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Abstract

Pulse shaping is the technique which controls the ultra-short pulse shape, and it be-

came of great technological interest because of its potential applications in laser pulse

compression, digital communications, microscopy etc. We demonstrate the idea of

pulse-shaping technique and pulse propagation with low energy losses in a resonant

linear absorbing medium. This thesis presents the results of a study of the propa-

gation of Gaussian and hyperbolic secant ultrashort chirped and chirp-free pulses in

homogeneously and inhomogeneously broadened resonant linear absorbers. Changes

to the pulse shape and energy loss factor are presented as the pulse propagates in

the absorber. The Fast Fourier method is used to numerically determine both the

normalized intensity profile and the pulse spectrum.

Our results show that, for pulse durations shorter than the relaxation time, chirped

pulses in absorbing media obey the area theorem, with their shape changing with the

propagation distance. Simulation results of the spectra of chirped pulses clearly show

the burning of a spectral ’hole’ as the pulse propagates, with the pulse energy pushed

away towards the wings. When compared to chirp-free pulses, chirped pulses reshape

faster and develop wings in their tail due to initial phase modulation.

Simulation results of the energy loss factor show that chirped pulses propagating

in resonant linear absorbers sustain less energy losses than do chirp-free pulses. A

comparison of chirped secant and Gaussian pulses shows that secant pulses propagate

with lower energy losses.

Analytic solutions are presented for long-distance asymptotic expressions of initial

rms spectral bandwidth as well as for the attenuation factor of chirped Gaussian

pulses. These analytical results are in agreement with numerical simulations. The

comparison of energy losses of short chirped Gaussian pulses and long pulses of any

profile in linear absorbers is also discussed in the thesis.
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Chapter 1

Introduction

1.1 Motivation and Objective

Ultrashort pulse generation has always been a preferred area of research in the field

of laser pulse applications. Modern applications of ultra-short pulses provide new

and advanced opportunities for commercial purposes. An ultrashort pulse can be

defined as one with picosecond and femtosecond duration. This range of pulse can be

generated from mode-locked lasers. Ultra-short optical pulses can be produced from

longer pulses using optical pulse compression techniques [1]-[3]. Ultrashort pulse

optical sources are of great technological interest due to their distinguishing features,

which include 1) ultrashort duration 2) ultra-large spectral bandwidth 3) high peak

power. Ultra-short optical pulses can be used in optical communication systems with

long-distance and high bit rate.

To apply ultra-short pulses in suitable applications it is necessary to control their tem-

poral shapes. This shaped pulse can be used in different optical applications. How-

ever, it is difficult to control ultrashort pulses from available laser sources. Therefore

it is necessary to use a pulse shaper which produces more modified and sophisticated

shapes of ultrashort pulses.

Pulse compressor [4] is another device which can control ultrashort pulse by control-

ling the spectral phase of the input pulse. Chirp is the most common component in

pulse compression. In pulse compression, the initial width of a pulse can be changed

by applying the proper amount of chirp, so that we generate short pulses from ini-

tially wide pulse optical sources. Another advantage is that, data transmission rates

can be improved upto 40% by chirping [5].

In this study we introduce a new technique of pulse shaping, which can reshape the
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incident profile of the input pulse. Pulse shaping is a new dimension of modern

technologies that control the shape of ultrashort pulse, and also in many fields of

modern optics where it is desirable to reshape the pulses from optical sources. Various

pulse shaping techniques have been developed in the last few decades.

The objective of this thesis is to produce ultrashort shaped pulse with low energy

loss.This thesis explores a new technique of pulse shaping by transmitting chirped

pulse in linear resonant absorbers. To introduce the new technique of pulse shaping

this thesis analyzes the behaviour of short chirped pulses in linear resonant absorbers,

such as doped optical fibers or atomic vapors. Chirped pulse is chosen in this thesis

for a number of reasons. First, a pulse considerably chirped by direct modulation has

significant effects on optical communication systems. Secondly, data transmission

quality can be improved by using a chirped Gaussian pulse. Thirdly, ultra-short

chirped pulses can reduce the loss factor for sufficiently long propagation distances

in coherent linear absorbers. This energy loss is comparably much less than using a

long pulse. Fourthly, chirped pulses have shaping properties which open up interesting

applications in the field of modern optics.

1.2 Pulse Shaping

Pulse shaping allows us to create modified and complex waveforms of pulses from

optical sources of single pulse according to the user’s specifications. Femtosecond

pulses have extremely short duration, high peak power and large spectral bandwidth,

so shaped femtosecond pulse is useful in different types of applications such as fiber

communication, signal processing, laser spectroscopy, device characterization, solid

state physics, etc. [6]. Optical devices have the ability to alter temporal shape of

Figure 1.1: Pulse shaping of a band-limited pulse [7].

the pulse. Figure 1.1 shows an input pulse being converted into another shape by a
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pulse-shaping method.

A particularly simple type of pulse shaping is pulse compression and/or stretching.

Mainly based on the application pulse shapers are designed to compress or stretch a

pulse and to generate a train of pulses. Dispersion of materials and optical devices

is used to design the pulse shaper for compressing or stretching the pulse. Figure 1.2

shows the pulse shaper as a compressor and strecher.

Figure 1.2: Pulse compressor and stretcher[8].

The basic concept of femtosecond pulse shaping can in most cases 1 be described by a

linear time invariant filter, normally used to convert electrical signals from low to high

frequencies. Linear filters are used to create shaped optical waves in picosecond and

femtosecond time ranges. Figure 1.3 shows pulse shaping by a linear filter in time and

frequency domains. In the time domain, the output pulse Eout(t) is the convolution

Figure 1.3: Time and frequency domain pulse shaping [9].

of input pulse Ein(t) and h(t). h(t) is the impulse response or modulation function

1In pulse compression technique phase of the pulse is modified by nonlinear effects.
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that describes the modulation of phase and amplitude by the pulse shaping. This

modulation can be described by

Eout(t) = Ein(t)⊗ h(t), (1.1)

where ⊗ denotes a convolution. When a delta function is applied as an input pulse,

the output is an impulse function. So in the case of sufficiently short input pulse, the

perfect pulse shaping depends on a linear filter with a perfect impulse response. The

response of the output, in the frequency domain, can be represented as

eout(ω) = ein(ω)H(ω), (1.2)

where H(ω) is the frequency response. In the case of delta function as an input pulse,

the input spectrum ein(ω) becomes unity, so that the output spectrum eout(ω) is the

frequency response function.

The two most common femtosecond pulse shaping techniques are 1) direct space-

to-time pulse shaping and 2) Fourier transform pulse shaping. In direct space-to-

time pulse shaping, the output of the pulse is directly dependent on the modulation

function, while Fourier transform pulse shaping is implemented by Fourier transform,

because a lens can do Fourier transforms in optics. A typical Fourier transform pulse

shaping is shown in Figure 1.4.

Figure 1.4: A typical Fourier transform pulse shaper

Direct space to time pulse shaper is commonly used when the required shape pulse

is a pulse packet having discrete pulse series which are time separated. This pulse

shaper is designed by direct mapping (no Fourier transform relationship) to desire

temporal waveform. An example of such pulse shaping is parallel to serial conversion

4



[10].

Just over half a century ago, the generation of ultra-short pulses in picosecond and

femtosecond time scales saw a breakthrough. In 1960, pulse compression techniques

were implemented in chirped radar for the compression of picosecond pulses [11]-[16].

The pulse compressor mainly increases the spectral bandwidth of the initial pulse,

after which it separates the frequency modulation by applying the proper dispersive

delay line [17].

Optical pulse compression described by Diels and Ruldolph [18] occurs in two major

steps. Pulse compression is a Fourier transform pulse shaping technique. Figure

1.5 shows the first step, where a phase modulation is applied on the band limited

input pulse. This phase modulation can be obtained by self-phase modulation (SPM)

Figure 1.5: Optical pulse compression of a band-limited pulse [18].

which takes place in nonlinear media. The temporal intensity |E(t)|2 of the input
pulse remains the same, but the phase φ(Ω) of the pulse is modified by this phase

modulation. In the time domain, the pulse becomes chirped and in the frequency

domain, it is spectrally broadened.

The second step is dispersion (may be anomalous or normal) that can unchirp the

chirped pulse generated in the first step. So this step appears as a Fourier transform

of the first step. In the second step, dispersion modifies the phase of the pulse spectral

field E(Ω). The intensity of the spectral field |E(Ω)|2 is not affected by dispersion.

This step produces a band-limited output pulse from a spectrally broadened non

5



bandwidth-limited pulse. Since the pulse spectrum remains the same in the second

step, the output pulse becomes shorter than the input pulse. For this reason the pulse

compression process is also known as chirp compression.

Another example of a Fourier transform pulse shaping was demonstrated in the review

article by Froehly in 1983 [19]. In his article, Froehly describes a Fourier transform

pulse-shaping experiment in the picosecond range. In 1985, picosecond time scale

pulses were shaped by using spatial filtering and grating pulse compression, as inves-

tigated by Heritage and Weiner [20].A non dispersive apparatus was used in 1988 to

shape femtosecond pulses by initially using fixed masks and spatial filtering, with the

shaped femtosecond pulses being manipulated by programmable spatial light modu-

lators (SLM) [21, 22].

Figure 1.6: The typical setup for Fourier transform pulse shaping [18].

Figure 1.6 shows the basic Fourier transform pulse shaping layout, which has been

modified from the first pulse-shaping apparatus mentioned by Froehly. The incident

ultrashort (fms) pulses from a colliding pulse mode-locked (CPM) laser can be shaped

by using a diffraction gratings pair, lenses, and a single pulse shaping mask. In

the first part of the layout, the diffraction grating angularlydisperses the frequency

components of the pulse, which are then transferred to the focal plane of the first lens

in the rear side. The grating and lens are placed in such a way that the frequency

components experience spatial separation. The first lens does a Fourier transform of

the first grating output to convert the Fourier components to a spatial separation.
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The amplitude and phase masks with a spatial pattern are set in the midway of the

lens where the maximum spatial separation of the optical components occurs. Masks

are spectrally filter the spatial dispersed frequency component. A shaped output is

obtained after recombining all frequencies by a second lens and a second diffraction

grating [9]. This setup of pulse shaping is also called the 4f pulse shaping arrangement.

Dispersion for pulse stretching and compression is also possible without a mask by

proper spacing of the grating-lens; this concept was introduced by Martinez [23] and

now this idea is used in chirped pulse amplifiers (CPA). [24, 25].

1.3 Thesis Contributions

The major contribution of this thesis is that it has presented and demonstrated the

idea of pulse shaping by transmitting prechirped pulses through coherent linear ab-

sorbing media. The behavior of ultrashort pulse propagation in linear resonant ab-

sorbers is studied in the presence of both homogeneous and inhomogeneous broad-

ening. In this study, the classical area theorem has been derived and described with

real and imaginary phase term for the first time to our knowledge. The pulse propa-

gation equations are analytically described to evaluate the pulse spectrum, intensity

and energy loss factor. Numerical simulations are also done using the fast Fourier

method (FFT) [5, 26]. The simulation results show how ultrashort chirped pulses can

modify their shape and dramatically reduce the energy loss when propagate through

absorbers. The author of this research concentrated on developing the ideas and

performing the analytical analysis and numerical simulations.

1.4 Thesis Outline

The thesis is organized as follows:

Chapter 2 describes the general theory of pulse propagation in linear optics with

physical and mathematical explanations, including inhomogeneous and homogeneous

line broadening of atoms. This is followed by a detailed discussion of the classical

area theorem. The general solution of energy loss is introduced.

7



Chapter 3 presents the description of the propagation of chirped pulses and the effect

of chirping in resonant linear optics.

In chapter 4, the simulation results for both chirped and unchirped pulses are pre-

sented. The numerical result and the analytical solution for a Gaussian pulse are also

presented and compared.

Finally, Chapter 5 concludes the thesis work and provides some suggestions for future

investigations.

Analytical solution of rms spectral bandwidth and attenuation factor for Gaussian

pulse are presented in Appendices. Mathematica codes are also provided in the Ap-

pendices.
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Chapter 2

Classical Theory of Light Propagation in Resonant Media

2.1 Introduction

In this chapter the classical theory of pulse propagation in optics will be summarized.

Homogeneous and inhomogeneous line broadening and the classical area theorem will

also be discussed in detail.

2.2 Classical Theory of Pulse Propagation in Optics

Pulse propagation in a linear resonant medium is a classic problem of optics [27]-

[33]. In 1880, H. A. Lorentz proposed his classical theory, where the electron motion

excited by an electromagnetic wave described by Newton’s laws and the light fields

obey Maxwell’s equations. The Lorentz oscillator model presents the interaction

of electric charges with the electromagnetic field. Most phenomena in optics (e.g.,

reflection and dispersion) can be described by the classical theory of the interaction

of electric charges and radiation [34]. The electro-magnetic waves of the oscillating

electric field will set the electron into harmonic motion, so that each material atom

behaves as a simple harmonic oscillator and couples with the electromagnetic field

through its dipole moment [28]. The damped harmonic oscillator accurately describes

linear optical properties of atomic vapors, crystals, glasses and liquids.

The electron displacement is governed by the Lorentz equation in the form

m
d2x

dt2
= eE − ksx− 2mγ

dx

dt
, (2.1)

where m, e and x are the mass, charge and displacement of the electron, respectively,

and ks is the ”spring” constant. The damping constant is γ. The motion of a dipole

9



can be expressed by
d2x

dt2
+ 2γ

dx

dt
+ ω2

0x =
−eE
m

. (2.2)

Here the natural frequency is ω0 =
√
ks/m. Free oscillations of electron around the

nucleus are determined by natural frequency and damping rate is determined by the

energy loss rate by electric dipole radiation.

Due to the electric field applied to a dielectric medium, electrons are separated from

their original position by distance x and each atom has an individual dipole moment

d = ex. (2.3)

Polarization field is determined by the individual dipole moment of each atom d and

density of atoms N . So the polarization is

P = Nd = Nex. (2.4)

The polarization field P is directly proportional to the electric field and is given by

P = ε0χ
(1)E, (2.5)

where χ(1) is the linear electric susceptibility and it is directly related with the

medium.

Consider a plane electromagnetic wave with the electric field linearly polarized in the

x-direction (ex) and propagating in z-direction, as

E =
1

2
ex[E0e

(kz−ωt) + c.c], (2.6)

where E0 is a complex amplitude of the wave, k is the propagation constant, ω is the

wave frequency, and c.c is the complex conjugate.

The equation of motion for an electron oscillator driven by a monochromatic electro-

magnetic wave is
d2x

dt2
+ 2γ

dx

dt
+ ω2

0x =
−eE0

2m
e−iωt + c.c. (2.7)

10



The driven solution of equation (2.7) is

x(t) =
1

2
[x0e

−iωt + c.c], (2.8)

where

x0 =
−eE0

m(−ω2 + ω2
0 − 2iωγ)

. (2.9)

The polarization field is

P (t) = −Nex(t) =
Ne2E0e

−iωt

2m(−ω2 + ω2
0 − 2iωγ)

+ c.c. (2.10)

The refractive index of the medium is related to polarization by

P (t) = ε0χ
(1)E(t) = ε0(1 + n2)E(t), (2.11)

and solving for the refractive index gives

n2 =

(
1 +

Ne2

2mε0

[
1

ω2
0 − ω2 − 2iγω

])
. (2.12)

Here, the refractive index is complex n = nR + inI and the real and imaginary parts

are given by

nR − 1 =
Ne2

2mε0

(
ω2
0 − ω2

(ω2
0 − ω2)2 + ω2γ2

)
. (2.13)

nI =
Ne2

2mε0

(
γω

(ω2
0 − ω2)2 + ω2γ2

)
. (2.14)

In Figure 2.1, the real and imaginary parts of the complex refractive index are known

as the dispersion curve and absorption curve, respectively. In the real part, any

region, where dn/dω > 0, is referred as normal dispersion, and for dn/dω < 0, is

reffered as anomalous dispersion.

At normal dispersion, on the low frequency side, refractive index increases with in-

creasing frequency and peaks when ω approaches to resonance frequency ω0. At

anomalous dispersion, at very near resonance (the ω close to ω0) refractive index de-

creases rapidly to the minimum with increasing frequency and goes through zero at

11



Figure 2.1: Typical plots of the real and imaginary parts of the refractive index.

ω0. In this region, absorption is high and it occurs in a very narrow frequency region.

The imaginary part of the refractive index gradually increases and decreases with

ω, and passes through the maximum. The center of the curve, the absorption peak,

is located at ω0 and the shape of imaginary part is a Lorentzian lineshape. The

relationship between the two parts of the complex refractive index is known as the

Kramers-Kronig relationship [35, 36].

2.3 Pulse Propagation Equation and Group Velocity Dispersion: Far

From Optical Resonances

Consider pulse propagation in a linear dispersive medium, far away from any internal

resonances. When a pulse propagates in such a medium, different frequency compo-

nents are envolve with different speeds; for this reason the initial pulse profile will

in general be distorted. When the group velocity of light is dependent on optical

frequency or wavelength, the phenomenon is called group velocity dispersion (GVD).

12



Effects of group velocity dispersion of the medium far from any optical resonances are

accounted for by the expanded equation of frequency dependent propagation constant

β. Such expansion β(ω) in a Taylor series gives

β(ω) = n(ω)
ω

c
= β0 + β1(ω − ω0) +

1

2
β2(ω − ω0)

2 + ......, (2.15)

where β1 defines the inverse group velocity of the optical pulse envelope, β1 = ν−1g

and the second derivative term β2 of the frequency dependent propagation constant

describes pulse spreading. It is defined as

β2 =
dβ1

dω
=

d

dω

(
1

ν g

)
= − 1

ν2
g

dνg
dω

. (2.16)

Another dispersion parameter commonly used in fiber optics to express dispersion in

place of β2, is defined as

D =
dβ1

dλ
= −2πc

λ2
β2 = −λ

c

d2n

dλ2
. (2.17)

For different signs of the GVD parameter β2 or D, the effect of dispersion will be

different on the optical pulse.

When the second derivative term β2 > 0, the lower frequency components of the

optical pulse go faster than their higher components; this is known as the normal

dispersion regime. In this regime, the pulse creates positive chirps where the frequency

increases with time. The dispersion is said to be anomalous when β2 < 0, the revers

happens and pulse creates negative chirps in this regime.

To quantitively explore pulse propagation in a nonmagnetic dielectric medium far

away from optical resonances, we use Maxwell’s equations in such a medium for the

electric field E and magnetic field H:

∇·E = 0. (2.18)

∇·H = 0. (2.19)

∇× E = −μ0∂tH. (2.20)

13



∇×H = ε∂tE+ ∂tP, (2.21)

where μ0 is vacuum permeability, ε is a permittivity of the medium. From Maxwell’s

equations [37] it is easy to explain what happens when electromagnetic waves pass

through a dielectric material. By taking the curl of Eq. (2.20)

∇× (∇× E) = −∇× (μ0∂tH) = −μ0∂t(∇×H), (2.22)

and a time derivative of Eq. (2.21) and then eliminating H we obtain

∇× (∇× E) =
1

ε0c2
∂2
ttP+

1

c2
∂2
ttE (2.23)

where c = 2.998×108 m/sec is the speed of light in vacuum and the relation c = 1√
μ0ε0

.

After using the identity ∇× (∇× E) = ∇· (∇·E) −∇2E as well as Eq. (2.18), we

obtain the general wave equation for the electric field E as

∇2E− 1

c2
∂2
ttE =

1

ε0c2
∂2
ttP. (2.24)

Let us now consider a wave consisting of a slowly varying envelope E and a carrier

plane wave such that

E = Eei(β0z−ω0t), (2.25)

where β0 is a carrier propagation constant in the medium. On substituting from Eq.

(2.25) into Eq. (2.24) we can arrive after minor algebra for the electric field envelope

at the equation

∇2E + β2E = 0. (2.26)

The slowly varying envelope approximation (SVEA) is considered for the condition

where the envelope is separated from the fast varying carrier term. A slowly varying

envelope approximation considerss that

∂zE << β0E . (2.27)

Using Eq. (2.27) and (2.25) we arrive at

∇2E � 2iβ0∂zE − β2
0E . (2.28)
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Next using Eq.(2.26), we arrive at the paraxial wave equation for the pulse envelope

in the form

2iβ0∂zE + [β2(ω)− β2
0 ]E = 0. (2.29)

By using the perturbation approximation β2 − β2
0 = 2β0(β − β0), Eq. (2.15) and

Fourier transform properties, a paraxial wave equation for the temporal envelope is

obtained in the form

2i(∂zE + β1∂tE)− β2∂
2
ttE = 0. (2.30)

It is useful to employ a moving frame of reference by introducing the coordinate

transformation:

ζ = z; τ = t− β1z. (2.31)

After recalculating derivatives using the chain rules

∂tE = ∂τE ; ∂2
ttE = ∂2

ττE , (2.32)

and

∂zE = ∂ζE − β1∂τE , (2.33)

we can arrive at the paraxial wave equation for the pulse propagation in linear dis-

persive media as

2i∂ζE − β2∂
2
ττE = 0. (2.34)

Equation (2.34) describes pulse envelope propagation in linear dispersive media far

from any optical resonances.

2.4 Pulse Propagation Near Optical Resonance

When an atom in an applied harmonic electric field oscillates very close to its natural

frequency, this phenomenon is called the classical Rabi problem [28]. The equation

of motion from sec. 2.2 can be applied to near resonant optical pulse propagation in
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the positive z direction

∂2
t x+ 2γ∂tx+ ω2

0x = −eE/m, (2.35)

The pulse field and atomic dipole moment can be represented as

E(z, t) =
1

2
[E(z, t)ei(kz−ωt) + c.c]; ex(z, t) =

1

2
[d0σ(z, t)e

i(kz−ωt) + c.c]. (2.36)

Here, d0 = ex0 is a characteristic dipole moment amplitude. Employing the SVEA

∂zE << kE , ∂tE << ωE , (2.37)

∂tσ << ωσ. (2.38)

and using Eq. (2.35), (2.36) and (2.38), we can get the equation

−ω2σ − 2iω∂tσ − 2iγωσ + ω2
0σ = −eE/mx0. (2.39)

Near resonance

ω2
0 − ω2 � 2ω(ω0 − ω) = 2ωΔ, (2.40)

where Δ = ω0 − ω is the detuning of the carrier wave frequency ω from the atomic

resonance ω0; near resonance the SVEA equation for atomic dipole envelope evolution

is

∂tσ = −(γ + iΔ)σ + iΩ, (2.41)

where the field envelope in frequency units is Ω = −eE/2mωx0. Ω is also known as

the Rabi frequency. Decomposing the dipole moment into in-phase U and quadrature

V components as

σ(t, z) = U(t, z)− iV (t, z), (2.42)

the equations for the in-phase and quadrature amplitudes then become

∂tU = −γU +ΔV, (2.43)

and

∂tV = −γV −ΔU + Ω, (2.44)
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Figure 2.2: Lorentzian emission line with its homogeneous broadening.

In the absence of phase modulation, the real part U is referred to as the dispersive part

and the imaginary part V is referred to as the absorptive part of σ. This is because

U is coupled to the field only via the absorptive part and V is directly coupled to the

electric field amplitude and affects the pulse envelope evoluation.

2.4.1 Homogeneous Line Broadening

Every material shows a large number of emission lines because of the oscillation of

dipoles at different natural frequencies in real dielectrics. Due to the finite lifetime

T0 of every excited dipole moment, each emission line has a width in frequency, 1/T0.

This spectral width is referred to as the width of homogeneous broadening because

this width is the same for each dipole. Homogeneous broadening rate can be denoted

by

γ =
1

T0

. (2.45)

Here, each dipole moment exponentially decays with time and the shape of the spec-

tral line is Lorentzian. The homogeneous broadening of atomic dipoles is shown in

Figure 2.2. It shows the individual Lorentzian emission line with its homogeneous

width.

To derive the exponential decay law, consider decay of an atomic dipole moment

introduced by a cw field in the past when the field is suddenly switched off, such that

Ω(t) = θ(−t)Ω0(z) where θ(t) is a unit step function. For t > 0, Ω becomes zero,
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Figure 2.3: Inhomogeneous broadening of different dipoles in which dipoles are oscil-
lated at different individual frequencies [38].

from Eq. (2.41) we get

∂tσ = −(γ + iΔ)σ. (2.46)

And the dipole moment envelope behaves as

σ(t, z) = σ(0, z)e−γteiΔt, (2.47)

corresponding to a Lorentzian spectral line depicted in Figure 2.2.

2.4.2 Inhomogeneous Line Broadening

In gases and atomic vapours because of Doppler effect, atoms with different velocities

suffer a Doppler shift in the frequency so that the atoms will ”see” slightly different

frequency of the carrier wave. In most cases, the real emission line is a combination of

numerous Lorentzian lines with homogeneous width and a distinct center frequency.

When the total line spread over a frequency range is compared with their broadened

individual width, the overall line shape is known as being inhomogeneously broadened.

Figure 2.3 shows inhomogeneous broadening, and the overall width of individual

Lorentzian emission lines.
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Inhomogeneous broadening is considered, as a large collection of identical atoms and

fractional number of atoms where the resonance frequency is in between the value

of ω0 and ω0 + dω0. So inhomogeneous broadening can be quantitively described by

introducing a normalized inhomogeneous line shape function g(ω0). The distribution

function g(ω0) is normalized to unity as

∫ ∞

0

dω0g(ω0) = 1. (2.48)

Using the dipole moment density near optical resonance we can write the polarization

as

P (t, z) =
1

2
[Nd0 〈σ(z, t, ω0)〉 ei(kz−ωt) + c.c]. (2.49)

The averaging in the above equation is defined as

〈σ(z, t, ω0)〉 =
∫ ∞

0

dω0g(ω0)σ(z, t, ω0). (2.50)

In reality, the distribution function is often peaked at some value of resonance fre-

quency which is expressed by ω̄0

g(ω0) � g(ω0 − ω̄0) = g(Δ), (2.51)

where g(Δ) is an inhomogeneous lineshape detuning function. The polarization can

be rewritten as

P (t, z) = Nd0

∫ ∞

∞
dΔg(Δ)σ(t, z,Δ). (2.52)

By using Eq. (2.47) in free induction decay the polarization becomes

P (t, z) ∝ Nd0e
−t/T0eiω0t

∫ ∞

∞
dΔg(Δ)eiΔt + c.c. (2.53)

Suppose the detuning distribution is Lorentzian, we can get

g(Δ) =
1

(Δ2 + 1/T 2
Δ)

, (2.54)

where 1/TΔ characterizes the width of g(Δ). From Fourier transform table integration

we can write ∫ ∞

∞
dΔg(Δ)eiΔt ∝ e−t/TΔ (2.55)
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If the detuning distribution function g(Δ) is Lorentzian and t > 0, the polarization

is

P (t, z) ∝ Nd0e
−t/Teff eiω0t + c.c. (2.56)

Here the total relaxation rate is

1

Teff

=
1

T0

+
1

TΔ

(2.57)

From sec. 2.4.1, we can say that the first term on the rhs of the above equation

describes the homogeneous broadening and the second term describes inhomogeneous

which occur in the spectral domain because of fluctuations of atomic detuning.

2.5 Pulse Propagation and Classical Area Theorem

With the plane wave propagation in the z-direction, the Doppler shifted frequency is

ω′ = ω − kυz. (2.58)

In a moving reference frame the pulse field and atomic dipole moment distributions

are

E(z, t) =
1

2
[E(z, t)ei(kz−ω′t) + c.c]; ex(z, t) =

1

2
[d0σ(z, t)e

i(kz−ω′t) + c.c]. (2.59)

From sec. 2.3 the electromagnetic field E of linear polarization obeys the wave equa-

tion in the form

∂2
zzE − c−2∂2

ttE = μ0∂
2
ttP, (2.60)

and magnitude of polarization P is

P = −Ne 〈x〉 . (2.61)

Using Eq. (2.60), (2.59), (2.61) and SVEA (2.38), we can obtain the slowly-varying

field envelope evolution in the form

∂zΩ + c−1∂tΩ = iκ 〈σ〉 , (2.62)
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where ωpe = (Ne2/ε0m)
1/2 is the electron plasma frequency and coupling constant is

κ = ω2
pe/4c.

Again transforming to the moving reference frame using Eq. (2.31), we get the coupled

Maxwell-Lorentz propagation equations

∂ζΩ = iκ 〈σ〉 , (2.63)

and

∂τσ = −(γ + iΔ)σ + iΩ. (2.64)

By using the Fourier transformation technique in Eq. (2.63) and (2.64), we obtain

the field and dipole moment as

σ̃(ω, ζ) =
iΩ̃(ω, ζ)

γ + i(Δ− ω)
. (2.65)

and

∂ζΩ̃ = −kRΩ̃. (2.66)

where R is the material response function defined as

R(ω) =
〈

1

γ + i(Δ− ω)

〉
. (2.67)

In the absence of inhomogeneous broadening

Rhom(ω) =
1

γ − iω
(2.68)

After integrating Eq (2.66), we can write

Ω̃(ω, ζ) = Ω̃(ω, 0) exp [−kR(ω)ζ], (2.69)

The field envelope at any propagation distance can be written as

E(τ, ζ) =
∫ ∞

−∞
Ẽ(ζ, ω) exp(−iωτ)dω =

∫ ∞

−∞
dωẼ(ω) exp [−iωτ − kR(ω)ζ], (2.70)

where

Ẽ(ω) =
∫ ∞

−∞

dt′

2π
eiωt

′E(t′, 0). (2.71)
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From the combination of Eq. (2.70) and (2.71), we can obtain the field as

E(t, z) =
∫ ∞

−∞

dt′

2π
E(t′, 0)

∫ ∞

−∞
dωeiω(t

′−t) exp [iωz/c− kR(ω)z]. (2.72)

The classical area theorem can be obtained from Eq. (2.72). The classical area A is

defined as

A(z) =
∫ ∞

−∞
dtE(t, z). (2.73)

The integral representation of the delta function is

δ(ω) =

∫ ∞

−∞

dt

2π
e−iωt. (2.74)

Integrating Eq. (2.72) over time and using the integral representation of delta func-

tion, the area theorem is

A(z) = A0

∫ ∞

−∞
dωδ(ω) exp [iωz/c− kR(ω)z], (2.75)

where A0 is the initial area under the pulse profile. Considering

f(ω) = exp [iωz/c− kR(ω)z], (2.76)

and using the integral of delta function

∫ ∞

−∞
dωδ(ω)f(ω) = f(0), (2.77)

the resultant area theorem is

A(z) = A0 exp [−kR(0)z]. (2.78)

On substituting the material response function in Eq. (2.78) the area theorem can

also be written in the form

A(z) = A0e
−αz/2eiβz/2, (2.79)

where α =
〈

2kγ
γ2+Δ2

〉
is a characteristics attenuation decrement and β =

〈
2kΔ

γ2+Δ2

〉
is the phase accumulation factor. The area theorem states that regardless of the
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initial pulse shape, in linear resonant absorbers the area under the pulse will decay

exponentially.

If we follow the area theorem described by Allen and Eberly [28], it only includes the

real attenuation decrement α. In our derivation of the area theorem we found that

it also has imaginary phase term accumulation factor β. This imaginary term of the

area theorem lets us generalize the area theorem to chirped pulses.

In the case of very long pulses where the characteristics pulse width is much longer

than the homogeneous or inhomogeneous damping times,

Tp >> max(T0, TΔ), (2.80)

the dipole moment decays fast to its equilibrium value. When this happens the rate

of change of the dipole moment can be formally set to zero, i.e ∂τσ � 0. In this case,

Eq. (2.64) becomes

σ � iΩ

γ + iΔ
. (2.81)

Substituting Eq. (2.81) into Eq. (2.63), we obtain the pulse evolution as

∂ζE = −κ〈 1

γ + iΔ
〉E . (2.82)

Now, the resulting envelope is

E(t, z) = e−αz/2eiβz/2E0(t− z/c). (2.83)

where E0(t) is a pulse profile in the source plane. Eq (2.83) is frequently designated
as Beer’s law in elementary optics treatment of absorbers. A long pulse propagates

in absorbers with its initial form, and its amplitude decays exponentially with the

propagation distance. This typical damping distance is known as Beer’s absorption

length LB = α−1.
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2.6 Energy Loss of Pulse

The pulse energy at any propagation distance within a resonant absorbing medium

is determined by the square modulus of the field envelope,

W (z) ∝
∫ ∞

−∞
dt |E(t, z)|2 . (2.84)

By using Eq. (2.72) we can calculate the square modulus of the field envelope

|E(t, z)|2 =
∫ ∞

−∞
dω′
∫ ∞

−∞
dωE(ω, 0)E∗(ω′, 0)eit(ω′−ω) exp[−κz(R(ω)+R∗(ω′))]. (2.85)

The energy at any propagation distance z is

W (z) =

∫ ∞

−∞
dω′
∫ ∞

−∞
exp

[
−2zα

1 + ω2T 2
eff

]
E∗(ω′, 0)E(ω, 0)dω

∫ ∞

−∞
dte−it(ω−ω

′), (2.86)

where we assumed a Lorentzian profile for inhomogeneous broadening. Again using

integral representation of delta function we obtain

W (z) =

∫ ∞

−∞
dω′
∫ ∞

−∞
dωE(ω, 0)E∗(ω′, 0) exp

[
−2zα

1 + ω2T 2
eff

]
2πδ(ω − ω′). (2.87)

It follows from Eq. (2.87) that

W (z) = 2π

∫ ∞

−∞
dω |E(ω, 0)|2 exp

[
−2zα

1 + ω2T 2
eff

]
. (2.88)

For a numerical study it is convenient to transform to dimensionless variables, Z = αz

and ν = ωTeff . The energy attenuation factor of pulses is

Γ(Z) = W (Z)/W (0). (2.89)

Now the energy at any propagation distance Z is expressed by

W (Z) =

∫ ∞

−∞
dν |E(ν, 0)|2 exp

[
− 2Z

(1 + ν2)

]
. (2.90)
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At propagation distance Z = 0, the energy is

W (0) =

∫ ∞

−∞
dν |E(ν, 0)|2 . (2.91)

The resultant energy loss is in general given by the attenuation factor

Γ(Z) =

∫∞
−∞ dν |E(ν, 0)|2 exp

[
− 2Z

(1+ν2)

]
∫∞
−∞ dν |E(ν, 0)|2 . (2.92)
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Chapter 3

Chirped Pulses in Resonance Linear Optics

3.1 Introduction

This chapter presents a general description of different shapes of chirped pulses often

encountered in optics.

3.2 General Overview of Pulse and Chirp

The series of papers [5, 26, 39] by D. Marcus presented the Gaussian pulse distortion

in a single mode optical fiber where the wavelength changes linearly (chirp) during

propagation. A pulse whose instantaneous frequency varies with time is known as a

chirped pulse.

Chirp appears in a pulse due to different phenomena. Chirp can arise in a pulse

because of chromatic dispersion while it propagats in a transparent medium. Chirp

can also result from diode lasers or amplifiers by direct modulation of lasers due to

refractive index changes associated with the electron density.

The amount of chirp can be measured by the rate of change of instantaneous frequency

(radians per second). When the instantaneous frequencies of any pulse increases or

decreases with time, these are known as up-chirp and down chirp, respectively. Figure

3.1 shows an up-chirped pulse electric field where instantaneous frequency increases

with time.

A chirped sinusoid wave has an instantaneous frequency that varies linearly with time.

It can be represented by

exp[iω0t]→ exp i[ω0t+ C
t2

2t2p
], (3.1)

26



Figure 3.1: A pulse with a frequency ”up-chirp” [40].

where ω0 is the carrier frequency, tp is a characteristic time related to the signal period

and C is the (dimentionless) chirping parameter that represents the rate of change of

the instantaneous frequency. The parameter C can be positive or negative, resulting

in an increasing or decreasing instantaneous frequency.

Chirp can also be classified into linear and nonlinear chirp. Generally, the instanta-

neous frequency with a linear chirp changes linearly with time. The instantaneous

frequency is

ω(t) = ω0 + C
t

t2p
, (3.2)

and the linearly chirped sinusoidal signal can be described as

v(t) = sin

[
(ω0 + C

t

2t2p
)t

]
, (3.3)

at unity amplitude, where ω0 is frequency at t = 0.

Exponential chirp is a non-linear chirp, it is also known as geometric chirp [42, 43].

The instanteneous frequency of exponential chirp changes with time in a geometric

relationship and the instantaneous frequency is

ω(t) = ω0C
t
tp . (3.4)
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Figure 3.2: A pulse with (a) linear and (b) exponential chirp.

This type of chirped wave with unity amplitude is expressed as

v(t) = sin(ω0(C
t
tp − 1)/ lnC

t
tp ). (3.5)

The chirp rate C is exponentially increasing in an exponentially chirped signal. Figure

(3.2) (a) shows the linearly chirp waveform and (b) show the exponentially chirped

wave-form where the instantaneous frequency varies linearly or exponentially with

time, respectively.

One of the most important properties of a chirped pulse is that, it has a large band-

width. Chirped pulses are used in a radar applications where a frequency swept

(chirp) pulse is set into a linearly dispersive delay line [41] to improve the range res-

olution. Chirped pulses also have attractive properties of pulse shaping and they can

modify the temporal profile of ultra-short pulses of a laser.

As a sufficient amount of chirp in a given input pulse can produce a short pulse, it

is useful to create a short pulse from a wider pulse source. By this technique, ultra

short pulses from a semiconductor laser can be further compressed. Broadening of

optical pulses is induced by dispersion. Broadening and compression of chirped pulses

depend on the same or opposite signs of dispersion and chirp parameters. For details

see discussion in sec. 3.4.
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3.3 Gaussian Envelope Function

In most cases, pulses emitted from a laser form a Gaussian-like shape, which is com-

monly used for investigation of pulse transmission in fiber optics [45]-[46]. The electric

field of the Gaussian pulse can be written as

E(t) ∝ exp[−t2

t2p
] exp[i(ω0t+ C

t2

2t2p
)], (3.6)

where tp, ω0 and C are the characteristic pulse width, carrier frequencye, and chirp

parameter respectively. Here the Gaussian parameter of this pulse is Γ = (1− iC)/t2p.

If we consider the Gaussian pulse without chirp, the Gaussian parameter becomes Γ =

1/t2p. For C > 0, the instantaneous frequency rises linearly with time, from leading

to the trailing edge (that’s why, it is called up-chirp), for C < 0, the instantaneous

frequency rises in opposite manner (it is called down-chirp).

The intensity I(t) of the Gaussian pulse is given by

I(t) ∝ |E(t)|2 = exp[−2t2/t2p] = exp[−(4 ln 2)(t/τp)2]. (3.7)

Here, τp is the Full Width at Half Maximum (FWHM) of the pulse which is related

to tp by the expression

τp = tp
√
2 ln 2. (3.8)

3.3.1 Instantaneous Frequency

From Eq. (3.6) of the Gaussian pulse, the time-varying phase shift and the total

instantaneous phase of the Gaussian pulse are represented respectively by [44]

E(t) ∝ exp[i(ω0t+ C
t2

2t2p
)] = exp[iφtot(t)], (3.9)

and

φtot(t) = ω0t+ C
t2

2t2p
. (3.10)
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The instantaneous frequency of Gaussian pulse ωi(t) in unit of radians per second is

expressed as

ωi(t) =
dφtot(t)

dt
. (3.11)

Figure 3.3: A (a) positively and (a) negatively chirped Gaussian signal pulse.

When a Gaussian pulse has a non-zero C and a linear time-varying instantaneous

frequency, it is known as a chirped pulse. Figure 3.3 shows positively and negatively

chirped Gaussian pulses with a linear time-varying instantaneous frequency. A pulse

whose instantaneous frequency increases linearly from the leading to the trailing edge

with time is called a positively chirped pulse. On the other hand, a negatively chirped

pulse’s instantaneous frequency decreases linearly with time.

3.3.2 Relationship Between Time and Frequency

Fourier transform of a Gaussian pulse can be obtained by

E(t) = 1

2π

∫ ∞

−∞
E(ω)e−iωtdω, (3.12)
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with the inverse given by

E(ω) =
∫ ∞

−∞
E(t)eiωtdt. (3.13)

The pulse width Δt can estimated using the r.m.s width concept

Δt =

√
〈t2〉 − 〈t〉2, (3.14)

where

〈t2〉 =
∫∞
−∞ t2|E(t)|2dt∫∞
−∞ |E(t)|2dt

, (3.15)

and 〈t〉 describes pulse center position

〈t〉 =
∫∞
−∞ t|E(t)|2dt∫∞
−∞ |E(t)|2dt

. (3.16)

Similarly for the spectral width

Δω =
√
〈ω2〉 − 〈ω〉2, (3.17)

where

〈ω〉 =
∫∞
−∞ ω|E(ω)|2dω∫∞
−∞ |E(ω)|2dω

, (3.18)

and

〈ω2〉 =
∫∞
−∞ ω2|E(ω)|2dω∫∞
−∞ |E(ω)|2dω

. (3.19)

The temporal and spectral widths are related by [47]

ΔtΔω ≥ 1/2. (3.20)

It is clear from the above relationship that to produce a short pulse duration, need to

use a large frequency range. When the product of the pulse duration and bandwidth

is close to its minimum, the pulse is known as a Fourier-transform limited pulse. In

experiments, it is easy to measure the half maximum quantities. Time frequency

(Fourier inequality) product can be expressed by [47]

ΔvΔt = KA. (3.21)
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where Δv is the FWHM spectral width, Δt is half maximum time duration and KA

is a number depending on the profile of the pulse. Various symmetrical pulse shapes

have values of KA shown in table 3.1.

Table 3.1: KA values for various pulse shapes [47].
Shape E(t) KA

Gaussian function exp(−(t/t0)2/2) 0.441
Exponential function exp(−(t/t0)/2) 0.140

Hyperbolic secant 1/ cosh(t/t0) 0.315
Lorentzian function [1 + (t/t0)

2]−1 0.142

3.4 Chirped Gaussian Pulse

The propagation and broadening of a chirped Gaussian pulse in a linear dispersive

medium far from optical resonaces is reviewed in this section. Consider a linearly

chirped Gaussian pulse with the initial pulse profile

E(0, t) ∝ exp

(
−(1 + iC)t2

2t2p

)
(3.22)

The amplitude E(z, t) of chirped Gaussian pulse at any propagation distance can also
be evaluated analytically to give

E(z, t) = 1

2π

∫ ∞

−∞
Ẽ(z, ω) exp(−iωt)dω, (3.23)

where the Fourier amplitude can be determined by

E(z, ω) =
∫ ∞

−∞
Ẽ(z, t) exp(iωt)dt (3.24)

Using paraxial wave Eq. (2.34) the pulse envelope at any distance z,

2i∂zE − β2∂
2
ttE = 0. (3.25)

Using Eq. (3.23) the pulse dispersion equation can be written as

i∂tẼ = −1
2
β2ω

2Ẽ . (3.26)
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A simple solution for the Fourier transform is

Ẽ(z, ω) = Ẽ(0, ω) exp
(
i

2
β2ω

2z

)
. (3.27)

For chirped Gaussian pulse spectrum at z = 0 is

Ẽ(0, ω) =
∫ ∞

∞
Ẽ(0, t) exp(iωt)dt ∝ tp√

2π(1 + iC)
exp

[
− ω2t2p
2(1 + iC)

]
(3.28)

The pulse envelope at any propagation distance z is

E(z, t) ∝ tp
[t2p − iβ2z(1 + iC)]1/2

exp

[
− (1 + iC)t2

2[t2p − iβ2z(1 + iC)]

]
. (3.29)

The chirped Gaussian pulse retains its Gaussian shape during propagation. The pulse

width at propagation distance z is

Δt(z) = tp

[(
1 +

β2zC

t2p

)2

+
β2
2z

2

t4p

]1/2
. (3.30)

Figure 3.4 shows that in chirped Gaussian pulses the broadening factor depends on

Figure 3.4: Broadening factor as a function of normalized distance z/LD. For β2 < 0
the same curve is obtained if the sign of the chirp parameter is reserved.
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the relative signs of β2 and C. If β2C > 0, the Gaussian chirped pulse is broadened

faster than an unchirped Gaussian pulse at the same normalized distance z/LD.

When the pulse is initially chirped and β2C < 0 the chirp i induced by dispersion

in the opposite direction from initial chirp. As a result the broadening factor goes

through an initial compression stage. The minimum pulse width occurs when the

two chirps are cancelled out. When the propagation distance is increased further, the

pulse width will increase again.

3.5 Hyperbolic Secant Pulse

Mode-locked lasers often emit pulses having a temporal shape of hyperbolic secant

(sech). The incident field of the hyperbolic secant pulse can be expressed by

E(0, t) = sech

(
t

tp

)
. (3.31)

Figure 3.5: Temporal shape and pulse spectrum of a hyperbolic secant pulse at tp = 1.

The full width at half-maximum of a secant pulse is

tFWHM = 2 ln(1 +
√
2)tp ≈ 1.763tp. (3.32)
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The incident field of the chirped Hyperbolic secant pulse can be expressed by[48]

E(0, t) = sech

(
t

tp

)
exp

(
− iCt2

2t2p

)
. (3.33)

Figure 3.5 shows the pulse profile and spectrum of a hyperbolic secant pulse without

chirp.
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Chapter 4

Ultrashort Pulse Shaping in Resonant Absorbers

4.1 Introduction

Numerical analysis of different shapes of chirped pulses propagating in coherent reso-

nant absorbers is described in this chapter. Mathematical modeling and simulations

were performed using the Mathematica software package.

4.2 Propagation of Chirped Pulses and Anomalous Losses

In this Chapter, we examine propagation of chirped ultrashort pulses of different

shapes, which are often encountered in applications, in resonant linear absorbers.

Recall that from Sec. 2.5 Eq. (2.70) the pulse envelope at any propagation distance

inside the medium is given by

E(t, z) =
∫ ∞

−∞
dω Ẽ(ω) exp[−iω(t− z/c)− κR(ω)z], (4.1)

where we introduced the spectral amplitude of the incident pulses viz.,

Ẽ(ω) =
∫ ∞

−∞

dt′

2π
E(t′, 0) eiωt′ , (4.2)

and the spectral response function R(ω) of the medium is given by

R(ω) =
∫ ∞

−∞
dΔ

g(Δ)

γ + i(Δ− ω)
. (4.3)

In this Chapter, we consider a Lorentzian profile for the inhomogeneous broadening,

g(Δ) =
1

π

1/TΔ

(Δ2 + 1/T 2
Δ)

. (4.4)
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It follows from Eqs. (4.3) and (4.4) that

R(ω) = 1

γeff + i(Δ− ω)
, (4.5)

where the effective damping rate is given by the expression

γeff =
1

T0

+
1

TΔ

. (4.6)

1/T0 describes the damping rate of homogeneously broadened atoms, and the char-

acteristics damping time TΔ and detuning distribution g(Δ) is associated with in-

homogemeous broadening. So that Eq. (4.5) is satisfied by both homogeneous and

inhomogeneous broadened atoms.

4.2.1 Chirped Gaussian Pulses

We first explore the behavior of a Gaussian pulse because it models well the output

of most lasers [48]. The field profile of a chirped Gaussian pulse is given by the

expression

E(t, 0) ∝ exp

[
−(1 + iC)t2

2t2p

]
, (4.7)

where tp is a characteristic pulse width and C is a pulse chirp parameter. The spectral

amplitude of the pulse is then given by

Ẽ(ω) ∝ exp

[
− ω2t2p
1 + C2

]
exp

[
iCω2t2p
1 + C2

]
. (4.8)

With the initial shape of Eq. (4.7) and (4.8), the normalized pulse intensity profile can

be determined from Eqs. (4.1) and (4.2). The resulting pulse evolution is exhibited in

Figures 4.1 and 4.2 as a function of dimensionless time, T = γeffτ , and dimensionless

propagation distance, Z = αζ for two values of the chirp. It is seen in the figures

that the chirped pulse reshapes faster than does the chirp-free one, quickly burning a

“hole” at the center of its intensity profile. This situation is schematically illustrated

in Figure 4.3 where the absorption spectrum is displayed as well. The chirped pulse

also quickly develops wings in the tails. The drastic reshaping of chirped pulses is due

to the initial pulse phase modulation. The latter manifests–in the spectral domain–in
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Figure 4.1: Normalized intensity |E(T, Z)|2 in arbitrary units of a chirped Gaussian
pulse as a function of T for several values of Z for C=0 and for C = 5.

Figure 4.2: Normalized intensity |E(T, Z)|2 in arbitrary units of a chirped Gaussian
pulse as a function of T for several values of Z for C=0 and for C = −5.
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a broader initial spectrum of the chirped pulse as compared to the chirp-free one. The

broader initial spectrum of the chirped pulse causes accelerated spectral broadening

and spectral hole burning. As the spectral hole is burnt, the energy of the pulse is

Figure 4.3: The spectrum of absorber medium and chirped short pulse.

Figure 4.4: Chirped pulse spectrum in arbitrary units as a function of the propagation
distance Z for C = 5.

pushed away toward the pulse wings, well outside the medium absorption spectrum.

As a result, the pulse experiences anomalously low absorption and retains much of

its original energy.

To confirm these qualitative conclusions, we numerically calculate and display the
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chirped pulse spectrum as a function of the propagation distance in Figure 4.4 where

the spectral hole burning is clearly evidenced.

Also, as follows from Eq. (4.8) the initial rms spectral bandwidth of the chirped

Gaussian pulse is

Δω ≡
√
〈ω2〉 − 〈ω〉2 =

√
1 + C2/tp, (4.9)

where the averaging of any function f(ω) is defined as

〈f(ω)〉 =
∫∞
−∞ dω f(ω)|Ẽ(ω)|2∫∞
−∞ dω |Ẽ(ω)|2 . (4.10)

To confirm that the spectral rms width of a chirped Gaussian pulse is always greater

than its chirp-free counterpart, we worked out in Appendix A, the long-distance

asymptotic expression for Δω as

Δω∞(Z) �
√
1 + C2

t2p
+

√
2Z(1 + C2)

tpteff
, (4.11)

where teff = γ−1eff is an effective damping time. It follows from Eq. (4.11) that the

Figure 4.5: The analytical and numerical rms spectral bandwidth of a chirped Gaus-
sian pulse for C = 5. The analytical spectra is shown as the dotted line.

bandwidth of Gaussian pulse slowly grows with the propagation distance as Z1/4;

however, at any propagation distance the chirped pulse spectrum is broader and
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it grows faster than the chirp-free pulse spectrum. The analytical result (4.11) is

confirmed with numerical simulations in Figure4.5.

As mentioned before, chirped Gaussian pulse propagation in resonant absorbers is

accompanied by anomalously low energy losses. The energy losses of chirped pulses

are determined by the attenuation factor

Γ(Z) =

∫∞
−∞ dT |E(T, Z)|2∫∞
−∞ dT |E(T, 0)|2 (4.12)

In Appendix B, we analytically determined the asymptotic behavior of the previously

introduced, attenuation factor Γ(Z) for large Z. It can be expressed as

Γ∞(Z) � exp

(
− 2tp
teff

√
2Z

1 + C2

)
. (4.13)

It follows from Eq. (4.13) that the presence of initial chirp should indeed dramatically

reduce energy losses. This conclusion is confirmed by numerical simulations in Figure

Figure 4.6: Energy loss factor of chirped Gaussian pulse as a function of Z for several
values of the chirp parameter.

4.6 where we exhibit the attenuation factor for Gaussian pulses as a function of

propagation distance for several values of initial chirp. It is seen in the figure that, for

instance, at Z = 5, the propagation distance corresponding to 5 typical absorption
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lengths, the chirped pulse with C=6 still carries over 60% of its energy while the

chirp-free pulse keeps just about 10% of its energy.

From Eq. (2.83) we obtain the profile for long pulse as

E(t, z) = e−αz/2eiβz/2E0(t− z/c). (4.14)

Transforming to dimensionless variables T and Z, we can derive the pulse energy at

distance Z from the source as

W (Z) ∝
∫ ∞

−∞
dT
∣∣∣Ẽ(T, Z)∣∣∣2 = W (0)e−Z (4.15)

The attenuation factor of a long pulse is then given by the expression below

Γ0(Z) = e−Z , (4.16)

A comparison of the energy loss factor of a short chirped Gaussian pulse and long

Figure 4.7: Energy loss factor of chirped Gaussian pulse as a function of Z for several
values of the chirp parameter and energy loss factor of long pulse e−z.

pulse is made with the help of Figure 4.7.
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We can clearly see that chirped Gaussian pulses sustain less energy losses than long

pulses. This is due to the fact that short pulses have a very broad energy spectra,

which enables them to store a lot of energy in their spectral tails, which an unaffected

by the much more narrow loss spectrum of the medium. Conversely, the narrow

spectra of long pulses means most of their energy is stored around the center of the

pulse, which falls into the narrow spectrum of the absorbing medium, leading to more

energy loss through absorption.

4.2.2 Hyperbolic-Secant Pulses

We now consider hyperbolic-secant pulses, briefly discussed in Chap. 3, which arise

in the context of soliton fiber lasers and some mode-locked lasers. The field profile of

a chirped pulse is given by the expression [48]

E(0, t) = sech

(
t

tp

)
exp

(
− iCt2

2t2p

)
. (4.17)

Although the previously derived analytical results cannot be easily extended to this

case, the behavior of chirped hyperbolic-secant pulses in resonant absorbers can be

studied numerically.

Figure 4.8: Normalized intensity |E(T, Z)|2 in arbitrary units of chirped secant pulse
as a function of T for several values of Z for C=0 and for C = 2.
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Figure 4.9: Normalized intensity |E(T, Z)|2 in arbitrary units of chirped secant pulse
as a function of T for several values of Z for C=0 and for C = −2.

In Figures 4.8 and 4.9 we present the pulse profile evolution for the chirped and chirp-

free secant pulses. In Figure 4.8 the chirp is positive, while it is negative in Figure 4.9.

It is seen in the figures that the pulse profile reshaping is affected by the sign of the

chirp. Further, we display in Figure 4.10 the pulse energy loss factor of secant pulse

Figure 4.10: Energy loss factor of chirped secant pulse as function of Z for several
values of the chirp.

as a function of Z for several values of the chirp.

We can conclude by comparing Figures 4.6 and 4.10 that the chirp dependence of the

energy loss suppression is more pronounced for secant than Gaussian pulses.
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In this chapter we propose a technique for pulse shaping by using chirped pulses in

homogeneously and inhomogeneously broadened linear resonant absorbers. Chirped

pulses can be obtained by using a time lens. The time lens is implemented by using an

electro-optics phase modulator that can produce quadratic phase modulation [49, 50].

In this study, we first apply chirp to the initial profile of the pulse. This chirped

pulse is transmitted through a coherent linear absorbing medium; the pulse quickly

burns a ”hole” at the center of the intensity profile on propagation in the medium.

The incident pulse progressively reshapes on propagation. Chirp free pulses can also

reshap when they propagate through absorbers, although from our simulation results

it is clear that the pulse shaping is especially pronounced when the pulses are chirped.

Since we need to maintain a relatively large propagation distance for the proposed

technique to be efficient, we propose to utilize hollow core photonic crystal fibres

(HCPCF) filled with a dilute atomic vapour as linear resonant absorbers [51]. In

the literature, we find that the absorption lengths of dilute atomic vapours such as

potassium (K), rubidium (Rb) and sodium (Na) used in experiments were 1.2 mm

[53], 3 cm [52], 30 cm [54] respectively. In our case, the propagation distance as large

as Z = 25 can be required. We then estimate the required length of HCPCFs to

be 7.5m. Each HCPCF, has a hollow core which is surrounded by micro structure

Figure 4.11: Hollow core photonic crystal fiber with a core of 20 μm diameter [55].

cladding. A hollow core is fabricated with a periodic arrangement of air holes in

silica. Figure 4.11 shows the HCPCF with a core in 20 μm diameter . A single-mode

HCPCFs can arrest the diffraction. HCPCFs also exhibit negligible nonlinear effects

on the core and their dispersion can be tuned to zero at a particular wavelength. We

assume that we can eliminate fiber GVD at the frequency close to resonance with an

atomic transition of neutral gas filling the core of the HCPCF.

Pulses entering the resonant absorbers also create wings in their tails when they
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propagate, and at the same time they push all energy towards the pulse wings. For

this reason the pulse suffers anomalously low absorption in resonant absorbers. In

our technique prechirped pulse enters the medium; the initial chirp can dramatically

reduce the energy loss when it propagates through the medium. Highly chirped

pulses contain more energy than low chirped pulses after they have traveled over a

sufficiently long propagation distance. Shaping of the pulse is also dependent on the

sign of chirp parameter in the case of hyperbolic secant pulses.

In this new technique we examined only two common shapes of pulse (Gaussian

and secant) which are often used in applications. From the description of pulse

compression technique reviewed in chapter 1 we observed that it is a two-step process

whereas our technique is a one-step process. In our process, there is no nonlinear

effect on the pulses when they propagate whereas most of the pulse shaping process

depends on nonlinearity of media.

Most of the techniques of pulse shaping in femtosecond and picosecond regime are

implemented by using grating mask where frequency components of pulse spatially

disperse, then modulated by spatial light amplitude and phase modulation. In pulse

shaping, by spatial filtering, shaping of pulse is mostly dependant on the fabrication

of mask. In our case, pulse shaping occurs by the absorbing medium when chirped

pulse propagates through it.
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Chapter 5

Conclusion

This chapter will summarize the findings of this thesis and provide suggestions for

future investigations.

5.1 Conclusions

In this thesis, we have investigated ultrashort pulse propagation in linear absorbing

medium in a resonant regime. In this regime the pulse carrier frequency lies in a

vicinity of an internal optical resonance of the media. A detailed literature review has

been performed on the general theory of pulse propagation in linear absorber medium.

Elaborate discussions on various types of chirped pulses were also presented, along

with analytical equations to describe the theory properly.

A new technique of pulse shaping is demonstrated in this thesis. Modified and so-

phisticated pulse shapes can be generated by using the new technique. The influence

of initial frequency chirp of the pulse on its subsequent reshaping is also explored in

homogeneously and inhomogeneously broadened resonant linear absorbers.

The normalized pulse intensity profiles of commonly used Gaussian and secant pulses

were determined by using the fast Fourier method to solve the pulse evolution equa-

tions at various propagation distances inside the medium.

To analyze the pulse shaping of pulses with chirp, numerical calculations were also

performed for chirped Gaussian pulse spectrum as a function of the propagation dis-

tance. The numerical and analytical solutions of the rms spectral bandwidth confirm

that the spectral width of a chirped Gaussian pulse is greater than that of a chirp-free

pulse.

Although the analytical evaluation of a chirped pulse is more complicated for secant
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hyperbolic pulses, we studied the behavior of this pulse by numerical simulation.

From the intensity profile, it is evident that chirped pulses are reshaped faster than

chirp-free pulses, and that reshaping Gaussian pulses does not depend on the sign of

the chirp parameter. Conversely, secant pulses are affected by the sign of chirp.

We also evoluated the loss factor of Gaussian and secant hyperbolic pulses for different

values of chirp, especially for short pulses. The attenuation factor of a short pulse

(i.e., with a pulse duration much less than that of the relaxation time) was calculated

analytically for a chirped Gaussian pulse and confirmed with a numerical result. For

very short pulses, the chirp parameter can dramatically reduce the loss factor for the

pulse propagating in resonant absorbers. After comparing the chirp dependence of

the energy loss factor for Gaussian and secant pulses, we concluded that the effect of

chirp is comparably pronounced for secant pulses.

In summary, the novel technique proposed in this thesis is pulse shaping by trans-

mitting prechirped pulses through coherent linear absorbing media. In this process,

chirped pulse is allowed to propagate in a linear absorbing resonant media e.g. hollow

core photonic crystal fibers filled with a dilute atomic vapor. Inside the media pulse

quickly burns a ’hole’ in the center of the intensity profile and becomes reshaped with

increasing propagation distance. This technique by using chirped pulse resulted in

reshaped pulses with low energy losses.

5.2 Future Work

As the numerical simulation results of this thesis were productive, we are encouraged

to suggest further theoretical research and experimental demonstration on chirped

pulses with different shapes. The solutions of chirped pulses in an amplifying linear

resonant medium also need to be investigated in the case of homogeneously and

inhomogeneously broadeneding.

Based on our simulation results, we believe that the pulse-shaping techniques of very

short pulses discovered in this thesis can be verified and experimentally demonstrated

in the future.
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Appendix A: RMS width and spectral spread of chirped
Gaussian pulses

RMS width and spectral spread of chirped Gaussian pulses in resonant
absorbers in the long propagation distance limit

In this section the analytical calculation RMS width and spectral spread of Gaussian
pulse is presented. A chirped Gaussian field pulse in the source plan z = 0,

E(t, 0) ∝ exp
[
− (1+iC)t2

2t2p

]
.

The spectral amplitude of the pulse is given by

Ẽ(ω, 0) ∝ exp
[
− ω2t2p

1+C2

]
exp

[
iCω2t2p
1+C2

]
,

and the pulse spectrum at propagation distance z is

Ẽ(ω, z) = Ẽ(ω, 0) exp
[
− 2αz

1+ω2t2eff

]
.

The RMS spectral bandwidth of the chirped pulse is

Δω ≡
√
〈ω2〉 − 〈ω〉2

The averaging of the function is defined by

〈ω2〉 =
∫∞
−∞ dω ω2|Ẽ(ω)|2∫∞
−∞ dω |Ẽ(ω)|2 .

So,

〈ω2〉 =
∫∞
−∞ dω ω2 exp

[
− ω2t2p

1+C2

]
exp

[
− 2αz

1+ω2t2
eff

]

∫∞
−∞ dω exp

[
− ω2t2p

1+C2

]
exp

[
− 2αz

1+ω2t2
eff

]

〈ω2〉 = −(1 + C2) ∂
∂t2p

ln
∫∞
−∞ dω exp

[
− ω2t2p

1+C2

]
exp

[
− 2αz

1+ω2t2eff

]
Let,

j(tp) =
∫∞
−∞ dω exp

[
− ω2t2p

1+C2

]
exp

[
− 2αz

1+ω2t2eff

]
After introducing the dimensionless variable Z = αz,

j(tp) =
∫∞
−∞ dω exp

{
−Z

[
ω2t2p

(Z(1+C2))
− 2

1+ω2t2eff

]}
We will use Laplace method for asymptotic evaluation of integrals which is briefly
summarized
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Consider an integral

I =
∫∞
−∞ dx exp [−λf(x)] ,

where f(x) is an arbitrary real function in the limit of very large λ. Expand the
function in Taylor series up to the second order

f(x) � f(x0) +
1
2!
f ′′(x0)(x− x0)

2.

Here at x0

f ′(x0) = 0, f ′′(x0) > 0

The integral I is then

I � ∫∞−∞ dx exp [−λf ′′(x0)s
2/2] ,

where,the variable s = x− x0.

After solving result of the integral is

I �
√

2π
λf ′′(x0)

exp [−λf(x0)]

In the case of multiple minima xk, the resultant integral is

I �∑k

√
2π

λf ′′(xk)
exp [−λf(xk)]

For a more detailed discussion see Ref. [56]

Returning to our case we consider

j(tp) =
∫∞
−∞ dω exp [−Zf(ω)] , Z 
 1

where,

f(ω) =
ω2t2p

Z(1+C2)
− 2

1+ω2t2eff
,

and

f ′(ω) = 2ωt2p
Z(1+C2)

− 4ωt2eff
(1+ω2t2eff )

2

Setting f ′(ω) = 0 to solve for roots,

We have

2ωt2p(1 + 2ω2t2eff + ω4t4eff )− 4t2effωz(1 + C2) = 0

2ω
t2p

t2eff

1
t2eff

+ 4ω3( tp
teff

)2 + ω5t2p)− 4ωz(1+C2)

teff2 = 0

For short Gaussian pulse tp << teff ,
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2ω
[
ω4t2p − 2Z(1+C2)

t2eff

]
= 0

Solving gives the roots

ω = 0, ω1,2 = ±
[√

2Z(1+C2)

tpteff

]1/2
, ω3,4 = ±i

[√
2Z(1+C2)

tpteff

]1/2
.

Root ω3 and ω4 is unphysical because ω must be real.

Now,

f ′′(ω) = 2t2p
Z(1+C2)

− 4t2eff

[
1

(1+ω2t2eff )
2 − 2ω(2ωt2eff )

(1+ω2t2eff )
3

]
Evaluating f ′′(ω) at the roots

f ′′(0) = 2
2t2p

Z(1+C2)
− 4t2eff � −4t2eff

This root is unphysical because f ′′(0) < 0

f ′′
(
±
[√

2Z(1+C2)

tpteff

]1/2)
=

2t2p
Z(1+C2)

− 4t2eff

⎡
⎣ 1(

1+

√
2Z(1+C2)teff

tp

)2 −
4
√

2Z(1+C2)
teff
tp(

1+

√
2Z(1+C2)teff

tp

)3

⎤
⎦

≈ 2t2p
Z(1+C2)

− 4t2eff

⎡
⎣ 1(√

2Z(1+C2)teff
tp

)2 − 4(√
2Z(1+cC2)tp

teff

)2

⎤
⎦ ,

teff
tp

 1

=
8t2p

Z(1+C2)

And

f

(
±
[√

2Z(1+C2)

tpteff

]1/2)
=

tp
√

2Z(1+C2)

teffZ(1+C2)
+ 2(

1+

√
2Z(1+C2)teff

tp

)

≈ tp
teff

√
2Z(1+C2)

Z(1+C2)
+ 2√

2Z(1+C2)
teff
tp

= 2 tp
teff

√
2Z(1+C2)

Z(1+C2)

So,

Zf(±
[√

2Z(1+C2)

tpteff

]1/2
) = 2 tp

teff

√
2Z(1+C2)

(1+C2)

Hence

j(tp) =
∫∞
−∞ dω exp

[
−Z ω2t2p

(Z(1+C2))
− 2

1+ω2teff

]
≈ 2
√

2π
Zf ′′(ω1,2)

exp(−Zf(ω1,2))
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= 2
√

2π
8t2p

(1+C2)

exp(−2 tp
teff

√
2Z(1+C2)

(1+C2)
)

= 2
√

π(1+C2)
4t2p

exp(−2 tp
teff

√
2Z

(1+C2)
)

Now,

ln j(tp) = −2 tp
teff

√
2Z

(1+C2)
− 1/2 ln t2p + 1/2 ln(π(1+C2)

2
)

Let, x = t2p

〈ω2〉 = −(1 + C2) ∂
∂x

[
−2

√
x

teff

√
2Z(1 + C2)− 1/2 ln x

]

〈ω2〉 = (1 + C2)
[

1
teff tp

√
2Z

(1+C2)
+ 1

2t2p

]

〈Δω2〉 = (1+C2)
2t2p

+ 1
teff tp

√
2Z

(1+C2)

Finally the long-distance asymptotic expression for Δω is

Δω∞(Z) �
√

1+C2

2t2p
+

√
2Z(1+C2)

tpteff
.
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Appendix B: Attenuation factor of chirped Gaussian pulses

Asymptotic expression for attenuation factor of chirped Gaussian pulses
in resonant absorbers

In this section the analytical calculation attenuation factor of Gaussian pulse is pre-
sented. A chirped Gaussian field pulse in the source plan z = 0,

E(t, 0) ∝ exp
[
− (1+iC)t2

2t2p

]
.

The energy attenuation factor of the pulse is

Γ(z) = W (z)/W (0).

The pulse energy at any propagation distance within a resonant absorbing medium
is determine by the square modulus of the field envelope,

W (z) ∝ ∫∞−∞ dt |E(t, z)|2 .
By using the Fourier transform properties, the energy at any propagation distance z
is expressed by

W (z) =
∫∞
−∞ dω

∣∣∣Ẽ(ω, 0)∣∣∣2 exp [− 2αz
(1+ω2t2eff )

]
.

and when the propagation distance Z = 0, the energy is

W (0) =
∫∞
−∞ dω |E(ω, 0)|2 .

The resultant energy attenuation factor,

Γ(z) =

∫∞
−∞ dω|Ẽ(ω,0)|2 exp

[
− 2αz

(1+ω2t2
eff

)

]
∫∞
−∞ dω|Ẽ(ω,0)|2

Let,

j(tp) =
∫∞
−∞ dω exp

[
− ω2t2p

1+C2

]
exp

[
− 2αz

1+ω2t2eff

]
Similarly by using the Laplace method for asymptotic evaluation of integrals, we can
write from Appendix A

j(tp) = 2
√

π(1+C2)
4t2p

exp(−2 tp
teff

√
2Z

(1+C2)
)

And

W (0) =
∫∞
−∞ dω

∣∣∣Ẽ(ω, 0)∣∣∣2 = ∫∞−∞ dω exp
[
− ω2t2p

1+C2

]
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=
√

π(1+C2)
t2p

The energy attenuation factor for sufficiently large propagation distance

Γ∞(Z) = W (Z)/W (0) �
√

π(1+C2)

t2p
exp(−2 tp

teff

√
2Z

(1+C2)
)√

π(1+C2)

t2p

So, the energy attenuation factor of a very short Gaussian pulse in the long propaga-
tion distance limit is

Γ∞(Z) � exp
(
− 2tp

teff

√
2Z

1+C2

)
.
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Appendix C: Mathematica code

The following mathematica code were used for evaluate Intensity of
chirped Gaussian pulse:

ClearAll["Global‘*"]

Omega[T_, C_] = Exp[-(1 + I*C)*2*T^2];

data1[C_] = Table[Omega[T, C], {T, -5, 5, .01}];

Omega[nu_, C_?NumericQ] := 1/(2*Pi)*Fourier[data1[C]];

s[nu_, z_] = Exp[-z/(1 - I*nu)/2];

data2[z_] = Table[s[nu, z], {v, 0, 2000*Pi, 2*Pi}];

omega[T_, z_, C_?NumericQ] := InverseFourier[data2[z]*omega[nu, C]];

x = Range[-5, 5, .01];

output =

Table[Thread[{x, Abs[omega[T, z, C]]^2/0.0253}], {z, {0, 20, 40,

60}}];

ListLinePlot[output, PlotRange -> All]

to3D[list_, val_] := Insert[#, val, 2] & /@ list

Graphics3D[

Riffle[Take[ColorData[1, "ColorList"], 4],

Line /@ to3D @@@ Thread[{output, {0, 20, 40, 60}}]], Axes -> True,

BoxRatios -> {GoldenRatio, 1, 1}

BoxStyle -> Directive[Dashed, None], Boxed -> False]

The code used for find out Pulse spectrum and attenuator factor are given
below:

ClearAll["Global‘*"]

Omega[T_, C_] = Exp[-(1 + I*C)*2*T^2];
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data[C_] = Table[Omega[T, C], {T, -5, 5, sampling time}];

Omega[nu_, C_?NumericQ] := 1/(2*Pi)*Fourier[data[C]];

output = Table[{nu, (Abs[

omega[nu,C] - 2 z/(1 + (nu)^2)]])^2}, {z, {0, 1, 2,

3}}, {nu, -25, 25}];

ListLinePlot[output, PlotRange -> Full]

to3D[list_, val_] := Insert[#, val, 2] & /@ list

Graphics3D[

Riffle[Take[ColorData[1, "ColorList"], 4],

Line /@ to3D @@@ Thread[{output, {0, 1, 2, 3}}]], Axes -> True,

BoxRatios -> {GoldenRatio, 1, 1}, Boxed -> False]
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