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Abstract 

 

Web services are independent software systems designed to offer machine-to-machine 

interactions over the WWW to achieve well-described operations. The description of a 

web service entails (a) a syntactic component detailing the service’s operations and data 

structures in terms of the Web Services Description Language (WSDL), and (b) a 

semantic component that offers a semantic description, in terms of an ontology, of the 

services’ data and operations. Typically, service providers expose their services to the 

public by providing brief descriptions of the service’s operations; the challenge is to 

discover the right service based on rather sparse service descriptions in response to a 

specific service request.  

In this thesis, we present a hybrid semantic web service discovery framework that offer 

semantic web service discovery at both the signature and specification levels of a web 

service, whilst exploiting logical and non-logical service matching methods. For 

signature level service matching, we have developed two techniques: (i) logical similarity 

measures applied to the services’ input/output concepts; and (b) non-logical matching 

based on a Structure Preserving Semantic Matching algorithm. For specification level 

service matching, we have applied a unique short sentence matching approach on the 

textual-description of a web service. The cumulative similarly measures determine the 

overall similarity of a services’ description with the service request. We evaluated the 

performance of our S
5
 Web Service Matchmaker using the OWLS-TC dataset, and 

furthermore compared its performance with the OWLS-MX discovery model. Our results 

indicate that S
5
 Web Service Matchmaker offers an improved web service matching 

performance with a significant increase in recall and subtle improvements in precision.  
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Chapter 1.  Introduction 

 

1.1 Introduction 

Web service [1] is a single independent program that can be published, searched and 

invoked on the web. Web service embodies computing in a distributed environment—

web service operates in an environment in which users, computing applications, and data 

sources are distributed. It provides necessary communication and interaction protocols 

for these distributed elements to be dynamically interconnected to perform a particular 

task. Traditionally, client—server applications are the main components in a distributed 

environment; a client application initiates an activity, whereas the server application 

processes the activity request and sends the response back to the client. Taking this idea 

to a web-centric environment demands a middleware that will not only discover the 

server applications but will also maintain communication with the client application. 

Here, web services provide the necessary distributed middleware technology between the 

client and server applications. It is similar to the old technologies like CORBA [42] or 

JAVA RMI [41] but with more technological advantages. For instance, the CORBA 

architecture supports the communication between two objects running on client and 

server applications. Java RMI supports object function calls between two java-based 

applications. Both Java RMI and CORBA are object-oriented distributed mechanisms 

which require a connection oriented communication protocol. On the other hand, web 

services are XML-based communication protocols that are developed to support WWW-
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services via a universally supported HTTP protocol.  Representing web service 

description in an XML format makes it simple to understand by humans as well as 

machines and interoperable between different incompatible applications. The basic idea 

of web services in a distributed environment is described as: 

1. The web service provider describes the format of request and response for its 

service. 

2. A client application makes a request using a provider’s defined format over the 

network. 

3. Web service receives a client request, processes it and generates a response. 

Nowadays, web services are employed by major computing organizations to provide a 

range of functionalities. For example, Microsoft .Net provides the passport service to its 

developer. Passport allows users to access multiple web pages after a single sign-on. 

Microsoft’s software developer’s kit allows developers to access the passport service to 

incorporate an authentication process into their web-based applications. Hotmail is one of 

the running examples of passport web service. Similarly, Google provides MAP API web 

services that allow any map application to request map data using its interfaces. These 

web services take URL parameters as an HTTP request from clients and return map data 

in the HTTP request back to the client applications. Likewise, Amazon web services are a 

collection of web service interfaces that collectively provides a cloud computing platform 

over HTTP [43]. Amazon provides free online access to all exposed web services.   For 

example, Amazon Simple Storage Service (Amazon S3) is one of the web services that 

provide online storage of data. It provides a WSDL interface that would be invoked by a 

web service consumer in order to store and retrieve data anywhere, anytime. 
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Web service architecture consists of three main entities, as shown in Figure 1.1: Service 

provider, Service requester and Service broker. Service provider is the one who creates 

and publishes the web service on any web service registry, like Universal Description, 

Discovery, and Integration (UDDI) [2]. Service requester is the consumer of the web 

service who searches for a service in a registry and invokes the service. Service broker is 

the middle layer between service provider and service requester, which allows the web 

service provider to publish their services and helps the consumer to search and then use 

the relevant services.  

 

 

 

Figure 1.1: Web service data flow model 

 

The web service lifecycle comprises three stages starting from service publishing, service 

discovery and then service invocation.  
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Service Publishing: Web service publishing is the process of making a service available 

for use at the web registry server. Web services are specified in terms of an XML-based 

language known as WSDL. The web service publishing process requires the service 

provider to advertise services by providing maximum information that facilitates the 

service consumer in search. Detailed description of web services results in effective 

publishing and discovering.  

Service Discovery is a process of searching for a web service that satisfies certain 

functional requirements as requested by a service consumer. Universal Description, 

Discovery and Integration (UDDI) are registry servers that provide a mechanism to 

publish and discover web services to its users. Service discovery involves searching web 

service registries for particular services based on desired functionalities provided by web 

service consumers. Many businesses like Google, Amazon, and eBay now make their 

web services publically available. The challenge is finding the right service from these 

service registries. Web service clients need to search all the available web services in the 

registry and select the appropriate service that meets the desired functionalities. For 

example, if a client is searching for a credit card authentication web service in a registry 

that contains thousands of web services, it is not possible to manually search for a 

service. Rather, a search for a web service is usually conducted by intelligent discovery 

agents that take the desired functionalities as a query. These agents match consumer’s 

desired functionalities with the designated functional descriptions of services to find a 

match between the service’s functionality and the client’s needs. Web service discovery 

agents take the user’s requirements in terms of category and functional parameters to 



 

5 

 

search for compatible services in the service registry. The overall service discovery 

process is explained in Figure 1.2.  

 

Figure 1.2: Web service discovery model 

Web service discovery agents serve as a mediator between the web service client and 

service registries. A range of web service discovery algorithms and matchmaking 

techniques are used to facilitate the service discovery processes. Once the right service is 

discovered, the service client invokes the most suitable web service.  

Service Invocation involves the exchange of messages between the service consumer 

and the service provider. The consumer requests and the provider responses are SOAP 
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messages. Once the client retrieves the description of the desired web service, he invokes 

the operations by providing the desired input parameters. The procedure of invocation of 

a web service by client is shown in Figure 1.3. 

 

Figure 1.3: Web service invocation model 

1. As we have mentioned, first a client needs to know which web service meets his 

requirements. A client sends his requirements to a registry server to discover 

relevant web services. 

2. Discovering web services provides a client with the description of relevant web 

service(s). This description would be in a specific language (such as WSDL) 

which describes the service’s operations. For example, a client is interested in 

finding a web service that provides credit card authentication. The discovery 

process may return a description of the web service ‘CreditCardInfoService’ 
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which has an operation, ‘authenticateCreditCard’ that takes credit card number 

and expiry date as parameters. 

3. Once the relevant web service is discovered and the client receives the description 

of the right web service, the client invokes the web service to achieve its 

functionality. Service invocation is done by sending a SOAP request message to 

the service. For example, a client will send the SOAP request to a server asking 

for the authentication of a credit card by providing the credit card number and 

expiry date. 

4.  The server receives the SOAP request; executes the requested operation and 

returns the result in terms of a SOAP message. For example, in this case, it will 

authenticate the credit card number and return either yes/no or any error message.  

 

1.2. Service Discovery Overview 

Service discovery involves matching a service request with the description of all the 

available web services. This is largely pursued by examining some intrinsic 

characteristics of a web service, such as its inputs, outputs, textual description, and 

service name. A service description is categorized into two components: signatures and 

specifications. Web service signatures are the input/output parameters that directly 

correspond to function’s parameters. Web service signature does not describe the 

behavior of a web service. On the other hand, web service specifications are the 

behavioral descriptions of a web service that are explicitly defined by a web service 

publisher, such as textual description, category, and business. There are two main 
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approaches for service discovery: (a) Matching approaches involving the analysis of the 

service’s descriptions (i.e. inputs/outputs, parameters’ structures, textual-descriptions, 

and names) are called the non-logical matching; (b) Deductive approaches using logical 

concepts, rules and ontologies are called the logical matching.  

 

In past researches for service discovery [9, 10, 11, 18, 19, 20], different non-logical 

similarity  techniques have been applied to the signatures and specifications of a web 

service—the techniques aimed to determine the similarities/differences between a pair of 

web services’ parameters, operations, textual-descriptions, and names. The non-logical 

technique that is widely used for the web services discovery models is keyword-based 

matching. Web service discovery agents (or matchmakers) perform keyword-based 

syntactic matching between the user query and WSDL documents and compare 

information, such as web service name, input/output parameter name, and messages 

structure. They treated web service description as a document and considered the user 

request as a keyword query; and searched for these keywords in the description of the 

available web services using syntactic methods. 

 

Syntactic matching is a necessary condition in order to discover and invoke a web service 

but it does not guarantee that there is a semantic agreement between the available service 

functionality and the user requirements. It may be noted that the WSDL documents do 

not entail any semantic description of the service; however the presence and the use of 

the semantic descriptions of web services can assist in improved web service discovery. 

For this purpose, a lot of efforts are made to semantically enhance the description of a 
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web service, which leads to the association of external knowledge to web service 

descriptions. This external knowledge is represented in the form of ontologies. The basic 

idea behind the association of ontologies to web services description is to annotate the 

service parameters using concepts from the associated domain ontology and apply logical 

inferences on service input/output parameters. [33]. Semantic Markup for Web Services 

(OWL-S) [3] offers ontology of web services that consists of classes and properties for 

describing web services. This ontological description of web services facilitates the 

automation of publishing, discovering, and invocation of services [3]. Three main parts of 

the service ontology are: Service Profile, Service Model and Service Grounding.  

 Service Profile is used for publishing and discovering web services.  

 Service Model gives the descriptive information about the operations of 

web services.  

 Service Grounding tells how to communicate and invoke a web service via 

messages. 

 

Many intelligent semantic web discovery models have been developed based on OWL-S 

description of web service [4, 6, 13, and 44]. Typically, semantic web service discovery 

models exploit the information available in the service profile by performing logical 

matching on the signatures (i.e. input/output concepts) and textual similarity matching on 

specifications (i.e. textual descriptions and web service name). Logical matching is also 

called ‘service-profile IO-matching” or “service-signature matching” as these logical 

filters are applied on the web service input/output parameter concepts. All previously 

developed matchmakers follow a logical approach in which the degree of logical 
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similarity (i.e. concepts subsumption) between a pair of web services is computed 

according to the logical-based filter definitions. To provide the consumers with accurate 

but less number of relevant web services, coarse-grained logical matching is applied at 

the web service level instead of fine-grained logical matching at individual parameters 

level; i.e. all pair of I/O concepts should have the same degree of subsumption relations 

to determine the degree of semantic relationship between two web services. As a result, 

only those web services are selected that have the exact, general or specific degree of 

relation for all pair of input/output parameters. Any web service that slightly deviates 

from the specified criteria would not be retrieved as relevant. It is also claimed that the 

quality of discovery models can be improved by integrating logic-based approach with 

syntactic matching [4]. In order to improve the quality of discovery models, service 

specifications (i.e. textual-description and service name) described by service profile are 

modeled with non-logic-based techniques, such as content-based information retrieval, to 

exploit the semantics of service’ content using relative frequencies of terms. A vector 

space model is used to compute specification similarity between a pair of web services; 

which involves converting a textual description and web service names into a vector of 

terms, and applying string similarity measures to compute their similarities/differences. 

 

1.3. Problem Description 

The problem with the WSDL-based matchmakers is their syntactic matching. 

Matchmaking succeeds if and only if the query syntactically matches the web service 

description. The same words with different meanings and the same meaning with 
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different words both lower the precision and recall of discovery models [8]. For example, 

if a user is searching for a term “car”, then any web service that contains “vehicle” would 

not necessarily be retrieved by the syntactic matchmakers due to lack of semantics. 

Additionally, in OWL-S-based matchmakers, the way researchers have applied logical 

filters it does not consider any web service that shows partial similarity with the user 

request. They focused only on those relevant web services that fully satisfied the 

consumers’ needs. Those retrieved web services either showed exact or fully-subsumed 

degree of similarity with user request. For example, if some of the web service 

parameters show EXACT filter and other parameters show SUBSUME filter, then these web 

services would not ever be retrieved by matchmakers. This approach does not consider 

partially matched web services. Partially matched web services are those services that 

show different degrees of logical similarity for each of its parameters. Hence, there is 

very limited choice for a consumer to select another web service if a selected service 

fails. Other drawback of this approach is that it does not provide consumers with 

alternative options in the process of developing a composite web service. This approach 

always guarantees high precision with poor recall. The key issues that we have figured-

out from the previously developed matchmakers are:  

 Logical matching at web service level (instead of individual input/output 

parameter level) tends to improve the precision at the cost of low recall. 

As a result, a consumer has very limited set of web services for selection. 

 Syntactic approaches that are applied on the signatures and specifications 

of web services, such as input/output parameters, textual-description and 

service name, also tend to lowered the recall; resulting in a list of few 
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relevant services for selection. Applying long-text approaches, such as 

TF/IDF, word co-occurrence, on the web service textual-description of 

few words is not efficient way to exploits semantics of a web service. 

 There is no other option exists if a logical reasoning between a pair of web 

services fails due to missing relationship in a domain ontology; while the 

structural parameters of services are same. 

 

1.4. Solution Approach 

Our objective is to focus on different aspects of the logical and non-logical matching 

components in order to enhance the consumers’ satisfaction by providing more 

full/partial relevant web services for selection. This is pursued by taking a hybrid 

approach whereby we exploit both service’s input/output concepts using logical method 

and service’s structure, textual-description, and service name using non-logical methods. 

The signatures and specification information of a web service is extracted from both 

WSDL description and OWL-S description. We argue that on their own, service 

discovery models based on WSDL descriptions and OWL-S description do not provide 

sufficient information which could help in building efficient matchmakers. For example, 

discovery models based on web service names only retrieve web services having similar 

names without considering their textual description, which could be different. Similarly, 

pure logic-based discovery models compare web service input/output parameters 

logically without taking into account non-functional information and vice versa. 

Although textual description provides the specification of the web service, the fact that 
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two web services having similar textual descriptions does not imply that they have the 

same input/output parameters. This shows that totally relying on the textual-description 

of a web service, to discover relevant web service, is not sufficient.  

 

In this thesis we are proposing a S
5
 Web Service Matchmaker which exploits semantics 

and syntax for service specification (i.e. textual-description) and fine-grained logical 

signature matching. We aim to provide the service matching at both the web service 

signature and web service specification levels.  

 

For web service discovery process, S
5
 Web Service Matchmaker considers the signature 

and specification of a web service. In signature matching, we apply the logic-based 

similarity measure for the input/output concepts and Structure Preserving Semantic 

Matching (SPSM) algorithm for parameters’ structure. In specification matching, we 

propose short sentence semantic structure matching for the textual-description and 

information retrieval technique for name matching. S
5
 Web Service Matchmaker always 

ensures that two web services are similar if and only if they have similar signatures and 

similar specifications. The reason we are considering the signatures and specifications of 

a web service in S
5
 Web Service Matchmaker is because the functionality of any service 

is not only described by its parameters but also the specification (such as textual-

description and name) which contains behavioral information. For example, two services 

take the same inputs i.e. ‘Car’ and ‘Model’ and return the output ‘Price’. Although the 

signature of the two services are same but the textual-description will specify the 

currency of the price that each service returns. This shows that signature and specification 
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collectively facilitate in differentiate the relevant web services. Considering signatures of 

web service alone with decrease the effectiveness of discovery model and vice versa. 

 

 

 

Figure 1.4: System diagram of S
5
 Web Service Matchmaker 

 

The process of our hybrid semantic web service discovery model starts from extracting 

the service’s description (i.e. signatures and specifications) from WSDL and OWL-S 

documents. The individual similarities of the four different components of web services 

are computed simultaneously and then S
5
 Web Service Matchmaker aggregates 
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individual component’s similarity. The functionality of each of the component is 

described as:  

 Logical signature matching is based on the deductive approach which is 

performed at input/output concepts level. Degree of similarity between any two 

concepts is computed using five logical filters, as defined earlier. Contrary to 

previous proposed logical approaches, we perform a fine-grained logical matching 

at every input/output concept level. In fine-grained logical matching, any web 

service that partially satisfy consumer needs would also be selected but with a low 

rank.  For example, a web service ‘S’ having inputs “name”, “credit card number” 

and “pin” would be selected as a candidate service for the requested web service 

‘R’ that requires only “credit card number” and “pin” as inputs. 

 Non-logical signature matching exploits implicit semantics, like patterns, sub-

graphs, from the input/output parameters’ structure. Structure matching 

determines similarity between two graphs by evaluating the similarity of graph 

nodes and edges. We use Structure Preserving Semantic Matching (SPSM) 

algorithm [40] that performs the semantic matching between graph nodes while 

preserving their structure. It matches the hierarchies of logical concepts which are 

organized with “is_a” relationship. 

 Non-logical syntax-based measure for sentence similarity is employed on the 

textual-description of a web service. Note that the service textual descriptions 

contain important information regarding parameters and behavior of a web 

service, overall functionality, requirements that need to fulfill, and additional 

information that the service provider wants to share with service consumers. A 
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textual description of the web service can be exploited to increase the accuracy of 

web service discovery results.  Traditionally, researchers [4, 6, 30, and 44] 

exploited the web service textual description defined in a service profile as a 

vector of terms and applied content-based information retrieval techniques. We 

argue that the symmetric and token-based string similarity measures are suitable 

for long-text documents but not for short sentences, such as the textual 

descriptions of services. In long documents, word co-occurrences is an important 

source of information; but in a short sentence having less number of words, word 

co-occurrence is not a significant factor. Yet, syntactic structural information that 

can be extracted from the short sentences provides more significant information 

and helps in calculating sentence semantic similarity. We are using syntax-based 

measure for short sentence similarity approach [29] to exploits both the syntax 

and semantics of textual description of web services.  

 Non-logical service name matching involves the fine decomposition of a name 

into a vector of meaningful terms. For a service discovery, every service is 

usually identified by its name. Web service name could be a combination of 

words which may sometime contain important terms, reflecting web service 

parameters or behavior. We define our decomposing rules to split a service name 

to a vector of meaningful terms and then apply text similarity measures. 

S
5
 Web Service Matchmaker aggregates the individual similarities of all four 

components and retrieves only relevant web services that are above the similarity 

‘threshold’ which is specified by the web service consumer. It is expected that there 

would be an increase in discovering more relevant web services, hence results in 
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more consumer satisfaction by providing more service selection options in case of 

web service failure and web service composition. The increase in relevant web 

service is because of three main reasons. First, the fine-grained logical matching 

discovers the partially matched web services to satisfy consumer needs and facilitate 

web service composition process. Second, if the score of logical-matching decreases, 

it would be compensated by parameter structure matching, resulting in an increase of 

discovering more relevant web services. The last main reason is due to syntax-based 

semantic sentence matching which helps in the refining irrelevant web services; as a 

result improve the effectiveness of retrieved web services. 

 

1.5 Evaluation 

The Semantic Web service discovery is a process of retrieving relevant web services 

based on their semantic descriptions. All the developed semantic web service discovery 

models are evaluated based on their retrieval performance where a model retrieves the 

matched services with their degree of similarity. The problem of web service discovery is 

treated as a special Information Retrieval (IR) problem, Hence evaluation of all semantic 

web service discovery models is performed using the standard IR measures (i.e. precision 

and recall). The test collection (i.e. OWLS-TC) used in evaluation of semantic models 

comprises of three components: a set of web service (the test data), a list of queries, and 

relevant web services for each query. 
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For the evaluation of S
5
 Web Service Matchmaker, we have also used OWLS-TC [16], 

which is a standard web services retrieval test collection. This collection provides 1000 

web services, described in WSDL and OWLS standards. Services are categorized into 

seven different domains i.e. education, medical care, food, travel, communication, 

economy and weapons.  

To evaluate the performance of our model, we used OWLS-MX as a benchmark and used 

precision, recall, and accuracy as performance measures.   

1. First, we evaluated the performance of pure logical component and impact of our 

fine-grained logical approach on web service discovery model. Our proposed 

logical approach successfully improved the overall accuracy of model by 2% with 

an increase of 43% recall.  

2. Second, we evaluated the change in performance of our model by integrating both 

the signature and specification of a web service (i.e. logical, structural, textual-

description, and service-name similarity). 

3. We then compared our hybrid model with hybrid OWLS-MX, which showed an 

accuracy improvement by 1% with an increase of 32% recall.  

4. Finally, we showed the impact of exploiting the structure of a sentence for 

textual-description matching. We compared the results of syntax-based textual 

description matching with traditional information retrieval techniques and 

achieved an improvement of 3% accuracy with an increase of 15% precision and 

8% recall.  
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1.6 Workings of our Approach 

S
5
 Web Service Matchmaker takes web service consumer requests, extracts information 

and performs similarities, and returns a list of web services, as shown in Figure 1.5. The 

workflow for our approach is described as follows:  

1. Web service discovery process is initiated by a consumer by providing an OWL-S 

description of a web service to be searched. We have developed a Query interface 

for the web service consumer to provide his request.   

2. Preprocessing step involves the process of extraction of four major components of 

web services that are input/output concepts, their structure, textual description and 

web service name. These components are then sent to matchmaker for 

comparison. 

3.  After preprocessing, extracted information is sent to web service matchmaker to 

find similarity between the corresponding components of available web services.  

a. Logical matching would be performed between input/output concept of 

the query web service and all available web services using domain 

ontology. 

b. Structural matching between the structures of web services would be 

achieved by using an SPSM algorithm. 

c. Textual description matching is done using short sentence semantic 

matching approach. 

d. Web service names are broken into meaningful words and semantic 

matching is performed to compute similarity between web services. 
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4. S
5
 Web Service Matchmaker computes the cumulative similarity of all four 

components and returns the list of ranked web services to the consumer. This list 

of services is ranked based on their similarity value in descending order. 

Matchmaker will also allow the consumers to select a ‘Top N service’ option that 

he is interested, where N is the number of retrieved web services. 

 

 

Figure 1.5: Workflow of S
5
 Web Service Matchmaker. 
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1.7 Thesis Contributions 

We propose a hybrid web service discovery model that performs the logic-based 

reasoning on the logical signatures and non-logic-based approach on the both signatures 

and specifications of a web service. We aim to provide consumers with a list of 

full/partial similar relevant web services that could help him in two ways: a selection of 

alternate web service if a selected web service fails, and composition of multiple web 

services, that partially satisfy consumer needs, into a single web service. To achieve this 

goal, the three main contributions of the S
5
 Web Service Matchmaker are:  

1. We propose a fine-grained logical signature matching approach, in which a pure 

logical similarity between a pair of web services is computed based on each 

individual service’s parameter separately. This fine-grained logical signature 

matching will always ensure that any partially similar web service may satisfy 

consumer needs and helps him in web service composition process. This approach 

results in selecting even those candidate web services which partially satisfy 

consumer needs. The increase in the number of relevant web services benefits the 

consumer in two different ways. First, a consumer has many options to select an 

alternate web service in case a selected web service fails. Second, many partially 

matched services helps the consumer in developing composite web service to 

achieve his desired requirements. 

2. For syntax-based measure for semantic similarity of web service textual 

descriptions, we present a grammatical approach for analyzing the short textual 

descriptions of services. In our work, instead of decomposing a service 

description into a vector of terms, we exploit the syntax of a textual description 
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and split the textual description into subject, verb and object using syntactic 

functions [25] and then apply semantic similarity measures on similar syntactic 

functions. We argue that instead of calculating the term frequencies for a sentence 

comprising few words, matching the syntactic structures is more practical and our 

results demonstrate that the approach works well for matching service textual 

descriptions. Syntax-based sentence similarity measure helps in refinement of the 

irrelevant services based on the web service specification, which results in 

increase in precision of retrieved web services. 

3. We not only consider the logical similarity of service’s parameters for signature 

matching but also consider the structure of the signatures (i.e. input/output 

parameters). To make the discovery more effective, logical signature matching is 

further coupled with the parameters structure matching whereby we use Structure 

Preserving Semantic Matching (SPSM) algorithm [28] to semantically compute 

the structural similarity between a parameters’ structure. This approach power the 

logical matching by contribution in signature matching. In any case where the 

logical matching fails, structure matching play its role and helps in selecting 

relevant web services. 

 

1.8 Thesis Organization 

This thesis is organized as follows. Chapter 2 gives the background knowledge of 

semantic web services with its standards, technologies facilitate semantic web and efforts 

done in the area of semantic web service discovery that provide spirit to our research 
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work. Chapter 3 describes our approach adopted for semantic discovery of four 

components of web services illustrated with examples and pseudo codes. We present a 

series of experiments and evaluation techniques in Chapter 4. At last, the thesis presents 

conclusion of our proposed hybrid approach and future work of our method in Chapter 5.  
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Chapter 2.  Background and Literature Review 

 

2.1 Web Services 

The World Wide Web is a system of global databases and applications that could be 

accessed via internet. It is widely used for one to one communication between 

applications.  Web Services are designed to support communication between systems 

over the internet [1]. It is based on the open standards, such as Hypertext Transfer 

Protocol (HTTP), Simple Object Access Protocol (SOAP), Web Service Description 

Language (WSDL), and Universal Description, Discovery and Integration (UDDI). Based 

on these open standard technologies, applications written in different languages, running 

on different platforms and different operating systems can exchange data using web 

services. The core technologies of web services, i.e. WSDL, SOAP and UDDI, are XML-

based. A WSDL document provides an interface, which describes the location and 

functionality of web services and hides the implementation of the program from the 

consumer. Information from the WSDL document is then published on the UDDI 

registry. The UDDI registry helps web service consumers to search and locate the 

services that satisfied their requirements. Once the web service is discovered, the service 

consumer constructs SOAP messages to communicate with a service using HTTP 

protocol. 
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2.1.1 The Web Services Model 

 

The basic underlying data model of a web service is based on XML that represents the 

data in a standard format to make it possible to understand by any other application. 

Based on XML, SOAP protocol is used for message transmission, WSDL to describe 

web service interfaces, and UDDI to publish web services. A Web Service Architecture is 

realized through an interaction between three main roles: (i) Service Provider/publisher, 

(ii) Service Requestor and (iii) Service Broker. 

i. A service provider/publisher is the creator/owner of a web service who has 

privileges to remove, change or update the web service without informing web 

service users.  

ii. A service requestor/consumer is the one who wishes to use the functionality of a 

web service.  

iii. A web service broker or web service registry is the middle layer that connects 

service requestors with the service providers. Service providers register web 

services on the registry and service consumers search for the services in that 

registry. 

 

The three main operations of a web service architecture are: (i) publish, by which service 

providers register their services in the service registry, like UDDI, to make it publically 

available for everyone; (ii) find/discover, by which a service requester searches for a 
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service in the registry that satisfies their requirements; and (iii) bind, by which, after 

selecting a web service from the registry, a service requestor invokes the service using 

the binding information available in the web service description (as shown in Figure 2.1). 

 

 

 

Figure 2.1: Web service data flow model 

 

2.2 Web Service Technologies 

2.2.1 XML 

XML (eXtensible Markup Language), a W3C recommendation, is a flexible and simple 

data format, designed to support the exchange of data over the internet [31]. It represents 

the data in a structured way so that it is easy to understand by human as well as machine. 

It is the core of all the technologies used for web services, such as WSDL, SOAP and 

UDDI, as shown in Figure 2.2. 
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Extensible Markup Language (XML)

Simple Object Access Protocol (SOAP)

Web Service Description Language (WSDL)

Universal Discovery, Description and 
Integration (UDDI)

 

 

Figure 2.2: Web services stack technologies. 

 

XML is not the replacement for HTML. HTML is used to display the data to the user 

while XML is used to represent the data in a structured format. The user can create their 

own tags to represent the data, which is contrary to HTML where the user has to use 

predefined tags. XML simplifies the data sharing by storing the data in the plain text 

format, which ease the sharing of data between different applications. An example XML 

document is shown as follows: 

<?xml version="1.0" encoding="UTF-8"?> 

<Shopping> 

<Price> 

  <amount>10</amount> 

  <currency>$</currency>  

</Price> 

</Shopping> 

 

These are not the XML standard tags but are defined by a user to store the data for 

amount and currency. This representation makes it understandable for machine as well as 

human. Nowadays, XML has become the backbone of the web. It is the building block 
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for many other languages to transmit data in a structural format between different 

representational frameworks, such as eXtensible HyperText Markup Language 

(XHTML), Web Service Description Language (WSDL), Wireless Application Protocol 

(WAP), Resource Description Framework (RDF), and Web Ontology Language (OWL). 

 

2.2.2 SOAP 

 

Simple Object Access Protocol, SOAP, is an XML-based light weighted protocol that 

aims to provide the exchange of structured information between independent 

decentralized distributed environments [32]. SOAP is platform independent as it is meant 

for exchanging messages between web services. It defines the format for sending 

messages between different applications. The two main goals of SOAP are simplicity and 

extensibility, which are achieved by using XML [32]. Its extensible message framework 

provides a mechanism to encode data into message construct so that it could be 

exchanged independently over a variety of protocols.  An example SOAP message is 

shown below:  

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"> 
 <env:Header> 
  <n: alertcontrol xmlns:n="http://example.org/alertcontrol"> 
      <n: expires>2001-06-22T14:00:00-05:00</n: expires> 
  </n: alertcontrol> 
 </env:Header> 
 <env:Body> 
    <m: alert xmlns:m="http://example.org/alert"> 
      <m: msg>return price of a car</m:msg> 
    </m: alert> 

   <SOAP-ENV:Fault> 
        <faultcode>SOAP-ENV:Client</faultcode> 
        <faultstring >Failed to locate method</faultstring> 
        </SOAP-ENV:Fault> 

 </env:Body> 
</env:Envelope> 
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A SOAP message is comprised of the following elements: 

 Envelop: It is the outermost or root element of a SOAP message and contains the 

information for the receivers to know where the message starts and where it ends. 

It contains two elements: header and body. 

 Header: This is an optional element in a SOAP message, used to specify 

additional application-level information, like digital signature or encoding of the 

data. There could be zero or more header blocks within a SOAP message. 

 Body:  It contains the collection of zero or more actual SOAP messages and is 

required to be received at the other end (recipient). It is contained within an 

envelope and must be defined by a header. 

 Fault:  Error handling is done by using the fault attribute of a SOAP message. If 

any error occurs during processing, SOAP fault mechanism returns a predefined 

error code back to the sender. It is defined only once within the body element. 

 

SOAP is not tied to any particular transport protocol. SOAP requests/responses are sent 

and received via HTTP request/response.  

 

2.2.3 UDDI 

 

Universal Description Discovery and Integration (UDDI), proposed by Microsoft, is an 

XML-based electronic registry for web services, which helps the businesses to register 

and locate their web service applications [3]. UDDI provides a framework based on XML 
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and SOAP standards to facilitate publishing, discovering and managing web services over 

the internet. A Web service interface, represented in WSDL, is published on UDDI. 

Businesses create and publish their services on UDDI to make them available for public 

usage. Web service consumers search and discover the web services on UDDI that satisfy 

their requirements and invoke these web services using their metadata. The UDDI 

registry does not support semantic description of web services. Since the web services are 

described as WSDL, which is an XML-based document, no semantic description of a 

web service is available. 

 

2.2.4 WSDL 

 

Web Service Description Language (WSDL) is an XML-based description language that 

provides a simple interface to a web service [14]. It allows the applications that are 

running on distributed environments to independently communicate with each other using 

their interfaces. A WSDL interface is comprised of input/output messages grouped into 

operations. Each operation corresponds to a function in an application. A WSDL 

interface may contain one or more operations. It also provides the binding information for 

each interface. In short, a WSDL contains all the information which could be necessary 

for a consumer to invoke a web service. Each operation in a WSDL document defines the 

abstract description of messages that need to be exchanged using SOAP protocol. Here is 

the WSDL example that shows the operation “1personbicycle4wheeledcarPrice” with its 

messages. 

<wsdl:message name="get_PRICEResponse"> 

 <wsdl:part name="_PRICE" type="string"></wsdl:part> 
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</wsdl:message> 

<wsdl:message name="get_PRICERequest"> 

 <wsdl:part name="_4WHEELEDCAR" type="string"></wsdl:part> 

</wsdl:message> 

<wsdl:portType name="1personbicycle4wheeledcarPriceSoap"> 

 <wsdl:operation name="get_PRICE"> 

  <wsdl:input message="tns:get_PRICERequest"/> 

  <wsdl:output message="tns:get_PRICEResponse"/> 

 </wsdl:operation> 

</wsdl:portType> 

<wsdl:binding name="1personbicycle4wheeledcarPriceSoapBinding" 

type="1personbicycle4wheeledcarPriceSoap"> 

       <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/> 

       <wsdl:operation name="get_PRICE"> 

           <wsdlsoap:operation soapAction=""/> 

               <wsdl:input> 

 <wsdlsoap:body use="encoded" encodingStyle = 

http://schemas.xmlsoap.org/soap/encoding/ namespace =       

"http://127.0.0.1/wsdl/Onepersonbicycle4wheeledcarPrice"/> 

               </wsdl:input> 

               <wsdl:output> 

<wsdlsoap:body use="encoded" 

encodingStyle="htp://schemas.xmlsoap.org/soap/encoding/" namespace = 

"http://127.0.0.1/wsdl/Onepersonbicycle4wheeledcarPrice"/> 

               </wsdl:output> 

               </wsdl:operation> 

</wsdl:binding> 

<wsdl:service name="1personbicycle4wheeledcarPriceService"> 

 <wsdl:port name="1personbicycle4wheeledcarPriceSoap" 

binding="1personbicycle4wheeledcarPriceSoapBinding"> 

  <wsdlsoap:address 

location="http://127.0.0.1/wsdl/Onepersonbicycle4wheeledcarPrice"/> 

 </wsdl:port> 

</wsdl:service> 
 

 

A WSDL document describes a web service using five major components: 

 <types> element  contains data type  definitions  that  are used for exchange of 

messages. 

 <messages> element  is  an  abstract  representation  of the transmitted 

information. Typically, a message contains one or more logical parts (i.e. 

parameters). These parts are associated with a type definition. 

 <portType> is an important component in WSDL documents in which a set of 

abstract operations (i.e. functions) that can be performed by the web service are 

defined. Each operation is associated with an input and/or output message. 
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 <binding>  component  specifies  a  communication protocol and data format for 

each operation and message defined in a particular portType element. 

 <service> element is a composite operation that aggregates multiple related ports 

or functions. 

 

2.3 Semantic Web 

The web is a collection of network-accessible information that includes document and 

other resources linked via hyperlink or URL. These documents and other resources are 

solely meant for the human to read, not for the computer to manipulate. By contrast, 

semantic web adds structure and meaning to the content available on the web to make it 

understandable for computers and humans [5]. By making contents more meaningful, the 

intelligent and sophisticated approaches can be developed that can help interaction 

between web pages, services, and other programs.  Semantic web service is the most 

important application of semantic web which adds semantics to the web services 

descriptions. As a result, it facilitates the automation of web service discovery, 

composition, invocation, and interoperation [4]. 

XML defines the organization of data but it does not explain the actual meaning of that 

data. Semantic web is the solution to this.  All Semantic web technologies are built on top 

of XML. There are many semantic web technologies and standards, like RDF, RDFS, and 

OWL, which provide metadata information to XML data to make it more meaningful for 

the computer systems. 
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2.3.1 RDF 

 

Resource Description Framework (RDF) [22], a fundamental component in the semantic 

web, is built on top of XML and stands as a standard model for web data interchange [1]. 

The related data on the web is represented as triples in RDF. Each triple has the form 

<subject, predicate,object>. This way of describing data makes it easy for machine to 

understand and manipulate. These triples are identified by URI. RDF uses URI to 

represent data to give them a unique definition and make them accessible on the Web [5]. 

Along with the RDF, RDF Working Group developed the RDF schema (RDFS), which 

provides the framework to describe the classes and their properties. 

 

2.3.2 OWL  

 

The Web Ontology Language (OWL) is built on top of XML, RDF and RDFS.  It is 

designed to bring more expressiveness to data on the web, in order to assist machines to 

perform reasoning tasks automatically and integrates information. It is W3C standard and 

aims to promote the interoperability and sharing between linked-data. OWL is an 

extension of RDF(S), which provides additional vocabulary for the RDF(S) classes and 

properties, such as disjointness, cardinalities, equalities between the classes and 

symmetric properties relationships. Based on the varied expressiveness level, OWL is 

classified into three sub-languages, as shown in Figure 2.3.  

 



 

34 

 

 

 

Figure 2.3: OWL Classification. 

 

 OWL Lite: OWL Lite is a simple extension of RDF with addition of simple 

constraints on concepts and their relationships [34]. It provides limited 

expressiveness to the users, for example, it supports cardinality value of 0 or 1. 

 OWL-DL: OWL-DL ensures computational completeness and decidability by 

extending OWL Lite up to the decidable fragments [24]. 

 OWL-Full: OWL DL and OWL Full share the same ontology language constructs 

but the only difference is usages of restrictions and RDF features.  It allows free 

integration of RDF schemas while, in OWL-DL, it puts restrictions, like 

disjointness of classes, properties and individuals. 

 

The selection between the OWL-Lite and OWL-DL depends on the expressiveness 

required by the user. On the other hand, selection between OWL-DL and OWL-Full 
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depends on the extent to which a user required RDF-S meta-modeling facility, for 

example defining subclasses or attaching properties to the classes [34]. 

 

2.3.3 OWL-S 

 

The Semantic Markup for Web Service (OWL-S) enables greater access to the web 

service to power the automation of web service tasks i.e. publishing, discovering, 

composition, invocation, and monitoring [3]. OWL-S is ontology for web services that 

allows the service providers to create and publish their web services with much more 

capabilities and properties. This, in turns, makes it more machine readable and increase 

automation of web service tasks. The three main parts of the service ontology are: (i) 

Service Profile, (ii) Service Model and (iii) Service Grounding, as shown in Figure 2.4.  

 

 

 

Figure 2.4: Web service ontology components. 
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i. Service Profile: It tells what functionalities a web service provides to the service 

consumers. Service profile is used for the advertisement of web services. It 

represents the service name, service textual description, input/output parameters, 

and publisher contact information. It helps the web service seekers to determine 

whether the service fulfills their requirements.  

ii. Service Model: It tells how a web service consumer can use this web service. 

Service model describes information related to the web service, such as semantic 

description of input/output parameters, preconditions and effects. It also provides 

in-depth information to a web service seeker in discovering relevant services. 

iii. Service Grounding: the detailed information of how to access a web service using 

SOAP messages is provided by Service Grounding. It defines consumer 

communication protocols, port type, and message formats. 

 

2.4 Domain Ontology 

With the exponential increase of online web service, manually performed web service 

operations, such as web service discovery, composition and integration, are becoming 

difficult. The emergence of the semantic web service technology facilitates the 

automation of the web service lifecycle model. OWL-S provides constructs to combine 

two kinds of ontologies in a web service description. 

1) Generic web service description ontology that describes the semantics of web 

services, such as inputs, outputs, category.  
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2) Domain ontology that provides external knowledge to web services data like a 

“person” data type in web service description can be combined to a concept in 

domain ontology. 

  

Domain ontology is an ontology that is designed for a specific domain to provide 

semantic descriptions of web services. Reasoning tasks are performed based on these 

semantic web service descriptions. The quality of reasoning tasks directly depends on the 

quality of domain ontologies. For complex reasoning, the domain ontology should be rich 

enough to cover maximum knowledge for that domain.   

 

2.5 Short Sentence Matching 

Most of the models described above processed the textual description to determine the 

web service similarity. A Textual description of web service is a short sentence which is 

provided by a publisher to describe the behavior of a web service. Textual description 

contains useful information about the web service functionality that needs to be exploited 

efficiently. Previous approaches considered textual description as a bag of words and 

applied traditional information retrieval techniques, such as cosine similarity, extended 

jaccard. Oliva [29] proposed a method for determining the semantic similarity between a 

pair of short sentences. Semantics of a sentence is not only based on the meaning of its 

individual words but also the structural way the words are combined. This approach 

exploits the syntactic and semantic information from a sentence to compute the semantic 

similarity between two sentences. Syntactic information extraction is a process of 
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obtaining the structure of sentence through deep parsing. Semantic information matching 

is the process of computing the semantic relationship between the concepts that have 

same syntactic roles. The overall process is split into two sub steps: 

1. Given two sentences, the process starts by parsing the structure of both sentences, 

as shown in Figure 2.5. The result of parsing sentence is a dependency structure 

which contains syntactic functions. 

 

 

Figure 2.5: Parse tree of two sentences. 

 

2. Once the syntactic information is extracted, the semantic similarity for two 

sentences is computed by semantically computing the similarity between same 

syntactic functions. The similarity between two words is computing using LIN 

similarity measure [38] which is based on WordNet. 
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2.5.1 Example 

 

Figure 2.5 shows the structure of two sentences. In this case, the LIN similarity between 

principal verbs that is “has” and “has” is 1.the heads of subject “brother” and “brother” 

gets 1. While LIN similarity between the heads of direct object that is “dog” and “leg” is 

0.1414. As a result the overall similarity is 1/3(1+1+0.1414) = 0.71. However, in this 

case, other string similarity measures would give it more similarity because of the 

presences of words “leg” and “four” in both sentences. 

 

2.6 SPSM Algorithm 

Structure matching is the process of comparing the semantic relationship between the 

nodes of two graphs. In some cases, it is required to compute the similarity between the 

identical elements of two structures. An S-Match [28] is a semantic matching framework 

that provides several matching algorithms. Structure Preserving Semantic Matching 

(SPSM) algorithm [40] is one of them.  SPSM takes a tree-like structure as an input, 

generates concepts of labels and concepts of nodes, and then computes a semantic 

similarity between those concepts. The relationship that could exist between two concepts 

is: equivalent, general, specific, or mismatch. Every node in a tree-like graph has a 

number and a label. Nodes are uniquely identified by numbers, while labels are used to 



 

40 

 

represent concepts. The preprocessing module in SPSM takes an input tree and returns an 

enriched tree that contains concepts of labels and concepts of node. The generation of 

concepts of labels and nodes involves external knowledge that is WordNet.  This 

enriched tree is then entered in a matching module, which computes the similarity 

relationship between all pairs of label and node’s concepts of both trees. The result would 

be the overall similarity between the two trees, which ranges between 0-1, where ‘0’ 

represents no match and ‘1’ represents an exact match. 

 

2.7 LIN Similarity Measure 

As mentioned in Oliva [29], the Information Content (IC) measures the specificity of a 

concept, which is higher for more specific concepts. Several proposed similarity 

measures used IC to find the commonality between two concepts. LIN extends the IC 

measure and proposes a method to compute the similarity between two concepts [38]. 

This method is powered by WordNet. If there is a path between two concepts in 

WordNet, LIN’s measure returns their relatedness score. LIN measure can be defined as 

“the ratio of the information content of the lowest common subsumer to the information 

content of each of the concepts” [29]: 

 

Where, C1 and C2 are the two concepts and Simlin is the similarity between C1 and C2. 
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2.8 Literature Review of service discovery 

As described above, web services are the self-describing application component that can 

be used by any other application using open protocol. The components of web service 

description which facilitate the web service discovery model are usually categorized into 

two: web service signature and web service specification [11]. Web service signatures are 

the input/output parameters that directly correspond to the function’s parameters. Web 

service signature does not describe the behavior of web services. On the other hand, web 

service specifications are the behavioral description of web services that are explicitly 

defined by the web service publisher, such as textual description, category, and business. 

Web services are described by Web Service Description Language (WSDL) and Web 

Service Ontology (OWL-S). WSDL document contains input/output messages, which are 

abstract definitions of data, and port types, which are abstract collection of operations 

[14]. WSDL is published on the UDDI, where a web service consumer comes and 

discovers the required service based on the available descriptions. UDDI APIs also 

allows the web service publisher to provide web services specifications. The WSDL 

document, which is also called non-semantic web services, is more popular and easily 

adopted by industry and development tools.  

 

Many matchmaker tools are developed that exploit the web service’s signatures and 

specification information to discover relevant web services based on user requests. Early 

developed WSDL document matchmakers adopted information retrieval techniques to 

discover relevant web services for user requests. These matchmakers extract the signature 

information from WSDL documents published on UDDI. UDDI supports the key word 
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search; That is, for a keyword it matches the web service name, location, business, 

category to retrieve results. If there is no exact match for a keyword, no web service 

would be retrieved. For example, if the query keyword contains “car”, UDDI would not 

retrieve web services that contain term “vehicle”. The lack of semantics in web service 

description’s matching result in low accuracy.  

 

2.8.1 WSDL Signature Matching Approaches 

 

Elgazzar [9] proposed an approach that exploits the WSDL document information and 

group them into clusters based on similar functional web services. The keyword-based 

search engine for non-semantic web services matches web service name, location, and 

business information from the WSDL documents and retrieves results. Elgazzar proposed 

an approach based on the five features of WSDL document: WSDL content, WSDL 

types, WSDL messages, WSDL ports and web service name. Information retrieval 

techniques are applied on all these five features to calculate web service similarity as 

shown in Figure 2.6. 
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Figure 2.6: Block diagram of the features extraction process. 

 

Elgazzar’s [9] main contribution was to propose an approach that found the web service 

similarity based on the five features and clustered based on the functionality. All five 

features determine the semantics and behavior of a web service. The extraction process of 

features from the WSDL document is mentioned as: 

 Feature-1 WSDL Content: they start by reading the content of a WSDL document 

using WSDL URI and converted it into a vector of terms after preprocessing. The 

preprocessing involves: 

o Parsing WSDL: vector of token are extract by splitting the WSDL 

documents based on space. 

o Tag Removal: tokens that are parts of XML tags are removed from the 

vector. 

o Word Stemming: all tokens in a vector are stemmed to their base words. 
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o Function Word Removal: the function words are removed from the vectors 

of token. 

o Content Word Recognition:  WSDL documents contain certain specific 

words like ‘data’, ‘web’, ‘port’ that does not contain any semantic 

information. These words are removed from token vectors. 

 Feature-2 WSDL Types: WSDL document contains input/output identifiers that 

are used by messages.  These identifiers are defined by label and their types. They 

could be a simple or complex type. The similarity between the two web services 

is performed by comparing the numbers of data type matches. 

 Feature-3 Messages: WSDL messages contain one or more message parts. These 

message parts correspond to a simple or complex data. The number of similar 

matches between messages determines the similarity between two web services. 

 Feature-4 WSDL Ports: port type in WSDL document defines the combination of 

messages for an operation. The number of same port types with the same 

messages gives the similarity between two web services. 

  Feature-5 Web Service Name: a web service name is normally a composite word, 

such as ‘WeatherForecast’. Elgazzar [9] decomposed a web service name base on 

capital letters. The similarity between two web service names is computed using 

Normalized Google Distance (NGD). 

The overall similarity between two web service descriptions is computed by averaging 

the similarities of all five features. 
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Problem: Elgazzar’s approach [9] suffers from a lack of semantic matching between 

identifiers. It only considers an identifier’s data type matching without considering its 

structure. He also decomposed web service names only based on capital letters. Whereas, 

a web service name could contain numbers, underscore, and dash. They computed the 

similarity between two words without considering their semantic similarity. 

 

Lui [10] proposed a similarity measure to determine the web service similarity with more 

relatedness. As mentioned in [10], it is not sufficient to apply traditional IR techniques on 

WSDL document content as it contains a very little text, which is contrary to [9]. The 

motive behind their proposal is that terms within documents are not isolated. There is 

some kind of semantic relationship between terms which could help in finding a 

similarity between web services. Lui [10] also considered the ports, port types, 

input/output messages, operations, and other definitions. Extracted information is 

converted into a vector of terms. The approach adopted in [10] is divided into two steps. 

First the similarity between the words is calculated using web search instead of WordNet 

database because there could be some terms which are not included in WordNet such as 

“mp3”, and “wordnet”. Secondly, they propose a different similarity metric that computes 

the similarity between two different terms based on their semantic relatedness. Each term 

in a vector represents a node and the edge between two terms is represented by a 

semantic similarity score. For example, two vectors of terms (nodes) and weights 

between their terms are shown in Figure 2.7. 
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Figure 2.7: Two web services as a bipartite graph. 

 

Once the semantic distance is computed between each term of both vectors, the maximal 

weight matching of bipartite graphs is calculated. This maximum value between a pair of 

bipartite graphs is the total similarity between two web services.  

 

Problem: In this approach the researchers did not consider the structure of the WSDL 

document into their measure. 

 

Dong [18] proposed a web service discovery model very similar approach to [9, 10]. 

They proposed a search engine that combines evidence from multiple sources and 

calculated the similarities. These sources of evidence are the service name, input/output 

parameters, and operations of a web service described in WSDL. The similarity between 

these source of evidence is done by applying syntactic techniques i.e. TF/IDF. The main 

point of this search engine is to cluster web services based on the parameter names. 

 

Nayak [17] proposed the idea of applying data mining techniques on the web services as 

the quality of data represented in WSDL is much finer than any other data. There are 

some hidden data which are rarely exploited. Like, in the case of web services, keywords 
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that represent a service can play an important role in selection of that web service. Data 

mining techniques can be used to explore this hidden information from the web service 

logs. For every user query, a log file of search term is maintained for that session. Later 

on, the user would be provided with the suggested words while searching for a web 

service. This suggested word list is collected from the previous searched sessions stored 

in the query logs. The search session similarity is computes by using Jaccard coefficient 

similarity measure between searched terms of web services.  

 

2.8.2 WSDL Signature and Specification Matching Approach 

 

To improve the web service discovery, Wang [11] proposed a method that exploits 

semantics of the WSDL description’s identifiers and the structure of their operations, 

messages and data types. Their proposed method expects the user to provide a WSDL 

document and a textual specification of the desired web services. In the first step they 

process WSDL specification of all available published web services on UDDI. Web 

services specifications that match with the textual description of user request are selected 

for further filter. Structure of all retrieved web services are now compared with requested 

web service. This structure matching algorithm is powered by WordNet. Semantic 

distance calculation between identifiers and data type of WSDL structure refines and 

accesses the candidates web services. The overall steps are described as follow: 

 Step 1: user will provide the textual description of a web service. This textual 

description is compared with the textual description of all available web services 

which were provided by a publisher in WSDL specifications. A textual 
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description is specified in natural language that can be exploited by using 

traditional information retrieval methods such as vector space model. It is 

converted into a vector of terms. These terms are refined by stemming, stop word 

removal, and weighing each term. The weight of a term is product of term 

frequency and inverse document frequency. 

 

After obtaining the vector of terms with their weight, they applied cosine 

similarity which shows the similarity between two web services. 

 Step 2: Retrieved set of web services from step 1 are not pruned down based on 

their structural similarity. They proposed a method which compared the structures 

of two web services using WordNet. The structural similarity between two web 

services is determined by semantically comparing their operations, which in turn 

is based on the semantic comparison of the input/output messages of each 

operation, which is again based on the data types of the messages identifiers. 

They also performed the structural comparison between the labels of the identifier 

instead of their data type. WordNet is used for semantically comparing the label 

of identifiers in structure matching. The overall structural similarity is the average 

of structure data type matching and structure identifier matching.  

 

Problem: we find a number of problems in their web service discovery model: 

1. They applied traditional information retrieval technique that is tf.idf for few 

words of textual description. As already mentioned in [9,10,29] that applying 

traditional IR techniques like TF/IDF is not good for a sentence of few words as 
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this technique rely on term frequencies to determine the semantics of web 

services. 

2. The structure matching algorithm did not consider what identifiers are matching. 

It just consider their types without considering their semantics and preserving 

structure, such as  string matched to string, float matched to float. 

 

2.8.3 OWL-S Signature Matching Approaches 

 

The WSDL document does not provide the semantic information about the web services. 

There is no notion of relationship between the parameters of a web service. The 

emergence of semantic web and integration of semantic web with web services open a 

new door for the researcher with new challenges. To solve the problem, many semantic 

web service matchmaker engines are developed. Klusch [4] described the first hybrid 

approach, called OWLS-MX, for the semantic web service discovery based on the OWL-

S, which is the combination of logic-based semantic similarity of OWL-S services and 

content based syntactic similarity. In this model, the services advertised and user request 

are described in same description language, i.e. OWL-S. OWL-S facilitates the standard 

usage of description logic reasoning to automatically determine the web service similarity 

based on their concepts subsumption relations. OWLS-MX performs logical input/output 

concepts matching. The process of content-based and logic-based similarity is described 

as follow: 

 Content-Based Similarity: First, their model processes OWL-S web service 

description of all available web services in their database (OWLS-TC). Web 
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service description includes web service name, textual description and unfolded 

input/output concepts. These web service descriptions are converted into a vector 

of terms along their weights, after stemming and stop word removal. They apply 

token-based string similarity measures to compute the content similarity between 

query and available web services. These measures are cosine, extended jaccard, 

loss of information and Jensen-shannon information divergence. 

 Logic-Based Semantic Filters: OWLS-MX determines the semantic similarity 

between two pair of services by defining five logical filters that are EXACT, PLUG-

IN, SUBSUMES, SUBSUMES-BY and FAIL. If there is service S and request service R 

then the logical filters would be defined as: 

o Exact Match: Service S perfectly matches with service R if and only if all 

parameter of S exactly matches with any parameters of R. 

o Plug-in Match: Service S plug-in matches with Service R if and only if all 

parameters of S is least specific concept of parameters of R and number of 

service S parameters should be greater or equal to number of service R 

parameters. 

o Subsumes Match: Service S subsumes service R if and only if all 

parameters of S are sub-concepts of parameters of R and number of 

service S parameters should be greater or equal to number of service R 

parameters. This filter is weaker than plug-in match.  

o Subsumed-by Match: Service S subsumed-by service R if and only if all 

parameters of S are least general concept of R parameters and number of 
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service S parameters should be greater or equal to number of service R 

parameters. 

o Logical Fail: Service S is failed to match with service R if none of the 

above filter matches. 

OWLS-MX first performed the logical matching between the pair of web services 

parameters. If the web services failed to match logical, then OWLS-MX match performed 

the content based similarity. OWLS-MX implemented the variant algorithms. Each 

algorithm is the combination of logical-based semantic filter and one of the content-based 

filter that are cosine, extended jaccard, Jensen-shannon information. According OWLS-

MX, the best information retrieval similarity measure performed close to pure logic-

based match is cosine similarity. 

 

Problem: we believe that they adopted very strict logical matching. They applied the 

logical filters at web service level instead of parameter level which results in high 

precision but very low recall, hence giving very limited web service options to consumers 

for selection. 

 

Wenjie [6] worked in the area of biomedicine where there is requirement of dynamic 

discovery of web services. They tried to solve the web service discovery issue in 

biomedicine environment where web services are published on UDDI in WSDL form, 

which lacks the flexibility and expressiveness for dynamic web service discovery. They 

proposed the idea of describing web services in OWL-S and suggest the hybrid 

approaches for matching process. Their hybrid approach adopts the method proposed by 
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Klusch [4] with additional web service specification similarity. For logical matching, 

input/ output concepts are matched based on five degree of similarity measures define by 

[4]. They also perform the pair wise matching between the input/output concepts of web 

services. In addition with logical matching for parameters, they believed that web service 

name also contain concepts from biomedicine ontology. They extract the concepts from 

web service names and perform the logical matching between concepts of two web 

services names. The overall similarity between two OWL-S descriptions of web services 

is the weighted sum of input/output parameters similarity and web service names 

similarity. They applied logical and non-logical similarity method on all biomedicine web 

services describe in OWL-S.  

 

2.9 Conclusion 

We note that existing web service discovery models exploit the four main components of 

a web service description—i.e. input/output parameter, parameter’s structure, textual 

description, and web service name. Table 2.1 illustrates the different service discovery 

approaches.  
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Table 2.1: Comparison between web service matching models. 

 

It is noticed from Table 2.1 that WSDL based matchmakers have applied traditional 

information retrieval techniques for all four components. On the other hand, OWLS-

based matchmakers performed logical reasoning on input/output concepts with additional 

content-based information retrieval techniques for textual description and web service 

names. 
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Chapter 3.  Hybrid Web Service Discovery Approach 

 

3.1 Overview 

As mentioned in Chapter 2, previous web service discovery models exploited non-

semantic information from WSDL documents using traditional information retrieval 

techniques. The main information a WSDL document provides for a web service is the 

input/output parameters and their structures. This description in a WSDL document could 

be used to determine web service similarities. WSDL based matchmakers totally rely on 

this information. The general approach of all previously developed WSDL-based 

matchmakers is to convert the description of a web service into a vector of terms and to 

apply string similarity measures like cosine similarity, jaccard similarity.  These 

matchmakers powered the syntactic matching by using the WordNet dictionary to add 

semantics to words. The problems that we have discovered in previously developed 

WSDL-based matchmaker are as follows: 

1. One of the main problems we identified in WSDL-based matchmakers is that they 

adapted long-text similarity approaches which are not suitable for handling 

sentences of only few words. For example, if there is a large corpus then word co-

occurrence could be an important source of information for calculating similarity. 

However if the sentence is very short, then this method would not be effective. 

2. With the exception of Yaqio [11], all other WSDL matchmakers convert the 

structure of input/output parameters into a vector of terms and applied traditional 

information retrieval techniques. Yaqio [11] developed his structure matching 
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algorithm that only worked on an identifier’s data types.  Applying string 

matching approaches to structure matching totally ignores the structural 

information of a service. 

3. The other problem is the lack of semantics in WSDL documents. There is no 

external information available for WSDL documents. To overcome this problem, 

previously developed matchmakers have integrated external information (i.e. 

WordNet dictionary), which provides semantics for words. But these 

matchmakers would fail to match words, like “mp3”, or “codec”, which does not 

exist in the WordNet dictionary. 

 

OWL-S based matchmaker follows the same traditional information retrieval approaches 

with the addition of a logical reasoning approach for the service signatures. The second 

problem for WSDL-based matchmakers is solved using OWL-S. OWLS-based 

matchmakers contain the semantic information using external domain ontology. This 

domain ontology has the ability to contain all terms/concepts for a specific domain which 

is not possible in WordNet. Most of the previous OWLS-based matchmakers have 

followed the approach of Klusch [9] to the logical reasoning of input/output concepts. 

Klusch [9] proposed five logical filters that were applied at the parameter level i.e. EXACT 

MATCH, PLUG-IN MATCH, SUBSUME MATCH, SUBSUMES-BY MATCH and FAILED. Other OWL-S based 

matchmakers have followed Klusch’s logical matching approach. The problem that we 

identified with previous OWLS-based matchmaker is: 

 If R is the requested web service and S is an available web service in a database, 

then according to Klusch [9], a service S matches with a service R if all of the 
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parameters of service R match with the same logical filter with all parameters of 

service S, otherwise the match fails. The drawback of strict matching is that if 

there is a web service that matches exactly with the request service parameters 

except one parameter which shows plug-in match, Klusch’s matchmaker failed to 

retrieve that web service. It might be possible that service S provides partial 

satisfaction to the consumer but it is missed by OWLS-MX due to the strict 

logical matching. 

 

To solve some of the problems noticed in the existing web service discovery methods, we 

propose a hybrid approach that performs the logical matching between the input/output 

concepts, structural matching on the parameters’ structure, and syntactical matching on 

the textual-description and web service name. The approaches followed for all the three 

matching components are described below:  

1. Logical Matching: OWL-S based matchmakers compute the web service 

similarity using logical reasoning on service’s signatures. We disagree with the 

idea of applying a logical filter at the service level as proposed by Klusch [9]. 

Instead of applying logical matching at the service level, S
5
 Web Service 

Matchmaker is designed to apply a logical filter at the individual parameter level. 

The fine-grained logical filtering at parameters level helps in selecting the web 

services that partially satisfy the service consumer request. This partially matched 

web service could be helpful in web service composition in which two or more 

web services combine to perform a single task. For example, if there is a 

requested service R and an available service S, the logical similarity would be 
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computed for any combination of logical filters between the parameters of service 

R and service S. The total logical similarity between services R and S would be 

the cumulative similarity of all different logical matches between the input/output 

parameters.  

2. Textual Description Matching: In General, WSDL based matchmakers have 

applied non-logical information retrieval techniques to input/output parameters, 

their structures and web service names. The same approach is applied to textual 

descriptions of web services. Applying long-text similarity approaches for short 

sentences is not efficient. We propose a short sentence semantic structure 

similarity measure for textual description; because we believe that structure of a 

sentence and individual words together give the complete meaning of whole 

sentence.  

3. Structure Matching: WSDL documents contain the structure of the service’s 

signatures (i.e. operations with input/output parameters). Previously developed 

WSDL-based matchmakers convert the parameter’s structure into a vector of 

terms and then apply information retrieval techniques. In order to preserve the 

structure and perform semantic matching, we are using a Structure Preserving 

Semantic Matching (SPSM) algorithm that is solely developed for graph 

matching.  

4. Web Service Name: For web service names, we have defined our own 

decomposing rules instead of just splitting on capital letters. After splitting the 

web service name into a vector of terms, we have applied semantic string 

similarity measure i.e. semantic cosine similarity. 
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Our proposed hybrid model is shown in Figure 3.1. This diagram depicts the four 

component covered by our model and the techniques that are adopted to improve the 

performance of the discovery model. 

 

Figure 3.1: System diagram of S
5
 Web Service Matchmaker. 

Below, we explain the working of each component of our service discovery model.  

 

 



 

59 

 

3.2 Logical Signature Matching 

Web service ontology (OWL-S) provides external knowledge, i.e. domain ontology, to 

represent service’s arguments. As explained in Chapter 2, domain ontology provides a 

model for a specific domain which represents concepts and the relationship between 

concepts. Logical matching is the process of calculating the similarity between two 

concepts in domain ontology using their properties and the relationship between them. 

Taking any two concepts from domain ontology, there could be one of the following 

relation exist between them i.e. Exact or Subsumption or NoMatch. Klusch [4] proposed 

five different logical-based filters to compute the semantic similarity between requested 

and available web service signatures i.e. EXACT, PLUG-IN, SUBSUME, SUBSUME-BY and FAILED 

matches. They applied logical filters at the web service level to increase the precision of 

discovery model. Comparison between the signatures of two web services must contain 

any one of these logical filters. This approach works well where a service consumer is 

looking only for exact, general or specific web services match. The resulting web service 

may or may not contribute to web service composition or there might be a chance of 

missing any useful web services during selection. For example, if a user request a web 

service that takes ‘latitude’, ‘longitude’ and ‘time’ as inputs and returns ‘temperature’ as 

an output, as shown in Figure 3.2(a). Klusch’s approach would not retrieve, for example, 

a web service that takes ‘position’ and ‘time’ as inputs and returns ‘temperature’ as an 

output, as shown in 3.2(b) ( where ‘position’ parameter is the generic subsumer of 

‘latitude’ and ‘longitude’). The match failed because some parameters showed EXACT 

match while others showed PLUG-IN.  
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Figure 3.2: (a) Requester web service. (b) Available web service. 

In order to solve this problem, we have proposed a fine-grained logical matching which 

computes the degree of subsumption relation for each parameter separately, instead of 

determining the same degree of subsumption relation for all parameters of a pair of web 

services. The intuition behind the fine-grained matching is that the candidate services 

which partially/completely satisfy user requirements should be retrieved with the low 

degree of similarity because many partially matched web services could contribute in 

building composite web service.  For example, as mentioned above, service matching 

failed because the input parameter ‘time’ showed an exact match while the remaining 

parameters showed plug-in matches. However, structurally the parameter ‘position’ 

subsumes ‘latitude’ and ‘longitude’. By applying logical filters at the parameter level in 

web service selection, we are providing the consumer with more relevant web services 

that could partially satisfy user needs and could also contribute to web service 

composition.  
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3.2.1 Logical Matching Filters 

 

Logical matching is the process of computing the correspondence between the concepts 

of ontology. It is based on the deductive approach. It uses the input/output concepts from 

the ontology and logical rules to determine the subsumption relation between a pair of 

concepts. In web service matching, it first takes the input/output concepts from a query 

and advertised web services and then looks into the domain ontology that contains all the 

concepts of the advertised web services. In domain ontology, there is hierarchical 

relationship between concepts. The relationship between two concepts in domain 

ontology determines the semantic similarity between them. The relations could be either 

exact match or subsumption or no relation, as shown in Figure 3.3-3.6. Klusch first 

proposed the five logical filters for pure logic-based signature matching. We are using the 

same logical filter approach with more refinement i.e. fine-grained logical matching. 

 

Let D be the domain ontology that has all the concepts of queries and advertised web 

services. LSC(C) is the set of least specific concepts C’ where C’ are the direct children 

of the concept C. LGC(C) is the set of least generic concepts C’ which are the direct 

parent(s) of the concept C in a domain ontology. We have assigned specific values to all 

five filters, as proposed by OWLS-MX. The logical matching filters of S
5
 Web Service 

Matchmaker are as follows:  

 Exact Match: Available service S’s parameters exactly match with the request 

service R’s parameters ⇔ INS = INR ∨ OUTR = OUTS. This similarity shows 
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that the input/output parameters of an available web service perfectly match 

with the input/output parameters of a requested web service based on logic-

based equivalence. This logic based equivalence shows that the properties of a 

pair of concepts in domain ontology are exactly the same, as shown in Figure 

3.3. ‘1’ is assigned as the maximum degree of similarity. 

  

 

 

Figure 3.3: Exact similarity between two concepts. 

 

Plug-in Match: Available service S’s parameters plugs-into the requested service 

R’s parameters ⇔ INS ∈ LSC (INR) ∨ OUTS ∈ LSC (OUTR).  This filter gives a 

little flexibility to the exact match. It guarantees that the available service S will 

have the most specific input/output parameters as compared to what has been 

requested by the consumer request service R. Based on OWLS-MX, the degree of 

similarity for PLUG-IN match is 0.8. 
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Figure 3.4: Plug-in match between two concepts. 

 

 Subsume Match: Available service S’s parameters SUBSUME the requested 

service R’s parameters ⇔ INS ∈ Subclass (INR) ∨ OUTS ∈ Subclass (OUTR).  

Subsume match is similar to the plug-in match except that it provides more 

flexibility in comparing the subsumtption relation in an ontology for the 

input/output parameters. Instead of comparing with the direct child of service 

R’s parameter, as in PLUG-IN, it looks for any subsumed concept in the 

hierarchy. If R’s input/output concept is the child of S’s input/output concept 

in an ontology at any depth, it would be considered as a SUBSUME match, as 

shown in Figure 3.5. Based on OWLS-MX, SUBSUME filter has assigned the 

value of 0.7 degree of similarity. 
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Figure 3.5: Subsumes match between two concepts. 

 

 Subsumed-by Match: Requested service R’s parameter is SUBSUMED-BY an 

available service S’ parameter ⇔ INS ∈ LGC (INR) ∨ (OUTS = OUTR ∨ OUTS 

∈ LGC (OUTR)). This match focuses only on the direct parent concept instead 

of going for more general concepts, as shown in Figure 3.5. For example, if a 

service consumer requests a service that takes the input parameter ‘bicycle’, 

least generic concept ‘Cycle’ might fulfill the user requirement but a service 

that takes ‘automobile’ may not provide the desired functionality. The reason 

is that concept ‘automobile’ is a general concept which descends concept 

‘Jeep’, ‘Scooter’, ‘Truck’, etc. And, there is a direct relationship between the 

concept ‘Cycle’ and ‘bicycle’ and have more commonalities as compare to the 

concept ‘Bicycle’ and ‘automobile’. Following the OWLS-MX, 0.6 degree of 

similarity is assigned to SUBSUMED-BY filter.  
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Figure 3.6: Subsume-By match between two concepts. 

 

 Failed Match: If none of the above filter match, then the logical comparison 

between the S’s parameters and R’s parameters is failed. This will assign the 

similarity of 0. 

 

Based on these filters, we individually compare the logical similarity between each pair 

of parameters of available service S and requested service R and then aggregate the 

similarity of all parameters. The important thing to note that we have given equal weights 

to the inputs and outputs similarity measures, as shown in Equation 3. We adopt this 

approach to achieve our goal i.e. to facilitate the consumers in the web service 

composition process. Below, we present two cases to support our approach. 
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 Case 1: In case1, we have shown a condition where there is a complete logical 

similarity between the input parameters but fail to match the output parameter. 

For example, a consumer request service R that takes inputs Ri1, Ri2, and Ri3 

and returns output Ro1. S
5
 Web Service Matchmaker returns two web services 

S1 and S2 that logically match with the service R. The service S1 shows the 

total logical input parameters similarities with the R’s input parameters while 

fails to match the R’s output (i.e. Ro1), as shown in Figure 3.7. On the other 

hand, service S2 takes take some of the desired consumer input parameters 

with an addition of one more parameter which is an output of S1, as shown in 

Figure 3.7. The complete consumer satisfaction could be achieved by 

composing web services S1 and S2 in such a way that the output of service S1 

is attached to the input of Service S2. The service S2 is expected to give the 

consumer’s desired output.  

 

 

 

Figure 3.7: Composition of partially matched services. 
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 Case 2: In case 2, we present a scenario in which the output parameter of the 

consumer’s request logically matches while there is a logical mismatch 

between the input parameters. For example, taking the previous consumer 

request R with the input parameters Ri1, Ri2 and Ri3 and the output parameter 

Ro1, S
5
 Web Service Matchmaker retrieves three web services S1, S2 and S3. 

Each of the retrieved web services partially satisfies the consumer needs, as 

shown in Figure 3.8. The important thing to note is that the service S3 shows a 

logical failure for all its input parameters but still gets selected because of the 

logical similarity of its output parameter. With the composition of the services 

S1, S2, and S3 (as shown in Figure XX), the consumers could achieve their 

desired requirements. 

 

 

 

Figure 3.8: Composition of partially matched services. 
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Hence, the overall similarity is the average of total input similarity and total output 

similarity. The equations for calculating the overall logical similarity are shown as: 

 

Total input parameters similarity: 

 SIMIN (SIN, RIN) = (∑ i = 0 to N  LogicSim(SINi, RINi) )        where N = # R’s input parameters      

         (Equation 1) 

Total output parameters similarity: 

 SIMOUT (SOUT , ROUT)=(∑ i= 0 to N LogicSim(SOUTi  ,ROUTi))      where N = # R’s output parameters       

     (Equation 2) 

Total Similarity:  

SIM (S, R) = (SIMIN + SIMOUT) / N                  where N = # R’s input and output parameters  

(Equation 3)                                                                                                                                   

 

The steps involve in the logical signature matching are as follows: 

1. Web service consumer provides the query web service to our model represented 

in OWL-S. 

2. S
5
 Web Service Matchmaker extracts the input/output parameters that reflect the 

arguments of a service. 

3. For every pair of input concept of requested and available web services, S
5
 Web 

Service Matchmaker computes the degree of similarity using domain ontology. 

Based on the degree of similarity, it computes the similarity value for all input 

concepts using equation 1. 

4. A similar method is performed for the output parameters and computes their 

similarity value using equation 2. 
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5. The total similarity between a pair of services is determined by the input and 

output parameters similarity using equation 3. 

3.2.1 Example 

 

A Service consumer queried for a web service called R which takes two inputs, i.e. ‘Car’ 

and ‘OnePersonBicycle’, and returns “Price” as an output.  The input/output description 

of service R is then compared with all available web services descriptions in OWLS-TC. 

If there is a web service S in OWLS-TC, ‘BicycleCar_Price_service’, which also takes 

two inputs, ‘Car’ and ‘Bicycle’ and returns ‘Price’, similarity would be calculated 

between all corresponding input/output parameters of service S and service R.  Service 

S’s input parameter ‘Car’ matches exactly with service R’s input parameter ‘Car’ and 

also compute the similarity value of ‘1’. S’s input parameter “Bicycle” computes 

‘subsumes-by’ relationship when compared with R’s input parameter 

‘OnePersonBicycle’, hence compute the similarity value of 0.6. According to equation 1, 

the overall input similarity would be (1+0.6)/2 = 0.8. The output parameter ‘Price’ of 

service S exactly matches with the output parameter ‘Price’ of service R, which results in 

similarity value of ‘1’. According to equation 2, the overall output similarity would be 

1/1 = 1. The total logical similarity would be the average of similarity of input parameter 

and similarity of output parameters that is (1+0.8)/2 = 0.9, using equation 3. 
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3.2.2 Implementation 

 

Our method performs the logical matching between the two concepts extract from the 

OWL-S service profile. The relationship between these concepts is extracted from 

domain ontology.  To manipulate domain ontology, JENA API is used. As mentioned in 

Chapter 2, JENA is a java framework for processing ontologies. In the logical matching, 

it is used to compute what kind of relationship (i.e. Equivalent, Subclass, Super-class, or 

no relation) exists between two concepts. The pseudo code for the logical matching is 

given in Figure 3.9:  
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Figure 3.9: Logical matching pseudo code. 

 

3.3 Non-logical Signature Matching 

The second important method of web service’s signature-matching involves the 

comparison of the WSDL document’s parameter structure.  Even semantic information 

plays a very important role in web service discovery, signature’s structure matching can 

be used to empower and enhance the effectiveness of the discovery process. The 

integration of structure-based matching with logical matching would be helpful where 

semantic description of web services is not available or domain ontology is not well 

defined. Signature’s structure matching helps in inferring the basic semantics of the web 

service using the structure of operations and their parameter types.  
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We are proposing a non-logical signature’s structure-matching approach, integrated with 

logical signature matching, to improve the web service discovery process in a situation 

where ontology is incomplete or absent. For example, if there is a web service without 

OWL-S description, structure matching would play a role in determining similarity 

between a pair of the services while logical matching fails completely.  

 

Since the WSDL document is based on XML, web service input/output parameters are 

described in a hierarchical way. The structure matching of two web services is based on 

the similarity of their operations. Each operation consists of input and output messages, 

which correspond to the signatures of a service, as shown in Figure 3.8. Signature’s 

structure matching takes two graph-like structures and computes similarities between the 

nodes of the graphs. In order to calculate the structural similarity in our hybrid approach, 

we are using a Structure Preserving Semantic Matching (SPSM) algorithm, described in 

Chapter 2. An SPSM algorithm computes the semantic similarity between two graphs 

while preserving their structures. A graph is extracted from the operation’s message of 

each WSDL document. Nodes in the graph are the input/output identifiers and their data 

types. The relationship that could exist between any two graph nodes is equivalent, 

general, specific, and mismatch.  

 

The steps involve in computing semantic structural similarity between two WSDL 

documents are: 
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 Step1: Extract the WSDL URI from the service grounding. This WSDL URI 

is used to locate the WSDL document for the web service requested by a 

consumer. 

 

 Step 2: WSDL document is then processed to extract operations’ messages 

and types, along with the identifier names. The extracted structure would be in 

a well defined format that can be easily processed by an SPSM algorithm. 

Figure 3.10 shows an extraction of WSDL document into a well formatted 

graph structure. Graph structure contains the label of operations, input/output 

parameters, and their data types as nodes.  

 

 

Figure 3.10: Extracted structured information from WSDL document. 
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 Step 3: Extracted graph structure would be given to the SPSM algorithm for 

calculating semantic structure similarity.  SPSM converts the labels of graph 

nodes into concepts using WordNet. Taking two graph-like structures into 

account, it determines the semantic correspondence between each pair of 

nodes.  For example, it identifies node ‘car’ from one graph to be semantically 

equivalent with the node ‘vehicle’ from the other graph because they are 

synonyms in WordNet. 

 

 Step 4: SPSM returns the degree of semantic structural similarity between 

two graph-like structures which ranges between 0-1. ‘1’ means exact match 

while ‘0’ means no match. 

 

As WSDL document contains a separate graph-like structure for input and output 

messages, the semantic similarity would be computed separately. First, the semantic 

structural similarity is calculated between a pair of input message structures. The same 

procedure is then applied for a pair of output message structures. The overall structural 

similarity would be the average similarity of input and output messages. 

 

3.3.1Example 

 

A user queried for a web service that takes concept ‘Car’ and ‘OnePersonBicycle’ as an 

input and returns concept ‘Price’ as an output. The structure of operation’s messages of 

the requested WSDL document is then compared with the corresponding structure of all 
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available WSDL documents. If there is a WSDL document S in OWLS-TC that takes 

‘Car’ and ‘Bicycle’ as inputs and returns “Price”, then the structural representation of the 

operation’s messages and data types would be as shown in figure 3.11. 

 

 

 

Figure 3.11: Textual representation of WSDL structure. 

An SPSM takes these structures, shown in Figure 3.11, and performs the semantic 

structural similarity measure on the input/output messages separately. In this case, SPSM 

returns score of 0.875 and 1.0 for the structural similarity between pairs of input 

messages and outputs messages, respectively. The overall similarity would be the average 

of the structural similarity of the inputs and outputs i.e. (1.0 + 0.875) / 2 = 0. 9375. 
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3.3.2 Implementation 

 

We have used a Structure Preserving Semantic Matching (SPSM) algorithm. Our method 

extracts the identifier’s structure from WSDL using an XML parser and provides the 

extracted structure to the SPSM for calculating similarity. Pseudo code for structure 

matching is given in Figure 3.12. 

 

 

 

Figure 3.12: Structure matching pseudo code. 

 

3.4 Textual description matching  

Sometimes logical matching fails because of the lack of the logical relationship between 

a pair of concepts in a domain ontology. In that scenario, totally relying on signature 

similarity measures would fail to discover two similar web services.  Therefore, in order 

to get better results, specification similarity measures should be combined with signature 

similarity measures. OWL-S service profile provides the signatures and specification 
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description of a web service, as described in Chapter 2. Along with the essential 

signatures (i.e. input/output parameters), the specifications (i.e. textual description) also 

play a leading role in discovering relevant web services. Usually, a textual description of 

a web service provides a brief functional description of it. It contains summarized 

information about the functionality of the web service offered and the information that 

the web service publisher wants to share with the web service consumers. Normally a 

textual description is a sentence of 10-50 words long, which contains a well-formed 

syntactic structure. 

All web service discovery models that have exploited textual description have adopted a 

keyword-based semantic information-retrieval method. This method was used to identify 

and rank similar web services based on the textual description. A vector space model is 

widely used for comparing similar web services. The steps usually followed are: 

converting a textual description into a vector of terms, removing stop-words, stemming 

and then calculating the cosine similarity between corresponding vectors using WordNet.  

The main drawback of a vector space model is that terms within a textual description are 

treated as isolated words, totally ignoring the semantic associations among them. 

We have proposed a method that exploits the structure of textual descriptions because we 

believe that the structural way the words combine and the individual meaning of words 

collectively give the meaning of the whole sentence. Hence, it may be possible that two 

sentences may contain the same words but the different syntactic structure of the sentence 

may give two different meanings. For example, two sentences “This service receives 

‘car’ and returns ‘price’” and “This service receives ‘price’ and returns ‘car’” are 

semantically the same but their syntactic structure is different. The spirit of textual 
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description structural similarity is taken from Oliva [29], which proposed a new approach 

for computing text similarity of short sentences. Our method extracts the textual 

description from a service profile, processes its structure and then compares the semantic 

similarity with the textual description of corresponding service. The steps involved in 

computing the textual semantic similarity are: 

 Step 1: Web service textual description is extracted from a service profile for 

semantic comparison. This textual description is in natural language form. 

 Step 2:  Textual description is then parsed using the Stanford parser to extract 

the syntactic structure. This syntactic structure is represented in typed 

dependency forms, provided by Stanford, which shows grammatical 

relationships in a sentence. Typed dependency relationships show a relation 

between two words like “Subject of word ‘take’ is ‘service’”, “Object of word 

‘take’ is ‘price’”.  Based on Marneffe [25], there are 52 grammatical relations 

that are all binary relations between a governor/head and a dependent of a 

sentence. 

 

Typed dependencies are extracted using Penn Treebank part-of-speech and 

phrasal labels, are shown in Table 3.1. 
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Abbrev  Auxpass  Det  Npadvmod  Poss  Quantmod  

Acomp  CC  Dobj  Nsubj  Possessive  Rcmod  

Advcl  Ccomp  Expl  Nsubjpass  Preconj  Ref  

advmod  Complm  Infmod  Num  Predet  Rel  

Agent  Conj  Iobj  Number  Prep  Tmod  

Amod  Cop  Mark  Parataxis  Prepc  Xcomp  

Appos  Csubj  Mwe  Partmod  Prt  xsubj  

Attr  Csubjpass  Neg  Pcomp  Punct   

Aux  Dep  Nn  Pobj  Purpcl   

 

Table 3.1: 52 grammatical relations. 

In our method, we are focusing on the subjects, verb, and objects of a sentence for 

computing structural similarity between textual descriptions. We are considering 

11 out of 52 grammatical relations for our method and have classified them into 

three groups that are subject, verb and object. 

  

1. Subject :  csubj, csubjpass, nn, nsubj, nsubpass, num, number, xsubj 

2. Verb:  dobj 

3. Object:  dobj, iobj, pobj 

 

 Step 3: After extracting the syntactic information from a sentence, our method 

calculates the semantic similarity between the same syntactic function of two 

textual descriptions.  The LIN similarity measure is used to calculate the 

semantic relationship between two words i.e., in this case, heads and 

dependents. As already defined in Chapter 2, LIN similarity measure is the 

ratio of the information content of the least common subsumer to the 

information content of each word. The external information is powered by 
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WordNet. In matching a syntactic function, if the similarity between heads 

fails then the similarity between their dependents would be totally ignored, no 

matter what the dependent similarity would be computed and vice versa. For 

example, there is a comparison between two syntactic functions (i.e. 

dobj(returns, price) and dobj(receives price)). In this comparison, the 

similarity between heads (i.e. ‘returns’ and ‘receives’) is 0 while the similarity 

between dependents (i.e. ‘service’ and ‘service’) is 1. This shows that one web 

service receives input ‘price’ and the other returns output ‘price’. In such a 

case, the overall similarity of a syntactic function is considered as 0. 

 Step 4: The overall syntactic structural similarity between two textual 

descriptions is computed by taking an average of subject, verb and object 

similarity. If R is a requested web service and S is a available web service, 

then the overall textual similarity would be: 

 

SIMTEXT(S, R) = SIMSUBJECT (S, R) + SIMVERB(S, R) + SIMOBJECT(S, R)/ 3 

 

3.4.1 Example 

 

A user queried matchmaker for a web service, named R, which takes “Car” and 

“OnePersonBicycle” as an input and returns “Price” as output. The queried web service 

description would be described in OWL-S. As we have already mentioned, a service 

profile in OWL-S contains the textual description of a web service. The textual 

description of user query R is “This service returns price of the pair of a car and 1 person 
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bicycle”. On the other hand, the matchmaker extracts the textual description of all 

available web services from OWL-S service profiles. If there is a service 

“BicycleCar_Price_service”, named S, in OWLS-TC and the textual description of S is 

“This service returns price of the requested pair of a car and a bicycle”. Our method takes 

these descriptions and extracts the grammatical relations using Stanford parser. The 

resulting relations for subjects, verb and objects are shown in Table 3.2. 

 
 R Service  S Service  LIN Similarity  

 

 

 

Subject + Object 

Num ( bicycle, 1)  Nsubj ( returns, service)  0 

 Dobj ( returns, price)  Different Group 

Nn ( bicycle, person)  Nsubj ( returns, service)  0.1223 

 Dobj ( returns, price)  Different Group 

Nsubj ( returns, service)  Nsubj ( returns, service)  1.0 

 Dobj ( returns, price)  Different Group 

dobj ( returns, price)  Nsubj ( returns, service)  Different Group 

 Dobj ( returns, price)  1.0 

   

SIM ( Subject + Object ) 2.1223/4 = 0.5305 

 

Head of Sentence 

(Verb) 

   

dobj ( returns, price) dobj( returns, price) 1.0 

   (1.0+0.530575) / 2 

Total Similarity 0.765 

 

Table 3.2: Textual description similarity. 

In Table 3.2, column ‘R service’ shows the grammatical relations that refer to the subject, 

object or verb in a sentence. The same is true for column ‘S service’. As mentioned 

above, the grammatical relation is a binary relation between a head word and its 

dependents. So in our example, four grammatical relations are extracted for a query 

service: Num (number modifier), Nn (Noun modifier), Nsub (nominal subject) and dobj 

(direct object). Similarly two grammatical relations are extracted for a web service S 

from OWLS-TC: Nsubj (nominal subject) and dobj (direct object). Our method performs 
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the comparison on every pair of syntactic function from two different web services, if and 

only if, they are in the same group of subject, verb or object. The comparison is done 

between the heads and dependents. Using LIN measure, similarity is computed between 

the heads and dependents. Num (bicycle, 1) is compared with Nsubj (returns, service), as 

both lie in the subject group. LIN computes similarity score of 0.0 between the heads (i.e. 

‘bicycle’ and ‘returns’) and also computes similarity score of 0.0 between dependents 

(i.e. ‘1’ and ‘service’). There is no match between Num (bicycle, 1) and Dobj (return, 

price) as they both lie in different groups. In this way, the similarities of all the syntactic 

function are calculated for the subject and object groups which is, in this case, 

(0+0.1223+1+1)/4 = 0.5305. The head of a sentence, that is a verb, is computed from the 

syntactic function ‘dobj’ (direct object). As mentioned in Marneffe [25], “the direct 

object of VP is the noun phrase which is (accusative) object of a verb”.  In Table 2, the 

semantic similarity between the heads of sentences (i.e. ‘returns’ and ‘returns’) is 1. The 

overall semantic similarity computed between the R service’s textual description and S 

service’s textual description is (Sim (Subject+Object) + Sim (verb))/2 = (0.5305 + 1.0) / 

2 = 0.765. 

 

3.4.2 Implementation 

 

For textual descriptions, we first extract the tagged dependency parse tree using Stanford 

parser API and remove all tags except those for subject, verb and object. Similarity 

between same group tags is computed using the LIN similarity measure. Pseudo code for 

the textual description matching algorithm is given in Figure 3.13. 
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Figure 3.13: Textual description matching pseudo code 

 

3.5 Service Name Matching  

One of the specifications that a web service provides is a service name. A web service 

name is a text of few words that is usually used to identify a web service. Sometimes, it 

may contain words to describe the functionality of a web service itself.  For example, the 

service “OnePersonBicyclePrice” contains very important terms i.e. ‘one’, ‘person’, 

‘bicycle’, and ‘price’, which itself define the functionality of a web service.  The intuition 

behind considering the web service name into our hybrid model is that in a situation 

where logical/non-logical signatures and textual-description similarity score is very low; 

it could play a role in web service selection. The logical signature matching could 

decrease because of the lack of logical relation between a pair of concepts in domain 

ontology. It might be possible that two services provide the same functionality but have 

different signature structures, which results in a failure of signature’s structure matching. 

As textual descriptions are provided by human, two similar services could fail to match 
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because one or both textual descriptions are missing. In the case, where all three 

measures show very small similarity between a pair of services, the only information that 

could possibly select two similar services is web service name. Usually, the web service 

name is composed of words using capital letters, numbers, ‘_’, and ‘-‘to separate words. 

We split web service name into multiple single valid words. This splitting is done based 

on the assumption that every capital word, number, ‘_’ and ‘-’ indicates the start of 

another word.  Decomposing rules are defined in Table 3.3. 

 

Rule Name Result 

Case Change OnePersonBicyclePrice One Person Bicycle Price 

Underscore ‘_’ OnePerson_BicyclePrice OnePerson BicyclePrice 

Number 3PersonBicycle 3 PersonBicycle 

Dash ‘-’ OnePerson-Bicycle-Price OnePerson Bicycle Price 

Space OnePerson BicyclePrice OnePerson BicyclePrice 

 

Table 3.3: Decomposing rules for web service name. 

 

Keyword-Based matching is not efficient because if a web service name contains a word 

“car”, it would not retrieve web services from the database which contain words 

“vehicle” or “automobile” in their names. This will cause poor recall for non-semantic 

web service name matching. To overcome this problem, semantics have been added using 

WordNet. Instead of just comparing the exact words, a similarity is performed between 

the synonyms of the word.  The steps involved in computing web service name similarity 

are: 
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 Step 1: Extracts the web service name from the service profile. 

 Step 2: Decomposes composite web service name into a vector of meaningful 

words using rules defined in Table 3.3. In our case, we are not only considering 

the string words but also taking numbers into account because, for example, 

service name “3PersonBicyle” is close to “3PersonBicycle” than 

“2PersonBicycle”. 

 Step 3: Once the vectors are extracted for the web service name, computes the 

similarity between two vectors of web service names using semantic cosine 

similarity. Here, we are not just comparing the exact match, but including the 

synonyms for each word using WordNet.  

The result of cosine similarity based on semantics ranges between 0 and 1, where 0 

shows no similarity between the web service names and 1 indicates an exact match. 

 

3.5.1 Example 

 

User sends a web service request, “CarOnePersonBicycleService”, to our matchmaker to 

discover all available services similar to query. The first step involved in the web service 

name matching is preprocessing of web service name. As mentioned above, service name 

could be a composite of multiple words. Based on the rules defined in Table 3.3, 

CarOnePersonBicylceService is decomposed into a vector of “Car”,  “One”,  “Person”, 

”Bicycle”, and “Service”. This vector of individual words is semantically compared with 

all available vectors of web service names using cosine similarity. For example, it would 
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be compared with a vector “Bicycle”, “Car”, “Price”, “service”, extracted from a 

“BicycleCarPriceService”. The semantic cosine similarity computed for these two vectors 

is 0.8164.  

3.5.2 Implementation 

 

Web services names are first decomposed into a vector of words using a regular 

expression. For each word, synonyms are extracted from WordNet. Semantic cosine 

similarity is then applied between two vectors representing two different web service 

names. Pseudo code for web service matching algorithm is given in Figure 3.14: 

 

Figure 3.14: Web service name matching pseudo code. 
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3.6 Total Web Service Similarity 

S
5
 Web Service Matchmaker performs the logical and non-logical similarity approaches 

for signatures and specifications of web services. It computes the similarity of all four 

components individually and then aggregates using equation 4 and equation 5. We have 

prioritized all four similarity measures based on their functional importance. Instead of 

just averaging all components, we have given importance to signature matching up to 0.7 

while keeping the textual description specification similarity to 0.3, as shown in equation 

4. In the domain of our data set, logical and structural descriptions of web service 

signatures represent the same hierarchy and the same relations. If there is any pair of 

service for which parameter structure does not match to concepts in the domain ontology, 

then the overall signature similarity would be affected. Service name specification 

similarity has the least contribution in our hybrid model because if a pair of services fails 

logically, structurally and textually, then having the same service name would not 

provide the desired functionality to the service consumer. If their total similarity does not 

give the maximum similarity (i.e. 1), the 20% of remaining similarity would be 

compensate by web service name similarity, as shown in equation 5.  

SIM1(R, S) = 0.7 ( Avg (Logical_SIM(R, S), Structural_SIM(R, S))) + 0.3*Textual_SIM(R, S)       (equation 4) 

SIM2(R, S) = SIM1(R, S) + 0.2 * (1 – SIM1(R, S))* Name_SIM(R, S) if SIM1(R, S) < 1         (equation 5) 

The intuition behind giving specific percentages to all four components is described as: 

1. The logical signature similarity measure captures the similarity between the 

input/output concepts in the domain ontology, while the structural signature 

similarity assures that the two web services are similar in term of input/output 
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parameters structure. If two services have a significant level of match/mismatch in 

their concepts and structural level then the overall similarity should be affected 

significantly. Therefore we have chosen the highest weight for this measure (i.e. 

70%).  

2. On the other hand, it is also important how a service captures the instance of a 

particular concept. The exact hierarchy and data types (i.e. structure) of a 

parameter in the representation of a particular concept of the domain may vary 

from one service to another. For example, the same concept ‘Car’ in the domain 

may be captured as a combination of concepts ‘Make’ and ‘Model’ in one 

representation and another representation may associate additional concept 

‘Color’ with the description of a concept ‘Car’. In this case, although the two 

representations capture same concept semantically, their structures are different. 

While considering similarity among services it is also important to consider 

similarities between structures of concepts corresponding to service parameters. 

Therefore, we weigh logical and structural similarity equally.  

3. Textual description specification also has a major role in distinguishing a web 

service. The intention/behavior of a web service is usually expressed in a textual 

description.  It has equal importance as logical and non-logical signatures because 

it might be possible that two web services have the same signatures but different 

specifications.  

4. Web service name could also be used to identify similar web services. But if 

logical, structural and textual description gives maximum similarity then there 

would not be any use of considering service name similarity. But, if equation 4 
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fails to gives maximum similarity then the name similarity would contribute 20% 

of the remaining similarity. For example, if total similarity of logical, structural 

and textual similarity is 0.7 then the name similarity would be used. If the name 

similarity is 0.8, it will contribute its 20% in the remaining total similarity i.e. 0.3 

(1 – 0.7). The overall similarity using equation 5 would be 0.748. 

S
5
 Web Service Matchmaker discovery model works on signatures and specifications of a 

web service, hence all the four similarity components are considered in Equation 4 and 5. 

Depending on the requirements, a consumer can select either a pure logical S
5
 Web 

Service Matchmaker or hybrid S
5
 Web Service Matchmaker. The logical S

5
 Web Service 

Matchmaker discovery model is totally based on semantic signatures matching whereas 

the hybrid S
5
 Web Service Matchmaker exploits the signatures and specifications of a 

web service using logic-based and non-logic-based techniques. If a user request does not 

contain the signature’s structure and textual-description, then he should use pure logical 

similarity model. On the other hand, if a consumer request contains more web service 

description (i.e. signatures’ structure and textual-description) then hybrid S
5
 Web Service 

Matchmaker is a best option. Below we have shown the different scenarios at different 

similarity scores of signatures and specifications of web services in Table 3.4. 
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Logical 

Similarity 

Structural 

Similarity 

Textual 

Similarity 

Name 

Similarity 
Total Similarity 

Case 1 1 1 1 1 0.7( Avg (1, 1) )  + 0.3*1 = 1 

Case 2 1 1 0.8 1 

SIM1= 0.7( Avg (1, 1) )  +  

0.3*0.8 = 0.94 

SIM2 = SIM1+0.2*(1-

SIM1)*1 = 0.952 

Case 3 0 1 1 1 

SIM1=  0.7( Avg (0, 1) )  + 

0.3*1 = 0.65 

SIM2 = SIM1+0.2*(1-

SIM1)*1 = 0.72 

Case 4 1 0 0 0 

SIM1= 0.7 ( Avg (1, 0) ) + 

0.3*0 = 0.35 

SIM2 = SIM1+0.2*(1-

SIM1)*0 =0.35 

 

Table 3.4: Different Scenarios of similarity of four components of web services. 

Case 1: 

If two web services show exactly similar logical, structural and textual description 

similarity, no matter what their names would be their overall similarity would be 1. A 

similarity score of ‘1’ shows the exact match between a pair of services, and the selected 

service would be ranked at the top in candidate list. The total similarity would be 

computed using equation 4, i.e.0.4*1 + 0.3*1 + 0.3*1 = 1. 

Case 2: 

As shown in Table 3.4, textual description similarity shows a partial match in the 

comparison between a request and available web services. It might be the case where all 

signatures of web services match logically and structurally but due to change in 

behavioral information of a web service provided by a publisher, it does not perfectly 

match with the consumer requirements. In this case, the total similarity of the logical, 

structural, textual description components is less than 1, using equation 4. The web 
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service name similarity would be used to compensate the remaining portion of total 

similarity, using equation 5. The overall similarity would be 0.952 which is very close to 

an exact match, as compare to case 1. Our assumption is that the behavioral (textual) 

description should contribute nearly equally to half of logical and structural component. 

This is because it contains the detail description of functionality of a web service, which 

could help in identifying two similar web services and it should give almost equal 

importance. 

Case 3:  

Table 3.4 shows a scenario where matching between a pair of input/output concepts 

logically fails but other components show an exact match. It might be the case where 

domain ontology fails to show any kind of relation between input/output concepts of web 

services due to lack of semantic annotation capture in a domain ontology.  If logical 

matching totally fails then 35% of the total similarity is removed. Yet, the candidate 

service could provide a certain level of satisfaction if the structure of the web service 

signatures and the textual description matches perfectly. In this case, using equation 4 

and 5, the total similarity between a pair of web services would be 0.68. Due to a logical 

failure, it shows a great decline in the overall similarity as compare to the total similarity 

of case 1. 

Case 4: 

It might be the case where two web services exactly match for logical similarity but do 

not have any similarity for structure, textual description and web service name. Since 

available web service has the same logical concepts as the requested web service, it 
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would hardly meet consumer needs because the structure of parameters that a consumer 

is expecting would not be supported by the candidate service. The total similarity in this 

case is 0.35, which shows that the candidate service would only provide 35% satisfaction 

to the web service consumer. 

 

3.7 Summary 

In this Chapter, we have discussed the signatures and specification similarities of a web 

service i.e. logical similarity, structural similarity, textual-description similarity and name 

similarity. In logical signature matching, instead of computing logical similarity at 

service level, we are calculating it at service parameters level. This approach provides a 

fine-grained logical filter and allows many candidate services to participate in the 

selection process. Hence, it provides a consumer with more alternative options if one 

selected service fails or become unavailable. For structural signature similarity, we are 

using a Structure Preserving Semantic Matching (SPSM) algorithm that is provided by S-

match framework. In signature matching, along with logical matching, we are also 

considering the structure of signatures to be similar with the consumer request. Logical 

and non-logical signature matching collectively assures the similarity of signatures 

between a pair of web services. The service specifications (i.e. textual description and 

service name) are also considered in our hybrid model. Textual description of a web 

service contains the detail description of behavior of a web service in natural language. In 

textual description matching, instead of converting text into a bag of words, we have 

exploited its syntactic structure and have computed the semantic structural similarity 
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between two sentences, because the meaning of sentence is not only in the words but also 

in the structural way the words are combined. For web service name matching, we have 

defined our decomposing rules to refine and extract the useful terms from a service name. 

The similarity between the terms of a vector is determined using semantic cosine 

similarity. S
5
 Web Service Matchmaker computes all signatures and specifications 

similarities individually and finds the cumulative similarity using the above equation 4 

and 5. 
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Chapter 4.  Evaluations and Results 

 

In this Chapter, we present an evaluation of our service discovery model i.e. S
5
 Web 

Service Matchmaker. We performed a series of experiments using the standard OWLS-

TC dataset that is routinely used by researchers to evaluate the performance of web 

service discovery models. We use the OWLS-MX matchmaker [4] as a benchmark for 

our model, and compare our model’s performance with it. It may be noted that OWLS-

MX [4] entails a similar hybrid approach for a semantic web service matchmaker that 

performs logical-based reasoning and content-based matching. 

 

The evaluation experiments were carried out on 150 web service descriptions which were 

randomly selected from the OWLS-TC dataset. Randomly selected web services covered 

seven different domains: education, medical care, food, travel, communication, economy, 

and weapons. We tested our service discovery model for seven different queries. We then 

compared our results with OWLS-MX for the same set of queries.  

 

We divided our experiment into two phases: 

1. Phase I - Logical OWLS-MX versus Logical S
5
 Web Service Matchmaker: In this 

phase, we compared the logical components of both models i.e. S
5
 Web Service 

Matchmaker and OWLS-MX to show the efficiency of our fine-grained logical 

approach. This comparison is based purely on the signatures of the web services. 

In the case of OWLS-MX, a semantic description of a web service signature (i.e. 

OWL-S) is only exploited for web service discovery as a source of functional 
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information. OWLS-MX have adopted logical signature matching at the web 

service level i.e. two web services should have the same degree of logical filter 

for all input/output parameters. This strict matching similarity measure results in 

the selection of a few candidate web services. Hence, there are very limited 

options for the consumer to select other services if a selected service fails. Our 

pure logical signature matching component builds on the assumption that 

consumers should have more similar web service options when a web service fails 

or when a consumer is building a composite web service. In phase I, we present 

the performance of our logical signature similarity approach and show the success 

of retrieving relevant web services for fine-grained logical matching.  

 

Phase II – In most of the discovery models, the logical signature similarity 

measure is coupled with other similarity measures to improve the selection of the 

relevant web services. OWLS-MX improved the pure logical discovery model 

with an integration of content based information retrieval techniques. As a result, 

they achieved improvement in the number of relevant retrieved web services. We 

claim that this improvement could be much improved by using efficient 

information retrieval techniques. For this purpose, we have proposed the 

integration of syntax-based measure for textual description, structural input/output 

parameters, and name similarities with the fine-grained logical matching. To 

evaluate the performance of our hybrid model in phase II, we compare hybrid S
5
 

Web Service Matchmaker with the hybrid OWLS-MX.  
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4.1 Dataset 

OWLS-TC [16] is a collection of 1000 web services descriptions that has been solely 

developed to facilitate the evaluation of the performance of web service discovery 

algorithms. It also provides 25 test queries with their relevant datasets. For every query, 

there are 40-50 relevant web services. This relevant data set is a gold standard for 

evaluating any web service discovery model. 

For our experiment, we have randomly selected 150 web services, covering seven 

different domains, from OWLS-TC database as a sample dataset. Only 150 web services 

are randomly selected to evaluate the performance of S
5
 Web Service Matchmaker 

because the preprocessing of OWL-S files takes too much time to load each individual 

file separately and then applies pellet-reasoner on each service ontology file. But, during 

matching process, only the relationships between the concepts are computed as the 

reasoner was already applied in the preprocessing stage. To best show the performance of 

result, we give an equal chance to every web service and randomly select only 150 web 

services. We have also selected 7 different queries. Each query represents a different 

domain which covers all the seven domains. The reason we have chosen 7 queries is to 

show the effectiveness of S
5
 Web Service Matchmaker model in all the seven different 

domains. Our randomly selected test dataset also contains the relevant web services for 

each of seven queries. The total number of relevant web services for each query is given 

in Table 4.1. 
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 Query Web Services Total Relevant Set 

Query 1 Car1PersonBicyclePriceServie 17 

Query 2 Comedy Film finder service 5 

Query 3 HikingSurfingDestination 9 

Query 4 GroceryStoreFoodService 5 

Query 5 UniversityLectureService 18 

Query 6 InvestigatingFinding 5 

Query 7 GovernmentMissileFundingService 8 
   

 

Table 4.1: Total number of relevant web services. 

 

Top 20 retrieved web services, that satisfy user requests, are selected in all experiments. 

Only top 20 ranked web services are selected because the maximum relevant web 

services for a query in our sample dataset are 18. In an ideal condition, these 18 relevant 

web services could be placed at top in the list. 

 

4.2 Evaluation Criteria 

Precision and Recall are the common evaluation measures for determining search 

performance. They are calculated based on the relevant dataset. 

 

 Precision is a measure to determine a system’s ability to show only relevant items. 

This can be shown mathematically as: 
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 Recall is a measure to determine a system’s ability to show all relevant items. It 

can be calculated as: 

                

In our experiments, we have used the precision and recall as a measure to evaluate the 

performance of S
5
 Web Service Matchmaker. As our goal is to facilitate the consumers 

by providing more options of partially/fully matched web services to automate web 

service discovery process and to select another web service in case a selected service 

fails, we focus on having high recall at a cost of minimum precision. We may note a 

significant change in precision and/or recall depending on each of the four similarity 

measures: 

 We believe that there would be a significant increase in the recall of S
5
 Web 

Service Matchmaker using fine-grained logical approach. This is because our 

fine-grained logical approach is flexible in finding the logic-based similarity 

between services’ signatures. Any web service that shows even partial match with 

the user query would be selected as relevant which results in a significant increase 

in recall, at a minimum cost of precision. Increase in recall means more relevant 

web services, which lead to more alternate options for consumers in the case of a 

service failure or a service composition.  

 Syntax-based measure for textual-description matching helps in discovering 

services that are syntactically similar with respect to their textual-description. 

Moving from the content-based IR approach to a syntax-based similarity approach 

may give high precision and high recall. This is because, in textual-description 
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similarity, the similar services are selected based on their syntax similarity as well 

as semantic similarity. 

 Structure Preserving Semantic Matching (SPSM) algorithm is first time used for 

determining the signatures’ structure similarity in web service discovery process. 

It is expected to give above 80% both precision and recall as this algorithm 

computes the structural similarity by considering the semantics of a tree-like 

graph while preserving its structure.  

 As compared to previously proposed decomposing rules for web service name, we 

propose a few more rules to split a web service name into a vector of meaning 

terms. The more meaningful the terms are the more efficient would be the 

semantic matching of terms; hence positively affect the precision and recall of 

discovery model. 

 

4.3 Phase I: Logical OWLS-MX versus Logical S
5
 Web Service Matchmaker 

In signature matching, one of the main contributions of S
5
 Web Service Matchmaker is 

the fine-grained logical matching. In phase I, we evaluated the performance improvement 

of the logical similarity component of S
5
 Web Service Matchmaker comparing with the 

pure logical similarity component of OWLS-MX. Both the logical components are purely 

based on the logic-based similarity of signatures of a web service (i.e. input/output 

concepts). This comparison was performed to show that at a cost of small precision, a 

significant increase in the recall is achieved by adopting fine-grained logical matching 

approach. Although fine-grained logical similarity measure also retrieves partially 
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matched web services but these partially matched web services could contribute in the 

process of web service composition. 

 

For comparison purpose, we selected the logical component of OWLS-MX and applied 

the seven different queries one at a time and recorded the list of retrieved web services, as 

shown in Table 4.2. The retrieved results are the set of web services that are marked as 

relevant by OWLS-MX. In OWLS-MX, the degree of similarities ranges between 0 – 1 

(EXACT (1.0), PLUG_IN (0.8), SUBSUME (0.7), SUBSUME-BY (0.6) and FAILED (0)). As shown in 

the below table, OWLS-MX retrieved only three relevant web services from the OWLS-

TC dataset that showed some degree of logical similarity based on five logical filters with 

the Query 1(i.e. ‘Car1PersonBicyclePriceService’). 

We applied the same queries and test dataset to the fine-grained logic-based similarity 

measure of S
5
 Web Service Matchmaker. The pure logical S

5
 Web Service Matchmaker 

processed all seven queries separately and returns the ranked list of relevant web service. 

Table 4.3 shows the number of relevant web services S
5
 Web Service Matchmaker 

retrieved out of the 150 available web services. It is important to note that in order to 

compare our result with OWLS-MX, we followed the same scoring scale as used by 

OWLS-MX for each of the logical filters (i.e. EXACT (1.0), PLUG_IN (0.8), SUBSUME (0.7), 

SUBSUME-BY (0.6) and FAILED (0)). 
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 Query Web Services 

OWLS-MX 

No. of Retrieved Web 

Services 

S5 WS Matchmaker 

No. of Retrieved Web 

Services 

Query 1 Car1PersonBicyclePriceServie 3 12 

Query 2 Comedy Film finder service 1 7 

Query 3 HikingSurfingDestination 2 5 

Query 4 GroceryStoreFoodService 2 6 

Query 5 UniversityLectureService 3 9 

Query 6 InvestigatingFinding 2 5 

Query 7 GovernmentMissileFundingService 2 10 
    

 

Table 4.2: Retrieved results from Logical OWLS-MX. 

  

4.3.1 Analysis  

In a comparison between the logical components of both matchmakers, we note that there 

is a significant change in the number of retrieved results for each query. The results 

produce by S
5
 Web Service Matchmaker show that it retrieves all those relevant web 

services that were selected by OWLS-MX with the addition of some other relevant web 

services that were not picked-up by OWLS-MX. The fine-grained logical matching 

increases the retrieval of the web services as relevant by 350%.  

As mentioned earlier, S
5
 Web Service Matchmaker selects web services that also partially 

satisfy the consumer’s need which are ignored by OWLS-MX. While on the other hand, 

pure logical OWLS-MX always ensures that there should be the same degree of logical 

similarity for each of the service’s parameters. The OWLS-MX adopts the coarse-grained 

logical approach to ensure that the discovery model will always retrieve web services that 

fully satisfy all consumer needs. Any service that fulfills pure logic-based criteria gets 

selected and always results in high precision but low recall, as observe in Table 4.3. On 
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contrary, any web service that shows a small deviation from the consumer query would 

not be selected. OWLS-MX realized the strictness of the pure logic-based similarity 

approach; hence integrated the content-based similarity measure to make the discovery 

model more effective. The low recall in OWLS-MX shows that there are many other 

relevant web services that still need to be retrieved. To increase the recall as well as 

precision of discovery models, we propose a fine-grained logical signature similarity 

approach that facilitates the consumers in two ways. First, there should alternative 

options for a consumer if a selected service fails. Second, many partially matched 

services helps the consumer in developing a composite web service.  

  

 For example, consider Query 1, “Car1PersonBicyclePrice_Service”, which takes inputs 

“Car” and “1PersonBicycle”, and returns “Price”. This query is compared with an 

available web service in OWLS-TC, e.g.  “CarBiyclePrice_Service”, that takes inputs 

‘Car’ and ‘Bicycle’ and returns output ‘Price’. OWLS-MX fails to match 

‘CarBiyclePrice_Service’ with query 1 because there exists an EXACT degree of similarity 

for the parameters ‘Car’ and ‘Price’ but a SUBSUME-BY degree of similarity between the 

parameters ‘Bicycle’ and ‘1PersonBicycle’. The logical similarity computes the 

SUBSUMES-BY degree of similarity because concept ‘1PersonBicycle’ is the direct child of 

concept ‘Bicycle’. Contrary to OWLS-MX, S
5
 Web Service Matchmaker also retrieves 

all the same subsumption relations and it calculates the overall similarity by averaging 

the individual similarities. The total similarity score for the candidate service 

“CarBicyclePrice_Service” is 0.9. This similarity score shows that the candidate web 

service could satisfy consumer needs by 90% which is better than totally ignoring the 
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web service. In this case, for example, if a consumer was looking for a service that gave 

the total price of a car and one person bicycle, other service with inputs ‘Car’ and 

‘bicycle’ could also provide nearly maximum satisfactory results. 

 

Similarly, consider a service consumer requests for a service, for example 

‘StudentRegistration’, which takes input ‘Name’, ‘DOB’, and ‘Address’ and register a 

student. In OWLS-TC data set, there is also a web service ‘StudentReg_Service’ that 

takes ‘LastName’, ‘DOB, and ‘Address’ that perform the same operation. OWLS-MX 

would fail to retrieve service ‘StudentReg_Service’ because all the input parameters have 

an EXACT degree of similarity except the parameter ‘Name’ that has a PLUG-IN logical 

degree of similarity with input ‘LastName’. Note that, in domain ontology, concept 

‘LastName’ is the subclass of the concept ‘Name’. On the contrary, S
5
 Web Service 

Matchmaker considers all types of relationships in computing similarity and retrieves the 

service ‘StudentReg_Service’ with logical score of 0.96. This similarity score shows how 

close the candidate service ‘StudentReg_Service’ is to the user query and it is expected 

that this service would provide 96% user requirements.  

 

Table 4.3 shows the precision, recall, and accuracy of each query for OWLS-MX and S
5
 

Web Service Matchmaker. 
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  OWLS-MX S5 Web Service Matchmaker 

 Query Name Precision Recall Accuracy Precision Recall Accuracy 

Query 1 Car1PersonBicyclePriceServie 1.00 0.17 0.91 0.91 0.64 0.95 

Query 2 Comedy Film finder service 1.00 0.20 0.97 0.60 0.80 0.97 

Query 3 HikingSurfingDestination 1.00 0.20 0.95 1.00 0.55 0.97 

Query 4 GroceryStoreFoodService 1.00 0.40 0.98 0.50 0.80 0.98 

Query 5 UniversityLectureService 1.00 0.16 0.90 1.00 0.50 0.94 

Query 6 InvestigatingFinding 1.00 0.40 0.98 0.60 0.60 0.97 

Query 7 
GovernmentMissileFunding 

Service 
1.00 0.25 0.96 0.70 0.88 0.97 

 

Table 4.3: Precision/Recall/Accuracy for Logical OWLS-MX and S
5
 Web Service 

Matchmaker. 

 

By adopting the fine-grained logical signature matching, it is always expected that there 

are chances of selecting irrelevant web services as it selects any web service that partially 

satisfy consumer needs. The important point to note from the results is that the increase in 

recall is achieved at a minimum cost of precision. If a consumer is looking for exactly 

matched services then OWLS-MX and S
5
 Web Service Matchmaker both could satisfy 

his requirements. But in a scenario, such as web service composition, where a consumer 

looks for many alternative options of web services which could partially satisfy his 

needs; S
5
 Web Service Matchmaker is the best choice.  

 

We can conclude from the Table 4.4 that there is 2% increase in the accuracy of logical 

S
5
 Web Service Matchmaker as compared to logical OWLS-MX, which is due to the 

fine-grained logical approach. Although there is not significant improvement in the 

accuracy of logical S
5
 Web Service Matchmaker but we note that, at a little cost of 

precision, we have achieved a significant improvement in recall. This increase in recall, 

while keeping precision same, is resulted from retrieving fine-grained logical matching. 
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We note that with the increase in more relevant web services, a service consumer has 

more options to select another web service if a web service fails. Having more relevant 

web services will also contribute to web service composition where two or more web 

services are required to compose a service. If we see the results of logical OWLS-MX, 

we notice that the precision of the relevant web services is 100%. The reason is that any 

web service that shows a slightly mismatch in parameters would not be considered in the 

selection. Logical OWLS-MX always assures that any web service that would be 

retrieved as relevant should always fully satisfy the consumer requirements. Due to the 

strict logical matching, precision for logical OWLS-MX is always high with low recall. 

We proposed a fine-grained logical matching approach, mentioned in Chapter 3, in which 

we compute the similarity at each parameter level instead of each web service level. The 

reason is that even if a service does not fully satisfy the consumer requirements, it might 

be possible that this service will contribute in the web service composition process. 

Figure 4.1 shows the significant change in performance of the S
5
 Web Service 

Matchmaker that is achieved by adopting a fine-grained logical approach. 
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Figure 4.1: Comparison of Accuracies of Logical OWLS-MX and Logical S
5
 Web 

Service Matchmaker. 

 

To further analyze the effectiveness of fine-grained logical matching of S
5
 Web Service 

Matchmaker, we show the experiment results of both matchmakers for Query1 (i.e. 

Car1PersonBicyclePrice) in Table 4.4. It is noted that there were 17 relevant web services 

in the test dataset for Query1. OWLS-MX retrieved only 3 relevant web services out of 

17 relevant services with a 100% precision and 17% recall. On the other hand, S
5
 Web 

Service Matchmaker retrieved 12 web services in which 11 were relevant and 1 irrelevant 

web service with a precision of 91% and recall 64%. If we consider only this query we 

can analyze that at a cost of 9% precision, S
5
 Web Service Matchmaker provided an 

almost 50% increase in recall. 
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Query Relevant 
OWLS-MX 

(Retrieved) 

S5 Web Service Matchmaker 

(Retrieved) 

    

Car1Person 

BicyclePrice 
Car1PersonBicyclePrice Car1PersonBicyclePrice Car1PersonBicyclePrice 

 CarCyclePrice Kohl Car1PersonBicyclePrice Kohl Car1PersonBicyclePrice 

 Kohl Car1PersonBicyclePrice 4WheeledCar1PersonBicyclePrice 4WheeledCar1PersonBicyclePrice 

 Bicycle4Wheeledcar_Price  Bicycle4Wheeledcar_Price 

 Vehicle price  Car2PersonBicyclePrice 

 T-car price  CheapCar 2PersonBicyclePrice 

 4WheeledCar1PersonBicyclePrice  2PersonBicycle4Wheeledcar_Price 

 Auto Year price  4wheeledcar year price 

 Recommended price of car model  4wheeledcar year price report 

 4wheeledcar year price  Recommended price of car model 

 leynthu rent a car  T-car price 

 Car2PersonBicyclePrice  CarCycleTaxPrice 

 2PersonBicycle4Wheeledcar_Price   

 car price report   

 car price   

 4wheeledcar year price report   

 CheapCar 2PersonBicyclePrice   

Precision  1.00 0.91 

Recall  0.17 0.64 

Accuracy  0.91 0.95 

    

 

Table 4.4: Results of logical OWLS-MX and S
5
 Web Service Matchmaker 

 

4.4 Phase II: Hybrid OWLS-MX versus Hybrid S
5
 Web Service Matchmaker 

In phase II, we performed a comparison between the hybrid models of OWLS-MX and S
5
 

Web Service Matchmaker, where the hybrid models integrate the logical, contextual and 

structural similarity approaches. OWLS-MX performs both logical similarity and 

content-based information similarity. If two web services logically fail to match using the 

logical filters, then content-based information retrieval techniques that involve the 
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application of cosine, or jaccard on the vectors of terms retrieved from textual-

descriptions, service names, and input/output concepts are applied.  

  

To evaluate the performance of the hybrid S
5
 Web Service Matchmaker as compares to 

the hybrid OWLS-MX, we used the same dataset with same queries as in phase I. To 

check the relevancy of the results, Top 20 retrieved web services were selected from both 

hybrid. The threshold of web service similarity score was set to 0.44 for both hybrid 

models. The reason was because, for S
5
 Web Service Matchmaker, if our model fails 

completely in signatures matching, then the maximum collective score of specifications 

would be 0.44. If the signature matching fails then there is no need to consider a web 

service based on their specifications similarities. The number of relevant web services 

retrieved by each matchmaker is shown in Table 4.5.  

 

 Query Web Services 
OWLS-MX 

No. of Retrieved Web Services 

S5 Web Service Matchmaker  

No. of Retrieved Web Services 

Query 1 Car1PersonBicyclePriceServie 8 20 

Query 2 Comedy Film finder service 14 12 

Query 3 HikingSurfingDestination 5 18 

Query 4 GroceryStoreFoodService 4 8 

Query 5 UniversityLectureService 9 19 

Query 6 InvestigatingFinding 9 9 

Query 7 GovernmentMissileFundingService 13 11 

    

 

Table 4.5: Results from hybrid OWLS-MX and S
5
 Web Service Matchmaker. 

 

In phase II, there is a significant increase in the retrieved results of both methods as 

compared to phase I which only involved the use of logical methods. This increase is due 

to the fact that if logical matching between a pair of web services fails; both models 
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exploit other web service information to compute web service similarities by structure, 

textual-description and service name matching. 

 

4.4.1 Analysis 

 

By integrating a logic-based signature similarity measure with other non-logical 

similarity measures, we can clearly see an increase in the number of web services 

retrieved. The goal is not to retrieve more web services but the more of the relevant ones. 

In order to check the relevancy of retrieved results, the important thing to note here is that 

how many relevant web services are retrieved, that can be evaluated by computing 

precision, recall and accuracy, as shown in Table 4.6.  

 

  OWLS-MX S5 Web Service Matchmaker 

 Query Name Precision Recall Accuracy Precision Recall Accuracy 

Query 1 Car1PersonBicyclePriceServie 1.00 0.40 0.94 0.85 1.00 0.98 

Query 2 Comedy Film finder service 0.30 1.00 0.94 0.40 1.00 0.95 

Query 3 HikingSurfingDestination 1.00 0.55 0.97 0.50 1.00 0.94 

Query 4 GroceryStoreFoodService 0.75 0.60 0.98 0.60 1.00 0.98 

Query 5 UniversityLectureService 0.77 0.38 0.91 0.73 0.77 0.94 

Query 6 InvestigatingFinding 0.44 0.80 0.96 0.56 1.00 0.97 

Query 7 
GovernmentMissileFunding 

Service 
0.46 0.75 0.94 0.73 1.00 0.98 

        

 

Table 4.6: Precision/Recall/Accuracy of hybrid OWLS-MX and S
5
 Web Service 

Matchmaker. 

 

With the integration of a content-based information retrieval technique in logical OWLS-

MX, it is noted that the overall precision of the model is decreased. This is due to the fact 
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that some irrelevant web services are now selected because the string similarity measures 

have been applied on their content. For example, in pure logical matching, 

“CarCycle_Price_Service” was not retrieved because of a logical matching failure. 

However in a hybrid OWLS-MX, a content similarity of 0.46 is computed which 

therefore makes the service relevant for the service consumer. Similarly, S
5
 Web Service 

Matchmaker also shows the increase in relevant retrieved results. With the integration of 

structure, textual-description, and name matching, we have achieved 97% recall with 

63% precision as compared to hybrid OWLS-MX where it has 65% recall and 68% 

precision. The important point is that these experiment results are from the top 20 

retrieved web services which have the similarity score above the threshold (i.e. 0.44). We 

realize that mostly the precision of the S
5
 Web Service Matchmaker is always less than 

the precision of the OWLS-MX which means that the hybrid OWLS-MX still provides 

the consumers with the most suitable web services. But we also realize that there are 

many relevant web services that are not retrieved by hybrid OWLS-MX which results in 

low recall. On the other hand, the approaches adopt in S
5
 Web Service Matchmaker help 

in retrieving those relevant web services that are missed by OWLS-MX. It is also noted 

that S
5
 Web Service Matchmaker retrieved all those relevant web services that are 

retrieved by OWLS-MX with an addition of other relevant web services. We also see an 

overall increase of 1% accuracy which shows that at a cost of precision (i.e. 5%) we have 

significantly improved the recall (i.e. 32%) of S
5
 Web Service Matchmaker. It also shows 

that with a slight decrease in precision, we can provide a service consumer with 96% 

relevant web services that give more selection options and help in the web service 

composition process and the search refinement. This supports our assumption that 
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services partially/fully satisfy user requirements should be retrieved to facilitate web 

service composition process. A comparison of the accuracy of both models is shown in 

Figure 4.2 which shows that on average there is an improvement in the performance of S
5
 

Web Service Matchmaker. 

 

 

 

Figure 4.2: Comparison of Accuracies of hybrid OWLS-MX and hybrid S
5
 Web Service 

Matchmaker. 

 

In Table 4.7, we have shown the retrieved results from both hybrid models for the Query 

1 (i.e. Car1PersonBicyclePrice). As compared to the results of Table 4.5, we could see an 

increase in the relevant results for both hybrid models. In case of the hybrid approach, we 

can conclude from the Table 4.7 that OWLS-MX gives high precision for Query 1 with a 

very low recall. This is due to the content-based matching in which the content of the 
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web services are taken into the consideration when the pure logical matching between 

input/output parameters is failed. It is also noted that there are many relevant web 

services that are missed by OWLS-MX either because there is no syntactic match 

between the contents of web services or the content similarity score is less than the 

threshold. On the other hand, we can see an increase in the hybrid S
5
 Web Service 

Matchmaker results where the services, which were not retrieved by fine-grained logical 

matching in phase I, are now retrieved by integrating structure, textual-description, and 

name similarity measures. Although for Query 1, we note that the precision is affected 

15% in S
5
 Web Service Matchmaker but there is significant increase in recall, which is 

100% for Query 1. S
5
 Web Service Matchmaker retrieved all the relevant web services 

from test dataset with an addition of 3 irrelevant web services, as shown in Table 4.7. 
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Query Relevant 
OWLS-MX 

(Retrieved) 

S5 Web Service Matchmaker 

(Retrieved) 

Car1Person 

BicyclePrice 
Car1PersonBicyclePrice Car1PersonBicyclePrice service Car1PersonBicyclePrice service 

 CarCyclePrice CarCyclePrice CarCyclePrice 

 Kohl Car1PersonBicyclePrice Kohl Car1PersonBicyclePrice Kohl Car1PersonBicyclePrice 

 Bicycle4Wheeledcar_Price_ 4WheeledCar1PersonBicyclePrice Bicycle4Wheeledcar_Price_ 

 Vehicle price 4wheeledcar year price Vehicle price 

 T-car price Car2PersonBicyclePrice T-car price 

 4WheeledCar1PersonBicyclePrice 2PersonBicycle4Wheeledcar_Price 4WheeledCar1PersonBicyclePrice 

 Auto Year price 4wheeledcar year price report Auto Year price 

 Recommended price of car model  Recommended price of car model 

 4wheeledcar year price  4wheeledcar year price 

 leynthu rent a car  leynthu rent a car 

 Car2PersonBicyclePrice  Car2PersonBicyclePrice 

 2PersonBicycle4Wheeledcar_Price  2PersonBicycle4Wheeledcar_Price 

 car price report  car price report 

 car price  car price 

 4wheeledcar year price report  4wheeledcar year price report 

 CheapCar 2PersonBicyclePrice  CheapCar 2PersonBicyclePrice 

   CarCycleTaxPrice 

   BookPrice 

   TR NovelPersonPrice 

    

Precision  1.00 0.85 

Recall  0.40 1.00 

Accuracy  0.94 0.98 

    

 

Table 4.7: Experiment results of Hybrid OWLS-MX and S
5
 Web Service Matchmaker. 

 

In phase II, we compared the hybrid OWLS-MX with our hybrid proposed model. In 

these experiments, we improved the performance by exploiting and integrating the 

signatures and specifications of a web service. Those relevant web services that were 

missed in pure logical matching, because of a missing relationship between concepts or 

incomplete domain ontology, are now retrieved by the integration of structural and 

textual descriptions similarity measures. 
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4.6 Impact of Web Service Textual Description 

The textual description is one of the important specifications of a web service that 

describes the functional and non-function description of a web service in natural 

language. We argue that an efficient similarity measure for textual descriptions of 

services could facilitate the discovery process. To this end, we have exploited the 

structure of a sentence rather than relying only on the meaning of the individual words. 

Our main contribution is proposing a syntax-based measure for semantic similarity of 

textual-description which exploits the syntactic and semantic information of a sentence. 

To evaluate the performance of our proposed service description matching method, we 

have performed a comparison of our proposed approach with the traditional information 

retrieval techniques (i.e. cosine similarity). 

 

In this phase, we have shown the performance improvement achieved by proposing a 

syntax-based measure for semantic similarity for the textual description of a web service. 

In order to evaluate the performance, we have compared syntax-based measure for 

semantic similarity approach with traditional information retrieval techniques (i.e. cosine 

similarity).  We ran two different experiments i.e. pure logical S
5
 Web Service 

Matchmaker with traditional information retrieval technique (S
5
 Web Service 

Matchmaker I) and pure logical S
5
 Web Service Matchmaker with syntax-based measure 

for semantic similarity technique (S
5
 Web Service Matchmaker II). The reason we 

compared different textual description approaches combined with logical signature 
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matching was that textual descriptions matching does not provide any substantial results 

if logical signature matching totally fails. To perform our experiments, first we ran seven 

different queries on the S
5
 Web Service Matchmaker I on the dataset of 150 available web 

services using equation 6:  

 

SIM1(R, S) = 0.7 ( Logical_SIM(R, S)) + 0.3*Textual_SIM(R, S)            (equation 6) 

A similar experiment was performed for the S
5
 Web Service Matchmaker II, with the 

same dataset and using equation 6. The threshold of similarity score was set to 0.3. The 

reason was that if the logical signature similarity between a pair of services fails, the 

candidate service should not be selected as relevant even if its specifications exactly 

match. Below, we have shown the impact of our syntax-based measure for semantic 

similarity approach in a web service discovery. In order to compare the results of our 

proposed textual description matching, the precision, recall, and accuracy measures are 

used to evaluate the performance. Top 20 web services are selected to evaluate the 

effectiveness of both approaches. Table 4.8 shows a comparison of hybrid S
5
 Web 

Service Matchmaker I (i.e. logical similarity and content-based similarity) and hybrid S
5
 

Web Service Matchmaker II (i.e. logical similarity and syntax-based textual-description 

similarity).  
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Query Name 

S5 Web Service Matchmaker I 

(logical + traditional IR) 

S5 Web Service Matchmaker II 

(logical + Syntax-based Matching) 

 Precision Recall Accuracy Precision Recall Accuracy 

Query 1 Car1PersonBicyclePriceServie 0.75 0.88 0.95 0.85 1.00 0.98 

Query 2 Comedy Film finder service 0.25 1.00 0.91 0.40 1.00 0.94 

Query 3 HikingSurfingDestination 0.40 0.88 0.91 0.50 1.00 0.94 

Query 4 GroceryStoreFoodService 0.22 0.80 0.94 0.60 1.00 0.97 

Query 5 UniversityLectureService 0.70 0.77 0.93 0.73 0.77 0.95 

Query 6 InvestigatingFinding 0.38 1.00 0.95 0.50 1.00 0.97 

Query 7 
GovernmentMissileFunding 

Service 
0.47 0.88 0.94 0.67 1.00 0.97 

        

 

Table 4.8: Precision/Recall/Accuracy of hybrid OWLS-MX and S
5
 Web Service 

Matchmaker. 

 

We see a high difference in the number of the retrieved web services for the both hybrid 

models as compare to the results of phase I. S
5
 Web Service Matchmaker I shows a large 

number of web service selections because of the traditional string similarity measure. 

Even if the meaning of a sentence is totally different, the similar words in both sentences 

give a higher textual similarity score, no matter what the syntactic structure is. S
5
 Web 

Service Matchmaker I results in retrieving more web services as relevant. On the 

contrary, S
5
 Web Service Matchmaker II retrieves a few irrelevant web services for each 

query as compared to S
5
 Web Service Matchmaker I. This is due to the textual 

description matching in which services having textual descriptions with same words but 

different syntactic structure are not retrieved. For example, a web service ‘TR 

NovelPersonPrice’’ was selected by S
5
 Web Service Matchmaker  I for query 1 because  

it showed a score of 0.25 logical similarity but the textual description similarity ranked it 

high with a score of 0.60 similarity, resulting in overall similarity of score 0.36. As the 

overall similarity was above the threshold, the service ‘TR NovelPersonPrice’ was 
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retrieved as a relevant web service. On the other hand, S
5
 Web Service Matchmaker II, 

that adopted the syntax matching approach for textual description, computed textual 

similarity score of 0.25 which resulted in overall similarity score of 0.25 and marked as 

irrelevant. Our results show an improvement of 15% precision and 8% recall for the 

syntax-based measure for semantic similarity technique as compare to traditional 

information retrieval techniques. By adopting a syntax-based measure for semantic 

similarity of a textual description, we have achieved an increase of 3% accuracy. The 

overall improvement of our proposed approach for a textual description is shown in term 

of accuracies in Figure 4.4. 

 

 

Figure 4.3: Comparison of Accuracies of S
5
 Web Service Matchmaker I and II. 

 

To further analyze the impact of syntax-based measure for textual description similarity, 

we present the experiment results of Query 1 (i.e. Car1PersonBicyclePrice) in Table 4.9. 

For Query 1, Top 20 web services which are retrieved from the S
5
 Web Service 
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Matchmaker I shows 88% recall, which was 64% in pure fine-grained logical matching 

shown in Table 4.4. This is because the overall similarity of many web services, that had 

logical similarity score less than threshold (i.e. 0.3), have increased by an integration of 

the information retrieval technique for text-description similarity; hence results in an 

addition of five irrelevant web services. On the other hand, integration of syntax-based 

measure for semantic similarity of textual-description with fine-grained logical matching 

also results in more relevant web services as compared to S
5
 Web Service Matchmaker I. 

But we can see that by exploiting the syntax of a textual-description for discovering web 

services, we have retrieved all the 17 relevant web services for Query 1 at an 85% 

precision, which were only 15 relevant webs services for S
5
 Web Service Matchmaker I. 
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Query Relevant 
S5 Web Service Matchmaker I 

(Retrieved) 

S5 Web Service Matchmaker II 

(Retrieved) 

    

Car1Person 

BicyclePrice 
Car1PersonBicyclePrice Car1PersonBicyclePrice Car1PersonBicyclePrice 

 CarCyclePrice Kohl Car1PersonBicyclePrice Kohl Car1PersonBicyclePrice 

 Kohl Car1PersonBicyclePrice 4WheeledCar1PersonBicyclePrice 4WheeledCar1PersonBicyclePrice 

 Bicycle4Wheeledcar_Price_ 2PersonBicycle4Wheeledcar_Price CarCyclePrice 

 Vehicle price Car2PersonBicyclePrice Car2PersonBicyclePrice 

 T-car price CheapCar 2PersonBicyclePrice CheapCar 2PersonBicyclePrice 

 4WheeledCar1PersonBicyclePrice 4wheeledcar year price 2PersonBicycle4Wheeledcar_Price 

 Auto Year price Bicycle4Wheeledcar_Price_ Bicycle4Wheeledcar_Price_ 

 Recommended price of car model 
3wheeledcarYearRecommended 

price 
Vehicle price 

 4wheeledcar year price Vehicle price T-car price 

 leynthu rent a car T-car price 4wheeledcar year price 

 Car2PersonBicyclePrice 4wheeledcar year price report leynthu rent a car 

 2PersonBicycle4Wheeledcar_Price car price car price report 

 car price report car price report Recommended price of car model 

 car price CarCyclePrice Auto Year price 

 4wheeledcar year price report Auto Year price car price 

 CheapCar2PersonBicyclePrice CarCycleTaxPrice 4wheeledcar year price report 

  AuthorNovelPrice CarCycleTaxPrice 

  TR NovelPersonPrice BookPrice 

  BookPrice AuthorNovelPrice 

    

Precision  0.75 0.85 

Recall  0.88 1.00 

Accuracy  0.95 0.98 

    

 

Table 4.9: Experiment results of S
5
 Web Service Matchmaker I and II. 

 

4.7 Conclusion 

Based on the signatures and specifications of web services, S
5
 Web Service Matchmaker 

propose the logical and the non-logical approaches to exploit web service descriptions 

semantically in order to provide an effective and efficient web service discovery model. 

The flexibility of S
5
 Web Service Matchmaker is that it allows the consumer to discover 
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web services depending on either pure logical approach or hybrid approach. Figure 4.4 

and 4.5 shows the comparison of performance measures (i.e. precision and recall) for 

pure logical S
5
 Web Service Matchmaker and hybrid S

5
 Web Service Matchmaker.  

 

 

Figure 4.4: Precision comparison of logical and hybrid S
5
 Web Service Matchmaker. 

 

Figure 4.4 shows the precision comparison of the logical and hybrid S
5
 Web Service 

Matchmaker based on the results of phase I and phase II. It is noted that the precision of 

logical S
5
 Web Service Matchmaker is always higher than the hybrid S

5
 Web Service 

Matchmaker. This means that logical S
5
 Web Service Matchmaker would always provide 

relevant web services to the consumer; no matter what the recall would be. Based on this 

comparison, we can suggest that if a consumer is looking for exactly similar web services 

then logical S
5
 Web Service Matchmaker is a best option. A consumer could also use the 

logical S
5
 Web Service Matchmaker if the structure and textual-description of a request 

service is not available. 
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Figure 4.5: Recall comparison of logical and hybrid S
5
 Web Service Matchmaker. 

 

From Figure 4.5, we can conclude that the recall of the hybrid S
5
 Web Service 

Matchmaker is always higher (i.e. 100%) then the recall of logical S
5
 Web Service 

Matchmaker. The reason is that the hybrid model is computing service similarity using 

the signatures and specifications information of web services. Based on the comparison 

of Figure 4.5, we can conclude the Hybrid S
5
 Web Service Matchmaker provides almost 

all relevant web services, no matter what the precision score would be. Hybrid model 

could be beneficial for consumers who are interested in discovering all available relevant 

web service from the database. A consumer should select the hybrid model if and only if 

the user request and all available web services contain the specification description along 

with the signature description. 

 

4.8 Summary 

In this Chapter, we performed a series of experiments to evaluate the performance of our 

proposed approaches (i.e. fined-grained logical signature matching and syntax-based 
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measure for sentence matching). These approaches exploited the maximum information 

from a web service description to make the discovery process effective and efficient. We 

used OWLS-MX as a benchmark to compare our results. The relevant dataset of web 

services from OWLS-TC was used a gold standard. We divided our experiment into two 

phases. In phase I, we performed the comparison between the pure logical OWLS-MX 

with our proposed S
5
 Web Service Matchmaker logical component. This comparison 

showed a significant increase in the relevant services retrieved by a pure logical S
5
 Web 

Service Matchmaker as compare to a pure logical OWLS-MX. By adopting fine-grained 

logical signature matching, we achieved a 43% increase in recall at a cost of 22% 

precision with an overall increase of 2% accuracy. This is due to the selection of all those 

web services that had even a small logical signature similarity with the user request. In 

phase II, we compared the hybrid models. The purpose of this comparison was to show 

the impact of other web service similarity measures (i.e. signature’s structure and 

specifications) on the discovery process. To evaluate the performance of our proposed 

approaches, we compared our model with the hybrid OWLS-MX because OWLS-MX 

also exploits the logic-based and content-based information from the OWL-S document. 

By taking the WSDL and OWL-S information of a web service and integrating signatures 

and specifications similarities, we achieved 1% improvement in accuracy as compare to 

our benchmark. This improvement in accuracy is achieved by an increase of a 32% recall 

at a cost of a 5% precision. These results support our approach which provides a service 

consumer with more relevant options when there is a service failure or to compose a web 

service. Finally, we showed the effectiveness of adopting syntax-based measure for 

semantic similarity approach for textual descriptions. Our claim is that textual description 
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contains behavioral information of a web service in a sentence of few words. Applying 

vector similarity methods for comparing two sentences is not an efficient approach 

because the semantics of a sentence is extracted from the individual words and the 

structural way the words are combined. To exploits the semantics of a sentence, we 

propose the syntax-based measure for semantic similarity for textual-description 

similarity. We compared our proposed textual approach with traditional information 

retrieval technique (i.e. cosine similarity as used in OWLS-MX). Our results showed 3% 

improvement in accuracy with an increase in 15% precision and 8% recall, which was 

achieved by adopting the syntax-based measure for semantic similarity for textual-

description. We saw a decrease in retrieving relevant web service by adopting string 

similarity measures because web services having same words but different syntactic 

structure are also marked as relevant. This selection of irrelevant web services decreases 

precision and recall, which, as a result, decrease the accuracy of discovery model. 

Whereas the syntax-based measure for semantic similarity approach solves this problem 

by considering the syntactic structure of a sentence which results in improving the overall 

accuracy of the model. 
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Chapter 5.  Conclusion and Future Work 

 

5.1 Contributions 

 

Web Service Matchmakers, developed for web service discovery, either consider the 

signatures (i.e. input/output parameters and their structures) or specifications (i.e. textual 

descriptions and web service names). WSDL-based matchmaker considered a textual 

description as a vector of terms and adopted information retrieval techniques. Some 

matchmakers also applied the same traditional approaches on other content of a WSDL 

document i.e. operations, messages and data types, as mentioned in Chapter 2. As WSDL 

document does not provide the semantic information of a web service, OWL-S helps in 

the automation of web service discovery by providing the semantic information. Many 

service matchmakers are developed which exploit the semantic descriptions of web 

services and have applied different logical and non-logical techniques. Klusch [4] 

proposed the first logical service matchmaker (OWLS-MX) based on OWL-S 

description. In OWLS-MX, they proposed five logical filters which are applied at each 

web service signature level, i.e. a service is relevant if it exactly matches or completely 

subsumes the user request. Whereas services partially logically matched are ignored. 

OWL-S also provides the textual description of a web service in natural language. This 

textual description is a sentence of a few words. All discovery models that had exploited 

textual description treated this behavioral information as a bag of a words and applied 
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traditional information retrieval techniques. This resulted in completely ignoring the 

syntactic structure of a sentence. 

We focus on the shortcomings of previously developed approaches for web service 

discovery. We propose a hybrid service discovery model, Hybrid Web Service Matcher 

(S
5
 Web Service Matchmaker), which overcomes the shortcomings of different 

components of a discovery model at web service signature and specification levels. S
5
 

Web Service Matchmaker proposes four logical and non-logical similarities measures. 

For signatures matching, we propose logical and non-logical similarity measures whereas 

for specifications matching we propose non-logical textual-description and name 

similarity measures. S
5
 Web Service Matchmaker integrates the maximum information 

available in the web service description to achieve maximum consumer satisfaction. Our 

main goal is to focus on providing consumers with many relevant web service options 

which help in two ways. First, a consumer should have many alternatives to select 

another web service if a service fails during invocation. Second, a list of relevant web 

services gives more opportunity to a consumer to compose a complex web service, which 

results in developing new web services to achieve consumer tasks. To achieve these 

goals, we propose a fine-grained logical signature matching, signature’s structure 

matching, and syntax-based measure for semantic matching. We also define some new 

decomposing rules to split a web service name into meaningful words, which helps in 

service name comparison.  

The different components of our hybrid model and their needs are described below: 
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1. Logical Signature Matching: logical signature matching plays a vital role in 

achieving our goals. Instead of performing a strict logical matching on service 

parameters, we propose a fine-grained logical matching. The idea is to select even 

those web services that show very little logical similarity with consumer request. 

This is because two or more partially matched services could facilitate in the web 

service composition process to provide maximum satisfaction to a consumer. 

Fine-grained logical signature matching results in discovering more web services 

as relevant, which is contrary to the former approach where only exactly matched 

or fully subsumed web services were retrieved.  

2. Textual-Description Matching: Textual-description of a web service, provided by 

a service publisher, provides the behavioral information of a service. 

Distinguishing a web service based on textual description may be helpful if it is 

exploited efficiently. We see that the previously adopted approaches for a textual-

description similarity measure did not extract the maximum semantic information. 

All the proposed approaches treated a textual description as a bag of words and 

applied traditional information retrieval techniques (i.e. cosine, jaccrad, etc.). The 

drawback is that two sentences that have different semantic meanings but the 

same words would be considered similar. The one most important problem with 

these approaches is that they adopted the long-text similarity approaches on a 

sentence of few words (i.e. TF/IDF, word co-occurrence, etc.). Our approach is 

inspired by the method of short sentence semantic matching [29]. We believe that 

exploiting the structure of a textual description would be more helpful in web 

service matching, instead of just applying traditional string similarity measures on 
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individual words. The reason is that the semantic of a sentence is extracted not 

only from the words but also the syntactic way the words are combined. We 

proposed a hybrid model that also exploits the structure of a sentence and 

performs semantic matching. 

3. Non-Logical Signature Matching: As mentioned earlier, the WSDL document 

provides the signatures’ definition and their structures. It is one of the important 

sources of a service description that helps to uniquely identify a web service. The 

structure of signatures (i.e. input/output parameters) cannot be ignored in service 

comparison because a service’s functionality is dependent on the structure of its 

parameters. It is necessary for a consumer to provide exactly similar or 

compatible structures which let the service work perfectly and gives the desired 

result. Structure matching facilitates the process of selecting similar web services 

that structurally match with the user request. The approaches adopted for services 

structure matching are not satisfactory as they used simple term/data type 

matching for every element of a parameter structure without considering their 

structure. Previously developed discovery models considered an element as an 

individual word and applied information retrieval techniques to compute the 

similarity between two words. We argue that the structure similarity should be 

computed by semantically annotating the graph-like structure while preserving 

their internal structure. For this purpose, we introduce the application of a 

Structure Preserving Semantic Matching (SPSM) algorithm on the web service 

discovery model. SPSM helps in providing an efficient way of computing 
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parameter structural similarity, hence refining web service search and retrieving 

relevant services.  

4. Web Service Name: Sometimes, a service name is also used to uniquely identify 

desired services. Service name matching is also considered by discovery models 

to select relevant web services. As the service name is composed of different 

words, decomposing rules are defined to split a composite name into individual 

words. Previously, the service name was split based on capital letters. However 

there could be possibility of having numbers, spaces, underscores or dashes in a 

web service name. We define a list of decomposing rules that works for different 

name formats. These decomposing rules results in extracting meaningful words 

from a service name. Once the name is split into individual words, a string 

similarity measure is applied to compute the similarities between two service 

names. 

 

We proposed a hybrid discovery model, S
5
 Web Service Matchmaker, that integrates all 

the above four components. It provides an opportunity for a consumer to search the 

desired services either based on all four components or any specific component. We have 

evaluated the performance of our approach in three different ways: hybrid model, pure 

logical model, and textual-description based model.  

 

We evaluated the performance of S
5
 Web Service Matchmaker by conducting a series of 

experiments. An OWLS-TC data set was used to perform experiments. OWLS-MX was 

used as a benchmark for our evaluation. We used the same dataset and same set of 
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queries for both matchmakers.  Precision/Recall/Accuracy measures were used to 

evaluate the performance of our model. By examining the results from both models, we 

can draw the following conclusions: 

 

1. Our fine-grained logical signature matching approach showed a significant 

improvement in retrieving relevant web services. It supports our assumption of 

retrieving more web services which could facilitate the web service composition 

process. The important thing to note is that we have achieved a great increase in 

recall (i.e. 43%) with a small loss of precision (i.e. 22%). The overall accuracy of 

our model is increased by 2%.  

2. We also noticed that our hybrid model (i.e. signatures and specifications 

matching) performs outstandingly as compared to hybrid OWLS-MX. As our goal 

was to provide consumers with more service options, we achieved that goal with 

an increase of 32% recall and 1% accuracy at a cost of 5% precision.  

3. Lastly, we computed the impact of the syntax-based measure for semantic 

similarity approach for textual description in our hybrid model. To evaluate it, we 

performed a comparison of our proposed textual-description approach with the 

traditional information retrieval technique.  It showed that by exploiting the 

structure of a sentence in text similarity, we have achieved an overall increase of 

3% accuracy with an increase of 15% precision and 8% recall. 

 

These experiments showed that our proposed approaches have given significant 

improvement for web service discovery. The logical and non-logical similarity 
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components can work individually and collectively to provide consumers with desired 

relevant web services.  

5.2 Future Work 

Based on our literature review, we tried to solve few problems that we think are the 

barrier toward developing an efficient semantic web service discovery process. We still 

believe that there are some areas in our discovery model which could bring more 

improvement to our discovery model, which are mentioned below: 

 

1. For textual description matching, we are considering only 11 grammatical 

relations out of 52 which are related to subject, verb, and object. We can extend 

short sentence structure matching by in-cooperating more grammatical relations  

 

2. Structure matching algorithm converts the nodes of graphs into concepts using 

WordNet dictionary. If we replace WordNet with domain ontology then it will 

gives more power to structure matching algorithm to compute the concept’s 

relationship. 

 

3. In web service name matching, we are decomposing web service name into words 

and applying string matching. We are planning to convert these terms into 

concepts and use domain ontology to compute similarity, instead of relying on 

WordNet. 
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