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ABSTRACT

This thesis explores the methodology of state, and in particular, parameter estimation for

time series datasets. Various approaches are investigated that are suitable for nonlinear

models and non-Gaussian observations using state space models. The methodologies

are applied to a dataset consisting of the historical lynx and hare populations, typically

modeled by the Lotka-Volterra equations. With this model and the observed dataset, particle

filtering and parameter estimation methods are implemented as a way to better predict

the state of the system. Methods for parameter estimation considered include: maximum

likelihood estimation, state augmented particle filtering, multiple iterative filtering and

particle Markov chain Monte Carlo (PMCMC) methods. The specific advantages and

disadvantages for each technique are discussed. However, in most cases, PMCMC is the

preferred parameter estimation solution. It has the advantage over other approaches in that

it can well approximate any posterior distribution from which inference can be made.
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CHAPTER 1

INTRODUCTION

When a dataset is characterized by a temporal dependence, it is often appropriate to treat

it as a time series and describe it by a state space model. State space modeling relies on

a dynamical model that is used to interpret the observations. The state space framework

usually consists of two equations: the system equation and the observation equation. The

system equation, or the dynamical model, describes the true state of the system, which is

modeled as a Markov process, while the observation equation relates the unobservable

true states to the observed data. This allows for inference on problems relating to the true

states and parameters of the model.

The focus of this thesis explores the methodology of state, and in particular, parameter

estimation for time series datasets using state space models. Various methodologies are

explored for parameter estimation suitable for nonlinear dynamic models and non-Gaussian

observations. Estimation of the states and parameters can be realized with the use of the

observed dataset and a dynamic model using filtering techniques. Filtering techniques

such as the Kalman filter for linear systems and sequential importance resampling (SIR)

for (linear and) nonlinear systems are used for state estimation. When applied to a dataset

modeled by a state space model, SIR estimates the true value of the system at observed

time points. Methods for parameter estimation also exist and are built upon the foundation

of state estimation. They include, maximum likelihood estimation (MLE), state augmented

particle filtering, multiple iterative filtering (MIF) and particle Markov chain Monte Carlo

(PMCMC) methods. In this thesis, parameter estimation is used to estimate the parameters

that describe the dynamics of the model. These techniques are discussed further in Chapter

2.

1
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Figure 1.1: Time series plot of Lynx-Hare population (in thousands). Shown are the
populations of the lynx (blue line) and the hare (red line).

The methodologies considered are then applied to a dataset consisting of Canadian

lynx and snowshoe hare populations over a 90 year period, which is described below.

The motivation is to estimate the state of the populations at each observed time point

and to recover optimal parameter estimates that describe the lynx and hare populations.

This can be accomplished by applying a discrete time, state space model to the dataset.

Figure 1.1 is a time series plot of the dataset with a yearly time interval. The figure shows

two oscillating series of observations where the blue line represents the lynx population

and the red line represents the hare population. These oscillations are frequently cited

in textbooks and analyzed by biologist and ecologists as it shows the characteristics of a

predator-prey relationship (Hewitt, 1921; May, 1973; Murray, 1989; Krebs et al., 2001).

This classic time series is based on the historical fur trading records from the Hudson’s

Bay Company and has the assumption that the recorded number of trapped animals is

proportional to the animals’ population.

The lynx-hare time series dataset is often modeled by the Lotka-Volterra predator-prey

equations. They are coupled nonlinear differential equations that describe the growth rates

of the predator and prey populations. The parameters in the Lotka-Volterra equations

consider the population growth of the prey in the absence of the predator and the decay

of the predator in the absence of the prey. In addition, the Lotka-Volterra equations also
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consider the rates of growth and decay when interactions between the predator and prey

occur. General state space models are introduced and applied to the lynx-hare dataset

below to estimate these dynamic parameters, as well as the population levels.

1.1 General State Space Models

State space modeling estimates the states and the parameters of interest by considering the

system and observations simultaneously, and by separating the errors for the process and

the observations. Below is the system equation and the observation equation of the general

state space model:

xt = f(xt−1,θ) + emt (1.1)

yt = g(xt,φ) + eot (1.2)

where

xt: system state vector at time t

emt : system error vector at time t

f(.): function describing the dynamics

θ: dynamical parameter

yt: observation vector at time t

eot : observation error vector at time t

g(.): observation operator that relates xt to yt

φ: parameter of observation operator.

The system equation describes the evolution of the unobserved system state, xt,

whereas the observation equation relates the observations, yt, to the system state, xt. When

a suitable state space model is defined for a dataset, filtering can be used to construct

the filter probability density, p(xt|Yt). The filter density is a probability function of the

current state given all observations, Yt, which represents the set of observation vectors

up to and including time t, such that, Yt = {yi, i = 1, ..., t}. As such, the states and
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parameters of interest can be estimated from this distribution. For example, equations (1.1)

and (1.2) can be applied to the lynx-hare dataset, in which the Lotka-Volterra equations (or

the predator-prey model) are used as the system equation, f(.). (Note: the Lotka-Volterra

equations are presented in further detail in Chapter 3.) In this example, the states and

parameters of interest are: xt, the vector that contains the true (unobserved) lynx and hare

populations at time t; and θ, the vector containing the parameters that describe the growth

rates and death rates of the populations. The vector, yt, contains the observed lynx and

hare populations and are used within the filtering solution as a means of estimating the

states and parameters.

1.2 Filtering

When a dataset follows the framework of a nonlinear and non-Gaussian stochastic process,

it is appropriate to use Bayesian methods to provide a probabilistic solution for state (and

parameter) estimation problems. Here, Bayesian filtering is used to construct the filter

probability density, p(xt|Yt); or in words, to find the best estimate of the true system state

given (noisy) observations of the system. In the lynx-hare example, given the observations

of the lynx and hare populations over 90 years, the dataset is assumed to follow the

predator-prey model with additive noise (i.e. a dynamic-stochastic nonlinear model) and

filtering is an appropriate solution method to the dataset. Below, is the probabilistic

solution to the filtering problem and follows the material in Ristic et al. (2004).

Assuming that all information up to time t-1 is available, (i.e. p(xt−1|Yt−1) is

available) and using the system model, it is possible to obtain the predictive density of the

state at time t. The predictive density is:

p(xt|Yt−1) =
∫

p(xt|xt−1)p(xt−1|Yt−1)dxt−1 (1.3)

where the probabilistic model, p(xt|xt−1), is defined by the system equation, equation

(1.1), and the known distribution of the system error, emt . At the next discrete time step,

when new observations become available, the predictive density can be updated to include

this new information. Bayes’ rule is used to obtain the filter density:

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (1.4)
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The denominator, p(yt|Yt−1), can be evaluated by:

p(yt|Yt−1) =
∫

p(yt|xt)p(xt|Yt−1)dxt. (1.5)

Also, notice that p(yt|xt) is known from the observation model as seen in equation (1.2)

and is based on the distribution of the observation error, eot . Take note that in order to apply

a filtering algorithm, it is required that the initial probability function, p(x0), is specified.

The integrals used to evaluate the predictive and filter densities can be estimated

using various filtering algorithms (described and examined in Chapter 2). Approaches for

parameter estimation are built on this foundation and are the major focus of this thesis.

1.3 Thesis Overview

This thesis is structured as follows. Chapter 2 begins with the Kalman filter, a state esti-

mation filtering technique for linear and Gaussian systems. Likelihood-based parameter

estimation using the Kalman filter is then explained. Next, sequential importance resam-

pling, a filtering method that can handle nonlinear systems is presented along with methods

for parameter estimation. These methods include maximum likelihood estimation, state

augmented particle filtering, and multiple iterative filtering. In addition, Markov chain

Monte Carlo (MCMC) is used to improve the estimation of the states and parameters and

to make its implementation more robust. This technique, called particle MCMC is used

to estimate the dynamical parameters in state space models and is the ultimate focus of

this thesis. Further, for each technique introduced in Chapter 2, a simple example is imple-

mented using a synthetic dataset derived from a linear/Gaussian system. A comparison

of each method’s performance is also carried-out. Chapter 3 provides a description of

the predator-prey model; a model that is assumed to define the lynx-hare dataset. The

lynx-hare dataset is then analyzed using a classic population modeling technique. As well,

the particle filtering techniques for state and parameter estimation from Chapter 2 are reex-

amined in the nonlinear/non-Gaussian setting. Examples using a synthetic predator-prey

dataset and the real lynx-hare dataset are performed. A comparison of the methods are

then undertaken. Finally, Chapter 4 concludes the thesis and includes some discussion on

the advantages and disadvantages of each method.



CHAPTER 2

BACKGROUND

The purpose of this chapter is to provide a background for filtering for state and parameter

estimation and to illustrate its applications using simple examples. The examples will use

a synthetic dataset modeled by an autoregressive process of order 1 (AR(1)). The chapter

begins with the Kalman filter; a foundational method for state and parameter estimation

in the linear and Gaussian setting. It will then progress to the more generalized case

of the particle filter which can be applied to nonlinear models. The Kalman filter and

particle filter sections will include a variety of methods for parameter estimation along

with examples for state and parameter estimation. Further, Markov chain Monte Carlo

(MCMC) update methods will be blended with particle filtering in two different ways as

an attempt to reduce the loss of diversity in the ensemble of particles and for a more robust

method for state and parameter estimation, especially static parameters.

2.1 The Kalman Filter

The Kalman filter is an algorithm used to estimate the state and/or parameters of a linear

system with Gaussian noise. It recursively predicts and updates using the system model

and observations to produce an optimal estimate of the state (Kalman, 1960). This section

provides details of the Kalman filter algorithm and an example using a synthetic dataset.

The example illustrates the filtering problem for state and parameter estimation in a

linear/Gaussian setting.

Consider the following linear and discrete time state space model. Shown are its

6
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system and observation equations (respectively):

xt = Dtxt−1 +Gte
m
t (2.1)

yt = Htxt + eot (2.2)

where

xt: system state vector at time t (m x 1)

Dt: dynamics matrix (m x m)

emt : system noise (m x 1)

Gt: matrix projecting the noise to the system (m x m)

yt: vector of observations at time t (n x 1)

Ht: observation operator matrix (n x m)

eot : observation error (n x 1).

Here, it is assumed that the system noise, emt , and observation noise, eot , are normally

distributed with a mean of zero. In addition, they are assumed to be sequences of indepen-

dent random variables and independent of each other (i.e. Cov(emt , emt+τ ) = 0, Cov(eot ,

eot+τ ) = 0 for τ �= 0 and Cov(emt , eot+τ ) = 0 ∀τ ). The second moment of the system noise

and observation noise also need to be specified. They are denoted by Qt for emt and Rt for

eot (i.e. emt ∼ N(0, Qt) and eot ∼ N(0, Rt)). Also note, since emt and eot are normal random

vectors, the system state, xt, is also a normal vector.

The filtering solution for state space models requires two essential steps: the prediction

step and the measurement step. In the Kalman filter algorithm, the mean and covariance of

the state, xt, are computed at both steps. First, some notation is established. Denote the

predictive estimate of xt by x̂t|t−1; meaning xt is estimated given observations only up to

time step t-1. Likewise, denote the filter estimate of xt by x̂t|t, which estimates xt given

observations up to and including time step t. Finally, denote the error covariance matrix of

x̂t|t−1 and x̂t|t by Mt and Pt, respectively.

In words, (given the filter estimates of the mean and covariance at time t-1) a single-

stage transition of the Kalman filter algorithm begins with the filter density at time t-1,
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N(x̂t−1|t−1,Pt−1). The Kalman filter uses the information at time t-1 and the system model

to determine the predictive density, N(x̂t|t−1,Mt). When new observations, yt, become

available, the prediction is refined to produce a new filter density at time t, N(x̂t|t,Pt).

The algorithm below describes how the mean and covariance of xt are calculated at each

step.

The Kalman Filter Algorithm

Setup initial estimates: x0 ∼ N(μx0
,P0)

For t = 1, 2, ... , N

Prediction Step:

• compute predictive mean: x̂t|t−1 = Dtx̂t−1|t−1

• compute prediction covariance: Mt = DtPt−1D′
t +GtQtG

′
t

Measurement Step:

• compute filter covariance: Pt = (M−1
t +H′

tR
−1
t Ht)

−1

• compute filter mean: x̂t|t = x̂t|t−1 +Kt(yt −Htx̂t|t−1)

where Kt is called the Kalman gain matrix and is calculated by: Kt = PtH
′
tRt

−1

End For (t).

2.1.1 State Estimation

To demonstrate the application of the Kalman filter, an example using a dataset simulated

from an AR(1) process is shown in Figure 2.1. Consider the simple state space model:

xt = axt−1 + emt , emt ∼ N(0, σm) (2.3)

yt = xt + eot , eot ∼ N(0, σo) (2.4)

where xt, yt and a are all scalars and emt and eot are purely random processes and indepen-

dent in time and of one another.

For the purpose of this thesis, all examples in this chapter will use the same synthetic

dataset. The dataset’s 500 observations are generated from an AR(1) process that defines
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the true state, xt, to which normally distributed observation error is added. Referring to

equations (2.3) and (2.4), a = 0.95, σm = 1 and σo = 1. The initial estimates specific to this

example are x0 = 0 and P0 = 0. Figure 2.1 shows the results. The results show that the

Kalman filter can estimate the system state very closely to its true value and see through

the noisy observations.

0 100 200 300 400 500
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−4

−2
0

2
4

t

x

Figure 2.1: Estimated state of the AR(1) process. Shown are the observations (red dots),
the true state (thin black line) and the Kalman filter estimates (thick blue line).

2.1.2 Likelihood-Based Parameter Estimation

Parameter estimation in state space models is used to estimate either the dynamical

parameters or statistical parameters. For the purpose of this thesis, the statistical parameters

will be specified, while the dynamical parameters will be estimated using a variety of

methods. For example, referring back to equations (2.3) and (2.4), a is the static parameter

that will be estimated, while σm and σo are the statistical parameters that will be specified.

In order to estimate the dynamical parameters using the likelihood function, the

innovations (the one step ahead prediction errors), vt, and its covariance error, Ft, need to
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be defined. The innovations are given by:

vt = yt − ŷt|t−1 (2.5)

where ŷt|t−1 = Htx̂t|t−1. The innovations’ error covariance matrix from Harvey (1991) is

given by:

Ft = HtMtH
′
t +Rt. (2.6)

Maximum likelihood estimation determines which values of the parameters are most

consistent given the available data and finds the parameters which maximize the likelihood

function. First, suppose the vector of unknown parameters is denoted by θ. Then the

corresponding likelihood function of θ is defined by:

L(θ|YN) = p(YN |θ)

=
N∏
t=1

p(yt|Yt−1,θ)

=
N∏
t=1

p(vt|θ).

Note that, vt ∼ N(0,Ft). As such, the log-likelihood function can be written as:

logL(θ|YN) = constant− 1

2

N∑
t=1

log|Ft| − 1

2

N∑
t=1

v′tF
−1
t vt. (2.7)

Typically, the log-likelihood function is analyzed instead of the likelihood function since

it is more convenient. As long as the data being analyzed follows a linear system with

Gaussian noise, equation (2.7) can be evaluated using the Kalman filter. The value

that maximizes equation (2.7) is the maximum likelihood estimate (MLE). To illustrate,

consider the example dataset from the AR(1) process. As a reminder, the true value of

the parameter is a = 0.95. The log-likelihood for various values of a are shown in Table

2.1. The parameter corresponding to the largest log-likelihood value is the MLE. In this

example, a = 0.91 is the MLE. However, take note that the likelihood is relatively flat for

values of a from 0.90 to 0.93.
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Table 2.1: Results of likelihood-based parameter estimation using the Kalman filter.

Value of a Log-likelihood
0.85 -943.9872
0.86 -942.3947
0.87 -941.0695
0.88 -940.0148
0.89 -939.2336
0.90 -938.7286
0.91 -938.5022
0.92 -938.5565
0.93 -938.8934
0.94 -939.5143
0.95 -940.4206
0.96 -941.6130
0.97 -943.0923
0.98 -944.8586
0.99 -946.9120
1.00 -949.2523

2.2 The Particle Filter

When a dataset does not follow a linear system with Gaussian noise, the Kalman filter,

is no longer an appropriate solution. However, there exists modifications to the Kalman

filter that can approximately handle these nonlinear and non-Gaussian cases, such as the

extended Kalman filter (EKF) and the ensemble Kalman filter (EnKF) (Evensen, 1992,

1994). In addition, particle filtering is also a useful solution technique that can provide

exact solutions for nonlinear and non-Gaussian systems. It is a foundational method for

state and parameter estimation procedures considered later on in this thesis. Particle filters

rely on a set of samples, or ’particles’ that approximately represent the distribution of the

system state at both the prediction and measurement steps. With the estimated distributions,

approximations of relevant statistics can be computed.

This section provides the details behind particle filtering and an introduction to various

available methods for parameter estimation. For simplicity, examples of these methods

will also be illustrated for state and parameter estimation using the same synthetic dataset

generated from the AR(1) process. Chapter 3 will provide examples of these methods in a

nonlinear and non-Gaussian setting which extends the basic methodology.
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2.2.1 Sequential Importance Resampling (SIR)

The goal of particle filtering is to construct and sample from an appropriate probability

function of the current state given all observations (i.e. p(xt|Yt)). The most common

particle filter is sequential importance resampling (SIR) introduced by Gordon et al. (1993).

Consider the general state space model from equations (1.1) and (1.2). Suppose at time

t-1, a weighted sample from the following probability distribution is known:

{x(i)
t−1|t−1, w

(i)
t−1} ∼ p(xt−1|Yt−1), (2.8)

where

{.} represents the ensemble of particles or the sample

x
(i)
t−1|t−1 are weighted particles distributed as p(xt−1|Yt−1)

(i) indexes each particle with w
(i)
t−1 as its corresponding normalized weight (i = 1, ... , M).

The SIR algorithm is run from t = 1, ..., N, where N, represents the discrete time

point corresponding to the most recent available observation. A single iteration of the SIR

algorithm is essentially a transition of the particle set from {x(i)
t−1|t−1} ∼ p(xt−1|Yt−1) to

{x(i)
t|t} ∼ p(xt|Yt) where the ensemble of particles in {x(i)

t−1|t−1} and {x(i)
t|t} are unweighted

sample sets. Note that the single iteration of the SIR algorithm begins and ends with an

unweighted ensemble set, however, in other particle filters, a weighted ensemble set is

updated at every iteration (such as sequential importance sampling where the particle set

remains weighted throughout as no resampling takes place). The algorithm for a single

iteration of SIR is provided below:

Prediction Step:

• Each particle in the sample is shifted using the system equation, such that: x(i)
t|t−1 =

f(x
(i)
t−1|t−1, e

m,(i)
t ) which gives the predictive density: {x(i)

t|t−1, w
(i)
t−1} ∼ p(xt|Yt−1).

Measurement Step:

• The new weights are determined by calculating the likelihood of observations given

the predicted values. They are updated recursively by: w(i)
t = p(yt|x(i)

t|t−1). As a

result, higher weights are assigned to the particles that are closer to the observations.
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The weights are normalized such that they sum to one. The particles can then be

represented as: {x(i)
t|t−1, w

(i)
t } ∼ p(xt|Yt).

• {x(i)
t|t−1, w

(i)
t } are resampled with replacement. The resampling results in an un-

weighted set of particles since w
(i)
t = 1/M ∀ i = 1, ..., M and is then represented by:

{x(i)
t|t} ∼ p(xt|Yt).

Note that, although there are a number of particle filtering methods, sequential

importance resampling (SIR) will be the method of focus. It is less affected by particle

degeneracy (than sequential importance sampling (SIS)) where the particles’ weights

collapse and could potentially lead to the entire sample set degenerating to a single

particle. This is avoided with SIR since the particles are resampled with replacement

with probabilities proportional to {w(i)
t }. However, SIR still faces sample impoverishment,

where the number of unique particles in the sample diminish over time. In extreme cases,

this could results in a single repeated value for the entire set of particles. Sequential

Markov chain Monte Carlo methods are used as an attempt to lessen the loss of diversity

in the set of particles. This will be further discussed in Section 2.3.

To apply the SIR algorithm, the functions from the state space model, f(.) and h(.)

need to be defined, as well as the statistics of the system and observation errors (i.e. the

variances of emt and eot ). In addition, the prior distribution which the initial particles are

sampled from is required. To demonstrate its application, an example using the AR(1)

dataset is shown in Figure 2.2. The example is implemented using a particle sample size of

200. Moreover, the initial particles are sample from {x(i)
0 } ∼ N(0, 1) and the variances of

emt and eot are set to σm = 1 and σo = 1. Note that these initial conditions of the particle’s

prior distribution and the values of σm and σo will be used for all SIR based examples in

Section 2.2 and 2.3.

Comparing the results from the Kalman filter in Figure 2.1 and SIR in Figure 2.2, the

variance of the residuals between the state estimates and the true states can be computed.

The variance of the residuals from the Kalman filter is 0.6225961 while the variance of the

residuals from SIR is 0.632611. In addition, a comparison of the filter variances is shown

in Figure 2.3. The results from the Kalman filter (Figure 2.3 (a)) show that, Pt converges

to a value of 0.6075891 while the filter variance from the particle filter (Figure 2.3 (b)) is

noisy and centered around a mean of 0.5967233. Also, take note that in this example, the
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Figure 2.2: Estimated state of the AR(1) process. Shown are the observations (red dots),
the true state (thin black line) and the particle filter estimate (thick blue line).
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Kalman filter was initialized with a filter variance of P0 = 0, while the initial particles in

the particle filter were drawn from the distribution, {x(i)
0 } ∼ N(0, 1). The Kalman filter is

the ”exact” solution for state estimation in the linear and Gaussian case and the particle

filter uses a sample based approximation. This comparison concludes that the particle

filter is a useful tool in estimating the ”exact” state as evaluated from the Kalman filter.

Although the particle filter is not ”exact”, it can handle nonlinear and non-Gaussian models

which will be demonstrated in Chapter 3.
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Figure 2.3: Plots of the filter variances computed by: (a) the Kalman filter and (b) the
particle filter (black lines). Plot (b) also shows the mean of the filter variance (dashed red
line).

2.2.2 Maximum Likelihood Estimation

Similar to the Kalman filter, maximum likelihood methods can also be used to estimate

unknown static parameters. The maximum likelihood method estimates the parameters

using the observed data. The likelihood function of the parameter vector, θ, is defined by:

L(θ|YN) = p(YN |θ) =
N∏
t=1

p(yt|Yt−1,θ), (2.9)
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where p(yt|Yt−1,θ) is the conditional density of the observations, yt given Yt−1. It can

be calculated using equation (2.10)

p(yt|Yt−1,θ) =
∫

p(yt|xt,θ,Yt−1)p(xt|Yt−1,θ)dxt. (2.10)

Observe that p(yt|xt,θ,Yt−1) = p(yt|xt,θ) can be evaluated since the observation density

is known and is based on the observation noise, eot . Also, note that p(xt|Yt−1,θ) is the

predictive density and samples can be drawn from it (i.e. x(i)
t|t−1 ∼ p(xt|Yt−1,θ)). As a

result, it can be approximated by:

∫
p(yt|xt,θ)p(xt|Yt−1,θ)dxt ≈ 1

M

M∑
i=1

p(yt|x(i)
t|t−1,θ). (2.11)

Therefore, substituting equation (2.11) and (2.10) into (2.9), gives the likelihood function,

L(θ|YN) ≈
N∏
t=1

1

M

M∑
i=1

p(yt|x(i)
t|t−1,θ), (2.12)

and the log likelihood function,

logL(θ|YN) ≈
N∑
t=1

log(
M∑
i=1

p(yt|x(i)
t|t−1,θ))−NlogM. (2.13)

Equation (2.13) is evaluated using the particle filter. As an example, consider the

simple state space model from equations (2.3) and (2.4) and the dataset from the AR(1)

process. The results for profiling the likelihood with respect to the parameter, a, using

a particle sample size of 200, are shown in Table 2.2. As a reminder, the true value of

the parameter is a = 0.95. In this example, the value corresponding to the maximum

log-likelihood is a = 0.92. Recall Table 2.1 and note that this estimate of a = 0.92 is

close to the MLE evaluated by the Kalman filter. As an additional note, when comparing

the results from Tables 2.1 and 2.2, the log-likelihood values are not identical since the

results using SIR are not ”exact”. They are approximate and depend on the number of

particles used. As the sample size, M → ∞, the set of particles will provide an ”exact”

representation of the densities of interest, and as a result, the ”exact” estimates.
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Table 2.2: The results of likelihood-based parameter estimation using SIR.

Value of a Log-likelihood
0.85 -950.2724
0.86 -950.8097
0.87 -948.3962
0.88 -946.8039
0.89 -947.3001
0.90 -947.4689
0.91 -947.1498
0.92 -943.8871
0.93 -946.5560
0.94 -947.6808
0.95 -945.1897
0.96 -944.6773
0.97 -949.4245
0.98 -951.1951
0.99 -952.9748
1.00 -957.5125

2.2.3 State Augmentation

Another method of parameter estimation for state space models utilizes state augmentation.

This method approximates the joint filter density between the state and unknown param-

eters. Parameter estimation via state augmentation allows the parameter vector, θt, to

evolve with time, where θt represents the parameter estimate specific to time t. However,

this does not imply that the parameters are truly time dependent, as there are ways to make

the parameter values converge to static values (Kitagawa, 1998; Ionides et al., 2006). In

this approach, the state vector is augmented to include the vector of unknown parameters,

such that,

x̃t =

[
xt

θt

]
.

For example, if state augmentation is applied to the state space model from equations (2.3)

and (2.4) the system and observation equations (respectively) become,

[
xt

at

]
=

[
at−1xt−1

at−1

]
+

[
emt

eθt

]
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yt =
[
1 0

] [xt

at

]
+ eot .

Here, it can be noted that state augmentation has turned this former linear problem into a

nonlinear one. In this example, the dynamical parameter, at, evolves with time such that,

at = at−1 + eθt , where eθt is some additional white noise. Note, the statistics of eθt need to

be specified (e.g. if eθt ∼ N(0, σθ) then σθ needs to be specified). The augmented states

can also be rewritten in state space form:

x̃t = f(x̃t−1) + ẽt (2.14)

yt = g(x̃t) + eot (2.15)

where,

x̃t =

[
xt

at

]
and ẽt =

[
emt

eθt

]
.

The SIR algorithm can be used to obtain the augmented state vector, x̃t, which yields the

joint filter density that includes the parameters: {x̃(i)
t|t} = {x(i)

t|t ,θ
(i)
t } ∼ p(xt,θt|Yt).

Figure 2.4 shows the results from an example of parameter estimation via state

augmentation. The dataset from the AR(1) process is used. This example also uses a

particle sample of size 200 and a parameter error term of eθt ∼ N(0, σθ = 0.05). Figure 2.4

shows the trace of the parameter, at, as it evolves over time. As a result, the trace of a

appears to move about a mean of a = 0.822065. Comparing these results with the results

from maximum likelihood estimation, state augmentation does not appear to produce a

result as accurate as the ML method. However, using state augmentation is advantageous

because it has a much faster computation time than maximum likelihood estimation and

since it is in standard state space form, it is readily solvable by standard filtering algorithms.

As seen in the previous example, effectively estimating static parameters via state

augmentation may be difficult. Aside from ML methods, there are other alternative

techniques that are better suited to estimate time-constant parameters. For example,

multiple iterative filtering is a method mainly used to estimate static parameters. This

method uses state augmentation with an additional concept of decreasing the variance of

the parameter’s error term over multiple iterations of the state augmented particle filtering
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Figure 2.4: Trace of the single parameter a in an AR(1) process; estimated via state
augmentation. Shown are the 95% confidence bounds (green lines) and the parameter a
(black line). The true value of a = 0.95.
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algorithm (Ionides et al., 2006). It is investigated below.

2.2.4 Multiple Iterative Filtering

The previous section provides details of parameter estimation using augmented states

where the set of particles advance through the filter only once. Multiple iterative filtering

is a method that uses the time-varying parameter technique to produce optimal estimates

for time-constant parameters. With additional iterations of the state augmented particle

filter, the maximum likelihood of the parameters can be estimated. This can be achieved

by reducing the variance of the error term in the parameter process, eθt , at each iteration.

As the variance of eθt approaches zero, the parameters will eventually become fixed at a

constant value that approximately represents their corresponding maximum likelihood

estimate (Ionides et al., 2006).

To estimate the parameters of an augmented state space model, a multiple iterated

filtering algorithm is provided below.

Multiple Iterative Filtering (MIF) Algorithm

Suppose, eθt ∼ N(0, σ2
θ)

• Select starting values for θ̂k=0, σθ,k=0, the number of iterations, K, and the discount

factor, α (0 < α < 1)

(Remark: K and α are chosen such that σ2
θ will be small enough that the parameter, θ̂k,

will be fixed at a fairly constant value by the end of the iterative algorithm.)

For iterations, k = 1, 2, ... , K:

• Let σθ,k = ασθ,k−1

For observations, t = 1, 2, ... , N:

• Run the state augmented particle filter to obtain:

θ̂t,k = θ̂t(θ̂k−1, σθ,k) = E[θt|Yt]

Vt,k = Vt(θ̂k−1, σθ,k) = V ar(θt|Yt−1)

End For (t)

• Set θ̂k = θ̂k−1 + V1,k

∑N
t=1 V

−1
t,k (θ̂t,k − θ̂t−1,k)
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Table 2.3: The results of parameter estimation using multiple iterated filtering with an
augmented state space model.

Iteration Estimate of a
1 0.8111517
2 0.8651654
3 0.8726499
4 0.8952580
5 0.9014250
6 0.8918252
7 0.9100771
8 0.8743331
9 0.8732276

where θ̂t=0,k = θ̂k−1

End For (k)

Use θ̂k=K as the final estimate.

Figure 2.5 shows the results of parameter estimation using multiple iterated filtering

with an augmented state space model. The dataset generated from the AR(1) process

and a particle sample size of 500 is used. In addition, the starting values of θ̂k=0 = 0,

σθ,k=0 = 0.1, K = 9 and α = 0.6 were used. Table 2.3 shows the parameter estimates to

each corresponding iteration from Figure 2.5. The results show that MIF yields a final

parameter estimate of a = 0.8732276. This is a better estimate than the estimate evaluated

from only a single run of the state augmented particle filter. However, MIF requires greater

computational effort, as it runs the augmented state particle filter K iterations before a

maximized likelihood estimate is reached. In addition, MIF does not quite reach the same

estimated parameter value as the MLE from Section 2.2.2. Taking the average of multiple

runs of the MIF algorithm could improve results. An increase in the number of particles

or an increase in the number of iterations could also improve results but would be more

computationally costly.
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Figure 2.5: Models of the single parameter a in an AR(1) process; estimated via multiple
iterative state augmented particle filtering. Shown are the traces of the parameter a
generated in each of the 9 iterations. The true value of a = 0.95.
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2.3 Markov Chain Monte Carlo (MCMC)

MCMC methods generate samples from a target distribution which is known up to a

proportionality constant. It begins with a randomly selected initial value. As the iterations

of the MCMC step progress, new values are accepted/rejected and generally, are only

dependent on the previously sampled value. As a result, the subsequent samples are

independent of the initial value. After a large number of iterations, the results become

a realization of a Markov chain with a stationary distribution. With regard to particle

filtering, the MCMC technique that will be focused on is the Metropolis-Hastings (MH)

algorithm.

2.3.1 Sequential MCMC

A common issue when using SIR alone, is the loss of diversity in the set of particles. This

occurs when after resampling, only a few unique values in the set, {x(i)
t|t}, remain. To

assess this, it is useful to measure the effective number of particles, Peffective, which can

be calculated by dividing the number of distinct particles by the total number of particles

in {x(i)
t|t}. To alleviate a low Peffective, a popular solution is to add an MCMC update

step after resampling in the SIR algorithm (Carpenter et al., 1999; MacEachern et al.,

1999; Gilks and Berzuini, 2001). Below is a particle filter Metropolis-Hastings (PF-MH)

algorithm. It is essentially the SIR algorithm with an embedded MH step. At time t, after

resampling (and if Peffective is too low, usually below 30%, which is the value used below),

each resampled particle will be compared to a newly generated (predictive) particle from

the same system model. The likelihood ratio of the newly generated particle over the

resampled particle will be calculated. At that point, the new particle will be accepted

over the resampled particle with an acceptance probability equal to the likelihood ratio

(or equal to 1 if the likelihood ratio is greater than 1). This technique is used for state

estimation and reduces the loss of diversity (in the set of particles) compared to using SIR

alone. However, it can also be used for parameter estimation with state augmentation and

multiple iterative filtering. As an additional note, the same notation and implementation of

the SIR algorithm from Section 2.2.1 will be used for the remainder of this thesis.

Particle Filter with Metropolis-Hastings (PF-MH) Update Algorithm

Note: before beginning the PF-MH algorithm, the number of particles, M, the state space
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model (system and observations equations) and observations, Yt (where t = 1, ..., N), are

required.

For observation, t = 0:

• Sample M particles, {x(i)
t } from a prior distribution

For observation, t = 1, ... , N:

• Using the state space model and observations yt, run the SIR algorithm (from Section

2.2.1) to obtain {x(i)
t|t}

• Initialize i = 1; randomly sample a single particle from the resampled ensemble (i.e.

{x(i)
t|t})

• Compute Peffective

If Peffective ≤ 0.3:

The MH update step:

For particle, i = 2, ... , M:

• Sample a random (trial) particle from {x(i)
t−1|t−1}

• Pass the trial particle through the system model to get a sample from

{x(i)
t|t−1}

and denote the trial particle by x
(i)∗
t|t−1

• Compute the acceptance probability:

LR =
p(yt|x(i)∗

t|t−1
)

p(yt|x(i−1)
t|t )

• Draw u ∼ U(0, 1)

If min(1, LR) ≥ u:

• x
(i)
t|t = x

(i)∗
t|t−1

Else:
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• x
(i)
t|t = x

(i−1)
t|t

End For (i)

Else, skip MH update step

End For (t).

Figure 2.6 shows the estimated states of the AR(1) process using the PF-MH algorithm

and a particle sample size of 200. In addition, for this example, the MH update step was

implemented at every iteration and time step (regardless of whether Peffective was below

0.3). It is evident from Figure 2.6 that the PF-MH procedure is able to see through the

noisy observations and closely recover the true system states. Further, Figure 2.7 shows

the plots of Peffective before and after the MH update step and their respective means. The

mean of Peffective before the MH step is 0.50032 while the mean of Peffective after the MH

step is 0.54626. These results demonstrate that the PF-MH algorithm is successful at

improving the statistical diversity. However, there is a trade-off; a main criticism of such

MCMC algorithms is that they are computationally expensive.
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Figure 2.6: Estimated state of the AR(1) process. Shown are the observations (red dots),
the true state (thin black line) and the PF-MH estimated state (thick blue line).
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Figure 2.7: The plots of Peffective (black line) and the mean of Peffective (red dashed line):
(a) before the MH update step (and after resampling) with a mean of 0.50032 and (b) after
the MH update step with a mean of 0.54626.
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2.3.2 Particle MCMC

Particle Markov chain Monte Carlo algorithms (PMCMC) are typically used to solve

advanced problems in parameter estimation where standard approaches tend to fall short

(Andrieu et al., 2010). For example, in Jones et al. (2010), MCMC algorithms were

assessed in a complex scenario using a nonlinear stochastic-dynamic phytoplankton-

zooplankton model. In particular, of interest, is the MH-PF-MH method that was used.

It entails a PF-MH subroutine that is embedded within a MH MCMC algorithm. The

technique allows for joint state and parameter estimation.

The objective of PMCMC algorithms is to return a sample set that approximately

follows the target distribution of the states and parameters of interest. This is done by

using the output of a SIR algorithm that targets {x(i)
t|t} ∼ p(xt|Yt). The set of particles

distributed by p(xt|Yt) will be used as the proposal distribution in the PMCMC update.

The ultimate focus of this thesis is to use PMCMC algorithms to estimate the dynamical

parameters in state space models.

To reiterate, sequential MCMC is a particle filter with an embedded MCMC update

step. In contrast, the particle MCMC algorithm is an MCMC algorithm with an embedded

particle filter at each iteration of the chain. Specifically, the PMCMC algorithm is a series

of K iterations, where each iteration uses a particle filter subroutine to evaluate a proposal

distribution that is based on newly generated parameter values, denoted by, θ∗. This

proposal distribution is then used to calculate the likelihood of θ∗ given all observations,

YN . Lastly, θ∗ will be accepted by the MCMC step with a probability equal to the

likelihood ratio of the new versus the old (or previously accepted) parameter estimates.

Below is an implementation of particle MCMC using the Metropolis-Hastings algorithm

with an embedded PF-MH subroutine. For further details, see Jones et al. (2010).

MH-PF-MH Algorithm

Note: the number of iterations, K and the proposal distribution, Q used to generate the

parameters θk need to be determined.

For iteration k = 1:

• Arbitrarily set θk=1

• Run the PF-MH algorithm to obtain {x(i)
t|t} for t = 1, ... , N
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• Evaluate L(θk|YN) ≈
∏N

t=1
1
M

∑M
i=1 p(yt|x(i)

t|t )

For iteration, k = 2, ... , K:

• Trial parameters are generated from: θ∗k = θk−1 +Q

• Run the PF-MH algorithm to evaluate: L(θ∗k|YN)

The MH update step:

• Compute the acceptance probability:

LR =
L(θ∗k|YN )

L(θk−1|YN )

• Draw u ∼ U(0, 1)

If min(1, LR) ≥ u:

• θk = θ∗k

Else:

• θk = θk−1

End For (k).

Figure 2.8 shows the estimated parameter, a, of the AR(1) process using the MH-PF-

MH algorithm with a particle sample size of 200, an initial parameter value of a = 0.6, and

K = 10,000 iterations. In addition, the new values of θ are generated from θ∗k = θk−1 +Q

where Q ∼ N(0, 0.02). Also note, in this example, to save some computational time, the

MH step embedded in the SIR algorithm is only implemented when Peffective falls below

0.3. In Figure 2.8, the black line represents the trace of a and the red dashed line represents

the true value of a = 0.95.

The acceptance rate for this example is computed and yields a value of 4.46%. The

acceptance rate indicates that the trial parameters generated from, θ∗k = θk−1 +Q, are

accepted 4.46% of the time out of a total of K = 10,000 iterations. This is a relatively

low acceptance rate and means that the chain is not moving much. To alleviate a low

acceptance rate, a simple solution is to inflate the observation error variance in equation

(2.4).
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Figure 2.8: Plot of the parameter a in an AR(1) process; estimated using the MH-PF-MH
update algorithm. Shown are the estimated values of the parameter a (black line) and the
true value of a = 0.95 (red dashed line).
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To remove the bias that results from the particles chosen at the beginning of the MH

iterations, the first k iterations are discarded. The first k iterations are called the burn-in

stage. The length of the burn-in period can be estimated by plotting the autocorrelation

function (ACF) of the estimated parameter vector, θ over the k iterations.
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Figure 2.9: Plot of the ACF for the MH-PF-MH estimated parameter a in an AR(1) process.
The length of the burn-in period is approximately k = 485 iterations long.

Figure 2.9 is the ACF plot corresponding to the results in Figure 2.8. The results show

that the decorrelation time of the chain, and hence the burn-in period is approximately

k = 485 iterations long. After discarding the burn-in period, the results from Figure 2.8

show that a ∼ N(0.9406947, 0.0264019). As a reminder, the true value of the static

parameter is a = 0.95. With respect to the previously estimated values of a, the MLE from

Table 2.2 is a = 0.92, the estimate via state augmented particle filtering from Figure 2.4 is

a = 0.822065 and the estimate using MIF from Figure 2.5 is a = 0.8732276. Comparing

the results from the ML method, state augmentation and MIF, the MH-PF-MH algorithm

is more robust and produces a more accurate estimate of the parameter, a. However, as

mentioned previously, it is computationally expensive. For every iteration, the MH-PF-MH
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algorithm requires the SIR to generate M number of particles for each time step (from t =

1, ... , N). This example shows that the PMCMC algorithm is useful but time consuming in

estimating the static parameter, a, from the AR(1) process. Yet, the PMCMC algorithm

is able to make suitable estimations for static parameters in a wide range of models.

In Chapter 3, the PMCMC algorithm along with all the state and parameter estimation

techniques discussed in Section 2.2 and 2.3 will be applied using a nonlinear state space

model and with no assumptions of Gaussian error.



CHAPTER 3

MODELING POPULATIONS

This chapter discusses the lynx-hare dataset and the predator-prey model introduced by

Lotka (1920) and Volterra (1926). In this thesis, the predator-prey model is used to

define the evolution of the animals’ populations and only considers the observations of

the lynx-hare populations with no additional environmental or external factors. Note that

the predator-prey model is a nonlinear population model with no assumption of Gaussian

noise; therefore, Chapter 3 will only consider the estimation techniques that are suitable

for such systems as discussed in Section 2.2 and 2.3 (i.e. particle filtering methods as

opposed to Kalman filtering methods).

3.1 The Predator-Prey Model

The Lotka-Volterra predator-prey model consists of two equations, first, the growth equa-

tion for the prey (hare) population:

dN1

dt
= r1N1 − b1N1N2 (3.1)

and second, the growth equation for the predator (lynx) population:

dN2

dt
= −r2N2 + b2N2N1 (3.2)

where

N1: population of the prey

33
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N2: population of the predator

r1: prey growth rate in absence of the predators

r2: decay rate of the predator in absence of the prey

b1: predation rate by the predators on the prey

b2: growth rate of the predators (dependent on the prey population).

To explain the Lotka-Volterra equations, there are some assumptions that should be noted.

Firstly, in the absence of predators, the prey population is assumed to grow exponentially

according to dN1

dt
= r1N1, r1 ≥ 0. Likewise, in the absence of the prey, the predator

population decreases at a rate given by dN2

dt
= −r2N2, r2 ≥ 0. However, when both

the predator and prey are present, it is assumed that there is a decay rate in the prey

population and a growth rate in the predator population due to the consumption of the

prey by the predators, at a rate proportional to the frequency of predator-prey interactions.

The frequency of interactions is assumed to be proportional to the product of the prey

population and the predator population (i.e. N1N2), rendering the process a nonlinear one.

With appropriately chosen coefficients the solutions allow for periodic predator and prey

co-oscillations.

Typically, the Lotka-Volterra equations fail to fully capture the evolution of the

predator and prey populations. Noise is often added to the model as a simple improvement

to make the output of the dynamics more realistic. However, prior to adding the noise,

the continuous model is simplified by discretizing the Lotka-Volterra equations. The

discretized equations are:

Predator (lynx):

N2,t = N2,t−1 +Δ(−r2N2,t−1 + b2N2,t−1N1,t−1) (3.3)

Prey (hare):

N1,t = N1,t−1 +Δ(r1N1,t−1 − b1N1,t−1N2,t−1) (3.4)

where Δ is a time increment (typically small). The examples in this thesis assume that

Δ = 0.1. These discretized equations are used as the system equations in the general state
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space model. Referring back to equation (1.1) from Chapter 1, the discretized equations

(3.3) and (3.4) can be rewritten as xt = f(xt−1,θ) + emt , where xt, is a column vector

consisting of the states, N1,t and N2,t at time t and θ, consists of the static parameters

r1, b1, r2 and b2.

For a better understanding of the static parameters and their effects on the oscillations

of the predator-prey model, a simple sensitivity analysis of the parameters is implemented.

The approach involves varying the values of one parameter at a time, while keeping the

remaining parameters fixed. Table 3.1 shows the sensitivity analysis results by presenting

the percentage change in the populations of the predator and prey from the base case

(with no noise) where each parameter is varied as a percentage of the base case. In this

example, the base case consists of the parameter values: r1 = 0.65, b1 = 0.023, r2 = 0.65

and b2 = 0.014. The results from Table 3.1 and Figures A.1, A.2, A.3, and A.4 in

Appendix A, indicate that r1 is the most sensitive to small changes. However, b1 and b2

are the most sensitive to larger negative changes. The parameters, b1 and b2 correspond

to the interactions between the prey and predator populations. It is also evident that the

percentage change in the populations is not proportional to the percentage change in the

parameters. This is due to the nonlinearity of the model. When the populations of the

predator and prey are plotted, the changes are seen in the amplitude and phasing of the

cycles. In general, the parameters in the predator equation (r2 and b2) effect the prey

population to a higher degree than the predator population. Likewise, the parameters in the

prey equation (r1 and b1) effect the predator population more than in the prey population.

3.2 Synthetic Data for a Predator-Prey Model

All examples in this section will use the same synthetic dataset. The dataset’s 200 ob-

servations are generated from the predator-prey model plus additional noise. Referring

to equations (3.3) and (3.4), the synthetic observations are based on the parameter val-

ues, r1 = 0.65, b1 = 0.023, r2 = 0.65, b2 = 0.014 and Δ = 0.1. Furthermore, the

additive noise is a bi-variate normal vector, where each noise variable is distributed by,

eN1
t ∼ N(0, 1) (for the prey) and eN2

t ∼ N(0, 1) (for the predator) and are independent of

one another. Figure 3.1 shows the time series plot of the idealized synthetic dataset.
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Figure 3.1: Time series plot of the simulated dataset from the predator-prey model with
additive noise and parameter values: r1 = 0.65, b1 = 0.023, r2= 0.65 and b2 = 0.014.

3.2.1 State Estimation

The SIR and PF-MH algorithm from Chapter 2 are applied to the synthetic predator-prey

dataset. Figure 3.2 shows the results for state estimation. In this example, both the SIR

and PF-MH algorithm use a particle sample size of 200 and assumes a system error of

emt ∼ N(μm,Σm), where μm is a (2x1) vector of zeros and Σm = I , a (2x2) identity

matrix and an observation error of eot ∼ N(μo,Σo), where μo is a (2x1) vector of zeros

and Σo = I , the (2x2) identity matrix. In addition, the initial 200 particles (for i = 1, ... ,

200) are sampled from the prior distribution:

{x(i)
t=0} =

(
N1,t=0 ∼ N(15, 1)

N2,t=0 ∼ N(15, 1)

)
.

Note that this prior distribution for the initial particle sample set will be used for the

remainder of this section. The results of the SIR algorithm and the PF-MH algorithm from

Figure 3.2 are compared by computing the mean of the squared errors (MSE) between

the estimated state and the true state. When examining the synthetic predator dataset, the

MSE is 4.7704 for the SIR algorithm and 3.0765 for the PF-MH algorithm. In regards

to the synthetic prey dataset, the MSE is 5.9295 for the SIR algorithm and 2.7851 for

the PF-MH algorithm. These figures indicate that the PF-MH algorithm is more accurate
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in terms of reducing the difference between the estimates and the true states since the

incorporation of the MCMC step has improved the sample diversity. In addition, scatter

plots of the true values versus the estimated states of the predator and prey populations

using both algorithms are shown in Figure 3.3 and a regression analysis is executed

which yields correlation coefficients of 0.993369 and 0.995891 for the SIR and PF-MH

algorithms (respectively). This produces the same conclusion; the PF-MH algorithm

recovers state estimates that are slightly closer to the true values of the populations than

the SIR algorithm.
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Figure 3.2: Estimated states of the synthetic predator-prey dataset using: (a) the SIR
algorithm and (b) the PF-MH algorithm. Shown are the observations of the predator and
prey populations (blue and red dots respectively) and the estimated states (blue and red
lines respectively).
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Figure 3.3: Scatter plots of the true and the estimated values of the predator and prey
populations using: (a) the SIR algorithm and (b) the PF-MH algorithm where the red line
represents the regression line.

3.2.2 Parameter Estimation

This section attempts to estimate the four dynamical parameters in the predator-prey model

using the various methods examined in Chapter 2. In these examples, the same synthetic

predator-prey dataset is used.

3.2.2.1 Maximum Likelihood Estimation

The first approach considered is the maximum likelihood method. The implementation

of the ML method uses a particle sample size of 300 and assumes a system error of

emt ∼ N(0,Σm) and an observation error of eot ∼ N(0,Σo), where both Σm and Σo are

(2x2) diagonal matrices with the diagonal entries equal to 2.

Figure 3.4 shows four profile log-likelihoods where each profile represents an individ-

ual parameter varying while the remaining three parameters are fixed at their base case

values. The log-likelihoods are calculated for each parameter with the range of values,

r1 = [0.30, 1.50], b1 = [0, 0.019], r2 = [0.21, 1.00] and b2 = [-0.015, 0.031] while fixing

the values of the other parameters at their (known) true values. As a result, the MLE for

each dynamical parameter is r1 = 1.18, b1 = 0.011, r2 = 0.50 and b2 = 0.013. Recall that

the true dynamical parameter values are r1 = 0.65, b1 = 0.023, r2 = 0.65 and b2 = 0.014.
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Figure 3.4: Plots of the log-likelihood function for 1 varying parameter (with the remaining
3 parameters fixed) using the synthetic predator-prey dataset. The figures show: (a) r1
varying (b) b1 varying (c) r2 varying and (d) b2 varying.

These results indicate that this method does not recover the true parameter values accu-

rately. However, notice from Figure 3.4 (for plots (a) r1 and (b) b1 in particular) that the

peaks of the profiles are relatively flat. It is also evident that there is a visible roughness to

each of the log-likelihoods. This is due to the Monte Carlo variation in the sample based

estimation procedure, a feature that is problematic when used with optimization algorithms

that are normally used to maximize the likelihood.

The ML method is repeated, but in this example, estimates two dynamical parameters

simultaneously. The same particle sample size and errors from the previous ML example

are used. Figure 3.5 shows the six contour plots of the log-likelihood functions. Each

contour plot represents a set of two varying parameters with the remaining two parameters

fixed at their base case values. According to Figure 3.5, the corresponding MLEs are

shown in Table 3.2. Notice in Figure 3.5 (c) and (d) that there appears to be a set of MLEs

along the diagonal of the plots. This relationship suggests that there is a dependence

among the parameters (r2, b2) and (r1, b1). Therefore, by increasing the value of b2 (for

example), a MLE can be artificially found by increasing r2 accordingly (and vice versa).

The same outcome is implied for the relationship between r1 and b1. This makes sense
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in terms of the predator-prey population model which has multiple ways of increasing

or decreasing the populations. In general, the contour plots show regions of high valued

log-likelihoods. This demonstrates that it is difficult to effectively estimate the individual

dynamical parameters in a nonlinear system using maximum likelihood estimation due to

the dependence structure imposed by the predator-prey dynamics.
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Figure 3.5: Plots of the log-likelihood function for 2 varying parameter (with the remaining
2 parameters fixed) using the synthetic predator-prey dataset. The figures show: (a) b1 and
b2 varying (b) b1 and r2 varying (c) b2 and r2 varying (d) r1 and b1 varying (e) r1 and b2
varying and (f) r1 and r2 varying.
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Table 3.2: The results of likelihood-based parameter estimation for the synthetic predator-
prey model and dataset. The values of the log-likelihoods correspond to the set of two
parameters and their maximum likelihood estimates.

Parameters MLEs Value of the Maximum Log-likelihood
(b1, b2) (0.015, 0.017) -1252.231
(b1, r2) (0.010, 0.540) -1120.362
(b2, r2) (0.000, 0.170) -1279.951
(r1, b1) (0.430, 0.010) -1144.034
(r1, b2) (1.130, 0.015) -1252.329
(r1, r2) (1.150, 0.520) -1215.770

3.2.2.2 State Augmentation

The next parameter estimation technique utilizes state augmented particle filtering. Recall

that this method uses the SIR algorithm to approximate the joint filter density between the

state and unknown parameters. It augments the state vector, xt, to include the vector of

unknown parameters, θt. The example will initially estimate the parameters individually

with one parameter varying while the remaining three parameters are fixed. Figure 3.6

shows the trace of each parameter. In this example, the particle sample size is 400 and

assumes the same system and observation errors, emt ∼ N(0,Σm) and eot ∼ N(0,Σo),

where both Σm and Σo are (2x2) diagonal matrices with the diagonal entries equal to

2. Each of the dynamical parameters in Figure 3.6 evolve with time such that, for (a)

r1,t = r1,t−1+ert , (b) b1,t = b1,t−1+ebt , (c) r2,t = r2,t−1+ert and (d) b2,t = b2,t−1+ebt where

ert ∼ N(0, 0.05) and ebt ∼ N(0, 0.001). In addition, the initial parameter positions for r1
and r2 are sampled from the prior distribution, N(0.5, 0.1), while the initial parameter

positions for b1 and b2 are sampled from N(0.01, 0.005). Referring to Figure 3.6, the

traces of the dynamical parameters tend to travel about the means of, (a) r1 = 0.6170, (b)

b1 = 0.0196, (c) r2 = 0.6398 and (d) b2 = 0.0116. These estimates are closer to the true

parameter values than the estimates recovered in the likelihood based method.

To test the estimation of multiple parameters simultaneously, the state augmented

particle filter is executed when all four dynamical parameters are varying. The parameters

evolve with time such that, θt = θt−1 + eθt , where eθt is the vector,
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eθt =

⎡
⎢⎢⎢⎢⎢⎣
er1t ∼ N(0, 0.05)

eb1t ∼ N(0, 0.001)

er2t ∼ N(0, 0.05)

eb2t ∼ N(0, 0.001)

⎤
⎥⎥⎥⎥⎥⎦ .
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Figure 3.6: Trace of the static, dynamical parameters that model the synthetic predator-prey
dataset. The parameters are estimated individually with one parameter varying (and the
remaining three parameters fixed) via state augmentation. Shown are the 95% confidence
bounds (green lines) and the parameter estimates (black line) where the figures show: (a)
the trace of r1 (b) the trace of b1 (c) the trace of r2 and (d) the trace of b2.

Unchanged from the previous example, the initial parameter positions for r1 and r2 are

sampled from the prior distribution, N(0.5, 0.1), and the initial parameter positions for b1
and b2 are sampled from N(0.01, 0.005). Figure 3.7 displays the trace of the estimated

dynamical parameters when estimated simultaneously via state augmentation. Furthermore,

the results from Figure 3.7 illustrate that the traces move about the means of r1 = 0.4733,
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b1 = 0.0154, r2 = 0.5228 and b2 = 0.0108. These estimates are not as accurate as the

values of estimating one parameter at a time via state augmentation. Evidently, it is difficult

to simultaneously and accurately estimate multiple parameters (in a nonlinear system with

a dependence structure) using state augmented particle filtering. As an additional note,

these estimates do not settle down to constant values. However, recall that this synthetic

predator-prey example uses constant parameter values of r1 = 0.65, b1 = 0.023, r2= 0.65 and

b2 = 0.014 and therefore are not time-varying. As a result, the traces shown in Figure 3.7

are indicative of a dependence structure.
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Figure 3.7: Traces of the dynamical parameters that model the synthetic predator-prey
dataset. The parameters are estimated simultaneously via state augmentation. Shown are
the 95% confidence bounds (green lines) and the parameter estimates (black line) where
the figures show: (a) the trace of r1 (b) the trace of b1 (c) the trace of r2 and (d) the trace
of b2.

3.2.2.3 Multiple Iterative Filtering

The next example features the multiple iterative filtering algorithm. This example uses a

particle sample size of 200, a discount factor of α = 0.7 and assumes the same system
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Table 3.3: The results of parameter estimation (of the synthetic predator-prey dataset) after
twelve iterations of the MIF algorithm. Note the parameters of the predator-prey model
are estimated individually. Each column of the estimations represent the parameter that
varies while the remaining three parameters are fixed.

Iteration Estimate of r1 Estimate of b1 Estimate of r2 Estimate of b2
1 0.1717854 0.004205185 0.08050758 0.007266131
2 0.3428177 0.011057986 0.17331980 0.013016326
3 0.4366784 0.014805843 0.21111472 0.010865334
4 0.4951432 0.017192456 0.25083057 0.012645292
5 0.5378438 0.018383749 0.28424824 0.014000958
6 0.5566364 0.019543945 0.28867741 0.014672408
7 0.5739561 0.020810057 0.29483931 0.015959497
8 0.5855186 0.021416252 0.30528206 0.016207431
9 0.5907506 0.021893999 0.31055583 0.016042155
10 0.5966658 0.022046881 0.31199082 0.016187363
11 0.6016919 0.022346022 0.31336732 0.016188371
12 0.6040568 0.022425236 0.31398200 0.016101349

and observation errors, emt ∼ N(0,Σm) and eot ∼ N(0,Σo), where both Σm and Σo

are (2x2) diagonal matrices with the diagonal entries equal to 2. Table 3.3 shows the

results for estimating the dynamical parameters individually using the MIF algorithm

(i.e. allowing one parameter to vary while holding the remaining three parameters fixed).

For each parameter, the initial starting values, θ̂k=0 are, r1 = 0, b1 = 0.005, r2 = 0

and b2 = 0.005 and the initial standard deviations, σθ,k=0 are, σr1 = 0.05, σb1 = 0.005,

σr2 = 0.05 and σb2 = 0.005. In addition, this example uses K = 12 iterations. As a result,

the MIF algorithm yields final parameter estimates of, r1 = 0.6040568, b1 = 0.022425236,

r2 = 0.31398200 and b2 = 0.016101349. These estimates are in a close proximity to the

true parameter values except for parameter, r2. This may perhaps imply that the data is

not informative about r2. However, it is also worth noting that overall, r2 is less sensitive

compared to the other dynamical parameters.

Estimating the four dynamical parameters simultaneously is attempted using the MIF

algorithm. Again, the MIF algorithm is setup with a particle sample size of 200, a discount

factor of α = 0.7, K = 12 iterations and assumes the same system and observation errors,

emt ∼ N(0,Σm) and eot ∼ N(0,Σo), where both Σm and Σo are (2x2) diagonal matrices

with the diagonal entries equal to 2. The initial starting values of the parameters in θ̂k=0
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Table 3.4: The results of parameter estimation (of the synthetic predator-prey dataset) after
twelve iterations of the MIF algorithm. Note the parameters of the predator-prey model
are estimated simultaneously.

Iteration Estimate of r1 Estimate of b1 Estimate of r2 Estimate of b2
1 0.3324379 0.015104058 0.2700656 0.03832258
2 0.4061069 0.009058946 0.3613434 0.02731976
3 0.3721362 0.014597475 0.3696583 0.01716036
4 0.3125684 0.015603633 0.3823655 0.01561051
5 0.3145455 0.017006550 0.3754020 0.01575950
6 0.3064652 0.016976685 0.3896831 0.01590219
7 0.3094856 0.017439638 0.3761400 0.01691502
8 0.3105321 0.017891057 0.3805513 0.01584019
9 0.3032411 0.017369636 0.3814908 0.01452703
10 0.3015772 0.017262597 0.3786975 0.01413970
11 0.3014240 0.016986490 0.3778125 0.01370592
12 0.3013843 0.016979189 0.3790630 0.01361188

are, r1 = 0.30, b1 = 0.050, r2 = 0.30 and b2 = 0.050 and the initial standard deviations

in σθ,k=0 are, σr1 = 0.05, σb1 = 0.005, σr2 = 0.05 and σb2 = 0.005. Table 3.4 shows

the results of this example and generates final parameter estimates of r1 = 0.3013843,

b1 = 0.016979189, r2 = 0.3790630 and b2 = 0.01361188. It appears that the parameter,

b2 is the only recovered parameter that is close to its true value. In this MIF example,

estimating the four dynamical parameters simultaneously does not yield results as accurate

as estimating the parameters one at a time.

3.2.2.4 Particle MCMC

The final examined parameter estimation technique is the MH-PF-MH algorithm. Fig-

ure 3.8 shows the traces of the estimated dynamical parameters, using the MH-PF-MH

algorithm. The parameters are estimated individually with one parameter varying and the

remaining three parameters fixed. The example also uses a particle sample size of 200,

initial parameter values of r1 = 0.50, b1 = 0.010, r2 = 0.30 and b2 = 0.005, K = 500 itera-

tions and assumes the system and observation errors, emt ∼ N(0,Σm) and eot ∼ N(0,Σo),

where Σm = I , the (2x2) identity matrix and Σo is a (2x2) diagonal matrix with the

diagonal entries equal to 3. In addition, the trial parameter values are generated from (a)

r∗1,t = r1,t−1 + ert , (b) b∗1,t = b1,t−1 + ebt , (c) r∗2,t = r2,t−1 + ert and (d) b∗2,t = b2,t−1 + ebt ,

where ert ∼ N(0, 0.05) and ebt ∼ N(0, 0.001). Using the results from Figure 3.8, the



47

burn-in period is computed for each trace of the dynamical parameters. After remov-

ing the burn-in period, the estimates of the parameters are, r1 ∼ N(0.65916, 0.01027),

b1 ∼ N(0.02277, 0.00031), r2 ∼ N(0.65098, 0.01024) and b2 ∼ N(0.01380, 0.00030).

Recall that the true dynamical parameters have values of, r1 = 0.65, b1 = 0.023, r2 = 0.65

and b2 = 0.014. This shows that when estimating the dynamical parameters one at a time,

the MH-PF-MH algorithm closely recovers the true parameter values, more so than any of

the other parameter estimation techniques discussed in this thesis.
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Figure 3.8: Plots of the static parameters that model the synthetic predator-prey dataset.
The parameters are estimated individually with one parameter varying (and the remaining
three parameters fixed) using the MH-PF-MH update algorithm. Shown are the estimated
values of the parameters: (a) r1 (b) b1 (c) r2 and (d) b2.

The MH-PF-MH algorithm is implemented again, estimating the four dynamical

parameters simultaneously. The results are shown in Figure 3.9. The example uses a
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particle sample size of 200, initial parameter values of r1 = 0.30, b1 = 0.010, r2 = 0.30

and b2 = 0.005, K = 10,000 iterations and assumes the system and observation errors,

emt ∼ N(0,Σm) and eot ∼ N(0,Σo), where Σm = I , the (2x2) identity matrix and Σo is a

(2x2) diagonal matrix with the diagonal entries equal to 4.5. In addition, the new values of

θ are generated from θ∗k = θk−1 +Q where,

Q =

⎡
⎢⎢⎢⎢⎢⎣
Qr1 ∼ N(0, 0.05)

Qb1 ∼ N(0, 0.001)

Qr2 ∼ N(0, 0.05)

Qb2 ∼ N(0, 0.001)

⎤
⎥⎥⎥⎥⎥⎦ .

The burn-in period for all four parameters in Figure 3.9 is approximately 225 itera-

tions long. After discarding the burn-in period, the results show that the parameters appear

to have an approximate distribution of, r1 ∼ N(0.6907, 0.0433), b1 ∼ N(0.0240, 0.0013),

r2 ∼ N(0.6219, 0.0586) and b2 ∼ N(0.0133, 0.0012). Figure 3.10 also shows the his-

tograms corresponding to the plots in Figure 3.9. The histograms represent the approximate

distribution of each of the dynamical parameters. As seen in all previous examples in

Section 3.2, effectively estimating multiple parameters is a more difficult task than es-

timating the parameters one at a time. Despite this fact, the MH-PF-MH algorithm is

still able to closely recover the four parameter’s true values even when they are estimated

simultaneously.
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Figure 3.9: Plots of the static parameters that model the synthetic predator-prey dataset.
The parameters are estimated simultaneously using the MH-PF-MH update algorithm.
Shown are the estimated values of the parameters: (a) r1 (b) b1 (c) r2 and (d) b2.
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Figure 3.10: Histograms of the dynamical parameters from the predator prey model,
corresponding to the results from Figure 3.9. Note, the red vertical lines represent the mean
of the distributions and the blue vertical lines represent the median of the distributions.
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3.3 Lynx-Hare Dataset

This section applies the techniques used in Section 3.2 to the lynx-hare dataset. To begin

the state and parameter estimation of this dataset, an appropriate initial model for the

lynx-hare populations and therefore, the four dynamical parameters (r1, b1, r2, b2) need to

be specified. Equations for the initial parameter estimates are given by

b1 =
r1
N2

, b2 =
r2
N1

,
√
r2 =

2π

T
√
r1
, r1 = A

N2

N1

2π

T
. (3.5)

These equations are from Renshaw (1993) and provide approximate estimates of the

parameters using dynamical considerations from the features of the observed series. Here,

T , represents the period of the population cycle and A is the amplitude ratio of the

prey to the predator. It is assumed that the lynx-hare dataset has a period of T = 12

and an amplitude ratio of A = 1.9807. As a result, the initial parameter estimates are,

r1 = 0.6472, b1 = 0.02284, r2 = 0.6508 and b2 = 0.01433. Figure A.9 in Appendix A

shows the estimated lynx and hare populations based on these initial estimates.

3.3.1 State Estimation

The states, N1,t and N2,t, are estimated using the SIR algorithm and the PF-MH algorithm.

Figure 3.11 shows the results of both the algorithms using the previously calculated initial

parameter estimates and a particle sample size of 200. In addition, it is assumed that the

system and observation errors are, emt ∼ N(0,Σm) and eot ∼ N(0,Σo), where both Σm

and Σo are (2x2) diagonal matrices with the diagonal entries equal to 2. The MSE between

the estimated states and the observed states are computed for the SIR example and the

PF-MH example. The MSEs for the lynx and hare populations (respectively) are 11.9243

and 26.3576 for the SIR algorithm and 8.0436 and 24.0311 for the PF-MH algorithm.

Correlation coefficients are also computed and yield values of 0.9919226 for the SIR

algorithm and 0.9947966 for the PF-MH algorithm. Figure 3.12 also shows scatter plots of

the observed values versus the estimated states of the lynx and hare populations for both

algorithms. The combination of these results indicate that the PF-MH algorithm slightly

outperforms the SIR algorithm in terms of recovering closer state estimates to the observed

lynx-hare populations.
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Figure 3.11: Estimated states of the lynx-hare populations (in thousands) using the predator-
prey model and (a) the SIR algorithm and (b) the PF-MH algorithm. Shown are the
observations of the lynx and hare populations (blue and red dots respectively) and the
estimated states (blue and red lines respectively).
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Figure 3.12: Scatter plots of the observations and the estimated values of the lynx and hare
populations using: (a) the SIR algorithm and (b) the PF-MH algorithm where the red line
represents the line of best fit.

3.3.2 Static Parameter Estimation

Applying the parameter estimation techniques to the entire lynx-hare dataset is inappropri-

ate. This is due to the changing periods and amplitudes of the dataset throughout the 90

year period, which implies that the parameters themselves are non-stationary. In addition,

the estimation techniques described in this thesis are primarily used to recover static

parameters (with the exception of state augmentation). This section attempts static param-

eter estimation for one segment (or window) of the dataset and then attempts parameter

estimation for the entire dataset by dividing it into multiple overlapping windows. In doing

so, it is assumed that the lynx-hare dataset is described by slowly evolving dynamical

parameters.

Section 3.2 applies the estimation techniques to the synthetic predator-prey dataset

and shows that two oscillations worth of information is enough to successfully recover the

dynamical parameters. The segment of the lynx-hare dataset shown in Figure 3.13 is from

1909 to 1931 and also shows a window of approximately two oscillations. This segment

is chosen for its consistency (in terms of the period, phase shift and amplitude) and the

length of the segment is chosen to provide enough information for effective parameter

estimation. Thus, for the purpose of this section, only the data from 1909 to 1931 (which
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consist of 23 observations) will be used.

The equations from (3.5) are used to obtain an initial model for the window corre-

sponding to the lynx-hare dataset from 1909 to 1931. In addition, the parameters were

slightly scaled to provide a closer match to the observed data. As a result, the initial esti-

mates of the dynamical parameters are r1 = 0.577159, b1 = 0.02939023, r2 = 0.6419528

and b2 = 0.0218594 and uses a Δ = 0.1. The estimated lynx-hare populations using these

initial estimates are shown along with the observed lynx-hare data in Figure 3.13.
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Figure 3.13: Time series plot from 1909-1931 of the observed lynx-hare populations and
the estimated lynx-hare populations using the initial estimates of the dynamical parameters.
Shown are the observed populations of the lynx (blue dashed line) and the hare (red dashed
line) and the estimated populations of the lynx (thick blue line) and the hare (thick red
line).

3.3.2.1 Maximum Likelihood Estimation

This section begins with the likelihood based parameter estimation technique. This

example of the ML method uses a particle sample size of 300 and assumes a system error

of emt ∼ N(0,Σm) and an observation error of eot ∼ N(0,Σo), where both Σm and Σo

are (2x2) diagonal matrices with the diagonal entries equal to 2. Further, the ML method

is implemented by estimating a pair of the dynamical parameters simultaneously. For
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each pair, two parameters are varied while keeping the remaining two parameters fixed at

their initial estimated values. The results for each pair of the parameters are illustrated in

Figure 3.14, which shows the contour plots of their log-likelihood functions. In addition,

when examining Figure 3.14, it is not as evident as it is in Figure 3.5 that a region of high

valued log-likelihoods exist; however, significant Monte Carlo variability in the estimated

log-likelihoods is evident.
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Figure 3.14: Plots of the log-likelihood function for 2 varying parameters (with the
remaining 2 parameters fixed) using the lynx-hare dataset. The figures show: (a) b1 and
b2 varying (b) b1 and r2 varying (c) b2 and r2 varying (d) r1 and b1 varying (e) r1 and b2
varying and (f) r1 and r2 varying.

Table 3.5 displays the MLEs corresponding to the contour plots in Figure 3.14. These

six sets of estimated dynamical parameters are used to reconstruct the predator-prey

model that describes the window of lynx-hare data. The ML estimated model plus the

observations of the lynx-hare populations are plotted and illustrated in Figure A.10. Using
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Table 3.5: The results of likelihood-based parameter estimation for the predator-prey
model and lynx-hare dataset. The values of the log-likelihoods correspond to the set of
two parameters and their maximum likelihood estimates.

Parameters MLEs Value of the Maximum Log-likelihood
(b1, b2) (0.026, 0.012) -170.8696
(b1, r2) (0.025, 0.700) -172.7982
(b2, r2) (0.012, 0.550) -169.6896
(r1, b1) (0.550, 0.022) -173.2389
(r1, b2) (0.650, 0.010) -169.9622
(r1, r2) (0.690, 0.630) -172.1461

Table 3.6: The RMSEs from likelihood-based parameter estimation corresponding to
Table 3.5.

Parameters MLEs RMSEs for the Lynx and Hare
(b1, b2) (0.026, 0.012) 28.02451 and 68.57258
(b1, r2) (0.025, 0.700) 14.13784 and 18.26743
(b2, r2) (0.012, 0.550) 26.12112 and 58.30325
(r1, b1) (0.550, 0.022) 18.67945 and 26.88493
(r1, b2) (0.650, 0.010) 26.38672 and 86.83374
(r1, r2) (0.690, 0.630) 14.80166 and 16.81630

Figure A.10, the root mean squared errors (RMSEs) between the observed values and

the estimated values of the lynx and hare populations are calculated for each set of the

parameter estimates. They are shown in Table 3.6. Reviewing the results from Table 3.5

and 3.6, likelihood based parameter estimation suggests best estimates (with a RMSE of

14.80166 and 16.81630 for the lynx and hare) of r1 = 0.690, b1 = 0.02939023, r2 = 0.630

and b2 = 0.0218594.

3.3.2.2 State Augmentation

State augmented particle filtering is the parameter estimation technique examined next. In

this case, state augmentation is used to estimate the four dynamical parameters simultane-

ously. It is implemented with a particle sample size of 500 and assumes that the system

error is emt ∼ N(0,Σm) and the observation error is eot ∼ N(0,Σo), where both Σm and

Σo are (2x2) diagonal matrices with the diagonal entries equal to 2. Figure 3.15 shows the

traces of the dynamical parameters where they evolve with time such that, θt = θt−1 + eθt

and eθt is the vector,
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eθt =

⎡
⎢⎢⎢⎢⎢⎣
er1t ∼ N(0, 0.05)

eb1t ∼ N(0, 0.001)

er2t ∼ N(0, 0.05)

eb2t ∼ N(0, 0.001)

⎤
⎥⎥⎥⎥⎥⎦ .

Recall, that θt is the vector of (unobserved) dynamical parameters. Similar to the synthetic

predator prey state augmentation example, the initial parameter positions for r1 and r2 are

sampled from the prior distribution, N(0.5, 0.1), and the initial parameter positions for b1
and b2 are sampled from N(0.01, 0.005). Referring to Figure 3.15, the parameters move

about the means of, r1 = 0.4012, b1 = 0.0202, r2 = 1.0143 and b2 = 0.0178. Again, the

parameter estimates are used to reconstruct the lynx-hare predator-prey model (as seen in

Figure A.11) and the RMSEs are computed. The RMSEs are, 33.01519 for the lynx and

63.66073 for the hare. These values are higher than the RMSEs calculated for the best

estimates from the ML method. This implies that the dynamical parameters estimated via

state augmentation do not describe the lynx-hare populations as accurately as the estimates

produced from the profile log-likelihoods and their MLEs.
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Figure 3.15: Traces of the dynamical parameters from state augmentation that model
the chosen segment of the lynx-hare dataset (from 1909 to 1931). The parameters are
estimated simultaneously via state augmentation. Shown are the 95% confidence bounds
(green lines) and the parameter estimates (black line) where the figures show: (a) the trace
of r1 (b) the trace of b1 (c) the trace of r2 and (d) the trace of b2.
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Table 3.7: The results of parameter estimation (of the window of the lynx-hare dataset)
after sixteen iterations of the MIF algorithm. Note the parameters of the predator-prey
model are estimated simultaneously.

Iteration Estimate of r1 Estimate of b1 Estimate of r2 Estimate of b2
1 0.6181365 0.01183534 0.5692287 0.020922434
2 0.5668200 0.01246191 0.4946093 0.013783483
3 0.5794797 0.01692100 0.4569367 0.011393320
4 0.6244345 0.01784326 0.4482243 0.008344242
5 0.6194103 0.02031142 0.4527350 0.008313549
6 0.6216470 0.02072017 0.4548048 0.009573483
7 0.6138090 0.02070080 0.4658748 0.009340477
8 0.6175948 0.02005266 0.4675257 0.008976902
9 0.6178928 0.02044609 0.4683908 0.009109928
10 0.6199285 0.02048547 0.4675356 0.009100534
11 0.6202310 0.02052716 0.4677789 0.009284136
12 0.6199073 0.02053258 0.4679018 0.009326388
13 0.6204618 0.02065104 0.4681984 0.009255612
14 0.6204911 0.02068566 0.4689182 0.009276763
15 0.6204869 0.02074893 0.4689820 0.009339121
16 0.6205990 0.02076818 0.4689508 0.009315681

3.3.2.3 Multiple Iterative Filtering

The four dynamical parameters are estimated simultaneously using the segment of the

lynx-hare dataset and the multiple iterative filtering algorithm. The MIF algorithm is setup

with a particle sample size of 400, a discount factor of α = 0.7, K = 16 iterations and

assumes a system error of emt ∼ N(0,Σm) and an observation error of eot ∼ N(0,Σo),

where Σm and Σo are (2x2) diagonal matrices with the diagonal entries equal to 2 for Σm

and 4 for Σo. The initial estimates of, r1 = 0.577159, b1 = 0.02939023, r2 = 0.6419528

and b2 = 0.0218594 are used. In addition, the initial standard deviations in σθ,k=0

are, σr1 = 0.05, σb1 = 0.005, σr2 = 0.05 and σb2 = 0.005. The results of the MIF

algorithm are shown in Table 3.7 and presents final parameter estimates of r1 = 0.3013843,

b1 = 0.016979189, r2 = 0.3790630 and b2 = 0.01361188. The reconstructed lynx-hare

predator-prey model is presented in Figure A.12 with RMSEs of 45.81733 for the lynx

and 88.88903 for the hare.
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3.3.2.4 Particle MCMC

Lastly, the MH-PF-MH algorithm is utilized to attempt the accurate estimation of the

dynamical parameters. This example estimates the parameters simultaneously and uses a

particle sample size of 200. As well, the implementation of the MH-PF-MH algorithm

is setup with K = 10,000 iterations, initial parameter values of r1 = 0.577159, b1 =

0.02939023, r2 = 0.6419528 and b2 = 0.0218594 and assumes a system error of emt ∼
N(0,Σm) and an observation error of eot ∼ N(0,Σo), where Σm and Σo are (2x2) diagonal

matrices with the diagonal entries equal to 3 for Σm and 10 for Σo. Furthermore, the new

values of θ are generated from θ∗k = θk−1 +Q where,

Q =

⎡
⎢⎢⎢⎢⎢⎣
Qr1 ∼ N(0, 0.05)

Qb1 ∼ N(0, 0.001)

Qr2 ∼ N(0, 0.05)

Qb2 ∼ N(0, 0.001)

⎤
⎥⎥⎥⎥⎥⎦ .

In this example, a clear burn-in period is not evident. Figure 3.17 shows the histograms

of each of the dynamical parameters corresponding to the results in Figure 3.16. The values

of the medians in Figure 3.17 are used as the final dynamical parameter estimates. As a

result, the final parameter estimates are, r1 = 0.929775, b1 = 0.034667, r2 = 0.686116

and b2 = 0.011302. Figure A.13 shows the reconstructed lynx-hare predator prey model

using these MH-PF-MH estimated parameters and produces RMSEs of 24.81985 for

the lynx and 68.11814 for the hare. The coefficient of variation (CV) for each of the

parameter distributions is computed and yields values of 0.3009441 for r1, 0.1969873 for

b1, 0.8015852 for r2 and 0.711433 for b2. As a comparison, the CVs for the synthetic

predator-prey MH-PH-MH example are also computed. The values are, 0.07940717 for

r1, 0.06992277 for b1, 0.1059487 for r2 and 0.09561 for b2. The CVs from the lynx-

hare example are much higher than the CVs from the synthetic predator-prey example.

This could indicate that the lynx-hare population data does not evolve according to this

particular predator-prey model or that the lynx-hare data alone does not provide enough

information to recover the dynamical parameters. In addition, there appears to be a trade

off between fitting the phase and amplitude of the segment of lynx-hare data. The values

of the CVs for the dynamical parameters also suggest very large error bars. This indicates

that the chain has difficulty converging to a set (or a more narrow range) of dynamical
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Figure 3.16: Plots of the dynamical parameters from the predator prey model, using the
window of the lynx-hare dataset and estimated using the MH-PF-MH update algorithm.
Shown are the estimated values of the parameters: (a) r1, (b) b1, (c) r2 and (d) b2.
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parameter values. As a result, PMCMC recognizes that a set of values for the dynamical

parameters may not exist for this particular model because the lynx-hare data segment

appears to have inconsistent dynamics relative to the Lotka-Volterra predator prey model.
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Figure 3.17: Histograms of the dynamical parameters from the predator prey model,
corresponding to the results from Figure 3.16. Note, the red vertical lines represent
the mean of the distributions and the blue vertical lines represent the median of the
distributions.

Table 3.8 shows a summary of the parameter estimation procedures discussed in this

chapter. It states the RMSEs along with the sets of final parameter values estimated by

each of the parameter estimation techniques. The initial parameter estimates appear to

fit the lynx-hare data segment the best (with respect to the RMSEs), mainly because the

parameter values were manually scaled to provide a better fit for the data segment. This

was intended to improve the efficiency of the parameter estimation algorithms.
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Table 3.8: A performance summary of the parameter estimation techniques for fitting the
segment of the lynx-hare dataset. The values of the RMSEs corresponding to the parameter
estimation techniques along with their final dynamical parameter estimates.

Technique Final Parameter Estimates RMSE
(r1, b1, r2, b2) (lynx, hare)

Initial Estimates (0.5772, 0.0294, 0.6420, 0.0219) (11.15701, 18.17424)
MLE (0.6900, 0.0294, 0.6300, 0.0219) (14.80166, 16.81630)
State Augmentation (0.4012, 0.0202, 1.0143, 0.0178) (33.01519, 63.66073)
MIF (0.6206, 0.0208, 0.4690, 0.0093) (45.81733, 88.88903)
PMCMC (0.9300, 0.0347, 0.6861, 0.0113) (24.81985, 68.11814)

3.3.3 Slowly Evolving Parameter Estimation

In order to apply the MH-PF-MH algorithm to the entire dataset, an approach is to assume

that the lynx-hare dataset has dynamical parameters that evolve slowly with time. As

a result, the dataset is sectioned into 8 different segments (or windows). Each window

consists of approximately two oscillations (20 observations) with overlapping windows of

one oscillation (10 observations). The MH-PF-MH algorithm is applied to each window

and run for K = 10,000 iterations. The equations from (3.5) are used to calculate initial

parameter estimates for each window. In addition, the same setup from the previous MH-

PF-MH example are used here. Figure 3.18 shows the slow evolution of each parameter

and Figure 3.19 shows the model of the lynx-hare populations based on the parameter

estimates from Figure 3.18. The estimated states within the overlapping windows are

averaged in order to produce the smooth curves in Figure 3.19.

Unfortunately, the slowly evolving parameter estimates do not produce oscillations

that fit the real lynx-hare dataset well and produce RMSEs of 92.68522 for the hare and

33.52253 for the lynx. However, the oscillations appear to fit at times and diverge at others.

This issue is similar to the example of the single segment of observations from 1909 to

1931, in that the dynamics are inconsistent relative to the observations. Histograms of

the parameters’ distributions are shown in Appendix A for each of the windows. The

histograms show that at times, the distribution is widely dispersed, implying that the set

of parameter values are difficult to identify. As a result, large CVs and error bars are

generated.



64

0.
5

1.
5

(a)

t

r1

10 30 50 70

0.
01

0.
03

0.
05

(b)

t
b1

10 30 50 70

0.
5

1.
5

(c)

t

r2

10 30 50 70

0.
00

0.
02

0.
04

(d)

t

b2

10 30 50 70

Figure 3.18: The slow evolution of the dynamical parameters: (a) r1, (b) b1, (c) r2 and (d)
b2 with error bars representing one standard deviation of uncertainty from the median of
each parameter’s approximate distributions. The entire lynx-hare dataset is used and the
dynamical parameters are estimated using the MH-PF-MH algorithm.



65

0
30

0
70

0

(a)

Year

H
ar

e 
Po

pu
la

tio
n

1845 1865 1885 1905 1925

0
50

15
0

(b)

Year

Ly
nx

 P
op

ul
at

io
n

1845 1865 1885 1905 1925
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CHAPTER 4

DISCUSSION AND CONCLUSION

This thesis examines various filtering techniques for state and parameter estimation. It

begins with a linear and Gaussian example and utilizes the Kalman filter for the estimation

of the true values of the state and parameters of the linear system. The Kalman filter

demonstrates that it is a useful tool that is able to dismiss the noise in the observations

to accurately recover the true values of the states and parameters. The particle filter

and MCMC also prove to be useful for state and parameter estimation for a variety of

underlying systems with no requirements of linearity or normality.

The linear and Gaussian example is followed by a nonlinear and non-Gaussian

example using synthetic data generated from the predator-prey model. In these synthetic

dataset examples, the PF-MH algorithm shows that it is more accurate than SIR in terms

of reducing the difference between the estimates and the true states. This is due to the

incorporation of the MCMC step which has improved the sample diversity.

The parameter estimation techniques examined are maximum likelihood estimation,

state augmentation, multiple iterative filtering and particle Markov chain Monte Carlo. The

main issue with maximum likelihood estimation is that Monte Carlo methods tend to result

in rough likelihood profiles that make it difficult to determine the maximum likelihood

estimates. However, state augmentation and multiple iterative filtering attempt to provide

alternative solutions as they do not require the optimization of likelihoods and are also effi-

cient in terms of their computation time. In addition, state augmentation is straightforward

to implement since it is in standard state space form which makes it readily solvable by

standard filtering algorithms. If time is a concern, state augmentation is the most efficient

parameter estimation technique discussed here and is an appropriate parameter estimation

66
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alternative that provides a rough approximation for parameter estimates.

Particle MCMC is the last parameter estimation technique examined and is the main

focus of this thesis. In the synthetic dataset examples, it recovers the parameter estimates

closest to their true values (relative to the other techniques examined). The main issue

and biggest disadvantage to PMCMC is its computational time. Recall that for every

iteration of the PMCMC procedure, M number of particles are generated for each time

point from t = 1, ..., N. Generally, the PMCMC procedure is implemented for a large

number of iterations in order to observe and discard the burn-in period and to accurately

simulate an approximation of the posterior distribution. In the lynx-hare example, the

PMCMC algorithm is implemented for a total of K = 10,000 iterations and has a run time

of approximately 2 days using Dalhousie University’s Department of Mathematics and

Statistics NX Server powered by a Dual core Xeon Woodcrest 3 Ghz processor.

In the lynx-hare population example using the real data, no parameter estimation

technique distinctly outperforms any of the other techniques. Referring back to Figure 3.17,

PMCMC suggests that the lynx-hare population data does not evolve according to the

dynamics of the predator-prey model and possibly that the lynx-hare data alone does not

provide enough information to recover the dynamical parameters. Although the classic

lynx-hare time series dataset is usually modeled by the Lotka-Volterra equations, some

believe that the lynx-hare population actually follows the dynamics of other ecological

models. For instance, Zhang et al. (2007) believe that the population’s underlying factor for

the oscillations are not caused by the interactions of the lynx and hare but rather the change

in climate. Zhang et al. (2007) also list other potential models which have been used in

previous research to describe the lynx-hare population. These models incorporate the

abundance of the hares’ plant consumption. This suggests that a more complex dynamical

model may be needed to describe this system. Therefore, further knowledge on biology

and ecology is required to yield the true underlying model for the lynx and hare population.

Overall, this thesis examines a number of solutions for parameter estimation in

nonlinear state space models. The analysis presents specific advantages and disadvantages

to each technique. However, if time is not a constraint, PMCMC is the preferred parameter

estimation method. It has the advantage over other approaches in that it can approximate

any posterior distribution for which inference can be made and is a promising technique

for static parameter estimation.
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Figure A.1: Plots of the predator-prey model using parameter values b1 = 0.023, r2 = 0.65
and b2 = 0.014 with the value of r1 changing as a percentage of the base case value. Note
that the base case value of r1 = 0.65.
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Figure A.2: Plots of the predator-prey model using parameter values r1 = 0.65, r2 = 0.65
and b2 = 0.014 with the value of b1 changing as a percentage of the base case value. Note
that the base case value of b1 = 0.023.
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Figure A.3: Plots of the predator-prey model using parameter values r1 = 0.65, b1 = 0.023
and b2 = 0.014 with the value of r2 changing as a percentage of the base case value. Note
that the base case value of r2 = 0.65.
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Figure A.4: Plots of the predator-prey model using parameter values r1 = 0.65, b1 = 0.023
and r2 = 0.65 with the value of b2 changing as a percentage of the base case value. Note
that the base case value of b2 = 0.014.
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Figure A.5: Plots of the parameter r1 in the predator-prey model using the synthetic dataset;
estimated via multiple iterative state augmented particle filtering. Shown are the traces of
the parameter r1 generated in 12 iterations. The true value of r1 = 0.65. Note: r1 is the
only parameter varying and the remaining three parameters are fixed.
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Figure A.6: Plots of the parameter b1 in the predator-prey model using the synthetic dataset;
estimated via multiple iterative state augmented particle filtering. Shown are the traces of
the parameter b1 generated in 12 iterations. The true value of b1 = 0.023. Note: b1 is the
only parameter varying and the remaining three parameters are fixed.
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Figure A.7: Plots of the parameter r2 in the predator-prey model using the synthetic dataset;
estimated via multiple iterative state augmented particle filtering. Shown are the traces of
the parameter r2 generated in 12 iterations. The true value of r2 = 0.65. Note: r2 is the
only parameter varying and the remaining three parameters are fixed.
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Figure A.8: Plots of the parameter b2 in the predator-prey model using the synthetic dataset;
estimated via multiple iterative state augmented particle filtering. Shown are the traces of
the parameter b2 generated in 12 iterations. The true value of b2 = 0.014. Note: b2 is the
only parameter varying and the remaining three parameters are fixed.
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Figure A.9: Time series plot of lynx-hare population (in thousands).
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Figure A.10: Time series plots of the observed and estimated segment of the lynx-hare
dataset (from 1909-1931) based on the MLEs. Shown are the observed populations of the
lynx (dashed blue line) and the hare (dashed red line) and the estimated populations of the
lynx (thick blue line) and the hare (thick red line).
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Figure A.11: Time series plot of the observed and estimated subsection of the lynx-hare
dataset (from 1909-1931) based on the estimates via state augmentation. Shown are the
observed populations of the lynx (dashed blue line) and the hare (dashed red line) and the
estimated populations of the lynx (thick blue line) and the hare (thick red line).
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Figure A.12: Time series plot of the observed and estimated subsection of the lynx-hare
dataset (from 1909-1931) based on the estimates using MIF. Shown are the observed
populations of the lynx (dashed blue line) and the hare (dashed red line) and the estimated
populations of the lynx (thick blue line) and the hare (thick red line).
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Figure A.13: Time series plot of the observed and estimated subsection of the lynx-hare
dataset (from 1909-1931) based on the estimates using the MH-PF-MH algorithm. Shown
are the observed populations of the lynx (dashed blue line) and the hare (dashed red line)
and the estimated populations of the lynx (thick blue line) and the hare (thick red line).
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Figure A.14: Histograms of the dynamical parameters from the predator prey model,
running the MHPFMH algorithm for 10,000 iterations. The segment of the lynx-hare
dataset from 1845-1864 is used. Shown are the estimated values of the parameters: (a) r1,
(b) b1, (c) r2 and (d) b2. Note, the red vertical lines represent the mean of the distributions
and the blue vertical lines represent the median of the distributions.



85

Histogram of r1

r1

Fr
eq

ue
nc

y

1.26 1.30 1.34 1.38

0
40

00
80

00

Histogram of b1

b1
Fr

eq
ue

nc
y

0.0460 0.0470 0.0480

0
40

00
80

00

Histogram of r2

r2

Fr
eq

ue
nc

y

0.86 0.88 0.90 0.92

0
40

00
80

00

Histogram of b2

b2

Fr
eq

ue
nc

y

0.0165 0.0175 0.0185

0
40

00
80

00

Figure A.15: Histograms of the dynamical parameters from the predator prey model,
running the MHPFMH algorithm for 10,000 iterations. The segment of the lynx-hare
dataset from 1855-1874 is used. Shown are the estimated values of the parameters: (a) r1,
(b) b1, (c) r2 and (d) b2. Note, the red vertical lines represent the mean of the distributions
and the blue vertical lines represent the median of the distributions.
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Figure A.16: Histograms of the dynamical parameters from the predator prey model,
running the MHPFMH algorithm for 10,000 iterations. The segment of the lynx-hare
dataset from 1865-1884 is used. Shown are the estimated values of the parameters: (a) r1,
(b) b1, (c) r2 and (d) b2. Note, the red vertical lines represent the mean of the distributions
and the blue vertical lines represent the median of the distributions.
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Figure A.17: Histograms of the dynamical parameters from the predator prey model,
running the MHPFMH algorithm for 10,000 iterations. The segment of the lynx-hare
dataset from 1875-1894 is used. Shown are the estimated values of the parameters: (a) r1,
(b) b1, (c) r2 and (d) b2. Note, the red vertical lines represent the mean of the distributions
and the blue vertical lines represent the median of the distributions.
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Figure A.18: Histograms of the dynamical parameters from the predator prey model,
running the MHPFMH algorithm for 10,000 iterations. The segment of the lynx-hare
dataset from 1885-1904 is used. Shown are the estimated values of the parameters: (a) r1,
(b) b1, (c) r2 and (d) b2. Note, the red vertical lines represent the mean of the distributions
and the blue vertical lines represent the median of the distributions.
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Figure A.19: Histograms of the dynamical parameters from the predator prey model,
running the MHPFMH algorithm for 10,000 iterations. The segment of the lynx-hare
dataset from 1895-1914 is used. Shown are the estimated values of the parameters: (a) r1,
(b) b1, (c) r2 and (d) b2. Note, the red vertical lines represent the mean of the distributions
and the blue vertical lines represent the median of the distributions.
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Figure A.20: Histograms of the dynamical parameters from the predator prey model,
running the MHPFMH algorithm for 10,000 iterations. The segment of the lynx-hare
dataset from 1905-1924 is used. Shown are the estimated values of the parameters: (a) r1,
(b) b1, (c) r2 and (d) b2. Note, the red vertical lines represent the mean of the distributions
and the blue vertical lines represent the median of the distributions.
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Figure A.21: Histograms of the dynamical parameters from the predator prey model,
running the MHPFMH algorithm for 10,000 iterations. The segment of the lynx-hare
dataset from 1915-1934 is used. Shown are the estimated values of the parameters: (a) r1,
(b) b1, (c) r2 and (d) b2. Note, the red vertical lines represent the mean of the distributions
and the blue vertical lines represent the median of the distributions.


