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Abstract
This thesis considers two distinct topics in phylogenetic analysis. The first is

construction of empirical rate matrices for amino acid models. The second topic,
which constitutes the majority of the thesis, involves analysis of and extensions to
the BH model of Barry and Hartigan (1987).

There are a number of rate matrices used for phylogenetic analysis including
the PAM (Dayhoff et al. 1979), JTT (Jones et al. 1992) and WAG (Whelan and
Goldman 2001). The construction of each of these has difficulties. To avoid adjust-
ing for multiple substitutions, the PAM and JTT matrices were constructed using
only a subset of the data consisting of closely related species. The WAG model used
an incomplete maximum likelihood estimation to reduce computational cost. We de-
velop a modification of the pairwise methods first described in Arvestad and Bruno
that better adjusts for some of the sparseness difficulties that arise with amino acid
data.

The BH model is very flexible, allowing separate discrete-time Markov pro-
cesses to occur along different edges. We show, however, that an identifiability
problem arises for the BH model making it difficult to estimate character state fre-
quencies at internal nodes. To obtain such frequencies and edge-lengths for BH
model fits, we define a nonstationary GTR (NSGTR) model along an edge, and find
the NSGTR model that best approximates the fitted BH model. The NSGTR model
is slightly more restrictive but allows for estimation of internal node frequencies and
interpretable edge lengths.

While adjusting for rates-across-sites variation is now common practice in phy-
logenetic analyses, it is widely recognized that in reality evolutionary processes can
change over both sites and lineages. As an adjustment for this, we introduce a BH
mixture model that not only allows completely different models along edges of a
topology, but also allows for different site classes whose evolutionary dynamics can
take any form.

xiv
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Chapter 1

Introduction

Exploring how evolution has proceeded at the fundamental molecular level is

the ultimate goal of this work. Currently, the events involved in the origin of life re-

main mysterious as do many of the detailed mechanisms by which diverse organisms

have since evolved over the past 3.5 billion years of Earth’s history. In this thesis,

methods for addressing these questions are presented that include the construction

and fitting of more realistic models of the molecular evolutionary processes.

1.1 Reconstructing Evolutionary History Usingc Molecular

Data

1.1.1 The Phylogenetic Tree

A phylogenetic tree is composed of nodes and edges that depict the inferred

evolutionary relationships among species and their ancestors. The accurate estima-

tion of such trees from DNA and protein sequence data is a main goal of this thesis.

An example phylogeny is given in Figure 1.1 that depicts both rooted and unrooted

1
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versions of the same tree. Nodes a, b, c, d, e in both trees in Figure 1.1 are the leaves

or external nodes which represent the observed taxa for which we have protein or

DNA sequence data; nodes 1, 2 and 3 in Figure 1.1(a) and nodes 1, 2, 3 and 4 in

Figure 1.1(b) are internal nodes which correspond to ancestral taxa and therefore

have no available data. With m taxa, there are m − 2 internal nodes and 2m − 3

edges in an unrooted tree whereas there are m− 1 internal nodes and 2m− 2 edges

in a rooted tree. In a rooted tree as in Figure 1.1(b), the direction of evolution is

specified, while the evolutionary direction of an unrooted tree is not specified.

a b

Figure 1.1: Illustration of rooted and unrooted trees. The graph in (a) is an unrooted
version of the rooted tree in (b)

.

1.1.2 Sequence Data

The study of molecular evolution focuses on the genetic material, DNA, which

carries the hereditary information of all living things. The specific DNA sequences
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of interest are called genes which determine the characteristics of an organism. The

hereditary information in genes can pass from generation to generation. During

evolution, the nucleotides in a gene may be mutated into the other nucleotides,

deleted or inserted. Nucleotides are distinguished by which of the four chemical

bases they contain: adenine (A) or guanine (G) in the purine group, and thymine

(T) or cytosine (C) in the pyrimidine group. Phylogenetic analysis of DNA sequence

data can be performed on one or multiple genes. Protein sequences, in contrast,

are made up of sequences of amino acids that are typically inferred from protein-

coding DNA sequences via the genetic code. This triplet coding scheme has three

consecutive nucleotides that collectively represent one codon. Each of the 61 of

the 64 unique three-nucleotide codons specify at most one of 20 amino acids with

the remaining three representing ‘stop’ signals at the end of genes signaling the

termination of protein synthesis (Chapter 1 in Graur and Li 2000).

Because of lineage-specific insertions and deletions, the ith position or site

of two sequences need not be evolutionarily related. Before a phylogenetic tree

can be inferred from molecular sequences from multiple species in a data set, the

sequences must be aligned to that the ith site refers to the same nucleotide position

of the sequence for the common ancestor of all of the observed sequences. Stretches

of nucleotides that have a common pattern across all species often arise through

constraints due to similar or identical biochemical functions and thus aid in the

alignment process.

In sequence analysis, similar regions in the sequences may indicate a similar
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or identical biochemical function. Table 1.1 is an example of a DNA sequence align-

ment. When aligning six sequences in Table 1.1, these six sequences are assumed to

have the same ancestor. A gap, shown as “-” such as at sites 9, 10, 11 of ‘species5’

in Table 1.1, may be inserted when aligning sequences so that more nucleotides are

shared in common across species (Mount 2004). Any gap in an alignment is typi-

cally interpreted as ‘missing data’ that corresponds to an unknown nucleotide (or

amino acid). Normally, alignments are obtained either manually or by using vari-

ous computer programs such as Chenna et al. (2003). Although the generation of

alignments may introduce errors regardless of which methods are used, it is usually

assumed that such errors are either minor, or that error-prone regions of alignments

can be recognized and removed prior to phylogenetic analysis.

Table 1.1: An example of an alignment

sites
species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
species1 C A A T G A A C A G A A G T T
species2 C A A T G A A C A G A A A T T
species3 C A A T G A A C A G A A A T T
species4 C A A T G A A C A G A A A T T
species5 C A A T G A A C - - - C A T T
species6 C A A T G A A C A G A C A T T

Once an alignment is obtained, the process of modeling evolutionary processes

over a phylogeny can begin. To simplify computation and subsequent analysis,

sequence alignment columns (here referred to as the sites) such as those numbered

1, . . . 15 in Table 1.1 are considered to be independent and identically distributed

(i.i.d). The character vector observed at each site, e.g., ‘CCCCCC’ in site 1, is
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called a ‘site pattern’. A site is a variable site if the character states change over

evolutionary time whereas a site is invariable if it cannot change over time. Invariable

sites are often the result of an essential function performed by the nucleotide or

amino acid at that particular position in the molecule under consideration. Note

that sites in which the same character state is observed for all species are denoted

as invariant sites, e.g., sites 1, 2, 3, and etc; the latter are either invariable (i.e.,

they cannot change) or a variable site that simply was not observed to change for

the sample of taxa under investigation.

1.1.3 Modeling Evolutionary Processes

In this thesis the evolutionary processes along the edges of a phylogenetic tree,

e.g., the process from node a to node 3 in Figure 1.1(a), are of particular interest.

When modeling evolution, it is usually reasonable to assume that the processes from

any ancestor to its two descendants are independent of each other. For instance, the

process from node 1 to node b (Figure 1.1(b)) is independent of the process operating

from node 1 to node c. Furthermore, the state at node b is only dependent on the

state of its ancestral node 1, but not other nodes on the evolutionary path from the

root to node b such as nodes 3, 4 and the root.

If one assumes a stationary model that does not vary over the tree and that two

processes along opposite directions on every edge, probabilistically, are the same,

the location of the root of the tree becomes unimportant in terms of the likelihood

calculations described below. In other words, differently rooted trees under this

assumption will yield the same likelihoods as the corresponding unrooted tree. If
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the two processes in opposite directions along an edge are not the same, the location

of the root matters and a nonstationary model is appropriate.

Another important consideration in this thesis is the presence of distinct evolu-

tionary processes operating at different sites in data set. Models for the evolutionary

processes among sites often assume distinct overall rates of evolution occur at differ-

ent sites (rates-across-sites) with the rates at sites treated as unknown and modeled

by a variable rates distribution.

In this thesis, we focus on nonstationary and rates-across-sites variation mod-

els when analyzing DNA and amino acid data. Since the stationary model is an

important concept and will be used in nonstationary models when describing pro-

cesses along edges, we start by discussing the stationary models and then introducing

nonstationary models.

1.2 Stationary Models

1.2.1 Stationary Models for DNA Data

The stationary models used for modeling DNA data are time-reversible Markov

models with the transition probability matrix P (t) = eRt between two taxa separated

by an evolutionary distance of t. The matrix R is the instantaneous rate matrix.

Its ijth off-diagonal entry is the substitution rate of replacing state i by state j

and R has the property
∑

j rij = 0. In a transition matrix P (t), the ijth entry is

the probability that given ancestral state i, the descendant has the state j after

t evolutionary time units later, and row sums are equal to 1. Time-reversibility
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implies that the entries in the instantaneous rate matrix R satisfies rijπi = rjiπj,

where πi are the stationary frequencies. It is often convenient to decompose R as

R = AΠ, where A is a symmetric matrix, referred to as the exchangeability matrix,

and Π is a diagonal matrix with the diagonal elements πi. In a stationary model,

the frequency vectors at all nodes are the same as the stationary frequency vector;

the edge lengths can be interpreted as the expected numbers of substitutions along

edges if the estimate of the rate matrix satisfies −∑
j πjRjj = 1, which means that

the average of the rates in R is one (cf. Chapter 13 Felsenstein 2004). The main

differences between the various stationary Markov models used in practice are due

to differing constraints on the state exchangeabilities and stationary frequencies.

The general time reversible Markov model (Tavaré, 1986), referred to as the

GTR model, is the most flexible model amongst stationary models since it has no

additional constraints on the exchangeabilities and stationary frequencies other than

those articulated above. For DNA sequence data, there are 9 parameters in a GTR

model, 3 for stationary frequencies and 6 for exchangeabilities.

Two examples of time-reversible models with additional constraints that we

will consider later are the model in Hasegawa et al. (1985), referred to as the HKY85

model, and the model in Tamura (1992), referred to as the T92 model. The HKY85

model has common rates for the transition process and for the transversion process.

The substitutions between two states of purine group A ↔ G or between two states

of pyrimidine group C ↔ T are called transitions; the substitutions between states

of purine and pyrimidine groups A ↔ C, A ↔ T , G ↔ C and , G ↔ T are
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called transversions. The exchangeability rates of transitions within purine and

pyrimidine groups are assumed to be the same, aAG = aCT and the exchangeability

rates for transitions between purine and pyrimidine groups are assumed to be equal,

aAC = aAT = aCG = aGT . Under HKY85 there are no constraints on the stationary

frequencies. In contrast, while the T92 model treats transitions and transversions

in similar manner to HKY85, it makes the further assumption that the frequencies

of character bases C and G are equal (πC = πG) and similarly that A and T are

equal (πA = πT ). Thus the T92 model is a special case of the HKY85 model.

The models in Yang and Roberts (1995) and Galtier and Gouy (1995, 1998)

used stationary models to model the nonstationary processes along edges. For in-

stance, consider the tree in Figure 1.1(b). When modeling the processes from root

to leaf nodes, a stationary model for the process from ancestor to descendant applies

for each edge. The root frequencies are specified which may or may not be the same

as the stationary frequencies in the stationary model along the edge connecting the

root and the internal node. In Yang and Roberts (1995), the HKY85 model was

used as the stationary model along each edge. For each edge l, a stationary fre-

quency vector πl was estimated; for all edges, a transition and transversion rate was

estimated and the root node frequency vector was also estimated. In Galtier and

Gouy (1995, 1998), the T92 model was used as the stationary model along edges

in the same way as was done with the HKY85 model in Yang and Roberts (1995).

In subsequent chapters, we will define a nonstationary version of the GTR model,

referred to as the NSGTR model, that will fit different models for each edge.
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1.2.2 Maximum Likelihood Estimation

We used maximum likelihood (ML) estimation for almost all parameter esti-

mation in this thesis. Denote the sequence data X = {x1 . . . xn}, where xi is the

data pattern at site i; n is the number of sites; m is the number of taxa. Let Θ

be the parameters in the Markov model and let T = {t1 . . . t2m−3} be the vector of

edge lengths for a unrooted tree, where t1 . . . t2m−3 are the lengths of 2m − 3 edges

in an unrooted tree. The likelihood is

P (X|Θ, T ) =
n∏

i=1

P (xi|Θ, T ) (1.1)

Here P (xi|Θ, T ) is sometimes referred to as the site likelihood. In ML estimation,

all or some of the parameters Θ and T are estimated by maximizing P (X|Θ, T ).

Using ML estimation in phylogenetic analysis, we have to face two challenges:

calculating likelihoods and optimizing the parameters. For each site pattern xi,

because models of evolution are usually expressed as a sequence of conditionally

independent models given ancestral data, the only probability that can be directly

calculated is the probability P (xi, x1, . . . , xm−2|Θ, T ), of both xi and the ancestral

data x1, . . . , xm−2 for m − 2 ancestors in an unrooted tree. The likelihood contri-

bution for the site is obtained by summing over the unobserved ancestral states,

P (xi|Θ, T ) =
∑

x1...xm−2∈B P (xi, x1, . . . , xm−2|Θ, T ), where B = {A,C,G, T}. In this

sum, there are 4m−2 terms making direct combinations and, as a result, direct like-

lihood calculation for a tree is infeasible when the number of taxa m is large. The

pruning algorithm (cf. Chapter 16 in Felsenstein 2004) is used to overcome this

shortcoming. The basic idea of the pruning algorithm is to use the nesting rule
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and post-order traversal along a tree. For instance, for the tree in Figure 1.1a, the

likelihood for a site pattern x given the parameters Θ and T is

P (x|Θ, T ) =
∑

x1,x2,x3∈B
πxaP (x3|xa, Θ, ta3)P (x1|x3, Θ, t31)P (x2|x3, Θ, t32)

P (xb|x1, Θ, t1b)P (xc|x1, Θ, t1c)

P (xd|x2, Θ, t2d)P (xe|x2, Θ, t2e)

where ta3, t31, t32, t1b, t1c, t2d, t2e are the lengths of edges (a, 3), (3, 1), (3, 2), (1, b),

(1, c), (2, d), (2, e); xi for i = {1, 2, 3, a, . . . e} are the nucleotides at nodes. Using

the pruning algorithm, P (x|Θ, T ) can be calculated by

P (x|Θ, T ) = πxa

∑
x3∈B

P (x3|xa, Θ, ta3)

⎡
⎣ ∑

x1∈B
P (x1|x3, Θ, t31)P (xb|x1, Θ, T )P (xc|x1, Θ, T )

⎤
⎦

⎡
⎣ ∑

x2∈B
P (x2|x3, Θ, t32)P (xd|x2, Θ, T )P (xe|x2, Θ, T )

⎤
⎦

The calculation order in the above formula is to calculate the terms inside the two

square brackets first, and then compute the summations over x3 for a clear saving

on computation cost. For example, for this particular five-taxon tree, using the

pruning algorithm, the 32 terms must be calculated and summed over compared

with the 64 terms calculated without the pruning algorithm. Since this algorithm

visits children such as nodes b and c before visiting their parent node 1, it is referred

to as post-order traversal.
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Ideally, for tree estimation, the ML estimates of free parameters (e.g., ex-

changeabilities, edge lengths, etc.) are obtained for each possible topology. Diffi-

culties arise from the fact that the tree topology is a discrete variable while edge

lengths, exchangeabilities and frequencies are continuous variables. Sophisticated

optimization procedures combining searches through very large discrete and contin-

uous parameter spaces are therefore required. To make the computation feasible,

heuristic methods are usually employed in practice that are not guaranteed to yield

globally optimal estimates. ML estimation procedures for common models are im-

plemented in software packages such as PAML (Yang, 2007), PAUP* (Wilgenbusch

2003), PHYLIP (Felsenstein 1989) and PhyML (Guindon and Gascuel 2003).

1.2.3 Empirical Rate Matrices for Modeling Amino Acid Data

Estimation of parameters of the substitution model (i.e., rate matrix parame-

ters) becomes complicated with amino acid data. The increase from four character

states to 20 character states for amino acid data potentially provides more infor-

mation for the inference, however this comes at a cost due to the increase in model

complexity. Likelihood computations become more intensive for amino acid data as

the pruning algorithm now requires repeated summation over 20 rather than four

terms. Furthermore, for an amino acid GTR model, there are 209 parameters in the

exchangeability matrix and stationary frequencies compared to 9 for DNA data and

ML estimation in that much larger parameter space is also more challenging. Conse-

quently, a pre-determined fixed rate matrix is usually used for analyzing amino acid

data to reduce the complexity of optimization during phylogeny estimation. Since
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a new method for the estimation of fixed empirical rate matrices will be the focus

of Chapter 2, we review three commonly used models, the accepted point mutation

(PAM) (Dayhoff et al. 1979), Jones-Taylor-Thornton (JTT) (Jones et al. 1992) and

the Whelan-and-Goldman (WAG) (Whelan and Goldman 2001) matrices, in some

detail here. These three models were obtained using protein families in databases

with a wide coverage of protein families.

The PAM and JTT models were obtained by counting the substitutions using

trees created with the parsimony method. As stated in Edwards and Cavalli-Sforza

(1963), the parsimony evolution tree is constructed with the goal of minimizing

the “net amount of evolution”. When creating a phylogenetic tree, the parsimony

method treats an observed difference in nucleotides as a consequence of a single

substitution. The possibility of multiple substitutions is not adjusted for. Therefore

it only works well in the sequences which has small edge lengths but not necessarily

for large ones. For both PAM and JTT models, sequences with 85% or higher

similarity were used to avoid the observed differences that do not correspond to

single changes. The PAM model was obtained from 71 groups of closely related

proteins; the JTT model was obtained using 559,692 pairs filtered from 130,000,000

pairs obtained from the SWISS-PROT database of Boeckmann et al. (2003).

Since the original elaboration of the PAM model did not define an instanta-

neous rate matrix, Kishino et al. (1990) and Kosiol and Goldman (2005) provided

methods to obtain the rate matrices from this model. Kishino et al. (1990) provided

an eigen decomposition solution: for a continuous-time model, the transition matrix
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P (t) has the eigen-decomposition, UeΛtU−1. The eigenvector matrix U and eigen-

value matrix Λ of P (t) are the same as the ones of a corresponding instantaneous

rate matrix. Therefore, from the eigen decomposition of a PAM matrix, the estimate

of U is obtained directly by taking the eigenvectors of the PAM matrix; the estimate

of Λ is obtained by normalizing the logarithms of eigenvalues of the PAM matrix so

that the resulting rate matrix, R = UΛU−1, satisfies −∑
i πiRii = 1. In contrast,

in Kosiol and Goldman (2005) two methods were proposed for calculating the rate

matrix directly from a PAM matrix without any eigen decomposition requirement.

The first method is called DCMut, Direct Computation with Mutabilities, that cal-

culates the rate rij, replacing state i by state j, only using the mutabilities in the

PAM model (Dayhoff et al. 1979). The second method these authors introduced

is called DCFreq, Direct Computation with Frequencies, that calculates the rate

rij using only the observed changes. Further details of these methods are given in

Kosiol and Goldman (2005). The concern about the counting method is that all

differences observed resulted from only one amino acid substitution. Wilbur (1985)

showed that 85 percent similarity criterion does not guarantee that all observed

differences were a consequence of a single amino acid substitution.

Müller and Vingron (2000) and Müller et al. (2002) provide a way to estimate

a rate matrix and stationary frequency vector for divergent data. Under the GTR

model, there are 209 parameters that require optimization for ML estimation. To

avoid directly estimating these parameters, Müller et al. use an alternative char-

acterization of a rate matrices via the resolvents discussed in Fukushima (1980).



14

Every rate matrix Q can be expressed as Q = αI − R−1
α , for some α, where

Rα =

∫ ∞

0

e−αtP (t)dt (1.2)

is referred to as the resolvent associated with Q. Müller et el. use the fact that the

resolvent is expressed as a function of the transition matrix P (t) to derive a method

for estimating it. Pairs of sequences with similar evolutionary distances are placed

in bins and, for the kth bin, having an estimated representative distances, t̂k, the

substitution matrix is estimated from the pairwise frequencies of amino acids for

pairs in the bin. Linear interpolation between estimated P (t) for the t̂k is used to

obtain P (t) for all t, which is then substituted into (1.2) to obtain the resolvent

for any given value of α. The remaining parameter, α, is obtained by maximizing

the average likelihood, averaged over all pairs. Since the resolvent is obtained using

piecewise linear approximation and only α is optimized, the approach is efficient by

comparison with full GTR optimization. Since the pairwise distances are estimated

using an initial rate matrix, the above procedure was iterated. In each iteration,

the newly estimated rate matrix replaces the rate matrix used in previous iteration;

iterations continued until no further changes to the rate matrix occurred. The

methods were used to obtain an empirical rate matrix from 2.7 million pairs of

aligned sequences in the SYSTERS database of Krause and Vingron (1998). A total

of 80 bins were used that covered PAM distances from 1 to approximately 300.

Veerassamy et al. (2003) develop methods, referred to as PMB (Probability

Matrix from Blocks), to estimate empirical rate matrices from estimates of joint
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probability matrices at differing evolutionary distances. The joint probability ma-

trices they use come from the BLOSUM series of Henikoff and Henikoff (2002).

These are converted to substitution matrices, M , and initial observed distances,

sometimes referred to as p-distances, 1 − ∑
i πiMii, are obtained. Since there are

multiple BLOSUM matrices, corresponding to different evolutionary distances, mul-

tiple p-distances can be obtained. Veerassamy et al. (2003) use an approximation

to a differential equation relating usual evolutionary distance (expected numbers of

substitutions) to p-distances. The equation is solved and the observed p-distance

is substituted to obtain an estimate, P̂c, of the evolutionary distance for the cth

BLOSUM substitution matrix, Mc. An estimate, Ac of the rate matrix is obtained

through the matrix logarithm log(Mc)/P̂c. Since this gives different rate matrices

for different BLOSUM classes, a weighted average, U =
∑

wcAc, is used to obtain

a final estimate of the rate matrix. The weights are chosen to make small a sort

of average distance between Mc and eUP̂c , both of which are estimating the same

quantity.

Likelihood methods for sequence data was first introduced in Neyman (1971).

Since then it has come to be one of the most frequent used methods in phylogenetic

analysis. For empirical rate matrix estimation, Adachi and Hasegawa (1996), Yang

et al. (1998), and Adachi et al. (2000) constructed rate matrices from small data

sets. Whelan and Goldman (2001) proposed a model (WAG) obtained from the

unpublished BRKALN database in which there are 3905 sequences in 182 protein

families. Because of the high computational cost, the WAG model didn’t optimize
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all parameters using ML estimation. Prior to using ML obtaining the rate matrix,

the topology of each protein family was estimated by a neighbor-joining method in

Saitou and Nei (1987) using the pairwise distances obtained under the PAM model.

Then the edge lengths were estimated using ML under the JTT model with the

fixed topology obtained from the previous step for each protein family. Finally

the instantaneous rates and stationary frequencies were obtained using ML while

the topologies of protein families were fixed and the edge lengths for each protein

family were fixed up to a single multiplicative factor; these multiplicative factors

were jointly optimized with rates and frequencies.

The instantaneous rate model for amino acids in Le and Gascuel (2008), which

we refer to as the LG model, was estimated through ML allowing for rates-across-

sites variation. The data used for estimation were from the May 2007 version of

Bateman et al. (2004) but restricting attention to protein families that have at

least 5 taxa and 50 sites. There were 3,912 protein families that met those criteria.

An approximate ML method was used instead of a full ML estimation. In their

approach, estimation has three steps: (1) estimating topologies for protein families

using ML estimation under the WAG+Γ 4+I model; (2) selecting the rate category

which gives the largest likelihood among all rate categories for each site in each

protein family; (3) estimating the rate matrix using a likelihood that treats the rate

category at each site as fixed at the value determined in (2). This solution avoids

the computation coming from summing over different rate categories as is required

for a full likelihood calculation.
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1.2.4 The Arvestad and Bruno Method

Arvestad and Bruno (1997) proposed a method (herein referred to as the AB

method) to construct the instantaneous rate matrix under a time-reversible Markov

chain framework for modeling DNA sequence evolution. Among the methods used

for empirical rate matrix estimation, the new methods proposed in Chapter 2 are

conceptually most similar to the AB method. The advantage of this type of approach

is that no evolutionary tree construction is required for the estimation of the rate

matrix.

The AB method estimates the rate matrix from K pairs of sequences. If one

assumes that the rate matrix is the same for each pair, the eigen-decompositions of

the transition matrix of the kth pair, P (tk) = UeΛtkU−1 will give the eigenvector

matrix U and the eigenvalues matrix Λ of the rate matrix R. Here, Λ is the diagonal

eigenvalue matrix of the rate matrix with the diagonal elements λj and tk is the

evolutionary distance separating two taxa of the kth pair. Thus the average P (tk) will

give eigenvector matrix U . The AB method uses the averaged transition matrices

obtained from data to get an estimate of U . With this estimate, for each pair,

an estimate of λjt
k can be obtained from the observed transition matrix for the kth

pair. While the estimates of λj and tk cannot be separated for a given pair, the ratio

for two different values of j should be roughly constant across k. The AB method

utilizes this property through least-squares to estimate the relative eigenvalues of

Λ. One of the eigen values is set to 1 and then, up to a scalar multiple, the rate

matrix R is taken as Û Λ̂Û−1, where Û is the estimate of U ; Λ̂ is the estimate of
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Λ. This scalar multiple for R is chosen so that −∑
j π̂jR̂jj = 1, where π̂j is the

estimate of stationary frequency of jth character base; R̂ is the estimate of R. This is

the conventional rescaling to ensure that edge lengths are interpretable as expected

numbers of substitutions.

1.3 Nonstationary Models

The assumption of stationary of evolutionary processes along edges is very re-

strictive since it requires that entries in character state frequency vectors at all nodes

remain the same up to random error. Stationary models may or may not, therefore,

adequately describe true evolutionary processes. Indeed the stationarity assumption

is well known to be violated in cases of compositional heterogeneity across different

sequences (Bernardi 1993, Foster 2004, Foster and Hickey 1999, Foster et al. 1997,

Hasegawa and Hashimoto 1993, Jukes 1986, Lockhart et al. (1992, 1994), Montero

1990, Mooers and Holmes 2000, Yang and Roberts 1995). Unfortunately, the use

of stationary models in estimation when nonstationary processes are operating may

lead to biased phylogenetic estimates such as the artefactual grouping of species

with similar nucleotide frequencies together even if these organisms are not close

relatives. To avoid this problem, models have been developed which take into ac-

count the differences in base frequencies among species. Nonstationary models such

as Galtier and Gouy (1995, 1998), referred to as the GG model, Yang and Roberts

(1995), referred to as the YR model, Barry and Hartigan (1987), referred to as the

BH model, have been developed to overcome compositional bias and produce more
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accurate results (e.g., see Sheffield et al. (2009)).

The GG and YR models are two commonly used non-stationary models. In

contrast to time-reversible models, and as with most non-stationary models, prob-

abilities of data differ depending upon where the root of the tree is. Thus analyses

with these models must specify a root or attempt to estimate its location. In these

two models, the root frequencies normally are not the same as the stationary fre-

quencies along the edge connecting the root and an internal node and each edge

has its own stationary model and edge length. The GG and YR models were devel-

oped with one goal being the reduction of model complexity and thus had simple

stationary models along edges. In the YR model, the stationary model of each edge

was derived from the HKY85 model (Hasegawa et al. 1985) in which the stationary

frequency vector had no constraints other than to sum to one, and the edges share

the same transition and transversion ratio. As with stationary models, edge lengths

were defined as expected numbers of substitutions under the stationary model for

the edge. In the GG model, which is a special case of the YR model, the stationary

model of each edge was derived from the T92 (Tamura 1992) which constrains the

frequencies of character states C and G to be the same and constrains the frequencies

of characters A and T to be the same.

The BH model (Barry and Hartigan 1987) assumes that: 1. all sites are

independent; and, 2. from an internal node, the evolutionary processes from the

parent to daughters are independent Markov processes. For instance, the nodes 2

and 1 in Figure 1.1a are both the children of node 3. The evolutionary process
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along the edge (3, 1) is independent on the process along the edge (3, 2). The

BH model differs from most phylogenetic models in that the substitution matrix

along an edge need not correspond to a continuous-time Markov process model.

It only needs to satisfy the constraints of a discrete time transition matrix. This

allows the BH model to model more complicated processes that do not correspond

to any continuous-time model. An example is when there is a zero probability of

substitution of one (or more) particular character states to another. Furthermore,

in the BH model, each edge can have a completely different process associated with

it. For the tree shown in Figure 1.1a, the evolutionary processes are different along

edge (a, 3), (3, 1), (3, 2) and etc. Also the evolutionary processes of two directions

of an edge, e.g., the directions from node a to node 3 and from node 3 to node

a, are not the same in general. For the YR and GG models, the parameters for

any edge are the stationary frequency vectors. In contrast, the parameters for any

edge of a BH model are the joint probabilities of different character states at the

two nodes. Using internal consistency, we can show that the likelihoods of a BH

model will remain the same no matter which data node is selected as the root, a

convenient property when doing estimation. Thus the estimates of the BH model

can be estimated using an unrooted tree which is a clear advantage by contrast

with the need to consider rooted trees for estimation in other nonstationary models

such as the GG and YR models. As shown in Jayaswal et al. (2005), estimates of

frequencies at terminal nodes are the same as the empirical terminal frequencies,

which is a nice property. However, since processes along edges of a BH model are
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not required to be continuous-time Markov processes, the model does not give edge

lengths for a tree. This model was reconsidered and implemented most recently by

Jayaswal et al. (2005). As a further development of the BH model, Jayaswal et al.

(2011) proposed two stationary and non-homogeneous models as simplified versions

of the BH model.

1.4 Rate-across-sites Variation

1.4.1 Stationary Models

It has long been recognized the evolutionary dynamics of different sites in a

molecule differ depending a variety of factors. For instance, in Fitch and Margoliash

(1967), invariant sites were identified in the amino acid sequences of Cytochrome C.

These sites were thought to be fixed at the particular amino acid by purifying

selection (i.e., any non-synonymous changes at these sites would cause the resulting

protein to cease to function properly and the resulting mutant would have a strongly

negative fitness effect). Such rates-across-sites variation also happens in the different

codon positions where the third codon position often has the fastest rate and the

second codon position has the slowest rate (Yang 1996). As pointed out by Semple

and Taylor (2009), the physical structure of genome can also affect the rate of

substitutions.

Assume that the evolutionary rate for the kth site is rk. In a continuous-time

Markov model, the probability of transition from state i to state j separated by the

evolutionary time tij becomes P (rkt
ij) instead of P (tij). As previously mentioned,



22

the evolutionary processes among sites are usually treated as independent and share

a rate distribution. Site rate distributions previously used in phylogenetic analyses

include the gamma distribution (Jin and Nei 1990, Nei et al. 1976, Uzzell and Orbin

1971, Yang 1993), a log normal distribution (Olsen 1987), an inverse normal distri-

bution (Waddell and Steel 1997), or discrete rate classes in proportions (Hasegawa

et al. 1987). Taking the invariable site as a category and separating it from others,

Gu et al. (1995) proposed a rate distribution mixture model of a discretized gamma

plus invariable site, Γ + I, which has subsequently been incorporated into applica-

tions such as PAML(Yang 2007), PAUP* (Wilgenbusch 2003), PHYLIP (Felsenstein

1989) and RAxML (Stamatakis 2006), amongst others.

For commonly used Γ distribution of site rates as indicated in Yang (1993),

the scale factor β is set to be equal to the shape parameter α so that the resulting

distribution has mean 1; a mean of 1 ensures that edge-lengths are interpretable

as expected numbers of substitutions. For a site x, the distribution with consider-

ing the site rates distribution is P (x|Θ) =
∫ ∞

r=0
P (x|Θ, r)p(r)dr, where p(r) is the

gamma rate probability density function; Θ is the set of parameters (cf. Chapter 4

in Yang 2006). Because of the integration, the pruning algorithm cannot be applied

to P (x|Θ) making exact computation infeasible with a large number of taxa. Yang

(1994b) has provided an approximate solution by assuming a discretized rate distri-

bution based on gamma distribution for the rate variable. The distribution of the

rates is separated into several equiprobable rate intervals. Then the mean or median

of each interval is taken as the estimates of the rates. In practice 4-8 intervals are
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frequently used.

In model-based analyses of sequences, it is not a common practice to check

whether the evolutionary rates among site are variable prior to applying a model.

However, modeling of different rates at different sites is important because studies

in Fitch and Margoliash (1967), Jin and Nei (1990), Kuhner and Felsenstein (1994),

Lockhart et al. (1996), Shoemaker and Fitch (1989), Steel et al. (2000), Song (2010),

Wakeley (1994), Yang (1994b, 1995, 1996) have shown that the estimates of topolo-

gies and model parameters will not be recovered properly if the rates among sites

are not the same but these differences are ignored.

1.4.2 Incorporating Site-rate Variation into Nonstationary Models

For both nonstationary models, the YR and GG models, with continuous

Markov processes along edges, it is easy to incorporate a gamma distribution to allow

for rate variation. Gamma models have been considered in both of the YR model

implemented by PAML (Yang 2007) and the GG model implemented by nhPhyML

(Boussau and Gouy 2006). However neither of them has considered invariable sites

as part of their models.

For the BH model, incorporating site-rate variation is less straightforward.

Jayaswal et al. (2007) proposed the BH + I model that explicitly accounts for in-

variable sites on the top of the BH model. This is a special two-class solution to

rates-among-sites variation by setting one class having a zero rate and the other

class as sharing the same rate among sites. The simplified version of the BH mod-

els in Jayaswal et al. (2011) also allow invariable sites. However, incorporating a
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gamma distribution correction for site rates into the BH model is not straightforward

because it lacks edge lengths which in standard phylogenetic models serve as the

parameters that are rescaled by rate multipliers coming from a discretized gamma

distribution. In Chapter 5, we address this problem by a novel mixture model ap-

proach to modeling site rates and other site-specific variations in the evolutionary

process in the context of the BH model.

1.5 Identifiability in Phylogenetic Analysis

A nonidentifiable model in statistical analysis is one where there exists more

than one set of parameters that give the same distribution (Bickel and Doksum

2007). If a phylogenetic model is nonidentifiable, there exists more than one set

of parameters for that model which give the same site pattern distribution. Let

P (x; Θ) denote the distribution of the site pattern x. Here, P (x; Θ) is the joint

probability of x under the model with the parameters Θ. If Θ is nonidentifiable, it

is clear that one cannot distinguish between different Θs which gives the same site

pattern distribution, no matter how much data is collected.

Later in Chapter 3, we will consider a more complicated example of non-

identifiability in phylogeny. For illustration, as a simpler example, consider estima-

tion of the time since divergence for two taxa. The joint probability with which the

nucleotides i and j are observed is πjPij(2rt) where r is the rate at which substi-

tutions occur and t is the time since divergence. Assume the rate is 10−9 (e.g., in

Hasegawa et al. 1985). If the time since divergence for the two taxa was 200 Myr,
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the joint probability distribution would be πiPij(0.2). However this joint distribu-

tion is the same as the one that arises when r = 5×10−9 and t = 40Myr. Since only

the joint probability of i and j can be inferred from data, one can never distinguish

between these two values (r, t). What can be estimated, however, is the product

rt = 0.2. It is the expected number of substitutions that took place since divergence

of the two taxa.

Assuming edge lengths are interpreted as expected numbers of substitutions,

thus avoiding the identifiability issue alluded to above, identifiability results have

been established in Chang (1996). There, in Theorem 4.1, it has shown that if

estimates are constrained to be within a class of transition matrices that is re-

constructible from rows, those matrices are identifiable. This theorem was proved

without any constraints on the transition matrices along edges. This does not, how-

ever, imply that all parameters of models that give rise to transition matrices are

identifiable. Moreover, the result in Chang (1996) does not deal with rates-across-

sites models. Allman et al. (2008) proved that for some models, not all parameters

in general are identifiable. Chang (1996) also gives some examples of transition

matrices that are not reconstructible from rows.

Some authors have considered a looser definition of identifiability, referred to

as generic identifiability. A model is considered generically identifiable if the set

of parameters that is not identifiable is of zero Lebesgue measure. Theorem 1 of

Allman et al. (2008) has proved that the GTR+Γ is identifiable for all parameters

when there are four character states. However for other number of states, the
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GTR+Γ model is only “identifiable from the joint distributions of triples of taxa for

generic parameters on any tree with three or more taxa.” The implication is that

there is a relatively large subspace of parameters that can be identified with enough

data. It remains possible, however, that there will be some parameter which, if

they happen to be the generating parameters, are nonidentifiable. Usually generic

identifiability results do not characterize the set of nonidentifiable parameters and

thus allow for the possibility, albeit unproven, that all parameters are identifiable.

Rogers (2001) argued that the GTR + Γ + I model is identifiable. Even though

Allman et al. (2008) suggest that the GTR + Γ + I model is identifiable for generic

parameters, they pointed out gaps in the proof of Rogers (2001). Recently, Chai

and Housworth (2011), proved that for generic parameters, the GTR+Γ +I model

is identifiable as claimed in Rogers (2001).

The BH estimates are joint probability matrices along edges. As we mentioned

before, the likelihood for a fix topology doesn’t depend upon the rooting position.

Taking node a in Figure 1.1a as the root, we can write the likelihood of site pattern

x = {xa, xb, xc, xd, xe} as the following.

P (x) =
∑
x1

∑
x2

∑
x3

G(X)
π2

x1
π2

x2
π2

x3

(1.3)

where G(X) = Fa,3(xa, x3)F3,1(x3, x1)F3,2(x3, x2)F1,b(x1, xb)F1,c(x1, xc)F2,d(x2, xd)F2,e(x2, xe);

Fij(xi, xj) are the joint probability which observes a state xi at node i and a state j

at node j; πxj
is the frequency of the state xj at node j. Relabelling the nucleotides

at nternal nodes 1, 2 and 3 has no effect on the site pattern distribution in (1.3)
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which can be extended to site pattern distributions for any number of taxa. Since

(1.3) shows that more than one set of the parameters - which in this case are joint

probability matrices along edges - can give the same site pattern distributions, the

estimates of the BH model are not identifiable. This problem was been identified in

Barry and Hartigan (1987) and independently by us.

Although it does not directly utilize parameters of the BH model, the logDet

distance introduced by Steel (1994) and Lockhart et al. (1994) can be used with

distance methods like the Neighbor-Joining method of Saitou and Nei (1987) to

recover the topology. The logDet distance is the logarithm of the determinant of a

frequency matrix for two species, a and b; the ijth entry of the frequency matrix is

the number of occurrences of the ith character state for species a and jth character

state for species b. As shown in Steel (1994), if the joint probability matrices of data

are used as frequency matrices, the resulting logDet distances are tree-additive. It

follows that logDet distances can be used to consistently recover the tree topology

when a BH model generates the data.

1.6 Data Sets

In this thesis, the PANDIT database of Whelan et al. (2006) and the Plas-

modium data set of Davalos and Perkins (2008) were used. The PANDIT database

of Whelan et al. (2006) was used in Chapter 2 to test our new methods for estima-

tion of rate matrices for amino acid analysis, which is comparable with the PAM,

JTT and WAG models. The Plasmodium data set was used for our work on the
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non-stationary models in Chapters 3, 4, and 5.

The PANDIT database of Whelan et al. (2006) had 7738 protein families and

174,760 sequences. Those widely ranging sequences were based on the collection of

the Pfam database of Bateman et al. (2004). The alignments are available for both

amino acid and DNA sequences for each protein family. The database also contains

the estimated tree for each protein family.

The data set of Davalos and Perkins (2008) contains eight DNA sequences

from eight species of the genus Plasmodium: P. berghei, P. chabaudi, P. falciparum,

P. gallinaceum, P. knowlesi, P. reichenowi, P. vivax, P. yoelii. The data set was

constructed by using the genes in the P. falciparum for which homologous sequences

could be identified in seven other Plasmodium species but excluding all within-

genome duplicate copies as identified in the OrthoMCL database (Chen et al. 2006).

The data set contains 104 genes selected from Plasmodium genome. The alignment

with gaps removed has 77313 sites. Davalos and Perkins (2008) found that G+C

contents for P. knowlesi and P. vivax were significantly higher than for the rest.

These data were chosen for our investigations of non-stationary models.

1.7 Overview of Future Chapters

In Chapter 2, we present a new method to construct an instantaneous rate

matrix for amino acid data. It deals with the difficulties of sparseness for amino

acid data. As mentioned before, the methods by which the PAM, JTT and WAG

models were derived all have shortcomings. For example, if we want to construct a
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rate matrix from a large database, we have to find a way to overcome the constraint

of 85% or higher similarities required by the methods used to build the PAM and

JTT models and the high computational cost of ML employed for the estimation of

the WAG matrix.

The AB method estimates an instantaneous rate matrix from pairs of sequences

of DNA data sets without doing optimization and constructing a tree. However, we

found that this method does not work well for an amino acid data set because

of the sparse pairwise transition matrices obtained (Zou 2005). In this thesis, we

propose a method of estimating a rate matrix for amino acid datasets that extends

the approach of Arvestad and Bruno (1997) but which solves the problem of lack of

data. We will introduce a binning method which will replace the pairwise comparison

of the AB method. Using our method, it is possible to estimate a rate matrix for a

single protein family or for a database that contains multiple protein families. The

rate matrix we estimated from the PANDIT database of Whelan et al. (2006) is

comparable with existing models such as the PAM , JTT, and WAG.

The rest of the thesis considers extensions of the BH model. Initial investi-

gation in Chapter 3 leads to the conclusion that the parameters of the BH model

are not all identifiable. This happens because permutations of the frequencies at

internal nodes give the same site likelihood. Thus, internal node frequency vectors

and edge lengths cannot be directly recovered.

In Chapter 4, we present an algorithm for accurately estimating the correct

permutations of the BH estimate and a formula for calculating an approximate edge
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lengths for the BH model. In order to estimate the correct permutations, we define

nonstationary GTR model, referred to as the NSGTR model. The NSGTR model

has a GTR model along each edge but allows these models to vary along edges. To

estimate correct permutations for the BH model, for each edge and each direction,

a GTR model is determined that best fits transition matrix along the edge and

the direction. Since all GTR parameters are identifiable (Allman et al. 2008), this

method can consistently estimate internal node frequencies and edge lengths if a

NSGTR is applicable.

Minin and Suchard (2008a) have given formulas for expected numbers of sub-

stitutions for a nonstationary continuous-time Markov process. Since our NSGTR

method gives estimates of the continuous-time Markov models for all estimates of a

BH model, we utilize these formulas to estimate edge lengths for a BH model fit. In

the implementations of the YR and GG models, edge lengths are estimated in the

conventional manner for stationary and reversible models which is not appropriate

for a nonstationary model. Our method can also be used with the YR and GG

methods to obtain more appropriate nonstationary edge length estimates.

We used simulations to test our methods estimating permutations and edge

lengths. In our simulations, we used the estimates of the NSGTR models for the

Plasmodium data set, which we called the “mild” parameters in the sense that there

does not exist extremely large or small GTR parameters, and a set of parameters

that contain extremely large and small GTR parameters. The simulation results

showed that regardless of whether mild or extreme parameters were employed, our
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algorithm estimated the correct permutations. The recovered edge lengths were also

very close to the generating edge lengths. We are confident that our method is useful

in some cases for finding interpretable edge lengths and internal node frequency

vectors in nonstationary models. We conclude the chapter with an analyses of the

Plasmodium data set of Davalos and Perkins (2008).

In order to allow for differing processes at different sites as in rates-across-sites

variation, we propose a BH mixture model in Chapter 5. Our BH mixture model

does not assume a specific distribution for the evolutionary rates of classes among

sites. In our solution, each class in the BH mixture model is either a regular BH

model or a reduced model for invariable sites. With two classes in which one of these

two classes is invariable sites, it becomes the BH + I model of Jayaswal et al. (2007);

with K classes and one of classes being invariable sites, we refer to it as the BH(K−1)

+ I model; with K variable classes, we refer to it as the BHK model. Identifiability

issues still exist for the estimates of any given class except for the estimates for the

invariable sites. Therefore if the internal frequencies and edge lengths are of interest,

the permutations have to be estimated via the NSGTR methodology developed in

Chapter 4. Simulations showed solid estimation performance for NSGTR and BH

mixture models. Our simulation results also showed that the BH mixture model is

useful for modeling compositional heterogeneity and better fits real data than the

simple BH or BH+I model.



Chapter 2

Constructing a Rate Matrix for

Amino Acid Evolution from Pairs

of Sequences

2.1 Introduction

Instantaneous rate matrices play an important role in reconstructing phylogeny

under the general time-reversible (GTR) Markov model. Estimating a rate matrix

directly for an amino acid data set of interest may in some cases be more appropri-

ate than using a fixed rate matrix such as the JTT. Unfortunately, estimating an

instantaneous rate matrix using an amino acid data set is more difficult than using a

DNA data set because 209 parameters must be estimated under the time reversible

Markov model in contrast to 9 parameters with a DNA data set. Moreover the

length of an amino acid sequence is shorter than the length of the corresponding

DNA sequence.

Three of the fixed rate matrices commonly used with amino acid data are

32
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the PAM (Dayhoff et al. 1979), JTT (Jones et al., 1992) and WAG (Whelan and

Goldman, 2001). Among these, both the PAM and JTT matrices are estimated using

the parsimony method. The shortcoming of the parsimony method is that it assumes

that an observed difference in character states is the result of one substitution. As

a result, it uses the pairs in a data set which have 85% or higher simularities; the

consequence is the loss of a large amount of information from the original data sets.

The advantage of this method is that it is simple and computationally efficient.

The WAG method uses maximum likelihood (ML). In this approach, to avoid the

computational cost of full ML estimation, the topology of each protein family in

the data set was constructed using the neighbor-joining method (Saitou and Nei,

1987) based on the pairwise distances obtained under the Dayhoff+F1 model. After

constructing the topologies for all protein families, all edge lengths were re-estimated

under the JTT+F model by the ML method. Then, the rate matrix was obtained

through ML with fixed topologies obtained from the neighbor-joining method and

fixed ratios of edge lengths across alignments. The WAG rate matrix is attractive

in the sense that the ML estimation is statistically sound whereas parsimony has

undesirable statistical properties (cf. Chapter 9 of Felsenstein 2004). However, if

the topologies are far from correct, the estimated rate matrix may be inaccurate.

In contrast to these previous methods, Arvestad and Bruno (1997) proposed a

method, which we refer to as the AB method, for estimating the instantaneous rate

matrix of a DNA data set using pairwise distance information without having any

1The suffix +F means that the estimates of the stationary frequencies are the proportions of
the amino acids as observed in the data set of Whelan and Goldman (2001)
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constraint on the similarity of sequences and without requiring the estimation of tree

topologies under the GTR model. This method is attractive because it eliminates

the similarity constraint of counting methods and avoids the heavy computational

cost of ML.

The AB method uses empirical estimates of the transition matrices from pairs

of taxa. In theory, the eigenvectors of the transition matrices are the same as the

eigenvectors of the rate matrices. The AB method estimates these through the

eigenvectors of the average estimated transition matrices. In theory, the logarithms

of the eigenvalues of the transition matrices are proportional to the eigenvalues of

the rate matrix; for a given pair, the constant of proportionality is the evolutionary

distance for the pair. The AB method uses logarithms of eigenvalues from each

estimated pairwise transition matrix and a least-squares approach to estimate the

eigenvalues of the rate matrix.

Pairwise amino acid data does not always provide enough information to allow

the AB method to accurately estimate the 209 parameters of the rate matrix and the

base character frequencies. We have noticed several such problems. For instance,

when estimating a rate matrix using the software implementation of Arvestad and

Bruno (1997), we found that the estimate of the rate matrix changes if the order

of the sequences in a data set is changed. Also, it is not uncommon that some

estimated eigenvalues are negative, that the estimated instantaneous rate matrix

has negative off-diagonal elements or that the sums over the rows of the estimate

of the rate matrix are not equal to zero. In other words, the estimates of the rate
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matrices do not satisfy the properties of a rate matrix.

To overcome this lack of information, we construct bins over the proportions

of the pairwise differences in a data set and assign the pairs into bins. Two pairs of

sequences are assigned to a bin if they have a similar proportion of pairwise differ-

ences. In comparison to using a pair as a unit to extract the distance information

in the AB method, we use a bin as a unit.

2.2 The AB Method

2.2.1 Overview

Define P (tk) as the transition matrix of the kth pair which has the evolutionary

distance tk. Suppose P (tk) has eigenvectors decomposition UeΛtkU−1, where the

eigenvalue matrix Λ is a diagonal matrix and U and U−1 are the right and left

eigenvectors; note that since the rate matrix is assumed the same for each pair,

eigenvectors of P (tk) are the same for each pair. As shown in the equation 17 of

Arvestad and Bruno (1997), which is reproduced below, λjt
k can be calculated by

λjt
k = log u†

jP (tk)uj (2.1)

where j ∈ {1, . . . , 4 or 20} for DNA or amino acid sequences; tk is the evolutionary

time between the two taxa in the kth pair; λj is the jth eigenvalue of the rate matrix;

u†
j and uj are the jth row and column of the left eigenvectors, U−1, and the right

eigenvectors, U , of the rate matrix. In the AB method, estimates P̂ k of P (tk) are
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obtained from observed pairwise frequencies for the kth pair and estimates of the jth

elements of U and U−1, ûj and û†
j, are obtained from the eigenvector decomposition

of 1
n

∑
k P̂ k. Substituting ûj, û†

j and P̂ k in (2.1) gives an estimate λ̂k
j of λjt

k.

2.2.2 Improvements to the AB Method

2.2.2.1 Estimation of the Frequency Matrix

One improvement of the AB method comes from using a different estimate of

P (tk). Let F̂ k be the estimate of the frequency matrix for the kth pair; its ijth entry

is the frequency with which the state i is observed for the first sequence and the

state j for the second. In the AB method, the matrix P̂ k is obtained by rescaling the

entries of F̂ k so that rows sum to 1. We have observed that the resulting estimates

of the rate matrices, differ if the orders of the pairs of sequences are changed. This

is because, due to random variation, F̂ k is rarely symmetric even though, under

the GTR model, it is estimating entries of a symmetric joint probability matrix.

Replacing it with F̂ k
s = [F̂ k +(F̂ k)T ]/2 gives a valid estimate of the joint probability

matrix and avoids having results that depend upon the order in which sequences

were listed in an alignment.

2.2.2.2 A Symmetrized Version of P (tk)

Arvestad and Bruno (1997) show that P (tk) can be replaced by a symmetrized

version, Ps(t
k), in the key equation (2.1) leading to the AB method. The reason

that replacement is worthwhile in practice is that it ensures that eigen-decomposition

routines specifically designed for symmetric matrices can be used. We utilize the
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same approach here but with some modification. The symmetrized P (tk) are

Ps(tk) = (Πk)−
1
2 ∗F (tk)∗ (Πk)−

1
2 = (Π− 1

2 ∗F (tk)∗Π− 1
2 )T = Π

1
2 ∗P (tk)∗Π− 1

2 = Use
ΛtkUT

s

where the diagonal matrix Πk gives the stationary frequencies of P (tk); the diagonal

matrix Π is the average Πk. These are assumed equal across pairs so that Πk = Π.

It isn’t difficult to show that the eigenvectors of Ps(t
k), Us, satisfy Us = Π

1
2 U and

U−1
s = U−1Π− 1

2 and the eigenvalues of Ps(t
k) are the same as the eigenvalues of

P (tk). It follows that P̃s = (1/n)
∑

k Ps(t
k) = (1/n)Us

∑
k eΛtkUT

s is symmetric and

has the same eigenvectors as Ps(t
k). In practice, we estimate P̃s by P̄ = (1/n)

∑
k P̂ k

s

where P̂ k
s = (Π̂k)−

1
2 F̂ k

s (Π̂k)−
1
2 and, for the kth pair, Π̂k is a diagonal matrix with

the observed frequencies of the observed frequencies of the amino acids along its

diagonal. From the eigen-decomposition P̄ , we obtain the estimates of Us and UT
s ,

Ûs and ÛT
s , where Ûs has the jth column ûsj and ÛT

s has the jth row û†
sj. Using Ûs

and ÛT
s gives the estimates Û and Û−1 of right and left eigenvectors matrices U and

U−1 through Û = Π̂− 1
2 Ûs and Û−1 = ÛT

s Π̂
1
2 , where Π̂ is the estimate of Π obtained

by averaging Π̂k. For the GTR model, u†
sjPs(t

k)usj is the same as u†
jPs(t

k)uj, so that

symmetrized or unsymmetrized values can be used interchangeably in (2.1). Thus

valid estimates of λjt
k can be obtained by substituting û†

sj, ûsj and P̂ k
s in (2.1).

This is what is suggested in the AB method. A difficulty with this approach is that

it is not guaranteed that the largest eigenvalue will be 0 that is required by a rate
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matrix. Thus as an estimate of λjt
k we use the following equation.

λ̂k
j = log

û†
sjP̂

k
s ûsj

û†
s1P̂

k
s ûs1

(2.2)

For highly divergent pairs, û†
sjP̂

k
s ûsj may be negative which prohibits the use of

(2.2). In practice, with eigenvalues in descending order, we replace each negative

estimate by the first nonnegative estimate û†
skP̂

k
s ûsk > 0 which satisfies k > j. In

our experiments, we have found that replacing û†
j, ûj and P̂ k by ûsj, û†

sj and P̂ k
s

tends to reduce the number of negative off-diagonal elements in an estimate of the

rate matrix.

2.2.2.3 Rescaling the Rate Matrix

Since λ̂k
j in (2.2) estimates λjt

k, Û Λ̂kÛ−1 estimates Rk = UΛtkU−1. Let

R∗ =
∑K

k=1 Rk = UΛU−1(
∑K

k=1 tk), where K is the total number of pairs. Then an

estimate of R∗ is obtained as

R̂∗ =
K∑

k=1

Û Λ̂k(Û)−1 (2.3)

Normally the rate matrix is rescaled so that the average substitution rate per site

is equal to one. Since this rescaling replaces R by − RP
j πjRjj

and since R∗
P

j πjR∗
jj

=

RP
j πjRjj

, an estimate of the rate matrix from K pairs is

R̂ = − R̂∗∑
j π̂jR̂∗

jj

(2.4)
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Our approach to adjusting for the presence of tks is simpler than the AB method

which uses a complicated least squares method.

One of the difficulties we encountered with the AB method software was that

row sums of R were not always 0. This is not a problem with our method. For

instance, using our modifications above, we estimated a rate matrix for the data

set in Yang (1994a). Our results showed that our estimate of the rate matrix has

row sums in the range (−9.66E − 15, 9.44E − 15). We compared entry by entry

of the estimates of using our method with the ML estimates in Yang (1994a) and

calculated the relative changes between our estimates and the estimates in Yang

(1994a). For the sixteen entries, the minimum, first quantile, median, third quan-

tile and maximum, called the five-number summary, of those relative changes are

(0.0004, 0.002, 0.017, 0.021, 0.095). A similar comparison for the AB method gives

the five-number summary (0.014, 0.033, 0.048, 0.068, 0.15). Since ML uses more in-

formation and is expected to give more precise R estimates, a clear improvement

has been shown with our modifications of the AB method. Similar improvements

occurred in the resulting estimates of P (t) for varying values of t.

2.3 Binning Methods

2.3.1 Difficulties Using the AB Method for Amino Acid Data Sets

To illustrate the difficulties with the AB method applied to amino acid data

sets, we consider two data sets in the PANDIT database of Whelan et al. (2006).

With gaps removed, they have sequence lengths of 2096 and 1241 sites with 4 and 18
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taxa respectively. We found that there were up to 132 zero entries in the empirical

pairwise transition matrices constructed from these two data sets; P (tk) should have

none. In addition, some of the eigenvalues of the P̂ ks were negative; P (tk) has all

positive eigenvalues. As a result, we were not surprised to see negative off-diagonal

entries in the estimate of the rate matrix. This observation strongly suggests that

pairs of sequences with 2000 sites do not have enough information for accurate

estimation with the AB method. The sequence lengths of the majority of protein

families in the PANDIT database of Whelan et al. (2006) are much less than 2000

sites. If we want to utilize the advantages of the AB method, we have to determine

a mechanism to deal with this lack of information.

2.3.2 Binning Sequences

Using similar ideas as in Henikoff and Henikoff (1992), we propose a new

unit, a bin, that groups pairs of sequences that have the same or similar pairwise

evolutionary distances, thus increasing the information in each observational unit.

When pairs are close enough, the differing distances of the pairs in a bin can be

ignored and a “super” pair can be constructed by concatenating all pairs. If there is

only one pair in each bin, this is equivalent to the AB method. By putting enough

pairs in a bin, the difficulties of sparse transition matrices alluded to above can be

avoided.

Let Kb label the pairs in the bth bin; let mb be the number of pairs in the bth

bin. For the jth pair in the bth bin, F (tj) is the joint probability matrix. Taking the
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average over all pairs in the bin, we define

P b =
1

mb

∑
j∈Kb

P (tj) =
1

mb

∑
j∈Kb

Π−1F (tj) =
1

mb

U
∑
j∈Kb

eΛtjU−1 (2.5)

Since the tj are approximately the same for all members of b, P b is approximately

the transition matrix for any one of the pairs. Let λb
i be the ith element of the

logarithm of the eigenvalues of P b. In our binning approach, P̃B =
∑

b P b, where

B is the number of bins, plays the role that P̃ played without binning. Estimation

of R is as described in previous subsections without binning but replacing P̂ k, Π̂k

and P̄ with the estimates P̂ b, Π̂b and P̄B of P b, Πb and P̃B. Similarly as with

the pairwise method in previous section, the symmetrized version, P b
s = Π

1
2 P bΠ− 1

2 ,

has the same eigenvalues as P b. In the pairwise method, replacing û†
j, ûj and P̂ k

by ûsj, û†
sj and P̂ k

s improves the estimate of the rate matrix by tending to reduce

the number of negative off-diagonal elements. This is also true for binning upon

replacing P̂ b, û†
j and ûj by P̂ b

s ,û†
sj and ûsj; the symmetric matrix P̂ b

s is calculated as

before but replacing pairwise quantities by their analogues for bins. Replacing P̂ k

by P̂ b in (2.2) gives the estimate λ̂b
j of jth eigenvalue of P b

s . Using Û , Û−1 and Λ̂b,

where the diagonal matrix Λ̂b has the diagonal elements λ̂b, gives R̂∗ =
∑

b Û Λ̂bÛ−1.

The rescaling formula in (2.4) can still be used to obtain an estimate of the rate

matrix, R̂.
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2.3.3 Bin Construction

Bin construction is an important part of the procedure. If bins are too large,

P b will provide a poor approximation to the transition matrices for the bin. If bins

are too small, P b will be sparse. We propose two binning strategies: equal size and

equal width. For either strategy, a pair of sequences is assigned to a bin if the interval

of this bin includes the estimated evolutionary distance for the pair. Using the equal

size binning strategy, intervals are chosen so that all bins have the same number of

pairs. Under the equal width strategy, each bin has the same interval length. The

remaining choice for bin construction is the number of bins. We investigate what

usually are good choices through simulations.

2.4 Simulations

We carried out simulations to assess the possible binning strategies. In our

simulations, we used the JTT model of Jones et al. (1992) as our true model. All data

sets were simulated using seq-gen (Rambaut and Grassly 1997). When exploring

the simulation results, we focused on analyzing the average mean squared errors

and the average biases of the estimates of eigenvalues and rate matrices. We set

up two types of simulations: one based on the evolutionary distances, simulation 1;

the other on the proportion of pairwise differences, simulations 2, 3, and 4. Since

our method only requires pairwise distances, we simulated the pairs over various

distances without considering the topology.

In simulation 1, we studied the effect of evolutionary distances and sequence
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lengths. Simulations under a JTT model were separately conducted for each of

the 10 distances, 0, 0.5, 1.0, . . . 4.5. In each simulation, 500 pairs of sequences were

independently generated from the given distance to obtain estimates of rate matrix

parameters. To investigate the effect of sequence lengths, simulations were repeated

with 200, 500 and 2000 sites. For each simulation setting (distance and number of

sites) results were obtained for 100 simulations.

Simulation 2 was designed to test the performance of our algorithm on a large

data set. To ensure that sampled distances for pairs approximated those that one

might encounter in practice we utilized the PANDIT database of Whelan et al.

(2006) as follows. A large set of sequences was sampled and the proportions of dif-

ferences for each pair of sequences was obtained. Each proportion, p, was converted

to the expected number of substitutions t by solving

p = 1 −
∑

j

πjPjj(t) (2.6)

where the πj is given in the JTT model and Pjj(t) were calculated under the JTT

model. Doing this for pairs of sequences coming from the PANDIT database gave a

distribution of distances. Evolutionary distances were generated from this distribu-

tion.

We had other two simulations, simulations 3 and 4, for evaluating our proce-

dure for small data sets. All evolutionary distances in these two simulations were

sampled and generated from the PANDIT distance distribution described above. In

simulation 3, the number of taxa in a data set was fixed while the number of sites
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was a variable; in simulation 4, the sequence length in a data set was fixed while

the number of taxa was a variable.

2.5 Results and Discussion

Sequence length is an important factor in our binning strategy. As a first step,

we determine a minimum sequence length which will be used to investigate binning

strategies in other simulations. Figure 2.1, based on simulation 1, shows the mean

squared errors of the estimates of the second largest eigenvalue λ2 and the small-

est eigenvalue λ20. The estimate of the largest eigenvalue λ1 is excluded from our

analyses because it is always zero in our method. The results indicate that using

the sequence lengths 200, 500, and 2,000 sites had very similar performances when

looking at how the mean squared errors of eigenvalues changed. If the evolution-

ary distances are small, the mean squared errors are very close to zero but when

the evolutionary distances increase, the mean squared errors increase dramatically.

This suggests 200 sites as the minimum sequence length which we use in following

simulations. Figure 2.1 also indicates that using pairs with similarities of 0.25 or

smaller substantially increases the mean squared errors. Our other results, which

are not presented, show that pairs starting from similarities 0.25 or smaller have

substantial probability of giving negative valued estimates for the expression within

the logarithm in (2.2) or a value that is far from the true value. In the following

simulations, we used 0.25 as a cutoff similarity, ignoring any pair with similarity

lower than this.
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Figure 2.1: The mean squared errors of estimates of λ2 and λ20 at 10 distances 0,
0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 4.5 using different sequence lengths (200,
500, 2,000 sites) in simulation 1.

The results of simulation 2 are shown in Table 2.1 and Figure 2.2 applying

the binning strategy for data sets with 1,000, 5,000, and 10,000 pairs data sets. For

each given binning strategy, the average MSE, averaged over the 19 eigen values

and 100 simulations, was obtained and is referred to as aveMSE. We also obtained
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a measure of bias which we denote aveBias. For a given binning strategy and

eigenvalue, we obtain an estimate of the bias as the average estimated eigenvalue,

over 100 simulations, minus the generating eigenvalue. The average absolute value

of these biases over eigenvalues gives aveBias. We also calculated aveMSEs and

aveBiases for estimates of rate matrices. From Table 2.1 and Figure 2.2, we can see

clearly that equal size strategy does better than equal width strategy both in terms

of aveMSEs and aveBiases. Considering that the distribution of the probabilities of

differences in the population is not uniform, the equal width bins may suffer from

uneven number of pairs in each bin. For the bin with few pairs, the information

obtained from this bin may not be enough to get an accurate estimate. Consequently

we recommend using the equal size binning strategy which we do in the following

simulations investigating the optimum number of bins.

Table 2.1 gives results for the equal size binning strategy for various choices of

the number of bins with different data sizes. Over three different sizes of data sets,

1,000, 5,000, and 10,000 pairs, binning into three, four and five bins have smaller

values of aveMSEs and aveBiases than other binning strategies with small differences

among these three binning strategies. Overall, we can see that binning into four bins

is a marginally better than three or five bins.

A valid rate matrix should have the off-diagonal elements greater than or

equal to zero. Table 2.1 also gives the average numbers of negative entries of 380

off-diagonals over 100 simulations. For any sizes of data sets in Table 2.1, the

smaller the numbers of bins, the fewer negative off-diagonals. We note that with
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Table 2.1: The summary of aveMSEs, aveBiases of eigenvalues and rates, the nega-
tive off-diagonals, and relative changes of rates

1,000 pairs
bins e.MSE e.Bias q.MSE q.Bias neg.diag entries > 10%
1 1.69E-03 1.70E-03 7.82E-05 7.82E-05 0.84 217
2 1.30E-04 3.10E-04 2.65E-05 3.31E-05 3.52 57
3 4.07E-05 1.11E-04 2.76E-05 2.51E-05 4.32 37
4 4.05E-05 9.86E-05 3.11E-05 2.50E-05 4.92 36
5 5.33E-05 9.18E-05 3.54E-05 2.63E-05 5.34 41
6 6.27E-05 7.01E-05 3.64E-05 3.40E-05 5.36 44
7 7.01E-05 6.91E-05 3.94E-05 4.17E-05 5.54 43
8 1.08E-04 1.08E-04 5.75E-05 6.63E-05 6.56 48

5,000 pairs
bins e.MSE e.Bias q.MSE q.Bias neg.diag entries > 10%
1 1.79E-04 1.79E-04 6.68E-05 6.68E-05 0.0 213
2 1.60E-04 1.65E-04 7.33E-06 1.71E-05 0.24 54
3 5.11E-05 1.32E-04 6.05E-06 7.45E-06 0.38 22
4 4.02E-05 8.59E-05 7.46E-06 5.73E-06 0.42 17
5 4.57E-05 5.67E-05 8.89E-06 6.27E-06 0.46 16
6 5.37E-05 5.11E-05 1.04E-05 9.38E-06 0.48 21
7 6.18E-05 5.47E-05 1.19E-05 2.09E-05 0.50 31
8 7.16E-05 8.85E-05 1.40E-05 5.80E-05 0.60 38

10,000 pairs
bins e.MSE e.Bias q.MSE q.Bias neg.diag entries > 10%
1 1.78E-03 1.78E-03 6.49E-05 6.49E-05 0.0 214
2 1.60E-04 3.03E-04 5.21E-06 1.49E-05 0.2 43
3 5.19E-05 1.23E-04 3.69E-06 5.32E-06 0.08 11
4 4.13E-05 7.80E-05 4.89E-06 3.52E-06 0.08 10
5 4.65E-05 5.57E-05 6.18E-06 3.91E-06 0.10 12
6 5.39E-05 4.63E-05 7.36E-06 7.05E-06 0.10 14
7 6.14E-05 6.57E-05 8.71E-06 1.53E-05 0.10 21
8 7.02E-05 0.000121334 1.04E-05 4.65E-05 0.14 29

bins: number of bins used
e.MSE and e.Biase: the averaged aveMSEs and aveBiases of eigenvalues
q.MSE and q.Biase: the averaged aveMSEs and aveBiases of rate matrices
neg.diag: averaged negative diagonals among 380 entries among 100 runs
entries > 10%: the number of entries which have the relative errors greater than 10%

four bins, the average numbers of negative entries of 380 off-diagonals drops from

4.92 to 0.42 entries as we increase the number of pairs from 1,000 to 5,000 pairs.

This is a strong indication that the data size 5,000 pairs is reasonable. In practice,

we suggest replacing any negative estimates of off-diagonal elements by zeros and

adjusting diagonal values accordingly.

To investigate biases of rate matrix estimation, we calculated the relative error

by abs((estimate − jtt)/jtt), where estimate is the means of estimates of rates over

100 simulations. The number of entries with relative error greater than 10% drops,
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Figure 2.2: The overall average of means of squared errors and average of biases of
the estimates of the eigenvalues in different binning strategies with sequence length
200 sites and 1000 to 10000 pairs of sequences for simulation 2. A and C in the
column of left-hand side are the results of the equal size strategy; B and D in the
column at right-hand side are for the equal width one. In each graph, the number
of the bins are from 1 to 20 plus 30 and 40.
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as expected, as the number of pairs increases, with the largest drop from 1,000 to

5,000 pairs. Together with the above results, this suggests reasonable estimates can

be obtained with 5,000 pairs and sequence lengths of 200 sites using four bins.

The results of the simulations 3 and 4 indicate what we can be expected

estimating a rate matrix from a small data set either with fixed sequence length

or a fixed number of taxa. Figure 2.3 presents the results of simulation 3. In this

simulation, the data sets had 20 taxa with sequence lengths from 200 to 10,000

sites. From Figure 2.3, we can see that both the aveMSE 0.918 and the aveBias

0.004 of the 200 sites are the worst. Then they drop to 0.0359 and 0.0026 with

500 sites. When increasing data set sizes from 500 sites, the aveBiases are roughly

stable around 0.0026; aveMSEs change gradually to 0.004. For the average numbers

of negative entries of 380 off-diagonals, it is not surprising to see 25.08, 11.4, 4.65,

1.63, and less than 0.88 entries for 200, 500, 1,000, 2,000, and 3,000 or more sites.

Overall, it looks like that one can get a reasonable estimate of the rate matrix only

with 500 ∼ 1000 sites for a 20 taxa data set.

In the simulation 4, the sequence length was fixed at 500 sites. We found that

aveMSEs and the average numbers of the negative off-diagonal elements are very

similar for 80 to 100 taxa. The aveBiases are close for 30 to 100 taxa. With 30 taxa,

one can expect about four negative off-diagonal entries among 380 in an estimate of

the rate matrix on average.
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Figure 2.3: The overall averaged mean squared errors and averaged biases of the
estimates of the Qs over different sequence lengths for simulation 3. A is the results
for the aveMSEs, average of means of sums of squared errors, over 380 off-diagonal
entries; B is the results for the aveBiases, average of biases, over 380 off-diagonal
entries.

2.6 An Empirical Rate Matrix from the PANDIT Database

Using the current version of the PANDIT database of Whelan et al. (2006),

we obtained an empirical rate matrix and compared it to those of the JTT and

WAG models. Based on our simulation results, we used four equal-sized bins. Pairs

were included in the estimation if their similarities were 0.25 or higher with 200 or

more sites. With these criteria, a total of 183,844 pairs from 2,300 protein families

were selected.

Our estimate of the instantaneous rate matrix has no negative off-diagonal

entry. The sums over the rows are in the range (−10−16, 10−16). Hence, it is a valid

estimate of the instantaneous rate matrix. In Figure 2.4, the exchangeabilities of



51

the JTT, WAG and our estimates (labeled PANDIT) are presented. We can see

that the three plots in Figure 2.4 are similar in pattern, but different in detail. As

indicated in Jones et al. (1992), the pairs used to construct the JTT rate matrix

had the 85% or larger similarities. By contrast, the WAG matrix was estimated

using 3905 globular protein amino acid sequences in 182 protein families without

85% pairwise similarity constraint. For our estimate, we used a data set which has

2,300 protein families. Comparing our estimates with the JTT and WAG models,

the bubbles of our estimates look smoother than the WAG ones which in turn are

smoother than the JTT estimates. This reflects the fact that our procedure is able

to use more data and more divergent sequences than the JTT and WAG models. It

has the advantage that unlike WAG, we do not need an estimated tree.

The alignments used in our estimation are originally from the Swiss-Prot

database (Boeckmann et al. 2003) aligned using ClustalW (Thompson et al. 1994).

The PAM series matrices were used when obtaining scores for alignments. Pairs

of different amino acids that are unlikely to arise as a consequence of substitution

under a PAM model receive a relatively poor score. Consequently, methods that

infer rates of substitution from such alignments will tend to see fewer pairs of char-

acter states that are unusual under the PAM model than they might have had a

different scoring method been used. This may provide part of the explanation for

the similarity between the JTT model and our estimates in the bubble plot.
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Figure 2.4: Exchangeabilities of the JTT, the WAG and the PANDIT estimates

Conclusions

Our simulation results show that the binning strategy is an effective solution

to overcome some of difficulties of the AB method when using amino acid data.

Our simulation results indicate that the method works well without requiring phy-

logenetic reconstruction. While our main application was to a large database, our
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method can also be used to estimate a rate matrix from a relatively small data set.

The method requires some decisions about what bins should be used.

Our simulation results suggest that an equal size binning strategy is preferable to

an equal width strategy. In addition, pairs with similarities lower than 0.25 give rise

to unstable estimation of eigenvalues and should be removed. Simulation results

pertaining to the number of bins were less clear but it appears that fewer rather

than more bins usually give rise to to better estimation. In the absence of additional

information, our simulations suggest using four equal sized bins.



Chapter 3

Identifiability and the Barry

Hartigan Model

3.1 Introduction

Phylogenetic estimation using model-based distance, maximum likelihood and

Bayesian approaches have exploded in popularity in the last decade. Markov mod-

els employed by these approaches (e.g., the general time reversible (GTR) model)

typically assume that nucleotide or amino acid sequences evolve through a homo-

geneous, stationary or reversible process over edges of the tree of Life (Felsenstein,

2004). However, in some cases, molecular sequence evolution will fail to satisfy

these assumptions; nucleotide or amino acid frequencies can sometimes vary greatly

between sequences under examination and the use of Markov models that fail to ac-

count for this property can positively mislead phylogenetic estimation (Foster and

Hickey 1999, Galtier and Gouy 1995). Jayaswal et al. (2005) have showed that,

for such cases, a more general Markov model proposed first by Barry and Hartigan

(1987) (the ‘BH’ model) is a useful alternative to the GTR family of models because

54
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it makes many fewer assumptions, namely that: (3.1) evolution follows a Markov

process across each edge and, (3.2) the data patterns at each site are independently

and identically distributed. As a result, the BH model allows the character frequen-

cies to differ across nodes in the tree and the evolutionary process to differ not only

across edges but along the two directions on an edge. Here we show that despite

the fact that the BH model has been shown to improve accuracy of phylogenetic

estimation under some conditions, there are potentially serious problems with the

identifiability of its parameters.

An identifiability problem arises under the BH model, because, as shown

in detail below, different sets of parameters can lead to the same probability distri-

bution of data patterns under the model and hence the same likelihood of the data.

Specifically, we will show that there always exist multiple different sets of transition

probabilities along edges and different sets of character base frequency vectors at

internal nodes that will lead yield the same likelihood. If the BH model is being used

to infer the tree topology alone, this will not create a problem. This follows from the

main result of Steel (1994) which shows that LogDet distances are tree-additive for

the BH model, implying that sets of pairwise distributions for different topologies are

always different. However if researchers are interested in the nucleotide transition

probabilities along edges of the phylogeny, the nucleotide frequencies at internal

nodes, or approximations to edge lengths as, for example, proposed by Jayaswal

et al. (2005), non-identifiability becomes a major problem. Below, we explain the

nature of this non-identifiability and the effect it has on estimation of parameters.
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3.2 The Identifiability Problem

Theorem 4.1 of Chang (1996) shows that if estimates are constrained to be

within a class of transition matrices that is reconstructible from rows, those matrices

are identifiable. The identifiability problem for the BH model arises because it places

no such restrictions on the transition matrices that can be estimated. To illustrate

the problem, assume that we have obtained three sequences from species a, b, and

c in Figure 3.1, and the sequences are made up of strings of two states “0” and

“1”. Also assume that P a, P b, and P c are transition matrices of three branches

(i, a), (i, b) and (i, c). For a site which has the states (xa, xb, xc), the site pattern

probability is

P (xa, xb, xc) = π0 ∗ P a
0,xa

∗ P b
0,xb

∗ P c
0,xc

+ π1 ∗ P a
1,xa

∗ P b
1,xb

∗ P c
1,xc

(3.1)

where π0 and π1 are the base character frequencies at the internal node i. Now if the

rows of P a, P b, and P c, are permuted and π0 and π1 are exchanged, then we have

πs
0 = π1, π

s
1 = π0; P sa

0,xa
= P a

1,xa
, P sb

0,xb
= P b

1,xb
, P sc

0,xc
= P c

1,xc
and etc. The pattern

probability of this site after this permutation is shown in formula 3.2.

P s(xa, xb, xc) = πs
0 ∗ P sa

0,xa
∗ P sb

0,xb
∗ P sc

0,xc
+ πs

1 ∗ P sa
1,xa

∗ P sb
1,xb

∗ P sc
1,xc

= π1 ∗ P a
1,xa

∗ P b
1,xb

∗ P c
1,xc

+ π0 ∗ P a
0,xa

∗ P b
0,xb

∗ P c
0,xc

= P (xa, xb, xc) (3.2)
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Equation 3.2 implies that the probabilities of data patterns with and without per-

muting the rows of the conditional probabilities along three edges and the base

character frequencies at internal node i remain the same. Therefore this model is

not identifiable. Note that the same permutation was applied to each of the transi-

tion matrices. More generally, for sequence data with m different states and three

taxa, there are m! permutations which have the same site pattern distribution. Fur-

thermore, for any topology which has more than one internal node, the problem is

compounded because multiple permutations of transition matrices can be performed

at each internal node without a change in the likelihood of the data.

a

b c

i

Q(b)

Q(a)

Q(c)

Figure 3.1: The three-taxon tree used in simulations. The Q(e) are oriented so that
rows refer to the state at the internal node. The simulating model has the same
Q(e) for each edge determined from a GTR model with edge length 0.5, station-
ary frequencies 0.1, 0.35, 0.4, 0.15 and exchangeabilities 0.1, 1, 0.5, 0.5, 1 and 0.1 for
AC,AG,AT,CG,CT AND GT

.
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3.3 Simulations

To demonstrate how and why the non-identifiability of the BH model may

create problems, we simulated large sequence-length datasets under the widely-used

GTR model, which is a special case of the BH model. For these simulated datasets,

we know the true generating parameters and thus we can make a comparison be-

tween the true values and the estimates of parameters. With long sequence lengths,

uncertainty due to estimation is minimal, and therefore large departures of esti-

mates from the true values can be attributed to non-identifiability effects. For

the simulation, we selected a very simple three-branch tree (Figure 3.1) and simu-

lated data with the Seq-Gen program (Rambaut and Grassly, 1997) under a GTR

model with arbitrarily chosen parameters: as a stationary nucleotide frequency vec-

tor of Π = {0.10, 0.35, 0.4, 0.15}, state exchangeabilities of r = {0.1(a ↔ c), 1(a ↔

g), 0.5(a ↔ t), 0.5(c ↔ g), 1(c ↔ t), 0.1(g ↔ t)} and a sequence length of 100,000

sites. For this data set, we estimated parameters of the BH model using the software

described in Jayaswal et al. (2005).

To determine whether our estimated matrices have the correct permutation

relative to the model used for simulation, we employed a method that calculates the

sum of squares between the entries of true joint probability matrices, Q(e), and the

estimated matrices, Q̂(e), as follows:

SSQs = min
s∈S

∑
e∈E

∑
k,j∈{A,C,G,T}

(Q
(e)
k,j − Q̂

(e)s
k,j )2 (3.3)

Here S is the set of 24 permutations of rows, E contains the three branches and
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Q̂
(e)s
i,j is the sth permutation of Q̂(e). SSQs gives the minimum departure of estimates

from the true matrices over all permutations of the rows of the estimated matrices;

the same permutation is applied for each edge. If minimum sum of squares is

attained without requiring permutation, the best-fitting permutation is the ‘correct’

permutation, otherwise it is a ‘wrong’ permutation. For the large sequence length

datasets we considered, only one permutation of the matrices gave a small sum of

squares.

3.4 Results and Discussion for Permutations of BH Esti-

mates

Here we show the results for a simulated dataset with 100,000 sites. To avoid

difficulties with local maxima and to investigate whether the correct permutation

tends to get estimated in practice, we used 100 sets of randomly generated matri-

ces along the three branches in Figure 3.1 as initial values for ML estimation and

obtained 100 sets of estimates for the single dataset. Of these 100 sets of estimates,

97 converged on the global optimum with log-likelihoods within 0.5 of -349,111.0,

whereas three of them were local maxima with log-likelihoods less than -349,366.7.

Below we restrict attention to the 97 cases where the global optimum was estimated.

For these 97 estimates, SSQss ranged from 0.000067 to 0.00018 indicating that

the actual values of the entries of estimated matrices were very close to the entries in

the true generating matrices once they were permuted appropriately. However, for 93

of the cases, the estimated matrices did not correspond to the original permutation of
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the matrix; the best-fitting permutations covered 23 of the 24 possible permutations

(Table 3.1). Thus the non-identifiability problem with the BH model arises because

the correct permutation of the estimated matrices cannot be recovered in practice.

Table 3.1: The numbers of times that each of the 24 permutations was the best-
fitting permutation among the 97 runs

permutation count permutation count permutation count
1234 4 2314 6 3412 4
1243 5 2341 6 3421 7
1324 5 2413 4 4123 4
1342 2 2431 1 4132 1
1423 2 3124 5 4213 3
1432 4 3142 3 4231 4
2134 4 3214 5 4312 0
2143 5 3241 7 4321 6

One of the potential benefits of the BH model is that it allows the researcher

to both accommodate changing state (nucleotide or amino acid) frequencies during

phylogenetic estimation as well as estimate the ancestral character state frequency

vector at internal nodes of the tree. The latter parameters are of general interest

to molecular evolutionists as they may give insights into the physical properties

of ancestral molecules and environments (for example, see Boussau et al. 2008).

Unfortunately, one result of the non-identifiability problem we describe is that the

ancestral base character frequency vector of the internal node will also only be

accurately estimated up to permutation. To illustrate this, we estimated the base

character frequency vectors of internal node i for the five most frequent permutations

recovered above (Table 3.2). Because incorrect permutations were estimated, the

estimated base frequencies are drastically different from the true values with an
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averaged sum of square error of approximately 0.13 as compared with 0.002 for the

correct permutations.

Table 3.2: The mean vectors of estimates of internal node frequency vectors for the
five most frequent permutations

permutation counts mean vector of the estimates
3214 7 (0.15, 0.35, 0.11, 0.39)
3421 7 (0.15, 0.40, 0.11, 0.34)
2314 6 (0.40, 0.11, 0.34, 0.15)
2341 6 (0.15, 0.11, 0.34, 0.39)
4321 6 (0.15, 0.40, 0.34, 0.11)
true vector (0.10, 0.35, 0.40, 0.15)

Another serious problem can occur if researchers wish to estimate edge lengths

for their phylogenetic tree based on the estimated BH model parameters. For the

BH model, the entries in the joint probability matrices along edges are optimized

directly. No edge length estimation is involved as the evolutionary processes along

edges need not correspond to a continuous time Markov process. However, Jayaswal

et al. (2005) described a way to extract an approximate edge length estimate from

the BH model parameters by assuming a continuous time Markov process. A diffi-

culty arises because the method requires logarithms of all of the eigenvalues of the

conditional probability matrices of the two evolutionary directions along a branch

to exist. Unfortunately, we find that for most estimated permutations this is not

the case. For example, for the eigen decompositions of the transition matrices along

branches of 24 permutations of the example above we found that typically only

one permutation has all positive eigenvalues whereas the others all have complex
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and/or negative valued eigenvalues. For idealized simulation cases where the gen-

erating model is GTR and there is sufficient data, the correct permutation of the

BH estimate will correspond to a case where there the conditional probability ma-

trices have positive eigenvalues, as in our example. However, for real data that have

evolved under heterogeneous historical conditions there is no guarantee that any

of the permutations of these matrices will meet this condition or, if they do, that

they correspond to the correct permutations. For example, we fit the BH model to

the Plasmodium species phylogenomic dataset and tree described by Davalos and

Perkins (2008) which had eight taxa and 77313 sites after gaps were removed. We

estimated the parameters using the BH model with random initial starting values.

For each of the 13 edges of the tree in Figure 1(A) of Davalos and Perkins (2008),

we found that the transition matrices always had negative eigenvalues even after

ignoring the complex-valued portions of the eigenvalues. Thus, the approximate

method of Jayaswal et al. (2005) could not be used to obtain edge lengths for this

case.

From the foregoing discussion it should be clear that, for BH model parameter

estimates to be useful to researchers, a method for estimating the correct permuta-

tion is necessary. One possibility is given in the implementation of Jayaswal et al.

(2005), where they recommended initial parameter values for BH optimization be

1
8

on the diagonal and 1
24

on the off-diagonal elements. This satisfies the condition

of ‘diagonal largest in column’ (DLC) for transition matrices in both evolutionary

directions. The DLC condition is discussed in Chang (1996) as a potential condition
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for identifiability. If the true evolutionary process yields transition matrices with this

property, then starting the optimization with initial parameters that satisfy DLC

could help with the estimation of the correct permutation. We did an experiment

randomly generating 100 datasets each with 1000 sites under our generating GTR

model which does satisfy the DLC condition. For 100 sets of estimates of transition

probability matrices obtained using Jayaswal and colleagues’ recommended initial

values, we always obtained the correct permutation.

However, in practice part of the reason for considering a BH model is to fit

nonstationary processes; in the latter, there is no guarantee that the DLC condition

will hold for the correct permutation. To demonstrate this, we simulated under a

nonstationary model using the tree in Figure 3.1. For this generating model, the

frequency vector was {0.45, 0.05, 0.05, 0.45} for a GTR model along edge (a, i); the

frequency vector was {0.05, 0.45, 0.45, 0.05} for edges (i, b) and (i, c). All three edges

shared the same exchangeability vector {1.0, 5.6, 1.0, 1.0, 5.6, 1.0} for a ↔ c, a ↔

g, a ↔ t, c ↔ g, c ↔ t, g ↔ t and the root frequency vector is {0.1, 0.4, 0.4, 0.1}.

The model was nonstationary because different GTR models were used on the other

edges. Here, although the transition matrices do satisfy the DLC condition, the joint

probability matrices do not. In this experiment, the estimates obtained based on

optimization from Jayaswal and colleagues’ recommended initial parameter settings

for the joint probability matrices did not correspond to the correct permutations and

the eigenvalue vectors of the estimated transition matrices along the three edges had

negative values.
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3.5 A Parsimony Method of Estimating Permutations

Below we describe a simple approximate method for finding the correct per-

mutations that may be useful in practice and illustrate it with reference to the

topology of Figure 3.1. If we assume that the evolutionary processes along the

three branches are relatively close to stationarity, then it is likely that the ancestral

nucleotide frequency vector of internal node i will be relatively similar to the fre-

quencies of the two nearest nodes. For instance, if the average of the character base

frequency vectors of leaf nodes a and b in Figure 3.1 were {0.85, 0.15, 0, 0}, given

the edge lengths shown, the correct permutation of the estimate the internal node i

nucleotide frequency vector should be closer to {0.85, 0.15, 0, 0} than other possible

permutations (e.g., {0.15, 0.85, 0, 0}). Based on this intuition, we propose a least

squares method for estimating the correct permutation. Let Π̂a, Π̂b, Π̂c, and Π̂i

denote the estimated frequency vectors at the nodes a, b, c, and i. For any permu-

tation s of estimates, we compute ||Π̂s
i − (Π̂a + Π̂b + Π̂c)/3||2, where a, b, and c are

nearest nodes of internal node i in subtree (a, b, c, i). The best-fitting permutation

is computed by the following criterion.

SSπs = min
s∈S

||Π̂s
i − (Π̂a + Π̂b + Π̂c)/3||2 (3.4)

Testing our idea, we used the estimates obtained from our previous simulation ex-

periments, and estimated the permutation using (3.4). We found that in all cases

examined the sums of squares of the best-fitting permutations were smaller than

others. Secondly, we checked whether the s obtained by this strategy was the true
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correct permutation and verified that for the cases where the estimation converged

on global optimal likelihood, the correct permutation was always selected by our

method. In general, we expect that this method will perform well for real data sets

where the nucleotide composition of sequences is changing gradually (rather than

abruptly) over the tree topology.

To extend our proposal to more than three taxa, one could minimize the sum

of (3.4) over all internal nodes. One approach to doing so is as follows. Given an

ordering of the internal nodes, successively to determine the permutations minimiz-

ing (3.4) for each of the internal nodes. For each internal node, when minimizing,

hold the frequency vectors at all other internal nodes fixed. Iterate the process until

no further improvement in the sum is possible. Iteration is required here since the

best permutation for node i depends on the frequencies at a. Consequently, if the

permutation at node a changes when it is considered, the permutation for node i

minimizing (3.4) might change as well.

Although the phylogenetic tree estimated by the BH model is an identifiable

parameter, we have shown that there is a problem with identifiability of the joint

probability matrix parameters. If ignored, this non-identifiability problem can mis-

lead researchers interested in the ancestral character state compositions estimated

by the BH method, or approximate edge lengths generated by existing implemen-

tations. We have proposed a solution that will select the correct permutation when

the data evolves in a ‘close to stationary’ manner. However, if this assumption is

not correct, then researchers should be aware of the potential pitfalls stemming from
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the identifiability problem we have discussed.



Chapter 4

Fitting Nonstationary

General-time-reversible Models to

Obtain Edge Lengths and

Frequencies for the

Barry-Hartigan Model

4.1 Introduction

The general Markov phylogenetic model first introduced by Barry and Harti-

gan (1987), known as the BH model, is very flexible. As with most models, it assumes

an independent and identical distribution among sites but differs in that it allows

separate discrete-time Markov processes to occur along edges. Work by Jayaswal

et al. (2005) and Oscamou et al. (2008) have shown that this model has better phy-

logenetic estimation properties than simple models when evolutionary processes are

67
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nonstationary. However, we previously showed that the estimates of the BH model

suffer from identifiability problems that lead to difficulties with correctly estimating

internal node frequencies (Zou et al. 2011a). A further complication is that the BH

model does not directly involve edge-length estimation and thus neither conclusions

nor subsequent analyses (e.g., molecular clock estimation) can be made that require

such information.

A model can be described as non-identifiable when is defined as cases where two

or more distinct parameter settings yield the same probability distribution on the

data. The maximum likelihood (ML) estimates of a BH model are joint probability

matrices. When using the BH model to reanalyze a recently published multigene

dataset from the malaria parasites of the genus Plasmodium described in Davalos and

Perkins (2008), we found that permuting the rows of some of the joint probability

matrices gave exactly the same likelihood. Lemma 4.1 of Chang (1996) states that

in a three-taxon tree, if the conditional probability matrix is reconstructible from

rows, the full model is identifiable. This restriction does not hold for the BH model

and our observations from the Plasmodium dataset confirmed that the estimates of

transition matrices of the BH model are not unique; there are always at least 24 ML

estimates. This differs significantly from the general time reversible (GTR) model

because, as shown by Allman et al. (2008), this model with four states is identifiable

for all parameters. For the BH model, although the estimates of leaf node state

frequencies match the observed frequencies for the corresponding taxa (Jayaswal

et al. 2005), there is no guarantee that the estimates of nucleotide frequencies at
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the internal nodes will be fitted to the right permutations. In this paper, we define

the best-fitting nonstationary GTR models along edges, referred to as nonstationary

best-fit GTR (NSGTR) models, and propose a method that employs the sum of

squared differences between NSGTR estimates and BH estimates to identify the

best-fitting permutations.

The general time reversible (GTR) Markov model assumes a continuous-time

stationary process of nucleotide substitution occurs over the tree and is often used

in phylogenetic estimation (see Chapter 13 in Felsenstein 2004). For this model,

the evolutionary processes are at equilibrium and therefore the root position is not

important as the entire topology shares one stationary frequency vector and one

substitution rate matrix. The equilibrium assumption is restrictive and violations

of this assumption for real datasets have been demonstrated by a number of studies

including Yang and Roberts (1995), Foster and Hickey (1999), Foster (2004) and

Ababneh et al. (2006). Two commonly used nonstationary models have been pro-

posed in Yang and Roberts (1995) and Galtier and Gouy (1998). Yang and Robert’s

(YR) model used the Hasegawa-Kishino-Yano (HKY) model proposed in Hasegawa

et al. (1985) as the base model but allowed each edge to have its own edge length

and stationary frequency vector. However, in this case the entire tree still shares the

same transition and transversion ratio. Galtier and Gouy (1998) suggested a simpler

model (the GG model) that allows G+C-content to change throughout the tree. It

uses the model in Tamura (1992) as a base and assumes a common transition and

transversion ratio along all edges. This model is a special case of the YR model; for
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each edge, the GG model has 2 parameters less than the YR model. Compared to

these two nonstationary models, the BH model is much more flexible.

While edge lengths were not the primary focus of Jayaswal et al. (2005), ideas

were provided for estimating them. In most stationary models, edge lengths are in-

terpretable as the expected numbers of substitutions. This interpretation is desirable

for nonstationary models as well but does not apply for some current implementa-

tions. Jayaswal et al. (2005) estimated approximate edge lengths for the BH model

by averaging the GTR distances for the two opposing evolutionary directions. How-

ever, this solution is difficult to justify if the process is nonstationary. Yang and

Roberts (1995) pointed out that for nonstationary evolutionary processes, the base

frequency vector of an edge will often change along the lineages. The edge lengths

in Yang and Roberts (1995) were the conventional edge length ts in P (ts) = eRts for

an edge where −∑
j πjRjj = 1, πj is the stationary base frequency and R is the rate

matrix; the edge lengths in the GG model were computed using the formula in the

appendix of Galtier and Gouy (1998). Because both of these models are nonstation-

ary, the edge length parameters they employ do not correspond to the conventional

interpretation as the expected number of substitutions per site. Fortunately, Minin

and Suchard (2008b) recently introduced a method to compute the conditional ex-

pected number of substitutions in the interval [0, t). This method can be used to

obtain edge lengths interpretable as the expected numbers of substitutions per site

for the YR, GG and NSGTR models.
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4.2 Methods

The BH model assumes that all sites have the same distribution, that the

evolutionary processes at all sites are independent and that a Markov process of

substitution occurs along each edge. This process, however, need not correspond to

a continuous-time Markov process. What is required is only that substitutions along

an edge (a, b) occur with probabilities given by a matrix Pa,b with positive entries

and row sums equal to 1. Conditional upon the character state at an internal node,

the process along adjacent edges is independent. For instance, for the star tree

in Figure 4.1a, the processes along edges (a, i), (i, b) and (i, c) are independent of

each other given the character state at i. The parameters of the joint probability

matrices along the edges, may or may not correspond to a continuous Markov chain,

but they must satisfy the internal consistency constraint for edges (a, i), (i, b) and

(i, c) connected to internal node i whereby state frequencies at node i are the same

regardless of the edge matrices. Because of this internal consistency constraint, the

likelihood of the BH model does not depend on the position of the root of the tree.

In contrast, the NSGTR model described below is a nonstationary model that

requires a root for its specification. The model assumes continuous-time GTR sub-

stitution processes along edges away from the root node. However, these GTR

substitution processes are allowed to be different for different edges. In addition,

the frequencies at the root node need not be the stationary frequencies of a GTR

model for an edge connected to the root. For the kth permutation P k
a,b of Pa,b, a

NSGTR model Rk
a,b, Πks

a,b and tka,b will be fitted and P nk
a,b will be recovered from this
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Figure 4.1: Trees of three and four taxa

NSGTR model. Define SSk
ab =

∑
i,j(P

k
a,b(i, j) − P nk

a,b (i, j))
2 as the sum of squares

of the differences between P k
a,b and P nk

a,b . The sum of squares, SSk
ba is also com-

puted for the reverse direction using the same procedure. After obtaining all SSks

along all edges for both forward and reverse evolutionary directions, we sum over

edges to get a total SS. As discussed above, this requires a root node since the

evolutionary direction must be specified and, in absence of knowledge of position

of the root, we consider all possible root nodes. In our approach, the internal con-

sistency requirement plays an important role in determining the permutations. For

instance, considering the three-taxon tree in Figure 4.1a, internal consistency gives

F T
a,i1 = Fi,b1 = Fi,c1, where Fa,i, Fi,b, and Fi,c are the joint probability matrices

along edges of (a, i), (i, b) and (i, c); 1 is a column vector with ones as its elements.

If the row permutation of Fi,b of edge (i, b) is changed, the row permutation of Fi,c

and the column permutation of Fa,i should be changed accordingly to satisfy internal

consistency.
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4.2.1 The Best Fitting Nonstationary GTR (NSGTR) Model

Under the assumptions of the NSGTR model above, for any edge (a, b), using

the joint probability matrix Fa,b and the frequency vector Πa =
∑

b Fa,b, we can

compute a transition matrix Pa,b = Π−1
a Fa,b = eRa,bta,b , where Ra,b is the instanta-

neous rate matrix of Pa,b; ta,b is the evolutionary time associated with Ra,b of Pa,b. In

Markov chain theory, if the process is at equilibrium, the largest of the eigenvalues is

equal to 1 and the corresponding left eigenvector is the stationary frequency vector:

Πs
a,bPa,b = Πs

a,b, where Πs
a,b is the base frequency vector at the equilibrium. Using

Pa,b = eRa,bta,b , we can compute Ra,bta,b. The GTR model obtained above is the best

fit GTR model along edge (a, b) in the direction a → b. Although there is only one

correct direction, it is possible that there will be an Rb,a and tb,a corresponding to

a model in the reverse evolutionary direction that gives the same joint probabilities

and, a priori, we may not know which is the correct direction. However, in general,

Ra,b �= Rb,a and ta,b �= tb,a so knowing the direction of evolution matters and hence

specification of a root of the tree will ultimately be necessary (discussed below in

more detail).

In any case, when estimating the best fitting NSGTR model in direction a → b,

we first obtain Πs
a,b through eigenvector decomposition of Pa,b = Π−1

a Fa,b where Fa,b

and Πa come from the BH model. Then we calculate a symmetric joint probability

matrix F s
a,b = (Πs

a,bΠ
−1
a Fa,b + (Πs

a,bΠ
−1
a Fa,b)

T )/2. We calculate a symmetric estimate

since this is implied by the corresponding true joint probability matrix for a time

reversible model. Using F s
a,b and Πs

a,b, we can then compute the rate matrix and
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the conventional edge length of the transition matrix P s
a,b = (Πs

a,b)
−1F s

a,b for this

edge. The rate matrix and conventional edge length are then estimated as log P s
a,b

through eigenvector decomposition. In some cases, the eigenvector decomposition

of P s
a,b gives negative eigenvalues and in these cases, an estimate of the rate matrix

can not be obtained. However the best-fitting transition matrix that corresponds to

a limiting case of the NSGTR model can still be obtained by setting the negative

eigenvalues of P s
a,b to zero.

4.2.2 Iteratively Estimating the Permutations of Frequencies at In-

ternal Nodes

As we have previously shown in Zou et al. (2011a), different permutations of

the rows of BH substitution model can yield the same distribution of observed data.

To illustrate, assume that (xa, xb, xc) are the character states for species a, b, and c in

Figure 4.1a and that these are each 0 or 1. Assume that π0 and π1 are the base char-

acter frequencies at the internal node i and that P0,xa , P0,xb
, P0,xc , P1,xa , P1,xb

, and P1,xc

are the elements of transition matrices Pi,a, Pi,b, and Pi,c. Now if the rows of

Pi,a, Pi,b, and Pi,c, are permuted and π0 and π1 are exchanged, then we have

πs
0 = π1, π

s
1 = π0; P s

0,xa
= P1,xa , P s

0,xb
= P1,xb

, P s
0,xc

= P1,xc , etc. Comparing

the probabilities of the observed character states we obtain

P s(xa, xb, xc) = πs
0 ∗ P s

0,xa
∗ P s

0,xb
∗ P s

0,xc
+ πs

1 ∗ P s
1,xa

∗ P s
1,xb

∗ P s
1,xc

= π1 ∗ P1,xa ∗ P1,xb
∗ P1,xc + π0 ∗ P0,xa ∗ P0,xb

∗ P0,xc

= P (xa, xb, xc) (4.1)
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The pattern probabilities are the same before and after permuting regardless of the

observed character states. Because of this lack of identifiability due to permutation,

in a DNA dataset, 24 sets of estimates of joint probability matrices could give the

same likelihood in the three-taxon tree of Figure 4.1a. For an internal edge which

connects two internal nodes, there are 576 permutations of the rows and columns of

the joint probability matrix for that edge that will give the same probability of data

at two internal nodes; for an edge which is connected to an internal node and a leaf

node or the root node, there are 24 permutations of the joint probability matrix for

that edge that will give the same probability of data at the internal node.

We introduced a parsimony-like method for estimating the correct permutation

of frequencies at internal nodes in Zou et al. (2011a). For this method to work the

frequency vectors at two adjacent nodes should not be too different. Although we

have used this method in the analysis of nonstationary data, it will be valuable to

have a method that applies in more complicated and general cases. In the following,

we introduce a method which can be used to estimate permutations of internal node

frequencies without requiring frequencies at adjacent nodes to be similar.

The method for estimating permutations of internal node frequencies obtains

the best-fitting NSGTR model above for each permutation of the BH estimated joint

probability matrices. The estimated permutations along all edges are taken as those

that give the overall minimum distances between the BH transition matrices and

the NSGTR transition matrices as measured by the sum of squares of differences

between these two matrices.
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Using the four-taxon tree shown in Figure 4.1b, we will illustrate in more detail

how the permutations are estimated. Our procedure takes all nodes in the tree as

valid rooting positions and examines them one by one. For each rooting position

we assign initial permutations for the joint probability matrices of all edges. Taking

node a as the root, we compute the total minimum sum of squares minSS from

the tips of the tree to the root a. We start from the node j. In this subtree, we

first fix the row permutation of the joint probability matrix of edge (i, j) and pick

a permutation kj which gives us minSSj:

minSS1
j = min

kj

SS
kj

ij + SS
kj

jc + SS
kj

jd (4.2)

The index kj is the column permutation of Fij and the row permutation of Fjb and

Fjc. Having determined the permutation for j, we move to the node i. Keeping the

column permutation of Fij as kj, we determine ki giving minSSi using the same

criterion of equation 4.2 but applied to the three edges connected to the node i. We

calculate the total sum of squares of the first iteration using the SSs obtained for

edges (a, i), (i, b), (j, c), (j, d) and (i, j), giving a decomposition of the sum of squares

as minSS1 = SSki
ai +SSki

ib +SS
kj

jc +SS
kj

jd +SS
ki,kj

ij . For the second iteration, ki is the

initial row permutation of Fij. With this different initial permutation we repeat the

process to obtain another set of ki and kj and minSS2. Iterations continue as long

as minSSm < minSSm−1. The permutation indices ki and kj of the final minSST

are the estimated permutation of the BH estimates when rooting at node a. For

each node in the tree, we repeat the procedure with that node being the root. The
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ki and kj that minimize SS over all root choices are the estimated permutations of

BH estimates.

In our experiments, for a given BH transition matrix, there was always only

one permutation for which a GTR model with a set of valid instantaneous rate

matrix and stationary frequency vector could be embedded. For permutations that

do not give valid rate matrices, some corrections were needed. If P k
a,b has eigen-

decomposition UΛU−1, then, up to a constant of proportionality, the rate matrix

is estimated as U log[Λ]U−1. In practice, it is possible that some of the eigenvalues

in Λ will be negative, making it impossible to take logarithms. In this case, we set

the corresponding entries of log[Λ] to a large (in magnitude) negative number. One

further correction was to set negative entries of the estimated rate matrix to 0 and

then adjust diagonal entries accordingly so that rows of the rate matrix sum to 0.

4.3 Defining the Number of Substitutions

For most phylogenetic models, rate matrices are conventionally rescaled so

that edge lengths are interpretable as expected numbers of substitutions. For a

stationary model, if R is the rate matrix and Π the stationary matrix, R is rescaled

so that −∑
j πjRjj = 1. For nonstationary models, however, this rescaling will not

necessarily give edge lengths with the correct interpretation (Minin and Suchard

2008b). Below we give a formula for the expected number of substitutions under

our nonstationary model with an unscaled rate matrix.

Let N(t) be the number of substitutions over an edge of length t; let R be the
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instantaneous rate matrix of a continuous time Markov model; P (t) = eRt is the

corresponding transition matrix. Let Xt denote the character state of the process

at time t and let RL denote the rate matrix R but with diagonal entries set to zero.

Equation 2.3 of Minin and Suchard (2008b) gives

E[N(t)I{Xt = j}|X0 = i] =

∫ t

0

(eRzRLeR(t−z))ijdz

Thus, if βi = P (X0 = i),

E[N(t)] =
∑
i,j

βiE[N(t)I{Xt = j}|X0 = i]

=
∑
i,j

βi

∫ t

0

(eRzRLeR(t−z))ijdz

=
∑

i

βi

∫ t

0

∑
l,k �=l

[eRz]il
∑
k �=l

[RL]lk
∑

j

[eR(t−z)]kjdz

Since
∑

j[e
R(t−z)]kj =

∑
j Pk,j(t − z) = 1 and

∑
k �=l Rlk = −Rll, we obtain that

E[N(t)] = −
∑

i

βi

∫ t

0

∑
l

[P (z)]ilRlldz

For a time-reversible model, P (t) has an eigenvector decomposition as P (t) =

UeΛtU−1 where eΛt is a diagonal matrix with ith diagonal entry eλit; the ith column

of U gives the ith eigenvector of P and eλit gives the ith eigenvalue; one of the λi is
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zero and the rest are negative. Using the eigenvector decomposition

E[N(t)] = −
∑
ijl

βiRll[U ]ij[

∫ t

0

eλjzdz][U−1]jl (4.3)

When j = 1, the eigenvalue is zero which is the largest eigenvalue of the rate matrix.

Thus
∫ t

0
eλ1zdz = t. When j �= 1,

∫ t

0
eλjzdz = eλjt−1

λj
. Thus,

E[N(t)] = −t
∑

il

βiRll[U ]i1[U
−1]1l −

∑
il,j �=1

βiRll[U ]ij[
eλjt − 1

λj

][U−1]jl (4.4)

Given an edge with transition matrix P (t) = eRt for an unscaled R, if we take our

edge length as te = E[N(t)] and rescale R by 1
te

Rij, then te will be interpretable as

the expected number of substitutions.

If the βi are the stationary frequencies πi for R, this gives the conventional

rescaling where −∑
j πjRjj = 1. The edge lengths coming from this rescaling will

be denoted ts and ts = te only in the case of a stationary model. For the NSGTR

model the appropriate βi required to calculate te are the frequencies at the starting

node which need not coincide with the stationary frequencies.

The parameters of the BH model can be used to estimate a transition matrix

P for any edge. In practice, to obtain te, we use the estimates of P n instead of the

estimates of P and substitute in (4.4).
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4.4 Results and Discussion

4.4.1 Simulation Settings

We used the INDELible sequence simulator (Fletcher and Yang 2009) to create

datasets to test the performance of our methods. The parameters of interest are

joint probability matrices along edges, frequencies at all nodes and edge lengths.

In our simulations, we evaluated both ’mild’ and ’extreme’ settings for parameters.

The mild parameters corresponded to the parameter estimates obtained for the NS-

GTR model fitted to a real phylogenomic dataset consisting of data from the genus

Plasmodium (Davalos and Perkins 2008). The extreme parameters had extreme sta-

tionary frequencies and exchangeabilities but the same NSGTR edge lengths as in

the mild parameters dataset. The tree in figure 1 (a) in Davalos and Perkins (2008)

was treated as the true tree and has been reproduced in Figure 4.2.

4.4.2 Estimated Permutations

Our experience suggests that optimization of parameters under the BH model

can sometimes yield local maxima. To check whether this was the case in our anal-

ysis, for a given dataset, simulated using the mild parameters setting, we randomly

generated 100 sets of joint probability matrices under the true tree as our initial

values to seed the optimization. When estimating parameters of the BH model for

each of the 100 sets of joint probability matrices, we found that 94 out of the 100

had the same maximum log-likelihood up to one decimal place, -335974.1. In the

following, we will ignore the 6 sets of estimates which had much smaller suboptimal
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Figure 4.2: The tree used in the simulations. In the figure, nodes b, c, f , g, k, r, v
and y represent the taxa of P. berghei, P. chabaudi, P. falciparum, P. gallinaceum,
P. knowlesi, P. reichenowi, P. vivax and P. yoelii

log-likelihoods corresponding to local maxima. For each of the 94 set of estimates,

we obtained the best-fitting NSGTR joint probability matrices. The best-fitting

NSGTR joint probability matrices for the estimated permutation had much smaller

distances between the estimates and true values than the best-fitting NSGTR ma-

trices for other permutations. None of the 94 sets of best-fitting permutations cor-

responded to the original BH estimates reinforcing our results indicating that BH

estimation alone is only accurate up to permutation (Zou et al. 2011a).

To test our algorithm for estimating the permutation, we considered the fol-

lowing: 1. whether there exists a distinct minimum sum of squares among 24 or

576 permutations for each edge and; 2. whether our algorithm can find the permu-

tation which gives the distinct minimum sum of squares along edges. To address
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these questions, we estimated NSGTR models for all 24 permutations for the edges

that connect an internal node and a leaf or the root node and 576 permutations

for the edges that connect two internal nodes. Estimation was repeated in both

evolutionary directions. Results for multiple datasets clearly showed that among

all permutations of an edge, only one had a distinctly smaller sum of squares than

the rest. The estimated permutations over the entire tree were those permutations

which gave the smallest minSS along edges. These tests were conducted for 18

simulated datasets under both mild and extreme parameter settings. In all cases,

only one permutation gave a minSS clearly smallest along all edges.

4.4.3 Edge Length Estimation

We compared the parameter estimates obtained from our NSGTR fit to the

estimated BH model on the datasets with results estimated under a stationary GTR

model using PhyML (Guindon and Gascuel 2003) and the GG nonstationary model

implemented in nhPhyML (Boussau and Gouy 2006). Estimated edge lengths from

PhyML and nhPhyML are the ts parameter using the conventional rescaling for

stationary models, −∑
j ΠjRjj = 1, where Π is the stationary frequency vector. For

the GTR model, this ts is equivalent to the expected number of substitutions per

site. However, for the nonstationary evolutionary processes accommodated by the

GG or the BH models along edges, the standard ts edge length parameter is not the

expected number of substitutions; the latter (i.e., te) is instead correctly computed

using equation 4.4. In our experiments, we obtained estimates of the ts parameter

edge lengths from GTR and GG using PhyML and nhPhyML. We also computed
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the estimates of the expected number of substitutions (the tes) along edges using

the estimates of joint probabilities of GG and NSGTR models in equation 4.4. Since

this is a simulated dataset, we also present the true average number of substitutions

in Figure 4.3.

For the tree in Figure 4.3, we can separate the edges into two groups: a long

edge group containing edges (5, 2), (6, 1), (6, g) and (5, 4) and a short edge group

containing edges (1, f), (1, r), (4, c), (3, b) and (3,y). The estimates of edge lengths

for the short edge group are very similar across different models and methods for

calculating edge lengths. In the long edge group, the NSGTR estimates tend to be

the closest to the true edge lengths. The estimates of t output by nhPhyML ts and

the expected number of substitutions for this dataset, te, obtained by correcting

the ts parameter with equation 4.4 did much better than the estimates of the GTR

model from PhyML. For the GTR model, the estimates for all edges were poor, and

especially for edge (6, 5) that was estimated to be zero when its true value was 0.033.

Notably, GTR model estimates stretched all edges in the long edge group. That the

GTR model performed worst under these conditions is not surprising given that it

was badly misspecified.

We did an additional simulation to explore the effects of edge lengths estimated

by nhPhyML under a correctly specified GG model. Using INDELible, we simulated

a series of pairs under the GG model with 77313 sites. All pairs had the same starting

state frequency vector {0.41, 0.10, 0.16, 0.33} for character states A, C, G, T , G+C-

content of 0.9 and transition/transversion ratio parameter 2. The edge lengths in
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Figure 4.3: Estimates of edge lengths under four models of simulated dataset with
extreme parameters
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parameters are different for pairs. The results are presented in Table 4.1. As can

be seen, the estimated expected number of substitutions te are much closer to the

true values than the ts edge lengths output by nhPhyML.

Table 4.1: The edge lengths and expected numbers of substitutions in the simulation
for testing nhPhyML estimates of edge lengths

ts te
True∗ Estimate∗ True∗∗ Estimate∗∗

0.1 0.159 0.115 0.141
0.2 0.293 0.224 0.260
0.3 0.410 0.327 0.361
0.4 0.508 0.426 0.451
0.5 0.624 0.520 0.569
0.6 0.720 0.610 0.630
0.7 0.806 0.697 0.798
0.8 0.909 0.782 0.793
0.9 0.996 0.864 0.880
1.3 1.377 1.176 1.199
1.4 1.472 1.251 1.203
2.0 2.080 1.683 1.333

True∗: edge length in T92 model
Estimate∗: the estimates of nhPhyML
True∗∗: the true expected numbers of substitutions
Estimate∗∗: the estimates of the expected numbers of substitutions

4.4.4 The BH Model is Useful when Evolutionary Processes are Non-

stationary

The log likelihoods for the GTR and GG models were much smaller than for

the BH model for a dataset simulated using the NSGTR estimates from the Plas-

modium dataset. The log likelihoods for the GTR, GG, and BH models ranged

from -412260 to -395567. As there are 8 taxa in the Plasmodium dataset, for a fixed
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topology, there are 22 free parameters using the GTR model, 30 free parameters

in the GG model and 123 free parameters in the BH model. The differences of log

likelihoods and degrees of freedom between the BH and GTR models are 16693 and

110 respectively and the corresponding differences between the BH and GG models

are 5732 and 93 respectively; likelihood ratio tests with p-values close to zero clearly

reject the simpler models in favour of BH. We also computed the sums of squares

of differences between true values and estimates of expected numbers of substitu-

tions, frequency vectors at nodes and transition matrices along edges. The sum of

squared differences for the expected number of substitutions te were 0.005, 0.012

and 0.013 for the NSGTR, nhPyML and PhyML estimates; the sums of squares

for the frequencies at nodes were 0.04, 0.14, and 0.11 for NSGTR, nhPhyML and

PhyML estimates. Similar results were obtained for the sums of squares for transi-

tion matrices and joint probability matrices. Comparing the results of estimates of

the extreme parameters dataset of three models, we have sums of squares of 0.00006,

0.05 and 0.3 for the expected numbers of substitutions and 0.0012, 1.04 and 1.14

for the nodes frequencies. In all cases, the NSGTR estimates are closest to the true

values.

Similarly, the NSGTR estimates of frequency vectors at all nodes were always

the best amongst the models compared (see Figure 4.4). The PhyML (GTR) and

nhPhyML (GG) estimates varied and did not consistently over-estimate or under-

estimate frequencies. Looking at the various estimated frequencies at each node,

the NSGTR results clearly agree more closely to the estimates of the BH model
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under the estimated permutations than both the nhPhyML and PhyML results.

The results for the simulated dataset with extreme parameters are shown in Figure

4.5 with similar results obtained, leading to similar conclusion.

For the real Plasmodium data, the largest NSGTR edge length estimate is for

edge (5, 2). This largest value also corresponds to the largest frequency changes

with the sum of squares of the differences 1.9 × 10−2. For other edges, the sums

of squares of the differences of frequencies at two end nodes at most 6.3 × 10−3.

The edge (5, 2) separates the taxa k, v from the others. The NSGTR estimates

do well at fitting the changes in frequencies; the nhPhyML estimates also had the

largest changes along edge (5, 2) but its estimates are not as close due to the GG

model restriction that frequencies of states C and G be the same. Since there is only

one frequency vector for the entire topology, unsurprisingly, PhyML was unable to

accurately estimate the frequencies for nodes k, v and 2.

The results for the simulated dataset in Figure 4.5 show a more complex ex-

ample with extreme parameters models along edges. In the true model, node g,

which is the root in the NSGTR model, has a high A+T-content with character

state A having the highest frequency. The cluster of nodes 1, f and r have high

G+C-contents with C having the highest frequency. The cluster of nodes 2, k and

v have roughly equal A+T-contents and G+C-contents with G having the highest

frequency. Finally, the cluster of nodes 4, c, 3, b and y have high A+T-contents

with T having the highest frequency. The estimates of NSGTR and the estimates

of the BH under the estimated permutations were within 10−4 of the each other.
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Figure 4.4: Node frequency vectors of estimates of dataset Plasmodium. In the
figure, nodes b, c, f , g, k, r, v and y represent the taxa of P. berghei, P. chabaudi,
P. falciparum, P. gallinaceum, P. knowlesi, P. reichenowi, P. vivax, and P. yoelii
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Similar to the observed results for the Plasmodium data, large changes in

frequency vectors are expected over longer evolutionary times. When the edge

lengths are small, the frequency vector did not change much. For instance, the

sum of squares of differences between the frequency vectors at nodes 1 and f is

0.0002 over an edge of length 0.02. In contrast, the sum of squared of differences

between the frequency vectors at nodes g and f is 0.2636 over an edge of length 0.62.

nhPhyML showed a similar pattern, with the frequency vector changes being largest

along long edges although it did not provide accurate estimates of the frequencies.

Again, estimates from PhyML could not accommodate the changing frequencies.

4.4.5 Discussion

When edge lengths are short, the estimates from GTR, GG, and NSGTR are

quite similar. However, when a edge length was large, NSGTR estimates tended to

estimate the changes of frequencies and edge lengths much better than the alterna-

tive methods. For the Plasmodium dataset shown in Figure 4.6, the edge lengths

output from GTR and GG are not very different from expected numbers of the

substitutions obtained using equation 4.4 and the estimates of NSGTR model. This

is not surprising for this particular dataset because the NSGTR estimates of pa-

rameters for this dataset indicated that exchangeabilities and stationary frequencies

did not change much over the tree except at the edge (5, 2). The processes along

most edges are therefore close to being stationary processes. However, our simula-

tion study under more extreme nonstationary parameter settings clearly shows the

improved accuracy of the NSGTR method relative to the GG and GTR models.
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While the NSGTR model estimated many parameters well, it did not do a

good job at locating the root. Evaluating the minSS values rooting at different

nodes of Plasmodium dataset yielded two distinct values. Rooting at the nodes 1, 3,

4, 5, 6, b, c, f , g, r, and y gave a minSS value of approximately 2.34E−04 whereas

rooting at the nodes 2, k, and v gave a minSS value of approximately 1.48E − 03.

This difference in minSS allows us to rule out node 2, k, and v as the true root but

does not distinguish between the others.

To explain our observations, we obtained the NSGTR substitution matrices

for one of the rootings giving the minimum minSS. These NSGTR substitution

matrices were used to obtain joint probability matrices which were given as input

to the NSGTR routine. We used this routine to compute NSGTR models from true

joint probabilities in the reverse directions along edges. We found that the true

joint probability matrices coming from NSGTR in the reverse direction were almost

identical (data not shown). Based upon these numerical results it appears that the

evolutionary direction for a edge under the NSGTR model is not always recoverable.

For the Plasmodium dataset, the estimates of edge lengths of the forwarding and

reverse direction show few differences. However for the case of extreme datasets in

our simulation, the direction effects were significant.

A natural follow-up question is whether there always exists a NSGTR model

in the reverse direction if there exists a NSGTR model in the forward direction. We

tested 18 datasets simulated under GTR models and BH models and obtained BH

estimates. For each set of BH estimates, we examined 14 rooting positions. Among
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a total of 18*14=252 rooting trials, we only had two cases in which NSGTR models

did not give exactly the same fit in both forward and backward directions.

4.5 Conclusions

The parameters of the BH model of Barry and Hartigan (1987) are joint prob-

abilities along edges which have identifiability problems whereby multiple sets of

estimates give the same likelihoods. Because of this, frequencies at internal nodes

can not be correctly estimated although frequencies at leaf nodes will converge to

true values as sequence length gets large. A further problem is that edge lengths

are informative parameters but are not available from the BH model. By defining

NSGTR models along edges, our algorithm finds the estimates of the transition ma-

trices under the NSGTR model that best fits the BH estimates. Our simulations

show that our algorithm is effective in resolving identifiability problems in both mild

and extreme parameter settings.

In our solution, because the NSGTR model is nonstationary, non-standard

methods were required to compute the edge lengths interpretable as expected num-

bers of substitutions along a edge. Our approach of using NSGTR estimates of the

best-fitting BH estimates allows interpretable edge lengths to be estimated. The

formulas given for edge length calculation are more broadly valuable for obtaining

interpretable edge-lengths for all nonstationary models. For instance, the estimates

of edge lengths currently given by the nhPhyML implementation of the GG model

correspond to stationary model calculations but can be corrected using (4.4).



Chapter 5

The BH Mixture Model and its

Applications

5.1 Introduction

The default general Markov model described by Barry and Hartigan (1987),

known as the BH model, assumes that while evolutionary processes may vary across

the tree, they remain constant across sites in DNA sequences. However, it has long

been recognized that the evolutionary dynamics of sites differ depending on a variety

of factors. For instance, in Fitch and Margoliash (1967), invariant sites in the amino

acid sequences of Cytochrome C were identified. These sites thought to be fixed at

the particular amino acid by purifying selection (i.e., any non-synonymous changes

at these sites would cause the resulting protein to cease to function properly and the

resulting mutant would have a strongly negative fitness effect). Such rates-across-

sites variation also happens in the different codon positions where the third codon

often has the fastest rate and the second codon has the slowest rate (Yang 1996). As

pointed out by Semple and Taylor (2009), the physical structure of genome can also

94
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affect the rate of substitutions. Rates-across-sites variation is usually modeled by

assigning rates to sites according to a discretized approximation to the Γ distribution

(Yang 1994b) or a mixture of a discretized Γ distribution and an invariable site class,

“I”, (Gu et al. 1995) and has been shown to be important for accurate phylogenetic

estimation (c.f. Yang 1994b, Thomas et al. 2006, Bromham 2009). In current

applications of stationary models such as PAML(Yang 2007), PAUP* (Wilgenbusch

2003), PHYLIP (Felsenstein 1989), and TREE-PUZZLE(Schmidt et al. 2002), Γ

models or Γ + I models have become widely used.

The YR nonstationary model in Yang and Roberts (1995) and the GG non-

stationary model in Galtier and Gouy (1995) as implemented by Boussau and Gouy

(2006) incorporated rate-across-sites variation using a discretized Γ distribution. In

Jayaswal et al. (2007), a BH + I model was proposed. This model treated the in-

variable and variable sites differently through a mixture model. In a followup study,

Jayaswal et al. (2011) suggested two stationary models in order to simplify the BH

model. These two simplified models both allow invariable and variable sites.

While adjusting for rates-across-sites variation is now common practice in phy-

logenetic analyses, functional constraints on sites in a gene sequence can also change

over time, causing shifts in site-specific evolutionary rates. This process is often re-

ferred to as heterotachy (Lopez et al. 2002) and has been modeled in various ways

(c.f. Tuffley and Steel 1998, Galtier 2001, Huelsenbeck 2002, Susko et al. 2003).

All of these models effectively allow rates and hence substitution matrices to vary

across both sites and lineages (Wu and Susko 2010).
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Here we introduce a BH mixture model that is more general than the BH+I

model in that it not only allows completely different models along edges of a topol-

ogy, but it also allows for different site classes whose evolutionary dynamics (e.g.,

rates, frequencies over sites and edges) can take any form. Such models will allow

one to flexibly model situations, as described in Song (2010), for example, in which

both rates and nucleotide frequencies vary across sites and/or lineages. Here, using

a phylogenomic data set from Plasmodium species (Davalos and Perkins 2008), we

show that the BH mixture model yields a much better fit to real data than the BH

and BH + I models.

5.2 The Model

An example of the type of variation that the BH mixture model can capture is

given in Figure 5.1. The illustration in Figure 5.1 is actually under the assumption

that nonstationary GTR models, referred to as the NSGTR models, in Zou et al.

(2011a) hold for different classes, which is a special case of the BH mixture model.

A NSGTR model is the continuous Markov model which best fit into the transition

matrix obtained from the estimate of the joint probability matrix of the BH model

along the edge and the direction. Thus, for that edge and that direction, the edge

length can be estimated. For the conventional GTR+Γ model as shown in Figure

5.2, rate multipliers for different classes are selected by using the means or medians

of the quantile ranges of equally weighted categories under a Γ distribution. The

trees in the different classes of a GTR+Γ model are constructed from the same tree
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by stretching or shrinking all edge lengths using a class-specific rate multiplier and

sharing the same GTR model. By contrast, the BH mixture model allows completely

different BH models in each class. It thus contains mixture-NSGTR and GTR + Γ

+ I models as special cases.

Figure 5.1: An illustration of the K-Class mixture model. Here each F
(k)
e is a joint

probability matrix for data at the end nodes of the edge. For illustration, edge
lengths have been added as might arise if each F

(k)
e corresponded to a differing

GTR model, which we refer to as the NSGTR model.

The BH mixture model assumes that K classes of sites arise independently

with probabilities ω = {ω1, . . . , ωK}, where
∑K

j=1 ωj = 1. In each class, the evo-

lutionary model is a BH model. For the jth class and edge (a, b), let F j
(a,b) denote

the joint probability matrix whose rsth entry is the probability of observing nu-

cleotides r and s at nodes a and b. For the jth class, let F j consist of the set of joint

probability matrices for the (2m − 3) edges of an m-taxon unrooted tree and write

F = {F 1, . . . , FK}. Let the probability of observing site pattern x given class j be



98

Figure 5.2: An illustration of the K-Class conventional Gamma+GTR model

denoted by P (x|F j). The marginal probability of site pattern x is then obtained

through summation

P (x|F, ω) =
K∑

j=1

P (x|F j)ωj (5.1)

Here a site pattern x is the set of nucleotides observed at leaves (i.e., the taxa)

of the tree. For instance, x = AAAG is a site pattern for four taxa, in which the

first three taxa had an A and the fourth a G.

For a given class j, the BH model of Barry and Hartigan (1987) and Jayaswal

et al. (2005) holds where each edge is allowed to have its own joint probability

matrix F j
(a,b). The only additional constraint is internal consistency which requires

that internal node frequencies be the same regardless of the edge from which they

are calculated.
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5.2.1 Invariable Sites

It is often the case that data sets contain many invariant sites: that is, sites

where the same nucleotide is observed for all taxa. Because of functional constraints

the sites may in fact be invariable: i.e., unable to change. A class corresponding to

invariable sites requires far fewer parameters than a BH model and thus including an

invariable sites class reduces model complexity as shown in Table 5.1. For instance,

with 3 classes and 7 taxa, there are 407 parameters in a full 3-class BH mixture

whereas there are 275 parameters if one of the 3 classes is an invariable sites class.

More formally, if we add an invariable sites class into the BH mixture model frame-

work, a special case of the K classes BH mixture model, which we refer to as the

BHK model, becomes a K − 1 classes of BH models plus a invariable class, which

we refer to as the BH(K − 1) + I model. For the BH(K − 1) + I model, define class

0 as the invariable sites class and the diagonal matrix Π0 has the diagonal elements

{π0
A, π0

C , π0
G, π0

T} of frequencies of the states in the invariable sites class and denote

F = {F 1, . . . , FK−1} as the set of joint probability matrices of variable site classes.

Then the BH(K − 1) + I model can be written as below.

P (x|F, ω) =

⎧⎪⎪⎨
⎪⎪⎩

P (x|Π0)ω0 +
∑K−1

j=1 P (x|F j)ωj, if x is an invariant site.

∑K−1
j=1 P (x|F j)ωj, if x is not an invariant site.

(5.2)

5.2.2 The Number of Parameters in the BH Mixture Model

Assume we have an m-taxon DNA data set. In an unrooted tree, there are 2m − 3

edges, m − 2 internal nodes and m leaf nodes. For the BH model, there are 15
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Table 5.1: The number of distinct site patterns and the differences of number of
parameters between BHK and BH(K-1)

taxa site patterns BH
2-class 3-class

Dif.
BH + I BH2 BH2 + I BH3

3 64 39 43 79 83 119 36
4 256 63 67 127 130 194 70
5 1024 87 91 175 179 263 84
6 4096 111 115 223 227 335 108
7 16384 135 139 271 275 407 132
8 65536 159 163 319 323 479 156

“Dif”: The number of Differences between BHK and BH(K-1) + I models.

parameters in each joint probability matrix and thus 15 · (2m − 3) parameters for

the 2m− 3 edges. However due to the internal node consistency requirement, there

are 6 constraints for each internal node. Combining everything together, the number

of parameters of a m-taxon data set for a BH model is

15 · (2m − 3) − (m − 2) · 6 = 24m − 33 (5.3)

For the BHK model , the total number of parameters in the BH mixture model

is multiplied by K and K − 1 parameters are added for the mixture weights.

24m · K − 33 · K + K − 1 = 24mK − 32K − 1 (5.4)

In a BH(K − 1) + I model, there are K − 1 BH models and one reduced BH
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model with three free parameters. Thus the total number of parameters is

(24 · m − 33) · (K − 1) + K − 1 + 3 = 24m · (K − 1) − 32K + 35 (5.5)

Comparing equations (5.4) and (5.5), the BH(K − 1) + I model has 24m− 36

parameters less than BHK model. The difference of the number of parameters

between BH(K − 1) + I and BHK model doesn’t depend on K and only depends

on the number of taxa m. Table 5.1 gives the number of parameters in the models

BH, BHK and BH(K − 1) + I for K = 2 or 3 and 3 to 8 taxa.

5.3 Parameter Estimation for the BH Mixture Model

We used the expectation-maximization (EM) algorithm when estimating the

parameters of a mixture model. The advantage of using the EM algorithm is that it

simplifies implementation by allowing us to use the previously developed single-BH

model in Zou et al. (2011b).

The EM algorithm was first described in Dempster et al. (1977) and McLachlan

and Krishnan (1997) describe many of the developments since then. It gives an

algorithm for maximum likelihood (ML) estimation from incomplete data. In our

case, we can consider our data as incomplete data because we never observe which

site is from which class. Thus, the sequence data and class labels for sites would

be the complete data and the actual observed data, the sequence data alone is

the incomplete data. In the following sections, we develop an EM algorithm for
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ML estimation of the parameters, the joint probability matrices F j and the weight

distribution of classes ω, of a BH mixture model.

5.3.1 The EM Algorithm

Let X = {x1, . . . , xN} be the observed data for the N sites, where xi is the

site pattern for site i. Let Si be the unobserved class label for site i and S =

{S1, . . . , SN}. The complete data is {X,S} while the observed data is X. Since the

sites are assumed independent, we can compute the site log-likelihood and then sum

over all sites to get the log-likelihood for the complete data.

E [log P (xi, Si|F, ω)|F c, ωc] =
K∑

j=1

log [P (xi|Si = j, F, ω)P (Si = j|x, F c, ωc)] (5.6)

where F c and ωc are the current parameter estimates. The EM algorithm iteratively

updates F c+1, ωc+1 from F c and ωc through

{F c+1, ωc+1} = arg max
{F,ω}

N∑
i=1

E [log P (xi, Si|F, ω)|F c, ωc] (5.7)

until the difference between {F c+1, ωc+1} and {F c, ωc} is small. The actual log-

likelihood for the observed data of site i is log P (xi|F, ω). Desirable properties of

the EM-algorithm shown in Dempster et al. (1977) include that the log-likelihood

at step c + 1 is greater than or equal the log-likelihood at step c and that it is

guaranteed to converge to a local, but not necessarily global, maximum. In the next

section, we will give details of how to compute P (Si|xi, F
c, ωc) and how to update

{F c+1, ωc+1} iteratively.
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5.3.2 Notation

5.3.2.1 E-step

The goal of the E-step is to calculate E [log P (X,S|F, ω)|F c, ωc]. The log-

likelihood of complete data can be expressed as

log P (X,S|F, ω) =
N∑

i=1

K∑
j=1

I{Si = j} log
[
P (xi|F j)ωj

]

Given F c and ωc, taking the expectation with respect to S gives

E [log P (X,S|F, ω)|F c, ωc] =
N∑

i=1

K∑
j=1

E [I{Si = j}|xi, F
c, ωc] log

[
P (xi|F j)ωj

]

=
N∑

i=1

K∑
j=1

P (Si = j|xi, F
c, ωc) log P (xi|F j)ωj) (5.8)

Given xi, F c and ωc, we can compute

P (Si = j|xi, F
c, ωc) =

P (xi|Si = j, F c, ωc)P (Si = j|F c, ωc)

P (xi|F c, ωc)
=

P (xi|F jc)ωc
j

P (xi|F c, ωc)
(5.9)

where F jc = {F jc
(a,b)|(a, b) ∈ E} is the current estimates of joint probability matrices

of jth class; P (xi|F jc)ωc
j is the site likelihood of xi in class j under current parameter

F c and ωc and P (xi|F c, ωc) =
∑K

j=1 P (xi|F jc)ωc
j .

5.3.2.2 M-step

In this step, parameters {F, ω} maximizing E [log P (X,S|F, ω)|F c, ωc] are de-

termined. We first consider maximization with respect to ωj.



104

Updating ωj

By the method of Lagrange multipliers, the maximizer of E [log P (X,S|F, ω)|F c, ωc]

is also the maximizer of

E [log P (X,S|F, ω)|F c, ωc] + λ(1 −
K∑

j=1

ωj)

=
N∑

i=1

k∑
j=1

P (Si = j|xi, F
c, ωc) log

[
P (xi|F j)ωj

]
+ λ(1 −

K∑
j=1

ωj)

for some λ > 0 subject to the constraint that
∑k

j=1 ωj = 1. Taking the derivative

with respect to ωj and setting it to zero gives

1

ωj

N∑
i=1

P (Si = j|xi, F
c, ωc) − λ = 0

Thus ωj is proportional to
∑N

i=1 P (Si = j|xi, F
c, ωc). Since

∑
j ωj = 1, this gives

ωj =

∑N
i=1 P (Si = j|xi, F

c, ωc)∑N
i=1

∑k
j=1 P (Si = j|xi, F

c, ωc)
(5.10)

Updating F j

The expected complete log-likelihood E [log P (X,S|F, ω)|F c, ωc] can be writ-

ten as

N∑
i=1

K∑
j=1

P (Si = j|xi, F
c, ωc) log P (xi|F j) +

N∑
i=1

K∑
j=1

P (Si = j|xi, F
c, ωc) log ωj



105

Since the only term involving F j is
∑N

i=1 P (Si = j|xi, F
c, ωc) log P (xi|F j), then

F j = arg max
F j

N∑
i=1

P (Si = j|xi, F
c, ωc) log P (xi|F j) (5.11)

Equation (5.11) implies that updating F j in an iteration of the EM algorithm is the

same as ML estimation in the usual BH model except that log P (xi|F j) is weighted

by the non-integer P (Si = j|xi, F
c, ωc).

Updating Π0

BH(K − 1) + I is a special case of BHK where one class corresponds to an

invariable sites class. Recall that when considering the invariable site class, the

diagonal matrix Π0 are the diagonal elements of the frequencies of invariable sites

{π0
A, π0

C , π0
G, π0

T}; F c = {F c
1 , . . . , F c

K−1} is the set of joint probability matrices of

(K − 1) variable site classes. The expected complete log-likelihood can be written

as

N∑
i=1

P (Si = 0|xi, Π
0c, F c, ωc) log

[
P (xi|Π0)ω0

]
+

N∑
i=1

K∑
j=1

P (Si = j|xi, F
c, ωc) log [P (xi|F c, ωc)ωj]

(5.12)

Since only the first term in (5.12) involves Π0, using the method of Lagrange mul-

tiplier, the maximizer of E [log P (X,S|F, ω)|F c, ωc] is also the maximizer of

N∑
i=1

P (Si = 0|xi, Π
0c, F c, ωc) log

[
P (xi|Π0)ω0

]
+ λ(1 −

4∑
l=1

π0
l )
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for some λ > 0 and subject to the constraint
∑4

k=0 π0
k = 1. For nucleotide data

there four possible invariable site patterns, xi = AA. . . AA, . . . , xi = TT. . . TT. Let

{y1, ..., y4} denote these patterns. Then Π0 is the maximizer of

4∑
l=1

nlP (S1 = 0|x1 = yl, Π
0c, F c, ωc) log

[
π0

l ω0

]
+ λ(1 −

4∑
l=1

π0
l )

where nl is the number of times the site pattern yl occurred among the xi. Taking

the derivative with respect to π0
l , setting it to zero and solving gives

π0
l =

nlP (S1 = 0|x1 = yl, Π
0c, F c, ωc)∑4

l=1 nlP (S1 = 0|x1 = yl, Π0c, F c, ωc)
(5.13)

5.4 Leaf Node Frequencies

It is shown in Jayaswal et al. (2005) that the ML estimate of the BH model

gives marginal probabilities of leaf node data that exactly match the observed pro-

portions of times the nucleotides arose at that leaf. For the mixture model, we

can also obtain that the leaf frequency vectors fit consistently with empirical data

frequencies at leaf nodes. Let N be the sequence length and na
r be the frequency

of the character r at node a. The ML estimate of the marginal probability πa
r of

character r at node a satisfies

πa
r =

na
r

N
(5.14)

A proof of this property is given in Appendix A5.1.
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5.5 Permutation and Edge Length

The classes in a mixture model are the individual BH models. As shown in

Zou et al. (2011a), the ML estimates of joint probability matrices of the BH model

for a tree are not unique. Given a set of ML estimates, there exist permutations

of the rows or columns of the joint probability matrices that will give exactly the

same likelihood. This problem of identifiability holds for the BH mixture model as

well. To estimate internal node frequencies, we applied the algorithm of Zou et al.

(2011b) to estimate the permutation separately for each class in a mixture model.

In brief, each estimate of joint probability matrices of the BH model has at least 24

permutations of its rows and columns that give the same likelihood. The algorithm

of Zou et al. (2011b) searches for the set of permutations and nonstationary GTR

(NSGTR) models that give the smallest sum of squared differences between joint

probability matrix entries for the NSGTR model and the corresponding entries for

a fitted BH model. Here it is applied separately to each of the classes to generate

fitted NSGTR models for that class. The pattern probabilities for invariable sites

are determined entirely by the frequencies of nucleotides. Since, for invariable sites,

leaf node frequencies are the same as internal node frequencies and since leaf node

frequencies are identifiable, the pattern probabilities for invariable sites do not suffer

the identifiability problems that the BH model has.

While edge-lengths are not parameters of the BH mixture model, estimates

of them can be obtained from the best-fit NSGTR algorithm for a class using the

expected substitutions per site correction formula in Zou et al. (2011b). To present
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overall edge lengths, edge lengths are averaged over classes as follows:

∑
j∈S

ωjt
j
e (5.15)

where tje is the edge-length the eth edge and jth class.

5.6 Simulations

Simulations were conducted generating 10,000, 50,000 or 200,000 sites. In the

discussion that follows, when not specified, the true mixture model employed is

BH2 + I; the invariable sites arise with probability 0.1; two other classes are equally

weighted and arise with probability 0.45; the sequence length is 200,000 sites. For

the two BH classes, we chose one class to be C+G rich and the other to be A+T rich.

BH class simulations were conducted employing NSGTR models. The stationary

frequencies of the NSGTR models along edges, edge lengths and node frequencies

are shown in Figures 5.3, 5.4, 5.5 and 5.6. For ML estimation, we used multiple

randomly generated joint probability matrices along edges as starting values. For

estimation, our software which builds on Jayaswal et al. (2005) is used for the

mixture model, PhyML in Guindon and Gascuel (2003) is used for the stationary

model and nhPhyML in Boussau and Gouy (2006) is used for estimating the GG

model.
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5.7 Results

5.7.1 Inferring GTR + Γ + I Models

As a first step, we generate data from a model close to a GTR+Γ2+I model for

4-taxon data sets. In particular, we have two BH models with the same stationary

frequency vector {0.03, 0.425, 0.475, 0.07} and exchangeabilities {1.0, 2.0, 2.5, 3.0,

2.0, 2.5} for a ↔ c, a ↔ g, a ↔ t, c ↔ g, c ↔ t, g ↔ t for the GTR models along

edges, but with the edge lengths in one of the classes were set to 0.05 between two

adjacent nodes whereas the edge lengths in the other class were 0.75 between leaf

node and internal node and 0.05 between internal nodes. Thus, in this setting the

two classes are made distinct solely by the edge lengths over which the data evolved.

For this set of experiments, we simulated data sets with different invariable class

weights ranging from 0.1 - 0.6 and the equal weight for the two variable classes. For

estimation, we employed the BH2+I mixture model and the GTR+Γ2+I model.

The BH2+I has 130 parameters (see Table 5.1) as compared to 13 parameters for

GTR+Γ2+I. For data sets with different proportions of invariable sites, Table 5.2

gives results of likelihoods ratio tests of BH2+I against GTR+Γ2+I , each of which

have 117 degrees of freedom. Since the null hypothesis is true here, the small p-

values are a bit surprising. Inspection of the parameter estimates revealed that both

BH2+I and GTR+Γ2+I models overestimated the weight of invariable sites when

the true weights are small. However the GTR+Γ2+I model was more accurate than

the mixture model in general in estimating the frequencies of invariable sites and

edge lengths. Those results indicated that for data close to stationary model such
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as GTR+Γ2+I, the BH mixture may be overparameterized and may not provide

better estimates.

Table 5.2: The p-values of likelihood ratio tests for simulated data sets which had
the models close to GTR + Γ2 + I.

proportion of invariable sites 0.1 0.2 0.3 0.4 0.5 0.6
p-values 0.004 0.0005 0.27 0.016 0.19 0.87

5.7.2 Identifying the Best Fitting Model

A data set was simulated under a BH2+I model using parameters of the four-

taxon tree shown in Figure 5.3. In order to determine the best fitting model, this

data set was fitted under GTR+ Γ2+I, GG+Γ2, BH, BH+I, BH2+I, and BH3

models.

For parameters set at their values used in the simulation, the log-likelihood

for the BH2+I model for the 200,000 sites data set is -653008.48. The upper-bound

on the log-likelihood is given by the log-likelihood of the empirical multinomial

distribution model (i.e., a model where the probability of each site pattern is set as

its empirical frequency) which in this case is −652459.7. To estimate the likelihoods

for all of the other models, as mentioned before, we used multiple initial random

starting values. The results presented are those which gave the best log-likelihoods

under each of the BHK and BH(K − 1) + I models over all possible initial starting

points. The overall results are shown in Table 5.3.
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Using likelihood ratio tests, we find that the improvements of BH2+I model

against GTR+Γ2+I and GG+Γ2 are significant. Further tests showed that the

improvements of BH+I against BH, BH2 against BH+I, BH2+I against BH2 are

all significant. In contrast, the likelihood ratio test comparing the BH2+I and BH3

fitted models was not significant. From our tests, we can conclude that the under-

parameterized models such as GTR+Γ2+I, GG+Γ2, BH, BH+I, and BH2 would not

be chosen in favor of the true model and by contrast, while the over-parameterized

BH3 model gave greater log-likelihoods than the correct model, this improvement

was not significant. Thus this simulation confirmed that we will be able to correctly

determine the true model with a large number of sites.

Beyond likelihood ratio tests, we can also see that the estimates of weights

of classes, frequencies of invariable sites, node frequencies, edge lengths, stationary

frequencies in the NSGTR models along edges of the best fitting BH2+I model

are reasonably accurate, and amongst all models examined are the closest ones

to the true values. For instance, in the simulation, the probability of invariable

sites was set to 0.1 and the probability for each of classes 1 and 2 was 0.45. The

corresponding estimates of weights under the BH2+I model was 0.106 for invariable

sites, 0.445 and 0.449 for classes 1 and 2 respectively. The estimates of edge lengths

shown in Table 5.4 are the averaged edge lengths considered over all classes using

(5.15) compared with the outputs of PhyML and nhPhyML, both of which are the

expected substitution per sites-based edge lengths under conventional stationary

model. The edge length estimates under the stationary GTR+Γ2+I model and the
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GG+Γ2 model are very similar and both are the least accurate estimates of all

models examined. In this particular case, except for the estimates generated by

the BH2+I model, almost all estimates underestimated the edge lengths. However

there is no evidence showing that the edge lengths under wrong model have to be

underestimated or overestimated. Estimates of node frequencies in the different

classes showed a similar pattern and again those provided by the ‘correct’ BH2+I

model were the best.

We also compared the parameters for the best-fitting NSGTR models along

edges with the original BH2+I fitted parameters. Considering the estimated sta-

tionary frequency vectors of NSGTR models along edges and node frequency vectors

in individual classes, we found that the BH2+I node frequency vectors are more ac-

curate than those estimated by the NSGTR models. This is not surprising because

the NSGTR model fitting requires more calculations such as symmetrization and

eigen decomposition and both of those steps may introduce extra errors into the

estimates.

We have conducted similar simulations for five and six-taxon data sets. The

NSGTR models along edges are shown in Figures 5.4 and 5.5. For these two sets

simulated under the BH2+I model, we estimated them using GTR+Γ+ I, GG, BH,

BH+I, BH2, BH2+I, and BH3. Using the likelihood ratio test similar to four-taxon

estimates, the true model, the BH2+I model, was identified for both five and six-

taxon estimates. Also the estimates of the BH2+I model provided the most accurate

estimation for the edge lengths, frequency vectors at nodes, the weights distribution,
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the stationary frequencies of NSGTR models along edges.

5.7.3 Estimation for Data Sets with More Taxa

The number of parameters in the mixture models are far greater than required

for the BH model as shown in Table 5.1. As a consequence, our current implemen-

tation is still slow when optimizing and finding ML estimates with large data sets.

Thus when extending our observations to larger data sets, we only tested cases with

five, six, and seven taxa. All estimates were obtained under the true model, BH2+I,

in order to find out how the larger number of taxa affects the estimates.

From our simulations, we found that the weighted node frequencies and ex-

pected number of substitutions were much closer to the true values than the class-

specific parameters. When analyzing results, we separated our results into two

groups. In the first group, we focus on the estimates from individual classes. As

shown in Figures 5.3 - 5.6, the parameters of the NSGTR models along edges are

different in individual classes. Those differences of parameters in individual classes

are mimicking the different evolutionary processes of the various site types. There-

fore, how those parameters are estimated is a focus of our analysis. Figures 5.3 -

5.6 show the results of estimates for individual classes. In the second group, we will

look at the estimates that combined and weighted the estimates of different classes

such as node frequencies and edge lengths. Figure 5.7 shows the results. The means

of squares of the differences of the estimates of weighted node frequencies and the

true values were at 10−5 or less; the means of squared biases of weighted frequencies
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were even less than this. A similar analysis for the true values and estimates of ex-

pected number of substitutions along edges showed similar results. When comparing

the parameters class by class, the mean squared differences and the mean of biases

are larger than weighted estimates. This observation indicated that as long as the

weighted frequencies of leaf nodes converged to the empirical leaf nodes frequencies,

the estimates of joint probabilities only need to satisfy the constraint such as the

internal nodes consistency in addition to summing over all entries being equal to

one in a joint probability matrix.

It is reasonable to expect that estimation will improve with more taxa (Zwickl

and Hillis 2002). We explored this with an experiment in which a six-taxon tree

was created by breaking the long edge (2, c) of a five-taxon tree as shown in Figure

5.8. In the six-taxon tree, the parameters of the NSGTR models of the edges (2, 1),

(4, c) and (4, d) are exactly the same as the parameters of the NSGTR model of the

edge (2, c) in five-taxon tree; the node frequency vectors at nodes c and d are the

same as the frequency vector of node c in five-taxon tree. It is well known that the

long edges are hard to estimate accurately because, as in our case, the internal node

2 is farther from the observed data. By breaking up long edge (2, c), we are adding

more information when estimating node 2 as well other internal nodes. In this

experiment, the sequence length is 50,000 sites and the true model is BH2+I. The

results in Figure 5.9b show the boxplots of the differences between the estimates and

true values of node frequencies of two classes individually. The boxplot labeled 5.c1

gives differences between five-taxon estimates and the corresponding true generating
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values for the first class; boxplot 5.c2 gives these differences for the second class.

Boxplots 6.c1 and 6.c2 correspond to six-taxon results. From those plots, it is clear

that the estimates for six taxa are closer to the true values. This result confirmed

that a long edge is harder to estimate than a short edge and adding more taxa into

a data set can improve the accuracy of the estimates. As a comparison, estimates

in Figure 5.9a were obtained using data sets simulated under the same trees shown

in Figure 5.8 and the same parameters of NSGTR models, but a different sequence

length of 10,000 sites. Not surprisingly, estimation for 10,000 data sets was less

precise than for 50,000 since around 75% of the possible site patterns were not

observed in six-taxon with 10,000 sites data set as shown in Table 5.5. Thus the

large differences between the estimates and the true values in the estimation results

for six-taxa data set with 10,000 sites were likely a consequence of this information

loss. Based on those observations, large samples are needed for accurate estimates.

Table 5.5: The numbers of distinct site patterns in simulated 10,000 and 200,000
sites data sets

Taxa TRUE 10k 200k
four 256 211 256
five 1024 532 967
six 4096 889 2692

seven 16384 1230 5099

5.7.4 Mixtures and Compositional Heterogeneity

As shown in Figure 5.10, to test the hypothesis that mixtures are useful for

dealing with compositional heterogeneity, we created a four-taxon tree for which the
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Four taxa Five taxa

six taxa seven taxa

Figure 5.7: True values and estimates of combined parameters under BH2 + I model
of simulated four, five, six, and seven-taxon data sets
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base character frequencies of neighbor leaf nodes are very different but non-neighbors

had similar frequencies. From this figure, we can see that nodes a and c have

very similar base character frequencies; nodes b and d also have very similar base

character frequencies. When estimating, we fitted the following models: the BH2+I

(the true model), BH+I, GG+Γ2, and GTR+Γ2+I models. The summary of log-

likelihoods is in Table 5.6. The GG+Γ2 and GTR+Γ2+I models both succumbed to

a ‘base frequencies attraction’ artefact whereby sequences of similar base frequency

properties were grouped together; they selected the tree that grouped nodes a and

c together (a, c) and nodes b and d in another group (b, d) instead of the correct

groups (a, b) and (c, d). In contrast, both the BH+I and BH2+I models estimated

the correct tree. This illustrates that the BH model can overcome the potential

pitfall of base frequency attraction. However, the log-likelihood -848918 in the

BH+I model is much smaller than the log-likelihood -848116 in the BH2+I model

and the former model was significantly excluded by a likelihood ratio test (p-value

= 0.0).

Table 5.6: Loglikelihoods of the dataset which has potential long/short branches
attraction (four taxa)

Model abcd acbd adbc multinomial
GTR + Γ2 +I -875275 -874703 -875373 -847997

GG + Γ2 -880430 -879987 -880594 -847997
BH + I -848918 -849520 -849543 -847997
BH2 + I -848116 -848478 -848501 -847997

abcd: true tree. (a, (b, (c, d)))
acbd: wrong tree. (a, (c, (b, d)))
adbc: wrong tree. (a, (d, (b, c)))
The cells format with italic and bold font are the best estimate of each model.
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5.7.5 The Impact of the Number of Taxa on Estimation

When estimating the mixture model using ML, ideally, the number of param-

eters should be smaller than the number of distinct site patterns (cf. Chapter 1 in

Durbin et al. 1998). Table 5.1 lists the number of possible distinct site patterns

and the number of parameters in different mixture models. With only three taxa,

there are 64 site patterns. A one-class mixture model (i.e., a usual BH model) has

39 parameters whereas with two classes there are 80 parameters; in the latter case,

over-fitting becomes a problem. Our simulations have confirmed that it is very hard

to distinguish two classes in a three-taxon data set.

Table 5.1 shows that as a function of the number of taxa, the number of

parameters does not increase as fast as the number of site patterns. This suggests

it will be possible to estimate mixtures with more classes when the number of taxa

becomes larger. However another problem arises in this case since not all distinct site

patterns will be observed from data sets of a given sequence length. As the number

of distinct site patterns increases, the probability of observing some patterns will

be vanishingly small. It is normal that some possible site patterns will be missing

in data with six or seven taxa for reasonable-sized data sets. Table 5.5 shows the

numbers of distinct patterns in simulated data sets with four to seven taxa and

10,000 or 200,000 sites. For the worst case of seven taxa, more than half of the

possible patterns were not observed even with a data set of 200,000 sites; more than

90% of the patterns were missing with 10,000 sites.



128

5.7.6 Plasmodium Data Set Results

As an example with real data, we used the data set in Davalos and Perkins

(2008). In this data set, there are 8 species from the malaria parasites of genus

Plasmodium and 77313 sites after alignment gaps are removed. Among those sites,

there are 3865 distinct site patterns which is around 6% of total possible sites. All

estimates were obtained from the fixed topology given in Figure 1(A) of Davalos

and Perkins (2008) for the following models: GTR, GG, BH, BH+I, BH2, BH2+I,

BH3, BH3+I and BH4. The overall summary for the estimates is given in Table

5.7. The following likelihood ratio tests were significant: BH against GTR/GG,

BH+I against BH, BH2 against BH+I, BH2+I against BH2, BH3 against BH2+I,

and BH3+I against BH3. However, we found that the BH4 was not significantly

better than the BH3+I model (p-value = 0.999, d.f.= 156, χ2 = 104.4). Therefore,

for this real data set, BH3+I is the most appropriate model.

As shown earlier, the estimates of weighted leaf node frequencies converge to

the empirical leaf node frequencies. When computing weighted frequency for the

character state r at node a, π̂a
r , we used the following equation.

π̂a
r =

K∑
j=1

4∑
s=1

F̂ j
(a,b)(r, s)ω̂j (5.16)

where s is the character state at the node b which is the node directly connected with

node a in the edge (a, b); ω̂j is the estimate of the weight of the jth class; F̂ j
(a,b)(r, s)

is the estimate of the joint probability matrix of edge (a, b) in the jth class.
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For the estimates of leaf node frequencies under BH, BH+I, BH2, BH2+I, BH3,

BH3+I and BH4 models, we had the sums of squares of the differences between the

empirical and estimated leaf nodes frequencies of 4.84e-02, 1.37e-08, 4.84e-02, 1.36e-

08, 4.84e-02, 2.71e-08, 4.84e-02 respectively. From this, it appears that estimates

under BH(K − 1) + I models are, in general, closer to the empirical leaf node

frequencies than the estimates under BHK models. Clearly, for this particular data

set, it is important to take into account invariable sites as a distinct class.

As shown in Table 5.7, similar invariable frequencies and invariable site class

weights were estimated consistently by the BH+I, BH2+I and BH3+I models. The

estimates of invariable site state frequencies from all BH(K − 1) + I model all

converged to the corresponding empirical invariant site state frequencies. For the

Plasmodium data set, therefore, it is likely that the proportion of invariable sites is

roughly 44%.

In our analysis, we compared edge length estimates yielded by the various

models, in the following manner: BH versus BH+I, BH2 versus BH2+I; BH3 versus

BH3+I. We found that the estimates of edge lengths in each class under the BHK +

I models are larger than the ones under BHK models. Then we weighted the edge

lengths of all classes to obtain estimates of the overall edge lengths for all edges on

this topology. The estimates of overall edge lengths are shown in Table 5.8. Com-

paring edge-by-edge, it is not possible to make general statements about the relative

lengths yielded by the BH(K − 1) + I models versus the BHK models. However,

when edge lengths are summed over all edges, it is clear that the BH(K − 1) + I
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Table 5.8: Weighted expected numbers of substitutions over all classes of Plasmod-
ium data set

Branch BH BH + I BH2 BH2 + I BH3 BH3 + I
61 0.124 0.155 0.099 0.168 0.184 0.204
52 0.182 0.218 0.218 0.193 0.240 0.316
43 0.018 0.019 0.024 0.025 0.019 0.024
54 0.095 0.131 0.185 0.157 0.156 0.301
65 0.030 0.022 0.015 0.012 0.024 0.178
g6 0.104 0.128 0.093 0.128 0.201 0.162
3b 0.024 0.025 0.026 0.026 0.029 0.027
4c 0.038 0.039 0.041 0.044 0.049 0.048
1f 0.010 0.009 0.010 0.010 0.009 0.008
2k 0.056 0.065 0.071 0.069 0.068 0.074
1r 0.011 0.011 0.011 0.011 0.013 0.013
2v 0.099 0.106 0.107 0.110 0.111 0.104
3y 0.028 0.030 0.031 0.033 0.037 0.034

sum 0.791 0.959 0.933 0.987 1.139 1.494

models yield a greater total were larger than the estimates under the BHK mod-

els. One explanation may be that for this particular data set with 44 % invariable

sites, when using a BH(K − 1)+I model, e.g., the BH2+I model, it does remove

the invariable site effect. Thus the variable classes did get more accurate estimates

and showed longer edge lengths along the tree in each classes compared with the

variable classes in a BHK model, e.g., the BH2 model. The observation that the

sum of weighted edge lengths for a BH(K − 1)+I model is larger may reflect an

accuracy improvement due to appropriate adjustment for invariable sites.

5.7.7 Identifiability of the Mixture BH model

In a mixture BH model, the identifiability issues exist. When considering

identifiability issues, we have to consider not only the estimates in each class, but

also the topologies.
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From our experiments, it is clear that the estimates in each class are non-

identifiable. This is not a surprise conclusion. We have shown that the estimate

of a BH model is non-identifiable. As an extension of the BH model, estimates in

each class are still the BH estimates. Therefore, without any knowledge, we have

to estimate permutations for BH estimates in each class and then go for estimating

edge lengths or interpret internal frequencies. Since the estimates in each class are

independent, we can go through class by class and estimate permutations for all

classes.

5.8 Conclusions

We implemented a mixture-model extension of the BH model. In contrast to

the BH model, it allows evolutionary process variation across different site classes.

From our simulation results, the mixture model can be recovered accurately for all

of data sets with 4-8 taxa. Our current implementation cannot handle many more

taxa than this. Obtaining a more efficient implementation needs to be a focus of

future work. Using likelihood ratio tests, we are able to identify the correct model

among different models. The mixture-model also shows promise for the case where

base frequency bias exists and is accompanied by rate-across-sites variation.
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A5.1. Leaf Node Frequencies

In the mixture model, the leaf frequency of character r at leaf node a in an

edge (a, l) can be calculated by summing over all classes and the character state s

of internal node l in the joint probability matrix F j
(a,l)(r, s), where j ∈ {1, . . . , K},

or πa
r =

∑K
j=1 ωj

∑4
s=1 F j

(a,l)(r, s).

Assume that the observed sequences have N sites. The log-likelihood is

l(X|F, Ω) =
N∑

i=1

log

[
K∑

j=1

P (xi|F j)ωj

]
(5.17)

We first consider estimating ωj. Using the method of Lagrange multipliers,

the maximizer of the loglikelihood is also the maximizer of

N∑
i=1

log

[
K∑

j=1

P (xi|F j)ωj

]
+ λ(1 −

K∑
l=1

ωl) (5.18)

for some λ > 0. Taking derivative with respect to ωj, setting the derivative to zero

and solving for λ gives

λ =
N∑

i=1

P (xi|F j)

P (xi|F, ω)
(5.19)

where P (xi|F, ω) =
∑K

j=1 P (xi|F j)ωj. Multiplying ωj and summing over j gives

λ

K∑
j=1

ωj = λ =
K∑

j=1

ωj

N∑
i=1

P (xi|F j)

P (xi|F, ω)
= N (5.20)
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Since λωj =
∑N

i=1
P (xi|F j)ωj

P (xi|F,ω)
=

∑N
i=1

P (Si=j|xi,F )P (xi|F,ω)

P (xi|F,ω)
=

∑N
i=1 P (Si = j|xi, F ), the

updating equation for ωj is

ωj =
1

N

N∑
i=1

P (Si = j|xi, F, ω) (5.21)

Consider the edge (a, l) in the figure 5.11. The node a is the leaf node; the

node l is the internal node and it is connected with a subtree Tl. Let the condi-

tional probability of the data in the subtree Tl, XTl
, given the state s at node l be

P j
l,Tl

(XTl
|Xl = s) for the jth class. The loglikelihood of N distinct sites is

l(X|F, ω) =
N∑

i=1

log

[
K∑

j=1

4∑
s=1

F j
(a,l)(ri, s)P

j
l,Tl

(XTl
|Xl = s, F j)ωj

]
(5.22)

where ri is the character state at node a in site i. We now consider ML estimation

of F j
(a,l)(r, s). Using the method of Lagrange multipliers, the maximizer of the log

likelihood is also the maximizer of

N∑
i=1

log

[
K∑

j=1

4∑
s=1

F j
(a,l)(ri, s)P

j
l,Tl

(XTl
|Xl = s, F j)ωj

]
+ λ(1 −

4∑
r=1

4∑
s=1

F j
(a,l)(r, s))

(5.23)

for some λ > 0. Taking derivative with respect to F j
(a,l)(r, s), setting the derivative

to zero and solving for λ gives
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λ =
N∑

i=1

1{ri = r}P j
l,Tl

(XTl
|Xl = s)ωj

P (xi|F, ω)
(5.24)

Multiplying by F j
(a,l)(r, s) and summing over r, s gives

λ

4∑
r=1

4∑
s=1

F j
(a,l)(r, s) =

N∑
i=1

4∑
r=1

1{ri = r}
∑4

s=1 F j
(a,l)(r, s)P

j
l,Tl

(XTl
|Xl = s)ωj

P (xi|F, ω)

Given
4∑

r=1

4∑
r=1

F j
(a,l)(r, s) = 1

and
4∑

s=1

F j
(a,l)(r, s)P

j
l,Tl

(XTl
|Xl = s)ωj = P (xi, Si = j|F, ω),

λ can be solved as

λ =
N∑

i=1

P (xi, Si = j|F, ω)

P (xi|F, ω)
=

N∑
i=1

P (Si = j|xi, F, ω) = Nωj (5.25)

Recall that we took derivative with respect to F j
(a,l)(r, s) and set this derivative as

zero when maximizing the likelihood in (5.22). Reorganizing this derivative and

multiplying by F j
(a,l)(r, s) gives

F j
(a,l)(r, s) =

1

λ

N∑
i=1

1{ri = r}
F j

(a,l)(r, s)P
j
l,Tl

(XTl
|Xl = s, F j)ωj

P (xl|F, ω)
(5.26)
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Replacing λ by the result in (5.25) gives

F j
(a,l)(r, s) =

1

Nωj

N∑
i=1

1{ri = r}
F j

(a,l)(r, s)P
j
l,Tl

(XTl
|Xl = s, F j)ωj

P (xl|F, ω)
(5.27)

Thus,
∑K

j=1 ωj

∑4
s=1 F j

(a,l)(r, s) satisfies

K∑
j=1

ωj

4∑
s=1

F j
(a,l)(r, s) =

N∑
i=1

K∑
j=1

ωj

4∑
s=1

1
Nωj

1{ri = r}
F j

(a,l)(r, s)P
j
l,Tl

(XTl
|Xl = s, F j)ωj

P (xi|F, ω)

=
1
N

N∑
i=1

1{ri = r}
∑K

j=1

∑4
s=1 F j

(a,l)(r, s)P
j
l,Tl

(XTl
|Xl = s, F j)ωj

P (xi|F, ω)

=
1
N

N∑
i=1

1{ri = r}P (xi|F, ω)
P (xi|F, ω)

=
1
N

N∑
i=1

1{ri = r}

(5.28)

∑N
i=1 1{ri = r} is the number of the character r appears in node a, denoted by na

r .

The marginal frequency of the character state r at node a is

K∑
j=1

ωj

4∑
s=1

F j
(a,l)(r, s) =

na
r

N
(5.29)
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Figure 5.11: Illustration of branch (a, l) and subtree Tl



Chapter 6

Discussion

6.1 The Best Fit Binning Strategy

One of the issues that deserves additional attention in our rate matrix con-

struction procedure is the determination of an appropriate binning strategy. Based

on the data extracted from the PANDIT database, we proposed a binning strategy

with 4 bins of equal size. It is expected, however, that different distributions of

pairwise similarities will give different binning strategies. It is also true that the

distributions of pairwise similarities in other data sets are rarely the same as the

distribution of pairwise similarities obtained from the data in our experiment.

Our current results showed that an equal size strategy may do better than an

equal width one if the distribution of pairwise similarities is far from uniform. It

may therefore be promising to investigate through simulation the performances of

equal size versus width strategies as the distribution of pairwise similarities grad-

ually changes from extremely skewed to symmetric, and then to uniform. Since

we would know the true model used in such simulations, we could calculate the

aveMSEs and aveBiases for all simulations and use those as measures to determine

138
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the relationship between binning strategies and distributions. It is possible that the

binning strategies that we found to be optimal for the PANDIT database are not the

best for some analyses. Cross-validation methods may be provide a way of testing

the performance of a binning strategy for a given data set.

Rates-across-sites variation is widely recognized as a prevalent phenomena and

adjusting for it has become standard practice in phylogenetic analysis. Amongst

empirical amino acid rate matrices, the LG matrix is the only one which was con-

structed adjusting for rates-across-sites variation. Incorporating rates-across-sites

variation into our binning approach would be of substantial value.

6.2 Fitting a more Realistic BH Mixture Model

The BH mixture model is useful for some of the cases that we have examined in

Chapter 5. Using the results from simulations and the analyses of the Plasmodium

data set of Chapter 4 as a motivation, we could develop a method which may

dynamically find the most appropriate mixture model for any particular data set

under investigation.

In recent work by Jayaswal et al. (2011), two simplified BH models were pro-

posed. The SBH model in Jayaswal et al. (2011) assumes that the processes are

globally stationary, nonreversible and nonhomogeneous; the RBH model assumes,

in addition to the SBH model assumptions, that the processes along edges are re-

versible. These two simplified BH models both make global assumptions and may

not identify the local differences in evolutionary processes. For instance, recall that
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the clusters in the tree of the Plamsodium data in Chapter 4: the cluster made up

of nodes, 2, k and v and the cluster of all other nodes. Within each of these clusters

the recovered NSGTR models are very similar. These observations indicate that in

real data, closely related lineages may display similar evolutionary dynamics and

thus a single model may be reasonable within suitably defined clusters. The situa-

tion is illustrated in Figure 6.1 where subtree 1 may be modeled by a stationary or

stationary and reversible model; subtree 2 need not have those constraints.

Determining how to cluster species dynamically will be a challenge for this

method. Ababneh et al. (2006) discussed several methods of testing for violations

of homogeneous conditions. Alternatively, starting from an unconstrainted model,

one might successively add to a cluster those edges that gave the smallest decrease

in likelihood.

6.3 Application Issues in ML Estimation

In much of this thesis, we have used ML estimation of parameters. Two signif-

icant recurring difficulties were multiple local maxima and computational cost. To

find global maxima, we used randomly generated initial values. This strategy usu-

ally works but is expensive since, in some cases, hundreds of optimization processes

are needed to find the globally largest likelihood. One way to reduce computational

cost is to add more constraints on parameters. Adding constraints reduces the size

of the parameter space and thus should make optimization easier. As an example,

we know that at the optimum, the leaf node frequencies equal empirical leaf node
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frequencies. We could use this as a constraint in optimization and as a constraint

on the initial values of parameters.

Improving the quality of software may help to improve efficiency too. The

current application was constructed under the JNI+C+NAG library structure. The

Java language was used because it is easier to implement than with C. However the

Java virtual machine and JNI require a lot of CPU and memory. The optimization

routine used in this thesis is the e04ucf routine in the NAG library, a sophisticated

optimization routine. Our experiments indicate that it is stable and does a good job

of finding the maxima for our complicated models. However, it is worth considering

whether other choices of generic routines may be able to provide the similar or more

accurate results for this particular model.

Parallel computing is a method that allows an application to use multiple com-

puting resources such as CPUs and memories at the same time. The advantage of

using parallel computing mechanism is that it allows several similar jobs to be pro-

cessed at the same time using different resources. In our application, the likelihood

calculation for different sites could be implemented using a parallel computing al-

gorithm. Also, if available, using a parallelized version of the optimization routines

would reduce the time needed for the optimization procedures.
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