirement specification for a SPL

Requirement specification includes all the definitions of commonalities and identifying

variations within the SPL. These requirements represent large reuse of components

among product line and product variants. A requirement has the product line scope as one

of its inputs–an artifact that does not exist outside the product line context. A Feature

Model for a Software Product Line has been constructed using the specification

requirements of a customer demand and corresponding Feature Models can also be

derived for each product variant [35].

3.4 Level I: Modeling Software Product Line using Feature Model Diagram

The term Feature Model was first coined by Kang in 1990 and derived the

method Feature-Oriented Domain Analysis (FODA) [36]. Then, Feature Modeling

became the key for success in developing various SPLs and still various ideas are being

proposed using this method. A Feature Model is the graphical representation of different

combinations of features and they are frequently used to describe variable and common

parts within the SPL [37]. Features are arranged in a directed cyclic graph which has

parent and child node. Feature variability is represented by the arcs and groupings of

features. There are four different types of feature groups: “mandatory", “optional",

"alternative" and “or” as part of the Feature Model combining a hierarchical

decomposition of features into sub features using different sorts of node notations [38].

The purposes of FMs are summarized as follows [36] [37].

http://en.wikipedia.org/wiki/Feature-Oriented_Domain_Analysis

15

 to describe feature commonalities and variabilities,

 to picture dependencies and constraints between features, and

 to specify permitted and forbidden combinations of features.

3.4.1 Concepts of Feature Model

The Basic concepts of Feature Model diagram have been explained using the example

Weather sensor Feature Model Figure 3-2.

Figure 3-2 Weather Sensor Feature Model

 Mandatory: A mandatory feature, as the name suggests is a feature that should

always be present in the product variants if its parent feature is included. A child

feature has mandatory relationships with its parent. For example Figure 3-2, the

feature named ‘Sensors’ is mandatory and it must be a part of all product variants.

 Optional: Optional feature may be included in the variant if its parent feature is

added to a product. For example, feature ‘Warnings’ is optional for product

instantiation to its sub features: ‘Gale’ and ‘Heat’.

 Alternative: Exactly one feature has to be chosen from many sub features if it is

an alternative feature group. For example, among the alternative features ‘Gale’

and ‘Heat’, one of them has to be chosen if ‘Warnings’ is included.

 Or: A set of child features can be selected if they have an Or option when their

parent node is selected in each product variant. For example, mandatory feature

16

in weather sensor has ‘Or’ sub features: ‘Temperature’, ‘WindSpeed’ and

‘AirPressure’. It prescribes that at least one element of the Or group has to be

selected from the sub features and it is also possible to select all the three features

within the same product.

 Require and Exclude constraints: Feature Model further describes cross-tree

dependencies between features. Feature Models always support the mutual

relationships, such as requires and mutually exclusive, in order to add more

dependencies among the features that are described in the Feature Model [38]. So,

in the above example model, a selection of the ‘Gale’ feature is only meaningful

in connection with the wind speed measurement capability. This can be modeled

by a ‘Gale’ requires ‘Wind Speed’ relationship.

3.4.2 Derivation of Specific Feature Models from the SPL

Each Feature Model for a specific product can be derived from the SPL. At Level I,

Figure 3-1 depicts the derivation of Feature Models of products 1 & 2 from the Feature

Model of the SPL. At the same level, implementation of the corresponding products has

also been done.

3.5 Level II: Reusability of Test Models

Software Product Line offers a great advantage to build families of products with well

defined and managed sets of reusable assets in different products. The test models have

been derived using tools from the Feature Models and they are maintained at the Level II

as shown in Figure 3-1. These test models are important, since they are the back bone for

deriving test cases and scenarios for each variant. Object Models and state charts

diagrams are used as test models to specify the structural and behavioral effects of the

chosen feature combination in the SPL under consideration. Mapping of Object Model

diagrams and state diagrams was also performed at the same level between SPL and

product variants. So, reusability of the SPL test model is achieved by relating the Feature

Models and test models of the product variants.

17

3.5.1 Object Model Diagram

The Object Model diagram has been chosen to create the test models for SPL and it

variants. A code based creation of SPL and deriving its product variants is always a

tedious task, a Model-based diagram is helpful to visualize their functional components.

An Object Model diagram helps to show the partial and complete structural view of a

SPL with its specific time and it clearly states different instances of the classifiers. Object

diagrams are the same as class diagrams that they use notations throughout the model.

But, the main difference between both diagrams is that the Object Model depicts the

specific instances of the classifiers and it connects those instances whereas class diagrams

make use of the actual classifiers. Object diagrams are created to identify the facts about

specific model elements and their links. The main purpose is to capture the static view of

a system at a particular moment [39]. Object Model diagrams can be created by

instantiating the classifiers in class, use-case diagrams and components.

For better understanding, here is a concrete example for Object Model diagram shown

below (Figure 3-3: weather station example). Object diagrams show instances instead of

classes. They are useful for explaining small pieces with complicated relationships,

especially recursive relationships. Each rectangle in the object diagram corresponds to a

single instance. Instance names are underlined in UML diagrams. Class or instance

names may be omitted from object diagrams as long as the diagram meaning is clear.

Figure 3-3 Object diagram for Weather Sensor

18

3.5.2 State Chart diagram

There are various merits in using State Chart diagrams in deriving test models for each

component from Object Model within the SPL. This model represents the behavioral

view of components through its graph of states and transitions. It also shows the response

of an object to external stimuli for each class or a method [40] [41]. Each state satisfies a

condition and also performs an action. They wait for each event actions and they cannot

be interrupted but, they are concurrently nested to other states. The common model

elements that state chart diagrams contain are: States, Start and end states, Transitions,

Entry, Do, and Exit actions

State diagrams are represented in a rounded rectangle with at least one section of names

which is mandatory. A list of internal actions can also be used with optional guards but,

they are not mandatory. The start and end states are the special actions but they cannot

have any arguments. A state transition is a relationship between two states that indicates

when an object can move the focus of control on to another state once certain conditions

are met. In a state chart diagram, a transition to self-element is similar to a state

transition [41]. However, it does not move the focus of control. An attached state

diagram for each participating object defines its state. Each combination of initial state

configurations defines at least one test case in the set. Figure 3-4 describes state chart

model for the weather sensor.

19

Figure 3-4 State Chart Model for Weather Sensor

3.6 Level III: Test case Derivation

Level III mainly focuses on generating Unit Test cases and test case scenarios from

Object Model diagrams and from state diagrams respectively. Each test case is

represented as a sequence diagram and describes how the main components of the system

interact to fulfill the goal of each feature. A pragmatic approach is to concentrate on

typical message sequences as modeled using the sequence diagram. Each sequence

diagram specifies single test case or set of test cases. But normally, modeled sequences

are incomplete and offer no information about time in the program’s life cycle, when the

modeled behavior will occur nor state information about participating objects. A test

based on sequence diagrams must consider the aforesaid issues.

3.6.1 Sequence Diagram

During the testing process, sequence diagrams are used to capture the actual system trace

and the possible interactions in a system. At the implementation part, they verify that all

conditions are met between specification requirements. Also, sequence diagrams can be

used to specify expected behavior (given a set of preconditions and an ordered set of

stimuli) and it represents expected output. In this research, sequence diagrams are used to

represent all test scenarios derived from different model diagrams [42] [43]. The test

cases that are generated during the test consist of sequences of parameterized actions and

events. The sequence diagrams attached to the features allow bridging a part of the gap

20

between the specification and the test cases, since they describe the expected exchanges

of messages between the requirements and the system under test.

Each object in a sequence diagram is represented in a lifeline that describes all the points

of interaction with other objects and its corresponding events [43]. The top of a sequence

diagram is a lifeline that descends vertically to represent the passage of time. The actions

and event interactions between objects and lifelines are represented in horizontal lines

with an arrow head.

To explain other alternate actions and structures, boxes are used around set of arrows.

The below Figure 3-5 describes the example sequence diagram for weather sensor.

Figure 3-5 Sequence Diagram for Weather Sensor

Unit test cases and system test scenarios have been clustered for both SPL and its product

variants [8] [9]. This allows one to easily recognize, locate and compare a specific

product variant or the entire SPL from the repository. This clustering does not affect the

individual functionality of the test cases since each of these test cases (either unit test

case or system test case) can be individually verified and compared for a product variant

21

with its SPL. For example, any component change in Product 1 can be compared against

the SPL using the unit test cases of Product 1.

3.7 Test Case Repository

An environment is required to maintain a large history of test cases. A software

configuration tool is used for this purpose of storage and a comparison among test cases

is also done here. All the test cases generated through unit and system testing are stored

in this repository. The derived test cases that should be optimized are maintained as a set

of sequence diagram.

3.8 Comparator

A regression test selection method is used to extract all the redundant, re-testable and

reusable test cases by comparing the test cases using a comparator. The comparator finds

the element-level differences, attribute-level differences, diagram differences and

code-level differences. Both unit and system test cases that directly traverse the changed

methods and their subsequent calling methods are selected. In this same level the test

cases are sent through a comparator for detecting system level changes in the sequence

diagram. Both identical and changed test cases will be reported. All the test cases in the

repository are subject to comparison with the SPL test suite. The results are generated as

a report and different classes can also be visually seen for each test case.

3.9 Level IV: Test Case Run and Execution

The obtained different classes of test cases such as Reusable, Re-testable or Obsolete are

classified to their product variants to get corresponding test suites. These reduced sets of

test cases are used for test runs and execution of the products is done.

22

CHAPTER 4: OPERATIONS

Each Phase in the Figure performs a set of operations. These operations have been

discussed in this section. To perform these operations, various tools that are readily

available in the market have been used. A detailed description of the operations and the

tools used has been presented below.

4.1 PHASE A

The first phase begins with the Feature Model diagrams. Feature Model diagrams provide

a means of describing the structure of the SPL based on the features that they perform.

There exist many tools to provide a Feature Model diagram of the product line in

question. However, pure::variants has been used in this research work.

4.1.1 Pure::variants

Pure variants provide a set of integrated tools to assist in the development of each step of

a SPL. Pure::variants is the tool to outline and manage efficiently all parts of software

products with their components, restrictions and terms of usage. With this set of

information and with the continuous tool support throughout the entire software

configuration process valid solutions are created automatically from the features [45]. Its

open framework design provides the facility of integrating with other tools and types of

data such as requirements management systems, object-oriented modeling tools,

configuration management systems, bug tracking systems, code generators, compilers,

UML descriptions, documentation, source code, etc. [45]. It facilitates in the creation of

an infrastructure for a SPL by providing Feature Models. This serves as a representation

of the problem domain. In addition to this, pure::variants also provides a representation

for the solution domain through Family Models. To provide integral relationship between

the models in a SPL, pure::variants offers the following four roles [45]:

Domain analyst: To build and maintain the Feature Model with commonalities and

variations

Domain designer: To design a Family Model and connect it to the Feature Model

Application analyst: To explore the problem domain and provide features and additional

configuration information for the problems

23

Application developer: To generate a solution family member using the transformation

engine.

This research work only utilizes the Feature Model generation facility of pure::variants.

Once the Feature Model for the given product line has been created using pure::variants,

the next step essentially involves generating Object Models and State diagrams for the

respective SPL. Pure::variants does not by itself generate Object Models and state

models.

4.1.2 Rational Rhapsody

However, both Object Model diagram and State chart diagram can be generated using

IBM Rational Rhapsody, a modeling environment based on UML. Rational Rhapsody

can be used to create either embedded or real-time systems. It provides a method of

implementing the solution from design diagrams. It also provides the ability to analyze

and track the intended behavior of the application even during the early stages of a

product’s development cycle through UML and SysML diagrams [44]. In Rational

Rhapsody, testing can be performed as the application is being created. One need not wait

till the end of the development phase to test a product. Object diagrams, which are a

structural overview of the building blocks of a system, and the State diagrams, which

provide a visual representation of the control flow through different states of an object,

can be produced using Rational Rhapsody. To do this, IBM provides a Rational

Rhapsody plugin that can be used in pure::variants [44] [45].

To generate the respective Object Model and the State model for the given Feature

Model, one needs to map each and every component of the Feature Model to a

corresponding component in Rational Rhapsody environment. This procedure needs to be

carried out manually to ensure proper mapping of the components to their respective

objects and to visualize the control flow within various states of these objects.

4.1.3 Procedure for Phase A

The first step of Figure 3-1 essentially involves creation of Feature Models through the

specifications and requirements provided by the user. These Feature Models are

generated for a SPL using pure::variants. Once the Feature Model has been created, the

24

Rational Rhapsody plugin for pure::variants was installed. Then each and every

component, represented by a feature in pure::variants is mapped to the corresponding

component of Rational Rhapsody to provide a link based on which the Object Model and

State model can be generated. Upon successful mapping, Object Models and State

Models are created for the concerned SPL. Each Object Model contains at least one

object. These objects in turn contain State Models. Once the three models (Feature

Model, Object Model and State Model) have been created for the SPL, pure::variants

optimizes and links these models to create corresponding models for any variations of the

SPL that may result in an individual product. This method of linking Feature Models to

Object Models and consecutively to State Models allows one to create these structures for

n products based on the SPL, without having to individually link each and every

component of the product variations [44] [46]. This methods inherits the reusability

property of models and hence the term ‘Reusable test models’ in the Figure.

4.2 PHASE B

Object Models and State Chart diagrams that have been created and maintained at Phase

A will be used for generation of test cases and test scenarios at phase B. As already

discussed, these test models that are reusable between SPL and product variants, turn out

to be more helpful for reuse of test cases. IBM Rational Rhapsody plays a major role in

the creation of test case scenarios for both Unit and System Testing [46]. Though, it

cannot perform independently in generation and automation of test cases, a test conductor

add-on can be used for this purpose.

4.2.1 Test Conductor

Test Conductor is a Model-based testing environment used to debug and test object-

oriented systems in Rhapsody. It mainly supports two main features: Automatic Test

Architecture Generation and Automatic Test Case Execution. The Automatic Test

Generation Add-on (ATG) supports the feature Automatic Test Case Generation, which

is an optional one that has been integrated with test conductor. Figure 4-1 illustrates a

layout for the features of test conductor.

25

Figure 4-2 Test Conductor Features [46]

In this testing environment, test cases can be created in various forms such as sequence

diagrams, state charts, flow charts and pure code-oriented test cases, but in this case, test

cases are represented as sequence diagrams. The Rhapsody environment gives an

advantage to test a system against its requirement. The merits of using sequence diagrams

as test cases lie in the face that they provide graphical definitions, parameterized

sequence diagrams and an advanced graphical failure analysis [46].

The main advantage in using this add-on is that it provides sequence diagrams for unit

test cases and system test cases, wherein unit testing is based on graphical test definitions.

Though, Rhapsody supports several languages such as C, C++, Java and Ada, this

research makes use of C++. Also, it is easy to define and execute extensive test suites, as

well as to create complex test drivers and test monitors using Rhapsody.

4.2.2 Procedure for Phase B

From the Object Model diagrams, test architectures are created using test conductor add-

on for each class/component. Each component has a test architecture that can be used to

derive unit test cases. Test cases can be either manually or automatically created. ATG

helps to generate test cases from the test architecture that has already been created [47].

A test architecture assists in the creation of a new test package; new test context

including System Under Test (SUT) and the test component. It also provides a link

between SUT and test components. For better accuracy, partial manual creation of test

cases from user requirements and specifications has also been done. Each test case has

been represented as a sequence diagram. Similarly, system test cases were created using

both manual and automatic test case generation. These test scenarios are simultaneously

verified with their specification requirement to complete the model coverage. Finally,

26

both unit test cases and system test case scenarios have been clustered into a group for a

SPL and its product variants. These grouped test cases are then sent to the repository.

4.3 PHASE C

The obtained test cases need to be maintained, stored and accessed anytime. This

repository provides the ability to access and retrieve the required test case, be it for the

entire SPL or for a specific product variant. Then, a comparator performs regression

testing on this stored test suite to extract reusable, re-testable, and obsolete test cases.

IBM Rational Clear Case, a software configuration management tool is used for

workspace management and parallel development support for testing. Rational Clear

Case is integrated with the IBM Diffmerge tool to perform the comparison between test

cases.

4.3.1 IBM Clear Case

Software Configuration Management (SCM) is the software engineering discipline that

deals with managing changes to software. IBM Rational Clear Case is a

software configuration management system, which helps to maintain multiple variants of

evolving software systems [48]. It keeps track of different versions of software that were

built from individual programs or from multiple variant programs according to user

defined specifications. This tool helps to manage test cases among SPL and product

variants. It ensures that SPL test cases do not conflict with those of the product variants’

through simultaneous updates. This also provides Safety, Stability, Control and

Traceability among test cases derivations. IBM Rational Rhapsody and IBM Rational

Clear Case were integrated to store all the test case that has been generated through

software models [48]. This enables collaborative editing, maintaining and sharing test

cases (simple and complex) of the SPL and its variants. The test cases are kept in a secure

repository which offers features such as history, traceability, roll-back, metadata and

much more.

IBM Diffmerge is already integrated with Clear case and has been used as a comparator

to classify all the test cases that are stored in the repository [48] [49]. DiffMerge performs

graphical comparison between sequence diagrams for each test case and also consecutive

walk-through of all the differences in the test cases. It also aids the testing team in test

27

case collaboration by showing how a design has changed between model test cases and

also how these diverse test cases can be merged. It also generates report on logical

differences and graphical differences among each test case and a set of test cases.

Logical differences are model differences and source code differences. Graphical

differences are differences that are identified by graphical comparison between sequence

diagrams that do not affect the logical aspects of the test cases; for example, there might

be a difference in a line color or font, or a changed position of an action that is supposed

to be performed. IBM Diffmerge is a sub-component of Clear Case and hence can be

accessed from within the Software Configuration Management tool, Clear Case [48].

4.3.2 Procedure for Phase C

The test cases have been derived both manually and automatically using Test Conductor

and ATG add-on in Rational Rhapsody [46] [47]. Set of test cases that are derived from

each components are considered as a unit and they are managed using Clear Case. A

Rhapsody Unit is a file system representation of modeling elements such as projects,

Object Model diagrams and State Chart diagrams and they can be saved as a separate

file. These units can be generated for an entire SPL or for a product variant and they are

stored in an archive. Many test cases are generated for each component and this process

can be derivations of test cases from any of the models discussed in previous sections.

In this research work, these test cases represent derivations from sequence diagrams.

Comparisons are performed for the entire unit which may represent either the tests cases

for the entire SPL or a particular product variant or even a single unit/component of the

product. To compare two units, which represent product variations, these units are chosen

from the archive and the third unit would be the corresponding unit of the SPL. This is

done on a Diffmerge window, which has been activated from within the Clear Case tool.

The third unit of the SPL is optional, wherein two product variants can be compared

against each other.

28

Figure 4-3 Comparison window from Diffmerge

Similarly, a product variant’s unit can also be compared against the unit of a SPL. Once

this is done, Diffmerge visualises the differences that exist in these units. A left against

right kind of comparison is provided by Diffmerge [49]. For each and every test case of

product variant 1, the differences between subsequent test cases of product variant 2 can

be identified by report generated through each test case. The differences in each test

cases have been report generated as follows:

Figure 4-4 Diffmerge Report differences

29

The Output window uses the following colors to distinguish between the differences

categories [48] [49]: red denotes differences between each element, blue represents the

elements that exist only on the left hand side of comparison and gray depicts each nested

difference. A nested difference is an element without any differences, but that contains an

element with either a difference, left-side only, or right-side only element.

4.4 Phase D

Finally, the reusable, re-testable and obsolete test cases are identified through difference

reports generated using Diffmerge. The obtained classified test cases will reduce the

testing effort of a SPL and its product variants. These test suites for each product variant

were used for test runs to execute their corresponding products through code based

execution.

30

CHAPTER 5: IMPLEMENTATION

The feasibility of proposed framework has been demonstrated by implementing the

framework on Vending Machine SPL as an example. Since acquiring and validating an

industrial SPL is a laborious task, Vending Machine (in this case, a drink dispenser) has

been assumed for better understanding. This section clearly defines each and every

operation taking place at separate levels from specification till test cases are derived and

classified.

The procedure in this implementation process can be described as constructing Feature

Models from the specification requirements of a Vending Machine SPL. The test models

such as the Object Model diagram and the State Chart diagram for the Vending Machine

will be derived from a Feature Model. Corresponding test cases will be derived from

those test models and will be stored in a repository for further classification of test cases

into Obsolete, Reusable, and Re-testable.

The Vending Machine SPL has been depicted as three different product variants: Pro,

Ultra and Simple. General functionality of the Vending Machine can be explained as

follows: when a user inserts a coin and selects a drink from choice panel then the

machine delivers water, tea or soft drinks. The Vending Machine has several other

components and objects such as a Changer, a Choice Panel, a Drink Dispenser, and a

Coin Validator. Each component is interrelated and triggers other operations when an

event is performed.

The product variant Pro contains all the components that are derived from SPL. Pro can

deliver water, soft drinks or tea as customer selects from the choice panel. The Coin

Validator can accept either a $1 coin or a 50 cent coin. It also has other components such

as a Drink Dispenser and a Changer. Product variant Ultimate can only deliver soft drinks

or water from the choice panel. Similar to the Pro variant, Ultimate’s coin validator can

accept either $1 or 50 cent coins. The other components also are inherited from the SPL.

31

5.1 Modeling Vending Machine SPL using Feature Model diagram

The pure variants tool has been used to construct a Feature Model Diagram for Vending

Machine SPL from its requirement specification. This Feature Model describes the

feature commonalities and variabilities between SPL and product variants. Also, it

pictures dependencies and constraints between features. This sample model has all three

features: Changer, Choice Panel and Coin Validator. Drink Dispenser has been assumed

to be an optional feature. Choice Panel has three alternative features: Water, Tea, Soft

drinks. Also, Coin Validator has two events: ev100 and ev50 (100 and 50 cent coins).

Similarly, Changer is a mandatory feature that has two OR events: ev100 and ev50.

Figure5-2 is the Feature Model diagram for Vending Machine SPL.

Figure 5-1 Feature Model Diagram for Vending Machine SPL.

From the Sample Feature Model of Vending Machine SPL, the product variants Pro,

Ultra, and Simple has been derived. The whole Feature Models have been maintained in

the pure variants tool and corresponding product variants are selected from the SPL.

Figure5-3 is the snapshot from pure variants. It shows a certain instance in the operation

of the software or the state of the system at one time. Once the Feature Model has been

created for the SPL and its product variants, the Rational Rhapsody plugin that is

installed in pure variants can be used to derive corresponding Object Model diagrams and

state chart diagrams for the SPL and its product variants.

32

Figure 5-2 Deriving Product Variants

33

5.2 Generating Object Model for the Feature Model of Vending Machine

The Object Model diagrams are generated from Feature Model diagrams of the SPL.

Rational Rhapsody is integrated with the pure variant tool plugin, the corresponding

product Object Models are generated once product variants have been derived from the

Feature Model in Pure Variant. Figure 5-4 describes the Object Model diagram showing

the classes, objects, interfaces, and attributes in Vending Machine SPL and the static

relationships that exist between them. Similarly, Object Model Diagram for different

product variants can also be derived. These Object Models are considered to be test

models since they are the backbone for deriving unit test cases for each component in the

SPL.

Figure 5-3 Object Model Diagram for Vending Machine SPL

Object Model Diagram for Vending Machine SPL has four different components: Coin

Validator, Drink Dispenser, Choice panel and Changer, including one user class. Each

component is interrelated and it holds its respective state diagrams for object. Also, these

components are mapped to features of the Feature Model diagram for the SPL and to its

corresponding product variants. Figure 5-4 has components: Coin Validator, Drink

Dispenser, Choice panel and Changer which are already mapped with their features in

Feature Model diagram maintained in pure variants tool. Whenever there is a selection

34

change in Feature Model diagram, it is reflected in these test models of Vending Machine

SPL.

5.3 Generating State Chart Diagram for components of Object Model

Diagram

State chart diagrams are constructed for each component from Object Model diagram of

the Vending Machine. The behavior of components Coin Validator, Drink Dispenser,

Choice panel and Changer was captured through its state and transition properties of the

state diagram.

Figure 5-4 State Diagram for Choice panel of Vending Machine SPL

Figure 5-5 describes state chart diagram of the choice panel component. States

represented by Water_selected, Soft_selected and Tea_selected in the diagram are objects

that remain to satisfy a condition and also perform an action of selection from choice

panel. These states are nested to other states. For example, from state of inactive, the

choice panel gets active when user selects any one product from the Vending Machine.

Similarly, each component from the Object Model diagram carries a state chart diagram

with certain conditions that needs to be performed. Figure 5-6 is the state chart diagram

of a component ‘Choice panel’ for the product variant ‘Simple Vending Machine’. By

comparing this component with state chart diagram for Choice panel of Vending Machine

SPL, it can be observed that two states are missing in this diagram. These state chart

35

diagrams serve as the basis for deriving system test cases for the whole SPL and its

corresponding product variants.

Figure 5-5 State chart diagram for Choice panel of ‘Simple’ Vending Machine

5.4 Unit testing for each components of Object Model Diagram

The obtained Object and State Chart test models of Vending Machine are the backbone

for generation of test cases for the system under test. These test models are reusable

between SPL of Vending Machine and its product variants Pro, Ultra, and Simple. IBM

Rational Rhapsody maintains complete test models and creates test scenarios for unit

components and for the whole system.

The components from Object Model Diagram of Vending Machine are used to create test

architecture and thereby derive automated unit test cases from this architecture. The test

architecture and test models have been maintained using Test conductor add-on for both

Vending Machine SPL and for its product variants. Figure 5-7 describes the automated

test architecture for Choice panel of Vending Machine SPL. This test architecture shows

how the choice panel is interacting with other components. The test component Choice

panel of Vending Machine is nested to other test components such as Coin Validator,

Drink Dispenser, and Changer. These test architectures represent a single unit before

respective test cases can be created.

36

Figure 5-6 Test architecture of Vending Machine SPL ‘Choice Panel’ Component

From each unit component of test architecture, the test cases are generated manually and

automatically using ATG (Automatic Test Case Generator). User requirements and

specifications have been verified for better accuracy and also they are validated with the

model coverage.

The Vending Machine SPL choice panel component has 24 test cases which covers all

the possible chances of Unit Testing. Similarly, the test cases have also been derived for

each component of choice panel product variants. There are 13 redundant test cases since

the same choice panel component has been reused among different product variants.

Figure 5-8 depicts the test scenarios for choice panel components of both Vending

Machine SPL [Figure 5-8 (b)] and Simple Vending Machine [Figure 5-8 (a)]. The events

enable_Water() and Prepare_Water() in Figure 5-8, represent the selection of water from

the choice panel.

37

a. Simple Vending Machine Choice panel b. Vending Machine SPL Choice

Panel

Figure 5-7 Test cases of selecting water from Choice panel Component

5.5 Generation of System test cases by ATG

Test cases have been automatically generated using ATG (Automatic Test Case

Generator) for the whole Vending Machine SPL and also for specific products. State

Diagrams have been constructed for each component in the Object Model diagram of the

Vending Machine SPL. ATG generates its test cases from the architecture of state chart

diagrams of the SPL and its corresponding product variants. These test scenarios were

simultaneously verified with the specification requirements through traceability matrix

using tools. Once these test cases have been generated, they are stored in a repository

which can be accessed for retrieval of test cases anytime. For example, when one

considers the water Vending Machine, the unit test cases of each component of the water

Vending Machine has been clustered based on relationship and stored in the repository.

When one needs to access the test case of the ‘Changer’ component of water Vending

Machine, this can be easily accessed from the repository.

5.6 Comparator

The set of stored test cases in repository have been subjected to test case selection

process of regression testing through comparator to classify the test cases into Obsolete,

Re-testable, and Reusable. Unit test cases that are derived from each component of

38

Object Model diagram of Vending Machine SPL has been compared with the

corresponding test cases of component of its product variants. Similarly, system test cases

have also been subjected for comparison and test cases were derived through system

testing.

Figure 5-9 is the snapshot of IBM Clear Case integrated with IBM Diffmerge tool that

describes the comparison of system test cases between Vending Machine SPL and Water

Vending Machine (a variant). This snapshot depicts the comparison of each attribute

between the test cases of two product variants. Every test case represented in sequence

diagram has subjected to regression testing during implementation at each level. Each test

case of Simple Vending Machine has been compared with the test case of Vending

Machine SPL and their corresponding test classifier reports have also been generated.

Figure 5-8 Snapshot of Comparator

5.6.1 Graphical Comparison

The attributes are also compared graphically between each test cases of Vending Machine

SPL and Simple Vending Machine. This depiction provides a visual representation of the

messages, transitions and signals of the sequence diagram respectively. As it can be seen

from Figure 5-10, these three features have been distinctively color coded for easy

39

identification of test cases. This enables one to identify the test cases as redundant,

reusable or obsolete through regression testing.

Figure 5-9: Graphical Comparison between SPL and a product variant

5.7 Output Report of Test Classifiers

IBM Clear Case uses the comparison tool Diffmerge to find differences in the attributes

of test cases of Vending Machine SPL. It uses the test suite stored in repository for

selecting the test cases for regression testing. Test Cases are classified using the ‘change

of attributes’ information in the sequence diagram generated from state chart and Object

Model diagram. It classifies the baseline test suite into Obsolete, reusable and re-testable

test cases.

The comparator uses change of attributes information between test cases of Vending

Machine SPL and Simple Vending Machine instances and classifies the test cases by

using the set of added, deleted and modified transitions. The set of added, deleted and

modified transitions are compared with each test transition in a test sequence to find the

obsolete, reusable and re-testable sequences. The graphical differences among test cases

have been simultaneously generated and the test cases are classified accordingly.

40

5.7.1 Obsolete Test Cases

The Figure 5-11 depicts one of the test cases of choice panel component of Simple

Vending Machine (Water Vending Machine). This test case is considered to be obsolete

since it contains an invalid execution sequence of messages on boundary objects. The

choice panel component has been reused and also this product variant is expected to have

only water selection. The test case checks for Soft Drink selection on a Water Vending

Machine. An invalid sequence of message results from a change in the possible

sequences according to which the comparator generates the report of differences between

Vending Machine SPL and Simple Vending Machine.

Figure 5-10 Obsolete test case of Water Vending Machine

These Obsolete test cases are identified and removed from the test suite of those

corresponding product variants. This reduces the testing effort and time during the

execution of these test cases.

5.7.2 Reusable Test Cases

Figure 5-12 depicts one of the reusable test cases of the Simple Vending Machine. A

reusable test case consists of a valid sequence of messages to boundary objects that has

remained unchanged in the newly derived product variant. The choice panel component

of Vending Machine SPL has been compared with the Simple Vending Machine and has

41

been found that no differences exist between both these test cases. Since, these test cases

derived from the component of Object Model diagram has been used in all the product

variants there is no change in the sequences of internal messages triggered by the

boundary messages. In other words, the test scenarios and the messages involved in the

test cases of both the Vending Machines have not changed and these test cases can be

used in all the derived product variants.

Figure 5-11 Reusable test case of Water Vending Machine

These reusable test cases are identified and they are reused in all the corresponding

product variant test suite of those using the same component. This also helps in reduction

of number of test cases from the Simple Vending Machine Test Suites and also reduces

the testing effort and time during the execution of these test cases.

5.7.3 Re-testable Test Cases

Figure 5-13 depicts one of the re-testable test cases of the Simple Vending Machine. It

describes that a sequence of re-testable test cases remained unchanged in the derived

product variant. But one or more of these messages may have changed and also messages

triggered by boundary class messages have also been changed. These changes of

messages indicate that the test case is re-testable. During the comparison between ‘Pro’

and ‘Simple’ Vending Machines the re-testable test case are identified from the report

42

generated. The re-testable test cases are more important and they are always carefully

executed in the end.

Also, they are identified and retested in the entire corresponding product variant test

suite. This also helps in considerable reduction of the number of test cases from the

Simple Vending Machine Test Suites. Once can observe a reduced testing effort and

testing time during the execution of these test cases.

Figure 5-12 Re-testable Test case of Vending Machine SPL and Simple Vending

Machine

Thus the test cases that have been classified by regression test selection strategy into

Obsolete, Reusable and Re-testable confirms the successful performance of the proposed

framework. The redundancy that existed in SPL testing has been identified through this

approach and test models have also been reused. Previous research studies indicate that

classification test cases will reduce the testing effort considerably [25, 26, 27].

43

CHAPTER 6: EVALUATION

6.1 Difficulty in specifications separation

The essence of the proposed framework is to separate the specifications into those

common to all members of the family and those unique to individual variants, then to use

Model-based Testing to generate appropriate tests for each specification set. If this

separation is done with all specifications for all product variants, it is impossible to

generate obsolete test cases. Accumulating all the specifications and composing relevant

test cases is practically infeasible for medium-sized or large SPLs [25]. It would also be

interesting to know when one could classify a test case as being obsolete. The whole

concept of a test being obsolete only occurs in the context of specifications that are

changing. If we consider an instance in time, the specifications are not changing and

therefore tests could be created. This work has assumed such a SPL at one instance in

time to generate obsolete test cases.

Another important question that needs to be addressed is how hard is it really to divide

the specifications into those that exist in common to all product variants and those which

are unique to a particular product perhaps because they are in conflict with a specification

that would apply to a different product. In a real-time setting, this division of

specifications is harder than what we have hinted at in this thesis work. The

specifications may evolve over time and hence could be shared among the product

variants. A Model-based Testing approach for the set of such time-dependent structure of

shared specifications though may be aware of the test cases generated for each product

variant, may generate obsolete test cases or premature test cases.

6.2 Reduced test cases

Model-based Testing has been used in this thesis work that has the potential of generating

a very large number of tests. It was therefore essential to find out how good a reduction

of tests could be expected from this process. Previous researches [22] [24] suggested that

Model-based Testing has been effective in testing embedded systems and complex data

systems. The Vending Machine SPL involves embedded system components and Model-

based Testing generated only a limited number of test cases. The total number of test

cases generated for the Vending Machine SPL was 78. The proposed framework helped

44

in separating the test cases and there were 24 obsolete test cases, 5 re-testable test cases

and 49 reusable test cases in the pool of 78 test cases. This scheme resulted in 30%

reduction of test cases for the assumed Vending Machine SPL. It would be interesting to

find out what percentage of test case reduction may be expected in a real-time system.

There remain three other questions pertaining to Model-based Testing. Firstly, how

effective is Model-based testing at actually finding bugs in programs? There exist so

many bugs that have to do with actions that are not part of the model. Interface bugs and

Performance bugs are two examples that are not found in specifications of the software

and hence they do not appear in the model. Finding these bugs using Model-based

Testing might be ineffective.

Secondly, does Model-based Testing consider the effort required to setup for tests? To

perform a test, we may have to setup for the test, perform the test and then analyze what

we observed. For example, while testing a database, the biggest amount of time

consumed in testing a database is actually for setting up the database so that we could run

the tests on it. The order of testing is very important because, if we setup the databases

for a particular test, then we may have to setup the database differently in order to do the

next test. This consumes a huge amount of time. In Model-based Testing, there is no

suggestion of what order the tests should be done in.

Thirdly, while using Model-based testing, how hard is it to find an actual bug in the sense

of what line of code needs to be changed to correct the bug when we start from a Model-

based test? Model-based Testing only describes certain actions of the abstract model. In a

piece of code which is 6000 lines, relating the 6000 lines to find where in the 6000 lines

that particular abstract operation is actually performed might be hard.

It may also be worthwhile to investigate how hard it is going to be in implementing the

proposed framework in some other kind of real-time system.

45

CHAPTER 7: DISCUSSION

The implementation of proposed framework has been performed on Vending Machine

SPL scenario using various tools. But, some aspects need to be considered to avoid the

limitations in the demonstration. Since obtaining a real industry oriented Software

Product Lines is an impossible task, Vending Machine has been used and these derived

test cases are restricted to only certain level of requirement specification. Also, the

complete experiment was done based on Model-based testing and so source code may not

be detectable from UML documents, e.g., a change in a method’s body may not be

visible from class, sequence or state chart diagrams. These issues can be avoided by

parallel reference with the code generated from each test models at architecture level.

In software controlling physical devices (such as Vending Machine), which is defined as

embedded systems, test cases are often chosen based on thinking about "What can go

wrong here?". The more interesting tests are for failures not anticipated in the system

specifications, such as the changing dispenser jamming because a foreign coin was

inserted, or an overturned cup blocking the delivery of liquid as anticipated.

In a Software Product Line, these exceptional situations are most commonly different for

different variants, not in the common core assets, because they are related to what is

different among the variants. Unit testing against specifications is unlikely to find such

things - exception handling often is outside the carefully controlled code flow that tools

like Rhapsody are designed in terms of. In such cases exception handling should be

specifically implemented. One might find lack of such exception handlers in this thesis

work as the main goal was to reduce the test effort by classifying test cases. There is also

provision to include these exception handlers in the future.

Also, specific code modifications in certain modules or class may not be reflected in the

Object Model diagram or State chart diagram. Similarly, if a method is changed during

implementation conditions may not be visible and its message or attribute used also may

not change. In certain conditions, code has to be traversed to locate the modification and

hence identifying those test conditions may be hectic, as a result UML designs will not be

safe. One simple solution would be to ask the people changing the UML diagrams to

46

indicate if they expect such changes in operation implementations and make a note of it,

in a predefined way.

This demonstration intends to illustrate that the proposed framework was adequate in

reducing the test cases for the assumed simple Vending Machine SPL. It remains to be

seen how this framework would function in a time dependent system. There were few

other works done by other researchers in the same field of SPL testing. Noticeably, there

were two significant contributions. Andreas Reuys et al [3] developed ScenTED

(Scenario based TEst case Derivation), a Model-based technique for system testing in

product family engineering. This technique involved creation of reusable test case

scenarios in domain engineering and reusing these test cases in application engineering.

The method utilized use case diagrams for specification mapping and activity diagrams as

test models to represent possible scenarios of use cases. Test cases were represented

using sequence diagrams. This method was implemented in an industrial setting and

reuse benefit was estimated at 57% compared to application of single system testing

techniques. However, this method failed to address the issue of reducing testing effort or

removing redundancy in testing SPLs. This technique also lacked integrated tool support.

Paulo Anselmo da Mota Silveira Neto et al [26] proposed a technique based on regression

testing approach. This method utilized architecture specifications to reduce the testing

effort. In addition to reusing test cases and execution results, the method intended to

select and prioritize an effective set of test cases. These researchers faced a similar

problem of not being able to experiment their method in the real SPL context.

Synonymous to this thesis work, their method proved to be effective during its

application in the experimental study.

Our demonstration helps in classifying test cases into Obsolete, Re-testable and Reusable

to reduce testing redundancy for the assumed SPL. However, the lack of access to a real

industrial SPL deemed it difficult to conduct a deeper evaluation in the form of an

industrial case study. An alternative approach would be to map commonalities among

product variants to derive a super-variant that represents a subset of variants. These

super-variants may then be tested. This process would provide the means to reduce

variants rather than reduce test cases. Separation of test cases into those that may be

47

reused, those that may need to be retested and those that may be obsolete turned out to be

insightful in this demonstration. Further investigation is required to find out the

possibility of duplicating the proposed framework in other systems.

48

CHAPTER 8: CONCLUSION

Software Product Line plays a huge impact in major software industry for creating large

number of product variants from a common platform [15]. Creating a product from

scratch is a time consuming process. So, analyzing the commonalities and variabilities

between different products and their variants helps to reuse the core assets. Many

researches have been conducted on SPL and large companies have been still investing to

study the uses of Software Product Line in their software development cycle [14, 15, 35].

Software Product Line Testing is a laborious task since large number of product variants

can be derived from a product line. Due to the enormous number of possible products,

individual product testing becomes more and more infeasible. A framework has been

proposed and it is supported by various testing tools to extract the different test cases

through various testing processes from the UML based design models. The main

objective is to classify test cases stored in a large repository derived from the Software

Product Line. In the context of Model-based development, regression test selection

method has been performed on different design models and their changes have been

monitored at each level.

This demonstration of framework can be carried out in different systems that can fit in

both industrial and academic settings. However, the proposed framework has been

implemented in various tools and applied to a Vending Machine scenario for better

understanding of entire procedure. The whole procedure has been broken down through

top-down approach by constructing a Feature Model diagram from specification

requirements. The test models such as Object Model diagram and State Chart diagram

derived from Feature Models. By performing Unit testing and System testing on these

test models, test cases have been obtained which are in turn stored in the repository. The

extracted results through regression test selection method clearly indicate the

classification of test cases into Obsolete, Reusable, and Re-testable. This confirms that

the objective that was proposed in Section 1.2 has been successfully met. This approach

of classifying test cases through regression testing has been proven to reduce the testing

effort to a greater extent through a wide range of research studies. This work also

explains that certain changes in operations may not be visible in the UML models and

49

additional code traversal or better way of documentation is required. Proposing a

framework and identifying the corresponding testing tools that can perform regression

test selection based on UML designs helps to reduce the testing effort in a SPL. When

design changes have been determined, it gives good support to plan and adapt regression

testing effort in the Software Product Line.

In the future, it is important to run additional case studies to assess the drawbacks and

advantages of proposed framework by implementing in different systems. To get better

results, combinatorial testing [25] can be performed while deriving the Feature Model

diagram from specification requirements. By installing the Mosopolite plugin, the pure

variant tool will generate a subset of configurations covering pairwise feature interaction

with flattening algorithm for Feature Model diagram. This in turn reduces the number of

product variants that have to be tested in the product line. Despite of not having been

experimented in the real industry SPL context, it has been only tested in Vending

Machine SPL. For future work, new experiments will be executed considering real

components, modules and SPL architectures, in industrial projects. In addition, guidelines

to help the test classification step and tool support to aid the approach execution are also

identified as future work. Furthermore, the lessons learned in this experiment will provide

important information to execute future evaluations.

50

REFERENCES

1. Isis Cabral, “Designing Software Product Lines for Testability”, A Thesis, Presented

to the Faculty of the Graduate College at the University of Nebraska, 2010,

http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=&context=computerscidis,

[Accessed: 12 June. 2011].

2. Sungwon Kang, Jihyun Lee, Myungchul Kim and Woojin Lee “Towards a Formal

Framework for Product Line Test Development”, Seventh International Conference

on Computer and Information Technology, 2007. pp: 921 – 926.

3. Andreas Reuys, Erik Kamsties, Klaus Pohl, and Sacha Reis, “Model-based System

Testing of Software Product Families”, O. Pastor and J. Falcão e Cunha (Eds.):

CAiSE 2005, LNCS 3520, pp. 519 -534, Springer-Verlag Berlin Heidelberg, 2005.

4. Northorp, L., “A Framework for Software Product Line Practice Version 5.0”,

Software Engineering Institute, Carnegie Mellon University,2001,

http://www.sei.cmu.edu/productlines/frame_report/config.man.htm, [Accessed: 12

July. 2011].

5. K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering:

Foundations, Principles, and Techniques, Springer, Heidelberg, August (2005).

6. Meyer, M. and Lehnerd, A “The Power of Product Platforms”. New York, New

York: The Free Press (1997).

7. Tevanlinna, A.and J. Taina,, "Product Family Testing: A Survey." SIGSOFT

Software Engineering Notes 29(2): 1-6, 2004.

8. McGregor, John, "Testing a Software Product Line" (2001), Software Engineering

Institute. Paper 630. http://repository.cmu.edu/sei/630 [Accessed: 14 July. 2011].

9. McGregor, J. D and P. Sodhani, “Testing Variability in a Software Product Line“,

Software Product Line Testing Workshop (SPLiT). Boston, MA, Avaya labs: 45-50,

2004.

10. Kolb, R., “A Risk-Driven Approach for Efficiently Testing Software Product Lines”,

2nd Int'l Conference on Generative Programming and Component Engineering.

Erfurt, Germany, 2003. pp: 409-414.

11. Offutt, J.; Abdurazik, A.; “Generating Tests from UML Specifications”, 2nd Intl.

Conference on UML’99, 1999.

51

12. Binder, R.; “Testing Object-Oriented Systems: Models, Patterns, and Tools”,

Addison- Wesley, Reading, 2000.

13. Ibrahim K. El-Far; “Enjoying the Perks of Model-based Testing”, Software Testing,

Analysis,and Review Conference, STARWEST 2001, pp. 9-15.

14. Andreas Reuys, Erik Kamsties, Klaus Pohl and Sacha Reis, “Model-based System

Testing of Software Product Families”, O. Pastor and J. Falcão e Cunha (Eds.):

CAiSE 2005, LNCS 3520, pp. 519 – 534, 2005.

15. McGregor, John D. “A Testing Perspective.” Journal of Software Testing

Professionals 1, 4 (December 2000): 11-15.

16. J.Hartmann, M. Vieira, A. Ruder, “UML-based Approach for Validating Product

Lines” , Intl. Workshop on Software Product Line Testing (SPLiT), Avaya Labs

Technical Report, pp. 58-64, August (2004).

17. E.Kamsties , Klaus Pohl , Sacha Reis , Andreas Reuys ,“Testing variabilities in use

case models”, Proceedings of the 5th International Workshop on Software Product-

Family Engineering, PFE-5 (Siena, Italy, Nov. 2003), Springer, Heidelberg, 6--18.

(2003).

18. H.Muccini and A. van der Hoek, “Towards Testing Product Line Architectures”,

Electronic Notes in Theoretical Computer Science 82 No. 6, (2003).

19. C.Condron., “A Domain Approach to Test Automation of Product Lines”,

International Workshop on Software Product Line Testing. (2004), pp. 27-35.

20. C.Nebut Pickin, S, Le Traon, Y, Jezequel, “Automated requirements-based

generation of test cases for product families”, In Proceedings 18th IEEE International

Conference on Automated Software Engineering (2003), pp.263.

21. C. Nebut, Pickin, S, Le Traon, Y, Jezequel, “Reusable Test Requirements for UML-

Model Product Lines”, Inte rnational Workshop on Requirements Engineering for

Product Lines (REPL) (2002), pp. 233-239.

22. Olimpiew, E. and Gomaa, H “Model-based testing for applications derived from

Software Product Lines” Proceedings of the 2005 workshop on Advances in Model-

Based Testing, pages 1–7 (2005).

52

23. S. Kang, J. Lee, “Towards a Formal Framework for Product Line Test Development”,

In Proceedings of the 7th IEEE International Conference on Computer and

Information Technology (October 16 - 19, 2007). CIT. IEEE Computer Society,

Washington, DC, 921-926. (2007)

24. J.C.Dueñas, “Model driven testing in product family context”, First European

Workshop on Model Driven Architecture with Emphasis on Industrial Application.

(2004), pp. 91-96.

25. Emelie Engström, “Exploring Regression Testing and Software Product Line Testing

- Research and State of Practice”, Lund University Faculty of Engineering,

Department of Computer Science , Licentiate Thesis, 2010. pp. 120.

26. Paulo Anselmo da Mota Silveira Neto, Ivan do Carmo Machado, Yguarat˜a Cerqueira

Cavalcanti, Eduardo Santana de Almeida, Vinicius Cardoso Garcia, and Silvio

Romero de Lemos Meira, “A Regression Testing Approach for Software Product

Lines Architectures”, Reuse in Software Engineering, (RiSE). VDM Publishing

House, July 2010, Pages: 168.

27. Mary Jean Harrold, James A. Jones, Tongyu Li and Donglin Liang “Regression test

selection for java software,” in OOPSLA ’01: Conference on Object-oriented

programming, systems, languages, and applications. New York, USA: ACM, pp.

312–326, 2001.

28. J.Hartmann and D.J. Robson., “Techniques for selective revalidation”, IEEE Software

7, 1, (1990), 31–36.

29. Yih-farn Chen, David S. Rosenblum , and Kiem-phong Vo ,“Test tube: a system for

selective regression testing”, In Proceedings of the International Conference on

Software Engineering, (Los Alamitos, CA, USA), IEEE, 1994, pp. 211–220.

30. Rajiv Gupta, Mary Jean, Harrold Mary, and Lou Soffa, “Program slicing-based

regression testing techniques”, Software Testing, Verification and Reliability 6, 2

(1996), 83–111.

31. Elbaum, A.G. “Test Case Prioritization: A Family of Empirical Studies”, IEEE

Transactions on Software Engineering 28, 2 (Feb. 2002), 159-182.

32. Sebastian Oster, “MoSo-PoLiTe - Tool Suppor t for Pairwise and Model-based

Software Product Line Testing”, VaMoS ’11, January 27-29, 2011.

53

33. Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Bjöorn

Regnell, Anders Wesslé, “Experimentation in software engineering: an introduction”,

Norwell, MA, USA: Kluwer Academic Publishers, 2000. Pp. 33-39.

34. H.K.N. Leung and L. White, “Insights into regression testing,” in ICSM ’89:

International Conference on Software Maintenance, pp. 60–69, 1989.

35. Software Engineering Institute, “A Framework for Software Product Line Practice”,

Carnegie Mellon, http://www.sei.cmu.edu/productlines/frame_report/req_eng.htm,

[Accessed:11 July.2011].

36. Kang, K.C., S.G. Cohen, J.A. Hess, W.E. Novak and A.S. Peterson (1990), “Feature-

Oriented Domain Analysis (FODA) Feasibility Study,” Technical Report CMU/SEI-

90-TR-21, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,

PA, 1990. pp.333.

37. Heymans, P, Schobbens, Trigaux, Bontemps, Y., Matulevicius, & Classen, A,

“Evaluating formal properties of feature diagram languages”. Software, IET, 281–

302, 2008.

38. Danilo Beuche, "Software Product Line Engineering with Feature Models", pure-

systems, [Online] Available: http://www.pure-systems.com/, [Accessed: 13,

May.2011].

39. IBM, “Object Diagram Help Contents”, publib.boulder.ibm.com/infocenter/

rsmhelp/v7r5m0/index.jsp?topic=%2Fcom.ibm.xtools.modeler.doc%2Ftopics%2Fcob

jdiags.html, [Accessed: 14 September, 2011].

40. Supaporn, “Automated-Generating Test Case Using UML Statechart Diagrams”,

Proceedings of SAICSIT 2003, Pages 296 – 300

41. D. Seifert, S. Helke, and T. Santen, “Test Case Generation for UML Statecharts”,

Perspectives of System Informatics (2003), Springer, Pages: 93–109

42. F. Fraikin and T. Leonhardt “SeDiTeC -Testing Based on Sequence Diagrams”,

Proceedings of the 17th IEEE international conference on Automated software

engineering (ASE) 2002.

43. Ashalatha Nayak, Debasis Samanta, "Automatic Test Data Synthesis using UML

Sequence Diagrams", in Journal of Object Technology, vol. 09, April 2010, pp. 75-

104.

http://ase.cs.ucl.ac.uk/

54

44. IBM, “Rational Rhapsody User guide”, March 2010, [online], Available:

http://publib.boulder.ibm.com/infocenter/rsdp/v1r0m0/topic/com.ibm.help.download.

rhapsody.doc/pdf75/UserGuide.pdf, [Accessed: 15 March 2011].

45. Pure Variants, Pure Variants User Manual, May 2010-2011, [online], Available:

http://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-

manual.pdf, [Accessed: 15 April. 2011].

46. IBM, IBM Rational Rhapsody Test Conductor Add On, May [online], Available:

http://publib.boulder.ibm.com/infocenter/rhaphlp/v7r5/topic/com.ibm.rhapsody.oem.

pdf.doc/pdf/RTC_User_Guide.pdf, [Accessed: 17 July. 2011].

47. IBM, IBM Rational Rhapsody Automatic Test Generation Add On User Guide, May

2011,Available:http://publib.boulder.ibm.com/infocenter/rhaphlp/v7r6/topic/com.ibm

.rhp.oem.pdf.doc/pdf/ATG_User_Guide.pdf, [Accessed: 17 August. 2011].

48. IBM, IBM Rational Clear Case Guide to Building Software,

Available:https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m0/index.jsp?topic=/

com.ibm.rational.clearcase.books.cc_build_windows.doc/cc_build.htm [Accessed: 17

September. 2011].

49. IBM, developing in parallel with Rational Rhapsody Diffmerge,

Available:http://publib.boulder.ibm.com/infocenter/rhaphlp/v7r6/index.jsp?topic=%2

Fcom.ibm.rhp.diffmerge.doc%2Ftopics%2Frhp_c_col_parallel_dev_with_diffmerge.

html [Accessed: 17 September. 2011].

