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Abstract

Multiple gene phylogenetic analysis is of interest since single gene analysis often

results in poorly resolved trees. Here the use of spectral techniques for analyzing

multi-gene data sets is explored. The protein sequences are treated as categorical

time series and a measure of similarity between a pair of sequences, the spectral

covariance, is used to build trees. Unlike other methods, the spectral covariance

method focuses on the relationship between the sites of genetic sequences.

We consider two methods with which to combine the dissimilarity or distance

matrices of multiple genes. The first method involves properly scaling the dissimi-

larity measures derived from different genes between a pair of species and using the

mean of these scaled dissimilarity measures as a summary statistic to measure the

taxonomic distances across multiple genes. We introduced two criteria for computing

scale coefficients which can then be used to combine information across genes, namely

the minimum variance (MinVar) criterion and the minimum coefficient of variation

squared (MinCV) criterion. The scale coefficients obtained with the MinVar and

MinCV criteria can then be used to derive a combined-gene tree from the weighted

average of the distance or dissimilarity matrices of multiple genes.

The second method is based on the singular value decomposition of a matrix made

up of the p =
(
n
2

)
vectors of pairwise distances for k genes. By decomposing such a

matrix, we extract the common signal present in multiple genes to obtain a single tree

representation of the relationship between a given set of taxa. Influence functions for

the components of the singular value decomposition are derived to determine which

genes are most influential in determining the combined-gene tree.
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Chapter 1

INTRODUCTION

The goal of phylogenetic analysis is to infer an evolutionary relationship between a

given set of taxa from their nucleotide or amino acid sequences. The nucleic acids, de-

oxyribonucleic acid (DNA) and ribonucleic acid (RNA) carry the genetic information

in a cell and are made up of four nucleotides: adenine (A), guanine(G), cytosine (C),

and thymine (T) in DNA or uracil (U) in RNA . Adenine and guanine are purines

while cytosine and thymine are pyrimidines. Complementary purine-pyrimidine pairs

are joined in the shape of a double helix by hydrogen bonds to form DNA. These

purine-pyrimidine pairs are called base pairs (bp). Nucleotide triplets in messenger

RNA, called codons, are translated into amino acids in the ribosome. During replica-

tion DNA sequences are sometime altered by point mutations, insertions or deletions.

Over time, mutations in DNA sequences accumulate and result in changes in protein

function or structure. Molecular evolutionists seek to model these changes over time

through an evolutionary tree.

In this thesis we apply our methods to amino acid sequences. An example of a

data set consisting of protein sequences for a single gene along with a phylogenetic

tree representing an evolutionary relationship for a given set of taxa is shown in

Figure 1.1.

gorilla

gibbon

human

chimp

orangutan

Figure 1.1: A data set consisting of the protein sequences for five primate taxa for a
single gene, ATP6 (left) and an inferred phylogenetic tree (right).
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The three most common methods for inferring trees are maximum likelihood meth-

ods, distance methods and maximum parsimony methods. Maximum likelihood (ML)

based methods of tree estimation assume sequence sites evolve independently as a

continuous time Markov process based on a pre-specified evolutionary model which

allows computation of the transition probabilities at a given site. The likelihood is

a function of the tree topology, branch lengths and parameters of the rate matrix

(Felsenstein, 2003). Likelihood-based phylogenies have a sound statistical basis but

have the disadvantage of being dependent on the particular model of evolution used.

Most distance-matrix methods also employ an evolutionary model represented by a

substitution matrix. Distances between taxa are derived from similarity scores be-

tween sequences computed from a given substitution matrix. The computed distances

are then passed to a tree building method such as BIONJ or FITCH to obtain a phy-

logenetic tree (Gascuel, 1997; Miyamoto and Fitch, 1995). Parsimony-based methods

return a tree that requires the least number of substitutions among individual sites

in a set of sequences.

1.1 THE SPECTRAL COVARIANCE

A novel approach to phylogenetic analysis was considered by Collins et al. (2006) who

applied a spectral envelope based covariance method to tree estimation and compared

it to results obtained using standard likelihood methods. The general idea behind the

spectral covariance approach to phylogenetics is to measure the similarity between

two proteins from the periodic patterns in their sequences. The periodic behaviour

inherent in DNA and amino acid sequences makes them an ideal subject for spectral

analysis. Stoffer et al. (2000) developed the spectral envelope method as a general

framework for frequency domain analysis of categorical time series. The underlying

idea is that periodic structure is identifiable as spectral peaks, and maximizing the

spectrum is equivalent to searching for the strongest periodic component in a se-

ries. The spectral covariance method uses this same idea. Amino acid sequences are

treated as categorical time series and a scaling function is chosen which maximizes the

spectral covariance between two sequences. A high covariance at a given frequency

signifies a common periodicity between two sequences. These common periodicities



3

in turn represent protein secondary structures. It is known that α-helices have a pe-

riodicity of 3.6 residues (the number of amino acids per turn) which corresponds to a

peak in the spectrum at approximately ω = 0.277. β-sheets, on the other hand, have

been shown to have a maximum peak at approximately ω = 0.435 corresponding to

2.3 residues. Turns and loops connecting secondary structures are known to have a

periodicity of 3-4 residues corresponding to frequencies ω = 0.250 to ω = 0.333, while

the repetition of secondary structure elements in a protein motif is typically between

8-14 residues corresponding with frequency ω = 0.071 to ω = 0.125 (Collins et al.,

2006). An example of a protein motif consisting of repeated α-helices and β-sheets is

shown in Figure 1.2. The α-helices consist of spirals, while the β-sheets have folded

accordion-like pleats.

Figure 1.2: An example of a protein motif consisting of repeated α-helices and β-
sheets. The Structural Genomics Consortium (SGC) (http://www.thesgc.org/)

Collins et al. (2006) found that the spectral covariance approach yielded similar

results to the maximum likelihood (ML) approach when applied to a single protein.

This was a remarkable result as the two techniques are based on completely different

criteria. While the ML method of tree estimation relies heavily on the given evo-

lutionary model, the spectral covariance method of sequence comparison does not

assume any particular evolutionary model and relies instead on adoption of time se-

ries spectral methods. In this way, the ML method can be thought of as parametric,

while the spectral covariance can be viewed as non-parametric. Because the spectral

covariance is a time series approach no assumption of site independence with respect

to an evolutionary model is required.
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1.2 PHYLOGENETIC ANALYSIS OF MULTIPLE GENES

In this thesis, we extend the single-gene analyses based on the spectral covariance

to analysis of multiple genes. Two different versions of the spectral covariance are

employed, the common scaling covariance used by Collins et al. (2006) and the taxon-

specific scaling covariance which we shall introduce in chapter 2. Phylogenetic anal-

ysis on single genes will often result in conflicting topologies of the same set of taxa

in the estimated evolutionary trees (Philippe et al., 2005b). The goal of multi-gene

analysis is to combine information across several genes in such a way that a single tree

representation of the relationship for the same set of taxa is obtained from multiple

genes. There are two popular methods for combining information across multiple

genes: concatenation and consensus. In the former the sequences from several genes

are concatenated and a phylogenetic analysis is performed on the concatenated se-

quences (Bininda-Emonds, 2004; Bull et al., 1993; Burleigh et al., 2006; de Queiroz

and Gatesy, 2007; Gatesy et al., 2004; Philippe et al., 2005b). In the latter a separate

tree is inferred for each gene and a single tree is estimated by consensus (Baum, 1992;

de Queiroz, 1993; Miyamoto and Fitch, 1995). The problem with these approaches

is that they assume all genes share a common evolutionary history. This assumption

may not be valid and may result in an incorrect estimate of the species tree (Philippe

et al., 2005b).

We present two alternative methods for combining information from several genes

using their distance or dissimilarity matrices. The first method involves taking a

weighted average of the dissimilarity matrices for different genes. Two different cri-

teria for computing scale coefficients with which to combine genes are presented,

the minimum variance criterium (MinVar) and the minimum coefficient of varia-

tion criterium (MinCV). By properly scaling the dissimilarity measures derived from

different genes between a pair of species, we can use the mean of these scaled dissim-

ilarity measures as a summary statistic to measure the taxonomic distances across

multiple genes. Like the method presented by Cruscuolo et al. (2006), the MinVar

and MinCV methods attempt to bring the distance matrices as close together by

possible based on some criterion but rather than transform the distances for each

taxa pair within each distance matrix, a single scale coefficient in chosen for each
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distance matrix such that the coefficient of variation squared between the distance

matrices for each gene in minimized. The methods are applied to four different data

sets, two non-controversial and two with some dispute over the correct placement

of taxa in the tree. Trees are constructed using two distance-based tree building

methods, BIONJ and FITCH. A variation of the block bootstrap sampling method

introduced by Kunsch (1989) is used to determine the variance of our estimated trees.

Through simulations we show that the covariance based methods effectively capture

phylogenetic signal even when structural information is not fully retained. Finally,

we analyze the influence of individual genes on the combined-gene tree obtained with

the MinCV method.

The second method is based on singular value decomposition of the matrix of

combined pairwise distance vectors for each gene. We describe how the first right

eigenvector of the singular value decomposition of the matrix consisting of the pair-

wise distance vectors for multiple genes may be used to estimate a single tree repre-

sentation of the relationship between a set of taxa from several genes. We apply our

method on both JTT distances and common scaling covariance based dissimilarities.

We again employ the block bootstrap to estimate the variance of estimated trees.

We extend the results of Fung et al. (2007), who derived the influence functions for

principal components, to derive influence functions for the singular value decompo-

sition of the distance matrix. These are used to quantify the influence of individual

genes on the combined-gene topology obtained with the singular value decomposition

method and to determine the robustness of the combined-gene tree. While much of

the analyses and examples given use the spectral covariance based dissimilarities, it

should be noted that these methods may be applied to any distance measure.

1.3 PROTEIN STRUCTURE PREDICTION AND CLASSIFICATION

Protein structure prediction is an important aspect of the field of pharmaceutical

medicine where the three dimensional structure of a target protein is used to discover

new drug candidates (Hubbard, 2006). Most prediction methods rely extensively

on knowledge of proteins whose structures have been previously determined by X-

ray crystallography or NMR spectroscopy (Ginalski et al., 2005). Alternatively, an



6

unknown protein structure may be determined by comparative modelling in which it

is compared to a homologous protein or a template in a protein database, but such a

procedure requires that a homologue be available. Using the structural information

coded in the periodic patterns of the amino acid sequences of proteins, we attempt

to classify the protein into a structural category, and in this way identify the main

structural elements of the protein of interest and possible templates. To do this we

employ the spectral envelope, first introduced by Stoffer et al. (1993) for analysis

and scaling of a categorical time series. Stoffer et al. (2000) applied the spectral

envelope to DNA sequences and determined that peaks in the spectrum of a DNA

sequence corresponded with the protein-coding regions of that sequence. Collins et al.

(2006) extended this result to amino acid sequences and determined that the peaks

of the spectral envelope of amino acid sequences were related to the periodicity of

protein secondary structures. The structural features present in the spectral envelop

are extracted and used as covariates in a classification and regression tree (CART).

The reader should note that the trees presented in this section of thesis are not

phylogenetic trees in that they do not represent an evolutionary relationship between

a set of taxa, but rather a grouping of genes with common structural features.

1.4 OUTLINE

The remainder of this thesis is structured as follows. In chapter 2 we review the

spectral envelope and the common scaling spectral covariance, and introduce the

taxon-specific scaling covariance. We describe the MinVar and MinCV methods of

computing scale coefficients with which to scale the dissimilarity matrices derived

from different genes in chapter 3. In chapter 4 we give an alternative method for deriv-

ing combined-gene trees using singular value decomposition. We derive a generalized

influence function for the components of the singular value decomposition in chapter

5, and use these to examine the influence of individual genes on the combined-gene

tree obtained with the singular value decomposition based method and to evaluate

the robustness of our methods. We take a brief look at protein structure classifica-

tion using the spectral envelope in chapter 6. Some concluding remarks are given in

chapter 7.



Chapter 2

REVIEW OF SPECTRAL METHODS FOR ANALYSIS OF

PROTEIN SEQUENCES

In this chapter we review the spectral covariance and spectral envelope methods for

analysis of protein data.

2.1 THE SPECTRAL COVARIANCE

One of the principal interests in studying the similarity among protein sequences and

among protein structures is to infer evolutionary relationships between taxa. Among

the different methods for achieving this goal, the most widely used are maximum

likelihood (ML) based methods which are known to have many good properties (Van-

damme, 2009). However, maximum likelihood (ML) based methods of tree estimation

assume sequence sites evolve independently and are dependent on the pre-specified

model of evolution (Felsenstein, 2003; Vandamme, 2009). It is generally accepted

that there is a dependence among the sites (Philippe et al., 2005b). A spectral enve-

lope based covariance method to address the dependence among sites was developed

by Collins et al. (2006) . The spectral envelope was first introduced by Stoffer et al.

(1993) as a method of analysing categorical time series in the frequency-domain. The

spectral envelope provides an automated method of scaling qualitative time series

data to emphasise the strongest periodic signal in a sequence. Since high peaks in

the sample spectral density correspond to periodic structure in a time series, choosing

scalings which maximize the spectrum should highlight any periodic features present

in the data. Thus, scalings are chosen to maximize the variance at each frequency

relative to the overall variance of the data. Collins et al. (2006) extended these anal-

yses to amino acid sequences and found that the peaks in the spectral envelope of

protein sequences correspond to the folding patterns of the secondary structures of

7
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a protein. The spectral covariance used by Collins et al. (2006) as a measure of se-

quence similarity is a non-standardized adaptation of the spectral envelope approach

to coherency presented in Stoffer et al. (2000). Since prominent peaks in the spec-

tral covariance correspond to common periodicities in the individual sequences, the

spectral covariance, while sequence based, is also a measure of structural similarity

(Collins et al., 2006).

A DNA or amino acid sequence can be treated as a categorical time series and

can be transformed into a numerical time series by assigning a numerical value to

each letter in the sequence. Let Xt, t = 0,±1,±2, ..., be a categorical time series with

finite state space C = {c1, c2, ..., ck}. For β = (β1, β2, ...., βk)
′ ∈ R

k, denote Xt(β)

as the real-valued time series corresponding to the scaling that assigns cj the value

βj. Note, that here we use ′ to denote the transpose of a vector or a matrix. The

categorical time series Xt can be expressed as a multivariate time series Yt, where

Yt = ej whenever Xt = cj and ej is an index vector with 1 in the jth column and

zeros elsewhere. The real-valued time series Xt(β) is related to the multivariate time

series Yt by Xt(β) = Ytβ. The periodicity of this time series will depend on the choice

for β. The spectral covariance method chooses scalings which maximize the squared

covariance between two sequences at each frequency. Following the same notation,

denote the multivariate time-series of categorical time sequence X1t as Y1t, and that

of categorical time sequence X2t as Y2t. Scalings α(ω) and β(ω) at frequency ω are

chosen to maximize the squared spectral covariance

Cov2
12(ω) = sup

α,β
|α′

(ω)f12(ω)β(ω)|2, (2.1)

where f12 is the cross-spectral density between Y1t and Y2t, and α(ω) and β(ω) are

subject to the condition α
′
(ω)α(ω)=1 and β

′
(ω)β(ω)=1. This normalization is nec-

essary to ensure that the covariance does not infinitely increase. The cross-spectral

density is the smoothed cross-periodogram between two multivariate time series and

is defined by

f12(ω) =
1

2π

∞∑
k=−∞

R12(k)e
−iωk
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where R12(k) = Cov(Y1t, Y2(t+k)) is the cross-covariance of {Y1t, Y2t} (Priestly, 1981).

Peaks in the cross-spectral density of two univariate time series represent periodicities

common to them. Since the value of the squared spectral covariance at each ω

depends on the choice of scalings, the scalings α and β are chosen such that the

squared spectral covariance at each frequency ω attains the maximum possible value.

Note that the squared spectral covariance in (2.1) can be rewritten as

Cov2
12(ω) = sup

α,β

{[
α

′
(ω)f re

12(ω)β(ω)
]2

+
[
α

′
(ω)f im

12 (ω)β(ω)
]2}

. (2.2)

where f re
12 and f im

12 are the real and imaginary parts of f12.

In this thesis we focus on two methods of computing spectral covariance scalings

by imposing two different constraints on α and β, namely, the common scaling method

and the taxon-specific scaling method. In the common scaling method, each pair of

taxa are assumed to have a common scaling. That is, the scalings for taxon1, α and

taxon2, β are assumed to be the same when they are compared to each other. Since

amino acid sequences share the common alphabets and thus have the same state-

space, it is reasonable to apply the same scalings to both sequences to enhance the

interpretability and reduce the variance of the results (Collins et al., 2006). While

in the common scaling method, the set of scalings for any given sequence depends

upon the sequence to which it is being compared, the taxon-specific scaling assumes

each taxon has only one set of scalings. That is, taxon1 will have the same set of

scalings regardless of whether it is being compared to taxon2 or taxon3. The taxon-

specific scaling covariances reflect the relationship between pairs of taxa relative to

all the other taxa in the tree. For the data analyzed in this paper the common scaling

covariance and the taxon-specific covariance methods yield very similar results.

Note that although we work with multiple alignment in this thesis, the spectral

covariance method does not require all sequences be aligned. Another option might

be to use pairwise alignments rather than multiple alignments.

2.1.1 THE COMMON SCALING SPECTRAL COVARIANCE

It can be shown that when state-spaces are the same and the spectral density matrix

is symmetric, the maximum covariance is achieved when scalings α = β (Stoffer
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et al., 2000). By applying a common scaling to the two sequences being compared,

we reduce the number of parameters in the model thereby reducing the complexity

of the method and increasing the precision of our estimates. For simplicity, ω is

considered fixed and dropped from the notation. With X1t, X2t, Y1t and Y2t defined

as above, the squared spectral covariance in (2.2) is now

Cov2
12 = sup

β
|β ′

f12β|2, (2.3)

subject to β
′
β=1, where f12 is the cross-spectral density between Y1t and Y2t. Equa-

tion (2.3) can be rewritten as

Cov2
12 = sup

β′β=1

(
[β

′
f re
12β]

2 + [β
′
f im
12 β]

2
)
. (2.4)

Since f re
12 and f im

12 are not usually symmetric, to make them symmetric we define

matrices

Are =
[
f re
12 + f re′

12

]
/2

Aim =
[
f im
12 + f im′

12

]
/2.

Equation (2.4) then becomes

Cov2
12 = sup

β′β=1

(
[β

′
Areβ]2 + [β

′
Aimβ]2

)
. (2.5)

The algorithm to compute the common scaling β is given below:

1. Initialization: set β to be one of the following:

β1 = ε1(A
re′Are)

β2 = ε1(A
im′

Aim)

whichever produces the larger initial estimate of the spectral covariance. ε1

denotes the eigenvector corresponding to the largest eigenvalue of the matrix

in the brackets. The initial squared covariance is then

Cov2
12 =

(
β

′
0A

reβ0

)2

+
(
β

′
0A

imβ0

)2
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2. Iteratively calculate scalings using

βj = ε1

(
Areβj−1β

′
j−1A

re + Aimβj−1β
′
j−1A

im
)

(2.6)

until convergence. Convergence criteria is set as ||βj − βj−1||2 < 0.001.

2.1.2 THE TAXON-SPECIFIC SPECTRAL COVARIANCE

For the common scaling spectral covariance, the scalings for any given taxa are depen-

dent upon the taxa to which it is being compared. For example, under the common

scaling spectral covariance the honeybee may be assigned one set of scalings when

it is compared to the locust and a different set of scalings when it is compared to

the nematode. Another approach to assigning scalings to taxa is to hold the scalings

corresponding to each taxa in a given data set constant across all pairwise compar-

isons. Since the taxon-specific similarities measures the similarity of each pair of

taxa relative to the entire set, such a method might also provide insight into effect

of a taxon on the estimated similarities. We might compare how estimated taxon-

specific similarities change when a taxon is included or excluded from the data set.

To compute the taxon-specific scaling spectral covariance, the following criterion is

used. Following the notation above, for K taxa, denote the multivariate series of K

sequences X1t, ....XKt as Y1t, ...., YKt. The squared spectral covariance is now

∑
i<j

Cov2
ij = sup

βi,....,βK

∑
i<j

|β′
ifijβj|2, (2.7)

subject to β′
iβi = 1 for i = 1, ..., K, where fij is the cross-spectral density between

Yit and Yjt.

To find βi’s which maximize (2.7), begin by initializing β0
i , (i = 1, ...., K) as the

spectral envelope scaling of the ith sequence. Then the algorithm is as follows:

For i = 1, 2, ..., K, iteratively calculate scalings using formula

βi = ε1
∑
j �=i

[
(f re

ij βjβ
′
jf

re′
ij ) + (f im

ij βjβ
′
jf

im′
ij )

]
.

where ε1 is the eigenvector corresponding to the largest eigenvalue of the given matrix.

Convergence criterion is
K∑
i=1

(||βr
i − βr−1

i ||2) < 0.001 ∗K.
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2.1.3 DISSIMILARITY MATRIX BASED ON THE SPECTRAL CO-

VARIANCE

To build a spectral covariance based phylogenetic tree, the spectral covariance mea-

sure must be transformed into a dissimilarity measure. The first step is to compute

the spectral covariance at each frequency for each pair of sequences. The sum of the

spectral covariance values above a threshold which is used for reducing noise, is then

taken to obtain a single numeric measure of similarity between the two sequences,

hereafter referred to as the total covariance. The total covariance between the ith and

jth sequences, denoted as sim(xi, xj), is then converted into a dissimilarity measure

between the ith and jth sequences using the following definition:

diss(xi, xj) = 1− sim(xi, xj)

max
i �=k

(sim(xi, xk))

i, j, k = 1, ....., n where n is the number of sequences. Note some i �= j this dissimi-

larity measure could be zero.

The threshold is based on the empirical distribution of 1000 bootstrap samples.

The samples are obtained as follows: two sequences are randomly selected from

within the data set and characters are randomly selected with replacement from these

two sequences to obtain two sample sequences with the same length as the original

pair. This is repeated until 1000 sample covariances are obtained from 1000 sequence

pairs. The mean of the 95th quantiles of the sample covariances at each frequency is

then taken to be the threshold. Applying the threshold should remove the random

noise in the spectral covariance, and thus ensure strong signals for similarity between

sequences are taken into account by the total covariance statistic.

2.2 THE SPECTRAL ENVELOPE

The spectral envelope of a categorical time series and its application to problems in

molecular biology was first introduced by Stoffer et al. (1993). As with the spectral

covariance a DNA or amino acid sequence is transformed into a categorical time series

by assigning a numerical value to each letter in the amino acid alphabet. The resulting
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times series depends on the way in which these numerical values are assigned. For

example, consider a sequence ACGTACGTACGTACGT.... and scalings A=1, C=2,

G=3 and T=4. In this case, we would get a sequence 1234123412341234.... with

periodicity 4 bp. On the other hand if we were to label pyrimidines as 0 and purines

as 1 we would get sequence 01010101.... with periodicity 2 bp. In the case of amino

acid sequences, we might assign a different numerical value to each amino acid. Or we

might assign a numerical value based on whether a given amino acid is hydrophobic

or hydrophilic. Clearly, different scalings bring out different properties of the data.

Let Xt, t = 0,±1,±2, ..., be a categorical time series with finite state space

C = {c1, c2, ..., ck}. Assume that Xt is stationary and that pj = P{Xt = cj} for

j = 1, 2, 3, ......, k. For β = (β1, β2, ...., βk)
′ ∈ R

k denote Xt(β) as the real valued time

series corresponding to the scaling that assigns cj the value βj. The periodicity of this

time series will depend on the choice for β. The idea behind the spectral envelope

is to chose β(ω) to maximize the variance at each frequency, ω, relative to the total

variance σ2(β(ω)). With this in mind, β is chosen such that

λ(ω) = sup
β

{
f(ω, β)

σ2(β)

}
,

where f(ω, β) is the smoothed spectral density of the time series Xt(β). In order

to compute λ(ω) note that the categorical time series Xt can be expressed as the

multivariate time series Yt, where Yt = ej whenever Xt = cj and ej is an index vector

with 1 in the jth column and zeros elsewhere. Then Xt(β) = β′Yt. Assume that Yt has

a continuous spectral density fY (ω). For each ω, fY (ω) is a k x k Hermitian matrix.

Let f re
Y (ω) denote the real part of fY (ω) and V denote the variance-covariance matrix

of Yt. The spectral envelope can then be expressed:

λ(ω) = sup
β

{
β′(ω)f re

Y (ω)β(ω)

β′(ω)V β(ω)

}
.

The scaling β(ω) is the optimal scaling. Further technical details on the spectral

envelope can be found in Stoffer et al. (2000).

The periodicity of the spectral envelope corresponds to the folding patterns of

the secondary structures of a protein. Secondary structure elements and motifs are

repeated within a domain, hence application of the spectral envelope to protein se-

quences should reveal multiple peaks associated with the periodicity in the α-helices
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and β-sheets, as well as in the repeated motifs. The spectral envelope is smoothed

using a triangular weighting which places which places a higher weight on the points

near the center frequency and hence gives a more accurate estimate of the spectral

density (Collins et al., 2006). Similarly structured proteins should have similar spec-

tral envelopes. It should therefore be feasible to classify proteins into their proper

structural categories by examining their spectral envelopes.



Chapter 3

COMBINING DISSIMILARITY MEASURES USING

SCALE COEFFICIENTS

In this thesis we extend these analyses to multi-gene data sets and explore two differ-

ent methods for combining information from multiple genes to obtain tree estimates.

Note that the spectral methods applied to phylogenetic data in this paper differ

from those introduced by Hendy and Penny (1993). The spectrum defined in Hendy

and Penny is a list of counts of possible bipartitions over each site, representing the

support for each split in the data, whereas here the spectrum is the fast Fourier

transform of a time series representation of the individual amino acid sequences.

Whole-genome or multiple gene analysis is of interest since single gene analysis often

results in poorly resolved trees. Indeed, the small number of sites in a single gene

tends to lead to a relatively high level of variation in the estimation of trees (Philippe

et al., 2005b; Rokas et al., 2003). The question of how to combine the informa-

tion present in individual genes has been the subject of extensive study and debate

from which there have emerged several approaches to the analysis of multi-gene data

sets (Bininda-Emonds, 2004; Bull et al., 1993; Burleigh et al., 2006; de Queiroz and

Gatesy, 2007; Gatesy et al., 2004; Philippe et al., 2005b). The most widely used

approach is to concatenate the alignments of individual genes and then apply stan-

dard likelihood or distance based methods on the concatenated sequences to derive

a single representative topology for multiple genes. Another approach is to analyse

the genes individually and then obtain a single tree estimate by consensus (Baum,

1992; de Queiroz, 1993; Miyamoto and Fitch, 1995). Many have suggested that genes

should be combined conditional on their sharing similar evolutionary histories. To

achieve this, a test for congruence is performed and only those genes deemed to

have common evolutionary histories are combined using concatenation or consensus

15
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methods (Bull et al., 1993; Farris et al., 1995; Lecointre, 2005; Leigh et al., 2008; Zel-

wer and Daubin, 2004). The concatenation approach has the advantage of using all

available sequence information and can sometimes reveal relationships between taxa

which are hidden in a separate analysis (de Queiroz and Gatesy, 2007). Furthermore,

concatenation is supposed to reduce the stochastic error (Jeffroy et al., 2006). How-

ever, the concatenation approach implicitly assumes that all genes share a common

evolutionary history and it may return incorrect estimates of the underlying species

tree when this assumption is violated. Different genes may evolve under different

models, hence concatenation may also lead to model misspecification (Jeffroy et al.,

2006; Philippe et al., 2005b).

Since applying the spectral covariance on a concatenation does assume a similar

dependence structure among genes, which may not necessarily be true, performing a

separate spectral analysis on individual genes and then combining them seems more

sensible. In our approach, spectral covariance based dissimilarity matrices are com-

puted for the individual genes and then combined to obtain a summary measure of

the dissimilarity matrix. The goal of the combination is to find a single dissimilarity

matrix which best summarizes the information present in multiple genes. Two differ-

ent scaling methods are proposed in this paper to scale dissimilarity matrices so that

the mean of these scaled dissimilarities can be used as a summary measure of the

dissimilarity for each pair of taxa. In these methods, each dissimilarity matrix from

a gene is given a single scale coefficient. This gene specific scale coefficient reflects

a gene’s specific evolutionary rate and makes the branch lengths computed from the

scaled dissimilarity matrices comparable.

3.1 COMBINING DISSIMILARITY MEASURES ACROSS GENES

One simple way to combine dissimilarity measures across genes would be to take

an average of the dissimilarity matrices. However, the dissimilarity matrices for

different genes are not necessarily on the same scale. This is generally true for

any distance based method. Therefore, rather than taking the mean directly, a

weighted average is used where each matrix is weighted by a scale coefficient. The

mean of the scaled dissimilarity matrices is then used as the combined dissimilarity
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matrix for the phylogenetic analysis. We next present two criteria for computing scale

coefficients which are generally useful for combining information across genes, namely

the minimum variance (MinVar) and the minimum squared coefficient of variation

(MinCV).

Beven et al. (2005) used a weighted least squares approach to estimate the evolu-

tionary rates of individual proteins and thereby estimate a representative distance for

each taxa pair from multiple genes. In their method, estimated distances are weighted

according to their level of uncertainty. The weights are based on a given substitution

model (Bulmer, 1991). In the MinVar and MinCV methods presented below, scales

are chosen to minimize the variance in the pairwise distances across genes and then

a weighted average across genes is taken as the representative distance for each pair

of taxa. No evolutionary model is assumed in the computation of the weights.

3.1.1 THE MINIMUM VARIANCE SCALE COEFFICIENTS

Fixing the scale coefficient for one of the matrices as one, the scale coefficients for the

other matrices are obtained by minimizing the sum of the variances of the pairwise

dissimilarities across genes. For a data set with k genes and n taxa the dissimilarity

matrices for the k genes are combined as follows:

1. For each gene, organize the dissimilarity measures for all pairs of taxa as a

p-vector, where p =
(
n
2

)
for n taxa. We combine the dissimilarities from all k

genes into a single matrix

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1,1 d1,2 ... d1,k

d2,1 d2,2 ... d2,k

.. .. ... ..

.. .. ... ..

dp,1 dp,2 ... dp,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.1)

where each column corresponds to all the dissimilarities from a specific gene.

For example, di,j is the dissimilarity of the ith pair for the jth gene, i = 1, ..., p,

j = 1, ..., k.
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2. Let c = (c1, c2, ..., ck) be the scale coefficients for k genes. Fix c1 = 1. The

scaled dissimilarities are then

Ds = D × diag(c) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1d1,1 c2d1,2 ... ckd1,k

c1d2,1 c2d2,2 ... ckd2,k

.. .. ... ..

.. .. ... ..

c1dp,1 c2dp,2 ... ckdp,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

3. The optimal scalings c = (c1, c2, ..., ck) are those that minimize the sum of the

variances of each pairwise dissimilarity across the k genes:

V =

p∑
i=1

Vi =

p∑
i=1

⎡
⎣1

k

k∑
j=1

(cjdi,j)
2 −

(
1

k

k∑
j=1

cjdi,j

)2
⎤
⎦ (3.2)

This minimization problem can be solved analytically. The analytical solution

is the solution to the linear system of equations ∂V
∂cm

= 0,m = 2, ..., k, where

∂V

∂cm
∝ 2cm

(
p∑

i=1

d2i,m

)
− 2

k

k∑
j=1

cj

(
p∑

i=1

di,jdi,m

)
.

4. The combined pairwise dissimilarities from the k genes is then the mean of the

scaled dissimilarities, 1
k
Ds1 where 1′ = (1, 1, ...., 1)1×k.

3.1.2 THE MINIMUM SQUARED COEFFICIENT OF VARIATION

SCALE COEFFICIENTS

An alternative method is to minimize the squared coefficient of variation. Because

larger dissimilarities usually have larger variances than smaller dissimilarities, a vari-

ance based criterion like the MinVar may result in scale coefficients that are biased in

favour of minimizing the variances of taxa pairs with larger dissimilarities, resulting

in an incorrect estimate of topology locally for the taxa which are close to each other.

For the MinCV, the variances are scaled by the square of the mean. Hence, the scale

coefficients determined with the MinCV will tend to avoid such bias as that from the

MinVar method. In addition, the CV is unitless. Using the same notation as above,
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instead of minimizing equation (3.2) we now wish to minimize the sum of the squared

CV:

p∑
i=1

CV 2
i =

p∑
i=1

⎛
⎜⎝

1
k

∑k
j=1(cjdi,j)

2 −
(

1
k

∑k
j=1 cjdi,j

)2

(
1
k

∑k
j=1 cjdi,j

)2

⎞
⎟⎠ (3.3)

∝
p∑

i=1

⎛
⎜⎜⎜⎜⎜⎝

k∑
j=1

(cjdi,j)
2

(
k∑

j=1

cjdi,j

)2

⎞
⎟⎟⎟⎟⎟⎠− p

k
. (3.4)

Since this minimization problem cannot be solved analytically, we solve it using a

numerical method instead. We start by setting the scale coefficients as the minimum

variance scale coefficients. We then use the non-linear minimization function nlm()

available in the R package nlme (Pinheiro et al., 2009) to find the set of scale coeffi-

cients c = (c1, c2, ...., ck) (with c1 = 1) that minimizes equation (3.3). The combined

pairwise dissimilarities for the k genes is then the mean of the scaled dissimilarities,

1
k
Ds1, where 1′ = (1, 1, ...., 1)1×k.

3.2 METHODS TO BUILD TREES

To obtain phylogenetic trees from our combined dissimilarity matrix across genes,

two distance based tree building methods, i.e. BIONJ (Gascuel, 1997) and the Fitch-

Margoliash least squares method implemented in the program FITCH in PHYLIP

(Fitch and Margoliash, 1967), are applied. The neighbor-joining algorithm, first

introduced by Saitou and Nei (1987) and revised by Studier and Keppler (1988), is

an agglomerative clustering algorithm based on the principle of minimum evolution.

BIONJ is a modified version of the NJ algorithm which has been shown to return

trees closer to the minimum evolution tree (Gascuel, 1997). Fitch and Margoliash

(1967) used a weighted least-squares criterion to find an optimal tree. Since greater

distances are more liable to have larger random errors associated with them, larger

distances are given smaller weights in the FITCH method (Felsenstein, 2003). This

method sometimes performs slightly better than the neighbor-joining algorithm but

has a greater computational cost (Kuhner and Felsenstein, 1994).
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3.3 BOOTSTRAP PERMUTATION METHODS

To obtain an empirical distribution of the spectral covariance based dissimilarity, we

use a re-sampling method that maintains some of the structural information present

in the data. Since the spectral covariance assumes a dependence structure between

individual sites of a protein sequence, the chosen method must also preserve the

dependence structure present in the original sequences. We use a variation of the

block sampling method introduced by Kunsch (1989). Instead of sampling blocks with

replacement, the blocks are sampled without replacement to obtain 100 permutation

samples. This is equivalent to randomly selecting 100 permutations from the b!

possible permutations of blocks, where b is the total number of blocks. As the spectral

covariance method of comparing sequences is based on the periodicity inherent in

protein structures, an appropriate block size is determined using information known

about the periodicity of these protein structures. It is known that α-helices have a

periodicity of 3.6 residues, β-strands have a periodicity of 2.3 residues and 310-helices

have a periodicity of 2.5 to 3 residues. While the length of loops can vary, it is

known that turns have a periodicity of 3 to 4 residues. Motifs within a protein are

comprised of helices and strands connected by loops and turns. The periodicity of

these repeated motifs is known to be 8 to 14 residues in length (Collins et al., 2006).

Hence, a block size of 14 is used to ensure as much structural information as possible

was retained in the bootstrap permutation samples.

To quantify the variation of our estimated trees we use two different distance

measures for tree topologies. The Robinson-Foulds (RF) distance measure imple-

mented in the PHYLIP program treedist (Felsenstein, 1989) counts the number of

bi-partitions that are present in one tree and not in another tree. The RF distance

takes values in the interval [0, 2(n − 3)], where n is the number of taxa (leaves) in

the tree (Felsenstein, 1989). The quartet distance implemented in Quartet Suite

v1.0 (Piaggio-Talice et al., 2004) is a measure of the proportion of quartets that are

resolved differently in two trees. It is a count of the number of quartets resolved

differently in the input tree and the reference tree divided by the number of quartets

resolved in the reference tree,
(
n
4

)
, where n is the number of taxa in the reference

tree. This value is then subtracted from one to get a quartet similarity.
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RF distances and quartet similarities were computed between the tree estimated

with the original sequences and each bootstrap permutation tree to obtain 100 RF

distances and 100 quartet similarities. When calculating quartet similarities, the tree

from the original sequences was taken as the reference tree.

3.4 SIMULATION METHODS

Ideally the simulated sequences should retain the dependence between sites and the

periodic structure of the true protein sequences. However there are no methods or

software packages so far to completely fulfill this requirement. Here we simulate data

using the program SEQGEN (Rambaut and Grassly, 1997) under the JTT model

with no variation of rates among sites. It is important to note that the JTT model of

evolution assumes that sequence sites evolve independently and thus sequences simu-

lated with SEQGEN will not necessarily retain the structural information present in

the sequences. However, since the sequences simulated by SEQGEN on an evolution-

ary tree have all evolved from the same ancestral taxon which is an extant sequence,

the sites in the simulated sequences are not truly independent. The structural or pe-

riodic signals in the sequences are better kept if the tree on which the simulations are

based is not very deep. Hence, we would expect our method to recover the reference

tree in such cases.

3.5 DATA

Four different data sets are used in this paper to illustrate our methods. We be-

gin with an exploratory analysis on a non-controversial eukaryote data set provided

courtesy of Dr. Andrew Roger (Centre for Comparative Genomics and Evolutionary

Bioinformatics, Dalhousie University). We then apply our methods to the nematode

data set published in Foster and Hickey (1999) and a chloroplast data set (Wu and

Susko, 2009; Gruenheit et al., 2008; Ané et al., 2004). Finally, simulations are gen-

erated based on a five taxa primate data set and the nematode data set. Sequences

for each gene were downloaded from Genbank. Genbank accession numbers for the

nematode data, chloroplast data and primate data used for this analysis can be found
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in the tables in the appendix. The sequences were then aligned using ClustalW in

Bioedit and the parts of the alignments for which one or more of the sequences had

gaps were removed, so that the sequences for each gene all have the same length

(Hall, 1999).

The eukaryote data set consists of 35 ribosomal proteins and 17 taxa.

The nematode data set consists of the twelve mitochondrial protein-coding genes

common to eight animals. This data set is known to have a problem with both long-

branch attraction and compositional bias (Foster and Hickey, 1999). There are two

rival theories as to where the nematodes should branch in relation to other animals:

the ecdysozoa hypothesis and the coelomata hypothesis. Proponents of the ecdysozoa

hypothesis argue that all animals which shed their shells should be grouped together.

These are referred to as moulting animals and include nematodes and arthropods. By

contrast, proponents of coelomata hypothesis believe that animals should be grouped

based on whether or not they have a coelom (body-cavity). Hence, under the coelo-

mata hypothesis, vertebrates and arthropods should be grouped together (Telford,

2004). Aguinaldo et al. (1997) first proposed a clade of moulting animals based on a

phylogenetic analysis of 18S ribosomal DNA sequences. They chose Trichinella spi-

ralis as a representative nematode on account of its evolving more slowly than other

nematodes, such as Caenorhabditis elegans which is used in our analysis. Their results

indicated a strong relationship between the nematode and the arthropods. Dopazo

and Dopazo (2005) carried out a phylogenetic analysis on the complete genomes of 11

taxa and also found strong support for the ecdysozoa hypothesis. In their analysis,

Dopazo and Dopazo (2005) excluded the fast-evolving sequences of Caenorhabditis

elegans. However, other analyses have rejected the ecdysozoa hypothesis. Rogozin

et al. (2007) performed a genome-wide analysis using a type of rare genomic changes

robust to long branch attraction and taxon sampling and found strong support for the

coelomata hypothesis. Blair et al. (2002) analysed 100 individual protein data sets

consisting of four taxa and again found strong support for the coelomata hypothesis.

They argued that the findings of Aguinaldo et al. (1997) were due to the analysis be-

ing performed on a single gene. Philippe et al. (2005a) argued that strong support for

the coelomata theory was due to sparse taxon sampling. Their analysis of 146 genes
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from a sample of 35 taxa provided strong support for the ecdysozoa hypothesis. The

debate regarding the correct placement of the nematodes remains unresolved, with

analyses on different taxa samples and different genes returning conflicting results.

For the chloroplast phylogenetic tree our final data set consisted of 25 proteins

from 22 taxa. For this data there has been some debate over the placement of Am-

borella trichopoda within the angiosperms. The majority of analyses place Amborella

as the most basal of the angiosperms (Soltis et al., 1999; Qiu et al., 1999; Zanis et al.,

2002). However, in some cases a Amborella+Nymphaea clade was found to be most

basal (Barkman et al., 2000). An alternative topology was presented by Goremykin

et al. (2003) which placed the monocots as the most basal of the angiosperms. How-

ever, this topology was refuted by Soltis and Soltis (2004), Stefanovic et al. (2004)

and later Goremykin and Hellwig (2006) who showed that model misspecification

and long branch attraction was the cause of the moncot-first topology. Still, the true

relationships among the angiosperms is not well resolved and resolution of the clade

continues to be poor (Soltis et al., 2005).

The primate data set has five taxa: gibbon, orangutan, gorilla, chimp and human.

It consists of thirteen mitochondrial protein-coding genes. The phylogeny for the

primate data set is fairly well established though there remains some debate over the

exact relationship between gorilla, chimp and human. It is generally believed that

human and chimp should be placed together as sister taxa, though for some portions

of the genome gorilla and human appear to be more closely related (Ruvolo, 1997;

Hobolth et al., 2007).

Throughout this thesis we have tried to refer to the taxa as they have been referred

to in the literature. Taxa in the eukaryote data set and the chloroplast data set are

referred to by their Latin names. For the nematode data set we follow the example

of Foster and Hickey (1999) and refer to the taxa by their common names with the

exception of Allomyces macrogynus which is an ancestral fungus and has no common

name. Likewise, we refer to the primate data by their common names as was done

by Collins et al. (2006).
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3.6 RESULTS

3.6.1 RESULTS ON EUKARYOTE DATA SET

We begin by applying all combinations of methods on the non-controversial eukaryote

data set. The eukaryote data set consists of 17 taxa of plants, animals and fungi for

35 ribosomal proteins. Dissimilarity matrices were computed using the common scal-

ing covariance and the taxon-specific scaling covariance. Both MinVar and MinCV

criteria were used to obtain scale coefficients with which to combine genes. Figure

3.1 shows the reference tree for the eukaryote data (Keeling et al., 2009).

Figure 3.1: Reference tree topology from Tree of Life web project for the eukaryote
data set with 17 taxa (http://tolweb.org/Eukaryotes) (Keeling et al., 2009)

To determine which, if any, of the four methods for computing dissimilarities

give similar results, we performed an initial comparative analysis of the dissimilarity

matrices computed from these four techniques. Figure 3.2 shows the pairwise scatter

plots with regression lines for the dissimilarities from each pair of methods.
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Figure 3.2: Comparisons of the eukaryote data set dissimilarities obtained with com-
mon scaling (ComScal) and taxon-specific scaling (TaxaSpec) methods combined with
MinVar and MinCV criteria (with Pearson correlation coefficient, r).

The dissimilarity measures obtained from all four different methods are highly

correlated, with Pearson correlations ranging from 0.9693 to 0.9881. The high cor-

relation between the suites of methods suggests that the different techniques should

return similar tree estimates.

Trees are obtained using both BIONJ and FITCH. Thus, there are in total eight

different methods to build trees. The inferred trees by the eight different methods are

shown in Figures 3.3 and 3.4. All trees recover the major clades of plants, animals

and fungi. The MinCV taxon-specific scaling trees both recover the exact topology

seen in the reference tree. The MinCV common scaling trees place Schizosaccha-

romyces pombe and Candida albicans as sister taxa, rather than branching Schizosac-

charomyces pombe first, but otherwise recover the reference tree. All the MinVar

trees erroneously place Drosophila melanogaster as the most basal animal. Both

MinVar BIONJ trees erroneously place Neurospora crassa and Magnaporthe grisea

closer to Ustilago maydis and Cryptococcus sp than to Schizosaccharomyces pombe

and Candida albicans.



26

Figure 3.3: Estimated BIONJ and FITCH trees for eukaryote data set when common
scaling and taxon-specific scaling dissimilarities for multiple genes are combined with
the MinVar criterion. Common scaling with BIONJ (top left) and FITCH (bottom
left), taxon-specific scaling with BIONJ (top right) and FITCH (bottom right). Boxes
indicate portions of the tree which differ from reference tree.
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Figure 3.4: Estimated BIONJ and FITCH trees for eukaryote data set when common
scaling and taxon-specific scaling dissimilarities for multiple genes are combined with
the MinCV criterion. Common scaling with BIONJ (top left) and FITCH (bottom
left), taxon-specific scaling with BIONJ (top right) and FITCH (bottom right). Boxes
indicate portions of the tree which differ from reference tree.

Table 3.1 summarizes the topological features recovered in each of the estimated

trees as well as the bootstrap support for each feature. The accurate separation of

all taxa into their major clades is recovered in all 100 bootstrap replicates under all

eight methods. The branching of Dictyostelium discoideum as basal in the animal

clade has 100% bootstrap support in both the MinCV taxon-specific scaling trees,

but only weak support under the other 6 methods. The recovery of the reference tree

topology within the three main clades has strong bootstrap support in all 4 MinCV

trees. In the MinVar trees, the incorrect placement of Drosophila melanogaster as

most basal in the animal clade is strongly supported by the bootstrap replicates.

Both MinVar BIONJ trees show strong bootstrap support for branching Neurospora

crassa and Magnaporthe grisea with Ustilago maydis and Cryptococcus sp rather than
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Schizosaccharomyces pombe and Candida albicans (99% under the common scaling

method and 85% under the taxon-specific scaling method).

To measure the variance about the tree estimates for each method, we looked

at the quartet similarities between the trees estimated from the block bootstrap

samples and the trees estimated on the original sequences by all eight combinations

of methods. Table 3.2 shows the computed quartet similarities. The columns show

the number of bootstrap trees out of 100 whose quartet similarities fall within a

given interval. The intervals are split according to all the resulting quartet similarity

values. While all methods give comparable results, one can see that the taxon-specific

scaling with the MinCV method appears to be the most stable with a lower bound of

0.9118 quartet similarity. The mean quartet similarity values are 0.9619 and 0.9730,

respectively, for BIONJ and FITCH. Thus the taxon-specific scaling with the MinCV

method has the smallest variability about the estimated trees. The common scaling

covariance based trees have greater variability than the taxon-specific scaling trees

with a lower bound of quartet similarity of 0.9008 for both MinVar trees, and 0.9025

and 0.8840 for MinCV trees.

The RF distances show a similar pattern. The eukaryote data set with 17 taxa has

14 interior nodes, hence the maximum possible value for the RF is 28. Taxon-specific

scaling covariance trees have a maximum RF distance of 4 with the majority of trees

having distances less than 2. The common scaling covariance trees have a maximum

RF distance of 6 with majority of trees having distances less than 4.

The MinCV method with the taxon-specific scaling appears to have the small-

est variance, recovering the reference tree topology with strong bootstrap support.

The MinCV with the common scaling also has relatively small variance about the

estimated tree. The MinVar trees appear to have more erroneously placed branches

than the MinCV trees and these incorrect topologies are strongly supported by the

corresponding bootstrap trees.

While the differences in the estimated trees recovered from the four dissimilarity

matrices are small, the MinCV method appears to return a more accurate topology

than the MinVar method. For the remaining two data sets we present the results

obtained using the MinCV for both the common scaling and taxon-specific scaling
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covariance based dissimilarity measures but note that similar trees were obtained

with the MinVar method. For cases where the MinCV and MinVar methods differed,

the MinCV consistently returned the more accurate topology.

3.6.2 RESULTS ON NEMATODE DATA SET

The nematode data set consists of twelve protein coding genes common to eight taxa

presented in Foster and Hickey (1999). There are two rival theories concerning where

the nematodes should be placed in the tree. The ecdysozoa theory favours a clade

of moulting animals, grouping nematodes and arthropods together (Aguinaldo et al.,

1997; Dopazo and Dopazo, 2005). The coelomata theory places nematodes as basal

to the vertebrates and arthropods (Blair et al., 2002; Rogozin et al., 2007). Figure

3.5 shows the trees under these two hypotheses. The nematode data set is known

to have problems with compositional bias and long branch attraction which results

in the honeybee (Apis mellifera) and the roundworm (Caenorhabditis elegans) being

branched as sister taxa with strong bootstrap support(Foster and Hickey, 1999).

Figure 3.5: Reference topology for the nematode data set under the ecdysozoa hy-
pothesis (left) and coelomata hypothesis (right) (Blair et al., 2002).
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Again we begin with an exploratory analysis of the dissimilarities computed from

the common scaling and taxon-specific scaling covariances with MinCV scale coeffi-

cients. A scatter plot with regression of the MinCV dissimilarities under the taxon-

specific scaling versus the common scaling method is shown in Figure 3.6. For this

data, the correlation between the two methods is very high with r=0.9848. The

largest residual is associated with dissimilarities between honeybee and roundworm,

followed by chicken and sea urchin, honeybee and Allomyces macrogynus, and hon-

eybee and brine shrimp. The large residual corresponding to chicken and sea urchin

is a bit surprising as these two taxa are fairly non-controversial with regards to their

placement in the tree. However, it is possible that the pairwise distances beneath the

regression line are pulling the model away from this point.

Figure 3.6: Comparisons of the nematode data set dissimilarities computed with the
common scaling (ComScal) method and combined with the MinCV criterion and
the taxon-specific scaling (TaxaSpec) method combined with the MinCV criterion
(Pearson correlation = 0.9848). Taxa pairs with largest discrepancy in dissimilarities
computed under these two methods shown with arrows.

The MinCV trees obtained with the four methods are shown in Figure 3.7. The

placement of the taxa relative to each other corresponds to the grouping seen under



31

the ecdysozoa hypothesis. The common scaling covariance with the BIONJ and the

taxon-specific scaling with FITCH both return trees with the same topology as the

reference tree under the ecdysozoa hypothesis. The common scaling covariance with

FITCH erroneously places the honeybee as basal to the other arthropods, while the

taxon-specific scaling covariance with BIONJ tree erroneously places the roundworm

and honeybee together as sister taxa. Hence, honeybee, roundworm and brine shrimp,

which have large residuals associated with their dissimilarities in the initial regression,

vary in their relative positions in the trees under the two different spectral covariance

methods.

Figure 3.7: Estimated BIONJ and FITCH trees for the nematode data set when
common scaling and taxon-specific scaling dissimilarities for multiple genes are com-
bined with the MinCV criterion. Common scaling with BIONJ (top left) and FITCH
(bottom left), taxon-specific scaling with BIONJ (top right) and FITCH (bottom
right).
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Table 3.3 shows the bootstrap support for the topological features for the ne-

matode tree under different methods. Placement of the taxa in agreement with the

ecdysozoa hypothesis has strong bootstrap support in both common scaling trees

(100% with BIONJ and 99% with FITCH). 52% of the taxon-specific scaling BIONJ

trees support the ecdysozoa hypothesis topology, while 67 % of the taxon-specific

scaling FITCH tree support the coelomata theory. The placement of brine shrimp as

the most basal of arthropods recovered in the common scaling BIONJ tree and the

taxon-specific scaling FITCH tree has no bootstrap support. The erroneous branch-

ing of honeybee as the basal animal has moderate bootstrap support in both common

scaling trees and the taxon-specific BIONJ tree, and weak bootstrap support in the

taxon-specific FITCH tree. Separation of the honeybee and the roundworm occurs in

63% of bootstrap trees for both BIONJ and FITCH common scaling methods, 62%

of bootstrap trees for the taxon-specific BIONJ method, and 69% of bootstrap trees

for the taxon-specific FITCH method. A combination of long branch attraction and

compositional bias often causes the honeybee and roundworm to be grouped as sister

taxa (Foster and Hickey, 1999), but here all four methods are able to separate these

two with moderate bootstrap support.

Table 3.4 shows the quartet similarities between the bootstrap trees and the orig-

inal data tree for the nematode data. Variability about the tree estimates for this

data is greater than that of the eukaryote data, with minimum quartet similarites

of 0.5429 and 0.5857 for the taxon-specific scaling trees and 0.7143 and 0.8714 for

the common scaling trees. The mean quartet similarity is 0.8440 for common scaling

BIONJ trees and 0.9444 for common scaling FITCH trees, compared to 0.8091 and

0.7246 for the corresponding taxon-specific scaling trees.

The Robinson-Foulds distances show the same pattern. For the nematode data

set with 5 interior nodes the maximium possible value for RF distance is 10. Taxon-

specific scaling trees have a maximum distance of 6 with the majority of distances

being 4 or less. The common scaling covariance based BIONJ trees have a maximum

distance of 4 with the majority of trees having values less than 2. The common

scaling covariance based FITCH trees have a maximum distance of 2, with 56 out of

the 100 RF distances being 0.
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3.6.3 RESULTS ON CHLOROPLAST DATA SET

The chloroplast data set consists of twenty-five chloroplast proteins from twenty-two

taxa. There has been some debate over the placement of Amborella trichopoda within

the angiosperms. Most analyses place Amborella trichopoda as the most basal an-

giosperm (Soltis et al., 1999; Qiu et al., 1999; Zanis et al., 2002), though in some cases

an Amborella+Nymphaea clade was found to be most basal (Barkman et al., 2000).

Goremykin et al. (2003) found an alternative topology which placed the monocots

as the most basal of the angiosperms although this topology was later found to be

erroneous (Soltis and Soltis, 2004; Stefanovic et al., 2004; Goremykin and Hellwig,

2006). Figure 3.8 shows the reference tree for the chloroplast data (Soltis et al., 2005;

Ané et al., 2004).

Figure 3.8: Reference tree topology for the chloroplast data set with 22 taxa (Soltis
et al., 2005; Ané et al., 2004).

We begin with an analysis on all twenty-five genes in chloroplast data set and

then discuss how this differs from an initial analysis we did on a smaller chloroplast

data set which consisted of only nineteen out of the twenty-five chloroplast proteins.

The same twenty-two taxa were used in both analyses.

Again we focus on the MinCV method and compare two different methods of

scaling and two different tree building methods. A scatter plot with regression of the
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taxon-specific scaling versus common scaling dissimilarities is shown in Figure 3.9.

Once more correlation between the two methods is fairly high with r=0.9639.

Figure 3.9: Comparisons of the chloroplast data set dissimilarities computed with the
common scaling (ComScal) method and combined with the MinCV criterion and the
taxon-specific scaling (TaxaSpec) method combined with the MinCV criterion (Pear-
son correlation = 0.9639). Taxa pairs with the largest discrepancy in dissimilarities
computed under these two methods shown with arrows.

The real data trees are shown in Figure 3.10. In all four trees the separation of

green algae, non-seed plants, and seed plants is recovered. Acorus americanus should

be grouped with the other monocots within the angiosperm clade, but is instead

placed with the eudicots in all four trees. Also, Psilotum nudum erroneously branches

with the mosses and liverworts rather than with the other fern, Adiantum capillus-

veneris. The taxon-specific scaling tree place Amborella trichopoda and Nymphaea

alba as sister taxa, while the common scaling tree places Calycanthus floridus and Am-

borella trichopoda as sister taxa. In all four trees a clade with Amborella trichopoda,

Nymphaea alba and Calycanthus floridus is basal in the angiosperm clade.
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Figure 3.10: Estimated BIONJ and FITCH trees for the chloroplast data set when
common scaling and taxon-specific scaling dissimilarities for multiple genes are com-
bined with the MinCV criterion. Common scaling with BIONJ (top left) and FITCH
(bottom left), taxon-specific scaling with BIONJ (top right) and FITCH (bottom
right). Boxes indicate portions of the tree which differ from reference tree.

Table 3.5 shows the topological features and the bootstrap support for each feature

given by the four different methods. The correct separation of taxa into main clades

of green algae, non-seed plants, seed plants and angiosperms has 100% bootstrap

support in all four methods. There is also strong bootstrap support for a clade

with Amborella trichopoda, Nymphaea alba and Calycanthus floridus as basal in the

angiosperm clade (100% for all four methods). The branching of Amborella trichopoda

and Nymphaea alba as sister taxa has moderate support in the common scaling FITCH

tree and both taxon-specific trees (51% to 66%). The branching of Nymphaea alba
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and Calycanthus floridus as sister taxa is strongly supported by the common scaling

BIONJ tree. The branching of the two ferns, Psilotum nudum and Adiantum capillus-

veneris, as sister taxa has moderate support in both taxon-specific trees (55% with

BIONJ and 52% with FITCH). The erroneous placement of Psilotum nudum with

the mosses and liverwort seems to occur in all common scaling BIONJ trees and 78%

of the common scaling FITCH trees.

Table 3.6 shows the quartet similarities between the bootstrap permutation trees

and the corresponding real data trees. Mean quartet similarities for all four methods

are very close, with the means for the taxon-specific trees being slightly higher than

the means for the common scaling trees. For the taxon-specific scaling trees, the mean

quartet similarities are 0.9852 and 0.9890 with BIONJ and FITCH, respectively. The

common scaling trees have corresponding mean quartet similarities of 0.9771 and

0.9778. Minimum quartet similarities are all greater than 0.93. There appears to be

greater variability about the trees estimated from the common scaling based distances

than those estimated from the taxon-specific scaling distances. For the chloroplast

data set with twenty-two taxa, the maximum possible value the RF can attain is

38. The RF distances are consistent with the quartet similarities, with common

scaling covariance based trees attaining a maximum RF distance of 14 using FITCH

and 10 using BIONJ, while the taxon-specific scaling covariance based trees attain a

maximum RF distance of 10 using FITCH and 8 using BIONJ.

The strong bootstrap support obtained for the trees estimated from these twenty-

five genes was somewhat surprising as analyses on a subset of nineteen genes of these

twenty-five resolved the angiosperm clade very differently. When only nineteen genes

were included in the analyses all methods returned the erroneous monocot-first tree

with strong bootstrap support. Removing those of the nineteen genes for which the

monocot distances were relatively large with respect to the other angiosperms still

resulted in a monocot-first tree. We then added genes atpI, clpP, psaB, psaC, rbcL and

rpoC1. Including these genes resulted in a clade consisting of Amborella trichopoda,

Nymphaea alba and Calycanthus floridus being basal in the angiosperm clade. Figure

3.11 shows the common scaling MinCV distances of non-monocot angiosperms versus

the three monocots when nineteen and twenty-five genes are used in the analyses.
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Figure 3.11: Common scaling distances for monocots versus other angiosperms for
19 and 25 genes combined with MinCV.

In the case of Zea mays and Oryza sativa adding the six additional genes results

in larger MinCV common scaling distances between these two monocots and Am-

borella trichopoda, Nymphaea alba and Calycanthus floridus, while the corresponding

distances between these two monocots and the eudicots is only slightly greater ex-

cept in the case of Lotus corniculatus. The nineteen gene MinCV common scaling

distances between Triticum aestivum the eudicots tend to be greater while the dis-

tances between Triticum aestivum and the Amborella trichopoda, Nymphaea alba and
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Calycanthus floridus are smaller. The distance between Triticum aestivum and the

other two monocots is also greater within the monocot clade. The taxon-specific

scaling distances return similar results. Clearly, the six additional genes are highly

influential in determining the relative placement of the taxa in the angiosperm clade

of the combined-gene tree.

3.7 SIMULATIONS

We simulated data based on two different data sets, a primate data set consisting of

five taxa: gibbon, orangutan, gorilla, chimp and human, and the nematode data set

used in the analysis above. For both data sets the trees obtained by the common

scaling method combined with the MinCV criterion are used as the input trees in SE-

QGEN. We reduced both the sequence similarity and the structure similarity in the

simulated sequences by increasing the branch lengths and these results are compared

to those obtained with the block bootstrap permutations where the structure similar-

ity is partially preserved. Note that the simulation method may be somewhat biased

against our method since one would expect structural patterns to be maintained by

natural selection as well as deriving from the ancestral sequence.

3.7.1 SIMULATIONS GENERATED FROM PRIMATE DATA SET

Figure 3.12 shows the reference tree topology for the five taxa in our data set (Tree of

Life Web Project, 1999). This topology is also estimated by all our eight combinations

of methods applied on the primate data set.
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Figure 3.12: Reference tree for the primate data set from http://tolweb.org

Throughout the whole simulation the sequence of gibbon is specified as the ances-

tral sequence. We first simulated 1000 data sets for each gene based on the tree shown

in Figure 3.12 with branch lengths estimated by common scaling MinCV method, and

call this simulation scheme S1. We then repeated this process to create two additional

sets of 1000 data sets in which the branch lengths of the input tree are multiplied

by 100 and 1000, and we call these two simulations schemes S100 and S1000, respec-

tively. We compared the analysis performed on these simulated data to the analysis

performed on the block bootstrap permutations on all eight combinations of methods.

For the 1000 data sets simulated under S1, 100% of the estimated trees from the

simulated data recover the same topology as the reference tree for all eight methods.

Figure 3.13A shows the majority rule consensus tree from S1 obtained by the common

scaling method with MinCV criterion. All other seven methods result in the same

consensus tree shown in Figure 3.13A.
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Figure 3.13: Primate majority-rule consensus trees estimated with the common scal-
ing (ComScal) method and combined with the MinCV criterion for 1000 SEQGEN
simulated sequences (left) and 1000 block bootstrap permutation sequences (right).

The sequences within the primate data set have high sequence similarity (90% -

100%). This level of sequence similarity is also present in the S1 simulated sequences.

The sequence similarities are reduced to between 10% and 50% for the S100 scheme

and less than 10% for the S1000 scheme. Table 3.7 shows the proportion of trees

which recover the reference tree under the different simulation schemes. We also

performed 1000 block bootstrap permutations with block size 14 for each gene of the

primate data set and applied all eight methods. The last row in Table 3.7 shows the

proportion of correctly estimated trees under the block bootstrap permutations.

For the primate data, with average sequence similarities greater than 10% all of

the trees based on simulated sequences recover the reference tree. When sequence

similarity is less than 10%, only 4% to 10% of estimated trees recover the topology

of the reference tree. For the block bootstrap permutation samples, 88% to 98% of

trees based on the permuted sequences recover the reference tree. For the primate

data our methods are fairly robust when sequence similarity is reduced.

3.7.2 SIMULATIONS GENERATED FROM NEMATODE DATA SET

For the nematode data set the sequence of Allomyces macrogynus is specified as the

ancestral sequence for SEQGEN simulations. Again we simulated 1000 data sets
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for each gene. As with the primate data, we will call the simulation based on the

tree estimated by the common scaling MinCV method simulation scheme S1, and

repeat the process to create two additional sets of 1000 data sets in which the branch

lengths of the input tree are multiplied by 25 and by 100. We refer to these simulation

schemes as S25 and S100, respectively. Sequences simulated under simulation scheme

S1 have sequence similarities between 9.2% and 82.4%, while sequence similarities

under simulation schemes S25 and S100 are reduced to 2% to 30% and 0% to 13.6%,

respectively.

The input tree topology for SEQGEN simulations agrees with the ecdysozoa hy-

pothesis. We do not discount the possibility that the topology under the coelomata

hypothesis is correct. However, since the purpose of the simulations is to determine

support for our methods which recovers trees which agree with the reference topology

under the ecdysozoa hypothesis, our data was simulated under this topology rather

than that under the coelomata hypothesis. Table 3.8 shows the proportion of trees

which recover the topologies for both the ecdysozoa and coelomata hypotheses. It is

not surprising that none of the trees based on the simulated sequences agree with the

coelomata hypothesis as they were simulated under an ecdysozoa tree. Of the trees

estimated from the data generated under simulation scheme S1, 83.6% to 93% recover

the input tree. For data generated under simulation scheme S25, 44.5% to 46.4% of

the estimated common scaling trees recover the input tree while the recovery rates

of estimated taxon-specific scaling trees are 0% to 0.3%. Under simulation scheme

S100, none of the estimated trees recover the input tree. For the common scaling

trees based on bootstrap permutations, 68.2% to 95.6% recover the tree that agrees

with the ecdysozoa topology. Of the taxon-specific scaling trees based on bootstrap

permutations, 42% to 79% recover the tree that agrees with the coelomata hypothesis.

3.7.3 ANALYSIS OF SIMULATION RESULTS

For data generated with SEQGEN, both sequence and structure similarity are pre-

served when branch lengths are short, as is the case under simulation scheme S1. The

fact that our methods can recover the input tree with such a high rate for simulation

scheme S1 shows the effectiveness of the proposed methods. When sequence and
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structure similarity are reduced the recovery rate drops correspondingly. From the

simulation results, we see that the recovery rates of the four methods based on the

taxon-specific scaling decline much more quickly than that of the four methods based

on the common scaling. This perhaps shows that the methods based on the common

scaling are more sensitive in picking up the weak sequence and structure similar-

ity signals and that the common scaling method is preferred over the taxon-specific

scaling method from this aspect.

The block bootstrap permutations completely preserve the sequence similarity of

the original sequences, but only partially preserve the structure similarity. For the

primate data, there is no controversy about which tree is the right tree. The high

recovery rate of the right tree under block bootstrap permutation of the data shows

that such a bootstrap method is valid. For the nematode data set the true tree

is unknown. The estimated common scaling trees based on bootstrap permutation

samples strongly support the ecdysozoa hypothesis while the estimated taxon-specific

scaling trees show moderate to strong support to the coelomata hypothesis. While

these results reflect the uncertainty in the evolutionary position of the nematode, we

do see slightly stronger evidence to support ecdysozoa hypothesis from our study of

this data set.

3.8 PERMUTATIONS

To further validate the covariance based methods we performed further analyses on

1000 block size 1 permutation samples taken from the nematode data set. Permu-

tations were computed using the SEQBOOT programme in PHYLIP (Felsenstein,

1989). We compared the distances obtained from the block size 1 permutation sam-

ples to those obtained from the block size 14 permutations. Recall the block size

14 permutation samples completely preserve site similarity and partially preserve

structure similarity. We expect that the variability about the estimated tree mea-

sured by block size 1 permutation samples will be greater than that measured by

block size 14 permutation samples as the structural signal is erased by the block

size 1 permutations. Results presented below are for the common scaling covariance
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based dissimilarities. Similar results were obtained with the taxon-specific scaling

covariance based dissimilarities.

Figure 3.14 shows common scaling MinCV majority-rule consensus trees obtained

from both sets of permutation samples. While the consensus trees are the same, we

can see that the variability about the resolved branches is greater for the block size

1 permutation samples than for the block size 14 permutation samples.

Figure 3.14: Nematode majority-rule consensus trees estimated with the common
scaling method and combine with MinCV criterion for 1000 block size 14 permutation
samples (left) and 1000 block size 1 permutation samples (right).

Boxplots of the 1000 pairwise distances under both permutation schemes for three

pairs of taxa randomly selected from the twenty-eight taxa pairs are shown in Figure

3.15. The horizontal line across the x-axis corresponds to the common scaling MinCV

distance obtained from the real data. The 1000 bootstrap distances under the block

size 14 permutation scheme have much smaller variance than the 1000 bootstrap

distances under the block size 1 permutation scheme, while those under the block size

14 permutation scheme seem to have greater bias. However, all taxa pairs appear to

be biased in the same way (somewhat greater than the distance computed for the

real data), and hence the relative relationship between the taxa is preserved for most

of the samples and the variance about the estimated tree is relatively small. While

the range of the block size 1 permutation sample distances always encompass the real

data distance, the median distance for different taxa pairs fluctuates about the real

data distance and many of the samples have distances much higher and/or lower than
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the real data distance. This in turn results in higher variance about the estimated

tree for the 1000 block size 1 permutation distances.

Figure 3.15: Boxplots of 1000 sample distances obtained from block size 14 permuta-
tion samples (left) and block size 1 permutation samples (right) for three randomly
selected taxa pairs from the nematode data set. Horizontal line across the x-axis
corresponds to the common scaling MinCV distance for real data.

The covariance-based dissimilarities incorporate both sequence and structural

similarity between proteins. When the structural information is destroyed, variance

of the estimated tree increases.

3.9 INFLUENCE OF INDIVIDUAL GENES ON THE COMMON SCAL-

ING MINCV TREE FOR THE NEMATODE DATA

There is much debate surrounding the true topology of the nematode tree and the

individual gene trees return conflicting topologies. It may be of interest to determine

which genes appear to have the most influence in determining the combined-gene

tree obtained with the MinCV coefficient scales. Following the classic approach to

influence analysis we consider how removal of a point (or a gene) affects our esti-

mated tree and how addition of an outlier (in our case a nonsense gene) affects our
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estimated tree. To do this we consider the estimated combined-gene topology a sum-

mary measure of the relative distances between taxa. To determine the influence of

individual genes on the combined-gene topology, we remove a single gene from the

analysis and examine how the combined distance matrix has changed and how this

change has affected the estimated combined-gene tree. Note that we can think of

this as assigning one of the genes a scale coefficient of zero. Lastly, we introduce an

outlying gene to the data to determine how the presence of this outlier affects our es-

timated tree. This outlying gene is obtained in the following manner. For each of the

twelve genes we have eight sequences. Hence, there are a total of 96 sequences in the

nematode data set. These 96 sequences were concatenated to get one long sequence

of 25568 characters. Eight sequences of length 200 were then randomly sampled with

replacement from the 25568 characters. Taxa names were then randomly assigned to

the sampled sequences. The eight randomly generated sequences were then added to

the analysis as an outlying gene. For the analysis in this section, we use the common

scaling covariance based dissimilarity matrices.

We begin by computing twelve trees based on the common scaling spectral co-

variance dissimilarity matrices for each gene in the nematode data set. Trees were

computed using BIONJ (Gascuel, 1997). A table of the topologies obtained for the

twelve genes is shown in Table 3.9. This is not a table of all possible topologies but

only those topologies recovered by the individual genes and the combined-gene tree.

The estimated topologies of the twelve genes all differ from both each other and the

combined-gene tree by two or more branches. The third column of Table 3.9 shows

the Robinson-Foulds distances between the estimated tree and theoretical topology

under the ecdysozoa hypothesis. The combined-gene tree, which has the same topol-

ogy as the ecdysozoa tree, has a RF distance of 0. ATP6 returns the next closest tree

with a RF distance of 2.

Next, individual genes were removed from the analysis one at a time. Recall in

the computation of the MinCV we fix the coefficient of one gene to be one. For the

nematode data set we selected an arbitrary gene, ND3, to have a fixed coefficient

of one in the computation of the MinCV scale coefficients for the twelve genes. For

the computations involving only eleven genes this same gene was assigned the fixed
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coefficient except for when ND3 itself was removed from the analysis, in which case

ND2 was assigned the fixed coefficient of one. The difference in the combined-gene

distances for the full twelve genes and those for eleven genes was then computed.

Figure 3.16 shows the change in the pairwise distances obtained with the MinCV

scale coefficients after each gene is removed.
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Figure 3.16: Change in the combined-gene pairwise distances obtained with the
MinCV scale coefficients when each gene is removed from the analysis
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One can see that for the most part there is only a very minor change in the

combined-gene tree distances when a gene is removed except in the case of ATP6,

ND4L, ND5 and ND6. When ATP6 is removed, the estimated combined-gene pair-

wise distances are greater than when all twelve genes are used. Peaks for some of

the taxa pairs involving the nematode and the arthropods indicate that the relative

relationship between these taxa has been affected by the removal of this gene. The

other genes whose removal appears to affect the estimated combined-gene pairwise

distances are ND4L, ND5 and ND6. When these genes are removed, the estimated

distances appear to be larger than when all twelve genes are used. Again, peaks

corresponding to pairwise distances which involve the nematode and the arthropods

suggest that the relative relationships between these taxa have been affected by re-

moval of these genes.

Table 3.10 shows the topologies estimated from eleven genes. As expected, only

four trees differ from the tree based on all twelve genes: the tree without gene ATP6,

the tree without gene ND4L, the tree without gene ND5 and the tree without gene

ND6. When ATP6, ND4L or ND6 are removed from the analysis, honeybee and

roundworm are placed together as sister taxa. When ND5 is removed honeybee is

erroneously placed as the most basal of the arthropods. The trees based on combined

information from subsets of genes (ATP6, ND4L, ND5,ND6) and (ATP6, ND4L,ND6)

both have the same topology as the twelve gene tree. This implies that ATP6, ND4L

and ND6 are influential in the proper separation of roundworm and honeybee in the

tree. While removing ND5 does not cause honeybee and roundworm to be branched

as sister taxa, the estimated tree still places honeybee closer to roundworm than it

should be if the tree under the ecdysozoa hypothesis is the true tree. Hence, ND5

also plays some role in the correct placement of roundworm and honeybee relative to

each other.

Next, the outlying gene was added to the analysis. To confirm that this gene

really is an outlier, we computed the BIONJ tree for the common scaling based

dissimilarities of the outlying gene. We then compared the dissimilarities obtained

from the outlying gene to the combined-gene dissimilarities for the twelve genes in

the nematode data set. The tree obtained with the common scaling covariance based
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dissimilarities for the outlying gene is shown in Figure 3.17. In this tree, all the

arthropods happen to be in the same clade, but the nematode branches with the

sea urchin, and chicken is placed as an outgroup to the roundworm/sea urchin sister

clade and the arthropods. None of the twelve genes in the nematode data set recover

this topology.

Figure 3.17: Estimate tree for the outlying gene derived from the common scaling
covariance based dissimilarities.

The common scaling based pairwise dissimilarities for the nonsense gene against

the MinCV combined-gene pairwise dissimilarities of the twelve genes in the nematode

data set are shown in Figure 3.18. We can see that the pairwise distances of the

outlying gene and the combined-gene pairwise distances for the real genes are not

linearly correlated. This suggests the randomly generated sequences do represent an

outlying observation.
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Figure 3.18: The common scaling based dissimilarities for a randomly generated
outlying gene vs Common scaling covariance based MinCV combined-gene pairwise
dissimilarities.

Figure 3.19 shows the change in the pairwise distances obtained with the MinCV

scale coefficients when an outlying gene is added to the analysis. Adding an outlier

appears to have a negligible effect on the combined-gene pairwise distances. Indeed,

the estimated BIONJ tree is the same as that obtained without the outlying gene.
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Figure 3.19: Change in the combined-gene pairwise distances obtained with the
MinCV scale coefficients when an outlying gene is introduced to the analysis

The above analysis suggests that a subset of three or four genes in the nematode

data set, ATP6, ND4L, ND5 and ND6, appear to be influential in determining the

MinCV combined-gene tree derived from the common scaling based dissimilarities.

Adding an outlying gene did not affect the estimated combined-gene tree.

3.10 DISCUSSION

The dissimilarity matrices computed from the four techniques obtained by combining

a spectral covariance scaling method with either MinVar or MinCV scale coefficients,
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are highly correlated. Differences in the tree estimates obtained from these dissimi-

larities are for the most part small, differing in the placement of only a few taxa. In

the eukaryote data, trees estimated using the MinVar and MinCV methods differed

in their placement of Drosophila melanogaster in the animal clade. For the nematode

data, the trees obtained from the common scaling and taxon-specific scaling meth-

ods differed in their placement of honeybee, roundworm and brine shrimp, relative to

each other. The dissimilarities between these taxa had large residuals associated with

them in the initial regression analysis. For the chloroplast data set, the taxon-specific

scaling tree placeAmborella trichopoda and Nymphaea alba as sister taxa, while the

common scaling tree place Calycanthus floridus and Amborella trichopoda as sister

taxa.

Our exploratory analysis of the eukaryote data set showed that the MinCVmethod

was able to recover the currently accepted topology shown in Figure 3.1 with strong

bootstrap support (Keeling et al., 2009). The MinVar method was able to recover

parts of this topology, but erroneously placed taxa Drosophila melanogaster as the

most basal animal, and was not able to recover the correct position of Dictyostelium

discoideum. Results were the same with both the common scaling and taxon-specific

scaling. For this reason, we focused our attention on the MinCV method for the

remaining two data sets.

For the nematode data the common scaling method supported the ecdysozoa hy-

pothesis topology with strong bootstrap support (Aguinaldo et al., 1997; Dopazo and

Dopazo, 2005), although the honeybee was erroneously placed as a basal arthropod in

the FITCH tree. The ML trees reported in Foster and Hickey (1999), grouped honey-

bee and roundworm together as sister taxa. The common scaling covariance method

was able to separate these two taxa with moderate bootstrap support. For the taxon-

specific scaling method, support for the ecdysozoa hypothesis was weak, while the

coelomata hypothesis had moderate to strong bootstrap support. Roundworm and

honeybee were erroneously grouped together with weak bootstrap support.

For the twenty-five gene chloroplast data, both the common scaling and taxon-

specific scaling methods recovered the main clades with strong bootstrap support.
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Resolution of the angiosperm clade has been extensively studied with different topolo-

gies being recovered depending on method and taxon-sampling (Ané et al., 2004;

Goremykin et al., 2003, 2005; Qiu et al., 1999; Soltis et al., 1999; Soltis and Soltis,

2004; Stefanovic et al., 2004; Zanis et al., 2002). Though neither of the common

scaling nor taxon-specific scaling methods recovers the exact reference topology in

Figure 3.8 (Soltis et al., 2005; Ané et al., 2004), the relative positions of the taxa

within the angiosperm clade more or less agrees with the reference tree, with the

exception of Acorus americanus which is misplaced with the eudicots in the common

scaling and taxon-specific scaling trees. Analysis on a subset of nineteen of these

genes which excluded atpI, clpP, psaB, psaC, rbcL and rpoC1 returned the incorrect

tree with monocots placed as basal in the angiosperm clade. The relative MinCV

distances within the angiosperm clade appear to be greatly changed by the inclusion

of these six genes indicating that these genes are given considerable weight. The ad-

ditional six genes appear to be highly influential in determining the topology withing

the angiosperm clade in the combined-gene tree.

The trees computed from SEQGEN simulated sequences indicate that the covari-

ance based methods do a good job of capturing phylogenetic signal. When branch

lengths are short, both sequence and structure similarity are preserved in the simu-

lated sequences, resulting in high recovery of the input tree by the estimated trees.

When sequence and structural similarity is reduced the recovery rate drops accord-

ingly. The block bootstrap permutations preserve all of the sequence similarity of the

original sequences but only some of the structural similarity and hence have a lower

recovery rate than the data generated with SEQGEN under simulation schemes S1.

For a data set such as the nematode data where the true tree is unknown, the boot-

strap permutation samples may be more informative than simulations because they

require no assumptions with regards to the true tree topology. Bootstrap permuta-

tion samples based on the common scaling strongly support the ecdysozoa hypothesis,

while those based on the taxon-specific scaling show moderate to high support for

the coelomata hypothesis.

The spectral covariance trees are based on structural similarity between proteins.

However, it has been shown that structural similarity and sequence similarity are
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highly correlated (Chothia and Lesk, 1986; Wood and Pearson, 1999) and that or-

thologous proteins have greater structural similarity than paralogous proteins for the

same level of sequence similarity (Peterson et al., 2009). For this reason, the es-

timated trees reflect both the structural and the sequence similarity between taxa

which is present within the proteins used for the analysis (Collins et al., 2006). The

fact that spectral covariance based methods can recover the major structure of the

tree implies that major structural and sequential differences can be captured by this

method. The total covariance used here as a summary measure of the spectral co-

variance is only one possible measure. It is important to note that by summing over

all frequencies some structural information is being averaged out.

The spectral covariance method does not assume site independence and does not

require specification of an evolutionary model. The MinCV is an effective method

for combining information from multiple genes to obtain tree estimates and the idea

can be generally applied with other distance or dissimilarity measures to combine

information from multiple genes.
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Table 3.1: Bootstrap support of the topological features for the eukaryote tree under
different methods.
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Table 3.2: Eukaryote Data: Quartet similarity between bootstrap trees and original
data trees.

Table 3.3: Bootstrap support of the topological features for the nematode tree under
different methods.



57

Table 3.4: Nematode Data: Quartet similarity between bootstrap trees and original
data trees.

Table 3.5: Bootstrap support of the topological features for the chloroplast tree under
different methods.
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Table 3.6: Chloroplast Data: Quartet similarity between bootstrap trees and original
data trees.

Table 3.7: Proportion of simulated trees with varying levels of sequence identity and
block permutation trees which recover the primate reference tree.
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Table 3.8: Proportion of simulated trees with varying levels of sequence identity and
block permutation trees which recover the nematode ecdysozoa and coelomata trees.
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Table 3.9: Estimated single gene topologies and combined-gene topology in the ne-
matode data set as well as Robinson-Foulds (RF) distances between the single gene
trees and the theoretical tree under the ecydsozoa hypothesis.

Table 3.10: Combined-gene topologies obtained with the MinCV method when a
single gene is removed from the analysis



Chapter 4

COMBINING DISSIMILARITY MEASURES USING

SINGULAR VALUE DECOMPOSITION

In this chapter we introduce another method of deriving multiple gene tree esti-

mates based on singular value decomposition. Stuart et al. (2002) applied singular

value decomposition to tetrapeptide frequency matrices to select the most informative

biomolecular sequence characteristics from which to estimate evolutionary distances.

Here we are interested in extracting the consistent signal present in the dissimilarity or

distance matrices for each gene and using this information to obtain a combined-gene

tree. As with the MinVar and MinCV methods presented in chapter 3, this method

can be applied using any taxonomic distance measure. The method is illustrated

using both the common scaling spectral covariance based dissimilarities described in

chapter 3 and Jones-Taylor-Thornton (JTT) based distances. JTT-based distances

are computed using the protdist programme in PHYLIP with one category of sub-

stitution rates (Felsenstein, 1989). Combined-gene trees for the primate, nematode

and chloroplast data sets are estimated and the variability about the estimated trees

is determined using bootstrap samples. In the case of the common scaling spec-

tral covariance based distances the method is applied to block permutation samples.

The block permutation method is used to ensure the dependence structure between

the sites of protein sequences is partially preserved in the bootstrap samples. Since

the JTT model of evolution assumes independence of sites, variance about the trees

based on these distances is estimated from bootstrap samples obtained by sampling

the individual sites within sequences with replacement. Bootstrap samples used with

the JTT model are obtained using the seqboot programme in PHYLIP (Felsenstein,

1989).

61
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4.1 SINGULAR VALUE DECOMPOSITION OF DISTANCES

As was done for the MinVar and MinCV methods, dissimilarities or distances for all

pairs of taxa are first written as p-vectors where p =
(
n
2

)
for n taxa. The p-vectors

for a set of k genes are combined into a single matrix X, where X is the transpose

of the matrix D defined in 3.1 used in the MinVar and MinCV methods of chapter

3. The rows of X correspond to genes and the columns to taxa pairs. That is, xi,j

is the pairwise dissimilarity or distance of the ith gene and the jth taxa pair, where

i = 1, ..., k and j = 1, ..., p.

Let m = min(k, p). The matrix X can be decomposed as follows

X = UΛV ′ (4.1)

where U is an orthogonal k × m matrix containing the eigenvectors of the matrix

XX ′, V is an orthogonal m× p matrix containing the eigenvectors of X ′X and Λ is

the diagonal m×m matrix of singular values. The vectors in V give the direction of

the principal components UΛ (Hastie et al., 2001).

The distances between pairs of taxa in a phylogenetic tree can be expressed as a

linear combination of the estimated branch lengths between those taxa for a given

tree topology (Rhzetsky and Nei, 1992). For a set of n taxa, any particular set of p

=
(
n
2

)
pairwise distances representing a tree topology can be expressed as a set of p

equations involving 2n − 3 variables or branches, which in turn can be expressed as

a topology matrix T . That is, for a vector of distances for gene j, say x′
j., we get the

following matrix equation

x′
j. = Tb,

where b is a (2n − 3) × 1 vector of branch lengths and T is a p × (2n − 3) topology

matrix.

Assuming topology T is the true topology, the rows of matrix X should belong

to a subspace spanned by the columns of T . We can think of this as regressing the

distances for each gene on the variables corresponding to the branches in topology T .

If there is a consistent signal among genes and noise in the data is small then when

T expresses the correct topology, the estimated branch lengths b from different rows
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of X should be proportional to each other and this proportional difference forms the

major variability between rows of X. In this case, the first column of V corresponds

to the direction in which the rows of X are proportional, and the first column of UΛ

will correspond to the proportional factors. Therefore, a single tree representation

for multiple genes can be obtained using the first right eigenvector of the singular

value decomposition of the pairwise distances in matrix X.

For the singular value decomposition of X defined in 4.1, let u1 denote the first

left eigenvector, v1 be the first right eigenvector and λ1 be the first singular value. A

new k × p distance matrix, X1, may be obtained from

X1 = λ1u1v
′
1.

The topology of the tree derived from X1 is given by v1 and the branch lengths

proportional factors by λ1u1. Note that the pairwise distances for each gene in

X1 are all scaled versions of v1 and thus describe the same tree topology. Hence,

this equates to using de-noised data to estimate a single representative topology for

multiple genes for a given set of taxa.

4.2 RESULTS

4.2.1 RESULTS FOR THE PRIMATE DATA SET

The method is first applied to the simple five taxa primate data set used in chapter 3.

combined-gene trees are estimated using BIONJ and FITCH (Gascuel, 1997; Fitch

and Margoliash, 1967). Figure 4.1 shows the estimated combined-gene trees recovered

from the first right eigenvector of the singular value decomposition of the 13 × 10

matrices of JTT distances and common scaling covariance dissimilarities.
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Figure 4.1: Combined-gene tree for the primate data set estimated from first right
eigenvector of the singular value decomposition of common scaling covariance dissim-
ilarities (top) and JTT distances (bottom) for BIONJ (left) and FITCH (right).

This topology corresponds to the reference tree topology found on the tree of life

website (Tree of Life Web Project, 1999).

To evaluate the variance about the trees estimated from the covariance-based

dissimilarities the method was applied to 1000 block size 14 permutation samples

and a majority-rule consensus tree computed using the CONSENSE programme in

PHYLIP (Felsenstein, 1989). The majority-rule consensus trees derived from the

common scaling covariance based dissimilarities and obtained with the BIONJ and
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FITCH tree building methods are shown in the top panels of Figure 4.2. For the

trees estimated from the JTT-based distances the variance was evaluated from 1000

bootstrap samples obtained by sampling individual characters from sequences with

replacement. The majority-rule consensus trees derived from the JTT-based distances

obtained with the BIONJ and FITCH tree building methods are shown in the bottom

two panels of Figure 4.2.
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Figure 4.2: Primate majority-rule consensus tree for the singular value decomposition
trees estimated 1000 block permutation samples with common scaling covariance
dissimilarities and BIONJ (top left), common scaling dissimilarities and FITCH (top
right) JTT-based distances and BIONJ (bottom left) and JTT-based distances and
FITCH.

The combined-gene trees estimated from the first right eigenvector of the singu-

lar value decomposition for both covariance-based dissimilarities and JTT-based dis-

tances strongly support the reference tree. There is some uncertainty in the estimated

position of gorilla, human and chimp. The first four rows of Table 4.1 summarize the

bootstrap support for the topological features present in the trees estimated from the
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first right eigenvector of the singular value decomposition of covariance-based dissim-

ilarities and JTT-based distances. The BIONJ and FITCH tree building methods

give more or less the same result. For the common scaling spectral covariance based

dissimilarities the reference tree is recovered by 932 and 925 of the trees obtained

from BIONJ and FITCH, respectively. Gorilla and human branch as sister taxa

with chimp as an outgroup for this clade in 41 of the BIONJ trees and 43 of the

FITCH trees. The erroneous branching of human as an outgroup to a chimp and

gorilla clade occurs in 27 of the block permutation BIONJ trees and 32 of the block

permutation FITCH trees. For the bootstrap trees estimated from the JTT-based

distances, the reference tree is recovered by 961 and 957 of the JTT-based bootstrap

trees for BIONJ and FITCH, respectively. Gorilla and human branch as sister taxa

with chimp as an outgroup for this clade in 39 of the BIONJ trees and 43 of the

FITCH trees. The singular value decomposition method of combining genes appears

to work well for this data, with the common scaling spectral covariance dissimilarities

and JTT distances returning similar results.

For comparison, topological features present in the bootstrap trees obtained with

the MinCV method of combining genes are shown in the bottom four rows of Table

4.1. Both the singular value decomposition and MinCV methods of combining genes

return the same estimate for the tree topology. The two methods appear to be

similar in terms of variability about the estimated tree with the MinCV estimate

having somewhat smaller variance than the singular value decomposition estimate.

With BIONJ 5 of 1000 estimated covariance-based MinCV trees branch human and

gorilla as sister taxa, while in 13 of 1000 covariance-based MinCV trees erroneously

branch gorilla and chimp as sister taxa with human as an outgroup to this clade. In

the corresponding FITCH trees 8 of 1000 estimated trees branch human and gorilla

as sister taxa while 17 of 1000 branch gorilla and chimp as sister taxa. The reference

tree is recovered by 982 covariance-based BIONJ trees and 975 covariance-based

FITCH trees. All the MinCV trees estimated from the JTT-based distances recover

the reference tree.

Figure 4.3 shows the cumulative proportion of singular values among the sum

of all singular values in the singular value decomposition of the common scaling
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based dissimilarities and JTT-based distances. One can see that the first singular

value makes up 70% of the sum of singular values for the common scaling based

dissimilarities and 77% of the variance of the singular values for the JTT-based

distances, respectively. The sum of the first two singular values account for 82%

and 85% of the sum of the singular values for the covariance-based and JTT-based

distances, respectively.

Figure 4.3: Cumulative proportion of the sum of the singular values of the singular
value decomposition of JTT-based distances (left) and the common scaling covariance
based dissimilarities (right) for primate data set.

The second right eigenvector is made up of both positive and negative values

suggesting it is picking out a contrast between two sets of genes. To examine the

difference in the trees obtained with the two sets of genes identified by the second right

eigenvector a 13× 10 matrix of distances is constructed from the second layer of the

singular value decomposition, X2 = λ2u2v
′
2 and the signs of the distances in each gene

examined. In this way we can identify which genes belong to which group. The first

group consists of ND1, COX2, ATP8, ATP6, and ND4. The second group consists

of ND2, COX1, COX3, ND3, ND4L,ND5, ND6, and CY TB. Figure 4.4 shows the

singular value decomposition trees obtained with the two different groups of genes

from common scaling covariance based dissimilarities and JTT-based distances. With

the common scaling based dissimilarities the tree recovered with the first group of
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genes places gorilla and chimp as the deepest clade in the tree with human erroneously

placed before these two taxa, while the tree recovered with the second group of

genes agrees with the reference tree topology. Hence, for the common scaling based

covariances the contrast is in the relative placement of the taxa obtained with the

two trees.

Figure 4.4: Combined-gene trees for primate data set obtained with the two groups
of genes, group 1 (left) and group 2(right) from common scaling covariance based
distances (top) and JTT-based dissimilarities (bottom).



70

With the JTT-based distances the two groups recover the same tree topology as

the reference tree. An examination of the branch lengths for the two groups indi-

cates that in group two the distances between the three taxa gorilla, human and

chimp are greater than they are in group one, while the distance between orangutan

and the gorilla/human/chimp clade is smaller in group two than in group one. Ta-

ble 4.2 shows the distances between the gorilla and chimp, the gorilla and human,

and the oranguatan and the gorilla/human/chimp clade for the tree for group one,

group two and for the tree obtained with the first right eigenvector of the distances.

For the tree derived from the first right eigenvector the distances within the go-

rilla/human/chimp clade are very small while the distance between oranguatan and

the clade of gorilla/human/chimp is relatively large. Hence, we can see that in the

case of the JTT-based distances the contrast is in the branch length estimation.

4.2.2 RESULTS FOR THE NEMATODE DATA SET

The method is next applied to the more difficult nematode data set described in

chapter 3 which has 8 taxa and 12 genes. Figure 4.5 shows the combined-gene tree

obtained using the first right eigenvector of the singular value decomposition of the

12× 28 matrix of common scaling spectral covariance based dissimilarities and JTT-

based distances obtained with the BIONJ and FITCH tree building methods.
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Figure 4.5: Combined-gene tree for the nematode data set estimated from first right
eigenvector of the singular value decomposition of common scaling covariance dissim-
ilarities (top) and JTT distances (bottom) for BIONJ (left) and FITCH (right).

The combined-gene tree estimated from the common scaling based distances

agrees with the reference tree under the ecdysozoa hypothesis shown in Figure 3.5.

The combined-gene tree estimated from JTT-based distances corresponds to the

topology found using concatenated sequences which was presented in Foster and

Hickey (1999), with the roundworm (nematode) and honeybee being erroneously

grouped together as sister taxa.
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The BIONJ and FITCH majority-rule consensus trees for 1000 bootstrap trees

derived from the common scaling spectral covariance based dissimilarities and the

JTT-based distances are shown in Figure 4.6. The estimated combined-gene topol-

ogy has strong bootstrap support, though there is some variability in the estimated

topology of the arthropod clade.
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Figure 4.6: Nematode majority-rule consensus tree for the singular value decomposi-
tion trees estimated 1000 block permutation samples with common scaling covariance
dissimilarities and BIONJ (top left), common scaling dissimilarities and FITCH (top
right) JTT-based distances and BIONJ (bottom left) and JTT-based distances and
FITCH.

The top four rows of Table 4.3 summarize the topological features recovered in

the estimated trees obtained with singular value decomposition method of combining

genes as well as the bootstrap support for each feature. Variability in the placement of

honeybee is greater in trees estimated with FITCH than those estimated with BIONJ.
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For the trees derived from the common scaling covariance based dissimilarities, 151

of the 1000 trees obtained with BIONJ place honeybee before brine shrimp, while

48 branch honeybee and brine shrimp as sister taxa. Only 3 recover the erroneous

placement of honeybee and roundworm as sister taxa. For the corresponding trees

obtained with FITCH, honeybee branches before brine shrimp in 337 of the trees,

while in 168 trees honeybee and brine shrimp are placed as sister taxa. Two of the

FITCH trees place honeybee and roundworm as sister taxa. The estimated trees

derived from the JTT-based distances have moderate to strong bootstrap support.

The erroneous placement of honeybee and roundworm as sister taxa is recovered in

703 BIONJ trees and 588 FITCH trees. The honeybee and roundworm are separated

in 297 BIONJ trees and 412 FITCH trees. Only 34 and 50 of the JTT-based trees

obtained with BIONJ and FITCH, respectively, recover the reference tree under the

ecdysozoa hypothesis although the relative placement of the nematode with respect

to arthropods and vertebrates agrees with the ecdysozoa hypothesis in all trees. None

recover the reference tree under the coelomata hypothesis. For this particular data

set the singular value decomposition method of combining genes appears to work

well with the common scaling spectral covariance based distances, but is unable to

recover the reference tree under either hypothesis from the JTT-based distances.

Again a corresponding summary of topological features obtained with the MinCV

method of combining genes is shown in the bottom four rows of Table 4.3 for com-

parison. For this data set there appears to be more variability about the estimated

trees using the MinCV method of combining genes than for the singular value de-

composition method for combining genes. A much larger number of the common

scaling covariance based trees erroneously place honeybee and roundworm as sister

taxa under this method. With BIONJ 308 trees return a roundworm and honeybee

clade compared to only 3 trees under the singluar value decomposition method of

combining genes. Similarly with FITCH, 277 trees place honeybee and roundworm

as sister taxa compared with 2 trees with the singular value decomposition method of

combining genes. Also, far fewer trees recover the reference tree under the ecdysozoa

hypothesis under the MinCV method. While the majority of MinCV trees agree with
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the ecdysozoa hypothesis in terms of the relative placement of the nematode, arthro-

pods and vertebrates, many have honeybee branching before brine shrimp. This

erroneous branching occurs in fewer of the singular value decomposition based trees.

Figure 4.7 shows the cumulative proportion of the singular values among the sum

of all singular values. For the nematode data set, the first singular value makes up

57% and 75% of the singular values in the singular value decomposition of common

scaling covariance based and JTT-based distances, respectively, while the first and

second singular values make up 66% and 83% for covariance-based dissimilarities and

JTT-based distances, respectively.

Figure 4.7: Cumulative proportion of the sum of the singular values of the singular
value decomposition of JTT-based distances (left) and the common scaling covariance
based dissimilarities (right) for nematode data set.

Again, we look at the second layer of the singular value decomposition to identify

groups of genes. For the common scaling based distances the first group identified

with the second right eigenvector consists of ND3, ND5, and ND4, with remaining

genes in the second group and for the JTT-based distances the first group consists

of ATP6, ND3 and ND4L with the remaining genes in the second group. Figure

4.8 shows the singular value decomposition combined-gene trees recovered with the

different groups of genes. For the JTT-based distances, the tree recovered with the

first group of genes is able to separate the roundworm and the honeybee, while the

the second group of genes erroneously places the roundworm and honeybee as sister
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taxa. For the covariance-based dissimilarities, the tree recovered with the first group

agrees with the reference tree topology under the coelomata hypothesis, while the

second group recovers the reference tree topology under the ecydsozoa hypothesis.

For this data set the contrast in the two groups of genes is clearer to see. In the

case of the JTT-based distances it distinguishes a group of genes which places the

roundworm and honeybee together and a group of genes which separates these two

taxa. For the covariance-based distances it distinguishes between a group of genes

which recovers the ecdysozoa hypothesis versus a group of genes which recovers the

coelomata hypothesis.
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Figure 4.8: Combined-gene trees for nematode data set obtained with the two groups
of genes, group 1 (left) and group 2(right) from common scaling covariance based
distances (top) and JTT-based dissimilarities (bottom).

Because for the nematode data set the cumulative proportion of the sum of the

first and second singular values are only 66% and 83% for covariance-based dissim-

ilarities and JTT-based distances, respectively, we also looked at the third right

eigenvector. For the common scaling based distances, the first group of genes iden-

tified with the third right eigenvector consisted of ATP6, ND5 and ND6 with the

remaining genes in a second group. The tree obtained with the first group of genes

corresponds to the reference tree under the ecdysozoa hypothesis. The tree obtained
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with the second group of genes erroneously places honeybee and nematode as sister

taxa. For the JTT method the third right eigenvector the first group of genes con-

sisted of ATP6, COX1, COX2, and CY TB, with the remaining genes in a second

group. The tree obtained with group one genes was very similar to the reference tree

under the ecdysozoa hypothesis, with honeybee erroneously being placed as most

basal in the arthropod clade. The second group of genes grouped nematode and

honeybee as sister taxa.

4.2.3 RESULTS FOR THE CHLOROPLAST DATA SET

As a final example, we apply the method to the larger chloroplast data set which

has 22 taxa and 25 genes. Figure 4.9 shows the combined-gene tree obtained us-

ing the first right eigenvector of the singular value decomposition of the 25 × 231

matrix of common scaling spectral covariance based dissimilarities and JTT-based

distances obtained with the BIONJ and FITCH tree building methods. Separation

of taxa into the major clades of green algae, non-seed plants and angiosperms shown

in the reference tree in Figure 3.8 is recovered. The singular value decomposition

method and the MinCV method recover very similar combined-gene trees. In both

the singular value decomposition common scaling covariance based trees and the sin-

gular value decomposition JTT-based trees the ferns Psilotum nudum and Adiantum

capillus-veneris are erroneously separated. All four trees in Figure 4.9 place a clade

with Amborella trichopoda, Nymphaea alba and Calycanthus floridus as basal in the

angiosperm clade.
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Figure 4.9: Combined-gene tree for the chloroplast data set estimated from first
right eigenvector of the singular value decomposition of common scaling covariance
dissimilarities (top) and JTT distances (bottom) for BIONJ (left) and FITCH (right).
Boxes indicate portions of the tree which differ from reference tree.

The variance of the combined-gene tree was estimated from 100 block bootstrap

samples (block size fourteen for the common scaling covariance method and block size

one for JTT method). Table 4.4 summarizes the topological features recovered in the
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estimated trees obtained with the singular value decomposition method of combining

genes. The separation of green algae, non-seed plants and angiosperms has 100 %

bootstrap support with all four methods. A greater proportion of the bootstrap trees

place Amborella trichopoda and Nymphaea alba as sister taxa with the singular value

decomposition method than with the MinCV method. Of the 100 bootstrap trees,

72 BIONJ and 89 FITCH common scaling singular value decomposition trees place

Amborella trichopoda and Nymphaea alba as sister taxa compared with 29 BIONJ

and 66 FITCH common scaling MinCV trees. Similarly, for the JTT-based trees,

63 BIONJ and 72 FITCH trees place Amborella trichopoda and Nymphaea alba as

sister taxa compared with 21 and 30 of the corresponding MinCV trees. There is

a fair amount of variance in the branching of the two ferns Psilotum nudum and

Adiantum capillus-veneris in the singular value decomposition based trees. Of the

100 bootstrap trees obtained with the singular value decomposition method only 33

common scaling BIONJ trees, 0 common scaling FITCH trees, 35 JTT BIONJ trees

and 53 JTT FITCH trees recover the clade of Psilotum nudum and Adiantum capillus-

veneris seen in the reference tree in Figure 3.8. The basal placement of Amborella

trichopoda, Nymphaea alba and Calycanthus floridus in the angiosperm clade has 100

% bootstrap support for all four methods. The overall variance of the combined-gene

tree obtained with the singular value decomposition method appears to be smaller

than that of the combined-gene tree obtained with the MinCV method.

Figure 4.10 shows the cumulative proportion of the singular values among the sum

of all singular values. For the chloroplast data set, the first singular value makes up

46% and 79% of the singular values in the singular value decomposition of common

scaling covariance based and JTT-based distances, respectively, while the first and

second singular values make up 59% and 86% for covariance-based dissimilarities and

JTT-based distances, respectively.
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Figure 4.10: Cumulative proportion of the sum of the singular values of the singular
value decomposition of JTT-based distances (left) and the common scaling covariance
based dissimilarities (right) for chloroplast data set.

An examination of the second layer of the singular value decomposition reveals two

groups of genes. Group one consists of atpI, clpP, psaC, rbcL and rpoC1 and group

two consists of the remaining genes. Note that the five genes in the former group are

among the six genes whose exclusion resulted in a monocot-first tree. Figure 4.11 show

the combined-gene tree obtained with the genes in the two different groups. Boxes

indicate where the tree differs from the reference tree. One can see that the trees

obtained from the first group of genes more or less agree with the reference tree with

some small differences. For the common scaling based trees obtained with the second

group of genes the grouping of taxa within each clade is mostly recovered. However,

the relative placement of the major clades is erroneous. In this tree, the Amborella

trichopoda, Nymphaea alba and Calycanthus floridus are still together and appear

in a more basal position than the monocots, however the two pines are erroneously

separated and Pinus koraiensis is erroneously placed in the monocot clade. The

JTT-based tree obtained from the second group of genes is a monocot-first tree. For

the JTT-based trees, the second layer of the singular value decomposition appears

to distinguish between a group of genes which recovers a monocot-first topology and

a group of genes which recovers a basal clade of Amborella trichopoda, Nymphaea

alba and Calycanthus floridus within the angiosperm clade. That the five genes,
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atpI, clpP, psaC, rbcL and rpoC1, in the first group identified with the second right

eigenvector are among the six genes whose exclusion resulted in a monocot-first tree

further confirms that the contrast corresponds to the conflicting topologies for the

angiosperm clade though this is harder to see when looking at covariance-based trees

obtained from the two groups of genes.

Figure 4.11: Combined-gene trees for chloroplast data set obtained with the two
groups of genes, group 1 (left) and group 2(right) from common scaling covariance
based distances (top) and JTT-based dissimilarities (bottom).
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Because the sum of the first and second singular values is only 59% for the

covariance-based dissimilarities we also examine the third right eigenvector. The

first group consists of atpB, atpE, petB, rpl14, rpl20, rps11, rps18, rps19, rps3, rps7

and rps8 with the remaining thirteen genes in a second group. The first group re-

turns a tree similar to that shown in the top right-hand panel of Figure 4.11. The

relative placement of taxa within the major clades is recovered for the most part

though the relative placement of the major clades to each other is erroneous. The

tree estimated from the second group of genes returns a tree similar to that in the

top left-hand panel of Figure 4.9, with the exception of the placement of the lotus

which is erroneously grouped with the monocots.

4.3 DISCUSSION

The difference in the variability about tree estimates for the nematode and chloro-

plast data sets obtained under the MinCV and singular value decomposition methods

for combining genes may be due to the way the two methods handle ‘noise’ in the

distances. Recall the nematode and chloroplast data sets suffer from long branch

attraction and compositional bias, both of which may introduce non-phylogenetic

signal into the estimated distances. While the spectral covariance based dissimilar-

ities appear to be less sensitive to these phenomena than the JTT-based distances

some variability will remain with regard to the placement of certain taxa, such as the

honeybee and roundworm in the estimated nematode trees. The singular value de-

composition method combines genes using a de-noised version of the distance matrix

while the MinCV method attempts to adjust for noise by weighting the distances for

each gene in such a way as to minimize the variance. Hence, the estimated combined-

gene trees with the singular value decomposition matrix have smaller variance than

the corresponding MinCV trees.

A large proportion of the sum of the singular values in the singular value decom-

position is accounted for by the first two singular values. The second right eigenvector

describes the second principal direction and may be used to identify contrasts in the

topologies for subgroups of genes. Using the second layer of the singular value decom-

position of the pairwise distances we were able to cluster the genes into two groups
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with contrasting topological features. The remaining right eigenvectors are more dif-

ficult to interpret. Corresponding additional singular values appear to account for

a relatively small proportion of the sum of all singular values and so we treat the

corresponding additional layers of the singular value decomposition as noise.

Table 4.1: Bootstrap support of the topological features for the primate tree for
singular value decomposition and MinCV methods

Table 4.2: Distances between pairs of taxa in the primate data when all the genes
are used, when the two groups of genes identified by the second right eigenvector of
the singular value decomposition are analysed separately.

gorilla - human gorilla - chimp orangutan - other taxa
All genes 0.0139 0.0433 0.3583

Group 1 genes 0.1215 0.1397 0.3336
Group 2 genes 0.1606 0.1746 0.2571
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Table 4.3: Bootstrap support of the topological features for the nematode tree for
singular value decomposition and MinCV method
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Table 4.4: Bootstrap support of the topological features for the chloroplast tree for
singular value decomposition and MinCV method



Chapter 5

INFLUENCE ANALYSIS OF MULTIPLE GENE

PHYLOGENETIC RECONSTRUCTION USING

SINGULAR VALUE DECOMPOSITION

Influence analysis has been widely applied to identify outliers and influential obser-

vations in a data set. Here we explore the effect of individual genes on the estimated

trees in the context of distance based methods. Quantifying the influence of in-

dividual genes on a combined tree topology may enable us to identify genes that

have had the most influence on the inference of how a species has evolved over time

and its relationship to other species. In this chapter we will use common scaling

covariance based dissimilarities as the example, but note that these methods could

be applied to any measure of taxonomic distance. Throughout this chapter when

we refer to the combined-gene tree or combined-gene dissimilarities we are referring

to the combined-gene tree obtained with the singular value decomposition method

presented in chapter 4.

To identify subsets of genes which are most influential in determining estimated

tree topologies we examine their corresponding dissimilarity matrices, or equivalently

their dissimilarity vectors of length p =
(
n
2

)
, where n is the number of taxa. A multi-

ple gene tree is estimated using the singular value decomposition method described

in chapter 4. Expanding upon the results in Fung et al. (2007), an expression for

the generalized influence function for singular value decomposition is derived. The

influence of individual genes on the right eigenvectors of the singular value decom-

position is evaluated using a case-weights perturbation scheme. The effect of the

perturbations on how the taxa are placed in the estimated tree is then studied. We

apply our method to the primate and nematode data sets to illustrate the method.

87
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5.1 INFLUENCE FUNCTIONS FOR SINGULAR VALUE DECOMPO-

SITION COMPONENTS

Expressions for the generalized influence function of principal components were de-

rived by Fung et al. (2007). Here, these results are extended to examine how case-

weight perturbations in the distances for a set of genes influences the singular value

decomposition of the matrix. We’ll begin with some notation. Let X be the k × p

matrix of the dissimilarity vectors for each gene previously defined in chapter 4. Re-

call that X is the transpose of the matrix D defined in 3.1. Let ω = (ω1, ω2, ..., ωk)

represent perturbations of the dissimilarity vectors for individual genes in matrix X

and ω0 = (1, ..., 1)′ be the vector of ones corresponding to no perturbation. For any

statistical function S, denote the perturbed version of S as S(ω), where ω = ω0 + εh

corresponds to the perturbation in the fixed direction h originating from ω0. For

our purposes, we are mostly interested in the case where S is the first column of

the matrix of right eigenvectors V in the singular value decomposition of X. The

generalized influence function of S is defined as

GIF (S, h) = lim
ε→0

S(ω0 + εh)− S(ω0)

ε
(5.1)

Since 5.1 is just the directional derivative of S(ω) in the direction of h, following

Fung et al. (2007), we use the implicit function derivative to derive expressions of the

generalized influence function for components of the singular value decomposition of

the matrix of pairwise distances for multiple genes. We will now derive the local

influence functions for the eigenvectors and the singular values of the singular value

decomposition.

Let X(ω)k×p = diag(ω)k×kXk×p be the perturbed pairwise distance matrix for the

data with k genes and p =
(
n
2

)
pairwise distances for n taxa. Then the singular value
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decomposition of this perturbed version of X can be written

X(ω) = U(ω)Λ(ω)V ′(ω)

= (u1(ω)....um(ω))k×m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1(ω) 0 ... 0

0 λ2(ω) ... 0

.. .. ... ..

.. .. ... ..

0 0 ... λm(ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

m×m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v′1(ω)

v′2(ω)

..

..

v′m(ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

m×p

=
m∑
i=1

λi(ω)ui(ω)v
′
i(ω)

where m = min(k, p).

For the remainder of this section ω will be dropped from the notation, but the

reader should note that X, U , Λ and V are perturbed by ω. Let uj, vj, and λj be the

jth left eigenvector, right eigenvector and singular value respectively for j = 1, ...,m

Note, that since the columns of U and V are orthogonal, u′
juj = 1 and v′jvj = 1,

while u′
juq = 0 and v′jvq = 0 for all j �= q. Taking the derivative on both sides of

u′
juj = 1 with respect to ωi, for some i = 1, ..., k, we get

u′
j

∂uj

∂ωi

+
∂u′

j

∂ωi

uj = 0

⇒ u′
j

∂uj

∂ωi

= −∂u′
j

∂ωi

uj

Therefore,

u′
j

∂uj

∂ωi

=
∂u′

j

∂ωi

uj = 0. (5.2)

Similarly,

v′j
∂vj
∂ωi

=
∂v′j
∂ωi

vj = 0. (5.3)

Note that X = UΛV ′ can be rewritten as XV = UΛ, which means

Xvj = λjuj, (5.4)
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for j = 1, ...,m. X = UΛV ′ may also be rewritten as U ′X = ΛV ′, so that

u′
jX = λjv

′
j, (5.5)

for j = 1, ...,m. Taking the derivative with respect to ωi on both sides of (5.4) gives

∂X

∂ωi

vj +X
∂vj
∂ωi

=
∂λj

∂ωi

uj + λj
∂uj

∂ωi

, (5.6)

and taking the derivative with respect to ωi on both sides of (5.5) we get

∂u′
j

∂ωi

X + u′
j

∂X

∂ωi

=
∂λj

∂ωi

v′j + λj

∂v′j
∂ωi

. (5.7)

Next we left multiply (5.6) by u′
j to get

u′
j

∂X

∂ωi

vj + u′
jX

∂vj
∂ωi

= u′
j

∂λj

∂ωi

uj + u′
jλj

∂uj

∂ωi

. (5.8)

Since
∂λj

∂ωi
and λj are scalars, the right-hand side of (5.8) can be rewritten

∂λj

∂ωi

u′
juj + λju

′
j

∂uj

∂ωi

,

which since u′
juj = 1 and u′

j
∂uj

∂ωi
= 0 from (5.2), becomes

∂λj

∂ωi
. Hence, (5.8) reduces to

u′
j

∂X

∂ωi

vj + u′
jX

∂vj
∂ωi

=
∂λj

∂ωi

. (5.9)

Now if we right multiply (5.7) by vj, we get

∂u′
j

∂ωi

Xvj + u′
j

∂X

∂ωi

vj =
∂λj

∂ωi

v′jvj + λj

∂v′j
∂ωi

vj. (5.10)

Using that v′jvj = 1 and
∂v′j
∂ωi

vj = 0 (from (5.3)), we find that the right-hand side of

(5.10) becomes
∂λj

∂ωi
. Inserting this back into (5.10) we get

∂u′
j

∂ωi

Xvj + u′
j

∂X

∂ωi

vj =
∂λj

∂ωi

. (5.11)

Note that equations (5.9) and (5.11) have terms
∂λj

∂ωi
and u′

j
∂X
∂ωi

vj in common. This

implies that

u′
jX

∂vj
∂ωi

=
∂u′

j

∂ωi

Xvj. (5.12)
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Replacing Xvj by λjuj in (5.12) gives

u′
jX

∂vj
∂ωi

= λj

∂u′
j

∂ωi

uj.

Again by (5.2)
∂u′

j

∂ωi
uj = 0 and so we get that

u′
jX

∂vj
∂ωi

= 0. (5.13)

Inserting (5.13) into (5.9) we get

u′
j

∂X

∂ωi

vj =
∂λj

∂ωi

,

and so the influence function for λj is given by

∂λj

∂ωi

∣∣∣∣
ω0

= u′
j

∂X

∂ωi

∣∣∣∣
ω0

vj. (5.14)

Now we shall derive the influence function for uj. Returning to equation (5.6),

we left multiply (5.6) by u′
q, q �= j, to get

u′
q

∂X

∂ωi

vj + u′
qX

∂vj
∂ωi

= u′
q

∂λj

∂ωi

uj + u′
qλj

∂uj

∂ωi

. (5.15)

On the right-hand side u′
quj = 0. On the left-hand side we can replace u′

qX with

λqv
′
q. Hence, equation (5.15) becomes

u′
q

∂X

∂ωi

vj + λqv
′
q

∂vj
∂ωi

= λju
′
q

∂uj

∂ωi

. (5.16)

Now, taking the transpose of both sides of (5.5), we get

X ′uj = λjvj. (5.17)

Taking the derivative with respect to ωi of both sides of (5.17) we get

X ′∂uj

∂ωi

+
∂X ′

∂ωi

uj =
∂λj

∂ωi

vj + λj
∂vj
∂ωi

. (5.18)

If we left multiply (5.18) by v′q, we get

v′qX
′∂uj

∂ωi

+ v′q
∂X ′

∂ωi

uj =
∂λj

∂ωi

v′qvj + λjv
′
q

∂vj
∂ωi

. (5.19)
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Using the fact that v′qvj = 0 and v′qX
′ = λqu

′
q we can rewrite (5.19)

λqu
′
q

∂uj

∂ωi

+ v′q
∂X ′

∂ωi

uj = λjv
′
q

∂vj
∂ωi

. (5.20)

Note, that (5.20) can be rewritten

v′q
∂vj
∂ωi

=
1

λj

[
λqu

′
q

∂uj

∂ωi

+ v′q
∂X ′

∂ωi

uj

]
. (5.21)

Now inserting (5.21) into (5.16) gives

λju
′
q

∂uj

∂ωi

= u′
q

∂X

∂ωi

vj + λq

[
1

λj

(
λqu

′
q

∂uj

∂ωi

+ v′q
∂X ′

∂ωi

uj

)]
. (5.22)

After some algebraic manipulation, (5.22) reduces to

u′
q

∂uj

∂ωi

=
1

λ2
j − λ2

q

(
λju

′
q

∂X

∂ωi

vj + λqv
′
q

∂X ′

∂ωi

uj

)
. (5.23)

Denote the right-hand side of (5.23) bqji. Then

u′
q

∂uj

∂ωi

= bqji.

Note, that u′
q
∂uj

∂ωi
gives the projection of the vector

∂uj

∂ωi
onto u′

q. The columns of U

span an orthogonal basis for R
m, therefore

∂uj

∂ωi
must lie in the same space as the

columns of U . Hence
∂uj

∂ωi
can be expressed as a sum of bqjiuq, which gives

∂uj

∂ωi

=
m∑
q=1

(
u′
q

∂uj

∂ωi

)
uq

=
m∑
q �=j

bqjiuq, (5.24)

since u′
j
∂uj

∂ωi
= 0. Hence, the influence function for uj is

∂uj

∂ωi

∣∣∣∣
ω0

=
m∑
q �=j

bqjiuq. (5.25)

To obtain the influence function for vj, note the (5.16) can be rewritten

u′
q

∂uj

∂ωi

=
1

λj

[
u′
q

∂X

∂ωi

vj + λqv
′
q

∂vj
∂ωi

]
. (5.26)
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Then inserting (5.26) into (5.20) we get

λq

[
1

λj

(
u′
q

∂X

∂ωi

vj + λqv
′
q

∂vj
∂ωi

)]
+ v′q

∂X ′

∂ωi

uj = λjv
′
q

∂vj
∂ωi

. (5.27)

After some algebraic manipulation (5.27) reduces to

v′q
∂vj
∂ωi

=
1

λ2
j − λ2

q

[
λqu

′
q

∂X

∂ωi

vj + λjv
′
q

∂X ′

∂ωi

uj

]
. (5.28)

Denote the right-hand side of (5.28) by aqji. We then get

v′q
∂vj
∂ωi

= aqji.

The columns of V span an orthogonal basis for Rm, therefore
∂vj
∂ωi

must lie in the same

space as the columns of V . Hence
∂vj
∂ωi

can be expressed as a sum of aqjivq, which gives

∂vj
∂ωi

=
m∑
q �=j

aqjivq. (5.29)

Hence, the influence function for vj is

∂vj
∂ωi

∣∣∣∣
ω0

=
m∑
q �=j

aqjivq. (5.30)

5.2 CASE-WEIGHTS PERTURBATION

To assess how a perturbation in the distances affects the estimated tree topology,

and identify which genes are influential in determining the combined-gene tree, we

can think of this as determining the influence of a perturbation in distances on the

first right eigenvector of the singular value decomposition of matrix X. To do this,

expressions for the generalized influence functions defined in (5.14), (5.25) and (5.30)

for case-weights perturbation will now be derived. Again we let ω = (ω1, ...., ωk) be

some perturbation of the dissimilarity vectors for individual genes in X. Then the

perturbed matrix of distance vectors X(ω) can be written

X(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1x1,1 ω1x1,2 ... ω1x1,p

ω2x2,1 ω2x2,2 ... ω2x2,p

.. .. ... ..

.. .. ... ..

ωkxk,1 ωkxk,2 ... ωkxk,p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Hence, under the case-weights perturbation scheme,

∂X(ω)

∂ωi

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ... 0

.. .. ... ..

xi1 xi2 .... xip

.. .. ... ..

0 0 ... 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.31)

Again, we will drop the ω from the notation, but note that λj, uj and vj all

correspond to the singular value decomposition of the perturbed version of X. If we

plug (5.31) into (5.14) we get that the influence function for λj under the case-weights

perturbation scheme is given by

∂λj

∂ωi

∣∣∣∣
ω0

= uji

p∑
l �=j

xilvlj. (5.32)

Inserting (5.31) into equation (5.30), the GIF for vj, we get find that

aqji =
1

λ2
j − λ2

q

(
λquqi

p∑
l=1

xilvlj + λjuji

p∑
l=1

xilvlq

)
. (5.33)

Since
∑p

l=1 xilvlj = x′
ivj = λjuji and

∑p
l=1 xilvlq = x′

ivq = λquqi with a few substitu-

tions in (5.33) we find that

aqji =
1

λ2
j − λ2

q

(λquqiλjuji + λjujiλquqi) , (5.34)

and hence, inserting (5.34) back into (5.30) we find that under the case-weights

perturbation scheme the influence function for vj is given by

∂vj
∂ωi

∣∣∣∣
ω0

=

p∑
q �=j

2λqλjuqiuji

λ2
j − λ2

q

vq. (5.35)

Similarly, if we plug (5.31) into (5.25), we get that

bqji =
1

λ2
j − λ2

q

(
λjuqi

p∑
l=1

xilvlj + λquji

p∑
l=1

xilvlq

)
, (5.36)

which with a few substitutions into (5.36) we get

bqji =
1

λ2
j − λ2

q

(λjuqiλjuji + λqujiλquqi) . (5.37)
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Hence, inserting (5.37) back into (5.25) we find that the influence function for uj

under the case-weights perturbation scheme is given by

∂uj

∂ωi

∣∣∣∣
ω0

=

p∑
q �=j

(
λ2
j + λ2

q

λ2
j − λ2

q

uqiuji

)
uq. (5.38)

5.3 IDENTIFYING INFLUENTIAL GENES USING THE

CASE - WEIGHTS PERTURBATION

To assess the combined influence of multiple genes on an estimated combined-gene

tree we begin by examining how a perturbation in the distances affects the first

right eigenvector, v1, of the singular value decomposition of X. Note that this vector

corresponds to the direction of the first principal component. We begin by computing

the influence of v1 for each ωi, i = 1, 2, ..., k, to get a p × k matrix M made up of

∂v1
∂ω1

∣∣∣∣
ω0

, ..., ∂v1
∂ωk

∣∣∣∣
ω0

. That is,

M =

(
∂v1
∂ω1

, ...,
∂v1
∂ωk

) ∣∣∣∣
ω0

. (5.39)

To find the direction h in which the local perturbation on ω will generate the largest

change in the vector v1, the matrix M can be decomposed as follows

M = UDΛD(V D)′, (5.40)

where, letting r = min(p, k), UD is a p× r matrix of left eigenvectors, V D is a k × r

matrix of right eigenvectors and Λ is an r× r matrix of singular values. The GIF can

be expressed as

GIF (v1, h) = lim
a→0

v1(ω0 + ah)− v1(ω0)

a
, (5.41)

where v1(ω0 + ah) ≈ v1(ω0) + aMh and h corresponds to the fixed direction in

which the distances are perturbed. If the distances are perturbed in the direction

vDj , MvDj = λD
j u

D
j describes how a perturbation in the direction of vDj affects the

pairwise distances. The first column of V D gives the most influential direction h.

We can interpret the case-weights perturbation scheme in the context of distance

vectors in two ways. Unlike the MinCV, the singular value decomposition method
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is not scale invariant. We are interested in how assigning different weights to dis-

tance matrices for individual genes affects the estimated combined-gene distances

obtained with the singular value decomposition method. If certain genes are more

influential in determining the combined-gene topology than others, we would expect

that perturbing the weights of those particular genes would have a greater effect on

the estimated topology than perturbing the weights of other less influential genes.

From a geometric perspective, we can think of the case-weights perturbation as a

perturbation of the lengths of the p-vectors for each gene. We wish to evaluate how a

perturbation in the lengths of this vector affects the principal direction of the singular

value decomposition which in turn determines the combined-gene topology.

The perturbed version of v1 under perturbation scheme ω = ω0+ah when h = vD1

can be written

v1(ω1) := v1(ω0) + aλD
1 u

D
1 , (5.42)

where λD
1 u

D
1 corresponds to the perturbation. Another perturbation of interest is

h = vD2 ,

v1(ω2) := v1(ω0) + aλD
2 u

D
2 , (5.43)

which corresponds to the second greatest fluctuation on v1. The stability of the

estimated combined-gene tree under perturbations in the distances can be evaluated

by determining how large the quantity a must be before placement of the taxa in the

estimated tree is affected by the perturbation. In short, we are interested in the effect

a perturbation in the directions vD1 and vD2 has on the first right eigenvector, v1 of

the singular value decomposition of X, which describes the combined-gene topology

for a set of taxa pairs.

5.4 RESULTS

5.4.1 INFLUENCE ANALYSIS ON THE PRIMATE DATA

The 13 protein coding genes in the mitchondrial genome common to the five primates

consist of three cyclooxygenases, six NADH dehyrogenases, ATP synthase subunit 6,

ATP synthase subunit 8 and and cytochrome b. The six NADH dehydrogenases, the
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ATP synthases and cytochome b belong to the mitochondrial electron transport chain

(Murray et al., 2003). The COX genes are catalysts in the conversion of essential

fatty acids into prostanoids (Chandrasekharan and Simmons, 2004; Chandrasekharan

et al., 2002).

Figure 5.1 shows the first two right eigenvectors of the singular value decompo-

sition of matrix M . These values are a measure of the influence of each gene in the

first and second principal directions. In the first direction, ND4L appears to have

greatest weight and so we would expect this gene to be highly influential in the es-

timated combined tree topology. ATP6 and ND6 are given moderate weights. All

remaining genes are assigned small weights in between -0.2 and 0.2, and hence, are

likely not very influential in determining the combined the gene topology. In the

second direction the greatest weights are given to COX1 and ATP6, with moderate

weights given to ND1 and ND2 and all remaining genes assigned small weights in be-

tween -0.2 and 0.2. Hence, it would appear that ND4L, COX1 and ATP6 are highly

influential, while ND1, ND2 and ND6 are moderately influential, and the remaining

six genes are given very little weight in determining the combined-gene tree.
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Figure 5.1: Influence to the SVD combined pairwise distances of different genes under
the case weight perturbation along the first principal direction (top) and the second
principal direction (bottom).

The genes in the first row of Table 5.1 correspond to the reference tree topology

shown in Figure 3.12. The genes in the second row place human and gorilla as sister
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taxa with chimp branching before these two. ATP8 and ND4 recover an erroneous

tree with human branching before gorilla and chimp. Neither of these two genes

are identified as influential. ATP6, COX1, and ND4L, which are identified as highly

influential recover the reference tree topology. ND2, which is identified as moderately

influential also recovers the reference tree topology.

We begin by examining how a perturbation in dissimilarities for the combined-

gene tree topology affects the estimated tree. Combined-gene topologies for different

values of a under the perturbations defined in equations (5.42) and (5.43), respec-

tively, were estimated using BIONJ (Gascuel, 1997). Under perturbation h = vD1

at a = 3.7 gorilla branches before the orangutan. Under perturbation h = vD2 at

a = 1.4 chimp branches before gorilla. Larger values of a did not perturb the esti-

mated topologies any further. The changed topologies under the two perturbation

schemes are shown in Figure 5.2.

Figure 5.2: Effect of perturbation scheme 1 on estimated topology for a = 3.7 (left)
and effect of perturbation scheme 2 for a = 1.4 (right)

Next, we observed how removal of individual influential genes and combinations

genes identified as influential affects the combined-gene tree estimated from the re-

maining genes. As an initial step, genes were removed from the analysis individu-

ally to determine if removal of any one gene affected the estimated combined-gene

topology shown in top right-hand panel of Figure 4.5. No single gene was identified
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whose exclusion from the analysis caused a change in the estimated combined-gene

tree. Next, the genes identified as highly influential by the influence function for the

combined-gene dissimilarities were removed from the analysis. The combined removal

of ND4L, COX1 and ATP6 did not result in a change in the estimated combined-

gene tree. Nor did the combined removal of ND1, ND2 and ND6. Several different

combination of these six genes were removed from the analysis and the effect on the

combined-gene topology examined. Only when highly influential genes ATP6 and

COX1 and moderately influential genes ND1 and ND2 were removed together did

the estimated combined-gene topology change. Removal of these genes resulted hu-

man erroneously branching as an outgroup to gorilla and chimp. It appears that the

estimated combined-gene tree for the primate data derived from the singular value de-

composition is fairly robust and resistant to both perturbations in the dissimilarities

and sampling of genes.

Figure 5.3 shows which pairwise dissimilarities are most affected by a perturbation

along vD1 (upper panel) and along vD2 (lower panel). We can see that when a per-

turbation along the first principal direction vD1 is applied the taxa pair distance with

the greatest change is chimp/orangutan. Gibbon/gorilla, gibbon/human and gib-

bon/orangutan also change by a large amount. Where the distance between chimp

and orangutan is inflated, the other three dissimilarities shrink. When a perturbation

along the second principal direction vD2 is applied the taxa pairs most affected are

gorilla/human whose distance is inflated and chimp/gibbon whose distance shrinks.
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Figure 5.3: Taxa pair whose dissimilarities are most affected by a perturbation along
vD1 (left) and vD2 (right).

5.4.2 INFLUENCE ANALYSIS ON THE NEMATODE DATA

Our method of influence analysis is next applied to the nematode dataset. The genes

in the nematode data set consist of three cyclooxygenases, six NADH dehyrogenases,

one ATP synthase subunit 6 and cytochrome b.

Plots of the influence for each gene under perturbations in the first two principal

directions are shown in Figure 5.4. ATP6, COX1, COX3, ND1 and ND6 appear to be

highly influential in determining the estimated combined-gene topology. In the first

direction, h = vD1 , ATP6 and COX3 appear to be the most influential, with COX1

and ND6 moderately influential. In the second direction, h = vD2 , ATP6, COX3 and

ND1 are the most influential, with ND6 moderately influential.
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Figure 5.4: Influence to the SVD combined pairwise distances between all taxa pairs
under the case weight perturbation along the first principal direction (top) and the
second principal direction (bottom).
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For the nematode data set, none of the individual genes recovers the reference

tree topology under either the edcysozoa or the coelomata hypotheses, however in

terms of the relative placement of the nematode, vertebrates and arthropods, some

genes tend to recover topologies closer to the reference tree under one hypothesis

or the other. Topologies recovered by ATP6, COX1, ND1 and ND5, agree with

the topology under the ecdysozoa hypothesis in that the nematode and arthropods

group together, but the relative placement of the taxa within the arthropod clade

is incorrect, and only ATP6 separates the nematode taxon roundworm, and the

arthropod taxon honeybee. Topologies for genes COX2, COX3 and ND3 agree with

the topology under the coelomata hypothesis in that the nematode is placed as an

outgroup of the vertebrates and arthropods but the relative placement the arthropod

and vertebrate taxa is incorrect. Tree topologies for ND2, ND4, ND4L and ND6

agree with neither hypothesis, but topologies for ND4, ND4L and ND6 separate

the roundworm and honeybee. Influential genes ATP6, COX3 and ND6 all recover

topologies which separate the roundworm and honeybee. ATP6 recovers the topology

closest to that of the reference tree under the ecydsozoa hypothesis, only differing

with regard to the relative placement of honeybee and brine shrimp. COX1 recovers

the next closest topology, with roundworm and honeybee being erroneously branched

as sister taxa in a clade of arthropods. ND1 is also closer to the reference tree under

the ecdysozoa hypothesis, but the placement of the taxa within the arthropod clade

is erroneous. The gene COX3 has a topology that is closer to the topology under

the coelomata hypothesis, with the nematode branching before the vertebrates. The

topological features of interest recovered by the individual gene trees are summarized

in Table 5.2.

We next examined how a perturbation in the combined-gene dissimilarities af-

fects the estimated tree topology. The perturbations described in (5.42) and (5.43),

respectively, were applied to the nematode data set. Under a perturbation in the

direction of h = vD1 , the roundworm and honeybee erroneously branch as sister taxa

at a = 1.1 and at a = 1.5 the topology within the arthropod clade breaks down.

Under a perturbation in the direction of h = vD2 , at a = 2.0 the honeybee and brine
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shrimp are placed together as sister taxa. Figure 5.5 shows the resulting topologies

under perturbations for different values of a.

Figure 5.5: Effect of perturbation scheme 1 on estimated topology for a = 1.5 (left).
Effect of perturbation scheme 2 on estimated topology for a = 2.0 (right).

Again individual genes and combinations of the genes identified as influential

were removed from the combined-gene analyses to further examine their effect on the

estimated topology. Removal of a single gene from the analysis resulted in no change

in topology. Note that this was not the case when the MinCV method was applied

to this data set. We next removed all the influential genes, which resulted in a tree

in which honeybee and roundworm were erroneously grouped as sister taxa. Upon

further examination, it was discovered that among the influential genes, only the

combined removal of a ATP6 and ND6 appeared to have any effect on the estimated

topology. Removal of COX1, COX3 and ND1 did not affect the topology. When

these three and ATP6 were removed the topology remained the same. Likewise, when

these three and ND6 were removed the topology remained the same. The combined

removal of ATP6 and ND6 resulted in the roundworm and honeybee being as sister

taxa. Hence, it appears that these two genes are the most influential in the proper

separation of honeybee and roundworm. Note, that these genes were also found

influential in the combined-gene tree estimated with the MinCV scale coefficients in

Chapter 3. The tree obtained when these two genes were removed is shown in Figure

5.6.
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Figure 5.6: Estimated combined-gene nematode tree when genes ATP6 and ND6 are
removed from the analysis.

Lastly, we examined which pairwise dissimilarities are most affected by a pertur-

bation in the first and second principal directions. Figure 5.7 shows which taxa

pairwise dissimilarities in the nematode data set are most effected by a pertur-

bation along vD1 (upper panel) and along vD2 (lower panel). When a perturba-

tion in the direction h = vD1 is applied, combined-gene dissimilarities for fruit-

fly/brine shrimp, chicken/brine shrimp, chicken/locust, brine shrimp/locust, fruit-

fly/sea urchin and roundworm/sea urchin appear to be the most affected. The dis-

similarities for fruitly/brine shrimp, chicken/brine shrimp, chicken/locust and brine

shrimp/locust are all inflated while the dissimilarities for fruitfly/sea urchin and

roundworm/sea urchin all shrink. When a perturbation in the direction h = vD2

is applied, dissimilarities between honeybee/fruitfly, honeybee/brine shrimp and lo-

cust/sea urchin appear to undergo the greatest changes. Dissimilarities for honey-

bee/fruitfly and honeybee/brine shrimp are inflated while the dissimilarity for lo-

cust/sea urchin shrinks.
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Figure 5.7: Case-weights, or influence, of individual taxa pairs for the estimated
combined-gene nematode tree in the first principal direction (top) and the second
principal direction (bottom).
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5.5 DISCUSSION

The above analysis suggests that the singular value decomposition method of deriving

single tree representation from multiple genes is fairly robust to perturbations in

dissimilarities and in sampling of genes. Surprisingly, the estimated combined-gene

tree for the nematode data set, which is a difficult data set to resolve, appears to be as

stable under such perturbations as the primate data set. For both data sets, removing

a single gene from the analysis did not affect the combined-gene topology obtained

with the singular value decomposition method suggesting that the singular value

decomposition method of combining genes is more stable than the MinCV method

in this respect. Recall that for the nematode data set, removing a single gene from

the analysis resulted in a different combined-gene tree in some cases for the MinCV

method. Influence analysis of both the MinCV and singular value decomposition

methods of combining genes identified ATP6 and ND6 as influential in determining

the combined-gene nematode tree. Note again, that while here the method was

applied on the common scaling covariance based dissimilarities, this method could

be applied to any distance measure.

In the examples examined in this chapter the singular value decomposition based

combined-gene trees agreed with the reference tree topologies presented in chapter 3.

For these cases, we would expect the genes identified as influential to agree with the

reference tree with respect to one or more clades, while genes which recover a topology

which disagrees with the reference tree will be less influential, thus won’t have large

weights in the resulted weight vector to indicate the most influential direction. In a

case where the combined-gene tree disagrees with the reference tree, we would expect

that the most influential genes will be those which also recover a tree which disagrees

with reference tree topology.

In this chapter we focused on the case-weights perturbation scheme to identify

possible influential genes. Another perturbation scheme that may be of interest is

an additive perturbation scheme, where a vector of weights is added to the k-vectors

which consist of the pairwise dissimilarities for k genes for a given pair of taxa. In this

manner, we can identify which pairs of taxa are most influential in the combined-gene

tree.
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Table 5.1: Estimated BIONJ topologies for individual genes in the Primate data

Table 5.2: Topological features of interest in the individual gene BIONJ trees derived
from common scaling based dissimilarities.



Chapter 6

PROTEIN STRUCTURE PREDICTION AND THE

SPECTRAL ENVELOPE

Protein structure prediction is an important aspect of the field of pharmaceutical

medicine where the three dimensional structure of a target protein is used to discover

new drug candidates (Hubbard, 2006). Numerous advances in protein structure pre-

diction have been made over the past 60 years and have been increasing rapidly as

advances in technology enable higher computational power. Most prediction meth-

ods rely extensively on knowledge of proteins whose structures have been previously

determined by X-ray crystallography or NMR spectroscopy (Ginalski et al., 2005).

Homology modeling and fold recognition methods rely on the availability of templates

in protein databases. Although there has been moderate success in predicting some

small proteins and protein fragments ab initio, the most accurate and successful pre-

dictions are made using comparative methods which require sequence or structural

alignments with previously solved proteins (Zhang, 2008; Wooley and Ye, 2007; Hub-

bard, 2006). Template-free or ab initio methods seek to model the energetics of the

protein folding process to determine three dimensional structure from amino acid se-

quence. The Rosetta software developed by Baker has successfully predicted several

small protein structures but is computationally expensive (Bradley et al., 2006; Das

et al., 2007; Zhang, 2008). More recently, the field of structural genomics has arisen

in which structural biologists predict protein structures on a genome-wide scale. The

structural genomics approach has increased the rate at which novel protein structures

are solved and made available while reducing the cost. The success rate of structural

genomics methods is comparable to traditional structural biology approaches (Brown

and Flocco, 2006; Chandonia and Brenner, 2006). The CASP (Critical Assessment

of techniques for protein Structure Prediction) experiment has objectively assessed

the quality of current methods and measured progress in protein prediction on a
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bi-annual basis since 1994. Success of comparative modelling methods have steadily

increased over the last decade, although such methods are still constrained by er-

rors in sequence alignment and the requirement that evolutionary relationships exist

between unsolved and solved proteins.

In this chapter we will apply the spectral envelope described in chapter 2 to the

problem of protein prediction. Note, that unlike the spectral covariance which mea-

sures how two sequences vary together, the spectral envelope is applied to individual

sequences. As is the case with the spectral covariance, peaks in the spectral envelope

correspond to secondary structures present in a protein. We do not attempt to model

the particular folding patterns of proteins. Instead, using the structural information

coded in the periodic patterns of its amino acid sequence, we attempt to classify

the protein into a structural category, and in this way identify the main structural

elements of the protein of interest and possible templates. The method we propose

is purely statistical and requires no sequence alignment or homologous comparisons

between proteins. Recall that the peaks of the spectral envelope of amino acid se-

quences are related to the periodicity of protein secondary structures. When applied

to sequences corresponding to α-helices the maximum of the spectral envelope occurs

at a periodicity of 3.6 residues or ω = 0.277, whereas sequences corresponding to

β-sheets should have a maximum of the spectral envelope at ω = 0.435 (periodicity

2.3 residues). The 310-helix has a periodicity 2.5 residues while loop regions have a

periodicity of 3-4 residues (Eisenberg et al., 1984). The multiple peaks in the spectra

of protein sequences correspond to the periodicities of the structural elements of a

protein (Collins et al., 2006).

The classification and regression tree (CART) and bootstrap aggregating (bag-

ging) methods are applied with the spectral envelope based covariates to classify

proteins into their structural classes. We compare our method to the classification

capabilities of BLAST using the BLASTP algorithm (protein-protein blast).

6.1 CLASSIFICATION TREES

Tree based classifiers provide a simple but powerful solution to the classification

problem. They are simple to interpret and are capable of handling large amounts



111

of data with ease. Another advantage of the classification tree is that it requires no

assumption with regard to the distribution of the data as would be the case for a

method such as logistic regression. However, classification trees can have problems

with over-fitting, returning trees that do not generalize well to new observations.

This problem can be mitigated by pruning. Classification trees are grown using

binary recursive partitioning. The goal is to sort objects into the correct classes

using some splitting criterion. The classification tree algorithm chooses the best split

by considering every possible split and calculating the homogeneity of the resulting

two partitions or nodes. The split resulting in the purest nodes is chosen to partition

the data. This process is repeated for each node until all the nodes are pure or the

data is too sparse.

The construction of a classification tree consists of two steps: growth and pruning.

Near the root of the tree, a large amount of information is incorporated into the

first few splits of the tree because a large portion of the observations is used to

choose the appropriate split, while fewer observations are used to split successive

nodes. Splits near the bottom of the tree tend to reflect anomalies peculiar to the

data, which results in the full grown tree having poor predictive power for future

observations. Pruning the tree removes random elements that fail to generalize to

new data and improves the tree’s predictive power. The process of growing and

pruning classification trees will now be described in further detail.

6.1.1 GROWING CLASSIFICATION TREES

Let Rm be the region representing node m of a classification tree and Nm be the

number of observations in node m. Then,

p̂mk =
1

Nm

∑
yi∈Rm

I(yi = k)

is the proportion of class k observations in node m (Hastie et al., 2001). Observations

in node m are considered to be of class k if the majority of observations at that node

belong to class k. We begin with all observations in a single node and apply successive

binary splits such that node impurity is decreased at each split. There are three

common measures of node impurity: the misclassification error, the Gini index and
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the deviance (Hastie et al., 2001). In this chapter we use the tree() function in the

package tree of the R programming language (Ripley, 2010) to obtain classification

trees. The tree() function assumes a multinomial response variable and hence uses

the deviance to split the nodes. Each node m is split such that

−
K∑
k=1

nmk log p̂mk

is minimized, where K is the number of classes. By convention it is assumed that

0 log 0 = 0 when p̂mk = 0 since limx→0 x log x = 0 (Hastie et al., 2001). Splitting

continues until the nodes are pure or each terminal node contains no more than five

observations (Ripley, 2010).

6.1.2 PRUNING CLASSIFICATION TREES

Trees are pruned using minimal cost-complexity pruning. Cost complexity pruning

is usually performed using the misclassification error,

1

Nm

∑
yi∈Rm

I(yi �= km) = 1− p̂mkm ,

where km is the majority class in node m (Hastie et al., 2001). Here p̂mkm is the

proportion of observations in node m that belong to majority class km, that is, the

proportion of observations correctly classified. For any subtree Ts of the full tree Tmax

let | T | denote the number of terminal nodes. The cost complexity criterion is then

Cα(T ) =

|T |∑
m=1

1− p̂mkm + α|T |, (6.1)

for α > 0. The tuning parameter α is the complexity cost per terminal node. For

each value of α there exists a subtree T (α) which minimizes equation (6.1). Cal-

culating Cα(T ) for all possible values of α results in a finite sequence of subtrees

Tmax, Tmax−1, ...., with a decreasing number of terminal nodes. Ideal tree size can be

determined by using independent test samples or by cross-validation (Hastie et al.,

2001). The classification tree method has ‘built-in’ variable selection in that at each

node, the variable that returns the purest children nodes are chosen to split the data

at that node.



113

It’s important to note that the trees discussed in this chapter are not the same

as those discussed in the previous chapters. In the previous chapters the trees rep-

resented a possible evolutionary relationship between a given set of taxa and each

terminal node corresponded to a taxon. In this chapter, the classification trees pre-

sented represent a classification of the sequences by predominant structural features,

and each terminal node corresponds to a structural class rather than a taxon.

6.2 BOOTSTRAP AGGREGATING

The classification tree has the advantage of being interpretable with natural variable

selection. However, classification trees can be unstable in that small changes in

the training sample can result in significant changes in the classification rules which

generate the tree. One way to mitigate this instability and achieve better results is

to apply a ‘bagging’ or ‘bootstrap aggregating’ method (Brieman, 1996). Bagging

reduces the variance in classification trees by taking an average over multiple trees.

Repeated bootstrap samples are taken from the training set. A tree is grown on each

training set and fit on the test set. A count is kept of how many trees classify a

particular observation, say x, in any given class k. The observation x is assigned to

the class with the maximum number of ’votes’ (that class to which the majority of

trees assign x). Bagging significantly reduces the prediction instability since taking

an average will reduce the variance but leave bias unchanged (Hastie et al., 2001).

6.3 CLASSIFICATION TREES AND THE SPECTRAL ENVELOPE

Since the peaks in the spectral envelope correspond to the periodicity of a protein’s

structure, information extracted from the spectral envelope may be used to classify

proteins into structural categories. The first step is to devise a method to extract

the structural features of the proteins as defined by the frequencies at which peaks in

the corresponding spectral envelopes occur. To isolate such frequencies the spectral

envelopes are divided into 100 thin frequency bands of equal width. An example of a

spectral envelope divided in twenty, fifty and one hundred frequency bands is shown

in Figure 6.1. The number of frequency bands must be large enough to capture
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all the information available, but small enough to ensure the data do not become

too sparse. Previous analysis on a sample of the data indicated that 100 frequency

bands was ideal. The 100 covariates for each protein are obtained by calculating

the mean of the points above a threshold in each frequency band. The application

of a threshold should remove noise from the data. The threshold is based on the

empirical distribution of 1000 bootstrap samples taken from a concatenation of all

the sequences in the data to which the method is being applied. The covariates are

then used in the classification tree method. We would expect the variables selected in

partitioning the data with the classification tree method to correspond to the signals

at the frequencies where peaks corresponding to secondary structures in the proteins

occur. The steps for extracting covariates from the spectral envelope and building a

classification tree are listed below.

1. For each sequence compute the spectral envelope and sort the points of the

spectral envelope into the appropriate frequency ranges.

2. Calculate the mean spectral envelope above the threshold within each frequency

band and in this way obtain 100 covariates for use in the classification tree

procedure. For the data used in this chapter a threshold of 0.02 is used. We

compute 1000 bootstrap sample spectral envelopes and take the 50th quantile

at each frequency. The median across all frequencies is taken to get a single

value of 0.02 of the threshold.

3. Randomly sample 75% of the proteins in each class to use as a training set.

Grow a classification tree using this sample. Determine ideal tree size using

10-fold cross-validation via the cv.tree() function in R.

4. Prune the tree to the appropriate size using the prune.misclass() function in

the R.

5. Use the pruned tree on the remaining 25% of observations to obtain an objective

test error.
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Figure 6.1: An example of a spectral envelope divided into twenty, fifty and one
hundred frequency bands.

6.4 DATA

We begin by applying our method to a simple small example data set consisting

of the myoglobin and immunoglobulin sequences for the five primate taxa studied

in chapters 2, 3, and 4. Sequences were downloaded from the protein database in

Genbank. Accession numbers can be found in the appendix.



116

The method was then applied to a larger dataset consisting of groups of proteins

from the all-α and all-β classes in the SCOP database (Murzin et al., 1995; Andreeva

et al., 2004; Murzin and Bateman, 1997). Murzin and Bateman (1997) employed a

combination of homologous, structural and functional information to create the SCOP

(Structural Classification of Proteins) database. Proteins in SCOP are classified on

four hierarchical levels. Proteins of the same family are considered to have a clear

evolutionary relationship with sequence similarity of 30% or greater (Andreeva et al.,

2004). Proteins of the same superfamily have low sequence similarity but enough

common structural and functional features such that common evolution is probable.

Proteins classified in the same fold have the same major secondary structures with

the same topological arrangement. At the class level, proteins are classified on the

basis of the secondary structures of which they are composed.

We extracted a sample sequence from each superfamily in the all-α and all-β

classes in the SCOP database release 1.73. Our only stipulation was that sequences

have lengths greater than 50. In this manner we obtained a dataset comprising 435

sequences from the all-α class and 317 sequences from the all-β class. The sequences

selected should have low sequence similarity while sharing common secondary struc-

tures with other sequences within the class to which they belong.

6.5 RESULTS

To get an idea what the spectral envelopes of all-α and all-β proteins might look like

the spectral envelope was computed for the myoglobin and immunoglobulin protein

sequences for the five primate taxa, gibbon, orangutan, gorilla, human and chimp.

Figure 6.2 shows the mean spectral envelopes across the five primate taxa gibbon,

orangutan, gorilla, human and chimp for myoglobin and immunoglobulin proteins.

We can see that the mean spectral envelope of the myoglobin sequences has its great-

est peak at around 0.22 to 0.28 while the mean spectral envelope of the immunoglob-

ulin sequences has its greatest peak at around 0.40 to 0.45. Recall, that α-helices

have a periodicity of 3.6 residues corresponding to a peak at ω = 0.277, while β-

sheets have a periodicity of 2.3 residues corresponding to a peak at ω = 0.435, hence
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the mean spectral envelopes of the myoglobin and immunoglobulin sequences dis-

play the behaviour we expect if the spectral envelope is indeed picking up the signal

corresponding to the secondary structures in these proteins.

Figure 6.2: The mean spectral envelope across five primate taxa for the protein
myoglobin (left) and the protein immunoglobulin (right).

Next our classification method was applied to this small example. On this small

data set a tree with two pure terminal nodes (0 % misclassification) is obtained.

The classification tree method chooses a node to partition by a variable and its

optimum split point such that the decrease in the deviance is maximized at each step

of the partitioning. Variables based on the spectral covariance are the 100 frequency

bands and ranges. The variable, or frequency band used to split the data into two

nodes includes frequencies between ω = 0.120 and ω = 0.125, which are within the

range of frequencies at which we’d expect to see a peak corresponding to repetition of

secondary structure elements. Note that this is a fairly easy problem as the myoglobin

and immunoglobulin sequences have high within-group sequence similarity.

The method was then applied to the large data set extracted from the SCOP

database. This is a more difficult problem as the data were selected in such a way

that within-group sequence similarity will be small. To begin with, spectral envelope
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based covariates were computed for the full data set and a classification tree was

grown. The full tree grown on the complete data set consisted of 12 terminal nodes.

Frequency bands used to grow the tree included ω = 0.08 to ω = 0.18 which includes

the frequency range at which we’d expect to find a peak corresponding to repetition

of secondary structure elements, ω = 0.415 to ω = 0.440 which contains ω = 0.435,

the frequency at which we’d expect to see a peak corresponding to β- strands, and

finally ω = 0.245 to ω = 0.290, which contains ω = 0.277, the frequency at which

we’d expect to see a peak corresponding to α-helices. The misclassification error when

the complete data set is fit back on the full grown tree is 0.366. Using 10-fold cross-

validation, it was determined that the ideal number of terminal nodes was 9 terminal

nodes and so the tree was pruned back to 9 terminal nodes. The misclassification

error for the final pruned tree was 0.376, hence very little information was lost when

the simpler tree was grown and this new tree should have greater predictive power

for new observations. The 9-node classification tree is shown in Figure 6.3.

|V36 < 0.0294117

V18 < 0.0271143

V18 < 0.0265495

V50 < 0.0442468

V81 < 0.0219411

V34 < 0.0253159

V74 < 0.024161

V59 < 0.0427618

alpha alpha

alpha
alpha

beta alpha

beta

alpha beta

Figure 6.3: The pruned classification tree obtained from the total spectral envelope
in 100 frequency ranges for 435 all-α proteins and 317 all-β proteins

To evaluate our protein classification method we compared it to the classification

capabilities of BLAST at the class level of the SCOP hierarchy. To classify the

sequences as either belonging to the all-α or all-β class, each sequence in our data set
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was queried against all the remaining sequences in the data set and assigned the class

to the sequence with the closest match. Classification was based on three different

criteria: the highest bit score, which measures the strength of the alignment, lowest

e-value, which measures the significance of the hit, and highest percentage sequence

identity. Misclassification errors when each of these criteria were used are 0.475, 0.495

and 0.510, respectively. This implies that the spectral envelope based method of

classification is picking up some additional information which we believe corresponds

to structural signals within the proteins.

The data set was then split into two subsets. One subset was used as a training set

and the other as a test set. A classification tree was trained on the training set and

pruned to the 9-terminal nodes previously found to be ideal. The test set was then

fit on the pruned tree. The training set contains 564 observations (approximately

75 % of the data), while the test set contains 188 observations (approximately 25%

of the data). The sampling used to obtain the training and test sets was stratified.

That is, a proportion of sequences were sampled from the all-α class and another

from the all-β class. This was to ensure that the composition of the test set more

or less corresponded to that of the training set. The training error presented is the

proportion of misclassifications when the training data set is used for prediction by

the pruned classification tree. The cross-validation error is obtained by taking the

average misclassification error of the ten trees grown in the cross-validation procedure.

That is, we grow ten tree with one tenth of the data left out each time and use

this remaining 10 % for prediction. The cross-validation error is the average of

misclassification errors obtained for these ten trees. It provides an estimate of the

test error. The test error is the proportion of misclassifications when the test set is

used for prediction by the pruned classification tree. When our method was applied

to the split data a training error of 0.3121 was obtained, with a cross-validated

error of 0.3546 and a test error of 0.3564. For this data, the cross-validated error

gives a fairly good approximation of the test error. To compare these results with

BLAST, each sequence in the test set was queried against the training set. Again,

the same three criteria were used to classify sequences. Using the maximum bit

score a misclassification error of 0.500 was obtained. With the minimum e-value a



120

misclassification error of 0.511 was obtained. Finally, using the highest percentage

sequence identity resulted in a misclassification error of 0.511.

Next, the ipredbagg() function in the ipred package of the R programming lan-

guage was applied to determine if the misclassification error could be reduced by

applying a bagging procedure (Peters and Hothorn, 2009). The bagging classifica-

tion trees obtained with 25 bootstrap replicates returned an out-of-bag estimate of

the misclassification error of 0.2872. The out-of-bag estimate of error is obtained

from observations left out of the bootstrap samples. It provides an estimate of the

test error. When the test set was fit on the model obtained from the bagging clas-

sification procedure a test error of 0.2606 was obtained. Hence, through application

of the bagging procedure we were able to reduce the misclassification error for this

data.

The sequences in this data were chosen to have low sequence similarity. The

relatively low misclassification errors obtained by the method when compared with

BLAST suggest that the spectral envelope is picking up some structural information

present in the sequences.

6.6 DISCUSSION

The results suggest that the spectral envelope is able to extract structural informa-

tion directly from amino acid sequences. Analysis of a data set with low sequence

similarity showed that our method was able to group proteins by structural class

with a relatively low misclassification error when compared with BLAST which re-

lies on sequence alignment. Note that BLAST relies heavily on sequence similarity

and it would be preferable to compare our method to a non-homology based predic-

tion methods such as HMMs. There exist several webservers capable of predicting

secondary structure input sequences such as Jpred, PSIpred and HHpred which use

combinations of PSI-blast and profile hidden Markov models to predict secondary

structure. However these servers require that the input sequences be aligned and the

user select a data base to compare input sequences to from a given list. We could

not find any that allowed for comparisons on a user defined data base so that we

could find training and testing errors to compare to our method as we were able to
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with BLAST. The webservers were also extremely slow. Due to time constraints and

the limitations of the tools currently available we did not compare our method to

a secondary structure prediction technique but note that a comparison of the spec-

tral envelope based method with a secondary structure prediction method should be

explored in the future.

The comparison of sequences using the spectral envelope does not require align-

ment. Recall that we’d expect peaks in the spectral envelope to occur at certain

frequencies corresponding to the periodicities of different protein secondary struc-

tures. The correspondence of the frequencies of peaks in spectral envelope and the

frequency ranges used to split the tree indicate that the structural features of pro-

teins are indeed being captured by the spectra of their amino acid sequences. Our

application of the classification tree method has shown that the spectral envelope can

provide useful covariates in protein structure prediction. The classification tree has

the advantage of being interpretable with natural variable selection. However alter-

native procedures for variable selection and classification may be explored to improve

results. Since protein function is partially determined by protein structure, combining

our procedure with biochemical information, may again improve prediction results.



Chapter 7

CONCLUSION

In this chapter we summarize the results presented in this thesis and outline some

possible directions for future work.

7.1 SUMMARY

In chapter 2 we extended the spectral covariance method previously introduced by

Collins et al. (2006) to include a taxon-specific scaling in which each taxon is assigned

a scaling which is held constant across all pairwise comparisons. Applying both the

common scaling and taxa specific scaling methods to various data sets we found these

yielded similar results. Unlike the ML based methods, spectral covariance based

dissimilarity measures do not require the assumption that sites evolve independently

based on an evolutionary model. The spectral covariance method measures structural

similarity as well as sequence similarity using time series methodology. Because the

spectral covariance is based on structure information rather than substitutions at the

sequence level our method should be less sensitive to systematic error than sequence

based methods. The results obtained with the nematode data set suggest this is the

case

In chapter 3 we introduced two criteria for computing scale coefficients which

can then be used to combine information across genes, namely the minimum vari-

ance (MinVar) criterion and the minimum coefficient of variation squared (MinCV)

criterion. The scale coefficients obtained with the MinVar and MinCV criteria can

then be used to derive a combined-gene tree from the weighted average of the dis-

tance or dissimilarity matrices of multiple genes. The MinVar and MinCV methods

gave similar results. In chapter 4 we introduce an alternative method for deriving

a combined gene tree based on singular value decomposition. We showed how the

first right eigenvector of the singular value decomposition of a matrix of distance
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vectors of multiple genes could be used to obtain a combined-gene tree. Unlike stan-

dard methods applied to multi-gene analysis, our method does not assume that genes

share a common evolutionary history or rate which can sometimes result in the wrong

tree. With our method we were able to separate the nematode and honeybee in the

data set first studied by Foster and Hickey (1999) who applied various methods to a

concatenation of genes and found the nematode and honeybee consistently grouped

together with strong bootstrap support.

In chapter 5, we derived influence functions for the components of a singular value

decomposition and used these to determine genes influential in the combined gene

topology inferred from the singular value decomposition method. The robustness

of our method was evaluated under perturbations in the distances and individual

and combined removal of genes. We found that the combined-gene trees obtained

with the singular value decomposition method where fairly robust to perturbations

in distances and removal of genes.

Finally, in chapter 6, we propose a method for classifying proteins by their pre-

dominant structural features using covariates extracted from the spectral envelope.

We compared our method to the classification capabilities of blast which is readily

available and able to handle a large number of sequences in a relatively short amount

of time. We found that our method was relatively successful at classifying proteins

by their predominant structural features.

The data sets analysed in this thesis had various sizes, the chloroplast data set

having the greatest number of taxa (22) and the eukaryote data set having the greatest

number of genes (35). Computing the common spectral covariance for an entire data

set only took a few minutes. The taxa specific scaling covariance is a bit more

computationally expensive and can take up to half an hour to compute for a large

data set. Overall, computation of combined-gene trees using these methods was

relatively quick. All our computations were done in the R programming language.

The methods presented in this thesis are unique in that they require no assump-

tions regarding the evolutionary model or history. The methods may be used on their

own or as complementary to existing methods. A comparison of the combined-gene

trees obtained with the MinCV or singular value decomposition based methods to
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standard concatenation or consensus tree approaches may provide new insights into

the evolutionary relationships between taxa. The influence functions for the singular

value decomposition method provides us with a tool to better understand the effect

of individual genes on the combined-gene topology.

7.2 FUTURE WORK

The impact of our method on systematic biases, such as variable evolutionary rates

across genes, taxa or individual sites within a sequence, is unclear. Further simula-

tion studies to rigorously test how our method responds under these conditions are

required. An extension of these methods to deal with missing data and allow for the

inclusion of a larger number of protein sequences should be developed. One way to

do this is by modelling the pairwise distances computed from the available pairs of

genes and using missing data imputation methods based on the statistical models.

With regards to influence analysis, other perturbation schemes may be explored

to further investigate the influence of genes and taxa pairs on the combined-gene tree

obtained from the singular value decomposition method. In particular, an additive

perturbation method may be applied to further analyse which taxa pairs are most

influential on the combined gene tree topology.



Appendix A

DATA: GENBANK ACCESSION NUMBERS

Table A.1: Nematode data set: taxa names, gene names and Genbank accession
numbers
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Table A.2: Chloroplast data set: taxa names, gene names and Genbank accession
numbers
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Table A.3: Primate data set: taxa names, gene names and Genbank accession num-
bers

Table A.4: Primate myoglobin and immunoglobulin sequences: taxa names and ac-
cession numbers
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