
ON THE STRUCTURE OF GAMES
AND THEIR POSETS

by

Angela Annette Siegel

Submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

April 2011

© Copyright by Angela Annette Siegel, 2011

DALHOUSIE UNIVERSITY

DEPARTMENT OF MATHEMATICS AND STATISTICS

The undersigned hereby certify that they have read and recommend to the Faculty

of Graduate Studies for acceptance a thesis entitled “ON THE STRUCTURE OF

GAMES AND THEIR POSETS” by Angela Annette Siegel in partial fulfilment of

the requirements for the degree of Doctor of Philosophy.

Dated: April 21, 2011

External Examiner:

Research Supervisor:

Examining Committee:

Departmental Representative:

ii

DALHOUSIE UNIVERSITY

DATE: April 21, 2011

AUTHOR: Angela Annette Siegel

TITLE: ON THE STRUCTURE OF GAMES AND THEIR POSETS

DEPARTMENT OR SCHOOL: Department of Mathematics and Statistics

DEGREE: PhD CONVOCATION: May YEAR: 2011

Permission is herewith granted to Dalhousie University to circulate and to have copied
for non-commercial purposes, at its discretion, the above title upon the request of
individuals or institutions. I understand that my thesis will be electronically available
to the public.

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may be printed or otherwise reproduced without the author’s written
permission.

The author attests that permission has been obtained for the use of any copyrighted
material appearing in the thesis (other than brief excerpts requiring only proper
acknowledgement in scholarly writing) and that all such use is clearly acknowledged.

Signature of Author

iii

To my wonderful family that continuously

supports and loves me in all that I do

iv

Table of Contents

List of Tables . ix

List of Figures . x

Abstract . xiii

List of Abbreviations and Symbols Used xiv

Acknowledgements . xv

Chapter 1 Introduction . 1

1.1 Overview Of Thesis . 1

1.2 Combinatorial Games . 3

1.2.1 Fundamentals . 4

1.2.2 hackenbush . 9

1.2.3 Outcome Classes . 9

1.2.4 Canonical Form . 16

1.2.5 Birthdays . 20

1.2.6 Impartial Games . 24

1.2.7 Partizan Games . 26

1.2.8 Game Dimension . 32

1.2.9 Reduced Canonical Form . 35

1.2.10 Atomic Weight . 39

1.3 Partial Orders & Lattices . 44

1.3.1 Games Born By Day n . 45

1.3.2 Chains And Antichains . 49

1.3.3 Duality . 49

1.3.4 Floor And Ceiling Functions 50

1.3.5 Lower And Upper Sets . 51

1.3.6 Join And Meet . 53

1.3.7 Lattices . 54

v

1.3.8 Linear Orders, Dimension & Planarity 59

Chapter 2 Juxtapositions . 62

2.1 Juxtaposition Defined . 62

2.2 Ordinal Sums . 65

2.2.1 Ordinal Sums Of Numbers . 71

2.2.2 Hackenbush-Dimension Applied 74

2.2.3 Ordinal Sums From Day n . 77

2.3 Ordinal Sum Applied . 83

2.3.1 lenres . 83

2.3.2 When push Comes To shove 91

2.4 Side-Sums . 99

2.4.1 Side-Sum Function . 99

2.4.2 Side-Sum From Day n . 102

2.5 Side-Sum Applied . 105

2.5.1 Restricted Toppling Dominoes 105

Chapter 3 Loopy And Oslo Games 110

3.1 Loopy Games . 110

3.2 Oslo Games . 112

3.2.1 Oslo Game Values . 113

3.3 Lattice Of Oslo Games . 116

3.3.1 Closed Sets . 117

3.3.2 Closed Set Application To Oslo Games 119

3.4 Passification And Uponic Weight . 123

3.4.1 Loopy Subtraction Games . 124

3.5 Side-Out Function . 126

3.6 Oslo Examples . 128

3.6.1 A Classic Oslo Variant . 128

3.6.2 “Hard” Games Made Simple 131

3.6.3 An Open Oslo Game . 137

3.6.4 The Next Moves . 140

vi

Chapter 4 Option-Closed Games . 143

4.1 Structure . 143

4.2 Option-Closure Function . 149

4.2.1 Literal Requirements . 150

4.2.2 Threatbare Games . 152

4.3 Lattice Of Option-Closed Games . 158

4.4 An Option-Closed Compendium . 172

4.4.1 maze . 172

4.4.2 Roll The Lawn . 177

4.4.3 Cricket Pitch . 179

Chapter 5 Conclusion . 190

5.1 P-Positions: Where We Will End . 190

5.2 N -Positions: Where We Want To Go Next 191

Appendix A Rulesets . 194

A.1 Cricket Pitch . 194

A.2 Grundy’s Game . 195

A.3 Hackenbush . 195

A.4 Independence Game . 195

A.5 LenRes . 195

A.6 Maze . 196

A.7 Nim . 196

A.8 Octal Game .007 . 196

A.9 Push . 197

A.10 Restricted Toppling Dominoes . 197

A.11 Roll The Lawn . 198

A.12 Shove . 198

A.13 Subtraction Games . 199

A.14 Toppling Dominoes . 199

A.15 Wythoff’s Game . 199

Bibliography . 200

vii

Index . 203

viii

List of Tables

1.1 Outcome classes of short games. 10

1.2 An alternate view of outcome classes. 11

1.3 Relationship between G and H given outcome in G−H. 14

1.4 Games born on day 1. 21

1.5 Day 2 games. 22

1.6 Games born on day 2. 23

2.1 Ordinal sums that can be formed from games born by day 1. . 78

2.2 The reduced canonical forms of ordinal sums that can be formed
from games born by day 1. 78

2.3 The reduced canonical forms of ordinal sums that can be formed
from games born by day 2. 79

2.4 Side-sums that can be formed from games born by day 1. . . . 103

2.5 The reduced canonical forms of side-sums that can be formed
from games born by day 1. 103

3.1 Named loopy games [3], [9] & [28]. 111

3.2 A sampling of loopy idempotents [28]. 111

3.3 The Oslo subtraction game G =oslo subtraction({p, 1, 2}, {1, 2}).
Rows give heap size; literal form of the underlying subtraction
game g = S ({1, 2}, {1, 2}) at heap size n, g(n); uponic weight (or
equivalently, the atomic weight of the passified game, p (g(n));
and, finally, the value of the game G at heap size n, G(n). . . . 125

3.4 Values of oslo wythoff for some smaller heap sizes in terms
of multiples of upon∗. 129

3.5 Values of oslo grundy for small heap sizes. 133

3.6 Values of oslo(octal .007) for small heap sizes. 135

ix

List of Figures

1.1 The hackenbush “games” game position. 3

1.2 Example of a game tree. 5

1.3 Example of the edges used in hackenbush. 9

1.4 Examples of each outcome class as hackenbush positions. . . 12

1.5 The hackenbush positions 0 and ∗. 15

1.6 The game tree of the hackenbush position 0− ∗. 15

1.7 The hackenbush positions {−1 |1} and {∗ |∗}. 16

1.8 Responses to play in G−G′ where GL is a reversible option and
G′ =


L

GLR


∪ L (G) \GL |R (G)


. 18

1.9 An example of the nimbers as (green only) hackenbush posi-
tions. 25

1.10 A sampling of the dyadic rationals in [0, 1]. 27

1.11 Example of hackenbush positions having integer values. . . . 28

1.12 A sampling of dyadic rationals in [0, 1] presented as hacken-
bush strings. 30

1.13 The infinite Nim-dimension of toppling dominoes: the con-
struction of all nimbers as toppling dominoes positions[2]. . 33

1.14 The partial order of “LATTICES”. 44

1.15 Partially ordered set: Family ordered by genealogical descen-
dancy. 45

1.16 Hasse diagram of ⟨P ({1, 2, 3});⊆⟩ 47

1.17 The poset of games born by day 1. 48

1.18 The poset of games born by day 2 [8, Fig. 1, p. 28]. 48

1.19 Hasse diagrams of (a) a lattice, and (b) a poset that is not a
lattice. 55

1.20 The nondistributive lattices (a) M3, the “diamond”, and (b)
N5, the “pentagon”. 57

1.21 Irreducible elements. 58

x

1.22 An example of a planar poset (a), drawn in its planar represen-
tation (b). 60

2.1 Juxtaposition of hackenbush positions. 63

2.2 Example of a game of toppling dominoes having value 1
2
. . 64

2.3 Juxtaposition of toppling dominoes positions. 64

2.4 Juxtaposition, G�H, of hackenbush strings having values G
and H. 65

2.5 The hackenbush position 3
2
. 66

2.6 Poset of OS1. 80

2.7 Posets of reduced canonical form of (a) OS1 and (b) OS2. . . 81

2.8 The game tree for lenres position LenRes[0101]. 84

2.9 Depiction of Lemma 2.3.4, which shows that it is always best
to move your left-most integer. 86

2.10 Depiction of Lemma 2.3.6, which shows that it is always best
to cover the first option. 87

2.11 Examples of the position [X OX] played under the rulesets for
(a) push and (b) shove. 91

2.12 Hackenbush representation of the shove position X O XX. . . 97

2.13 Poset of SS1. 104

2.14 The W/E-restricted toppling dominoes position w(x)�
b(y). 106

2.15 The game tree of g � h−G �H. 108

2.16 Example game G = {−1, 0 |2} = 1. 108

2.17 Example game H = {0 |0} = ∗. 108

2.18 Example game G � H = 1 � ∗. 109

3.1 Example of oslo


1
2


, oslo


−1

2


and oslo ({0 |−1}). 113

3.2 Example of oslo ({−1 |1}). This provides an example of oslo (G)
for a game G which has value 0, but is not identically zero, i.e.
G = 0 but G ̸ ∼= 0. 114

3.3 Oslo games oslo (G) with birthday b(G) = 1. 116

3.4 Oslo1: Oslo games born by day 1. 116

xi

3.5 The partial-order structure of Oslo2. 120

3.6 The partial-order structure of Oslo3. 121

3.7 The game of ∗ along with both the Oslo and passified versions
of the game, having values upon∗ and ↑ ∗, respectively. 123

3.8 The game of ↑ along with both the Oslo and passified versions
of the game, having values 2 �upon∗ and ⇑[2], respectively. . . 124

3.9 independence game position on P5 having value {0, pass |0} =
upon∗. 138

3.10 independence game position on P9 having value 2 �upon∗. . 139

3.11 independence game position on P4k+1 having value k �upon∗. 139

3.12 All independence game positions on P5 demonstrating the
presence of all possible outcome classes. 140

4.1 The game tree for G = {∗ |∗} (left) and oc (G) (right). 151

4.2 The effect of the option-closure funtion on the game tree. . . . 151

4.3 ⟨OC1;≤⟩: The lattice of option-closed games born by day 1. . 158

4.4 The partial-order structure of the 18 option-closed games born
by day 2 that make up OC2. 169

4.5 The partial-order structure of the 176 option-closed games born
by day 3 that make up OC3. 170

4.6 A maze board in which Left and Right move down and right,
respectively. Reduced canonical form of values for each position
is included on the board. 173

4.7 maze boards of equivalent value. 174

4.8 The Outline of the Construction. Black lines represent existing
walls, dashed lines walls that do not exist. 175

xii

Abstract

This thesis explores the structure of games, including both the internal structure of

various games and also the structure of classes of games as partially ordered sets.

Internal structure is explored through consideration of juxtapositions of game posi-

tions and how the underlying games interact. We look at ordinal sums and introduce

side-sums as a means of understanding this interaction, giving a full solution to a

toppling dominoes variant through its application. Loopy games in which only

one player is allowed a pass move, referred to as Oslo games, are introduced and their

game structure explored. The poset of Oslo games is shown to form a distributive

lattice. The Oslo forms of wythoff’s game, grundy’s game and octal .007 are

introduced and full solutions given. Finally, the poset of option-closed games is given

up to day 3 and all are shown to form a planar lattice. The option-closed game of

cricket pitch is also fully analyzed.

xiii

List of Abbreviations and Symbols

Used

0 {· |·} “zero”

∗ {0 |0} “star”

∗n {0, ∗, . . . , ∗(n− 1) |0, ∗, . . . , ∗(n− 1)} “star-n”

⋆ ‘far star”

1 {0 |·}

n {n− 1 |·}

↑ {0 |∗} “up”

⇑ {0 |↑ ∗} “double-up”

↓ {∗ |0} “down”

⇓ {↓ ∗ |0} “double-down”

n {0 |{0 |−n}} “tiny-n”

L (G) the set of left options of G

GL a specific first left option of G

R (G) the set of right options of G

GR a specific first right option of G

G + H the disjunctive sum of G and H

G:H the ordinal sum of G and H

G �H the side-sum of G and H

G⊙H G side-out H

N the set of all first (next) player win games

L the set of all Left win games

P the set of all second (previous) player win games

R the set of all Right player win games

xiv

Acknowledgements

First, and foremost, I would like to thank Dr. Richard Nowakowski. My experience

at Dalhousie, or as a graduate student in general, would not have been as enjoyable

were it not for him. I feel lucky to have landed1 in Halifax as his student. It seems

that there is always a fun new topic to explore whenever we meet.

Secondly, I would like to thank the many grad students that I have had the

privilege to work with. The list of cohorts, of many, includes: Paul Ottaway, whose

work with option-closed games opened up a new area to explore and whose friendship

made my first years at Dal truly enjoyable; Meghan Allen, who made real analysis

and even misere games seem fun; and Neil McKay, whose collaboration and ideas I

never tire of.

I would also like to thank the many people at Dalhousie that have supported

me over the years, including Dr. Karl Dilcher, Gretchen Smith and Paula Flemming.

Their support for both my life as a graduate student and the NS Math Circles program

has been invaluable. Along that vein, I wish to express sincere appreciation to Danielle

Cox, who has earned many thanks as a fellow-graduate student, coworker with NS

Math Circles, and mostly as a caffeine-habit-enabling confidant and friend.

Last, but not least, I wish to thank the family and friends that have supported

me in numerous ways. Support from friends has made my time in Halifax a joy,

including: 6 AM bike rides with Kim to jump-start my brain before the kids were

awake; evenings at the Waeg with Fiona and kids when Eric was out of town; help

with the kids and in general from Grandma Laurie; and sanity-support from Leah

and Joanne, amongst others. I thank my dad for having taken the time at an early

age to show me that math could be fun, my mom for showing me that everything

can be fun, and my brother for his ability to always awe and inspire me. To my own

family, Eric, Anneka and Dorian: ustedes son mi vida. Their love and support, which

they generously share, is all that one needs.2

1literally!
2In addition, a Ph.D. would be nice!

xv

Chapter 1

Introduction

1.1 Overview Of Thesis

The focus of this thesis is on the structure of games. It explores the internal structure

within a game, as well as the structure of classes of games as partially ordered sets.

In Chapter 1, we first introduce combinatorial games. Fundamentals are covered

that will be utilized later in attaining new results. Dos Santos and Silva explored the

habitat of nimbers in various games and classes of games [25]. Akin to this idea, the

concept of Hackenbush-dimension, a concept that quantifies which types of numbers

can arise in a game or class of games, is introduced in section 1.2.8.2. Not only does

this give a means of describing the types of positions that can arise in a game, but it

also becomes useful later in Chapter 2 when we take a look at ordinal sums.

Games have a rich structure that includes a partial order and equivalence classes.

The latter half of Chapter 1 covers the fundamentals of partial orders and lattices.

The lattice structure of games born by day n is introduced and common methodologies

for exploring the partial order structure of a set of games is introduced.

In Chapter 2, we take a look at the internal structure of certain game positions.

Juxtapositions, the act of two board positions being place adjacent to one another, are

introduced. We look at positions in which a single position is formed from two games

sitting next to each other. We explore these interactions through the use of ordinal

sums and a similar function, that will be introduced, which we will call side-sums.

For each, we will explore the games that can be formed by taking juxtapositions of

games from day n. We will also look at applications for each as solutions to existing

games. The games of lenres, shove and restricted toppling dominoes will

1

2

be explored with the help of the ordinal sum and side-sum functions.

In Chapter 3, we will venture into the realm of loopy games. We will consider the

class of games, which we will call Oslo (One-sided loopy) games, in which only one

player is allowed a pass. For these, we will explore both the structure and the form

of Oslo games that can arise. We will also show that the set of Oslo games by day n

form a distributive lattice. Finally, we will introduce a new concept which we will call

uponic weight. We will show that this is a meaningful way to describe loopy games.

Based on atomic weight, which gives an approximation of a game based on the game

↑, uponic weight gives a means of describing games with respect to the game upon∗.
Chapter 4 explores option-closed games. Option-closed games are those of a form

such that any position that could be reached through consecutive moves could have

been reached in one single move. We introduce a function that takes a game and

returns it in option-closed form. We then introduce the concepts of left- and right-

threats in a game. For games to have the same value under option-closure, we will

require consideration of these threats. We will show that two threatbare games that

have the same value will be infinitesimally close to each other when option-closed.

We look at the lattice structure of option-closed games by day and show that these

games form a planar lattice. We will explore three option-closed games: maze, roll

the lawn and cricket pitch. For the last, we will give a complete analysis.

Finally, in Chapter 5, we will summarize all that we have explored and conclude

with the laundry list of future work that remains to be done in these areas.

Unless otherwise specified, all theorems and proofs are those of the author. A

large number of results that we will make use of are taken from the book Lessons in

Play [2]. Unless they serve a greater purpose, most proofs of theorems taken from

outside sources will be omitted.

3

1.2 Combinatorial Games

Figure 1.1: The hackenbush “games” game position.

Combinatorial game theory is a mathematical theory that describes the detail and

structure of games of no chance. Particularly, it studies two-player games in which

players alternately take turns making defined moves in an attempt to obtain a spec-

ified ending condition.

“These young guys are playing checkers. I’m out there playing chess.”

- Kobe Bryant

Not to be confused with classical game theory, used in cooperation games and

the theory of economics, this theory will not help us at the casino. However, its

principles can be applied to common games such as chess, checkers and go. In

all future instances, the term game theory, used for brevity, will imply combinatorial

game theory and the term game will always imply a combinatorial game.

As suggested, the games that we will look at will involve two players, who will

alternate play. We shall call the two players Left and Right, as per convention.1

At all times, in combinatorial games, both players have perfect information. That

is, each player has full knowledge of the present and future moves available to both

themselves and their opponent.

1Traditional convention also refers to Left as female and Right as male in honour of Louise and
Richard Guy, the latter being one of the founding fathers of game theory and authors of Winning
Ways [3].

4

All games will end with one winner. That is, there will be a defined ending

condition such that ties or draws are not possible. We will restrict our consideration

of games to those played under the normal play convention, whereby the first

person unable to make a move loses.

We will originally consider short games, games having only a finite number of

total positions in which repetition of positions is not allowed. In these games, due to

the placed restriction, the play will always come to an end.

We will later consider games falling outside of that realm, called loopy games.

Loopy games are interesting in that it is possible to return to the same position over

and over again. In these cases, we drop the normal play ending condition and must

consider the act of “winning” in a different light as, in loopy games, it is possible for

a game to go on indefinitely. One such familiar example of a loopy game is the game

of checkers, in which certain positions can lead to an infinitely long sequence of

moves.

1.2.1 Fundamentals

Based on the given ruleset for a game, each player will have a set of positions that

he/she may move to. The positions that can be obtained by Left are referred to

as left options, and those that can be obtained by Right are referred to as right

options.

Definition 1.2.1. [2, p. 4] For a game G, the left options of G are the positions

that can be reached if Left moves first in G. We will denote the set of all left options of

G as L (G) and use GL to denote an element of L (G). Likewise, the right options

of G are the positions that can be reached if Right moves first in G. Similarly, R (G)

will denote the set of all right options and GR will refer to an element of R (G).

The options of a game are simply the elements in the union of these two sets.

Thus, options from G are all positions in L (G)∪R (G). Games are defined recursively

in terms of the left and right options available from a given position.

Definition 1.2.2. [2, p. 66][9, p. 4] Let L (G) and R (G) be two arbitrary sets of

games, each possibly empty or infinite. Then the pair (L (G) ,R (G)), which will be

5

denoted as

G = {L (G) |R (G)} ,

is a game where L (G) is the set of left options and R (G) the set of right options of

G.

For those outside of combinatorial game theory, this may first appear to be an

abuse of notation to denote the game G = (L (G) ,R (G)) as G = {L (G) |R (G)}.
However, it is standard convention within the field.

Definition 1.2.3. [26, 3] For a game G, the positions of G are G and all positions

of any option of G, i.e. G and all positions of any H ∈ L (G) ∪R (G).

The followers of G are all positions of any option of G, i.e. all positions of any

H ∈ L (G) ∪R (G).

Definition 1.2.4. [2, p. 3] A short game is a game in which a position may never

be repeated and there are only a finite number of other positions that can be reached.

Thus, a short game must eventually come to an end. When we refer to games, we

shall assume they are short games unless specified otherwise.

In order to depict the options available to each player, we will sometimes draw a

game tree of the position. The game tree is a diagram listing each set of options,

with left options appearing below and to the left of the game, and right options

appearing below and to the right, as in Figure 1.2.

G

GL1 GL2... GLi GR1 GR2... GRj

Figure 1.2: Example of a game tree.

While this figure only demonstrates one layer of depth in the game tree, the full

game tree for a given position would include both left and right options from each

follower.

6

It might first seem pointless to include right options from right options, and left

from left, as we’ve previously specified alternating play, precluding consecutive moves

by either player. However, while alternate play holds within a game, the bulk of the

theory of combinatorial games comes from the analysis of the decomposition of games.

That is, in play, there are situations in which games decompose into subgames. This

happens when a position breaks up so that moves made in one part of the position

will not affect the other parts. In such a decomposition, alternating play in the

overarching game may well involve consecutive moves for a given player in one of the

subgames. Thus, in that subgame (and so in any game) we must also understand the

result when players do not alternate moves.

1.2.1.1 The Endgame

Prior to any game being created, the only set of games available to us is the empty

set. This leads us to the definition of the important game zero, sometimes referred to

as the endgame, which is the game in which both L (G) and R (G) are empty (i.e.

L (G) = R (G) = ∅):
0 = {∅ |∅} .

For brevity, we will sometimes use “·” as a placeholder for ∅, such as 0 = {· |·}. Note

that in the game zero, neither player has a legal move.

1.2.1.2 Induction Basis

As the definition of a game G is recursive, the game zero becomes the base case for

the recursion. Many of the following definitions are also recursive. It may not at first

glance be obvious, but most require no basis, as ultimately they are reduced to using

only members of the empty set.

Conway has given us a simple induction principle that we will utilize in almost all

game theoretic proofs [9].

Theorem 1.2.5 (Conway Induction). [3, 9] Let P be a property which games might

have, such that any game G has property P whenever all left and right options of G

have this property. Then every game has property P .

7

Proof. Suppose that there exists a game G that does not satisfy property P . If all

options of G satisfy P , then G must also by hypothesis. Thus, there must exist a left

or right option H of G that does not satisfy P . Likewise, since the game H does not

satisfy property P , there must exist an option H ′ of H that does not satisfy property

P . Similarly then, there must be an option H ′′ of H ′ not satisfying property P . We

can inductively continue this argument and obtain an infinite sequence H,H ′, H ′′, . . .

of games which are each an option of their predecessor. However, this contradicts G

being a short game. Thus, the original game G must satisfy the property P .

The fact that the endgame zero, {· |·}, satisfies property P , no matter what it

might be, is vacuously true since there is no option of 0 which might fail property

P . For this reason, Conway Induction does not require a specific induction base as is

required with ordinary induction.

1.2.1.3 Disjunctive Sum

It was previously mentioned that decomposition of games plays a large role in their

analysis. As such, we need to have an understanding of the addition of games, so

that once a game has decomposed into sums of smaller subgames, we can deal with

them in a meaningful way. We do this through disjunctive sums.

Definition 1.2.6. [9, p. 5][2, p. 68] For games G and H, we define their disjunc-

tive sum, G + H, as

G + H = {L (G) + H,G + L (H) |R (G) + H,G + R (H)} ,

where, for a game K and a set of games S, we define

K + S = {K + s}s∈S.

Thus, if S = ∅, then K+S is also empty. It is conventional notation to use “A,B”

within a set of left (right) options to imply the set union A ∪B. This notation has

been adopted by game theorists for its less cumbersome nature.

Proposition 1.2.7. [2, Thm. 4.4, p. 69]

G + 0 = G.

8

Proof. Since L (0) = R (0) = ∅,

G + 0 = {L (G) |R (G)} = G.

The addition of games is both commutative and associative with 0 ∼= {· |·} as the

identity element.

Proposition 1.2.8. [2, Thm. 4.5][9, p.17] For games G, H and K,

(i) [Commutativity] G + H = H + G, and

(ii) [Associativity] (G + H) + K = G + (H + K).

As we have considered G+H, it is natural to wonder about G−H. To understand

this, we require understanding of the negative of a game. The negative of a game G,

denoted −G, corresponds to reversing the roles of Left and Right. That is, the sets

of left and right options are recursively swapped in all of the options.

Definition 1.2.9. [2, p. 69] The negative of a game G is defined to be

−G = {−R (G) |−L (G)} ,

where

−L (G) = {−GL}GL∈L(G), and −R (G) = {−GR}GR∈R(G).

Definition 1.2.10. [2, p. 69]

G−H = G + (−H) .

Hence, we have the following two results.

Proposition 1.2.11. [2, p. 69]

− (−G) = G.

This is easy to see, as

− (−G) = − ({−R (G) |−L (G)}) = {L (G) |R (G)} = G.

Proposition 1.2.12. [2, p. 69]

− (G + H) = (−G) + (−H) .

9

1.2.2 hackenbush

One classic example of a combinatorial game is the game of hackenbush, introduced

in Winning Ways [3]. The game of hackenbush is played with a picture such as

that in Figure 1.1. In the game of Hackenbush, Left is allowed to move by deleting

any black edge together with any edges no longer connected to the ground. Similarly,

Right is allowed to remove any white edges along with any edges disconnected from

the ground. Edges that are gray can be removed by either player. After a period of

play2, one player will find him or herself in a position where he or she has no available

move. At that point, under the normal play convention, that player is the loser.

Either player
(gray line)

Right only
(white line)

Left only
(black line)

Figure 1.3: Example of the edges used in hackenbush.

We introduce this game now, so as to make use of it in demonstrating further

properties of games. However, we will return to hackenbush on many an occasion as

we look for a map taking other more complicated games to the simple and understood

positions within hackenbush.

1.2.3 Outcome Classes

“Winning is a habit. Unfortunately, so is losing.”

- Vince Lombardi

As combinatorial games involve no chance and the players each have perfect in-

formation, it is possible to determine who will win the game prior to any move being

made. It should be noted that while combinatorial game theory concerns itself with

determining who will win a game, one major assumption is in play3; it is assumed

that both players play sensibly. That is, we assume optimal play by both Left and

2Gratuitous hockey reference.
3Pun intended.

10

Right. If a strategy exists for a player to guarantee a win no matter how his or her

opponent chooses to play, we refer to this as a winning strategy.

In discussing who has the possibility of winning a game, we refer to the outcome

class of a game. In these outcome classes are determined by which player has a

winning strategy based on which player moves first. The four outcome-classes are

described in Table 1.2.3.

Class Name Definition

P zero The Previous player (or 2nd to play) can force a win.

N fuzzy The N ext player to play (i.e. 1st to play) can force a win.

L positive Left can force a win, regardless of who moves first.

R negative Right can force a win, regardless of who moves first.

Table 1.1: Outcome classes of short games.

For short games, these outcome classes are driven by the Fundamental Theorem

of Combinatorial Games.

Theorem 1.2.13 (Fundamental Theorem of Combinatorial Games). [2, Thm. 2.1,

p. 35] In a game G with Left moving first, either Left can force a win moving first,

or Right can force a win moving second, but not both.

In reference to the Fundamental Theorem of Combinatorial Games (Theorem

1.2.13), Table 1.2.3 offers another way of looking at outcome class.

If regardless who starts, the first (or next) player wins, the game is called a first

player win or an N -position. Conversely, if the first player loses and the second

(or previous) player has a winning strategy, it is called a second player win or a

11

Right starts

OUTCOME

CLASSES

L wins R wins

Left starts

L wins Left win 1st player win

L-position N -position

R wins 2nd player win Right win

P-position R-position

Table 1.2: An alternate view of outcome classes.

P-position. In these two outcome classes, the winner may be either Left or Right and

depends only on their order of play.

If Left has a winning strategy no matter who starts, we call the game a left win

or L-position. Likewise, if Right can win no matter who starts, we call the game a

right win or R-position.

It is important to reiterate that if we say a game is left win (or first player win,

etc.), we mean that he can force a win through optimal play. However, he will not

necessarily win if he plays poorly. More importantly, it simply means that a winning

strategy exists and not that it is actually known.

We will use P , N , L and R to denote the set of all P-, N -, L- and R-positions,

respectively.

Notation 1.2.14. For a game G, we represent the outcome of G as o (G) with

o (G) ∈ {L,N ,P ,R}.

Each of the four outcome classes can be depicted by simple hackenbush posi-

tions. This fact is witnessed in Figure 1.4, which depicts the smallest such hack-

enbush positions embodying each of the four outcome classes. The positions repre-

sented in this Figure are the games 0 = {· |·}, ∗ = {0 |0}, 1 = {0 |·} and −1 = {· |0},

12

respectively, with o (0) ∈ P , o (∗) ∈ N , o (1) ∈ L and o (−1) ∈ R.

P N RL

Figure 1.4: Examples of each outcome class as hackenbush positions.

1.2.3.1 Equivalence

Now that we have a means of understanding outcome, we can discuss equivalence

classes of games. We next introduce the concept of game equality, an equivalence

relation. If two games G and H are equal, then in any sum of games, G and H act

alike. As a side effect, in most contexts, you may substitute G for H when desired.

However, while the games are equal in value, their game trees may differ. When we

later discuss operations requiring the literal form of a game, this substitution will no

longer give the desired results.

Definition 1.2.15. [2, p.70] For games G, H and K, games G and H are said to be

equal, denoted G = H if

∀K, o (G + K) = o (H + K) .

As noted, game equality is, in fact, an equivalence relation. It is reflexive (G = G),

symmetric (G = H =⇒ H = G) and transitive (G = H and H = K =⇒ G = K).

In the next section, we will introduce the canonical form of a game. We will see

that equality between games is the same as those games having the same canonical

form. We will explore games such as {−1 |1} and {∗ |∗} which both behave as the

game 0.

If we consider play in a sum of games, G + K, where K is a second-player win,

the outcome of the sum is the same as that when playing in G alone. Essentially, a

player can ensure the same outcome of G by always playing in G unless his opponent

moves in K. In that case, he simply replies by playing the second player winning

strategy in K.

13

Proposition 1.2.16. [2, Prop. 3.1, p. 54] For games G and K with o (K) = P,

o (G) = o (G + K) .

Theorem 1.2.17. [2, Thm. 4.11, p. 70] For a game G,

G = 0 ⇐⇒ o (G) = P .

Thus, if a game is a win for the second player, it has value 0.

Corollary 1.2.18. [2, Cor. 4.14] G−G = 0.

Proposition 1.2.19. [2, Thm. 4.15, p.71] For games G, H and K,

G = H ⇐⇒ G + K = H + K.

The following Corollary provides one of the most useful tools in the combinatorial

game theorist’s toolbox. It gives us a simple means of determining equality between

two games. To check whether or not G = H, we consider the game G − H. If the

second player can always win in G−H, then we know that the two games are equal.

Corollary 1.2.20. [2, Cor. 4.18, p. 72] For games G and H,

G = H ⇐⇒ G−H = 0.

That is,

G = H ⇐⇒ o (G−H) = P .

1.2.3.2 Comparison Of Games

Once we have examined equality, it makes sense to consider whether or not one game

is better for a player than another. The following definition of G ≥ H gives us that

replacing a game H with G can never hurt Left, assuming optimal play.

Definition 1.2.21. [2, p. 73] For game G and H,

G ≥ H if ∀K, o (H + K) = L =⇒ o (G + K) = L, and

G ≤ H if ∀K, o (H + K) = R =⇒ o (G + K) = R.

14

Theorem 1.2.22. [2, Thm. 4.23, p. 74] For games G and H,

G ≥ H ⇐⇒ o (G−H) ∈ L ∪ P .

That is, G ≥ H if and only if Left can win moving second in G−H. Symmetrically,

G ≤ H ⇐⇒ o (G−H) ∈ R ∪ P .

Notation 1.2.23. 1. G > H =⇒ G ≥ H and G ̸= H, and similarly,

G < H =⇒ G ≤ H and G ̸= H,

2. G ∥ H =⇒ neither G ≤ H nor G ≥ H,

3. G � H =⇒ G < H or G ∥ H, and similarly,

G � H =⇒ G > H or G ∥ H,

The combinations of Corollary 1.2.20 and Theorem 1.2.22 give the blueprint for

how we should compare two games. When comparing games G and H, we consider

the game G−H:

(i) If o (G−H) = P , then G = H;

(ii) If o (G−H) = L, then G > H;

(iii) If o (G−H) = R, then G < H;

(iv) If G ̸≥ H and G ̸≤ H, then o (G−H) = N and G ∥ H.

The summary of relationships between games G and H can be found in Table

1.2.3.2, all of which we determine based on the outcome of play in G−H.

Play in Right moves first:

G−H Right wins Left wins

Left moves Left wins G ∥ H G > H

first: Right wins G < H G = H

Table 1.3: Relationship between G and H given outcome in G−H.

In the event that G ∥ H, we say that G is incomparable to or confused with

H. Otherwise, we say that the two games are comparable. For example, consider

play in the hackenbush position pictured in Figure 1.5.

15

HG

Figure 1.5: The hackenbush positions 0 and ∗.

In this game, both players can move in H to the position G − 0 = G. From G,

their respective opponents have only one move, which happens to be bad. Thus, the

first player can always win.

As per convention, we sometimes draw a game tree to depict the moves available

from position, with left options to the left and right-options to the right. To indicate

that a move is bad or good for a player, we will adopt a notation from chess and use

“!” to denote a good move and “?” to denote a bad move.

The good moves, of our example game G−H, are pictured in Figure 1.6.

G

GL

G

!

GR

? ?

!

HG -

Figure 1.6: The game tree of the hackenbush position 0− ∗.

Since the first player can always win in G − H, G and H are incomparable and

G ∥ H. In this case, the games G and H under consideration were in fact the games

0 and ∗, respectively. We can see that G = 0; from G, neither player has a good

16

move. In H, we see that each player has a move to 0 and so H = {0 |0} = ∗. Hence

this example demonstrates that 0 ∥ ∗.

1.2.4 Canonical Form

“Everything should be as simple as it is, but not simpler.”

- Albert Einstein

Consider the hackenbush position of Figure 1.7.

HG

Figure 1.7: The hackenbush positions {−1 |1} and {∗ |∗}.

We can check that these two games, G and H, have the same value despite having

different game trees. In this example, G = {−1 |1} and H = {∗ |∗}. In both games,

the first player (no matter who) does not have a good move. Hence, despite all of

their differences, both of these games have value 0.

In this case, it is useful to be able to refer to the canonical form of the respective

games. Every game has a unique smallest game that is equal to it, which is what we

refer to as the canonical form of the game.

Definition 1.2.24. [2] In a game G, if A ≥ B ∈ L (G), then option A is said to

dominate option B. Likewise, if C ≤ D ∈ R (G), then option C is said to dominate

option D.

Theorem 1.2.25 (Removal of dominated options). [2, Thm 4.30, p. 79] If

G =

GL1 , GL2 , GL3 , . . .

GR1 , GR2 , GR3 , . . .


,

and GL2 ≥ GL1, then G = G′ where

G′ =

GL2 , GL3 , . . .

GR1 , GR2 , GR3 , . . .


.

Likewise, if GR2 ≤ GR1, then G = G′′ where

G′′ =

GL1 , GL2 , GL3 , . . .

GR2 , GR3 , . . .


.

17

Proof. We need to show that G − G′ = 0. That is, we must show that the second

player can always win in
GL1 , GL2 , GL3 , . . .

GR1 , GR2 , GR3 , . . .

−

GL2 , GL3 , . . .

GR1 , GR2 , GR3 , . . .


.

If either player makes a move to anything other than GL1 , the corresponding move

is available in the other component, with the response resulting in a move to either

GLk −GLk or GRk −GRk , both of which are equal to zero.

The only remaining move is for Left to play to GL1 − G′. However, from here,

Right can respond to GL1 −GL2 ≤ 0 (by assumption), which Right wins.

Hence, by applying Theorem 1.2.25, we are removing a dominated option.

Removal of dominated options is a simplification principle that will lead us toward

canonical form. However, we require one move simplification which is referred to as

bypassing a reversible option.

A reversible option is one that the opponent can respond to immediately so

that his outcome after the exchange is at least as good as that before. By removing

this intermediate step, we are able to simplify the game by simply bypassing that

interchange.

Theorem 1.2.26 (Bypassing a reversible option). [2, Thm. 4.31, p. 80] For a game

G = {L (G) |R (G)}, with GL ∈ L (G) and GLR ∈ R

GL

, if

GLR ≤ G,

then G = G′ where

G′ =

L

GLR


∪ L (G) \GL |R (G)


.

Likewise, if GR ∈ R (G) and GRL ∈ L

GR

, if

GRL ≥ G,

then G = G′′ where

G′′ =

L (G)

R GRL

∪R (G) \GR


.

As a sketch of the proof, we note that play by either player in L (G) \ GL or

R (G) has a corresponding move in the other component. The rest of the proof is

summarized in Figure 1.8.

18

G-G’

!

? ?

GL-G’ G-Y
>G-GLR

≥0

(Y∈L(GLR))

GLR-G’
?

!

GLR-H
<G-GLR

≤0

(H∈R(G’)=R(G)) ?

X-G’ (X∈L(GLR)))

X-X=0

Figure 1.8: Responses to play in G − G′ where GL is a reversible option and G′ =
L

GLR


∪ L (G) \GL |R (G)


.

Definition 1.2.27. [2] In a game G, if GLR ≤ G, then left option GL is called

a reversible option and the move to GL reverses through GLR. Likewise, if

GRL ≥ G, then right option GR is a reversible option and the move to GR reverses

through GRL.

Definition 1.2.28. [2] A game G is said to be in canonical form if G and all of

its positions have no dominated or reversible options. The canonical form of G will

be denoted can (G) when it is necessary to specify.

Both the removal of dominated options and reversal of reversible options results

in a game tree that is smaller than the original, i.e. there are fewer total positions

in the game. Therefore, the process of removing and reversing these options must

terminate at some point. What might be surprising is the fact that the order that

these processes are carried out does not matter; They will all eventually lead to the

same canonical form. This is stated in Theorem 1.2.30.

19

1.2.4.1 Literal Form

In most cases, it is easiest to refer to the canonical form of a game. When it is not

specified, we will assume that canonical form can be interchanged with the original

game.

However, when we later discuss option-closed games, it becomes important to

retain more information about the game. In that case, we will need to retain both

dominated and reversible options in all positions of the game, a form referred to as

literal form.

Definition 1.2.29. The literal form of a game G, denoted lit (G), is the game G

with all options, along with those that are dominated or reversible, included for all of

its positions.

If two games G and H have the exact same game trees, i.e. lit (G) = lit (H), then

we write G ∼= H and say that G and H are isomorphic [2, p. 66] or identical [9,

p. 15]. If games are equal in value but have different options, they are not identical.

Theorem 1.2.30. [2, Thm. 4.33, p. 81] If G and H are in canonical form and

G = H, then G ∼= H.

In terms of literal form, this states that if lit (G) = lit (can (G)) and lit (H) =

lit (can (H)), then G = H implies that lit (G) = lit (H).

The fact that the canonical form of a game has the same value as its literal form

tells us that the dominated options do not affect the game value. Furthermore, if

we add in options for either player that they would never want or need to play, it

does not affect the value of the game either. We can use this principle, called the

Gift Horse Principle, in order to guess at a value of a position and easily check

our guess.

Definition 1.2.31. [2, p. 72] For a game G, a new left option H is called a left

gift horse if H � G. Likewise, a new right option H ′ is called a right gift horse

if H ′ � G. Both H and H ′ are referred to as gift horses.

The addition of these gift horses to a game do not affect the value.

20

Lemma 1.2.32 (Gift Horse Principle). [2, p. 72] If H is a left gift horse for the

game G, then

{L (G) , H |R (G)} = G.

Likewise, if H ′ is a right gift horse, then {L (G) |R (G) , H ′} = G.

Proof. Consider the game {L (G) , H |R (G)} − G. Any move by Left or Right in

L (G) or R (G) has a mirror move in the other component. If Left moves to H −G,

then since H is a left gift horse, H � G, and so H −G � 0.

Definition 1.2.33. [2, Def. 4.36, p. 83] For all games G, the left incentives and

right incentives are the sets L (G)−G and G−R (G), respectively. For a particular

move, the left incentive of GL is GL − G (or, respectively, the right incentive of GR

is G−GR). The incentives of a game are the union of the left and right incentives.

Incentives are useful in that they can tell us where a player should like to play.

The incentives tell us what is gained or lost in the making of a specific move. Since

the incentives are games themselves, they are partially-ordered. If GL1 and GL2 are

left options of a game G, then their respectively left incentives, GL1−G and GL2−G,

have an ordering. If GL1 − G > GL2 − G, then GL1 > GL2 and so GL2 is dominated

by GL1 .

Lemma 1.2.34. [2] If H is an incentive of a game G, then H � 0.

Corollary 1.2.35. [9, p. 16] For all games G, all left options are less than or

incomparable to G, and all right options are greater than or incomparable to G. That

is,

∀GL ∈ L (G) , GL � G,

and

∀GR ∈ R (G) , G � GR.

1.2.5 Birthdays

Definition 1.2.36. [2, Def. 4.1, p. 66] The birthday of a game G = {L (G) |R (G)},
denoted b (G), is defined recursively as

b (G) = 1 + max {b (H) | H ∈ L (G) ∪R (G)} ,

with b (G) = 0 if L (G) = R (G) = ∅.

21

In other words, a game is born on day n, i.e. has its birthday on day n, if all of

its options were born on day n − 1 or earlier and if there is at least one option that

was born on day n− 1 [26, p. 21]. Thus, the birthday of a short game is equal to the

height of its game tree. Hence, the only day born on day 0 is the game 0. Commonly,

we will discuss games that are born by day n.

Definition 1.2.37. [2, p. 66] A game G is said to be born by day n if

b (G) ≤ n.

From this definition, we have a means of recursively generating games using only

those games created on previous days. Each game is assigned, as its birthday, an

ordinal number representing the number of steps needed to create the game starting

from only the empty set.

On day zero, no prior games exist and so we have the endgame 0 = {· |·} as the

only game born on day zero. We next introduce the games born on day one. As they

can have as options only those games born on a previous day, in this case only day

0, games born by day 1 can have as options only 0 or the empty set. Thus, there are

22 − 1 = 3 new games born on day one. Table 1.2.5 lists the 3 new games born on

day one.

1 = {0 |·}

−1 = {· |0}

∗ = {0 |0} (pronounced “star”)

Table 1.4: Games born on day 1.

Continuing in this way, we define the 18 new games on day two, provided in Table

1.2.5, using combinations of −1, 0, 1, ∗ and ∅ as the positions that form the new game.

The games that are formed by each combination of the day 1 options are listed in

Table 1.5. For games G + ∗, it is standard convention to write G∗. Games of the

22

G
R (G)

1 0, ∗ 0 ∗ −1 ∅

L (G)

1 1∗ {1 |0, ∗} {1 |0} {1 |∗} ±1 2

0, ∗ 1
2

∗2 ↑∗ ↑ {0, ∗ |−1} 1

0 1
2

↓ ∗ ∗ ↑ {0 |−1} 1

∗ 0 ↓ ↓ 0 {∗ |−1} 0

−1 0 −1
2

−1
2

0 −1∗ 0

∅ 0 −1 −1 0 −2 0

Table 1.5: Day 2 games.

form {a |b} where a and b are numbers with a > b are referred to as switches. If a

switch is of the form {a |−a}, the it is standard notation to write this as ±a.

23

2 −2

1∗ −1∗

1
2

−1
2

{1|0} {0| − 1}

{1|∗} {∗| − 1}

↑∗ ↓ ∗

↑ ↓

{1|0, ∗} {0, ∗| − 1}

∗2

{1| − 1}

Table 1.6: Games born on day 2.

All of this, of course, assumes that we are considering only short games, in which

each has only a finite number of options. If we allow a game G to contain itself as

either a left or right option, then the game becomes loopy. We leave consideration of

loopy games to a later chapter. If we assume that each game has a finite birthday,

then we reach the following.

Proposition 1.2.38. [2, Lem. 4.2, p. 67] The number of games born by day n is

finite.

24

1.2.6 Impartial Games

Combinatorial game theory first considered the realm of impartial games, or games

in which the available moves for both players are the same.4 Allowable moves from a

given position depend only on the position, not on the player that is moving, i.e. for

any impartial game G, L (G) = R (G) when G is in canonical form. In other words,

the gains are symmetric between players and the only difference between the two is

who goes first.

Given the fact that both players are allowed the same moves, there is no position

in an impartial game in which there is an advantage to either Left or Right. Thus,

in impartial games, there exist only N− and P−positions.

Theorem 1.2.39. [2, Thm. 2.11, p. 41] If G is an impartial game, then G ∈ N or

G ∈ P.

The classical example of an impartial combinatorial game is the game of nim, first

introduced by Charles Bouton [6]. In the game of nim, players take turns removing

stones from distinct piles, called nim-heaps. On his turn, a player may remove any

number of stones, provided he removes at least one, from any one pile. nim is the

quintessential example of an impartial game.

nim is completely solved when played under the normal play convention, in which

the winner is defined to be the person who takes the last stone. The only values that

occur in nim positions are called nimbers. A nimber is a special game denoted ∗n for

some ordinal n. The canonical form of the game ∗n is given as

∗n = {0, ∗, . . . , ∗(n− 1) |0, ∗, . . . , ∗(n− 1)} .

Thus, ∗0 = 0 = {∅ |∅}, ∗1 = {0 |0}, ∗2 = {0, ∗ |0, ∗}, and so on. The name nimber

comes from the fact that ∗n corresponds to a nim-heap of n stones.

One lovely characteristic of impartial games is that all impartial games have only

nimbers as values. As such, nim has been the go-to game when considering impartial

games. Independently, Sprague [31] and Grundy [15] discovered that under the normal

play convention, every impartial game is equivalent to a nimber. This theorem,

4Although the original definition has both players having the same moves, this really should be
applied to the canonical forms, since one player may have dominated moves that will never get
played.

25

developed in the 1930’s, is now refered to as the Sprague-Grundy theorem in their

honor. The nim-value (or Grundy value) of an impartial game is the unique nimber

that the game is equivalent to.

Theorem 1.2.40 (Sprague-Grundy theorem). [15, 31] Every impartial game is equiv-

alent to a nim-heap. That is, for all games G,

∃n ∈ Z≥0 s.t. G = ∗n.

Moreover, since nim is a completely-solved game, this tells us that if we can find

the mapping of an impartial game to its equivalent nim-heaps, then we have solved

the game.

An example of an impartial game is the game of Hackenbush played with only

green edges. Figure 1.9 gives the nimbers 0, ∗, ∗2, through ∗5.

0 *4* *3*2 *5

Figure 1.9: An example of the nimbers as (green only) hackenbush positions.

It is clear that any nimber, ∗n, can be created as a green-only hackenbush string,

consisting of n green edges.

As mentioned by Theorem 1.2.39, impartial games are either first or second player

wins (i.e. in N or P). Since each ∗n for n > 0 has a move to zero, these are all N -

positions.

26

Theorem 1.2.41. [2, Thm. 2.13, p. 41]

An impartial game is

1. an N -position if at least one of its options is a P-position;

2. a P-position if all of its options are N -positions.

We can rephrase this to say: (i) If you can win the game, you must have a move

to a position your opponent can’t win; (ii) you cannot win the game if all moves

available to you allow your opponent to win.

1.2.7 Partizan Games

“Every truth has two sides;

it is as well to look at both, before we commit ourselves to either.”

- Aesop

In many games, moves that are available to one player may not be available to the

other. Most games that are commonly played fall into this category. For example, in

the game of chess, one player is allowed to move only the white pieces and the other

only the black. Unlike impartial games, the Sprague-Grundy theorem does not apply

to partizan games. As such, these games remain more difficult to analyze.

In order to meaningfully discuss partizan games, we need understanding of the

value of games. For instance, if a game has no moves for Right and one move for

Left, it seems natural that it would have value 1 to denote that it has 1 “free” move

for Left. Likewise, we should (and do) give value -1 to the game in which Right has

one free move. Of course, it need not always work out as cleanly.

1.2.7.1 Numbers

In short games, the only numbers that we will encounter are the dyadic rationals,

i.e. rationals numbers of the form p
2q .

27

0 1
1
2

1
4

3
4

3
8

1
8

7
8

5
8

1
16

3
16

5
16

7
16

9
16

11
16

13
16

15
16

Figure 1.10: A sampling of the dyadic rationals in [0, 1].

We first motivate the integers. The integers are defined such that a game of value

n has n free moves for Left, and a game of value of −n has n free moves for Right.

As introduced earlier, the game 0 has no moves available to either player.

Definition 1.2.42. [2, p. 88][3, p. 19]

0 = {· |·}

1 = {0 |·}

2 = {1 |·}
...

n + 1 = {n |·}

Likewise, −(n + 1) = {· |−n} for n ∈ Z≥0.

Figure 1.11 gives a sampling of hackenbush positions that have integer values.

28

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Figure 1.11: Example of hackenbush positions having integer values.

Games having integer values are easy to compare since they immediately reflect

the number of moves that each player has to their advantage. This idea can be

extended to the classes of games called numbers.

Definition 1.2.43. [9, p. 4] A number is a game x = {L (x) |R (x)} where

∀xL ∈ L (x) , xR ∈ R (x) , xL < xR.

Lemma 1.2.44. [9, p. 10] In canonical form, every number x =

xL
xR


satisfies

xL < x < xR.

Theorem 1.2.45. [26, p.13] Equivalence classes of numbers form an abelian subgroup

of games.

Thus, if x and y are numbers, then x + y and −x are numbers.

Theorem 1.2.46. [26, p. 13] Numbers are totally ordered.

That is, for all numbers x and y, exactly one of the following is satisfied: (i) x < y,

(ii) x = y, or (iii) x > y.

In order to determine whether or not a game is a number, we may look to incen-

tives.

Theorem 1.2.47. [2, Thm. 6.19, p. 126] If all incentives of a game G are negative,

then G is a number.

29

If a game is not in canonical form, yet is a number, it can still be readily iden-

tified as such. To determine which number, we require the concept of the simplest

number.

Definition 1.2.48. [2, Def. 5.22, p. 93] The simplest number between numbers

xL < xR is the unique number x having the smallest birthday that satisfies

xL < x < xR.

i.e. x s.t. b (x) = min

b (y) : xL < y < xR


.

Theorem 1.2.49 (Simplest Number). [2, Thm. 5.29, p. 93] If there is some number

x such that L (G) � x � R (G), then G = {L (G) |R (G)} is the simplest such x.

Definition 1.2.50. [2, Def. 5.12, p. 91][3, p. 21] For p ∈ Z≥0 and q ∈ Z>0, we

define
2p + 1

2q
=


2p

2q

2p + 2

2q


=


p

2q−1

p + 1

2q−1


.

If the game G = {L (x) |R (x)} is a number x that is not an integer, then x = 2p+1
2q

for some p ∈ Z≥0, q ∈ Z>0 for which q is minimal. The definition of simplest number

is well-defined. To see this, we require the fact that if we had two numbers x < z

of the same birthday, then there is another number y having smaller birthday with

x < y < z. This can be visualized as ruler marks on a measuring stick, as in Figure

1.10. Between any two ruler marks of the same length, there exists a longer, and so a

longest, ruler mark between them. Our simplest number is that which would be the

longest ruler mark.

Figure 1.12 gives a sampling of numbers in the interval from 0 to 1 as hackenbush

positions.

30

0 11
2

1
4

3
4

3
8

1
8

7
8

5
8

1
16

3
16

5
16

7
16

9
16

11
16

13
16

15
16

Figure 1.12: A sampling of dyadic rationals in [0, 1] presented as hackenbush strings.

In terms of play, the following two theorems tell us that it is best to avoid playing

on numbers.

Theorem 1.2.51 (Weak Number Avoidance). [2, p. 93] Suppose G and x are games

such that x is a number and G is not. If Left can win moving first on G + x, then he

can do so by moving in G. That is,

G + x � 0 =⇒ ∃GL ∈ L (G) s.t. GL + x ≥ 0.

We now state the strong version of this theorem, which we will simply refer to as

the Number Avoidance Theorem.

Theorem 1.2.52 (Number Avoidance). [2, p. 125] Suppose G and x are games such

that x is a number and G is not. Then,

∀xL ∈ L (x) , ∃GL ∈ L (G) s.t. GL + x > G + xL.

1.2.7.2 Confusion Intervals And Stops

Much information can be revealed about a game G by comparing it with numbers.

How G relates to a number can sometimes be enough to establish a winner.

We will look at some number bounds on G that will give us an interval of confusion.

The bounds will consist of a left stop and a right stop, for which the game G will be

confused with all numbers falling between them. The definitions that follow assume

short games, as part of the argument is not applicable to infinite games in general.

31

Proposition 1.2.53 (Archimedian Principle). [9, Thm. 55, p. 98] For any short

game G, there is some integer n with −n < G < n.

The existence of this initial bound can be motivated by birthdays. To see this,

consider the birthday of G, b(G), and recall that the largest game born on day n is

the game n. Thus, if b(G) = n, then −n ≤ G ≤ n. While there may be smaller n for

which this holds, birthdays assure us that some integer must exist for which n and

−n bound G.

Definition 1.2.54. [2, Def. 6.9, p. 123][3] Denote the left stop and right stop of a

game G by L0 (G) and R0 (G), respectively. They are defined in a mutually recursive

fashion:

L0 (G) =

G if G is a number,

max

R0


GL


: GL ∈ L (G)


if G is not a number ;

R0 (G) =

G if G is a number,

min

L0


GR


: GR ∈ R (G)


if G is not a number.

Intuitively, these stops are the best numbers that a player can achieve in alternat-

ing play. We will see later that in option-closed games, these stops play an important

role.

Corollary 1.2.55. [2, Thm. 6.11, p. 123] For any game G,

R0 (G) ≤ L0 (G)

with equality when G is a number.

Proof. If G is a number, then by definition L0 (G) = R0 (G) = G.

Suppose G is not a number and R0 (G) > L0 (G). Then, since R0 (G) and L0 (G)

are both numbers, there exists a number x such that L0 (G) ≤ x ≤ R0 (G). We

claim G = x. Consider the game G− x. Since x is a number, by the Weak Number

Avoidance Theorem (Thm. 1.2.51), if either player has a winning move, it is in G.

Hence, both players play in G until it reaches a number. If Left moved first, they

eventually reach L0 (G) − x < 0. If Right started, they reach R0 (G) − x > 0. So

G− x = 0, which implies G = x is a number, which is a contradiction.

32

Proposition 1.2.56. [9, p. 97] A game G is confused with all numbers x falling

between the left and right stop of G. That is, for all numbers x,

R0 (G) < x < L0 (G) =⇒ G ∥ x.

Corollary 1.2.57. If G and H are games such that G < H, then L0 (G) ≤ R0 (H).

1.2.8 Game Dimension

“Dimension regulated the general scale of the work,

so that the parts may all tell and be effective.”

- Marcus V. Pollio

We now introduce the concept of game dimension. The concept of the Nim-

dimension of a game was introduced by dos Santos and Silva [25]. The Nim-dimension

of a game gives a bound on the nimbers that can occur in a particular position or set

of positions. We later introduce the related concept of Hackenbush-dimension, giving

a bound on the form of numbers that can occur within a game.

1.2.8.1 Nim-Dimension

In a list of unsolved problems in combinatorial games by Richard Guy [16], one of

the listed open problems5 asks the reader to determine which partizan games have

the position ∗2. Dos Santos and Silva [25] generalize this problem and ask: given a

partizan game, which nimbers occur in the game? They offer the following definition

as a means of discussing this aspect of a partizan game, which they refer to as the

Nim-dimension.

Definition 1.2.58. [25] The Nim-dimension of a game G will be denoted Ndim (G).

Ndim (G) = n if it contains a position ∗2n−1 but does not contain a position ∗2n.

If the game 0 is the only nimber that occurs as a position in the game, we say that

Ndim (G) = 0. If no nimber can be constructed in the game, we say that the game

has null Nim-dimension, and write Ndim (G) = ∅. If all nimbers can be constructed,

we say it has infinite Nim-dimension, and write Ndim (G) = ∞.

5submitted by Elwyn Berlekamp (Open Problem # 45)

33

We deviate from dos Santos and Silva [25] in that they define the Nim-dimension

of games only containing 0 and those without nimbers to have null Nim-dimension.

However, this can be an important distinction. In Chapter 3, we will be introduced

to the loopy game of on which in canonical form is the game {on |·} in which Left

is allowed to pass and right has no move. Thus, by our definition, Ndim (G) = ∅.
We can employ Nim-dimension to refer to a specific game, such as the game

↑= {0 |∗} which is

Ndim (↑) = Ndim ({0 |∗}) = 1

since there is an option to ∗ = ∗20 but not to ∗2 = ∗21. Similarly, we can give the

Nim-dimension of the game ∗5 which is

Ndim (∗5) = Ndim ({0, ∗, ∗2, ∗3, ∗4 |0, ∗, ∗2, ∗3, ∗4}) = 3

as ∗5 contains the position ∗4 = ∗22 but does not contain the position ∗8 = ∗23.

However, as was done by dos Santos and Silva [25], we can also use Nim-dimension

to discuss all possible values obtained for any starting position in a game. For in-

stance, the game of nim, as expected, has infinite Nim-dimension. That is, all nimbers

exist as nim positions. Hence, Ndim (nim) = ∞. Dos Santos and Silva [25] note that

Ndim (shove) = 0, since all values in shove are numbers6, which was shown in [2].

Later, we will formally introduce the game of shove and give motivation to its Nim-

dimension.7 They also state that Ndim (toppling dominoes) = ∞ by noting that

all nimbers can be created as toppling dominoes positions, as in Figure 1.13, as it

was shown in [2].

= * = *3= *2

Figure 1.13: The infinite Nim-dimension of toppling dominoes: the construction
of all nimbers as toppling dominoes positions[2].

6Their result actually gave Ndim (shove) = ∅. However, by our definition change, this implies
that it has Nim-dimension zero since the game of shove does contain the position 0.

7For those too curious to wait, see Appendix A.12.

34

1.2.8.2 Hackenbush-Dimension

The concept of Nim-dimension can clearly be applied to partizan games, as we see with

both shove and toppling dominoes. However, in order to also gather information

about the types of numbers (i.e. denominator powers) that can be found in a game,

we introduce a similar dimension. Thus, we define the Hackenbush-dimension of a

game.

Definition 1.2.59. For a game G, we denote the Hackenbush-dimension of G by

Hdim (G). We define this as Hdim (G) = q + 1 if G contains positions of the form p
2q

but does not contain a position of the form p′

2q+1 , for odd p, p′ ∈ Z and q ∈ Z≥0.

If zero is the only number that can be constructed in the game, we say that the

game has Hackenbush-dimension zero, and write Hdim (G) = 0. If all numbers can be

constructed, we say it has infinite Hackenbush-dimension, and write Hdim (G) = ∞.

We note that for any game G, Hdim (G) ≥ 0. We will use Hackenbush-dimension

both to describe the dimension of a specific position and also of a general game.

Hence, we could consider both Hdim


3
16


, which is 5 as 3

16
= 3

24 and all options in

this game have smaller denominator, or we could ask the Hackenbush-dimension of,

say, the game of go.

From [3], we know that all numbers can be created as hackenbush strings. Thus,

Hdim (hackenbush) = ∞. However, in the game of nim, all values are nimbers and

so 0 is the only number reached in the game. Thus, Hdim (nim) = 0.

Numbers and Hackenbush-dimension

For a number, we can use Hackenbush-dimension to express the canonical options

of the game, as well as the incentives.

Lemma 1.2.60. Let x be a non-integer number. Then, in canonical form,

x =

x− 21−Hdim(x)

x + 21−Hdim(x)


with left and right incentives −21−Hdim(x).

35

Proof. Let x = 2p+1
2q with p ∈ Z and q ∈ Z>0. Since q is minimum, Hdim (x) = q + 1.

Then, in canonical form,

x=


2p
2q

2p+2
2q


=

x− 1

2q

x + 1
2q


={x− 2−q |x + 2−q }

=

x− 21−(q+1)

x + 21−(q+1)


=

x− 21−Hdim(x)

x + 21−Hdim(x)


Then, the left incentive is

x− 21−Hdim(x)


− x = −21−Hdim(x), and the right incentive

is x−

x + 21−Hdim(x)


= −21−Hdim(x).

1.2.9 Reduced Canonical Form

Often games, even relatively small or benign-looking positions, can have complex

canonical forms. In 1996, Calistrate [7] noticed that in certain situations, we can look

to a game infinitesimally close to the original game in determining how to proceed. He

introduced a reduction of the original game G that he called the reduced canonical

form. In 2009, Grossman and Siegel [14] provided a new proof correcting a flaw

in Calistrate’s algorithm. They show us that for a game G, the reduced canonical

form of G is the simplest game infinitesimally close to G and that this concept is

well-defined.

1.2.9.1 All-Small Games

A game is considered to be all-small if from any position in the game, either both

players have a move or neither do.

Definition 1.2.61. [2, p. 101] A game G is all-small if either

(i) G ∼= {· |·}, or

(ii) L (G) and R (G) are both non-empty and all-small.

For example, the games ↑ and ↓ are both all-small. All nimbers are also all-small.

36

1.2.9.2 Infinitesimal Games

We have looked at nimbers and have seen these values are incomparable with 0.

We now consider a class of games, called infinitesimals, that are greater than all

negative numbers but less than all positive numbers. In these games, it is much more

difficult to determine whether a game is positive, negative or confused with zero.

Definition 1.2.62. [2, p. 100] A game G is an infinitesimal if for every positive

number x, −x < G < x.

Clearly, the game 0 and all nimbers ∗n are infinitesimal.

Theorem 1.2.63. [2, Thm. 5.40, p. 101] If G is an all-small game, then G is

infinitesimal.

Proof. Let G be an all-small game and x a positive number. It suffices to prove that

G < x. This is trivially true when G ∼= 0. If G ̸ ∼= 0, then left and right options exist

that are both all-small and therefore infinitesimal, by induction. From G − x, Left

loses by induction when playing to any GL−x. If ∃xR, then it is a number xR > 0, so

Left also loses by induction when playing to G−xR. However, Right can win playing

to GR − x < 0, by induction.

We can also determine whether or not a game is infinitesimal based on the value

of its left and right stops. If these are both zero, then the game is infinitesimal.

Theorem 1.2.64. [2, Thm. 6.12, p. 124] A game G is infinitesimal if and only if

L0 (G) = 0 = R0 (G).

Definition 1.2.65. We define Inf as the set of all infinitesimals.

The all-small games are then a subset of the set Inf of infinitesimal games.

Definition 1.2.66. [14] We say that games G and H are infinitesimally close

when G−H is infinitesimal. We denote this as G ≡Inf H or say that H is G-ish (G

infinitesimally shifted).

Grossman and Siegel then give us the following definitons to develop the reduction.

37

Definition 1.2.67. [14, Defn. 3.6]

For games G and H, we say G ≥Inf H if G ≥ H + ϵ for some infinitesimal ϵ.

Likewise, G ≤Inf H if G ≤ H + ϵ for some infinitesimal ϵ.

The following are relatively trivial, but necessary, results about the transitivity of

≥Inf .

Lemma 1.2.68. [21, Lem. 6] If x ≤Inf y and y ≤Inf z, then x ≤Inf z.

Lemma 1.2.69. [21, Lem. 7] For numbers y and z, if x ≤Inf y and y < z, then

x < z.

Definition 1.2.70. [14] Two games G and H are equalish if G ≡Inf H, if G −H

is an infinitesimal. A game G is numberish if there is a dyadic rational x such that

G ≡Inf x, i.e. G− x is an infinitesimal.

Thus, G ≡Inf H if and only if G ≥Inf H and G ≤Inf H. So if G = H, then

G ≡Inf H.

Definition 1.2.71. [14, Def. 4.1] For a game G,

1. A left option GL is Inf-dominated or infinitesimally-dominated if GL ≤Inf

GL′ for some other left option GL′.

2. A left option GL is Inf-reversible or infinitesimally-reversible if GLR ≤Inf

G for some GLR.

Analogous definitions hold for right options.

For example, consider the game G = {3, {3 |2} |2}. Since {3 |2} = 3 + {0 |−1} <

3+ ↑8 where ↑∈ Inf , then {3 |2} ≤Inf 3. If we remove the Inf -dominated left option

{3 |2} from G, we are left with the simpler game {3 |2}. In reduced canonical form,

both the infinitesimally-dominated and Infinitesimally-reversible moves are removed.

Definition 1.2.72. [14, Defn. 4.2]

A game G is said to be in reduced canonical form, denoted rcf (G), if every

follower of G is either

8Note that {0 |−1} <↑. In the game {0 |−1}+ ↓, Right has a good move to −1+ ↓< 0 and Left
has none, either playing to ↓< 0 or {0 |−1}+ ∗, from which Right can respond to −1∗ < 0.

38

(i) a number in canonical form, or

(ii) not a number nor infinitesimally close to a number, and contains no Inf-dominated

or Inf-reversible options.

The following results are included for completeness and as examples of how one

proves things about reduced canonical form. The next result shows that the reduced

canonical form of a game is well-defined.

Theorem 1.2.73. [14, Thm. 4.3] For any game G, there exists a game rcf (G) in

reduced canonical form where G ≡Inf rcf (G).

Lemma 1.2.74. [14, Thm 4.8] If G is not numberish, then rcf (G) is obtained by

(i) replacing options with simpler options infinitesimally close to the original option;

(ii) eliminating infinitesimally-dominated options;

(iii) bypassing infinitesimally-reversible options.

Furthermore, the reduced canonical form of a game is unique.

Theorem 1.2.75. [14, Thm. 4.4] If games G and H are both in reduced canonical

form and G ≡Inf H, then G = H.

At times when even the canonical form of a game can be complicated, we can

make use of reduced canonical forms to express them in simpler terms. For example,

a position with canonical form

G =


2, {2 |0} , {2, {2 |1} |0, {1 |0}}

0,1

2
|0


,


2, {2 |0}

0,1

2
|0


can be expressed as G = {2 |0}+ ϵ where ϵ is an infinitesimal. That is, the difference

G− {2 |0} is an infinitesimal. Thus, this game has reduced canonical form rcf (G) =

{2 |0}.
We will see that this reduction can be enlightening in certain situations. Many

fundamental qualities of a game, such as mean and temperature, are not affected

by the addition or removal of an infinitesimal. While infinitesimals play an impor-

tant role, there are some situations where we can primarily concern ourselves with

39

the reduced canonical form of a game. In these situations, a player may ignore the

infinitesimals as they simply determine the parity of moves remaining once the asso-

ciated non-infinitesimal has played out. We will see the merit of reduced canonical

form when we look option-closed games in Chapter 4.

1.2.10 Atomic Weight

The theory of atomic weights relates to the approximation of infinitesimal games by

multiples of the unit ↑. One can think of the atomic weight of a game as an approx-

imation its “uppitiness.” In infinitesimal games, it is often difficult to determine the

outcome of a game. We will use as example the games of ↑ and ↑ ∗; the former is

positive, while the latter is not. In order to determine outcome class of these games

without having to play out the entire game, we can employ the use of atomic weights.

The atomic weight of a game is defined recursively and considers the play in the game

when in the presence of a nim-heap of “infinite” size.

Recall that the game of up is given by ↑= {0 |∗} and its negative, down, by

↓= -↑= {∗ |0}. These games are positive and negative, respectively, with

↓< 0 <↑ .

However, each is incomparable with ∗, as

↓ ∥ ∗ ∥ ↑ .

If we add ∗ to ↑, we have the game ↑ ∗, which is confused with 0, i.e.

↓ ∗ ∥ 0 ∥ ↑∗.

1.2.10.1 Norton Products Of Up

For the games of ↑ (or ↓) and integer n, we can compute n �↑ (and n �↓) as follows.

Definition 1.2.76. [2, p. 103] For a game G and integer n, we define

n �G =


0 if n = 0

G + (n− 1) �G if n > 0

(−n) �(−G) if n < 0

40

Thus, 2 � ↑=↑ + ↑=⇑ and 3 � ↑=↑ + ↑ + ↑, etc. The canonical forms of n � ↑ and

n �↑∗ = n �↑ +∗ are given below.

Theorem 1.2.77. [2, Thm. 5.43,p. 104] For integer n ≥ 1, the canonical forms of

n �↑ and n �↑∗ are given by

n �↑ = {0 |(n− 1) �↑∗}

n �↑∗ =

 {0, ∗ |0} if n = 1

{0 |(n− 1) �↑} if n > 1

Symmetrically, the canonical forms of n �↓ and n �↓ ∗ are given by

n �↓ = {(n− 1) �↓ ∗ |0}

n �↓ ∗ =

 {0 |0, ∗} if n = 1

{(n− 1) �↓ |0} if n > 1

While we can consider n �↑ for integer values of n, in order to understand atomic

weight, we require knowledge of non-integer multiples of ↑. For this, we require the

following definition.

Definition 1.2.78. [2, p. 197] For non-integer games G, the Norton product of

G and ↑, denoted G �↑, is given as

G �↑= {L (G) �↑ + ⇑ ∗ |R (G) �↑ + ⇓ ∗} .

1.2.10.2 Far Star

In a game G, we can define a nimber that is large enough such that it exceeds all

other nimbers in the game. The following definition introduces a symbol that will

serve to act as such a nimber, behaving as ∗N for sufficiently large N .

Definition 1.2.79. [2, p. 195] The game far star, denoted ⋆, will be the game

such that from ⋆, each player may move to ∗n for all n ≥ 0.

41

Far star has the property that it is an idempotent: ⋆ + ⋆ = ⋆. For every n, the

move to G + ∗n exists in the game G + ⋆. We note that ⋆ is not a short game. Its

purpose is really to serve as a placeholder for a nim-heap ∗N which is large enough

such that any move to ∗n in G is also available as a move in ∗N . We require ⋆ for

definition of the following equivalence relation.

Definition 1.2.80. [2, Def. 9.28, p. 195] For games G and H, we say that G and

H are equivalent under ⋆, denoted G ∼⋆ H, if for all games X, G + X + ⋆ and

H + X + ⋆ have the same outcome.

Theorem 1.2.81. [2, Thm. 9.29, p. 195] The relation ∼⋆ is an equivalence relation

that respects addition.

Since actually checking every possible combination of G and H with X + ⋆

would be impossible, we require the following for a more practical means of validating

equivalence under ⋆.

Theorem 1.2.82. [2, Thm. 9.30, p. 195]

G ∼⋆ H ⇐⇒ ↓ ⋆ < G−H < ↑ ⋆.

In practice, we recall that ⋆ is simply a placeholder for ∗N for sufficiently large

∗N . The nimber ∗N can serve as a far star for a game if no position of the game has

value ∗N , including the game itself.

1.2.10.3 Atomic Weight Defined

At long last, we have all the definitions required to define atomic weight.

Definition 1.2.83. [2, Def. 9.31, p. 197] For games G and g, if G ∼⋆ g � ↑, then

we say that G has atomic weight g. We denote this by

aw (G) = g.

For example, we can check that ↓ +⋆ < ∗ <↑ +⋆. Hence, ∗ ∼⋆ 0 and so

aw (∗) = 0. We may also note that aw (G �↑) = G since G �↑ ∼⋆ G �↑.
For all-small games, the atomic weight of a game is well-defined [2, Thm. 9.32,

p. 197]. Atomic weights formalize the concept of a game being approximately some

measure of ↑. Atomic weight is also additive.

42

Theorem 1.2.84. [2, Thm. 9.33, p. 198] If G and H are games, then

aw (G + H) = aw (G) + aw (H) .

For infinitesimal games, this gives us a meaningful way of determining the out-

come of a game. The following theorem gives us that atomic weights are a good

approximation of ↑ in a game. For example, while ↑> 0, ↑∗ ∥ 0; however, both ⇑ and

⇑ ∗ are greater than 0.

Theorem 1.2.85 (Two-Ahead Rule). [2, Thm. 9.38, p. 199]

(i) If aw (G) ≥ 2, then G > 0;

(ii) If aw (G) ≥ 1, then G � 0;

(iii) If aw (G) ≤ −1, then G � 0;

(iv) If aw (G) ≤ −2, then G < 0.

The Two-Ahead Rule tells us that with sufficently large advantage in atomic

weight, it can reveal the outcome of a game. However, it is possible to have games

of equal atomic weight, but with different outcome. The simplest examples are the

games of 0 and ∗, which both have atomic weight zero, but clearly have different

outcomes.

So far, we only have a means of testing whether or not a game G has atomic

weight g. The following gives a method for computing atomic weight for a game.

Theorem 1.2.86. [2, Thm. 9.39, p. 199] For a game G = {L (G) |R (G)}, define

aw0 (G) =

{aw


GL

− 2}GL∈L(G)

{aw GR


+ 2}GR∈R(G)


.

The atomic weight of G, aw (G), is aw0 (G) unless aw0 (G) is an integer. In that case:

(i) If G ∥ ⋆, then aw (G) = 0;

(ii) If G < ⋆, then aw (G) = min

x ∈ Z : ∀GL ∈ L (G) , x � aw


GL

− 2

;

(iii) If G > ⋆, then aw (G) = max

y ∈ Z : ∀GR ∈ R (G) , y � aw


GR


+ 2

;

43

We will apply this to the previously considered example of ∗. In this case,

aw0 (∗) = {0− 2 |0 + 2} = 0. Since ∗ ∥ ⋆, then aw (∗) = 0. If we consider

↑∗ = {0, ∗ |0}, we see that

aw0 (↑∗) = {aw (0)− 2, aw (∗)− 2 |aw (0) + 2} = {0− 2 |0 + 2} = 0.

However, ↑> ⋆, so aw (↑∗) will be the largest integer less than or incomparable to

aw (0) + 2 = 2. Thus, aw (↑∗) = 1.

When we consider loopy games in chapter 3, we will revisit atomic weight and

make use of these results.

44

1.3 Partial Orders & Lattices

Figure 1.14: The partial order of “LATTICES”.

Many sets that we consider have an intuitive ordering, such as that of the natural

numbers.

1 < 2 < 3 < 4 < 5 < · · ·

The partially ordered set (or poset) formalizes this concept of ordering within the set.

It consists of a set together with a partial order. The partial order is a binary relation

indicating whether one element in the set precedes another. Most familiar in practice

are sets, such as the set of natural numbers, that are linearly ordered, in which every

pair of elements within the set are comparable. In the case of the natural numbers,

if we consider the relation <, it is easy to see that for any pair of distinct natural

numbers, one is less than the other. In other sets, such as a group of people ordered

by genealogical descendancy, each pair within the set need not be related. For this

reason, in a poset, the relation is referred to as a partial order to indicate that not

every pair of elements within the set must be related. An example of this is given in

Figure 1.15. While some pairs of family members, such as Joey and Gibson in this

45

example, have an ancestor/descendant relationship, others, such as Eric and Angela,

do not.

Figure 1.15: Partially ordered set: Family ordered by genealogical descendancy.

Definition 1.3.1. [10, p. 2] For a set S, a partial order (or ordering) is a binary

relation ≼⊂ S × S that satisfies the properties of

(1) reflexivity: if x ∈ S, then x ≼ x,

(2) antisymmetry: if x, y ∈ S such that x ≼ y and y ≼ x, then x = y, and

(3) transitivity: if x, y, z ∈ S such that x ≼ y and y ≼ z, then x ≼ z.

Notationally, we may say x ≺ y if x ≼ y but x ̸= y.

For the set of games, we have seen that the binary relation ≤ satisfies all properties

of a partial order. That is, for games G, H and K, (i) G ≤ G; (ii) if G ≤ H and

H ≤ G then G = H; and if G ≤ H and H ≤ K then G ≤ K. However, they do not

form a linear order as we have seen several examples, such as ∗ and 0, where games

are incomparable with each other.

Definition 1.3.2. [10, p. 2] A set S and a partial order ≼ on that set define a

partially ordered set or poset, denoted ⟨S; ≼⟩.

1.3.1 Games Born By Day n

If G is a set of games, ⟨G;≤⟩ is a poset. Some sets of interest to us are the sets

of games born by a specific day. When obvious, we may refer to a poset ⟨S; ≼⟩ as

46

simply S. For instance, when we are considering a poset on a set G of games, we will

assume it is with partial order ≤ unless otherwise specified.

Definition 1.3.3. [8, p. 25] We will let G [n] denote the set of games born by day

n and define them recursively as

G [0] = {0},

and for n > 0,

G [n] = {{SL |SR} : SL, SR ⊆ G [n− 1]}.

Thus, G [n] is the set of games that last at most n moves, with non-alternating

play taken into account. It is the set of games that can be constructed using a subset

of games born on a prior day, i.e. from G [n− 1], as its left and right options. From

this definition and our choice of name, it is clear that G [n] ⊂ G [n + 1].

In order to visualize the ordering relation in a poset, we make use of a Hasse

diagram. A Hasse diagram depicts the partial order relationship between pairs of

elements (when one exists) in a finite poset. It is the least graph whose transitive

closure gives all of the comparabilities. From it, one can reconstruct the whole partial

order structure.

Definition 1.3.4. [10, p. 11] A Hasse diagram is a graph G = (V, E), representing

the partial order relation of a finite poset ⟨S; ≼⟩, in which V = S and there is an

edge from x ∈ S to y ∈ S if x ≺ y and @z ∈ S such that x ≺ z ≺ y.

If x ≺ y, then y is drawn higher than x. Due to this convention, the direction of

edges is not indicated within a Hasse diagram.

Definition 1.3.5. [10, p. 11] In a poset ⟨S; ≼⟩, an element b ∈ S is said to cover

an element a ∈ S if a ≺ b and there is no element x ∈ S such that a ≺ x ≺ b.

In this case, we say that b is an upper cover of a or, likewise, that a is a lower

cover of b.

A Hasse diagraph is a graph whose vertices are the elements of S and the edges

correspond to the covering relation.

Definition 1.3.6. [10, p. 15] In a poset ⟨S; ≼⟩, we say that S has a top element,

denoted ⊤, if ⊤ ∈ S such that for all s ∈ S, s ≼ ⊤. Likewise, we say that S has a

bottom element, denoted ⊥, if ⊥ ∈ S such that for all s ∈ S,⊥ ≼ s.

47

Example 1.3.7. For instance, let

S = P ({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} ,

and let ≼ be the subset relation ⊆. Then the Hasse diagram of the finite poset ⟨S; ≼⟩
is that of Figure 1.16.

Figure 1.16: Hasse diagram of ⟨P ({1, 2, 3});⊆⟩

Note that even though {2} ≺ {1, 2, 3} (since {2} ⊂ {1, 2, 3}), there is no edge

directly between them. This is due to the fact that there exist elements, namely {1, 2}
and {2, 3}, in between (i.e. {2} ≺ {1, 2} ≺ {1, 2, 3} and {2} ≺ {2, 3} ≺ {1, 2, 3}).
However, there is still an indirect path remaining from {2} up to {1, 2, 3}.

We can readily make use of Hasse diagrams when describing the poset of games

in G [n]. We have that G [0] = {0}. From Table 1.2.5, we know that

G [1] = G [0] ∪ {−1, ∗, 1} = {−1, 0, ∗, 1}.

Table 1.2.5 lists for us all new games in G [2]. The posets of G [1] and G [2] (with

binary relation ≤) are given in Figures 1.17 and 1.18, respectively.

We note that the posets G [1] and G [2] represent only those games that are in

canonical form. Although {−1, 0 |1} = {0 |1} = 1
2
, only their canonical form, 1

2
, is

represented in G [2] (Fig. 1.18). Each element in the Hasse diagram of G [2] (and of

48

1

*

-1

0

Figure 1.17: The poset of games born by day 1.

2

1*

{1|0}

{1|0,*}

{1|-1}

1

1/2

{0|*}

*2

{0,*|-1}
{0|0,*}

{0|-1}

* 0

-1/2

-1*

-2

-1

{0,*|0}

{1|*}

{*|0}

{*|-1}

Figure 1.18: The poset of games born by day 2 [8, Fig. 1, p. 28].

similar diagrams we will present of sets of games) represents an equivalence class of

games (in its canonical form), possibly depicted several different ways in literal form.

Thus, in this canonical representation, if H covers G, G < H (i.e. there is strict

inequality).

Definition 1.3.8. [10, p. 2] Two elements x and y in a poset ⟨S; ≼⟩ are compa-

rable if x ≼ y or y ≼ x.

49

Two elements that are not comparable are said to be incomparable.

Thus, two games G, H ∈ G [n] are incomparable in the poset if and only iff G ∥ H

in the game theoretic sense. For example, in the genealogical poset in Figure 1.15,

Angela and Anneka are comparable, while Dorian and Gibson are not.

In G [2] (Fig. 1.18), we see that while 1
2

is comparable with both 1 and 1∗, the

games 1 and 1∗ are incomparable. Both 1 and 1∗ cover 1
2
.

1.3.2 Chains And Antichains

Definition 1.3.9. [10, p. 3] A chain in a poset ⟨S; ≼⟩ is a subset C ⊆ S in which

each pair of elements is comparable.

Definition 1.3.10. [10, p. 3] An antichain in a poset ⟨S; ≼⟩ is a subset A ⊆ S in

which each pair of different elements is incomparable, i.e. there is no order relation

between any two distinct elements in A.

A maximal antichain is an antichain that is not a proper subset of any other

antichain in the poset. A maximum antichain is a maximal antichain that is at

least as large as every other antichain.

In the genealogical poset of Figure 1.15, both {Val, Angela, Anneka} and {Jim,

Joey, Gibson}, representing grandparent, parent and child, are chains, while the

set of all grandparents {Jim, Val, Laurie, Rich} or grandchildren {Gibson, Anneka,

Dorian} are antichains. The set of all grandparents is a maximum antichain within

this particular poset.

In G [2] (Fig. 1.18), we see that {−2,−1,−1
2
, 0, 1

2
, 1, 2} is a chain,

−2 < −1 < −1

2
< 0 <

1

2
< 1 < 2,

namely the chain formed by all of the numbers occuring by day 2.

1.3.3 Duality

For any relation, we can define its converse.

Definition 1.3.11. [5, p. 3] The converse of a binary relation R is the relation R

such that xRy if and only if yRx.

50

More importantly, we know that if a relation is a partial ordering, then its converse

is as well.

Theorem 1.3.12 (Duality Principle). [5, Thm. 2, p. 3] The converse of any partial

ordering is itself a partial ordering.

The converse R of a binary relation is often called the dual of R.

Definition 1.3.13. [10, 1.19, p. 14] For a given poset P = ⟨S; ≼⟩, we define the

dual of P , denoted P d, as

P d = ⟨S; ≽⟩

where x ≽ y in P d if and only if y ≼ x in P . That is, the dual of P is the poset P d

defined by the converse partial ordering on the same elements.

A poset is said to be self-dual if the poset is isomorphic to its dual. That is, P

is self-dual if P ∼= P d.

This new poset is essentially formed by turning the former upside down. For

example, the minimal element in a poset P is the maximal element in its dual P d.

In general, for any statement Θ about a poset, there is a dual statement Θd

made by replacing every ≼ by ≽ and vice versa. If a statement is true for a poset,

then so is the dual statement for its dual [10, p. 15].

The concept of duality is particulary useful when it comes to posets. The useful-

ness of this is that with posets, many of our results will come in pairs. This fact will

allow us to often give two results through proving one. We will encounter and make

use of many dual concepts such as meet/join, upper/lower sets and ideals/filters, to

name a few.

1.3.4 Floor And Ceiling Functions

In an approach in keeping with Calistrate, Paulhus and Wolfe [8], we define floor and

ceiling functions relative to a given poset as follows:

Definition 1.3.14. [1, p. 2][8, p. 26] For a poset ⟨S; ≼⟩ and a subset T ⊆ S, the

floor of T , denoted ⌊T ⌋, is defined as

⌊T ⌋ =

t∈T

{s ∈ S : s ̸ ≽ t} =

t∈T

{s ∈ S : s ≺ t or s ∥ t}.

51

Dually, the ceiling of T , denoted ⌈T ⌉, is defined as

⌈T ⌉ =

t∈T

{s ∈ S : s ̸ ≼ t} =

t∈T

{s ∈ S : s ≻ t or s ∥ t}.

In the case where T = {t} is a singleton, when clear, we will write ⌊t⌋ and ⌈t⌉,
respectively.

Hence, when refering to a poset of games ⟨S;≤⟩, for a game G,

⌊G⌋ = {H ∈ S : H � G}

and

⌈G⌉ = {H ∈ S : H � G}.

For example, we can see in Figure 1.18 that, in G [2],

⌊{∗ |−1}⌋ = {{0 |−1} ,−1

2
,−1∗,−1,−2}

and

⌈1⌉ = {{1 |−1} , {1 |∗, 0} , {1 |∗} , {1 |0} , 1∗, 2}.

This definition is motivated by the fact that if our poset is on the set of games

with the ordering ≤, then for some game G, ⌊G⌋ is the set of games smaller than or

incomparable to G. We will see later that this set models the Gift Horse principle

(Lemma 1.2.32) in the sense that G = {⌊G⌋ |⌈G⌉} with the set of left and right

options expanded to include all games that do not affect the value of the original

game G.

For example, consider the game ∗. We can see that in G [1] (Fig. 1.17), ⌊∗⌋ =

{0,−1} and ⌈∗⌉ = {0, 1}. If we consider the game {⌊∗⌋ |⌈∗⌉} = {0,−1 |0, 1}, we see

that the “extra” option for Left to -1 and for Right to 1 do not affect the value of

the original game since they are both dominated by each of their respective moves to

zero. Hence, {⌊∗⌋ |⌈∗⌉} = ∗.

1.3.5 Lower And Upper Sets

Definition 1.3.15. [10, p. 20][5, p. 25] For a poset ⟨S; ≼⟩, a lower set (order

ideal or down-set) is defined as a subset T ⊆ S such that for all elements x, y ∈ S,

x ≼ y and y ∈ T =⇒ x ∈ T.

52

Dually, an upper set (order filter or up-set) is a subset U ⊆ S such that for all

elements x, y ∈ S,

x ≼ y and x ∈ U =⇒ y ∈ U.

Thus, every poset is an upper set of itself. An intersection of upper sets is again

an upper set. If we look at the complement of any upper set, it will be a lower set.

Similarly, the complement of any lower set is an upper set.

For example, in ⟨P ({1, 2, 3});⊆⟩ (Fig. 1.16), the set {{1}, {1, 2}, {1, 3}, {1, 2, 3}}
is an upper set and {∅, {2}, {3}, {2, 3}} is a lower set, each being the complement of

the other.

Definition 1.3.16. [10, p. 20] For a poset ⟨S; ≼⟩ and subset T ⊆ S, we define the

lower set generated by T (or lower set of T), which we will denote as ➘ T , as

➘ T =

t∈T

{s ∈ S : s ≼ t}.

Dually, the upper set generated by T (or upper set of T), which we will

denote as ➚T , as

➚T =

t∈T

{s ∈ S : t ≼ s}.

In the case where T = {t} is a singleton, when clear, we will write ➘ t and ➚t,

respectively. In this case, the respective sets are called principal.

Thus, x ≼ y implies that ➘ x is a subset of ➘ y.

For example, in Figure 1.15, the lower set induced by {V al} is

➘ V al = {Angela, Anneka, Dorian, Gibson, Joey, V al}.

Similarly, the upper set generated by {Eric} is ➚Eric = {Eric, Laurie, Rich}.
When referring to a poset of games ⟨S;≤⟩, for a game G,

➘ G = {H ∈ S : H ≤ G}

and

➚G = {H ∈ S : H ≥ G}.

In G [2] (Fig. 1.18), we find that ➘ {∗ |−1} = {{∗ |−1} ,−1∗,−2} and ➚1 =

{1, 2}.
The following lemma gives the connection between the partial order relation and

lower sets.

53

Lemma 1.3.17. [10, Lemma 1.30, p. 21] Let P = ⟨S; ≼⟩ be a poset and x, y ∈ S.

Let O(P) be the set of all lower sets of P , which is itself ordered under set inclusion.

Then the following are equivalent:

(i) x ≼ y;

(ii) ➘ x ⊆ ➘ y;

(iii) ∀Q ∈ O(P), y ∈ Q =⇒ x ∈ Q.

When considering the partial orders of games, we will often make use of the

equivalence of (i) and (ii). We will look at the relationship between lower sets to

show an order relation between games.

1.3.6 Join And Meet

Definition 1.3.18. [10, p. 33-34] For a poset ⟨S; ≼⟩ and T ⊆ S, an upper bound

of T is an element z ∈ S such that x ≼ z for all x ∈ T . We say that T is bounded

from above if there exists an upper bound for T . A lower bound and bounded

from below are defined in a similar manner.

The least upper bound or supremum of T is an upper bound x ∈ T such that

for every upper bound y ∈ T , x ≼ y. If such a least upper bound of T exists, it is

unique and is denoted sup (T).

The greatest lower bound or infimum of T is a lower bound x ∈ T such that

for every lower bound y ∈ T , y ≼ x. If such a greatest lower bound of T exists, it is

unique and is denoted inf (T).

Thus, in a poset ⟨S; ≼⟩ with x ∈ S, sup (➘ x) = x and inf (➚x) = x.

Definition 1.3.19. [10, p. 34] In a poset P = ⟨S; ≼⟩, the join (∨) of two elements

x, y ∈ S, denoted x ∨ y, is the least upper bound of x and y if it exists, i.e.

x ∨ y = sup ({x, y}) .

For a set T ⊆ S, we will write


T (the ‘join of T ’) to denote sup (T).

If a join exists, it is unique. If j1 and j2 are both joins of x and y, then j1 ≼ j2

and j2 ≼ j1, so j1 = j2.

54

Definition 1.3.20. [10, p. 34] In a poset P = ⟨S; ≼⟩, the meet (∧) of two elements

x, y ∈ S, denoted x ∧ y, is the greatest lower bound of x and y if it exists, i.e.

x ∧ y = inf ({x, y}) .

For a set T ⊆ S, we will write


T (the ‘meet of T ’) to denote sup (T).

If a meet exists, it is unique. If m1 and m2 are both meets of x and y, then

m1 ≼ m2 and m2 ≼ m1, so m1 = m2.

In a finite poset ⟨S; ≼⟩,

x ∨ y = min {j ∈ S : x ≼ j, y ≼ j} = min {j ∈ S : x, y ∈ ➘ j} ,

x ∧ y = max {m ∈ S : m ≼ x, m ≼ y} = max {m ∈ S : x, y ∈ ➚m} ,
T =


i∈I

{ti} and


T =

i∈I

{ti}.

If in that same finite poset there is a chain C containing both x and y, then x ∨ y =

max {x, y} and x ∧ y = min {x, y}.
For example, in Figure 1.18, we see that the join and meet of 1

2
and {1 |0, ∗} in

G [2] are given by 1∗ and ∗2, respectively. If we choose elements, say 1
2

and 2 which

are related, with 1
2

< 2, then 1
2
∨ 2 = 2 and 1

2
∧ 2 = 1

2
.

1.3.7 Lattices

Definition 1.3.21. [10, p. 34,41] A lattice L is a non-empty poset in which every

two elements x and y have both a least upper bound, x∨y, and a greatest lower bound,

x ∧ y.

If


S and


S exist for all S ⊆ L, and they do if L is a finite lattice, then L is

called a complete lattice.

A sublattice of L is a subposet of L which is a lattice, i.e. a subposet of L which

is closed under the operations of ∨ and ∧ as defined in L.

The join and meet operations are

(i) idempotent: x ∨ x = x ∧ x = x,

(ii) commutative: x ∨ y = y ∨ x and x ∧ y = y ∧ x,

55

(iii) associative: x ∨ (y ∨ z) = (x ∨ y) ∨ z and x ∧ (y ∧ z) = (x ∧ y) ∧ z, and

(iv) absorptive: x ∧ (y ∨ x) = x ∨ (y ∧ x) = x.

It should be noted that distributivity is a property that is missing from this list.

The partial order relation can be recovered from meet and join by defining x ≼
y ⇐⇒ x ∧ y = x. Clearly, it also then holds that x ≼ y ⇐⇒ x ∨ y = y.

Lattices, like posets, can be nicely visualized by Hasse diagrams. Figure 1.19

depicts two Hasse diagrams of posets. The one on the left (a) is a lattice, while the

one on the right (b) is not.

Figure 1.19: Hasse diagrams of (a) a lattice, and (b) a poset that is not a lattice.

Definition 1.3.22. [10, p. 41] A lattice L is bounded if it has both a greatest (top)

and least (bottom) element, ⊤ and ⊥, respectively.

If a top element ⊤ exists in a lattice L, then for all s ∈ L, s = s ∧⊤. Likewise, if

a bottom element ⊥ exists, then for all s ∈ L, s = s ∨ ⊥.

For example, ⟨G [n];≤⟩ is a bounded lattice with top element n and bottom ele-

ment −n.

Any lattice may be converted into a bounded lattice, simply by adding a greatest

and least element [10, p. 41]. For example, the finite lattice L = ⟨S; ≼⟩, with

56

S = {x1, . . . , xn}, is bounded with top element


S = x1 ∨ · · · ∨ xn and bottom

element


S = x1 ∧ · · · ∧ xn. We note that we are allowed to write iterated joins and

meets unambiguously without brackets as above, thanks to the associativity of ∨ and

∧ within a lattice.

A poset is a bounded lattice if and only if every set of elements has both a join

and a meet. This is inclusive of the empty set, in which the join of an empty set of

elements is defined to be the least element and the meet is defined to be the greatest

element.

In the example 1.3.7, the poset considered is in fact a bounded lattice, with top

element {1, 2, 3} and bottom element ∅. The set of positive integers, in their usual

order, forms a lattice under the operation min. The number 1 is the bottom element

in this lattice, but there is no top element.

1.3.7.1 Distributivity

Since lattices include the two binary operations meet (∧) and join (∨), it is natural

to consider whether one of them distributes over the other.

Definition 1.3.23. [10, p. 80] A distributive lattice is a lattice that satisfies either

(and therefore both) of the dual distributive laws:

(i) distributivity of ∨ over ∧: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), or

(ii) distributivity of ∧ over ∨: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Adherence to these distributive laws ensures that the meet operation preserves

nonempty finite joins. That the two laws are equivalent is a basic fact of lattice

theory [10].

Among others, a totally ordered set is an example of a distributive lattice, with

x ∨ y = max {x, y} and x ∧ y = min {x, y}. As such, Figure 1.16 represents a

distributive lattice. The natural numbers also form a distributive lattice with x∨y =

lcm(x, y) and x ∧ y = gcd(x, y).

Calistrate, Paulhus and Wolfe [8] showed that the poset ⟨G [n];≤⟩ is a distributive

lattice. While many examples of distributive lattices exist, they each have somewhat

specific structures. Intuitively, a distributive lattice looks like a collection of “boxes”.

57

In order to show that a lattice is not distributive, we must demonstrate that there

is a set of elements in the lattice for which the distributive laws fail. Thanks to

Birkhoff [5], we have a means of determining whether a finite lattice is distributive

from inspection of its Hasse diagram.

Theorem 1.3.24. [5, p. 11][10, p. 89] A lattice L is non-distributive if and only if

it contains either the lattice M3 or N5 (depicted in Figure 1.20) as a sublattice.

(b)(a)

Figure 1.20: The nondistributive lattices (a) M3, the “diamond”, and (b) N5, the
“pentagon”.

1.3.7.2 Join- And Meet-Irreducibles

For the following, let x be an element in a lattice L = ⟨S; ≼⟩ and S = {xi}i∈I .

Definition 1.3.25. [10, p. 53] An element x ∈ L is said to be join-irreducible if

x is not a bottom element (i.e. x ̸= ⊥) and x = a ∨ b implies x = a or x = b for all

a, b ∈ L (i.e. a ≺ x and b ≺ x imply a ∨ b ≺ x). Thus, x is join-irreducible in L if

x =


j∈J⊆I

xj =⇒ ∃i ∈ J s.t. x = xi.

The set of join-irreducible elements within the lattice L is denoted by J (L).

58

Definition 1.3.26. [10, p. 53] An element x ∈ L is said to be meet-irreducible

if x is not a top element (i.e. x ̸= ⊤) and x = a ∧ b implies x = a or x = b for all

a, b ∈ L (i.e. x ≺ a and x ≺ b imply x ≺ a∧ b). Thus, x is meet-irreducible in L if

x =


j∈J⊆I

xj =⇒ ∃i ∈ J s.t. x = xi.

The set of meet-irreducible elements within the lattice L is denoted by M (L).

Definition 1.3.27. If x is both join- and meet-irreducible, then x is said to be

doubly-irreducible. Thus, the set of doubly-irreducible elements of a lattice L are

those elements of J (L) ∩M (L).

In Figure 1.21, s, t, u, v, x and y are all join-irreducible, while s, t, v, w, x and y

are meet-irreducible. Since s, t, v, x and y are both meet and join-irreducible, they

are doubly-irreducible. We can think of the join-irreducible elements of the lattice,

with the exception of the top and bottom elements, as being those that cover only

one element and, dually, the meet-irreducible elements being those covered by only

one element.

Figure 1.21: Irreducible elements.

If we refer to Figure 1.17, we see that J (G [1]) = M (G [1]) = {0, ∗} and so 0

and ∗ are doubly-irreducible. If we refer to Figure 1.18, we find that the join- and

59

meet-irreducible elements of G [2] are given by

J (G [2]) = {−1,−1∗, {∗ |−1} , {0 |−1} , 0, ∗, {1 |−1} , 1}

and

M (G [2]) = {−1, 0, ∗, {1 |−1} , {1 |0} , {1 |∗} , 1∗, 1},

respectively. Thus, the doubly-irreducible elements of G [2] are −1, 0, ∗, {1 |−1} and

1.

1.3.8 Linear Orders, Dimension & Planarity

A partial order is called a linear order if every two distinct elements are comparable.

Definition 1.3.28. [10, p. 2] A linear order is a partial order on a set S such that

for any x, y ∈ S, either x ≼ y or y ≼ x.

Definition 1.3.29. [11] Let P = ⟨S; ≼P ⟩ be a poset and L = ⟨S; ≼L ⟩ be a linear or-

der, both defined on the same set S. The linear order L is called a linear extension

of the poset P if for every x, y ∈ S,

x ≼P y =⇒ x ≼L y.

We can use a collection of linear orders to define a poset.

Definition 1.3.30. [11] Let K be a collection of linear orders, K = {Li = ⟨S; ≼Li
⟩}i∈I .

We can define a poset P = ⟨S; ≼P ⟩ as follows:

∀x, y ∈ S, x ≼P y ⇐⇒ ∀i ∈ I, x ≼Li
y.

That is, x ≼ y in P if and only if x ≼ y in every linear order in the collection K.

A poset obtained is this way is said to be realized by the linear orders of K.

The dimension of a poset is defined to be the least number of linear orders whose

intersection is the partial ordering of the poset (where the partial order is regarded

as a set of ordered tuples).

Definition 1.3.31. [11] The dimension of a poset P = ⟨S; ≼⟩, denoted dimension (P),

is the smallest cardinal number k such that P is realized by k linear orders on the set

S.

60

Thus, if we wish to show that a poset P = ⟨S; ≼P ⟩ has dimension at most 2, we

must show that there are two linear orders, L1 and L2 such that P can be mapped

in an order preserving way to L1 and L2 by a function f1 to L1 and a function f2 to

L2, such that, for all x, y ∈ S,

(i) if x ≺P y, then at least one of f1(x) ≼L1 f1(y) and f2(x) ≼L2 f2(y) is strict;

and

(ii) if x ∥P y, then either

(a) f1(x) ≻L1 f1(y) and f2(x) ≺L2 f2(y), or

(b) f1(x) ≺L1 f1(y) and f2(x) ≻L2 f2(y).

We will make use of poset dimension when we consider the set of option-closed

games by day n in section 4.3. We will use it to show that the lattice of these games

is planar.

Definition 1.3.32. [17] A poset is called planar if its Hasse diagram can be drawn

in such a way that none of its edges intersect.

For example, in Figure 1.22, we see an example of a planar poset. It is presented

in two forms. We see that in (a) it is drawn with intersecting edges. However, it is

still a planar poset since it can be redrawn without these intersections present, as in

the Hasse diagram in (b).

B

A

F

CE

D

B

A

F

EC

D

(a) (b)

Figure 1.22: An example of a planar poset (a), drawn in its planar representation (b).

61

The following planarity result comes from Kelly and Rival [17]. This result, show-

ing equivalence between planarity in lattices and dimension at most 2, was first at-

tributed to Kirby Baker in his unpublished Honors Thesis [4], the proof only later

to be published by Kelly and Rival [17]. We will make use of this result when we

consider the lattices of option-closed games in Section 4.3.

Proposition 1.3.33. [4][17] Let L be a finite lattice.

L is planar if and only if dimension (L) ≤ 2.

Chapter 2

Juxtapositions

In this chapter, we will explore the structure within a game. We will consider the

positions which can be formed from two smaller positions placed adjacent to one

another. We will call positions of this type juxtapositions.

jux·ta·po·si·tion [jUk-stU-pU-’zi-shUn]

the act or an instance of placing two or more things side by side;

also : the state of being so placed [18].

Commonly, game positions that are understood and simple were they on their

own, become much more difficult to understand when placed adjacent to another

simple position.

For games of this form, we will explore the ways in which the underlying games

interact. We will first consider ordinal sums and later introduce a new function which

we will call the side-sum. We will explore how each of the functions behave when

applied.

Finally, for each function, we will look at various applications of each. For ordinal

sums, we will look at the games of lenres and shove. For the game of restricted

toppling dominoes, we will require the side-sum function to gain full understanding

of the game.

2.1 Juxtaposition Defined

“If I held you any closer I would be on the other side of you.”

- Groucho Marx

62

63

For example, with hackenbush strings, we’ve seen the positions 5
8

and 13
16

. What

happens if we stack one on top of the other as in figure 2.1?

= ?13
16=5

8 = ?

(a) (b) (c) (d)

=

Figure 2.1: Juxtaposition of hackenbush positions.

What if we do the same for two arbitrary hackenbush strings? Likewise, we can

ask this same question of games that are played on a board, where the adjacency is

possibly to the right of (versus on top of) the other game position. The position of

the adjacency must be specified with respect to the game.

Definition 2.1.1. A game adjacency refers to the physical placement of two posi-

tions with their interaction defined. The reference to adjacency must be made specific

with respect to the game.

Definition 2.1.2. A juxtaposition of G and H will be the game adjacency of game

positions G and H and will be denoted as G � H (said “G juxtaposed H”).

Consider the game of toppling dominoes, first introduced by Albert, Nowakowski

and Wolfe in Lessons in Play [2, p. 274]. The game of toppling dominoes begins

with a row of black and white dominoes, denoted as x and o, respectively, in text. On

his turn, Left is allowed to chose any black domino and topple it either left or right.

Every domino in that direction also topples and is removed from the game. On her

turn, Right topples a white domino in either direction.

64

=
0

0

-1 1

*

0

1

= 1/2

Figure 2.2: Example of a game of toppling dominoes having value 1
2
.

In the game of toppling dominoes and all variations of the game that we

consider, we will use G � H to mean that the row of dominoes having value G is

positioned to the left of the row of dominoes having value H, as in Figure 2.3.

xo = xo xo xo = xo xo =

Figure 2.3: Juxtaposition of toppling dominoes positions.

As was noted in discussion of Nim-dimension (Def. 1.2.58), it was shown in

Lessons in Play [2] that the toppling dominoes positions xo�xo and xo�xo � xo

as depicted above, have value ∗2 and ∗3, respectively. In fact, they show that positions

that are built as juxtapositions of n copies of the game zo have value ∗n.

In hackenbush strings, we will specify that G � H implies that string G sits

below string H. Hence, the two positions in question in Figure 2.1, strings (c) and

(d), can be represented as 5
8

� 13
16

and 13
16

� 5
8
, respectively.

In Winning Ways [3, p. 190,219], consideration of similar hackenbush positions

introduces the concept of ordinal sum.

65

2.2 Ordinal Sums

In the game of hackenbush, consider the position containing a hackenbush string

of value H atop hackenbush string of value G, i.e. the position G � H depicted in

Figure 2.4.

GL

GL

G

H

G H

G

HL

 G HL

GR

GR

G

HR

 G HR

Figure 2.4: Juxtaposition, G � H, of hackenbush strings having values G and H.

From the hackenbush position G � H, when a player moves in H, he leaves G

untouched. However, once he plays in G, everything above it, including all of H, is

removed. Thus, from G�H, Left has moves to positions of the form GL and G�HL

and Right has moves to positions of the form GR and G � HR.

Definition 2.2.1. [3, p. 219] For games G and H, the ordinal sum of G and H,

denoted G:H, is defined recursively as

G:H = {L (G) , G:L (H) |R (G) , G:R (H)} .

We will refer to G as the base and H as the branch of this function.

In positions such as those defined by the ordinal sum G:H, any move in the

position G annihilates any further option to H, while moves in H do not affect G.

66

It is for this reason that we introduce the names “base” and “branch” for the input

games for ordinal sums. The base remains intact until after the branch is chopped

away.

As expected, if neither player has a move in H, then the value of G:H = G.

Lemma 2.2.2.

G:0 = {L (G) |R (G)} = G

Lemma 2.2.3.

(−G):(−H) = −(G:H)

Proof.

(−G):(−H) = {L (−G) , (−G):L (−H) |R (−G) , (−G):R (−H)}

= {−R (G) , (−G):(−R (H)) |−L (G) , (−G):(−L (H))}

= {−R (G) ,−(G:R (H)) |−L (G) ,−(G:L (H))} (by induction)

= − ({L (G) , (G:L (H)) |R (G) , (G:R (H))})

= −(G:H)

In hackenbush strings, a position G � H has value G:H. Consider the hack-

enbush position depicted in Figure 2.5.

3
2

Figure 2.5: The hackenbush position 3
2
.

67

We can easily check that this position has value 3
2
. However, we can view this as

either 2 �−1 or 1 � 1 �−1 or 1 � 1
2
. Hence, in hackenbush strings,

2 �−1 = 1 � 1 �−1 = 1 �
1

2
=

3

2

and, likewise,

2:−1 = 1:1:−1 = 1:
1

2
=

3

2
.

The latter of these representations is evaluated as an example of ordinal sum below.

Example 2.2.4.

1 � 1
2

= 1:1
2

= {0, 1:0 |1:1}

= {0, 1:0 |{0, 1:0 |·}}

= {0, 1 |{0, 1 |·}} (by Lemma 2.2.2)

= {1 |2}

= 3
2

Lemma 2.2.5 (Norton’s Lemma). [3, p. 219, 244][9, Thm. 93, p. 210] Let G, H

and K be games such that no position of K has value G (and K ̸ ∼= G). Then G and

G:H both have the same order relations with K.

i.e.

(i) If G < K, then G:H < K;

(ii) If G > K, then G:H > K;

(iii) If G ∥ K, then G:H ∥ K.

Thus, when no position of value K has value G, then o (G−K) = o (G:H −K).

For instance, consider the game ∗. Note that −1 < ∗ < 1, but ∗ ∥ 0. Since no

positions of the games 1, −1 or 0 have value ∗, we know immediately from Norton’s

Lemma (2.2.5) that for all games H,

−1 < ∗:H < 1 and ∗:H ∥ 0.

68

For example, ∗:1 =↑∗, ∗:0 = ∗ and ∗:∗ = ∗2; all of these games fall between −1 and

1 but are confused with zero.

On the other hand, consider the game of ∗2. From ∗2, both Left and Right have

options to star, so we can not apply Norton’s Lemma. In fact, we can check that

while ∗ is confused with ∗2, ∗:1 =↑∗ > ∗2.

For the game G = 0, there is no short game for which we can apply Norton’s

Lemma since all must contain a 0 position. This is also clear if we consider that

0:H = H, which would imply that if Norton’s Lemma held in this case, o (−K) =

o (H −K). Clearly, we can choose a game for which this fails!

It is important to note that the value of G:H depends on the form of G. In other

words, there exists games G, G′ and H such that G = G′ but G:H ̸= G′:H.

Example 2.2.6.

Let G = {0, 1 |3} = 2, G′ = {1 |·} = 2 and H = {0 |·} = 1. Then,

G:H = {0, 1, G:0 |3} = {0, 1, 2 |3} = 2
1

2

and

G′:H = {1, G′:0 |·} = {1, 2 |·} = 3.

The value of G:H also depends only on the value of H but not on its form. This

is demonstrated by the Colon Principle.

Lemma 2.2.7. [3, Colon Principle, p. 219]

For games G, H and K,

H ≥ K =⇒ G:H ≥ G:K

and, in particular,

H = K =⇒ G:H = G:K.

Proof. Suppose that H ≥ K. We wish to show that Left can win G:H−G:K playing

second. Suppose Right moves to some G:HR − G:K. Since H � HR and H ≥ K,

HR � K and so, by induction,

G:HR −G:K � 0.

69

Likewise, if Right moves to some G:H −G:KL we see that KL � K ≤ H and so, by

induction,

G:H −G:KL � 0.

Finally, if Right moves in G to either GR−G:K or to G:H−GL, then Left can respond

with the corresponding moves to GR −GR = 0 or GL −GL = 0, respectively.

Corollary 2.2.8. For games G and H,

H ≥ 0 =⇒ G:H ≥ G.

Proof. By 2.2.7 and 2.2.2, we have

H ≥ 0 =⇒ G:H ≥ G:0 = G.

Lemma 2.2.9. For games G and H,

(i) ∀GL ∈ L (G) , GL � G:H;

(ii) ∀GR ∈ R (G) , G:H � GR;

(iii) ∀HL ∈ L (H) , G:HL � G:H;

(iv) ∀HR ∈ R (H) , G:H � G:HR.

Proof. This follows from Corollary 1.2.35 and the fact that by Definition 2.2.1, GL

and G:HL are in the set of left options while GR and G:HR are in the set of right

options, respectively, of G:H.

The Colon Principle has long been established in dealing with ordinal sums [3]. We

suggest that while this holds, a stronger statement can be made about the relationship

between branches H and K and their ordinal sums with a base G. The following tells

us that the outcome class of the branch difference H − K is the same as that of

G:H − G:K. Hence, the relationship shown in the Colon Principle becomes a much

stronger if and only if statement.

Theorem 2.2.10 (Branch Outcome). For games G, H and K,

H ≥ K ⇐⇒ G:H ≥ G:K.

70

Proof. If G = 0, then 0:H − 0:K = H −K.

Suppose H ≥ K. Then by Lemma 2.2.7, G:H ≥ G:K.

Suppose that G:H ≥ G:K. We wish to show that Left can win playing second in

the game H−K. Suppose that Right moves to some HR−K. Since G:HR ∈ R (G:H),

G:H �G:HR. Hence, G:K �G:HR and so by induction, K �HR. Thus, HR−K �0.

Likewise, if Right moves to some H−KL, then we can show that Left can win playing

first in this game since G:KL ∈ L (G:K) and so G:KL � G:K ≤ G:H. Hence, by

induction, since G:KL � G:H, KL � H and so H −KL � 0.

Corollary 2.2.11. For games G, H and K, the outcome classes of H−K and G:H−
G:K are the same.

Corollary 2.2.12. (i) H > K if and only if G:H > G:K;

(ii) H = K if and only if G:H = G:K;

(iii) H ∥ K if and only if G:H ∥ G:K;

(iv) H < K if and only if G:H < G:K;

Finally, we also note that the ordinal sum is associative.

Lemma 2.2.13.

(G:H):K = G:(H:K)

Proof.

(G:H):K

= {L ((G:H)) , (G:H):L (K) |R ((G:H)) , (G:H):R (K)}

= {L (G) , G:L (H), (G:H):L (K) |R (G) , G:R (H), (G:H):R (K)}

= {L (G) , G:L (H), G:(H:L (K)) |R (G) , G:R (H), G:(H:R (K))} (by induction)

= {L (G) , G:L (H:K) |R (G) , G:R (H:K)}

= G:(H:K)

71

2.2.1 Ordinal Sums Of Numbers

For positive integers k and any number x, the ordinal sum k:x can be easily calculated.

We will assume that k is in canonical form. As for x, we have already noticed that

while its value can change k:x, its form does not.

For the following, we define a function f(x) = min {0, ⌊x⌋}. In this case, ⌊x⌋ will

return the largest integer that is less than or equal to x.

Lemma 2.2.14. For k ∈ Z>0 and x a number,

k:x = k − 1 + 2f(x) (1 + x− f(x))

where f(x) = min {0, ⌊x⌋}.

Proof. Let y = k−1+2f(x) (1 + x− f(x)). We will consider play in the game k:x−y

and show that the second player can always win. We must consider Left playing to

(a) k − 1− y; (b) k:xL − y; or (c) k:x− yR; and Right playing to either (d) k:xR − y

or (e) k:x− yL.

We note that from Definition 1.2.59, Hdim (y) = 1−f(x) and so by Lemma 1.2.60,

the left and right incentives in y are −21−Hdim(y) = −2f(x). Thus, the left and right

options in y are to some

yL = y − 2f(x) = k − 1 + 2f(x) (x− f(x))

and

yR = y + 2f(x) = k − 1 + 2f(x) (2 + x− f(x)) ,

respectively.

(a) Suppose Left plays to k − 1 − y. Since f(x) ≥ 0 and x − f(x) ≥ 0,

2f(x) (1 + x− f(x)) > 0 and so y > k − 1. Thus k − 1− y < 0.

(b) Suppose Left plays to k:xL − y. We note that for a number x, if xL exists,

then either (i) 0 ≤ xL = x − 1 or (ii) ⌊x⌋ ≤ xL < x. In case (i), since x, xL ≥ 0,

f(x) = f(xL) = 0. In case (ii), f(⌊x⌋) ≤ f(xL) ≤ f(x) and since f(⌊x⌋) = f(x),

72

f(xL) = f(x). Thus, if this move exists, f(xL) = f(x) and so

k:xL − y

= k − 1 + 2f(xL)

1 + xL − f(xL)


− k + 1− 2f(x) (1 + x− f(x)) (by induction)

= 2f(x)

1 + xR − f(x)


− 2f(x) (1 + x− f(x))

= 2f(x)

1 + xL − f(x)− 1− x + f(x)


= 2f(x)


xL − x


< 0


since xL < x


which Right wins.

(c) Suppose Left plays to k:x−yR. As noted above, yR = k−1+2f(x) (2 + x− f(x))

and so Right can respond to

k:xR − yR

= k − 1 + 2f(xR)

1 + xR − f(xR)


− yR (by induction)

= k − 1 + 2f(xR)

1 + xR − f(xR)


− k + 1− 2f(x) (2 + x− f(x))

= 2f(xR)

1 + xR − f(xR)


− 2f(x) (2 + x− f(x))

≤ 2f(xR)

1 + xR − f(xR)− 2 + f(x)− x


≤ 2f(xR)


1 + xR − f(xR)− 2


(since f(x) ≤ x)

≤ 2f(xR)

1 + f(xR) + 1− f(xR)− 2

 
since xR ≤ f(xR) + 1


= 0

which Right wins.

(d) Suppose Right plays to k:xR − y. We note that for a number x, if xR exists,

then either (i) ⌊x⌋ =

xR


or (ii)

xR


= ⌊x⌋+ 1 ≤ 0. In case (i), f(xR) = f(x) and

so

k:xR − y

= k − 1 + 2f(xR)

1 + xR − f(xR)


− k + 1− 2f(x) (1 + x− f(x)) (by induction)

= 2f(x)

1 + xR − f(x)


− 2f(x) (1 + x− f(x))

= 2f(x)

xR − x


> 0


since xR > x



73

which Left can win. In case (ii), f(xR) = f(x) + 1 and so

k:xR − y

= k − 1 + 2f(xR)

1 + xR − f(xR)


− k + 1− 2f(x) (1 + x− f(x)) (by induction)

= 2f(x)+1

1 + xR − f(x)− 1


− 2f(x) (1 + x− f(x))

= 2f(x)

2xR − 2f(x)− 1− x + f(x)


= 2f(x)


xR − x + xR − f(x)− 1


= 2f(x)


xR − x + xR − f(xR)


≥ 2f(x)


xR − x

 
since xR ≥ f(xR)


> 0


since xR > x


which Left also wins.

(e) Finally, suppose Right plays to k:x − yL. As noted above, yL = k − 1 +

2f(x) (x− f(x)). If x ∈ Z, then f(x) = x and yL = k − 1. Thus Left can play to

k − 1− yL = 0. Otherwise, there exists an xL with f(xL) ≤ f(x) such that Left can

respond to

k:xL − yL

= k − 1 + 2f(xL)

1 + xL − f(xL)


− yL (by induction)

= k − 1 + 2f(xL)

1 + xL − f(xL)


− k + 1− 2f(x) (x− f(x))

≥ 2f(xL)

1 + xL − x + f(x)− f(xL)


≥ 2f(xL)


1 + xL − x

 
since f(x) ≥ f(xL)


≥ 2f(xL) (1− 1)


since xL ≥ x− 1


= 0

which Left wins.

When x ≥ 0, f(x) returns zero, while for negative x, ⌊x⌋ is returned. The idea is

that if k and x are of the same sign, then the ordinal sum is simply the sum of k and

x. However, once the signs are different, this no longer holds.

Corollary 2.2.15. For k ∈ Z>0, n ∈ Z≥0 and y a number with 0 ≤ y < 1,

74

(i) k:(n + y) = k + n + y;

(ii) k:(−n + y) = k − 1 + 1
2n (1 + y).

Proof. Let x be a number and f(x) = min {0, ⌊x⌋}.
(i) Consider k:(n + y). Then ⌊n + y⌋ = n ≥ 0 and so f(n+y) = 0. Hence, Lemma

2.2.14 gives us

k:(n + y)

= k − 1 + 20 (1 + (n + y)− 0)

= k − 1 + 1 + n + y

= k + n + y.

(ii) Consider k:(−n + y). The case n = 0 is covered by (i), so we can assume

−n < 0. Then ⌊−n + y⌋ = −n < 0 and so f(n + y) = −n. Hence, Lemma 2.2.14

gives us

k:(−n + y)

= k − 1 + 2−n (1 + (−n + y)− (−n))

= k − 1 + 1
2n (1− n + y + n))

= k − 1 + 1
2n (1 + y)) .

2.2.2 Hackenbush-Dimension Applied

We can readily make use of ordinal sums of numbers when considering blue/red

Hackenbush strings. In order to understand them, we will need to understand ordinal

sums of positive numbers. We will make use of the Hackenbush-dimension of a game

to approach this.

Lemma 2.2.16. For numbers x, y with x ≥ 0 and −1 ≤ y ≤ 1,

x:y =

 x + y if Hdim (x) ≤ 1 and xy ≥ 0

x + 2−Hdim(x)y otherwise

Proof. For the base case, we note that 0:0 = 0.

(i) Suppose Hdim (x) = 0. Then x = 0 and so x:y = 0:y = y by Lemma 2.2.2.

75

(ii) Second, we suppose Hdim (x) = 1 and xy ≥ 0. Since Hdim (x) = 1, x ∈ Z>0.

Since xy ≥ 0 and x > 0, y ≥ 0. Hence, x:y = x + y by Corollary 2.2.15.

(iii) Third, we suppose Hdim (x) = 1 and xy < 0. Again x ∈ Z>0, but now

−1 ≤ y < 0. Hence, when applying Lemma 2.2.14 we get

x:y = x− 1 + 2⌊y⌋ (1 + y − ⌊y⌋) .

Since x ∈ Z>0, xL = x− 1 and xR = ∅. Thus,

x:y =

x− 1, x:yL

x:yR


.

Since −1 ≤ y < 0, −1 ≤ yL < y < yR ≤ 0 and so by induction,

x:yL = x + 2−Hdim(x)yL = x +
yL

2
.

By Lemma 2.2.2,

x:y =


x− 1, x +

yL

2

x, x:yR


.

Since −1 ≤ yL < 0, x− 1 < x + yL

2
. By induction, x:yR = x + yR

2
≤ x since yR ≤ 0.

Hence,

x:y =


x +

yL

2

x +
yR

2


= x +

y

2
.

(iv) Finally, suppose the Hdim (x) > 1. By definition

x:y =

xL, x:yL

xR, x:yR


.

Suppose x = p
2q . Then Hdim (x) = q+1 and xL = p−1

2q = x− 1
2q and xR = p+1

2q = x+ 1
2q .

Hence, xL = x − 2−Hdim(x)+1 and xR = x + 2−Hdim(x)+1. We will consider the cases

when (a) y = 1, (b) y = −1 and (c) −1 < y < 1.

(a) If y = 1, then yL = 0 and yR = ∅, so that x:yL = x:0 = x. Thus,

x:y =

x− 2−Hdim(x)+1, x

x + 2−Hdim(x)+1


=

x
x + 2−Hdim(x)+1


= x + 2−Hdim(x).

(b) If y = −1, then yR = 0 and yL = ∅, so that x:yR = x:0 = x. Thus,

x:y =

x− 2−Hdim(x)+1

x + 2−Hdim(x)+1, x


=

x− 2−Hdim(x)+1 |x


= x− 2−Hdim(x).

(c) If −1 < y < 1, then by induction x:yL = x + 2−Hdim(x)yL and x:yR = x +

2−Hdim(x)yR. Thus,

x:y =

x− 2−Hdim(x)+1, x + 2−Hdim(x)yL

x + 2−Hdim(x)+1, x + 2−Hdim(x)yR


.

76

But since −1 < y < 1, −1 ≤ yL < y < yR ≤ 1. Hence,

−2−Hdim(x)+1 < −2−Hdim(x) ≤ 2−Hdim(x)yL

and

2−Hdim(x)+1 > 2−Hdim(x) ≥ 2−Hdim(x)yR.

Thus,

x:y =

x + 2−Hdim(x)yL

x + 2−Hdim(x)yR


= x + 2−Hdim(x)y.

The following Corollary takes a nice generalization and makes it more specific,

which might first seem strange. However, this exact case will come in handy when we

begin to look at both the game of lenres later in this chapter as well as the game

of hackenbush.

Corollary 2.2.17. For p, s ∈ Z>0 with p odd, and t ∈ Z≥0,

p

2s
:
1

2t
=

p

2s
+

1

2s+t+1
.

Proof.

p
2s :

1
2t

= p
2s + 2−Hdim(p

2s)  1
2t


(by Lemma 2.2.16)

= p
2s + 2−(s+1)


1
2t

 
since Hdim


p
2s


= s + 1 by Def. 1.2.59


= p

2s + 1
2s+t+1 .

Corollary 2.2.18. Let S(i) =
i

k=1 xk. Then for xi ∈ Z≥0 with x1 > 0,

1

2x1
:

1

2x2
: · · · : 1

2xn
=

n
i=1


1

2S(i)+i−1


.

Proof. We induct on n. When n = 1, it is clear that

1

2x1
=

1

2S(1)
=

1

2S(1)+1−1
=

1
i=1


1

2S(i)+i−1


.

77

The case where n = 2 is covered by Corollary 2.2.17, whereby

1
2x1

: 1
2x2

= 1
2x1

+ 1
2x1+x2+1 (by Cor. 2.2.17)

= 1
2S(1) + 1

2S(2)+1

= 1
2S(1)+1−1 + 1

2S(2)+2−1

=
2

i=1


1

2S(i)+i−1


.

Let n > 2. Then,

1
2x1

: 1
2x2

: · · · : 1
2xn

=


1
2x1

: · · · : 1
2xn−1


: 1
2xn (by Lemma 2.2.13)

=
n−1

i=1


1

2i−1+S(i)


: 1
2xn (by induction)

= y + 2−Hdim(y) 1
2xn (by Lemma 2.2.16)

where y =
n−1

i=1


1

2S(i)+i−1


≥ 0.

Note that if we place y into the form p
2q where q ≥ 0 is minimal, we can easily

verify that q = S(n− 1) + (n− 1)− 1 = S(n− 1) + n− 2. Thus, Hdim (y) = q + 1 =

S(n− 1) + n− 1. Hence,

y + 2−Hdim(y) 1
2xn

=
n−1

i=1


1

2S(i)+i−1


+ 2−(S(n−1)+n−1) 1

2xn

=
n−1

i=1


1

2S(i)+i−1


+ 1

2xn+S(n−1)+n−1

=
n−1

i=1


1

2S(i)+i−1


+ 1

2S(n)+n−1

=
n

i=1


1

2S(i)+i−1


.

Corollary 2.2.19. For xi ∈ Z≥0 with x1 > 0,

1

2x1
:

1

2x2
: · · · : 1

2xn
=

n
i=1


1

2i−1

i
k=1

1

2xk


.

2.2.3 Ordinal Sums From Day n

If we consider the set of games that can be produced by ordinal sums using only those

games from G [n], we can see examples of the various relationships above, including

the Colon Principle and Norton’s Lemma.

78

Definition 2.2.20. The ordinal sums from day n, denoted OSn, will be the set

of all games formed from ordinals sums of games born by day n.

OSn = {G:H s.t. G, H ∈ G [n]}.

On day 0, we can only form 0:0 = 0.

Lemma 2.2.21.

OS0 = {0}.

However, on day 1, we can now form 13 different games. Table 2.1 lists all ordinal

sums that can be formed from games by day 1. These 13 games can be represented

by the poset ⟨OS1;≤⟩ as pictured in Figure 2.6.

G:H
H

1 0 ∗ −1

G

1 2 1 1∗ 1
2

0 1 0 ∗ −1

∗ ↑∗ ∗ ∗2 ↓ ∗
−1 −1

2
−1 −1∗ −2

Table 2.1: Ordinal sums that can be formed from games born by day 1.

rcf (G:H)
H

1 0 ∗ −1

G

1 2 1 1 1
2

0 1 0 0 −1

∗ 0 0 0 0

−1 −1
2
−1 −1 −2

Table 2.2: The reduced canonical forms of ordinal sums that can be formed from
games born by day 1.

What is interesting to note about OS1 is that it appears much like G [1], but with

a copy of G [1] replacing each of the elements 1, ∗ and −1, while zero remains on its

own. While it might first seem strange that zero is acting differently, this is to be

79

rc
f
(G

:H
)

H

2
1

1
∗

1 2
{1
|0
}

{1
|∗
}

{1
|0

,∗
}

↑
↑∗

0
∗

∗2
±

1

G

2
4

3
3

5 2
{3
|2
}

{3
|2
}

{3
|2
}

2
2

2
2

2
˘ 3

˛̨ 3 2

¯
1

3
2

2
3 2

{2
|1
}

{2
|1
}

{2
|1
}

1
1

1
1

1
˘ 2

˛̨ 1 2

¯
1
∗

1
1

1
1

1
1

1
1

1
1

1
1

1

1 2
7 8

3 4
3 4

5 8

˘ 3 4

˛̨ 1 2

¯
˘ 3 4

˛̨ 1 2

¯
˘ 3 4

˛̨ 1 2

¯
1 2

1 2
1 2

1 2
1 2

˘ 3 4

˛̨ 1 4

¯
{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|∗
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0

,∗
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

{1
|0
}

↑
0

0
0

0
0

0
0

0
0

0
0

0
0

↑∗
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

1
1

1 2
{1
|0
}

{1
|0
}

{1
|0
}

0
0

0
0

0
±

1

∗
0

0
0

0
0

0
0

0
0

0
0

0
0

∗2
0

0
0

0
0

0
0

0
0

0
0

0
0

±
1

±
1

±
1

±
1

±
1

±
1

±
1

±
1

±
1

±
1

±
1

±
1

±
1

±
1

↓
∗

0
0

0
0

0
0

0
0

0
0

0
0

0

↓
0

0
0

0
0

0
0

0
0

0
0

0
0

{0
,∗
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{∗
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

{0
|−

1
}

−
1 2

−
1 8

−
1 4

−
1 4

−
3 8

˘ −1 4

˛̨ −1 2

¯
˘ −1 4

˛̨ −1 2

¯
˘ −1 4

˛̨ −1 2

¯
−

1 2
−

1 2
−

1 2
−

1 2
−

1 2

˘ −1 4

˛̨ −3 4

¯
−

1
∗

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1 4

−
1 2

−
1 2

−
3 4

˘ −1 2
|−

1
¯

˘ −1 2
|−

1
¯

˘ −1 2
|−

1
¯

−
1

−
1

−
1

−
1

−
1

{−
|−

2
}

−
2

−
5 4

−
3 2

−
3 2

−
7 4

˘ −3 2
|−

2
¯

˘ −3 2
|−

2
¯

˘ −3 2
|−

2
¯

−
2

−
2

−
2

−
2

−
2

˘ −3 2
|−

3
¯

T
ab

le
2.

3:
T

h
e

re
d
u
ce

d
ca

n
on

ic
al

fo
rm

s
of

or
d
in

al
su

m
s

th
at

ca
n

b
e

fo
rm

ed
fr

om
ga

m
es

b
or

n
b
y

d
ay

2.

80

1:1

1:*

1:-1

1:0 = 0:1

0:0

-1:1

-1:*

-1:-1

-1:0 = 0:-1

*:1

:

*:-1

:0 = 0:

Figure 2.6: Poset of OS1.

81

0 {1|-1}

{2|1/2}

{3|3/2}

{3|2}

{2|3/2}

{2|1}

{1|1/2}

{1|0}

1

4

3

2
7
4

5
2

3
2

1
2

 5
2

-1

-2

-3

-4

 3
2

 1
2

 1
8

 1
4

 3
8

 5
8

 3
4

 7
8

 5
4

 7
4

1
8

1
4

3
8

5
8

3
4

7
8

5
4

{3/4|1/2}

{3/4|1/4}

{1/2|1/4}

{-1/4|-1/2}

{-1/4|-3/4}

{-1/2|-3/4}

{0|-1}

{-1|-2}

{-1/2|-1}

{-1/2|-2}

{-3/2|-2}

{-3/2|-3}

{-2|-3}

0

1

2

1
2

-1

-2

 1
2

(a) (b)

Figure 2.7: Posets of reduced canonical form of (a) OS1 and (b) OS2.

82

expected. Since G:0 = 0:G = G, all games of the form 0:G, aside from 0:0, appear

in one of the other copies of G [1].

In OS2, there are 427 elements that are built from the 22 elements of G [2]. If

we were to look at OS2, we would find that it is not only zero that causes problems.

Other pairs (G, H) have counterparts (G′, H ′) that produce a similar ordinal sum.

For instance,

∗:∗2 = ∗2:∗ = ∗3

and

∗:2 = ↑∗:1.

Each is to be expected due to the fact that ordinal sums are associative. For the

latter, we note that 2 = 1:1 and ↑= ∗:1. Hence, by Lemma 2.2.13,

∗:2 = ∗:(1:1) = (∗:1):1 = ↑∗:1.

To get a general idea for the values that crop up, we can take a look at the poset

of the reduced canonical forms of the games in OSn. For OS2, this poset contains

only 51 elements, of which 31 are numbers and the other 21 are switches.1

For any day, the largest and smallest elements of OSn will be those of the form

n:n = 2n and (−n):(−n) = −2n, respectively.

Tables 2.2 and 2.3 give the reduced canonical forms of the ordinal sums produced

from games with birthday 1 and 2, respectively. Their posets are depicted in Figure

2.7. While the reduced canonical forms of OS1 form a total order, those of OS2 do

not even form a lattice.

1Recall that a switch is a game of the form {a |b} where a > b are numbers. Switches of the form
{a |−a} are represented as ±a.

83

2.3 Ordinal Sum Applied

We now introduce the games of lenres and shove. In these games, we will find

interesting applications of ordinal sums. Elwyn Berlekamp has often said at con-

ferences and in private discussion that ordinal sums are used to make hard games

simpler, since G:H behaves very much like G. The challenge, of course, is finding the

ordinal sum within a game. While each game that we consider is a fascinating game

in and of itself, it is primarily worth considering due to the fact that its values can be

expressed as ordinal sums. Most interesting is that, in each case, this is a fact which

is heavily camouflaged. These example games demonstrate the fact that ordinal sums

might be useful in ways that are not immediately obvious when first considering a

game.

2.3.1 lenres

The game of lenres was created by Richard Nowakowski in a fourth year Introduc-

tion to Game Theory class. It was originally considered by Richard Nowakowski and

Paul Ottaway who looked at it within a class of one dimensional games that they

were interested in. They were able to analyze certain simple positions, yet no solid

conjectures were formed [22]. It was utilized by Nowakowski as an in-class example

as it was a game that was easy to explain, yet had interesting structure. I became

interested in the game after a group of students approached me after working on it

and failing to determine the value of the general game with ones and zeros.2

The game of lenres is played on a sequence of integers. On his turn, Left is

allowed to move any integer from its current position, to replace (cover) any other

integer to the right (east) of it that is larger than, or up (north) from, it. Right is

allowed to move to cover to the right (east) any integer that is less than, or down

(south) from, it. Thus, the name comes from an acronym of the ruleset: Left-East-

North, Right-East-South.

The general game of lenres can be played with any string of integers. However,

we will consider only the solution to games played on strings of zeros and ones. Thus,

2Cheers to Danielle Cox and cohorts!

84

the only options for Left will be to move a 0 to cover a 1 to the right of it, and the

only options for Right will be to take a 1 and cover a 0 to its right.

From the position LenRes[1011], Left has a move to either LenRes[101] or LenRes[110]

while Right only has one move to LenRes[111]. Figure 2.8 gives the game tree for the

position LenRes[0101].

For the following lemmas, we will use Greek letters to represent arbitrary strings

of zeros and ones.

[0101] = 3/2

[010] = 1/2

[00] = 0

[100] = -2

[01] = 1 [10] = -1

[0] = 0 [1] = 0

[011] = 2

[01] = 1 [10] = -1

[0] = 0 [1] = 0

[001] = 1

[00] = 0 [01] = 1

[0] = 0

Figure 2.8: The game tree for lenres position LenRes[0101].

We introduce lenres in this section due to the fact that positions containing only

zeros and ones can be represented as an ordinal sum. This fact is heavily masked.

Through a series of reductions, from Lemma 2.3.1 through Lemma 2.3.12, we move

towards a representation of any lenres position with a leading 0 that is of the

following format:

LenRes[010xn10xn−1 · · · 10x210x11z].

As the final result in this section, Corollary 2.3.14, we then state that this can be

represented as the ordinal sum

z +


1

2x1
:

1

2x2−1
:

1

2x3−1
: · · · : 1

2xn−1


.

We first note that since all moves are to the right within the string of integers,

having a player’s integer (i.e. 0 for Left, 1 for Right) positioned first (i.e. left-most)

in the string is advantageous.

Lemma 2.3.1.

LenRes[0α] ≥ LenRes[α] ≥ LenRes[1α]

85

Proof. We need only show that LenRes[0α] ≥ LenRes[α]. Left can win playing second

in LenRes[0α] − LenRes[α] by simply ignoring the existence of the leading 0 and

mirroring Right’s play. Thus LenRes[0α] ≥ LenRes[α].

As an immediate result of this (when restricted to strings of zeros and ones), we

have by symmetry that LenRes[1α] ≤ LenRes[α].

Next, we note that the advantage that a player obtains by having the leading

integer in the string is not just due to the presence of the player’s integer (i.e. zeros for

Left and ones for Right), but its position. Consider the game LenRes[1] and the game

LenRes[10]. The former has value 0, as neither player has a move, and the latter has

value−1 as Right has the only move, to LenRes[1] = 0. Thus, LenRes[1] < LenRes[10]

despite the fact that LenRes[10] has a zero (i.e. Left’s integer) in it, where the former

does not. Even in positions where adding the zero to the middle of a string gives Left

a move that he did not have before, such as LenRes[11] versus LenRes[101], we see

that it may not help Left. In this case, LenRes[11] = 0 and LenRes[101] = −1
2
.

Furthermore, given the presence of a player’s integer, the further to the left within

the string it is placed, the better. Intuitively, this is clear; since players move their

integers to the right, a start position further to the left only offers more possible

moves.

Lemma 2.3.2.

LenRes[α01β] ≥ LenRes[α10β]

Proof. Consider the game LenRes[α01β] − LenRes[α10β]. No matter which compo-

nent Right moves in, Left has a response that either allows him to move to the same

position in the other component, giving 0, or to LenRes[α′01β′] − LenRes[α′10β′],

which is non-negative by induction. Hence, Left can always win playing second.

Corollary 2.3.3.

(i) LenRes[α0βγ] ≥ LenRes[αβ0γ]

(ii) LenRes[αβ1γ] ≥ LenRes[α1βγ]

Proof. Both statements follow from repeated application of Lemma 2.3.2.

86

The following two lemmas work to together to demonstrate that the left-most

move is always best. Lemma 2.3.4 tells us that we should always move your left-most

integer, and Lemma 2.3.6 gives us that the best move is to cover the first option

available to the right. Combining these, it is always best to move your left-most

integer to cover the left-most integer belonging to the opposition that is available to

(i.e. to the right of) you.

Lemma 2.3.4.

LenRes[α0β0γ1δ] ≥ LenRes[α01βγ0δ]

Proof. By Corollary 2.3.3,

LenRes[α0β0γ1δ] ≥ LenRes[α01β0γδ] ≥ LenRes[α01βγ0δ].

Corollary 2.3.5.

LenRes[α1β1γ0δ] ≤ LenRes[α10βγ1δ]

The implications of the above Lemma and Corollary are depicted in Figure 2.3.1.

In the game LenRes[α01β0γ1δ], it is always better for Left to move her left-most inte-

ger to LenRes[α0β0γ1δ] than to move any other integer to some LenRes[α01β0γ0δ],

as shown by Lemma 2.3.4. Similarly, from LenRes[α10β1γ0δ] it is better for Right

to move his left-most integer than any later one, as shown by Corollary 2.3.5.

[α01β0γ1δ]

[α0β0γ1δ] [α01βγ0δ]≥

Figure 2.9: Depiction of Lemma 2.3.4, which shows that it is always best to move
your left-most integer.

The following tells us that the best move is to cover the first available option.

That is, from LenRes[α01β1γ] it is better for Left cover the first option and move

to LenRes[α0β1γ] than cover a later 1 by moving to some LenRes[α1β0γ], as de-

picted in Figure 2.3.1. Likewise, it is better for Right to cover the first available

87

option; From LenRes[α10β0γ], it is better for Right to move to LenRes[α1β0γ] than

to LenRes[α0β1γ].

[α01β1γ]

[α0β1γ] [α1β0γ]≥

Figure 2.10: Depiction of Lemma 2.3.6, which shows that it is always best to cover
the first option.

Lemma 2.3.6.

LenRes[α0β1γ] ≥ LenRes[α1β0γ]

Proof. By Corollary 2.3.3,

LenRes[α0β1γ] ≥ LenRes[αβ10γ] ≥ LenRes[α1β0γ].

Theorem 2.3.7. In the game of lenres, it is always best to move your left-most

piece and cover the first available opponent’s piece to the right of it.

Proof. This follows directly from Lemmas 2.3.4 and 2.3.6 and Corollary 2.3.5.

While Left is happy to play in a string with a leading 0, we note that any extra

leading zeros do not improve his situation.

Lemma 2.3.8.

LenRes[00α] = LenRes[0α]

Proof. We must show that the second player can always win in LenRes[00α]−LenRes[0α].

By Theorem 2.3.7, we know that neither player will choose to move the leading zeros

past any ones. Thus, they will either move a zero to cover the first one encountered (if

it exists) or move within α. Thus, the second player can always respond in the other

component to leave a position of the same form, which he can win by induction.

Corollary 2.3.9.

88

(i) LenRes[0xα] = LenRes[0α]

(ii) LenRes[1xα] = LenRes[1α]

Through a series of reductions, we will show that we can always represent any

lenres position starting with a 0 in the following format:

LenRes[010xn10xn−1 · · · 10x210x11z].

Lemma 2.3.10.

LenRes[01α] > LenRes[α]

Proof. Consider LenRes[01α]− LenRes[α]; We must show that Left can always win.

Any move in α can be mirrored in the other component. If Right moves the one in

the first component to cover some zero in α, then Left can respond by moving the

leading zero to that position, thereby leaving LenRes[α]− LenRes[α] = 0. Left going

first can move to LenRes[0α]−LenRes[α] which is non-negative by Lemma 2.3.1.

Lemma 2.3.11.

LenRes[010α] > LenRes[0α]

Proof. Consider the game LenRes[010α]−LenRes[0α]. In this, Left can win by playing

to LenRes[00α]−LenRes[0α] = 0 by Lemma 2.3.8. If Right plays in LenRes[0α], Left

can win by ignoring the leading 01 in the first component and mirroring Right’s play,

to some position LenRes[010α′] − LenRes[0α′], that she wins by induction. If Right

plays in the first component to LenRes[01α]− LenRes[0α], then Left can respond to

LenRes[00α]− LenRes[0α] = 0.

Lemma 2.3.12.

LenRes[0α110β] = LenRes[0α1β]

Proof. Consider LenRes[0α110β]−LenRes[0α1β]. We will consider the when (i) α is

either empty (or a string of zeros), and (ii) α is non-empty. By Lemma 2.3.8, we can

assume α = 1α′. By Theorem 2.3.7, we know that if a good move exists for either

player, it is is by moving the left-most integer and covering the first option. Thus,

these cases cover all best moves.

(i) We will first consider the case where α = ∅. If either player moves in the

first component, the opponent can reply in the same component to LenRes[01β] −

89

LenRes[01β] = 0. Suppose β = 1a0γ where a ≥ 0, so that our game begins as

LenRes[01101a0γ] − LenRes[011a0γ]. A move by Left in the second component to

LenRes[01101a0γ] − LenRes[011aγ] can be replied to by Right in first component

to LenRes[01101aγ] − LenRes[011aγ] = 0 by induction. Suppose Right moves in the

second component to LenRes[01101a0γ]−LenRes[01a0γ]. If a > 0, then Left can reply

in the first component to LenRes[01101a−10γ] − LenRes[01a0γ] = 0 by induction. If

a = 0, then Left can play to LenRes[0101a0γ] − LenRes[01a0γ] which she wins by

Lemma 2.3.11.

(ii) We next consider the case when α = 1α′. In this case, if either player moves

the leading zero, mirror moves are available (moving the other leading zero in the

opposite component). Thus, we only need to consider the left-most ones. Either (a)

α′ contains zero, or (b) α = 1a.

If there is a zero in α′, then moving the leading one in α of either component

is met with the corresponding move. Suppose α = 1a with a > 0, then we have

the case LenRes[01a110β]− LenRes[01a1β]. If Right moves in the first component to

LenRes[01a11β]−LenRes[01a1β], then Left can reply in the same to LenRes[01a1β]−
LenRes[01a1β] = 0. If β = 1b0γ with b ≥ 0 and Left moves from LenRes[01a1101b0γ]−
LenRes[01a11b0γ] in the second component to LenRes[01a1101b0γ]−LenRes[01a11bγ],

then Right can reply in the first to LenRes[01a1101bγ] − LenRes[01a11bγ] = 0 by

induction.

Theorem 2.3.13.

LenRes[010xn10xn−1 · · · 10x210x11z] = z +
n

i=1


i

k=1

1

2xk


.

Proof. Consider the game LenRes[010xn10xn−1 · · · 10x210x11z]. From Theorem 2.3.7,we

know that the best move for Left is to

LenRes[00xn10xn−1 · · · 10x210x11z]

= LenRes[010xn−1 · · · 10x210x11z] (by Cor. 2.3.9)

= z +
n−1

i=1

i
k=1

1
2xk


(by induction)

and the best move for Right is to

LenRes[010−1+xn10xn−1 · · · 10x210x11z]

= z +
n−1

i=1

i
k=1

1
2xk


+ 2

n
k=1

1
2xk

(by induction)

90

Thus, our answer is the simplest value between these, which is

z +
n−1

i=1

i
k=1

1
2xk


+ 2

n
k=1

1
2xk

= z +
n

i=1

i
k=1

1
2xk



This gives us a nice handle on the value of lenres positions. However, we will

see that it is in fact a value more easily expressed in terms of ordinal sum.

Corollary 2.3.14.

LenRes[010xn10xn−1 · · · 10x210x11z] = z +


1

2x1
:

1

2x2−1
:

1

2x3−1
: · · · : 1

2xn−1


.

Proof. To show that this follows from Theorem 2.3.13, we simply need to show that

z +
n

i=1


i

k=1

1

2xk


= z +


1

2x1
:

1

2x2−1
:

1

2x3−1
: · · · : 1

2xn−1


.

From Lemma 2.2.14, we know that

1

2q
:
1

2t
=

1

2q
+

1

2q+t+1
.

As an example of the reductions and techniques from this section, we give the

following analysis of the lenres position LenRes[00011000111001000011].

Example 2.3.15.

LenRes[00011000111001000011]

= LenRes[0001100011000011] (by Lem. 2.3.12)

= LenRes[00011000100011] (by Lem. 2.3.12)

= LenRes[000100100011] (by Lem. 2.3.12)

= LenRes[0100100011] (by Lem. 2.3.9)

= 2 + 1
23 :

1
22 (by Cor. 2.3.14)

= 2 + 1
23 + 1

23+2+1 (by Lem. 2.2.14)

= 2 + 9
64

.

91

2.3.2 When push Comes To shove

The games of push and shove were introduced in Lessons in Play as tools for

demonstrating various properties of games [2]. Both games are played on one or more

finite strips of squares. Each square can either be empty or occupied by a black

or white piece. Left moves by choosing a black piece and moving it one square to

the left, Right by choosing a white piece and doing the same, with slightly different

consequences based on which game one is playing.

In the game of push, at most one piece can occupy a square at a time. So any

pieces immediately adjacent and to the left of that which is being moved are also

pushed one square to the left. Once a piece is pushed passed the left end of the strip,

it is removed from play.

shove [’shUv] to push in a rough, careless or hasty manner [19].

In the game of shove, the effect of the move is stronger; when a piece is moved

to the left one square, all pieces to the left of it on the board are also moved over one

square.

For a position of either game, in text, we will utilize an X to represent a black

piece, an O for a white piece, and an underscore () for an empty square if not drawn

on a board. As examples of the games, Figure 2.11 represents the moves from the

positions [X OX] in both the games of (a) push and (b) shove.

X XO

XO

X XO X XO
(a) PUSH

X XO

XO

XO XO
(b) SHOVE

Figure 2.11: Examples of the position [X OX] played under the rulesets for (a) push
and (b) shove.

92

When these two games were introduced, no formula was known to easily solve a

push position. However, its variant shove was solved. From the authors of Lessons

in Play [2], we adopt the following notation.

Notation 2.3.16. [2, p. 98] For the games of push or shove, we define the following

for a specific position G on a single strip:

n = (total number of pieces) - 1

i = piece number, given by number of pieces to the right

c(i) =

 1 if ith piece is black

-1 if the ith piece is white

k = max {i s.t. ∀j ≤ i, c(j) = c(0)}

i.e. the length of the last color block on the right

p(i) = position of the ith piece, from the left edge of the board

r(i) =

 0 if i ≤ k

i-k otherwise

i.e. the number of pieces to i’s right not including those in

the last color block on the right

2.3.2.1 shove

For a shove position G and through application of the above notation, Albert,

Nowakowski and Wolfe were able to identify that it had a value as described be-

low.

Proposition 2.3.17. [2, Thm. 5.32, p. 98] Adopting the notation of 2.3.16, the

value of a shove position G is

G =
n

i=0


c(i)

p(i)

2r(i)


.

While this nicely solves the game, we proceed to another solution, that gives a

simple reconstruction of the game as a sum of hackenbush strings. As such, it also

serves our purpose in embodying hidden ordinal sums. We will continue to utilize the

notation of Albert, Nowakowski and Wolfe [2] and also contribute the following.

93

Definition 2.3.18. For the games of push or shove, we define the following for a

specific position G on a single strip, where i, n and the functions p, r and c are as

defined in 2.3.16.

b(i) = b(i− 1):c(i)

with b(0) = 0

B(i) = B(i− 1):c(i) = c(0):b(i)

with B(0) = c(0)

We claim that a shove position with n+1 total pieces, which Albert, Nowakowski

and Wolfe [2] demonstrated to have value

F1(n) =
n

i=0


c(i)

p(i)

2r(i)


,

can also be expressed as a single hackenbush string and that its value can be

alternatively expressed as

F2(n) = p(n)B(n) +
n−1
i=0

(p(i)− p(i + 1)) B(i).

The latter representation comes from consideration of the former as a sum of hack-

enbush strings and through simplification of these sums. We will refer to the former

method, from Albert, Nowakowski and Wolfe [2], as the ‘first method’ and shall refer

to the latter as the ‘ordinal sum method’.

We claim that the first method inherently makes use of Hackenbush-dimension.

However, it does so by making use of the Hackenbush-dimension of B(i). We claim

that Hdim (B(i)) = r(i) + 1.

Lemma 2.3.19. For a shove position, for all 0 ≤ k ≤ n,

Hdim (B(k)) = r(k) + 1

Proof. By Definition 1.2.59, Hdim (B(0)) = 1 since B(0) ∈ {−1, 1}. Thus Hdim (B(0)) =

r(0) + 1 since r(0) = 0.

Let p < n be such that ∀k ≤ p,

m = c(k) ̸= c(p + 1) = −m

94

where m ∈ {−1, 1}. Then ∀k ≤ p, r(k) = 0 since it and all pieces to its right are

the same color. We also see that B(0) = c(0) = m, B(1) = m:m = 2m, and so on

with B(k) = km:m = (k + 1)m. Since these are all nonzero integers, then for k ≤ p,

Hdim (B(k)) = 1 = r(k) + 1.

But r(p + 1) = 1 and ∀k > p, r(k) = k − p. Also,

B(p + 1) = B(p):c(p + 1) = pm:−m = pm− m

2
=

2pm−m

2
.

Since m ∈ {−1, 1}, 2pm − m is odd, so Hdim (B(p + 1)) = 2. And r(p + 1) =

(p + 1)− p = 1, so that Hdim (B(p + 1)) = r(p + 1) + 1.

Let k > p + 1 and suppose that for all i ≤ k, Hdim (B(k)) = r(k) + 1. We will

consider the position k + 1 and show, by induction on k, that Hdim (B(k + 1)) =

r(k + 1) + 1. Here, since r(k) = k − p > (p + 1) − p = 1 so that inductively

Hdim (B(k)) > 2, by Lemma 2.2.16,

B(k + 1) = B(k):c(k + 1) = B(k) + 2−Hdim(B(k))c(k + 1).

By induction, we know that Hdim (B(k)) = r(k) + 1 = k + 1− p, so

B(k + 1) = B(k) +
c(k + 1)

2k+1−p
.

Thus, Hdim (B(k + 1)) = (k + 1− p) + 1 = r(k + 1) + 1.

The following Lemma states that the first method, giving F1(n), and the ordinal

sum method, giving F2(n), give values that are equivalent.

Lemma 2.3.20.

For a shove position,

n
i=0


c(i)

p(i)

2r(i)


= p(n)B(n) +

n−1
i=0

(p(i)− p(i + 1)) B(i).

Proof. Let

F1(n) =
n

i=0


c(i)

p(i)

2r(i)


,

and

F2(n) = p(n)B(n) +
n−1
i=0

(p(i)− p(i + 1)) B(i).

95

We must show that for all n (i.e. for games with total number of pieces n + 1),

F1(n) = F2(n).

If n = 0, then

F1(0) =
c(0)p(0)

2r(0)
= c(0)p(0)

since r(0) = 0. And, since B(0) = c(0),

F2(0) = p(0)B(0) = p(0)c(0).

Suppose that n > 0. Then

F1(n) =
c(n)p(n)

2r(n)
+

n−1
i=0

c(i)p(i)

2r(i)
.

By induction, this gives us that

F1(n) =
c(n)p(n)

2r(n)
+ F2(n− 1).

We also have that

F2(n)=p(n)B(n) +
n−1

i=0 (p(i)− p(i + 1)) B(i)

=p(n)B(n) + (p(n− 1)− p(n)) B(n− 1) +
n−2

i=0 (p(i)− p(i + 1)) B(i)

=p(n) (B(n)−B(n− 1)) + p(n− 1)B(n− 1) +
n−2

i=0 (p(i)− p(i + 1)) B(i)

=p(n) (B(n)−B(n− 1)) + F2(n− 1)

Thus, we must show that

c(n)

2r(n)
= B(n)−B(n− 1).

We will consider three cases: (i) where all pieces are the same color); (ii) when

only the left-most piece is a different color; and (iii) that there is a color change to

the right of the left-most piece.

Let p be the piece number of the first color change from the right. Then B(0) = m

and for all k < p, B(k) = km:m = (k + 1)m.

(i) Suppose that all pieces are the same color, i.e. ∀i ≤ n, c(i) = m ∈ {−1, 1}.
As noted above, B(n− 1) = nm and B(n) = (n + 1)m. Also, c(n) = m and r(n) = 0

since it and all pieces to the right are the same color. Thus,

B(n)−B(n− 1) = (n + 1)m− nm = m =
m

20
=

c(n)

2r(n)
.

96

(ii) Suppose that only the left-most piece is a different color, i.e. that ∀i < n,

c(i) = m ∈ {−1, 1}, but c(n) = −m. Then ∀i < n, r(i) = 0, but r(n) = 1.

B(n− 1) = nm as stated above. However, this time,

B(n) = B(n− 1):−m = nm:−m = nm− m

2
.

Thus,

B(n)−B(n− 1) = nm− m

2
− nm = −m

2
=

(−m)

21
=

c(n)

2r(n)
.

(iii) Suppose that there is a color change preceding c(n), i.e. ∃i, j < n such that

c(i) ̸= c(j). Then r(n) = r(n− 1) + 1 and now Hdim (B(n− 1)) > 1 since B(n− 1)

is not an integer. By Lemma 2.2.16, we know that

B(n) = B(n− 1):c(n) = B(n− 1) +
c(n)

2Hdim(B(n−1))

Then B(n)−B(n−1) = c(n)

2Hdim(B(n−1)) and by Lemma 2.3.19, we know that Hdim (B(n− 1)) =

r(n− 1) + 1. So,

B(n)−B(n− 1) =
c(n)

2Hdim(B(n−1))
=

c(n)

2r(n−1)+1
=

c(n)

2r(n)
.

In Figure 2.12, we give a representation of the shove position X O XX. What is

lovely about this configuration, is that drawing it out from a starting position is quite

simple. To begin with, we will work over from the right-most piece on the board. If

c(i) is 1, we will be drawing blue (solid) hackenbush edges and if −1 we will draw

red (zig-zag) edges. We start by drawing p(0) edges connected to the ground of color

c(0). Then, working from the left-most string across, we append one edge of color

c(1) to the first p(1) strings. Then, again starting on the left, an edge of color c(2)

to the first p(2) strings. We continue on in this fashion until we finally add an edge

of color c(n) to the top of the first p(n) strings. When we are done, we will have the

graphical hackenbush representation of the ordinal sum method.

In our example in Figure 2.12, we first drew 6 blue lines, then added a blue line

to the top of the left-most 5 strings, then red to the first 3 strings, and finally, a blue

edge to the first string.

To evaluate the position, we calculate the necessary components: n, p(i), c(i), and

either B(i) or r(i). For this position, n = 3, we set p(4) = 0, and the table below

gives all others:

97

B(3)
1 3/4

B(2)
1 1/2

B(1)
2

B(0)
1

{{

Shove
X_O_XX

Figure 2.12: Hackenbush representation of the shove position X O XX.

X O X X

i 3 2 1 0

p(i) 1 3 5 6

r(i) 2 1 0 0

c(i) +1 -1 +1 +1

b(i) 1
2
:1 = 3

4
1:−1 = 1

2
1:0 = 1 0

B(i) 11
2
:1 = 13

4
2:−1 = 11

2
1:1 = 2 1

Via the first method, we see that for G = Shove(X O XX),

G =
3

i=0 c(i)


p(i)

2r(i)


= 1


6
20


+ 1


5
20


− 1


3
21


+ 1


1
22


= 1


6
1


+ 1


5
1


− 1


3
2


+ 1


1
4


= 6 + 5− 11

2
+ 1

4

= 93
4

98

Via the ordinal sum method,

G = p(3)B(3) +
2

i=0 (p(i)− p(i + 1)) B(i)

= 1

13

4


+

(6− 5)(1) + (5− 3)(2) + (3− 1)


11

2


= 13

4
+ 1(1) + 2(2) + 2


11

2


= 13

4
+ 1 + 4 + 3

= 93
4

Both methods arrive at the same result. They simply provide alternate ways

of considering the resulting hackenbush strings. While the ordinal sum method

might seem a bit cumbersome, it is the most straight-forward representation of the

hackenbush strings presented.

99

2.4 Side-Sums

Ordinal sums have served us well to describe the values of various juxtapositions.

However, there are certainly games for which ordinal sums have no place. In this

section, we will introduce a new function, a close relative of ordinal sums, that will

handle other classes of juxtapositions in a similar way. This new function is called the

side-sum. After exploring this new function, we will introduce a variant of toppling

dominoes to which this function will immediately apply.

In this variant, we will play as in the game of toppling dominoes, with the

added restriction that both players be allowed to topple pieces only to one direction

or the other. We will call this variation on the game X/Y -restricted toppling

dominoes, where X and Y are each either “E” (for East, i.e. to the right) or “W”

(for West, i.e. to the left) and define the restriction placed on the Left and Right

player, respectively (i.e. Left is only allowed to topple black dominoes in the direction

X, Right only white dominoes in direction Y).

2.4.1 Side-Sum Function

Ordinal sum considers 2 possible combinations that could play out from the juxtapo-

sition, G � H, of G and H. That is, those games where play in the left position G

completely destroys all of H (i.e. G:H) and where play in H destroys all of G (i.e.

H:G). However, it does not consider the case where the game rules are such that

Left playing in one component removes options to the other but the reverse happens

for Right. That is, rule sets that would allow Left to play in G destroying H (i.e.

to L (G)) or play in H and leave G juxtaposed L (H) (i.e to G � L (H)), but would

allow Right to play in G to R (G) � H or to play in H to R (H), destroying G.

In our line of Toppling Dominoes variations, this possiblity is embodied in the

games E/W-restricted toppling dominoes and W/E-restricted toppling

dominoes.

In order to look at analysis of these games, we must first introduce a new definition.

Definition 2.4.1. For games G and H, the side-sum of G to H, denoted G � H

(said “G side-sum H”), will be defined recursively as

G �H = {L (H) ,L (G) �H |R (G) , G �R (H)} .

100

The idea: Start with two positions G and H in which Left moves annihilate

everything positionally to the left and Right to the right. If a position looks like G

juxtaposed H (G�H), then Left can move in the G-component to a position leaving

L (G)�H or in the H component leaving position L (H) (clear in W/E-restricted

toppling dominoes since moves in a component to the right for Left wipe out all

of the left-hand component). Likewise, Right can move in the G-component (wiping

out all of H) to R (G) or in the H-component leaving G � R (H).

Lemma 2.4.2.

G � 0 = 0 �G = G

Proof.

0 � 0 = {L (0) ,L (0) � 0 |R (0) , 0 �R (0)}

= {· |·}

= 0

G � 0 = {L (0) ,L (G) � 0 |R (G) , G �R (0)}

= {L (G) � 0 |R (G) , G �R (0)}

= {L (G) |R (G)} (by induction)

= G

0 �G = {L (G) ,L (0) �G |R (0) , 0 �R (G)}

= {L (G) |0 �R (G)}

= {L (G) |R (G)} (by induction)

= G

Lemma 2.4.3. For all games G and H, all left options of H are less than or in-

comparable to G �H, and all right options of G are greater than or incomparable to

G �H. That is,

∀HL ∈ L (H) , HL � G �H,

101

and

∀GR ∈ R (G) , G �H � GR.

(i.e. R (G) ̸≤ G �H ̸≤ L (H) .)

Proof. This follows from Proposition 1.2.35 and the fact that, by Definition 2.4.1,

L (H) and R (G) are in the set of left and right options, respectively, of G �H.

Lemma 2.4.4. For x, y ∈ Z>0,

(i) x � y = x + y

(ii) (−x) � y = {y − 1 |1− x}
(iii) x � (−y) = x− y

Proof.

(i) x � y = {y − 1, x− 1 � y |·} = {y − 1, (x + y − 1) |·} = x + y

(ii) (−x) � y = {y − 1 |1− x} as L (−x) = ∅ and R (y) = ∅.
(iii) x � (−y) = {x− 1 � −y |x � 1− y} = {x− y − 1 |x− y + 1} = x− y

We note that the side-sum is associative.

Lemma 2.4.5.

(G �H) �K = G � (H �K)

Proof.

(G �H) �K

= {L (K) ,L (G �H) �K |R (G �H) , (G �H) �R (K)}

= {L (K) ,L (H) �K, (L (G) �H) �K |R (G) , G �R (H), (G �H) �R (K)}

= {L (K) ,L (H) �K,L (G) � (H �K) |R (G) , G �R (H), G � (H �R (K))}

(by induction)

= {L (H �K) ,L (G) � (H �K) |R (G) , G �R (H �K)}

= G � (H �K)

However, side-sum is not commutative.

102

Example 2.4.6. When G = 1 and H = 1
2

then G �H = 1 ̸= 1∗ = H �G.

1 � 1

2
=


0, 0 � 1

2
|1 � 1


=


0,

1

2
|{0, 0 � 1 |·}


=


1

2
|{0, 1 |·}


=


1

2
|2


= 1.

where
1

2
� 1 = {0, 0 � 1 |1} = {0, 1 |1} = 1 ∗ .

2.4.2 Side-Sum From Day n

As we did with ordinal sums, let us consider the set of games that can be produced

as side-sums of games from G [n].

Definition 2.4.7. The side-sums from day n, denoted SSn, will be the set of all

games formed from side-sums of games born by day n.

SSn = {G �H s.t. G, H ∈ G [n]}.

On day 0, we can only form 0 � 0 = 0.

Lemma 2.4.8.

SS0 = {0}.

However, on day 1, we can now form 11 different games. Table 2.4 lists all side-

sums that can be formed from games by day 1. These 11 games can be represented

by the poset ⟨SS1;≤⟩ as pictured in Figure 2.13.

103

G �H
H

1 0 ∗ −1

G

1 2 1 1
2

0

0 1 0 ∗ −1

∗ {1 |0} ∗ ∗2 −1
2

−1 ∗ −1 {0 |−1} −2

Table 2.4: Side-sums that can be formed from games born by day 1.

rcf (G �H)
H

1 0 ∗ −1

G

1 2 1 1
2

0

0 1 0 0 −1

∗ {1 |0} 0 0 −1
2

−1 0 −1 {0 |−1} −2

Table 2.5: The reduced canonical forms of side-sums that can be formed from games
born by day 1.

104

0

1

2

1
2

-1

-2

 1
2

* *2

{1|0}

{0|-1}

Figure 2.13: Poset of SS1.

105

2.5 Side-Sum Applied

We now revisit the game of restricted toppling dominoes. We will give the

full solution to the game through application of side sums. Unlike the examples of

games that could be expressed using ordinal sums, this application is less camouflaged.

However, it nicely demonstrates that the side-sum function, a cousin to ordinal sums,

could prove useful in a larger class of games.

2.5.1 Restricted Toppling Dominoes

In the game of E/E-restricted toppling dominoes, a position of value G ad-

jacent to (to the left of) a position H, i.e. the position G � H, has value G:H.

Should either player move in the G component of the game, all of H is annihilated as

dominoes to the right (including all of H) are toppled. A move in H leaves all of G

untouched and still adjacent to any remaining dominoes from H. Play in the game

W/W-restricted toppling dominoes is symmetric.

However, consider the game of W/E-restricted toppling dominoes in which

Left is only allowed to topple black dominoes to the left, and Right white dominoes

to the right. In this case, ordinal sum will no longer help us. We claim that the

side-sum is embodied by this game.

In considering this game, we will break the line of dominoes into strings of some

number of consecutive white dominoes followed (to the right) by some number of

consecutive black ones. We will refer to segments of this type as white/black strings

and will begin with analysis of these segment types.

We will denote strings of white and strings of black dominoes in this game as w(x)

and b(y), respectively, where x and y represent the number of dominoes in each of

the strings.

2.5.1.1 White/Black Strings

In a white/black string of the form w(x) � b(y) (i.e. x white dominoes to the left of

y black dominoes), as in Figure 2.14, a move by Right necessarily topples all black

dominoes. A move by Left topples all white dominoes. To understand the value of

white/black segments, we must first know the value of single color strings of dominoes.

106

1 2 x-1 x 1 2 y-1 y

Figure 2.14: The W/E-restricted toppling dominoes position w(x) � b(y).

Lemma 2.5.1. b(n) = n and w(n) = −n

Proof. Clearly, b(0) = w(0) = {· |·} = 0. Neither player has a move.

b(n) =

⟨ b(i) ⟩n−1

i=0 |·


= {0, . . . , n− 1 |·} = {n− 1 |·} = n.

Similarly, w(n) = −n.

From this, we have the value of all moves from our white/black string.

Lemma 2.5.2. For any x, y ∈ Z>0, w(x) � b(y) = {y − 1 |1− x}.

Proof.

w(x) � b(y) =

⟨ b(i) ⟩y−1

i=0

⟨ w(j) ⟩x−1
j=0


.

From lemma 2.5.1, we know that this gives us

w(x) � b(y) = {0, . . . , (y − 1) |0, . . . ,−(x− 1)} = {y − 1 |1− x} .

Also, we will need the value of black/white strings. Note that in the unrestricted

game of toppling dominoes this could simply be represented as the negative of some

white/black string. This would also be true if our restrictions forced both players

to topple in the same direction (i.e. W/W- or E/E-restricted toppling dominoes).

However, in W/E-restricted toppling dominoes, that is not the case, as the

following demonstrates.

Lemma 2.5.3. For any x, y ∈ Z>0, b(x) � w(y) = x− y.

Proof.

b(x) � w(y) =

⟨ b(i) � w(y) ⟩x−1

i=0

⟨ b(x) � w(j) ⟩y−1
j=0


.

107

By induction on the total number of dominoes, x + y,

b(x) � w(y) =

⟨ i− y ⟩x−1

i=1

⟨ x− j ⟩y−1
j=0


= {x− y − 1 |x− y + 1} = x− y.

2.5.1.2 Side-Sums

In order to consider lines made up of more than one of the white/black strings, we

must make use of the side-sum. With that, we have all the pieces in place to look at

multiple white/black strings.

Theorem 2.5.4. Let both g and h represent series of white/black strings (in which

either or both of the colors may be absent) in the game of W/E-restricted top-

pling dominoes, where string g has value G and h has value H. Then,

g � h = G �H.

Proof.

g � h={L (g) � h,L (h) |R (g) , g � R (h)}

={L (G) �H,L (H) |R (G) , G �R (H)}

=G �H.

Note that even if we consider the value G in canonical form, L (G) ⊆ L (g). For any

gL ∈ L (g) , ∃GL∗ ∈ L (G) s.t. gL ≤ GL∗ and ∀GL ∈ L (G) ,∃gL∗ ∈ L (g) s.t. gL∗ =

GL. The same is true for h and H and symmetric results hold for Right options.

Using this notation, Figure 2.15 depicts the winning second player responses.

As an example, we will look at the the following game of W/E-restricted

toppling dominoes and analyze it using side-sum.

This game can be broken down into two smaller games, game G = 1 shown in

Figure 2.16 and game H = ∗ shown in Figure 2.17.

108

g⊞h - G•H

gL⊞h - G•H

gL⊞h - GL*•H
≤gL⊞h - gL⊞h=0

hL - G•H

hL - HL*

≤hL-hL=0
g⊞h - G•HR

g⊞h - GR

gR* - GR

=GR - GR=0

g⊞hR* - G•HR

=g⊞HR - G•HR=0

g⊞hR - G•H

g⊞hR - G•HR*

≥g⊞hR - g⊞hR=0

gR - G•H

gR - GR*

≥gR-gR=0
g⊞h - GL•H

g⊞h - HL

hL* - HL

=HL - HL=0

gL*⊞h - GL•H
=GL⊞h - GL•H=0

Figure 2.15: The game tree of g � h−G �H.

= -1
= {-1|1}=0

= -1 = 1

= 2

= {0|2}=1

Figure 2.16: Example game G = {−1, 0 |2} = 1.

= {0|0}=*

0 0

Figure 2.17: Example game H = {0 |0} = ∗.

From Theorem 2.5.4, we know that G � H = 1 � ∗. We can check that

1 � ∗ = {0, 0 � ∗ |1 � 0} = {0, ∗ |1} =
1

2
.

109

Likewise, if we were to evaluate the entire position G � H, we arrive at the same

result, as can be seen in its game tree in Figure 2.18.

0

={0|-1}

={{0|-1},0|0}=*

0
0

= -1

0
= 1

= {-1|1}=0

= -1 = 1

= 2

= G = 1

Figure 2.18: Example game G � H = 1 � ∗.

Chapter 3

Loopy And Oslo Games

The traditional description of combinatorial games includes the caveat that the game

will end after a finite sequence of moves and that no positions will be repeated.

The problem with allowing repetition of positions is that it allows for the possibility

that the game may never terminate. However, many games, such as checkers,

backsliding toads & frogs and most-notably go [3], exist in which certain moves

can lead to an infinitely long sequence of moves.

3.1 Loopy Games

These games, in which position repetition is allowed, are referred to as loopy games

due to the fact that their game graphs (no longer game trees) contain cycles. As the

cycles complicate the structure of the game, the theory surrounding loopy games is

more complicated.

Further background theory on loopy games can be found in Winning Ways [3],

On Numbers and Games [9], and in the recent works of Aaron Siegel [28, 30].

Definition 3.1.1. [3] Loopy games are combinatorial games in which repetition is

permitted.

When it is necessary to specify, we will refer to games that are not loopy games

as loop-free games.

In Winning Ways [3] and the Ph.D. thesis of Aaron Siegel [28], a variety of idem-

potents were introduced that help express the detail of otherwise complicated games.

We catalogue these well-behaved games in Table 3.1. The classic examples are the

110

111

games of on = {pass |·} and its negative, off = {· |pass}, first introduced in [3]. We

note that we will sometimes use “pass” to represent an option back to the original

game. That is, if pass ∈ L (G) or pass ∈ R (G), these represent a move to G. Thus,

on = {on |·} and off = {· |off}, though we will often refer to them as we did

initially, inserting pass moves where appropriate.

The games of on and off absorb all loop-free games. That is, for any loop-free

game G, G + on = on and G + off = off. The game over = {0 |pass } absorbs all

loop-free infinitesimals. That is, if G and H are loop-free games, then G + over =

H +over ⇐⇒ G ≡Inf H. The final game to note is +on = {0 |{0 |off}} > 0 which

does not absorb any loop-free games, and represents the smallest positive games in

the universe of games.

Named loopy games

on={pass |·} off={· |pass }
over={0 |pass } under={pass |0}
upon={pass |∗} downunder={∗ |pass }

upon∗={0, pass |0} downunder∗={0 |0, pass }
+over={0 |{0 |under}} −under={{over |0} |0}

+on={0 |{0 |off}} −off={{on |0} |0}

dud = {dud |dud}

Table 3.1: Named loopy games [3], [9] & [28].

Idempotent Loop-free games absorbed

on All games

over All infinitesimals

+over All tinies, but no all-smalls

+on None

Table 3.2: A sampling of loopy idempotents [28].

112

3.2 Oslo Games

While games are clearly enjoyable, when playing against a child that never grows

tired of play, there comes a time when one might opt to pass on his or her turn if

given the chance1. Of course, at the point in which an option is made to end the

game, that pass option no longer remains and the game ends. We now consider the

class of games in which Left is always allowed a pass move, until that point where

either player makes a move to zero. We can think of these games as those in which

Left is a lazy parent, mindlessly passing and allowing their child to play on until some

point where an opportunity is available to end the game.

We will call these games One-sided loopy games, or Oslo games. The following

function takes a normal game and adds in a pass option for Left at all non-zero

positions within the game. Effectively, it takes any game and makes it a one-sided

loopy, or Oslo, game.

Definition 3.2.1.

If lit (G) = 0, then oslo (G) = 0. Otherwise,

oslo (G) = {oslo (G) , oslo (L (G)) |oslo (R (G))}

= {pass , oslo (L (G)) |oslo (R (G))}

For example, if we take the games 1
2
, −1

2
and {0 |−1} in canonical form and add

in the pass moves, we have the following:

oslo


1
2


=

oslo


1
2


, oslo (0) |oslo (1)


=

oslo


1
2


, 0 |{oslo (1) , oslo (0) |}


=

oslo


1
2


, 0 |{oslo (1) , 0 |}


= {pass , 0 |{pass , 0 |}}

= {pass , 0 |on}

= on

1The author has much experience with this form of play!

113

oslo

−1

2


=

oslo


−1

2


, oslo (−1) |oslo (0)


=

oslo


−1

2


, {oslo (−1) |oslo (0)} |0


=

oslo


−1

2


, {pass |0} |0


= {pass ,under |0}

= under

oslo ({0 |−1}) = {oslo ({0 |−1}) , oslo (0) |oslo (−1)}

= {oslo ({0 |−1}) , 0 |{oslo (−1) |oslo (0)}}

= {pass , 0 |{pass |0}}

= {pass , 0 |under}

= {0 |under}

These are also represented in Figure 3.1

Oslo(0)=0

Oslo(0)=0
Oslo(-1)=under

Oslo(-1/2)=under

Oslo(0)=0

Oslo(0)=0

Oslo(1)=on

Oslo(1/2)=on Oslo({0|-1})={0|under}

Oslo(0)=0

Oslo(0)=0

Oslo(-1)=under

Figure 3.1: Example of oslo


1
2


, oslo


−1

2


and oslo ({0 |−1}).

3.2.1 Oslo Game Values

All non-zero positions in Oslo games have a pass move for Left. Hence, those positions

cannot be P-positions. Thus, the only P-positions in Oslo games are identically zero.

Lemma 3.2.2. oslo (G) = 0 ⇐⇒ G ∼= 0. Thus, zeros are the only P-positions in

Oslo games.

Proof. If G ∼= 0, then oslo (G) = 0 (by definition).

Suppose G ̸ ∼= 0. Then

oslo (G) = {oslo (G) , oslo (L (G)) |oslo (R (G))} .

114

If we assume that oslo (G) = 0, then

oslo (G) = {0, oslo (L (G)) |oslo (R (G))} .

Since 0 ∈ L (oslo (G)), oslo (G) ̸= 0, which is a contradiction. Hence, if G ̸ ∼= 0, then

oslo (G) ̸= 0.

This is essentially a strategy-stealing argument.

The game G = {−1 |1} is an example of a game G ̸ ∼= 0 that has value zero.

Under the Oslo function, Left then has a move to oslo (G), which is the same as a

pass move for Left from oslo (G).

oslo ({−1 |1}) = {oslo ({−1 |1}) , oslo (−1) |oslo (1)}

= {pass , {pass |oslo (0)} |{pass , oslo (0) |}}

= {pass , {pass |0} |{pass , 0 |}}

= {pass ,under |on}

= on

Oslo(-1)=under

Oslo(0)=0

Oslo(1)=on

Oslo({-1|1})=on

Oslo(0)=0

Figure 3.2: Example of oslo ({−1 |1}). This provides an example of oslo (G) for a
game G which has value 0, but is not identically zero, i.e. G = 0 but G ̸ ∼= 0.

It is interesting to note that outcome classes are preserved between a short game

G in canonical form and oslo (G).

115

Lemma 3.2.3. For short games G in canonical form,

o (G) = o (oslo (G)) .

Proof. Since G is in canonical form, the only P-positions are identically 0. From this

and Lemma 3.2.2, we know that G = 0 =⇒ G ∼= 0 =⇒ oslo (G) = 0.

For nonzero numbers, the Oslo function sends a game to either on or under,

depending on its sign. Positive numbers are sent to on and negative numbers to

under.

Lemma 3.2.4. Let x be a game in canonical form, where x is a number. Then,

x > 0 =⇒ oslo (x) = on

x = 0 =⇒ oslo (x) = 0

x < 0 =⇒ oslo (x) = under

Proof. From Lemma 3.2.3, it is clear that when x = 0, oslo (x) = 0. Suppose that

x > 0. Then x = {xL|xR} where xL ≥ 0 and either xR = ∅ (if x is an integer)

or xR > 0. If xR is empty, then by induction, oslo (x) is either: {pass , 0|·} = on,

if xL = 0; or {pass ,on|·} = on when xL > 0. If xR > 0, then by induction,

oslo (x) is either: {pass , 0|on} = on when xL = 0; or {pass ,on|on} = on when

xL > 0. Similarly, when x < 0, oslo (x) is always of the form {pass|0}, {pass|under},
{pass ,under|0} or {pass ,under|under}, which all have value under.

In the Oslo version of a game, if Left has a winning strategy in the finite version

of the game, he has that same strategy available to him when repetition is allowed.

Proposition 3.2.5. G > 0 =⇒ oslo (G) > 0.

116

3.3 Lattice Of Oslo Games

We will now consider the structure of all Oslo games born by day n. We will use

Oslon to denote the set of Oslo games oslo (G) with birthday b(G) ≤ n.

Definition 3.3.1.

Oslon = {oslo (G) : b(G) ≤ n} = {{pass , L |R} : L, R ∈

k<n

Oslok}.

Proposition 3.3.2. Oslo0 = {0} and Oslo1 = {on,under,upon∗, 0}.

Proof. The first statement is trivially true. If b(G) = 1, then a pass for Left and 0 are

the only options of G. Hence, the only possibilities are {pass , 0 |·} = {pass |·} = on,

{pass |0} = under and {pass , 0 |0} = upon∗, which forms a comprehensive list.

The Oslo games added on day 1 are represented in Figure 3.3. The partial order

structure of Oslo1 is depicted in Figure 3.4.

Oslo(-1)=underOslo(1)=on Oslo(*)=upon*

Figure 3.3: Oslo games oslo (G) with birthday b(G) = 1.

on

upon*

under

0

Figure 3.4: Oslo1: Oslo games born by day 1.

117

3.3.1 Closed Sets

We would like to show that Oslon is a complete distributive lattice. To do this, we

will make use of the results of Albert and Nowakowski. In [1], they showed that for

any set of games S, if every option of a game also lies in S, then the set of games all of

whose immediate options belong to S forms a complete distributive lattice. We will

make use of the set S = {0,upon∗,on,under}, satisfying this condition, to achieve

the result.

For any set of games S, the children of S can be defined as follows.

Definition 3.3.3. [1] For a set S of games, the children of S, which we will denote

as C (S), are those games

C (S) = {{A |B } : A, B ⊆ S}.

Earlier, we noted that Calistrate, Paulhus and Wolfe showed in [8] that G [n] was

a distributive lattice. They did this by beginning with a set S = ∅ and repeatedly

forming C (S). Albert and Nowakowski furthered their investigations in [1] by con-

sidering the order structure of C (S) for an arbitrary set of games. Their result for

the children of an arbitrary set of games follows.

Proposition 3.3.4. [1, Prop. 2] For an arbitrary set of games S,

∀G ∈ C (S) , G = {⌊G⌋ |⌈G⌉} .

We motivate this by letting H = {⌊G⌋ |⌈G⌉} and considering the game G − H.

Note that if Left moves to GL−H, then GL ∈ ⌊G⌋ since GL � G, so Right can move

to zero. Likewise, if Left plays to some G − H ′ where H ′ ∈ ⌈G⌉, then G � H ′, so

G−H ′ � 0. Thus, Right can win moving first in G−H ′.

The children of an arbitrary set of games S were shown to form a complete lattice,

with join and meet given below.

Theorem 3.3.5. [1] For any set of games S, its children C (S) form a complete lattice

with join and meet given by
i∈I Gi=


i∈I ⌊Gi⌋


i∈I ⌈Gi⌉




i∈I Gi=


i∈I ⌊Gi⌋


i∈I ⌈Gi⌉


118

For certain sets S, C (S) need not form a distributive lattice, as we shall see in

the following example.

Example 3.3.6. If we start with the set S = {0, {1 |∗} , 1∗}, then its children are

those games

C (S) = {−1, ∗, 0, {1∗ |0} , 1}.

These games form the non-distributive lattice N5.

1

-1

*

{1*|0}

0

The result that we are most in need of from [1] regards the properties of the set S

that force its children to form a distributive lattice. They note that for certain initial

sets S, which they refer to as closed sets, the lattice C (S) is always distributive.

Definition 3.3.7. [1] Let S be a set of games. This set is said to be a closed set if

∀G ∈ S, L (G) ,R (G) ⊆ S.

Lemma 3.3.8. [1, Prop. 6] If S is a closed set of games, then for G, H ∈ C (S),

⌊G ∨H⌋=⌊G⌋ ∪ ⌊H⌋

⌈G ∧H⌉=⌈G⌉ ∪ ⌈H⌉

Theorem 3.3.9. [1, Thm. 7] For a closed set S of games, C (S) forms a complete

distributive lattice.

119

Proof. Let G, H, K ∈ C (S). Then,

G ∧ (H ∨K)={⌊G⌋ ∩ ⌊H ∨K⌋ |⌈G⌉ ∪ ⌈H ∨K⌉}

={⌊G⌋ ∩ (⌊H⌋ ∪ ⌊K⌋) |⌈G⌉ ∪ (⌈H⌉ ∩ ⌈K⌉)}

={⌊G ∧H⌋ ∪ ⌊G ∧K⌋ |⌈G ∧H⌉ ∪ ⌈G ∧K⌉}

=(G ∧H) ∨ (G ∧K)

3.3.2 Closed Set Application To Oslo Games

For the set of Oslo games, we can start with the set S = {on, 0,upon∗,under}. It

is clear that this is a closed set. For each game in our set S, each of its left and right

options also belong to the set. What is interesting about this, is that the results of [1]

were not initially focused on loopy games. However, under certain restrictions, their

results will nicely apply.

Theorem 3.3.10. The set of Oslo games born by day n, Oslon, form a distributive

lattice.

Proof. Set S = Oslo0 = {on, 0,upon∗,under}. Not that this set is a closed set,

as all options of on = {on |·}, 0, upon∗ = {upon∗, 0 |0} and under = {under |0}
also belong to the set S. By Theorem 3.3.9, we know that the children of these games,

C (S), form a distributive lattice. By construction, C (S) is a closed set itself. If S is

a closed set with G ∈ S, then {L (G) |R (G)} = G ∈ C (S). Hence, we note that if S

is a closed set, then so too is C (S) since the left and right options of C (S) all came

from the set S ⊆ C (S).

Proposition 3.3.11. There are 13 Oslo games born by day 2, so that |Oslo2| = 13.

Figure 3.5 gives the partial-order structure of Oslo2.

120

on

{on|0}

{on|0,upon*}

{on|upon*}

upon*

{0|upon*}

{upon*|0}

0

{upon*|under}

under

{on|under}

{0|under}

{0,upon*|under}

Figure 3.5: The partial-order structure of Oslo2.

121

on

{0,{on|0}||0}

{on|upon*}

upon*

{{upon*|0}||under}

0

{upon*|under}

under

{on|under}

{0|under}

{{0|upon*}||under}

{0||0,{0|under}}

{{0|upon*}||0,{0|under}}

{{on|upon*}||under}

{{on|upon*}||0,{0|under}}

{on||{0|upon*}}

{on|0}

{0,{on|0}||{upon*|0}}

{on||{upon*|0}}

{0,{on|0}||{upon*|under}}

{on||{upon*|under}}

{on||{0,upon*|under}}

{on||{0|under}}

{{on|upon*}||{0|under}}

{{0|upon*}||{0|under}}

{0||{0|under}}

{{on|0}||0}

{{on|0}||{upon*|0}}

{{on|0}||{upon*|under}}

{{on|0}||under}

{{on|0,upon*}||under}

Figure 3.6: The partial-order structure of Oslo3.

122

Figure 3.6 depicts the lattice of the games composing Oslo3. There are 64 games

that make up Oslo3, which form a 3-dimensional, distributive lattice. The lattice is

composed of 17 levels, each containing at most 6 elements. Like the two previous

days, the lattice of Oslo3 has a single top element, on, and a single bottom element,

under.

It is interesting to note that some of the smallest games appear as early as day

3: for the universe of Oslo games, +over = {0 |{0 |under}}; and the smallest in any

universe of games, −off = {{on |0} |0}.

123

3.4 Passification And Uponic Weight

Just as a parent pacifies a child by playing with them much beyond their own patience,

so too is a game passified when one person is given the non-loopy “equivalent” of a

pass move (thereby pacifying a youthful opponent by allowing them to play longer).

Definition 3.4.1. For a game G, we may passify G to obtain the new game p (G)

defined such that p (0) = 0 and for all games G ̸ ∼= 0,

p (G) = {p (L (G)) , {p (L (G)) |p (R (G))} |p (R (G))} .

For example, passifying the game ∗ gives us

p (∗) = {p (0) , {p (0) |p (0)} |p (0)} = {0, ∗ |0} =↑ ∗.

* p(*)

*

Oslo(*)

Figure 3.7: The game of ∗ along with both the Oslo and passified versions of the
game, having values upon∗ and ↑ ∗, respectively.

Passifying ↓, we get

p (↓) = {p (∗) , {p (∗) |p (0)} |p (0)} = {↑ ∗, {↑ ∗ |0} |0} = {↑ ∗, ↓2 |0} .

Finally, passification of ↑ gives us

p (↑) = {p (0) , {p (0) |p (∗)} |p (∗)} = {0, {0 |↑ ∗} |↑ ∗} = {⇑ |↑ ∗} =⇑[2] .

The idea is that since Right cannot pass in an Oslo game, Left only has to pass

once. The motivation for using this is that in finite games, atomic weight is well

124

^ p(^)Oslo(^)

^*

^*

Figure 3.8: The game of ↑ along with both the Oslo and passified versions of the
game, having values 2 �upon∗ and ⇑[2], respectively.

understood. We will make use of the atomic weight of a passified game to define its

uponic weight as an Oslo game.

Definition 3.4.2. For an Oslo game G such that G = oslo (g), where g is in literal

form, we define the uponic weight of G to be

uw (G) = aw (p (g)) .

In our above examples, we see that oslo (∗) = upon∗ while p (∗) =↑ ∗, which we

know has atomic weight 1. Thus, uw (oslo (∗)) = aw (p (∗)) = 1 and so upon∗ has

uponic weight 1.

For the game ↓, oslo (↓) = {upon∗ |0} has uponic weight 0, since p (↓) = {↑ ∗, ↓2 |0}
which has atomic weight 0.

For the game ↑, oslo (↑) = 2 �upon∗ which (as we’d like to see) has uponic weight

2 since p (↑) =⇑[2] and aw

⇑[2]


= 2.

3.4.1 Loopy Subtraction Games

An example of how this might be applied would be to the class of subtraction games

which we will call oslo subtraction. Subtraction games are played on a pile of

tokens, as in nim. However, in a subtraction game, S(A, B), each player is assigned

125

a set of positive integers, set A for Left and set B for Right, and is allowed to remove

a number of tokens from the pile only if that number falls in his or her assigned set.

Thus, if Left has the set {1, 2} and Right the set {3, 4}, from a pile of size 2, Left can

move to a pile of size 1 or 0, while Right has no move. In oslo subtraction, the

moves are the same, except now Left is also allowed to pass.

For example, Table 3.3 gives details for the oslo subtraction where each player

is allowed to take either 1 or 2 stones on a move, and Left is always alloted a pass.

n g(n) UW = aw (p (g(n))) G(n)

0 0 0 0

1 ∗ 1 upon∗
2 ∗2 1 upon∗
3 {∗, ∗2 |∗, ∗2} 2 2 �upon∗
4 {∗2, {∗, ∗2 |∗, ∗2} |∗2, {∗, ∗2 |∗, ∗2}} 2 2 �upon∗
5 {g(3), g(4) |g(3), g(4)} 3 3 �upon∗

Table 3.3: The Oslo subtraction game G =oslo subtraction({p, 1, 2}, {1, 2}).
Rows give heap size; literal form of the underlying subtraction game g =
S ({1, 2}, {1, 2}) at heap size n, g(n); uponic weight (or equivalently, the atomic
weight of the passified game, p (g(n)); and, finally, the value of the game G at heap
size n, G(n).

At the end of this Chapter, we will explore open questions surrounding uponic

weight and how it could be employed.

126

3.5 Side-Out Function

We introduce a recursive function that we will call the side-out function. It will give

us another means of defining the Oslo form of a game.

Definition 3.5.1. For all literal games G, H, we define the side-out function “G

side-out H”, denoted G⊙H, as follows:

G⊙H =

 0 if lit (H) = 0

{G⊙ L (H),L (G)⊙H |G⊙R (H),R (G)⊙H } otherwise

The function, at first glance, looks much like that of disjunctive sum. However,

upon further inspection, we see that if H ∼= 0, then G ⊙ H = 0, but G + H = G,

possibly nonzero. The function takes its name from exactly this exception; once H is

out of options, the game is over.

Proposition 3.5.2.

G⊙ 0 = 0.

0⊙G = G.

Proof. The first assertion follows from the definition of the side-out function, and so

we know that 0⊙ 0 = 0. For the second,

0⊙G = {0⊙ L (G) |0⊙R (G)}

= {L (G) |R (G)} (by induction)

= G

In order to use the side-out function to produce an Oslo game, we must use the

form on⊙G.

Recall that on = {on |·}. In the special case of on ⊙ G, when lit (G) = 0,

on⊙G = 0 and otherwise,

on⊙G = {on⊙G,on⊙ L (G) |on⊙R (G)}

= {pass ,on⊙ L (G) |on⊙R (G)}

127

Claim 3.5.3.

oslo (G) = on⊙G

Proof. If lit (G) = 0, then oslo (G) = 0 = on⊙ 0. If lit (G) ̸= 0, then

oslo (G) = {oslo (G) , oslo (L (G)) |oslo (R (G))}

= {oslo (G) ,on⊙ L (G) |on⊙R (G)} (by induction)

= {pass ,on⊙ L (G) |on⊙R (G)}

= on⊙G

128

3.6 Oslo Examples

We will next explore some examples of Oslo games. Initially, we will take a look at an

Oslo variation on a classic game, the Oslo version of wythoff’s game. We will then

explore the Oslo versions of some common games that are considered “hard” under

their non-loopy versions. While loopy games, in general, are considered to be more

difficult to analyze, we will show that some games become much simpler under the

Oslo condition. We will take a look at the octal game .007 and grundy’s game.

Finally, we will introduce an open Oslo game, called the independence game.

3.6.1 A Classic Oslo Variant

3.6.1.1 oslo wythoff

wythoff’s game was introduced in 1907 by W. A. Wythoff [33]. The game is a

variant of the game of nim, played on two heaps.

In wythoff’s game, play begins with two heaps of tokens. On a move, a player

may take any number of tokens from one pile or an equal number of tokens from both

piles, provided at least one token is removed on a turn. The player taking the last

token wins.

For example, starting from a set of heaps of size x and x+ y (x, y ≥ 0), a position

we will denote as W (x, x + y), legal moves are to any (i) W (i, x + y) for 0 ≤ i < x;

(ii) W (x, j) for 0 ≤ j < x + y; or W (k, k + y) where 0 ≤ k < x.

It was shown in [33] that for this non-loopy version of the game, the first few

P-positions are given by

W (0, 0) W (1, 2) W (3, 5) W (4, 7) W (6, 10) W (8, 13) · · ·

where the nth P-position is given by W (an, bn) with

W (an, bn) = W

⌊nφ⌋ ,


nφ2


where φ = 1
2
(1 +

√
5), the Golden Ratio.

We consider the Oslo variant of this game, which we will call oslo wythoff,

where each player is still allowed the same moves as in the standard wythoff’s

game, but Left is also allowed to pass at any point before the game ends.

129

Table 3.4 gives the values of some smaller heap sizes in terms of multiples of

upon∗.

y

5 1 2 2 2 2 1 2

4 1 2 2 2 1 2 2

3 1 2 2 1 2 2 2

2 1 2 1 2 2 2 2

1 1 1 2 2 2 2 2

0 0 1 1 1 1 1 1

W (x, y)
0 1 2 3 4 5 6

x

Table 3.4: Values of oslo wythoff for some smaller heap sizes in terms of multiples
of upon∗.

The values in the game of oslo wythoff can be summarized as follows:

Theorem 3.6.1. In oslo wythoff,

W (x, y) =



0 if x = y = 0

upon∗ if x = y > 0

upon∗ if xy = 0 but x + y > 0

2 �upon∗ otherwise

Proof.

W (0, 0) = 0.

W (1, 0) = W (0, 1) = {pass , W (0, 0) |W (0, 0)}

= {pass , 0 |0}

= upon ∗ .

W (1, 1) = {pass , W (1, 0) , W (0, 1) , W (0, 0) |W (1, 0) , W (0, 1) , W (0, 0)}

= {pass ,upon∗, 0 |upon∗, 0}

= upon ∗ .

130

For x > 1, we consider the cases (i) Then W (x, 0) and W (0, x), (ii) W (x, x) and

(iii) W (x, y) where y > 0.

(i) We first consider W (x, 0) where x > 1.

W (x, 0) = {pass , ⟨W (x− i, 0)⟩xi=1 |⟨W (x− i, 0)⟩xi=1} .

By induction, for 1 ≤ i < x, W (x− i, 0) = upon∗ and when i = x, W (x− i, 0) =

W (0, 0) = 0. Thus,

W (x, 0) = {pass ,upon∗, 0 |upon∗, 0} = upon ∗ .

Options for W (0, x) are symmetric.

(ii) Consider W (x, x) where x > 1.

W (x, x) = {pass , M(x, x) |M(x, x)} ,

where

M(x, x) = ⟨W (x− i, x)⟩xi=1 ∪ ⟨W (x, x− j)⟩xj=1 ∪ ⟨W (x− k, x− k)⟩xk=1.

By induction,

W (x− i, x) = W (x, x− i) =

 2 �upon∗ when 1 ≤ i < x

0 when i = x

and

W (x− k, x− k)

 upon∗ when 1 ≤ k < x

0 when k = x

Hence, M(x, x) = {0,upon∗, 2 �upon∗} and so

W (x, x) = {pass , 0,upon∗, 2 �upon∗ |0,upon∗, 2 �upon∗} = upon ∗ .

(iii) Finally, we consider the position W (x, x + y) where x > 1 and y > 0.

W (x, x + y) = {pass , M(x, x + y) |M(x, x + y)} ,

where

M(x, x+y) = ⟨W (x− i, x + y)⟩xi=1∪⟨W (x, x + y − j)⟩x+y
j=1∪⟨W (x− k, x + y − k)⟩xk=1.

131

In this case, by induction,

W (x− i, x + y) =

 2 �upon∗ when 1 ≤ i < x

upon∗ when i = x

and

W (x, x + y − j) =

 2 �upon∗ when 1 ≤ j < x + y and j ̸= y

upon∗ when j = y or j = x + y

and, finally,

W (x− k, x + y − k)

 2 �upon∗ when 1 ≤ k < x

upon∗ when k = x

Thus, M(x, x + y) = {upon∗, 2 �upon∗}, and so

W (x, x + y) = {pass ,upon∗, 2 �upon∗ |upon∗, 2 �upon∗} = 2 �upon ∗ .

3.6.2 “Hard” Games Made Simple

3.6.2.1 oslo grundy

We now consider the Oslo version of grundy’s game. grundy’s game is also

played on heaps of tokens. In grundy’s game, the only legal move is to split a

single heap of tokens into two smaller heaps of different sizes. The winner is the the

player who is last able to split a heap. For instance, a heap of size 3 can be split into

heaps of size 1 and 2. A heap of size 4 can be split into to heaps, one of size 1 and

the other of size 3. However, it could not have been split into two heaps both of size

2. Heaps of size 1 and 2 can no longer be split. We will denote a heap of size n in

this game as og[n].

Definition 3.6.2. A sequence {G (0) ,G (1) , . . . ,G (k)} is said to be arithmetic-

periodic if there exist e ≥ 0, s and p > 0 such that for all n ≥ e,

G (n + p) = G (n) + s.

132

The least e and p for which this is true are called the preperiod length e and the

period length p. The value s is referred to as the saltus and the elements of the

preperiod, i.e. the sequence

G (0) ,G (1) , . . . ,G (e) ,

are called the exceptional values.

For example, the sequence

5 4 3 2 1 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 · · ·

has period 3 and saltus 1 with preperiod length 5.

In [3], the first 100 nim-values for grundy’s game are given, with a note that

there is a strong tendency to periodicity of length 3 after consideration of the first

quarter-million values. Extensive calculations and the efforts of many people have

taken part in tackling this game. Achim Flammenkamp has computed values of heap

sizes beyond 34 billion[12]. Despite this and the fact that he has found periods for sev-

eral other unsolved octal games, the periodicity of this sequence remains unknown[2,

p. 144].

We will consider the Oslo version of grundy’s game, which we will call oslo

grundy, in which play is the same but with the option for Left to pass. We will

denote this game with a heap of size n as og[n].

Table 3.5 gives the first several heap sizes for oslo grundy.

We claim that for oslo grundy n ≥ 3, og[n] =


n
2


�upon∗. We will arrive at

this result with the following theorem.

Theorem 3.6.3. For oslo grundy,

og[0] = og[1] = og[2] = 0

and og[3] = upon∗. For k ≥ 2,

og[2k] = og[2k + 1] = k �upon ∗ .

Proof. From heaps of size 0, 1 and 2, neither player has a move, so og[0] = og[1] =

og[2] = 0. From og[3], Left can pass and either player can move to og[1]+og[2] = 0.

Thus, og[3] = {pass , 0 |0} = upon∗.

133

n og[n] Left options Right options

1 0

2 0

3 1 �upon∗ pass , 0 0

4 2 �upon∗ pass , 1 �upon∗ 1 �upon∗
5 2 �upon∗ pass , 1 �upon∗, 2 �upon∗ 1 �upon∗, 2 �upon∗
6 3 �upon∗ pass , 2 �upon∗ 2 �upon∗
7 3 �upon∗ pass , 2 �upon∗, 3 �upon∗ 2 �upon∗, 3 �upon∗
8 4 �upon∗ pass , 3 �upon∗ 3 �upon∗
9 4 �upon∗ pass , 3 �upon∗, 4 �upon∗ 3 �upon∗, 4 �upon∗
10 5 �upon∗ pass , 4 �upon∗, 5 �upon∗ 4 �upon∗, 5 �upon∗
11 5 �upon∗ pass , 4 �upon∗, 5 �upon∗ 4 �upon∗, 5 �upon∗

Table 3.5: Values of oslo grundy for small heap sizes.

Let where gi(n) = og[i] + og[n− i]. Let k ≥ 2.

First, consider og[2k]. By induction,

g1(2k) = og[1] + og[2k − 1] = 0 + og[2(k − 1) + 1] = (k − 1) �upon∗,

g2(2k) = og[2] + og[2k − 2] = 0 + (k − 1) �upon∗ = (k − 1) �upon∗,

and

g3(2k) = og[3] + og[2k − 3] = upon ∗+(k − 2) �upon∗ = (k − 1) �upon ∗ .

Let p be such that 1 < p < k. Then by induction,

g2p(2k) = og[2p] + og[2k − 2p] = p �upon ∗+(k − p) �upon∗ = k �upon∗

and

g2p+1(2k) = og[2p + 1]+og[2k − 2p− 1] = p �upon∗+(k−p−1) �upon∗ = (k−1) �upon∗.

Hence, for i ≤ 3, gi(2k) = (k−1) �upon∗ and for all other i > 3, gi(2k) is k �upon∗
for even i and (k − 1) �upon∗ for odd i. Thus for k ≥ 2,

og[2k] =

pass , ⟨gi(2k)⟩2k−1

i=1

⟨gi(2k)⟩2k−1
i=1


= {pass , (k − 1) �upon∗, k �upon∗ |(k − 1) �upon∗, k �upon∗}

= k �upon ∗ .

134

Next, consider og[2k + 1]. By induction,

g1(2k + 1) = og[1] + og[2k] = 0 + k �upon∗ = k �upon∗,

g2(2k + 1) = og[2] + og[2k − 1] = 0 + (k − 1) �upon∗ = (k − 1) �upon∗,

and

g3(2k + 1) = og[3] + og[2k − 2] = upon ∗+(k − 1) �upon∗ = k �upon ∗ .

Let p be such that 1 < p < k. Then by induction,

g2p(2k + 1) = og[2p] + og[2k − 2p + 1] = p �upon ∗+(k − p) �upon∗ = k �upon∗

and

g2p+1(2k + 1) = og[2p + 1] + og[2k − 2p] = p �upon ∗+(k− p) �upon∗ = k �upon ∗ .

Hence, g2(2k + 1) = (k − 1) �upon∗ and for all other i, gi(2k + 1) = k �upon∗.
Thus for k ≥ 2,

og[2k + 1] =

pass , ⟨gi(2k + 1)⟩2k−1

i=1

⟨gi(2k + 1)⟩2k−1
i=1


= {pass , (k − 1) �upon∗, k �upon∗ |(k − 1) �upon∗, k �upon∗}

= k �upon ∗ .

Thus, despite the fact that we still cannot answer the periodicity question for

grundy’s game, can say that its Oslo version is ultimately periodic, after only 2

exceptions. For n > 2, we see that oslo grundy is periodic with period 2 and saltus

upon∗. It is still conjectured that the non-loopy grundy’s game is ultimately

periodic [3, p. 111], though this question has now been open for many decades.

3.6.2.2 oslo(octal .007)

The second “hard” game that we will look at is the octal game .007, again played

on heaps of tokens. For a move, a player is allowed to take 3 tokens from any one

pile at which point he may split that pile into 2 separate heaps, if he wishes. For the

non-loopy game .007, we will denote a heap of size n as [n]. From heaps of size 0, 1

135

and 2, there are no allowed moves, and so [0] = [1] = [2] = 0. From [3], each player

has a move to 0 and so [3] = ∗. From [4], one can move to [1], but not split, so that

[4] = ∗ as well. From [6], a choice exists to split the remaining pile. Each player can

move to either [3] = ∗ or [1] + [2] = 0. Hence, [6] = ∗2.

The nim-sequence of octal .007 begins as follows, starting from a heap of size

0:

0001112203311104333222440552223305011133356 · · · [3]

The period of this sequence is unknown.

We will call the Oslo variant of this game oslo(octal .007), in which we will

allow Left to pass, and denote heaps of size n as O.007 [n]. Once we allow Left to

pass under the Oslo variant of this game, we immediately see an improvement in the

periodicity of its values. Table 3.6 depicts the values of oslo(octal .007), where we

can see that the sequence of game values is purely periodic with period 5 and saltus

upon∗.

n O.007 [n] Heap sizes available

0 0

1 0

2 0

3 1 �upon∗ O.007 [0]

4 1 �upon∗ O.007 [1]

5 1 �upon∗ O.007 [2], O.007 [1] + O.007 [1]

6 1 �upon∗ O.007 [3], O.007 [1] + O.007 [2]

7 1 �upon∗ O.007 [4], O.007 [1] + O.007 [3], O.007 [2] + O.007 [2]

8 2 �upon∗ O.007 [5], O.007 [1] + O.007 [4], O.007 [2] + O.007 [3]

9 2 �upon∗ O.007 [6], O.007 [1] + O.007 [5], O.007 [2] + O.007 [4], O.007 [3] + O.007 [3]

10 2 �upon∗ O.007 [7], O.007 [1] + O.007 [6], O.007 [2] + O.007 [5], O.007 [3] + O.007 [4]
...

...

13 3 �upon∗
...

...

Table 3.6: Values of oslo(octal .007) for small heap sizes.

136

Theorem 3.6.4. For oslo .007, where n = 5k − 2 + r ≥ 0 with k ∈ Z≥0 and

r ∈ {0, 1, 2, 3, 4},
O.007 [n] = k �upon ∗ .

Proof. From heaps of size 0, 1 and 2, neither player has a move, so O.007 [0] =

O.007 [1] = O.007 [2] = 0. We also calculate the values for n = 3 and n = 4, the

last games before we are able to split the remaining heap.

O.007 [3] = {pass , O.007 [0] |O.007 [0]} = {pass , 0 |0} = upon∗

O.007 [4] = {pass , O.007 [1] |O.007 [1]} = {pass , 0 |0} = upon∗

Let n = 5k − 2 + r ≥ 5. Then

O.007 [5k − 2 + r] =

pass , ⟨si⟩5(k−1)+r

i=0

⟨si⟩5(k−1)+r
i=0


where si = O.007 [i] + O.007 [5(k − 1) + r − i].

When i = 0, then by induction,

s0=O.007 [0] + O.007 [5(k − 1) + r − 0]

=0 + O.007 [5(k − 1) + (r + 2)− 2]

=

 (k − 1) �upon∗ if r < 3

k �upon∗ if r ≥ 3

When i = 1, by induction we have

s1=O.007 [1] + O.007 [5(k − 1) + r − 1]

=0 + O.007 [5(k − 1) + (r + 1)− 2]

=

 (k − 1) �upon∗ if r < 4

k �upon∗ if r ≥ 4

When i = 2, then by induction

s2=O.007 [0] + O.007 [5(k − 1) + r − 2]

=0 + (k − 1) �upon∗

=(k − 1) �upon∗

137

For games O.007 [n] where n ≥ 5, this move to s2 always exists. We shall see that

this move to (k − 1) �upon∗ is always the best move for right.

We now consider moves si when 3 ≤ i ≤ 5(k−1)+ r− i. Let i = 5x+ y− 2 where

x ∈ Z>0 and y ∈ {0, 1, 2, 3, 4}. Note that if r < y + 1, then 0 ≤ (r− y + 4) < 5 but if

r ≥ y + 1 then 5 ≤ (r − y + 4) ≤ 8. By induction we have

si=O.007 [i] + O.007 [5(k − 1) + r − i]

=O.007 [5x + y − 2] + O.007 [5(k − 1) + r − 5x− y + 2]

=x �upon ∗+O.007 [5(k − 1− x) + (r − y + 4)− 2]

=

 (k − 1) �upon∗ if r < y + 1

k �upon∗ if r ≥ y + 1

With this, we have everything. We know that both Left and Right have a move to

s2 = (k− 1) �upon∗. Since (k− 1) �upon∗ < k �upon∗ and all other potential moves

are to k �upon∗, Right will always play to (k − 1) �upon∗. While Left would prefer

k �upon∗, we need not concern ourselves with the value of r nor the relationship

between r and y in order to determine if he has that option. This is simply due

to the fact that for S ⊆ {(k − 1) �upon∗, k �upon∗}, even possibly empty, then

{pass , S |(k − 1) �upon∗} = k �upon∗. Thus, for all n = 5k + r − 2, O.007 [n] =

k �upon∗.

Thus, we find that oslo(octal .007) is purely periodic with period 5 and saltus

upon∗. Further, we conjecture that oslo(octal .0n7), the Oslo variant of the octal

game .0n7 in which a player is allowed to take n + 1 tokens from any one heap and

then split that heap if he wishes, is also purely periodic with period 2n+1 and saltus

upon∗.

3.6.3 An Open Oslo Game

While some nice results can be obtained regarding Oslo variants, we certainly don’t

want to lead the reader to believe that open games aren’t ripe for the picking. The

following is an Oslo game for which little is known.

138

3.6.3.1 independence game

In order to discuss the next game, we require a few basic definitions from graph

theory.

Definition 3.6.5. [13, p. 75] For a graph G with vertices VG, a subset I ⊆ VG is

said to be an independent set (of vertices) if no pair of vertices in S is joined by

an edge. Equivalently, I is a subset of mutually non-adjacent vertices of G.

An independent set I is said to be a maximal independent set if there is no

independent set I ′ such that I ⊂ I ′, i.e. no larger independent set contains I.

The independence number, denoted α(G), of the graph G is the number of

vertices in a largest independent set in G.

The independence game is an example of a naturally occurring Oslo game. In

the independence game, we start with a graph G. Every vertex of G begins with

a white token on it. On his turn, Right colors a token black, such that the vertices

with black tokens form an independent set. On her turn, Left may swap the tokens

of two adjacent vertices, provided that the vertices containing black tokens still form

an independent set. The game ends when the vertices containing black tokens form

a maximal independent set.

There are graphs such that the independence game is confused with zero. For

example, if we look at the path on 5 vertices with the first and last vertices included

in the independent set I, as in Figure 3.9, we see that Left can effectively pass by

switching any two vertices that are both not in I, and thereby “moving” to the game

position she started from. She may also end the game by swapping two vertices at

one end and moving to a maximal independent set. Right has a move to zero by

playing the middle vertex. Thus, this position has value {0, pass|0} = upon∗ ∥ 0.

R: 0

L: 0L: pass

Figure 3.9: independence game position on P5 having value {0, pass |0} = upon∗.

139

In Figure 3.10, we see an example of a graph that is both positive and connected.

Consider this P9 with the first, last and middle vertices included in the indepen-

dent set. From here, Left can essentially pass by switching any two vertices that

are both not in I. Or, he may play as indicated to a position with value upon∗,
from which Left and Right have moves to zero and Left can still choose to pass.

Likewise, Right can make the indicated move to upon∗. Thus, the game has value

{pass ,upon∗ |upon∗} = {0 |upon∗} = 2 �upon∗.

R: upon*

L: upon*L: pass

Figure 3.10: independence game position on P9 having value 2 �upon∗.

In Figure 3.11, we demonstrate that we can extend this notion on to a path on

4k + 1 vertices to obtain the value k �upon∗ for any integer k > 0.

L: (k-1).upon*

R: (k-1)upon*

L: pass

P4k+1

Figure 3.11: independence game position on P4k+1 having value k �upon∗.

If the graph is well-covered (i.e. all maximal independent sets are the same size),

then the independence game is negative. It is also possible to have negative values

in graphs where this is not the case, such as in the P5 of Figure 3.12. This demon-

strates a graph that is not well-covered, yet exhibits all possible outcome classes; N -

positions (upon∗), L-positions ({0 |upon∗}), R-positions (under and {upon∗ |0})
and of course P-positions (0).

140

upon*

0

0

L: pass

R

0

R
L

0

upon*

{0|upon*}

RL

RL L: pass

{upon*|0}

R

L: pass

under

R

R

L: pass

L: pass

Figure 3.12: All independence game positions on P5 demonstrating the presence
of all possible outcome classes.

3.6.4 The Next Moves

The surface of Oslo games has only barely been scratched. Two large areas that

should be explored are the realms of all-small Oslo games and also those games in

which both players are granted a pass.

3.6.4.1 TwoSlo Games

The obvious next game to analyze would be the one in which both players are always

allowed to pass. We will call these Two-Sided loopy games, or TwoSlo games.

Appropriately, we say this as “too slow” games, as they may take a while!

141

Definition 3.6.6.

If lit (G) = 0, then TwoSlo (G) = 0. Otherwise,

TwoSlo (G) = {TwoSlo (G) , TwoSlo (L (G)) |TwoSlo (G) , TwoSlo (R (G))}

= {pass , TwoSlo (L (G)) |pass , TwoSlo (R (G))}

Similarly, we can use the side-out function to return the TwoSlo form of a game

G by returning dud⊙G.

Further, recall that dud = {dud |dud}. In the special case of dud⊙G, we have

the following:

dud⊙G = {dud⊙G,dud⊙ L (G) |dud⊙G,dud⊙R (G)}

= {pass ,dud⊙ L (G) |pass ,dud⊙R (G)}

Claim 3.6.7.

TwoSlo (G) = dud⊙G

Proof.

If lit (G) = 0, then TwoSlo (G) = 0 = dud⊙ 0. If lit (G) ̸= 0, then

TwoSlo (G) = {TwoSlo (G) , TwoSlo (L (G)) |TwoSlo (G) , TwoSlo (R (G))}

= {TwoSlo (G) ,dud⊙ L (G) |TwoSlo (G) ,dud⊙R (G)} (by induction)

= {pass ,dud⊙ L (G) |pass ,dud⊙R (G)}

= dud⊙G

While the side-out function might be of help in analyzing TwoSlo positions, not

much is known about games of this form. After a preliminary look at the partial

order of the TwoSlo form of games by day n, we can report that they do not form a

lattice.

3.6.4.2 All-Small Oslo Games

Yet another field that is almost completely unexplored is that of all-small Oslo games.

Motivation for this once again comes from loopy subtraction games. The example

given in 3.4.1 describes the subtraction game where either player is allowed to take 1

142

or 2 tokens and Left is also allowed to pass. This happens to be an all-small game.

What about other all-small Oslo games? Upon preliminary inspection of the poset

of all-small Oslo games, the day 2, 3 and 4 posets contain 6, 17 and 72 elements,

respectively. Day 4 is not distributive, as the non-distributive N5 is present. Beyond

that, the questions far outweigh the answers. Do these even always form a lattice?

Chapter 4

Option-Closed Games

We now switch gears and consider a class of combinatorial games called option-closed

games. Option-closed games have the property that a player’s move only eliminates

options for that player and does not add any new ones. We will first explore the

details of the internal structure of option-closed games, including a nice results from

Nowakowski and Ottaway [23] that the reduced canonical forms of these games are

either numbers or switches1. We will then introduce a function that takes a game

and returns its option-closed form. We will introduce the concept of left- and right-

threats and show that for a game to be infinitesimally close to its option-closed form,

a game infinitesimally close to these threats must exist in the set of left and right

options, respectively. We then turn our focus to the lattice of option-closed games by

day n and show that these games form a planar lattice. As examples of option-closed

games, we examine the games of maze, roll the lawn and cricket pitch. For

the last, we provide a complete analysis, neatly employing the use of ordinal sums

from Section 2.2.

4.1 Structure

Option-closed games are those games in which, from any position in the game, every

move that a player can reach in two moves, he could have made in one. That is, the

set of options available to a player from a position in the game is a superset of the

those options available to him after having made a move from that position.

1A switch is a game of the form {a |b} for numbers a ≥ b

143

144

Definition 4.1.1. For a game G, we will let Ln (G) denote the set of all options that

can be reached in n consecutive Left moves from G. Thus, L0 (G) = {G} and for

n > 0, we define

Ln (G) = L

Ln−1 (G)


.

We will call a left option G′ a first left option of G if G′ can be reached in one

move by Left, but not in two, i.e. G′ ∈ L (G) \ L2 (G). A first right option is

defined analogously.

Most of combinatorial game theory considers the canonical forms of games, in

which L (G) and R (G) have had dominated options removed and reversible options

bypassed. When dealing with option-closed games, we require the literal form of the

game, lit (G), with all the options included, even the bad ones.

Definition 4.1.2. [23] A game G is called option-closed if, in literal form, L2 (G) ⊂
L (G), R2 (G) ⊂ R (G) and, recursively, all the followers of G are option-closed.

It is important to note that whether or not a game is option-closed depends on

its form. The canonical form of the game need not be option-closed. An equivalence

class of games may contain members that are option-closed as well as some that are

not. As a simple example, the game {0, 1 |0} is option-closed while its canonical

form, {1 |0}, is not. Likewise, {0 |{1 |0} , 0} is option-closed but {0 |{1 |−1} , 0} is

not since Right can move to −1 in two moves but not in one. The fact that a game

is option-closed is intrinsic to the game and is not necessarily identifiable from the

canonical form. For example, while both {0 |0, ∗2} and {0 |0} have value ∗, only the

latter is option-closed. Thus, when discussing an option-closed game G, we assume

that we leave G in the representation that satisfies Definition 4.1.2.

We note that while the term option-closed places restrictions on the literal form

of a game, we will still represent games in their canonical form when it is understood

that we are dealing with option-closed games. Thus, we will represent G as can (G)

unless necessary to specify otherwise.

Canonical forms of option-closed games can be complicated. Through the use of

reduced canonical forms, we can express them much more simply when the differences

between the options are infinitesimals.

145

For example, the following is an option-closed game in canonical form:

G = {1, {1 |0} , {1, {1 |0} |0, {1 |0}} |0, {1 |0} , {1, {1 |0} |0, {1 |0}}} .

The reduced canonical form of a game can be much less complicated than the game

itself, especially in the case of option-closed games. In the example above, rcf (G) =

{1 |0}.
The reduced canonical form of any option-closed games is simple and the differ-

ence between the game and its reduced canonical form is small. In Nowakowski and

Ottaway [23], it was shown that the reduced canonical form of an option-closed game

is either a number or a switch {a|b} of numbers a ≥ b.

Lemma 4.1.3. [23, Lem. 10] If a ≥ b are both numbers, then b ≤Inf {a |b} ≤Inf a.

Nowakowski and Ottaway showed this by noting that for any n,

{a |b} − a < n· ↑ .

For example, take numbers a ≥ b as above. Clearly, a and {a |b} are incomparable.

However, it can be shown that a−{a |b}+3· ↑> 0. Left wins by moving to a−b+3· ↑≥
3· ↑> 0. By the Number Avoidance Theorem (1.2.52), Right’s best move is in either

{a |b} or in 3· ↑. Moving in {a |b}, he plays to a − a + 3· ↑= 3· ↑> 0. If he

moves in 3· ↑, he plays to a + {a |b}+ ⇑ ∗, from which Left wins by responding to

a− b+ ⇑ ∗ ≥⇑ ∗ > 0.

The main result of Nowakowski and Ottaway [23] is that the reduced canonical

form of an option-closed game is simple.

Theorem 4.1.4. [23, Thm. 11] If G is an option-closed game, then its reduced

canonical form, rcf (G), is either a number or a switch {a |b} where a ≥ b are both

numbers.

Thus, every option-closed game, no matter how complicated in canonical form, is

either infinitesimally close to a number or a switch. While by definition the difference

between a game and its reduced canonical form is an infinitesimal, Nowakowski and

Ottaway were able to define even tighter bounds for the class of option-closed games.

Theorem 4.1.5. [23, Thm. 16] If G is an option-closed game, then ⇓ ∗ < G −
rcf (G) <⇑ ∗.

146

Since this result was published by Nowakowski and Ottaway [23], Neil McKay has

been able to tighten these bounds [20]. He has been able to show that

−.11111...12∗ < G− rcf (G) < .111111...12∗

Recall definition 1.2.54 for left and right stops. As mentioned earlier, these stops

represent the best numbers that a player can achieve in alternating play. Normally,

this could take many plays before the game becomes a number. However, because of

the structure of option-closed games, the Left and Right stops must be included in

the set of first left and first right options, respectively. Hence, in option-closed games,

they can be reached in only one move.

Lemma 4.1.6. [23, Lemma 4] Let G be an option-closed game that is not a number,

then L0 (G) ∈ L (G) and R0 (G) ∈ R (G).

Corollary 4.1.7. [23, Cor. 13] Suppose G is option-closed and let a, b and x be

numbers with a ≥ b.

(i) If rcf (G) = x, then L0 (G) = R0 (G) = x.

(ii) If rcf (G) = {a |b}, then L0 (G) = a and R0 (G) = b.

In each case, there exist left and right options with GL = L0 (G) and GR = R0 (G),

respectively.

Definition 4.1.8. [21] For a game G, a left-option-closed sequence is a sequence

of left options of G,

α = ⟨x0, x1, x2, . . . , xm⟩

such that x0 is a first left option of G; for all 0 ≤ i < m, xi+1 is a first left option of

xi; and xm is a number.

Similarly, a right-option-closed sequence is a sequence of right options of G,

β = ⟨y0, y1, y2, . . . , yn⟩

such that y0 is a first right option of G; for all 0 ≤ j < n, yj+1 is a first right option

of yj; and yn is a number.

147

Definition 4.1.9. [21] For a game G, a norm of a left-option-closed sequence α,

denoted α, is the maximum of all numbers in α. Similarly, for a right-option-closed

sequence β, β is the minimum of all numbers in the sequence. The norm of ⟨∅⟩ is not

defined.

Thus, the norm of an option-closed sequence represents that number in the se-

quence that a player would choose to play to.

Lemma 4.1.10. [21, Lemma 9] Let G be an option-closed game and α = ⟨xi⟩ni=0 be

a left-option-closed sequence. Let k be the least index such that xk is a number. Then

α = xk.

Proof. Suppose that α is a left-option-closed sequence. Let k be the least index such

that xk is a number. Suppose that there exists j > k such that xj is a number.

Then xj is a left option of xk and so xj < xk. Similar arguments hold if α were a

right-option-closed sequence.

For example, if we had the right-option-closed sequences α1 = ⟨{2 |−1} ,−1⟩ and

α2 = ⟨{2 |−1} ,−1, {−1 |0} , 0⟩, we see that the norms of these sequences are the

same, that is α1 = α2 = −1.

In fact, we will see that in a right-option-closed sequence, the norm is actually the

right stop.

Lemma 4.1.11. Let G = {L (G) |R (G)} be an option-closed game with R0 (G) = x

for some number x ∈ R (G). Then ∀GR ∈ R (G) , x ≤Inf GR.

Proof. If GR = x, this is clearly true, so we can assume that GR ̸= x. Suppose

x ∈ GRR. Then GR is not a number since x is a right option of GR and if both are

numbers, then GR < x = R0 (G), which is impossible. If GR is not numberish, then by

Corollary 4.1.7, we have that rcf

GR


=

L0


GR
 R0


GR


= x

. By Lemma 4.1.4,

x ≤Inf


L0


GR

|x

≡Inf GR. If GR is numberish, then L0


GR


= R0


GR


= x by

Lemma 4.1.4, and so GR ≡Inf x.

Suppose x ̸∈ GRR. If GR is a number, then GR > x by definition of a number. If

GR is not a number, then GR is right-option-closed with GR ≥Inf R0 (G) > x. Thus

GR ≥Inf x = R0 (G).

148

The same proof, with the signs reversed, holds true for the left options.

If an option-closed game G is not a number, then L (G) is the left stop of G and

R (G) is the right stop. We note that L (G) and R (G) may contain more than one

left- and right-option-closed sequence, respectively.

Lemma 4.1.12. Get G be an option-closed game and ⟨L (G)⟩ = ⟨xi⟩mi=0 and ⟨R (G)⟩ =

⟨yi⟩ni=0 be left- and right-option-closed sequences. Let X = ⟨L (G)⟩ and Y = ⟨R (G)⟩.
Then

(i) rcf (G) = rcf ({X |Y }) ;

(ii) If G is not a number, then Y ≤Inf G ≤Inf X;

(iii) If G is a number, then G = {X |Y }.

Proof. We induct on the birthday of the position. If the position has birthday 0 (i.e.

L (G) = R (G) = ∅), then all claims are trivially true. Suppose that these results

hold for all option-closed games with birthday at most n− 1. Let b (G) = n. We may

assume that L (G) is not empty and that ⟨L (G)⟩ = xk for some 0 ≤ k ≤ m.

(i) If k = 1, then x1 is a number and so by Lemma 1.2.44, ∀i, xi < x1 since

xi ∈ L (x1). If k ̸= 1, then for 1 ≤ i < k, xi is not a number and so by induction

xi ≤Inf xk from (ii). For i > k, xi < xk by Lemma 1.2.44 since xi ∈ L (xk). Combining

these results, we have that for all i, xk ≥Inf xi. Thus, rcf (G) = rcf ({xk |Y }).
(ii) If G is not a number, then L (G) ̸= ∅ and so ⟨L (G)⟩ = xj for some 0 ≤ j ≤ m

and ⟨R (G)⟩ = yk for some 0 ≤ k ≤ n. Thus, rcf (G) = rcf ({xj |yk }). If xj < yk, then

for all p and q, xp ≤Inf xj < yk ≤Inf yq. But then G = {xj |yk } is a number, which is

a contradiction. Hence, we can assume that xj ≥ yk. Since rcf (G) = rcf ({xj |yk }),
then G ≡Inf {xj |yk }. Thus, by Lemma 4.1.3, yk ≤Inf G ≤Inf xj.

(iii) If G is a number with ⟨L (G)⟩ = xk, then xk < G by Lemma 1.2.44 since

xk ∈ L (G). From (i), we have that for all i, xi ≤Inf xk < G. Then by Lemma

1.2.69, xi < G. If R (G) = ∅, then G = {xk |·}. Otherwise, xk < G < ⟨R (G)⟩, so

G =


xk

⟨R (G)⟩


.

149

4.2 Option-Closure Function

“I always say ‘don’t make plans, make options.’”

- Jennifer Aniston

A natural question regarding option-closed games is whether or not we can add

options to any game to make it option-closed. In fact, we can. However, this process

can wreak havoc on the value of the game. We define the following function which

takes a game G and returns an option-closed form of G, which we will refer to as the

option-closure of G. We will later show that this function is a closure operator, which

is the motivation for its name.

Definition 4.2.1. For a game G, we define its option-closure, denoted oc (G), as

follows:

oc (G) = {ocL (L (G)) |ocR (R (G))}

where for a set of games S,

ocL (S) =

k≥0


oc (H) : H ∈ Lk (S)


,

and

ocR (S) =

k≥0


oc (H) : H ∈ Rk (S)


.

with ocL (∅) = ocR (∅) = ∅.
We will call ocL (S) the left-option-closure of S and ocR (S) the right-option-

closure of S. Similarly, we will say that a set of games S is left-option-closed if

S = ocL (S) and, likewise, right-option-closed if S = ocR (S).

For example we can consider the option-closure of the game G which has literal

(and canonical) form {2 |1}. To obtain this, we note that oc (0) = 0, oc (1) =

{oc (0) |·} = 1 and oc (2) = {oc (1) , oc (0) |·} = {1, 0 |·}.

oc (G) = oc ({2 |1})

= {ocL (2) |ocR (1)}

= {oc (2) , oc (1) , oc (0) |oc (1)}

= {{1, 0 |·} , {0 |·} , 0 |{0 |·}}

We see that in canonical form G = oc (G), but their literal forms differ, with lit (oc (G)) =

{{1, 0 |·} , 1, 0 |1}.

150

4.2.1 Literal Requirements

It is important to note that two games that are canonically equivalent need not be

equal under the option-closure function. In the original games, there may be reversible

moves that when option-closed give Left a better move. In the following proof, we

consider a game G and another equivalent game H which is, in its literal form, the

canonical form of G, i.e. lit (H) ∼= can (G). We see that the left option to {2 |0} is

a reversible move in G. However, since the option-closure of a game is taken on its

literal form, that same left option is the cause of 2 being added to L (oc (G)).

Lemma 4.2.2. G = H ̸⇒ oc (G) = oc (H).

Example 4.2.3. Let lit (G) = {1, {2 |0} |3} and lit (H) = {1 |·}. Thus, G = H = 2.

However,

oc (G) = {0, 1, 2, {0, 1, 2 |0} |{0, 1, 2 |·}} = {2, {2 |0} |3} = 2
1

2
,

while

oc (H) = {0, 1 |·} = 2.

Thus G = H but oc (G) ̸= oc (H).

Likewise, two games need not be equal despite being equivalent under option-

closure. The following example demonstrates this.

Lemma 4.2.4. oc (G) = oc (H) ̸⇒ G = H.

Example 4.2.5. Let G = {∗ |∗} and H = {0, ∗ |0, ∗}.
Then oc (G) = oc (H) = can (H) = {0, ∗ |0, ∗} = ∗2, but can (G) = 0.

Thus, oc (G) = oc (H) = can (H) ̸= can (G).

In Example 4.2.5, we have a game G and another game H chosen such that

oc (G) = oc (H). In G, both the left and right option to ∗ are reversible and so

can (G) = 0. In H, the options to ∗ are not reversible and so H ∼= can (H) = ∗2.

We need to consider the specific game with its literal options. In Example 4.2.3,

we have a case where the option-closure of the game is bigger than the game itself,

i.e. G = 2 < 21
2

= oc (G). Example 4.2.4 gives a game for which its option-closure is

confused with itself, i.e. G = 0 ∥ ∗2 = oc (G).

151

At this point, it is interesting to look at what this function does to the game tree.

We first consider the game G = {∗ |∗} from our example above. The game tree for

G and oc (G) are given in Figure 4.1.

G={*|*}

*

0 0

*

0 0

oc(G)={0,*|0,*}

*

0 0

*

0 0

00

Figure 4.1: The game tree for G = {∗ |∗} (left) and oc (G) (right).

We can see that in this example, we append a new left option to zero to the root

of the tree as well as a new right option to zero. In general, what we are doing is

adding in new branches for each of the consecutive left and right options. In any

game G, a game tree will include left branches from the root to each option in L (G).

For any positions H in oc (G), the game tree will include left branches from H to

L (H) as well, but will also have left branches to L2 (H), L3 (H), etc., as depicted in

Figure 4.2.

oc(G)

oc(R2(G))oc(L2(G)) oc(Rk(G))oc(L(G)) oc(R(G))oc(Lj(G))... ...

Figure 4.2: The effect of the option-closure funtion on the game tree.

While simple games produce nice results, games such as tinies, games tiny-n of

the form +n = {0 |{0 |−n}}, can throw a wrench in the works, as demonstrated in

example below.

152

Example 4.2.6. Consider +n = {0 |{0 |−n}}. Then oc (+n) = {0 |{0 |−n} ,−n},
so that rcf (+n) = 0 and rcf (oc (+n)) = {0 |−n}.

4.2.2 Threatbare Games

In a game, a threat is a position that can be reached in two or more moves, but not

in one. Thus, the opponent could prevent the ability to reach that threat by his or

her first move choice. For instance, in the game +n, Right has a threat to −n in

two moves; However, Left can play to zero and avoid that possibility. As seen in the

example of +n above, threats in the original game can be taken immediately in the

option-closure of the game.

Definition 4.2.7. Let G be a game.

We define the left-threat of G as

LT (G) = max


x ∈


k≥0

Lk (G) s.t. x is a number


,

and the right-threat of G as

RT (G) = min


y ∈


k≥0

Rk (G) s.t. y is a number


.

We note that by definition, for any left option GL of a game G, LT

GL

≤ LT (G),

and analogously, for any right option GR, RT

GR

≥ RT (G).

For games to have the same value under option-closure, the left threat must al-

ready be available as a first left option of the game. Likewise, the right threat must

be available as a first right option of the game.

Definition 4.2.8. For a game G, we say that G is left-threatbare if

∃H ∈ L (G) s.t. H ≡Inf LT (G) .

Likewise, we say that G is right-threatbare if

∃H ∈ R (G) s.t. H ≡Inf RT (G) .

If G is both left-threatbare and right-threatbare, then G is said to be threatbare.

153

Intuitively, in a threatbare game, all the gains have to be made on the first move,

not subsequent moves.

Lemma 4.2.9.

G = LT (G) ⇐⇒ G is a number.

Proof. For k ≥ 0, if H ∈ Lk (G), then HL � H by Corollary 1.2.35. Hence, for k > 0,

if H ∈ Lk (G), H �G since L0 (G) = {G}. Thus, if G is a number, then by Definition

4.2.7 of left-threat, LT (G) = G

If G is not a number, then G ̸= LT (G) since LT (G) is a number by definition.

Lemma 4.2.10. For any game G,

RT (G) � G � LT (G)

with equality holding only when G is a number.

Proof. If G is a number, then G = LT (G) by Lemma 4.2.9.

Suppose G is not a number and n is, with G > n = LT (G). Then R (G) > n

since n < G � R (G). Let GL ∈ L (G). By induction, GL � LT

GL

. By Definition

4.2.7, LT

GL

≤ LT (G) = n. Hence, GL � n. Then G = {L (G) |R (G)} with

L (G) � n < R (G). But then by simplicity (Thm. 1.2.49), G = n, contradicting the

assumption it is not a number.

Corollary 4.2.11. Let G be a game.

∀H ∈ Lk (G) , H � LT (G) .

Furthermore, if H is a number, then H ≤ LT (G).

Proof. When k = 0, this follows immediately from Lemma 4.2.10 as L0 (G) = {G},
so H = G.

Let k > 0. By Lemma 4.2.10, H �LT (H). By Definition 4.2.7, LT (H) ≤ LT (G),

so H � LT (G).

If H is a number, then H and LT (G) are comparable since LT (G) is also a number

by definition. Hence, H ≤ LT (G).

154

We can think of the left-threat of a game as the maximum number that Left can

get to in any number of consecutive moves with Left going first. The left stop of the

game is the maximum number that can be reached after alternating moves with Left

going first. Thus, we should see that the left-threat of a game is at least as good for

Left as the left stop.

Similarly, the right-threat of a game represents the minimum number that Right

can get to in any number of consecutive moves with Right going first and the right

stop of the game is the minimum number that can be reached after alternating moves

when Right goes first. So, the right-threat of a game is at least as good for Right as

the right stop.

Lemma 4.2.12. For a game G,

RT (G) ≤ R0 (G) ≤ L0 (G) ≤ LT (G) .

Proof. If G is a number, then by Corollary 1.2.55, R0 (G) = L0 (G) = G, and

RT (G) = LT (G) = G by Lemma 4.2.9. Thus, RT (G) = R0 (G) = L0 (G) = LT (G) =

G.

Suppose G is not a number. By Corollary 1.2.55, R0 (G) ≤ L0 (G). By symme-

try then, we need only show that L0 (G) ≤ LT (G). Let GL ∈ L (G). By induc-

tion, R0


GL

≤ L0


GL

≤ LT


GL

. By Definition 4.2.7, LT


GL

≤ LT (G), so

R0


GL

≤ LT (G). Since this holds for all GL,

L0 (G) = max

R0


GL


GL∈L(G)
≤ max {LT (G)}GL∈L(G) = LT (G) .

Thus L0 (G) ≤ LT (G).

Similar arguments hold for GR ∈ R (G) giving R0 (G) ≥ RT (G).

Lemma 4.2.13. If G is threatbare, then

H ∈ L (G) =⇒ H ≤Inf LT (G) .

Analogously,

H ∈ R (G) =⇒ H ≥Inf RT (G) .

Proof. Suppose not. Say LT (G) = x. Then ∃H ∈ L (G) such that x < H. Note that

H is not a number, because otherwise H = LT (G).

155

By Corollary 1.2.55 and Proposition 1.2.56, x ≤ R0 (H) ≤ L0 (H).

(i) If x < R0 (H) ≤ L0 (H), then

x < R0 (H) ≤ L0 (H) ≤ LT (H) ,

which is a contradiction as LT (H) ≤ LT (G) since H ∈ L (G).

(ii) If x = R0 (H) ≤ L0 (H), then either

x = R0 (H) < L0 (H) ≤ LT (H) ,

which is a a contradiction, or

x = R0 (H) = L0 (H) = LT (H) ,

which would imply H ≡Inf x, again a contradiction.

Corollary 4.2.14. If G is threatbare, then for any k,

H ∈ Lk (G) =⇒ H ≤Inf LT (G) .

Analogously,

H ∈ Rk (G) =⇒ H ≥Inf RT (G) .

Corollary 4.2.15. If G is threatbare, then

RT (G) ≤Inf G ≤Inf LT (G) .

Proof. Since G ∈ L0 (G), this follows from Corollary 4.2.14.

Lemma 4.2.16. If G is a threatbare game, then

L0 (G) = LT (G) and R0 (G) = RT (G) .

Proof. Suppose G is threatbare. Then ∃K ∈ L (G) such that K ≡Inf LT (G). We

know from Lemma 4.2.13 that ∀GL ∈ L (G),

GL ≤Inf LT (G) .

Hence, GL ≤Inf K.

Suppose GL ≡Inf K, then

GL −K ≡Inf GL − LT (G) ≡Inf 0.

156

Hence, L0


GL

≡Inf R0


GL

≡Inf K. So L0 (G) ≥ K ≡Inf LT (G). However,

both L0 (G) and LT (G) are numbers, so L0 (G) ≥ LT (G). But by Lemma 4.2.12,

L0 (G) ≤ LT (G), so L0 (G) = LT (G).

Analogous arguments hold to show R0 (G) = RT (G).

Corollary 4.2.17. If games G and H are threatbare, then

G < H =⇒ LT (G) ≤ LT (H) .

Proof. By Corollary 1.2.57, since G < H, L0 (G) ≤ R0 (H). By Corollary 1.2.55,

R0 (H) ≤ L0 (H). Thus, L0 (G) ≤ L0 (H). By Lemma 4.2.16, the left-threat and Left

stop of G are equal, as are those of H. Thus,

LT (G) = L0 (G) ≤ L0 (H) = LT (H) .

Lemma 4.2.18. For a game G, G ≡Inf L0 (G).

Proof. If G is a number, then L0 (G) = G by the definition of left stop (Def. 1.2.54).

If G is not a number, then in G−L0 (G), the Number Avoidance Theorem 1.2.52

says to play in G until we reach a number. If Left starts, we reach the game L0 (G)−
L0 (G) = 0. If Right starts, we reach the game R0 (G) − L0 (G) ≤ 0 by Corollary

1.2.55.

Theorem 4.2.19. If G is threatbare, then G ≡Inf oc (G).

Proof. Consider G−oc (G). By symmetry, we will consider only Right’s moves. Play

in G is bad because R (G) ⊆ R (oc (G)). So Right must move in oc (G) to G − H

where H ∈


Lk (G). By theorem 4.2.14, H ≤Inf LT (G) and since G is threatbare,

∃K ∈ L (G) such that K ≡Inf LT (G). So Left answers to K−H ≡Inf LT (G)−H ≥Inf

0.

Corollary 4.2.20. If game G and H are threatbare, then

G = H =⇒ oc (G) ≡Inf oc (H) .

Lemma 4.2.21. For threatbare games G and H,

157

(i) oc (G) = oc (oc (G))

(ii) G ≤Inf H =⇒ oc (G) ≤Inf oc (H)

Proof. (i) Since Ln (oc (G)) ⊆ L (oc (G)) for any n, L (oc (G)) ∼= L (oc (oc (G))).

The same is true of right options.

(ii) oc (G) ≡Inf G ≤Inf H ≡Inf oc (H) by Theorem 4.2.19.

Corollary 4.2.22. The option-closure function is a closure operator.

Definition 4.2.23. The game G is said to be closed if G = oc (G).

In a closed game, there is no door for either Left or Right to sneak through to

better their position in the game. All threats are on the table. It should be noted

that in general, if games G < H, this does not imply that oc (G) < oc (H).

Claim 4.2.24. For a game G,

{oc (L (G)) |R (G)} ≥ G ≥ {L (G) |oc (R (G))} .

Proof. Consider the game {oc (L (G)) |R (G)} − {L (G) |R (G)}. We want to show

that Left can win going second. Right has only two moves. Let GR ∈ R (G) and

GL ∈ L (G).

If Right plays to GR−{L (G) |R (G)}, then Left can respond to GR−GR = 0. If

Right instead plays to {oc (L (G)) |R (G)}−GL, then Left can respond to GL−GL =

0.

158

4.3 Lattice Of Option-Closed Games

We will now consider the structure of all option-closed games born by day n. We

will use OCn to denote the set of option-closed games G with birthday b(G) ≤ n

and consider the poset ⟨OCn;≤⟩, which we will denote as OCn as the partial order

relation on games will be assumed to be ≤.

Definition 4.3.1. OCn = {G : b(G) ≤ n, G option-closed}.

Proposition 4.3.2. OC0 = {0} and OC1 = {−1, 0, ∗, 1}.

Proof. The first statement is trivially true. If b(G) = 1, 0 is the only possible option

and as zero has no left or right options, it can occur as either a left or right option

in G by itself. Hence, the only new possibilities are {0 |·} = 1, {· |0} = −1 and

{0 |0} = ∗, which forms a comprehensive list.

The option-closed games occurring by day 1 and their partial order structure are

depicted in Figure 4.3. The diagram should be familiar as it is the lattice of all games

born by day 1 (Fig. 1.17), as games born by day 1 happen to all be option-closed.

From day 2 forward, we will see that this is not always the case.

1

*

-1

0

Figure 4.3: ⟨OC1;≤⟩: The lattice of option-closed games born by day 1.

Definition 4.3.3. Let An = {ocL (A) : A is an antichain in OCn}. That is, An is the

set containing the left-option-closure of all antichains from the lattice of option-closed

games born by day n, which we will call the left-option-closed antichains.

159

Similarly, let Bn be the set of all right-option-closed antichains.

Thus, Bn = {ocR (B) : B is an antichain in OCn}.

Observation 4.3.4. If A ∈ An, then −A ∈ Bn and vice-versa.

Corollary 4.3.5. If x ∈ OCn, then x = {A |−B } where A, B ∈ An−1.

We will show that the set of left-option-closed antichains An forms a linear order

under set containment of the lower sets that they induce. That is, we can label

elements of An as A0, A1, . . . , Ak such that for Ai in literal form,

➘ A0 ⊂ ➘ A1 ⊂ · · · ⊂ ➘ Ak.

We see, in Figure 4.3, that the left-option-closed antichains in OC1 are given in

A1 = {∅, {−1}, {0}, {0, ∗}, {0, 1}}. We note that

➘ ∅ ⊂ ➘ {−1},⊂ ➘ {0} ⊂ ➘ {0, ∗} ⊂ ➘ {0, 1}.

Note that if we have a, b ∈ OCn with A = ocL (a) and B = ocL (b), then

(➘ A ∪ ➘ B) \ (➘ A ∩ ➘ B)

is not empty if and only if a and b are not related, i.e. a ∥ b.

For example, in OC1 (see Fig. 4.3), ocL (0) = {0} and ocL (∗) = {0, ∗}. We can

check that ➘ 0 = {−1, 0} and ➘ {0, ∗} = {−1, 0, ∗}. Thus,

∗ ∈ (➘ 0 ∪ ➘ {0, ∗}) \ (➘ 0 ∩ ➘ {0, ∗})

so 0 ∥ ∗, as is expected and known.

Recall from definition 1.3.15 that the lower set of an antichain A contains every-

thing below and including the antichain A, and that A ≼ B in OCn implies that

the lower set of A is a subset of the lower set of B. Thus, if A ≼ B in OCn, then

➘ A ⊆ ➘ B.

Lemma 4.3.6. If A ∈ An and A = p, then for all x ∈ A, x = p + {0 |−s} + ϵ for

some number s ≥ 0 and some ϵ ∈ Inf.

160

Proof. Suppose L0 (A) = p. Then for any x ∈ A, by Lemma 4.1.4, rcf (x) = p or

{p |q} where p ≥ q. So either x = p + δ or x = {p |q} + δ for some δ ∈ Inf . In the

first case, note that δ = {0 |0}+ ∗+ δ and that (δ + ∗) ∈ Inf . In the second case, we

see that {p |q} = p + {0 |q − p} and that q − p ≤ 0. Either way, x = p + {0 |−s}+ ϵ

for some ϵ ∈ Inf .

Lemma 4.3.7. Let max {L0 (x) |x ∈ Ai} = Ai = p and max {L0 (y) |y ∈ Aj} = Aj =

q.

If p > q, then Ai > Aj and p ∈ Ai.

Proof. Let x ∈ Ai and y ∈ Aj. Then by Lemma 4.3.6,

y = q + {0 |−r}+ δ

for some number r ≥ 0 and δ ∈ Inf . Hence,

p− y = p− q + {r |0} − δ

which Left wins going first or second since δ is an infinitesimal. If Left goes first, she

plays to p − q + r − δ > r − δ > 0. If Right goes goes first, he can either play to

p − q + 0 − δ > 0 or to p − q + {r |0} + δ′. Since L0 (δ) = R0 (δ) = 0, Left responds

with her best move in δ′ which is at worst an infinitesimal, i.e. L0 (δ′) ≥ R0 (δ′) = 0.

Lemma 4.3.8. Let An be the set of all left-option-closed antichains in OCn. If

A, B ∈ An, then either ➘ A ⊆ ➘ B or ➘ B ⊆ ➘ A.

Proof. Let ∆(A, B) = min {{} |➘ A − ➘ B|, |➘ B − ➘ A|}. Suppose that there exists

two left-option-closed antichains where neither is a subset of the other. Over all such

pairs, choose sets A and B such that ∆(A, B) is minimum. We may also suppose

that the |➘ A|+ |➘ B| is minimum.

Choose maximal elements g ∈ ➘ A− ➘ B and h ∈ ➘ B − ➘ A.

Take g′ ≤ g in ➘ A− ➘ B such that if k < g′, then k ∈ ➘ B.

Consider B′ = B ∪ {g′}. Since every left option of g′ is in B, B′ is left-option-

closed. Since A and B where chosen so that one of their differences was minimum, it

follows that A ⊆ B ∪ {g′},

161

Similarly there is an h′ ≤ h in ➘ B − ➘ A where if k ≤ h′, then k ∈ ➘ A and

B ⊆ A∪ {h′}. Thus C = ➘ A∪ ➘ B is a left-option-closed antichain whose difference

with B is 1 and whose symmetric difference with B is also 1, contradicting the choice

of A and B.

Note that this cannot reduce to one of A and B being empty set since the empty

set is a subset of everything.

Lemma 4.3.9. Let An = {A1, A2, . . . , Ak} be the set of left-option-closed antichains

in OCn such that ➘ Ai ⊆ ➘ Ai+1 in literal form. If

g = {Ai |B } and h = {Ai+1 |B } ,

then g ≤ h.

Proof. Consider h − g = {Ai+1 |B } − {Ai |B }. If Right plays in h to B − {Ai |B },
Left can respond to B −B = 0. If Right plays in g to {Ai+1 |B } −Ai, then Left can

respond to Ai − Ai = 0 since ➘ Ai ⊆ ➘ Ai+1. Thus h− g ≥ 0.

Corollary 4.3.10. Let An = {A1, A2, . . . , Ak} be the set of left-option-closed an-

tichains in OCn such that ➘ Ai ⊆ ➘ Ai+1 in literal form. If

g = {B |−Ai} and h = {B |−Ai+1} ,

then g ≥ h.

The following lemma (Lemma 4.3.12) tells us that while there could be many

antichains from day n−1 that give us the left and right options for a given element in

day n that give the same value, there is a unique maximum and minimum antichain

having that value. Thus, there exists a highest high antichain and a lowest low

antichain and these determine the elements that exist in OCn. For each game in day

n, these are defined below.

Definition 4.3.11. For g ∈ OCn, let

ACL (g) = max {A ∈ An−1 : g = {A |−B } for some B ∈ An−1} ,

and let

ACR (g) = min {−B ∈ An−1 : g = {A |−B } for some A ∈ An−1} .

162

Lemma 4.3.12. The left-option-closed antichains in An are linearly ordered under

set containment of their lower sets.

Proof. The left-option-closed antichains of A0 and A1 are linearly ordered. In A0,

➘ ∅ ⊂ ➘ {0}

and in A1,

➘ ∅ ⊂ ➘ {−1} ⊂ ➘ {0} ⊂ ➘ {0, ∗} ⊂ ➘ {0, 1}.

Assume that An−1 is linearly ordered as well. Consider An.

For g ∈ OCn, g = {X |−Y } with X, Y ∈ An−1 by Corollary 4.3.5. Thus X, Y ∈
An−1 and so are comparable, as An−1 is linearly ordered by assumption. Let ACL (g),

ACR (g) be as defined in Definition 4.3.11.

Let An−1 = {A1, A2, . . . , Ak} be the set of left-option-closed antichains from

OCn−1 such that ➘ Ai ⊂ ➘ Ai+1 in literal form. Then for some Ap, Aq ∈ An−1,

g = {Ap |ACR (g)} (p max)

g = {ACL (g) |−Aq } (q max)

Let h = {ACL (g) |ACR (g)}. Since An−1 is linearly ordered, ACL (g) = Ai and

ACR (g) = −Aj for some Ai, Aj ∈ An−1. Thus,

h = {ACL (g) |ACR (g)} = {Ai |−Aj } .

We claim that g = h.

By Definition 4.3.11 and the fact that An−1 is linearly ordered, ACL (g) ≥ Ap and

ACR (g) ≤ −Aq. So,

Ai ≥ Ap and Aj ≥ Aq.

Thus, for some k1, k2 ≥ 0, i = p + k1 and j = q + k2. By Lemma 4.3.9 and Corollary

4.3.10,

g = {Ap |−Aj } ≤ {Ap+k1 |−Aj } = {Ai |−Aj } = h = {Ai |−Aq+k2 } ≤ {Ai |−Aq } = g.

Thus, g ≤ h ≤ g and so g = h.

Hence, in OCn, g = {ACL (g) |ACR (g)}.

163

Now suppose that An is not linearly ordered. Then there exists g, h ∈ OCn such

that g ∥ h. Let

g = {ACL (g) |ACR (g)} = {Ap |−Aq }

h = {ACL (h) |ACR (h)} = {As |−At}

where Ap, Aq, As, At ∈ An−1 and so are ordered.

If p ≤ s and q ≥ t, then by Lemma 4.3.9 and Corollary 4.3.10,

g = {Ap |−Aq } ≤ {As |−Aq } ≤ {As |−At} = h.

Similarly, if p ≥ s and q ≤ t, then again by Lemma 4.3.9 and Corollary 4.3.10,

g = {Ap |−Aq } ≥ {As |−Aq } ≥ {As |−At} = h.

So, without loss of generality, we can assume that p ≤ s and q ≤ t. Then in OCn−1,

➘ Ap ⊆ ➘ As and ➚−Aq ⊆ ➚−At (i.e.➘ Aq ⊆ ➘ At).

Consider the game h − g. Since both h and g are option-closed, we know that

rcf (h) and rcf (g) are either numbers or switches. So, rcf (h) = x or {x |y} for

numbers x ≥ y and rcf (g) = u or {u |v} for numbers u ≥ v. If rcf (h) > rcf (g),

then Left can win h − g. Likewise, if rcf (h) < rcf (g), then Right can win in h − g.

For a number x, we can’t have rcf (h) = rcf (g) = x, because then h = x = g. For

numbers u and x ≥ y, we must have: (i) rcf (h) = rcf (g) = {x |y}; or (ii) rcf (h) = u,

rcf (g) = {x |y} and y ≤ u ≤ x; or (iii) rcf (h) = {x |y}, rcf (g) = u and y ≤ u ≤ x.

(i) Say rcf (h) = rcf (g) = {x |y}. Then x ∈ {Ap, As} and y ∈ {−Aq,−At}. Thus

x ∈ ➘ Ap ⊆ ➘ As and y ∈ ➚−Aq ⊆ ➚−At. In h − g, Left can go to α − g where

α ∈ ➘ As \ ➘ Ap, which is comparable to 0.

(ii) Say rcf (h) = u, rcf (g) = {x |y} and y ≤ u ≤ x. Then x ∈ ➘ Ap. If x > u,

then since u ≡Inf h, x > h. So x = u = y. Therefore u ∈ Aj for some Aj ∈ An. We

want to show u ≥ g. We know that rcf (g) = rcf ({Ap |−Aq }) = u∗. So, u ∈ Ap and

u ∈ −Aq. But u ∈ As and ➘ As ⊇ ➘ Ap, which is a contradiction.

Observation 4.3.13. An ⊂ An+1

Left/right options in games of OCn then must come from OCn−1, or the options

themselves would not have been option-closed. Thus, elements are perpetual. If an

option-closed game exists in day n, then it exists in all days after day n.

164

Corollary 4.3.14. If x ∈ OCn−1, then x ∈ OCn.

Since the Ai ∈ An are linearly ordered, it is natural to wonder what the difference

is between Ai and Ai+1, i.e. Ai+1 − Ai.

To consider this, we will need the following function which takes the norm of an

element within a set and returns the next highest norm that can be found within the

set.

Definition 4.3.15. For a set of S of option-closed sequences,

N(x; S) =

min {y : y ∈ S, y > x} if ∃y ∈ S s.t. y > x

∞ otherwise

and N2(x; S) = N((N(x; S)); S).

The following gives us a way of telling what the next element is in the list of

elements in OCn, building from the bottom up.

Definition 4.3.16. Suppose An−1 = {A0, A1, . . . , Ap} with A0 = ∅, Ap = (n−1) and

➘ A0 ⊂ ➘ A1 ⊂ · · · ⊂ ➘ Ap.

Let Bn−1 = {B0, B1, . . . , Bp} with Bi = −Bp−i.

For OCn, we define the following:

Let S0 = {∅ |−(n− 1)}, which is element {A0 |B0} of OCn.

For Ai ∈ An−1 and Bj ∈ Bn−1 (so that {Ai |Bj } ∈ OCn),

F ({Ai |Bj }) =



{Ai+1 |B0} if Ai = Ai+1 = Bj < Bj+1 (i)

or N2(Ai;An−1) = Bj (ii)

{Ai |N(Bj;Bn−1)} if N(Ai;An−1) = Bj

and N(Bj;Bn−1) < ∞ (iii)

{Ai |Bj+1} otherwise (iv)

Define Sk = Sk−1 ∪ F k(S0).

165

Hence, the definition gives us that

S0 = {∅ |−(n− 1)} = − n

S1 = S0 ∪ F (S0) = {S0, F (S0)}

S2 = S1 ∪ F 2(S0) = {S0, F (S0), F
2(S0)}

...

Sk = Sk−1 ∪ F k(S0) = {S0, F (S0), F
2(S0), . . . , F

k(S0)}

For example, we can consider Sk in OC2 for which we need A1 = {A0, . . . , A4}
with A0 = ∅, A1 = {−1}, A2 = {0}, A3 = {∗, 0}, A4 = {1, 0} and B1 = {B0, . . . , B4}
with Bi = −A4−i.

S0 = {A0 |B0} = {∅ |−1} = − 2 by definition

F (S0) = F ({∅ |−1}) = {A0 |B2} = {∅ |0} = − 1 by case (iii)

F 2(S0) = F ({∅ |0}) = {A1 |B0} = {−1 |−1} = − 1∗ by case (ii)

F 3(S0) = F ({−1 |−1}) = {A1 |B1} = {−1 |∗, 0} = − 1
2

by case (iv)

F 4(S0) = F ({−1 |∗, 0}) = {A1 |B3} = {−1 |1} = 0 by case (iii)

F 5(S0) = F ({−1 |1}) = {A2 |B0} = {0 |−1} by case (ii)

F 6(S0) = F ({0 |−1}) = {A2 |B1} = {0 |0, ∗} = ↓ ∗ by case (iv)

F 7(S0) = F ({0 |0, ∗}) = {A2 |B2} = {0 |0} = ∗ by case (iv)

F 8(S0) = F ({0 |0}) = {A3 |B0} = {0, ∗ |−1} by case (i)

F 9(S0) = F ({0, ∗ |−1}) = {A3 |B1} = {0, ∗ |0, ∗} = ∗ 2 by case (iv)

F 10(S0) = F ({0, ∗ |0, ∗}) = {A3 |B2} = {0, ∗ |0} = ↑ ∗ by case (iv)

F 11(S0) = F ({0, ∗ |0}) = {A3 |B3} = {0, ∗ |1} = 1
2

by case (iv)

F 12(S0) = F ({0, ∗ |1}) = {A3 |B4} = {0, ∗ |∅} = 1 by case (iv)

F 13(S0) = F ({0, ∗ |∅}) = {A4 |B0} = {1 |−1} = ± 1 by case (i)

F 14(S0) = F ({1 |−1}) = {A4 |B1} = {1 |0, ∗} by case (iv)

F 15(S0) = F ({1 |0, ∗}) = {A4 |B2} = {1 |0} by case (iv)

F 16(S0) = F ({1 |0}) = {A4 |B3} = {1 |1} = 1∗ by case (iv)

F 17(S0) = F ({1 |1}) = {A4 |B4} = {1 |∅} = 2 by case (iv)

166

Lemma 4.3.17. Si ≼ Si+1 in OCn.

Proof. Si ⊆ Si+1.

Lemma 4.3.18. If A ∈ An, then ∃i such that ➘ A = Si, where ➘ A is the lower set

of A in OCn.

Proof. Let

➘ A =


p

i=1

{Ci |Dj } : {C1, . . . , Cp} ⊆ An−1, {D1, . . . , Dp} ⊆ Bn−1


.

Let C = maxi {Ci} and D = minj {Dj : {C |Dj } ∈ ➘ A}. There exists a minimum

i such that {C |D} ∈ Si.

Claim ➘ A = Si.

We know Si = Si−1


F i(S0), so Si−1 ⊆ Si. For all j < i, F j(S0)�F i(S0). Suppose

F j(S0) =

Aaj

Bbj


and F i(S0) = {Aai

|Bbi
}. By construction, aj ≤ ai and bj ≤ bi.

So Aaj
≤ Aai

.

If F j(S0) is a number, then

Bbj
≥ N


Aaj

;An


≤ Bbj

≤ N2

Aaj

;An


.

So Bbj
≤ N


Aaj

;An


. In reduced canonical form, we know that F j(S0) =


Aaj

Bbj


and F i(S0) =


Aai

Bbi


.

If Aai
> Aaj

and Aai
− Bbi

̸= Aaj
− Bbj

, then Left wins by going first if he takes

the largest switch.

Below we introduce two new functions on games G and H, which we will denote

as G ∨H and G ∧H. We will show that this choice of notation is appropriate since

these are the join and meet, respectively, of G and H in OCn.

Definition 4.3.19.

For games G, H ∈ OCn, we define

G ∨H = {max {L (G) ,L (H)} |max {R (G) ,R (H)}}

and

G ∧H = {min {L (G) ,L (H)} |min {R (G) ,R (H)}} .

167

We should note that since G, H ∈ OCn, then L (G) ,L (H) ∈ An−1 and by Lemma

4.3.12, An−1 is linearly ordered.

Lemma 4.3.20.

For all G, H ∈ OCn, we have

(i) G ∨H ≥ G

(ii) G ∨H ≥ H

Proof. The two assertions are symmetric, so it suffices to show that Left can win

in G ∨ H − G playing second. If Right moves to G ∨ H − L (G), then Left can

play to max {L (G) ,L (H)} − L (G) ≥ 0 and win. Conversely, if Right moves to

max {R (G) ,R (H)} − G, then Left has a winning move to max {R (G) ,R (H)} −
R (G) ≥ 0.

Lemma 4.3.21. If G, H, K ∈ OCn and K ≥ G, H, then K ≥ G ∨H.

Proof. We must show that Left can win playing second in

K −G ∨H = K − {max {L (G) ,L (H)} |max {R (G) ,R (H)}} .

Suppose Right plays to some KR − G ∨ H. Without loss of generality, suppose

that max {R (G) ,R (H)} = R (G). Since K ≥ G, then ∀KR ∈ R (K), ∃GR ∈ R (G)

such that KR ≥ GR. Thus, Left has a response to KR −GR ≥ 0.

Right can also play in G ∨ H. Without loss of generality, we can assume that

max {L (G) ,L (H)} = L (G). In this case, Right has a move to K − GL where

GL ∈ L (G). Since K ≥ G, then ∀GL ∈ L (G), ∃KL ∈ L (K) such that KL ≥ GL.

Hence, Left can respond to KL −GL ≥ 0.

The above results (Lemmas 4.3.20 and 4.3.21) and their duals (∨ replaced with

∧) show us that OCn is a lattice with join and meet given by ∨ and ∧, respectively.

Each pair of elements in the lattice of OCn has a unique join. That is, there is one

element, G ∨H, that is above both G and H and less than any other element above

them.

Theorem 4.3.22. OCn is a bounded lattice with top element n and bottom element

−n, and the join and meet of any two games in OCn given by G ∨H and G ∧H of

Definition 4.3.19, respectively.

168

The description of OCn will depend on the reduced canonical form. In OCn, the

join irreducible elements are those from day n− 1 and all of the elements of the form

{n− 1 |B } where B ∈ −An−1.

Proposition 4.3.23. J (OCn) = OCn−1 ∪ {{n− 1 |B } : B ∈ −An−1}.

Corollary 4.3.24. In OCn, the doubly-irreducible elements are those in the set

OCn−1 ∪ {±(n− 1)}.

Proposition 4.3.25. There are 18 option-closed games born by day 2, so that |OC2| =
18.

Proof. There are 6 antichains of OC1: four one-element antichains ({1},{−1},{0}
and {∗}); the empty antichain ∅; and finally {0, ∗}. By Corollary 4.3.5, if G ∈ OCn,

then B = {A |−B } where A, B ∈ An−1. Thus, every element of OC2 is represented

by a pair formed by a left- and a right-option-closed antichain from OC1, so {∗}
cannot be utilized as it is neither left- nor right-option-closed.

So this gives us 25 possibilities to consider. To determine the exact size of OC2,

we must determine which pairs of antichains G = {L (G) |R (G)} are canonical, i.e.

those that contain no reversible options.

Suppose that GL is reversible. Then ∃GLR ∈ R

GL


such that GLR ≤ G. Since

b(G) ≤ 2, we know that b(GLR) = 0 and as OC0 = {0}, we know that GLR = 0.

Hence GL = ∗ or −1. So L (G) = {−1} or {0, ∗}. But we also have GLR = 0 ≤ G, so

0,−1 ̸∈ R (G). Therefore, R (G) = ∅ or {1}. This gives four pairs with a reversible

Left option.

Suppose that GR is reversible. Then ∃GRL ∈ L

GR


such that GRL ≥ G. Since

b(G) ≤ 2, we know that b(GRL) = 0, and so GRL = 0. Hence GR = 1 or ∗. So

R (G) = {1} or {0, ∗}. But we also have GRL = 0 ≥ G, so 0, 1 ̸∈ R (G). Therefore,

L (G) = ∅ or {−1}. This gives four pairs with a reversible Left option.

The case where L (G) = {−1} and R (G) = {1} has been counted twice, so we

have a total of 7 games that possess reversible options. Thus, we have 25 − 7 = 18

games in OC2.

Figure 4.4 gives the partial-order structure of OC2.

In all depictions of this lattice so far, we see that the Hasse diagrams have been

drawn in a planar representation. An obvious question to consider is whether or not

169

2

1*

{1|0}

{1|0,*}

{1|-1}

1

1/2

{0,*|0}

*2

{0,*|-1} {0|0,*}

{0|-1}

* 0

-1/2

-1*

-2

-1

Figure 4.4: The partial-order structure of the 18 option-closed games born by day 2
that make up OC2.

this is the case for any day. By construction, we do have a bound on the size of OCn.

Since the set of left and right options come from antichains of OCn, then we know

that the following bound holds for day n.

Lemma 4.3.26. The set of option-closed games born by day n is finite, with

|OCn| ≤ |An|2 ≤ (|OCn−1|+ 1)2 .

Proof. By construction, ∀G ∈ OCn, L (G) ∈ An and R (G) ∈ Bn. Also by design,

|An| = |Bn|. Finally, |An| ≤ |{∅} ∪OCn−1|.

While this bound is poor, and tighter bounds remain to be found, it does give

us that the lattice of OCn is finite. With that, we can show that OCn is a planar

lattice.

170

3/2

1^*

2

1*2

{1,1*|1/2}

{1,1*|0}

{1,1*|0,{1|0}}

{1,1*|0,^*}

{1,1*|0,*}

{1,1*|0,*,{1|0,*}}

{1,1*|0,*,*2}

{1,1*|0,v*}

1*

{1|1/2}

{1,{1|0}|0}

{1,{1|0}|0,{1|0}}

{1,{1|0}|0,*}

{1,{1|0}|0,*,{1|0,*}}

{1,{1|0}|0,*,*2}

-2

1v*

{1,{1|0}|0,^*}

{1|0}

{1|0,{1|0}}

{1,{1|0,*}|0,*}

{1,{1|0,*}|0,*,{1|0,*}}

{1|0,^*}

-1/2

-3/4

-1v*

-1

-3/2

{0,*|-1}

{0,*|-1,{0,*|-1}}

{0,*|-1,-1*}

{0,*|-1,{0|-1}}

{0,v*|0,*}

{0,v*|-1/2}

{0,v*|-1}

{0,v*|-1,-1*}

*

{0,v*|0,v*}

{0,v*|-1,{0|-1}}

1/2

^*

{0,*,*2|0,*}

*3

{0,*,*2|-1/2}

{0,*,*2|-1}

{0,*,*2|-1,{0,*|-1}}

{0,*,*2|-1,-1*}

2*{2|1}

3

{2|1,1*}{2|1/2}{2|0}
{2|0,{1|0}}{2|0,^*}{2|0,*}

{2|0,*,{1|0,*}}
{2|0,*,*2}{2|0,v*}{2|-1/2}{2|-1}

{2|-1,{1|-1}}

{2|-1,{0,*|-1}}

{2|-1,{0|-1}}
{2|-1,-1*}

{2
|-

2}

{1,1*|-1/2}

{1,1*|-1}

{1,1*|-1,{1|-1}}

{1,1*|-1,{0,*|-1}}

{1,1*|-1,{0|-1}}

{1,1*|-1,-1*}

{1,{1|0}|-1/2}

{1,{1|0}|-1}

{1,{1|0}|-1,{1|-1}}

{1,{1|0}|-1,{0,*|-1}}

{1,{1|0}|-1,-1*}

{1,{1|0}|0,v*}

{1,{1|0}|-1,{0|-1}}

{1,{1|0,*}|0,*,*2}

{1,{1|0,*}|-1/2}

{1,{1|0,*}|-1}

{1,{1|0,*}|-1,{1|-1}}

{1,{1|0,*}|-1,{0,*|-1}}

{1,{1|0,*}|-1,-1*}

{1,{1|0,*}|0,v*}

{1,{1|0,*}|-1,{0|-1}}

{1|0,*}

{1|0,*,{1|0,*}}

{1|0,*,*2}

{1|-1/2}

{1,{1|-1}|-1}

{1,{1|-1}|-1,{1|-1}}

{1,{1|-1}|-1,{0,*|-1}}

{1,{1|-1}|-1,-1*}

{1|0,v*}

{1,{1|-1}|-1,{0|-1}}

{1|-1}

{1|-1,{1|-1}}

{1|-1,{0,*|-1}}

{1|-1,-1*}

{1|-1,{0|-1}}

1

3/4

1/2*

{1/2|0}

{1/2|0,*}

{1/2|0,*,*2}

{1/2|-1/2}

{1/2|-1}

{1/2|-1,{0,*|-1}}

{1/2|-1,-1*}

{1/2|0,^*}

{1/2|0,v*}

{1/2|-1,{0|-1}}

{0,^*|0}

{0,^*|0,*}

{0,^*|0,*,*2}

{0,^*|-1/2}

{0,^*|-1}

{0,^*|-1,{0,*|-1}}

{0,^*|-1,-1*}

{0,^*|0,^*}

{0,^*|0,v*}

{0,^*|-1,{0|-1}}

1/4

{0,*|0,^*}

{0,*,*2|0,v*}

{0,*,*2|-1,{0|-1}}

*2

{0,*|0,*,*2}

{0,*|-1/2}

{0,*,{0,*|-1}|-1}

{0,*,{0,*|-1}|-1,{0,*|-1}}

{0,*,{0,*|-1}|-1,-1*}

{0,*|0,v*}

{0,*,{0,*|-1}|-1,{0|-1}}

0

-1/4

-1/2*

{-1/2|-1,-1*}

-1*2

{0,{0|-1}|-1}

{0,{0|-1}|-1,-1*}

{0,{0|-1}|-1,{0|-1}}

v*

{0|-1/2}

{0|-1}

{0|-1,-1*}

-3

{-1
|-

2}

-2
*

{0
,*|

-2
}

{0
,v*|

-2
}

{0
,*,

*2
|-

2}

{1
,1*|

-2
}

{1
,{1

|0
}|

-2
}

{1
,{1

|0
,*}

|-
2}

{1
,{1

|-
1}|

-2
}

{1
|-

2}

{1
/2

|-
2}

{0
,^*

|-
2}

{0
,*,

{0
,*|

-1
}|

-2
}

{-1
/2

|-
2}

{-1
,-1

*|
-2

}

{0
,{0

|-
1}|

-2
}

{0
|-

2}

{0|0,v*}

{0|-1,{0|-1}}

{-1/2|-1}

-1^*

-1*

Figure 4.5: The partial-order structure of the 176 option-closed games born by day 3
that make up OC3.

Theorem 4.3.27. The lattice of OCn is planar.

Proof. Let G ∈ OCn. By construction, L (G) ∈ An and R (G) ∈ Bn. Both An and

171

Bn are linear orders and OCn is realized by these 2 orders. For games G, H ∈ OCn,

if G < H, then ➘ L (G) ⊆ ➘ L (H) and ➘ R (G) ⊆ ➘ R (H), and at least one of

these is strict. If G and H are confused in OCn, then either ➘ L (G) ⊂ ➘ L (H) and

➘ R (G) ⊃ ➘ R (H), or vice versa.

Since dimension (OCn) ≤ 2 and OCn is a finite lattice, the result follows from

Proposition 1.3.33.

172

4.4 An Option-Closed Compendium

We present now what is known of option-closed games. Consideration for the class of

option-closed games began with the work of Nowakowski and Ottaway in 2008 [23].

As their work is quite recent, few new games have been added into this classifica-

tion. However, more can now be said of the structure of those option-closed games

previously introduced.

4.4.1 maze

The game of maze was introduced in 2006 [2]. At that time, it was introduced as

a means of demonstrating outcome class, and little was known of the values of the

game. maze is played on a board, with a token starting in the top-left position on the

board. Solid edges on the board are walls that may not be crossed. On a move, Left

is allowed to move the token downward any distance and Right is allowed to move

the token to the right, neither moving it over or past a solid wall. An interesting

feature of maze, is that any number of consecutive Left (Right) moves can also be

accomplished in one move. As such, maze is an instance of an option-closed game.

Nowakowski and Ottaway [23] noted that maze was option-closed and asked for an

analysis of the game.

Since maze is option-closed, we know from Lemma 4.1.4 that each position has

reduced canonical form equal to a number or a switch. It was conjectured that because

of the 2-dimensional structure of the board, there was a bound on the denominator

of the numbers that appeared as numbers or in the switches.

Through joint work with Nowakowski and McKay [21], we disprove this by con-

structing, for each number and each switch, a maze position whose reduced canonical

form is that value. Surprisingly, we are able to do this with the added restriction that

the positions are rectangular and such that any interior walls are vertical. We will

refer to boards of this type as vertical Maze positions. This restriction is espe-

cially surprising as vertical interior walls, and therefore vertical Maze positions, only

prevent Right moves, appearing to give an advantage to Left. This construction gives

a linear time algorithm that will determine the best move up to an infinitesimal.

We will make use of the theory of reduced canonical form and the fundamentals

173

of option-closed games, presented in sections 1.2.9 and 4.1, respectively, to prove our

main result, which is a construction recipe for a maze board for any number or switch.

{3|0} {1|0} 0 2

{3|1}

3

2

1

0

1

0

1

* 0

0

Figure 4.6: A maze board in which Left and Right move down and right, respectively.
Reduced canonical form of values for each position is included on the board.

For a maze position, the left and right options form left- and, respectively, right-

option-closed sequences.

Theorem 4.4.1. [21] Let G be a maze position and let α, β be left-, right-option-

closed sequences of G, respectively. Then rcf (G) = rcf


α
β .

4.4.1.1 The Construction

All positions will be rectangular mazes with vertical walls plus the horizontal walls on

the lower edge of the rectangle. For brevity, we refer to such a position as a vertical

position. In any maze layout, each square has a value corresponding to that position

where the token is on that square. The value of the square at the top left of the maze

is called the value of the rectangle. With a number a, we associate m(a), any maze

position with a reduced canonical form of value a. The following shows how to adjust

the height of any maze position without changing its value.

174

Lemma 4.4.2. [21, Lemma 11] Let M be a maze position. Let M ′ be the maze

position obtained by: deleting the bottom and right-hand walls of the position; adding

another row at the bottom and a column on the right hand side with walls on the bottom

of the new row and on the right-hand side of the new column. (Each dimension has

increased by 1.) The values of M and M ′ are equal.

3/2 2 3 4

1

0

-3

1

0

2

1

0

3

2

1

0-1-2

-1-2

3/2 2

1

0

1

0

3/2 2 3

1

0

1

0

2

1

0-1-2

Figure 4.7: maze boards of equivalent value.

The idea is the following: if we wish to construct G with rcf (G) = rcf ({a |b}),
a and b numbers, then take the maze positions m(A) and m(B) obtained via the

Construction, adjust the heights and adjoin the two positions as in Figure 4.8.

1. Let p be an integer. If p = 0 then m(0) is a single square; if p > 0 then m(p) is

a vertical line of p + 1 squares; if p < 0 then m(p) is a horizontal line of p + 1

squares.

2. In order to make sure that we can accommodate values for which a is not

an integer, we must construct the values of the form p + 1
2q and −p + 1

2q . If

constructing the former, set a = p and if the latter, a = −p. In each case, use

the Construction defined above. For q = 1, proceed to step 3, taking b = a + 1
2
.

For q > 1, proceed to step 3, taking b = a+ 1
2q−1 as defined by the Construction.

3. Let G = {a |b}. Take the maze positions obtained via the Construction for

a and b, for which m(a) and m(b) are the smallest such Construction. Adjust

175

Figure 4.8: The Outline of the Construction. Black lines represent existing walls,
dashed lines walls that do not exist.

the height, if necessary, so that m(a) is a p × (q + 1) rectangle and m(b) is a

(p + 1) × (r + 1) rectangle. Form the maze position M by concatenating the

rows of m(a) and m(b) from the bottom up. In addition, the top row consist of

a line of p + r + 2 squares with no walls. (See Figure 4.8.)

Claim 4.4.3. The value of M is {a |b}.

4.4.1.2 Proof Of The Construction Claim

We must show that M = {a |b}. After some preliminary, general results about option-

closed games, the proof falls into two parts: first show that a and b are the ‘dominant’

terms except for possibly the xi; then show that each xi is a ‘switch’ which are in

turn dominated by b—all this modulo the reduced canonical form.

Proof. Let a and b be dyadic rationals and let M be the maze position whose reduced

canonical form is claimed to be {a |b}. Note that both m(a) and m(b) were obtained

by the Construction, so contain no walls in their top rows. Since there are no walls

in the top row of m(b), the top row of values, ⟨x1, x2, . . . , xq, b, y1, y2, . . . , yr⟩, is a

right-option-closed sequence, and the values in the first column below a, in order,

and including a itself form a left-option-closed sequence. Thus, ⟨⊗L⟩ = a by Lemma

176

4.1.10 and

rcf (⊗) = {a| ⟨x1, x2, . . . , xq, b, y1, y2, . . . , yr⟩}

Since ⟨b, y1, y2, . . . , yr⟩ is also a right-option-closed sequence, then yi ≥Inf b by Lemma

4.1.12. Thus,

rcf (⊗) = {a| ⟨x1, x2, . . . , xq, b⟩}

and we are left to show that

b = ⟨x1, x2, . . . , xq, b⟩.

Now, if xi is a not a number and there is no j > i such that xj is a number, then

by Lemma 4.1.10, xi ≥Inf b and is infinitesimally-dominated. Therefore, let i be the

greatest index such that xi is a number. Necessarily then xi < b since b is a right

option of xi. Since there are no walls in the top row of m(a), i.e. between a and

any xL1
i , ⟨xL1

1 , . . . , xL1
q−1, x

L1
q = p− 1⟩ is a right-option-closed sequence. Also, xL1

i is a

Right option of a and so by Lemma 1.2.44 xL1
i > a.

Consider the case a > b. Now we have the inequalities xL1
i > a > b > xi which is

a contradiction since for any game G, GL ̸> G. Therefore, there is no i such that xi

is a number and thus rcf (⊗) = {a |b}.
Now, ⊗ = {a |b, x1, x2, . . . , xq }. To show that ⊗ = {a |b}, we must show that each

xi is reversible. Consider

xL1
i − {a|b, x1, x2, . . . , xq} = xL1

i + {−b,−x1,−x2, . . . ,−xq| − a}.

Left wins playing first by moving to xLi
i − b because xL1

i > a > b. Playing first, Right

loses if he plays to xL1
i − a. If he plays to a right option of xL1

i then this is equal to

xL1
j for some j > i giving the position xL1

j + {−b,−x1,−x2, . . . ,−xq| − a} and again

Left wins by playing to xL1
j − a, i.e. xL1

i > ⊗.

Since the right options from xL1
i are xL1

j for j > i and xL1
j > a > b, then bypassing

the reversible move to xi which adds xL1
j (j > i) to the right options, and eliminating

dominated options, gives ⊗ = {a |b}.
Suppose xi is a number less than b. Suppose a < b. We know that xL1

i > a

by Lemma 4.1.10. Thus, a < xi < b and xi = {d|b} for some number d, where

d = L0 (xi) and b > d > a. Now d is a left option of xi and hence is in m(a).

177

Let c = {a |b} = y
2n+1 for some integers y and n. Since c is the simplest dyadic

rational between a and b then the denominator of xi is 2n+j for some j ≥ 1. By

induction, the denominator of d is less than that of a, i.e. at most 2n but then d is

simpler than c and lies between a and b which is a contradiction.

Hence no xi is a number and thus rcf (⊗) = c = {a |b}.
Now, if rcf (⊗) = c = {a |b} and a < b then ⊗ = {a|b,⊗R} then only non-

dominated, non-numerical options possibly remaining are those that are infinitesimally-

dominated by b. Note that if n and x are numbers and δ an infinitesimal with

x = {xL|n, n + δ, xR} then x = {xL|n, xR}. Repeated application of this fact gives

⊗ = {a|b}.

4.4.1.3 Evaluating maze Positions

Grossman and Siegel [14] note that for most situations the reduced canonical form is

sufficient to evaluate a position. Calculating the reduced canonical form of a maze

position can be done in linear time with regard to the number of squares in the

position [21].

Corollary 4.4.4. [21] The reduced canonical form of an p× q maze position can be

calculated in O(pq) time.

4.4.1.4 Open Questions

From Nowakowski and Ottaway [23], we know that for any option closed game G,

⇓ +∗ < G − rcf (G) <⇑ +∗. The construction can also build games of the form

∗n. What infinitesimals occur in maze? This construction is able to return maze

positions having reduced canonical form {a |b} for numbers a and b. Can we do better

than coming within an infinitesimal from this value and, in fact, construct a maze

position having value {a |b}?

4.4.2 Roll The Lawn

The game of Roll the Lawn was introduced by Nowakowski and Ottaway [23] as

an example of an option-closed game. We will discuss this game under Normal play,

however Ottaway looked at this game under Misère Play in his Ph.D. thesis [24].

178

4.4.2.1 How To Play

Roll the Lawn uses a row of nonnegative integers (or bumps) and a roller that

is placed between any two bumps or at either end. Left (Right) moves the roller to

the left (right), flattening each bump it passes over by 1 unless the bump has already

been completely flattened to zero. At least one bump must decrease in size at each

move.

The game can be represented as a path graph with weighted edges. In this visual

representation, the bumps are edge-weights in the graph and the roller is located on

one of the vertices. On a move, the roller is either moved to the left by Left (right by

Right) to another vertex. In doing so, the edge-weight of all edges traversed having

positive edge-weight is decreased by one.

For simplicity, we will represent a position by a string of nonnegative integers

with a roller ⊖ located within the string. Since we will consider similar games, the

string will be prefixed RL to denote that it is indeed a Roll the Lawn position in

question.

Example 4.4.5.

RL[7, ⊖, 1, 4]

R−→ RL[7, 0, 3, ⊖]

L−→ RL[7, ⊖, 0, 2]

R−→ RL[7, 0, 1, ⊖]

L−→ RL[7, 0, ⊖, 0] (Left has won)

Nowakowski and Ottaway were able to determine the value of a Roll the Lawn

position based primarily on the parity of the bumps, or edge-weights, to either side

of the roller.

Theorem 4.4.6. [23, Cor. 18] Let G be the Roll the Lawn position

G = RL[a1, a2, . . . , aj, ⊖, aj+1, . . . , ak]

and let bi = ai(mod2) with bi ∈ {0, 1}. Then

G =

i≤j

bi −

i>j

bi.

179

This can be seen from the fact that when the roller starts on one side of a bump,

it will finish back on the same side if the bump is even and on the other side if the

bump is odd. The winner will be the person who has more odd bumps on their side.

4.4.3 Cricket Pitch

4.4.3.1 How To Play

Unlike a normal lawn, certainly unlike my own, the greens on a cricket pitch are

meticulously kept. The cricket pitch is the strip of the cricket field between the

wickets. This tended strip of grass is kept very flat and the grass on it extremely

short. Once it is made perfect, it is not to be touched.

As such, the game of Cricket Pitch (or Roll the Cricket Pitch), as intro-

duced by Nowakowski and Ottaway [23], has the same ruleset as Roll the Lawn,

but with the added constraint that the roller cannot go over a 0.

We will again represent a position by a string of nonnegative integers and the roller

by the symbol ⊖. The string will be prefixed CL to denote that it is a Cricket

Pitch positions position.

Example 4.4.7.

CP[5, ⊖, 1, 2, 4]

R−→ CP[5, 0, 1, ⊖, 4]

L−→ CP[5, 0, ⊖, 0, 4] (Left has won)

For brevity, if the position includes a sequence of integers α = ⟨ai⟩ni=1, we then

make use of the notation α − 1 = ⟨ai − 1⟩ni=1. This notation is useful in that

from a starting position CP[α, ⊖, β], where α and β are strings of positive inte-

gers, the moves available to Left and Right are of the form CP[α1, ⊖, α2 − 1, β] and

CP[α, β1 − 1, ⊖, β2], respectively, where α = α1α2 and β = β1β2.

4.4.3.2 Reductions

A necessary observation from Nowakowski and Ottaway [23] is that anything outside

of a zero-bump from the roller is irrelevant. Since the roller can never pass over a

zero, it can be removed from the position without changing the game. Thus, we may

prune anything outside of a zero from the roller.

180

Lemma 4.4.8. [23, Obs. 19] For strings α and β of nonnegative integers,

CP[α, 0, β, ⊖, γ, 0, δ] = CP[β, ⊖, γ].

For example,

CP[2, 3, 0, 3, 4, ⊖, 1, 2, 0, 98] = CP[3, 4, ⊖, 1, 2]

They also gave us an important reduction that says that we can reduce all bumps

in play by 2 so long as we don’t move any below zero. In other words, a given Cricket

Pitch position is equivalent to that in which all bump sizes are increased by 2.

Lemma 4.4.9. [23, Lem. 20] For strings α and β of nonnegative integers,

CP[α, ⊖, β] = CP[α + 2, ⊖, β + 2].

If we repeatedly apply the act of pruning and reducing, we eventually reach a

position in which there are no bumps left, or there is a bump of size 1 but none of

size zero. That is, a position which can no longer be pruned or reduced further. We

call a position of this type reduced and pruned.

For example, we can take the following game and move it to a position that has

been reduced and pruned:

CP[3, 2, 5, 8, ⊖, 6, 2, 5, 7]

−→ CP[1, 0, 3, 6, ⊖, 4, 0, 3, 5] (reduce)

−→ CP[3, 6, ⊖, 4] (prune)

−→ CP[1, 4, ⊖, 2] (reduce)

4.4.3.3 Low Points

Nowakowski and Ottaway were unable to determine the value of all Cricket Pitch

positions, but they were able to determine the outcome class of a game based on the

relative low points amongst all odd integers on either side of the roller.

Definition 4.4.10. [23, Def. 21] In

G = CP[a1, . . . , am, ⊖, b1, . . . , bn],

181

the Left odd low point, denoted ldip, is

ldip(G) = min {ai : ai is odd and ∀j > i, ai < aj}

unless there is no such heap in which case ldip(G) = ∞.

Similarly, the Right odd low point, denoted rdip, is

rdip(G) = min {bi : bi is odd and ∀j < i, bj > bi}

unless there is no such heap in which case rdip(G) = ∞.

For example, the position CP[1, 2, 3, 4, ⊖, 1, 2, 3] has ldip(G) = 1 and rdip(G) = 1,

while the position CP[5, 2, 3, 4, ⊖, 2, 2, 3] has ldip(G) = 3 and rdip(G) = ∞.

With these tools in hand, they determine the outcome class based on the relation-

ship between these Left and Right odd low points.

Theorem 4.4.11. [23, Thm. 22] For G = CP[A, ⊖, B], the outcome classes are

determined by the odd low points as follows:

(i) If ldip(G) < rdip(G), then G ∈ L

(ii) If ldip(G) > rdip(G), then G ∈ R

(iii) If ldip(G) = rdip(G) < ∞, then G ∈ N

(iv) If ldip(G) = rdip(G) = ∞, then G ∈ P

4.4.3.4 New Results

Switch on the Pitch

For ease, when considering strings of nonnegative integers, we will denote a number

n of repeating integers by a superscript n. For example, the position CP[1, 1, 1, ⊖, 1]

would be denoted CP[13, ⊖, 1].

We first note the value of games involving only strings of ones on either side of the

roller. When at most one side of the roller contains any ones, the position is clearly

an integer.

Lemma 4.4.12.

CP[1a, ⊖] = a.

182

Proof. When a = 0, then CP[1a, ⊖] = CP[⊖] = 0.

If a > 0, then CP[1a, ⊖] =

⟨CP[1a′,⊖]⟩a−1

a′=0 |·


= {0, . . . , a− 1 |·} = {a− 1 |·} =

a.

Analogously, we see that CP[⊖, 1b] = −b. If both sides contain at least one 1,

then these values are switches.

Lemma 4.4.13.

CP[1a, ⊖, 1b] = { a− 1 | 1− b } .

Proof. For a, b > 0, then CP[1a, ⊖, 1b] =

⟨CP[1a′ , ⊖, 0a−a′ , 1b]⟩a−1

a′=0

⟨CP[1a, 0b−b′ , ⊖, 1b′]⟩b−1
b′=0


=

⟨CP[1a′ , ⊖]⟩a−1
a′=0

⟨CP[⊖, 1b′]⟩b−1
b′=0


= {0, . . . , a− 1 |0, . . . , 1− b} = {a− 1 |1− b}.

For example, CP[1, 1⊖, 1] = {1 |0} and CP[1, 1, 1, 1, ⊖, 1, 1, 1] = {3 |−2}.

Lemma 4.4.14. Let α, β, γ be (possibly empty) sequences of nonnegative integers and

let n ∈ Z>0.

CP[α, 2n, β, ⊖, γ] ≤ CP[α, (2n + 2), β, ⊖, γ].

Proof. Let G = CP[α, 2n, β, ⊖, γ] and H = CP[α, (2n + 2), β, ⊖, γ]. We consider the

game G−H with Left moving first. We claim that Left cannot win.

Any move that Left is able to make, Right can ‘mirror’ in the other other compo-

nent. Finally, we are reduced to the position

CP[0, β′, ⊖, γ′]− CP[α′, 2, β′, ⊖, γ′]

with Left to move. If on his move, Left does not cross a 1, then Right can mirror that

move in the other component, leaving a position of similar type. If Left crosses a 1

in γ′ then Right mirrors this playing to CP[0, ⊖, γ′′]− CP[0, ⊖, γ′′]. If Left crosses a

1 in β′, then Right mirrors again to

CP[β′′, ⊖, β′′′]− CP[α′, 2, β′′, ⊖, β′′′]

which is less than or equal to zero since CP[α′, 2, ⊖] ≥ 0.

183

An Odd Game

In order to arrive at the actual value of the game, we need two further reductions.

First, we even it out by giving a reduction that allows us to remove all even numbered

bumps leaving outside of it either a smaller odd number or a zero which could then

be pruned.

Lemma 4.4.15 (Even reduction). Let α, β, γ be (possibly empty) sequences of non-

negative integers and let c and n be positive integers with c odd.

(i) CP[α, c, 2n, β, ⊖, γ] =

 CP[α, 2n, β, ⊖, γ] c ≥ 2n

CP[α, c, β, ⊖, γ] c < 2n

(ii) CP[α, ⊖, β, 2n, c, γ] =

 CP[α, ⊖, β, 2n, γ] c ≥ 2n

CP[α, ⊖, β, c, γ] c < 2n

Proof. We can assume that for all b ∈ β, b ≥ 2n.

(i) Suppose c ≥ 2n. Let G = CP[α, c, 2n, β, ⊖, γ] and H = CP[α, 2n, β, ⊖, γ]. We

consider the game G−H and claim that it is a second player win.

If either player within β or γ, the ‘mirror’ response is available to the second player

in the other component to a position that is zero by induction. We must consider (a)

Left moving in G past 2n, (b) Left moving in G past c, and (c) Right moving in H

past 2n.

(a) If Left moves in G just past 2n to

CP[α, c, ⊖, (2n− 1), (β − 1), γ]−H,

the Right can respond by moving in H to

CP[α, c, ⊖, (2n− 1), (β − 1), γ]− CP[α, 2n, ⊖, (β − 1), γ].

From this position, Left must either move in the first component past the c or in the

second component.

If Left plays in the first component to some

CP[α1, ⊖, α2, (c− 1), (2n− 1), (β − 1), γ]− CP[α, 2n, ⊖, (β − 1), γ],

184

then Right can respond to

CP[α1, ⊖, α2, (c− 1), (2n− 1), (β − 1), γ]− CP[α1, ⊖, α2, (2n− 1), (β − 1), γ],

which is zero by induction since 2n− 1 ≤ c− 1 with c− 1 even.

If Right plays in the second component to a position of the form

CP[α, c, ⊖, (2n− 1), (β − 1), γ]− CP[α, 2n, (β − 2), γ1, ⊖, γ2],

then Right can respond to

CP[α, c, (2n− 2), (β − 2), γ1, ⊖, γ2]− CP[α, 2n, (β − 2), γ1, ⊖, γ2],

which by induction is

CP[α, (2n− 2), (β − 2), γ1, ⊖, γ2]− CP[α, 2n, (β − 2), γ1, ⊖, γ2]

since c ≥ 2n > 2n − 2. Thus Right wins playing second since by Lemma 4.4.14,

CP[α, (2n− 2), (β − 2), γ1, ⊖, γ2] ≤ CP[α, 2n, (β − 2), γ1, ⊖, γ2].

(b) If Left moves in G past c to

CP[α1, ⊖, (α2 − 1), (c− 1), (2n− 1), (β − 1), γ]−H,

then Right responds with the ‘mirror’ move in H to

CP[α1, ⊖, (α2 − 1), (c− 1), (2n− 1), (β − 1), γ]−CP[α1, ⊖, (α2 − 1), (2n− 1), (β − 1), γ]

which is zero by induction since (2n− 1) ≤ (c− 1) with c− 1 even.

(c) If Right moves in H past 2n, then Left can respond with the ‘mirror’ move in

G to some

CP[α1, ⊖, α2, (c− 1), (2n− 1), (β − 1), γ]− CP[α1, ⊖, α2, (2n− 1), (β − 1), γ]

which Left wins by induction since 2n− 1 ≤ c− 1 with c− 1 even.

(ii) Suppose c < 2n. Let G = CP[α, c, 2n, β, ⊖, γ] and H = CP[α, c, β, ⊖, γ].

Consider G−H.

Again, if either player within β or γ, the ‘mirror’ response is available to the

second player in the other component to a position that is zero by induction. We

185

must consider (a) Left moving in G past 2n, (b) Left moving in G past c, and (c)

Right moving in H past c.

(a) If Left moves in G just past 2n to

CP[α, c, ⊖, (2n− 1), (β − 1), γ]−H,

the Right can respond by moving in H to

CP[α, c, ⊖, (2n− 1), (β − 1), γ]− CP[α, c, ⊖, (β − 1), γ].

From this position, Left must either move in the first component past the c or in the

second component.

If Left plays in the first component to some

CP[α1, ⊖, α2, (c− 1), (2n− 1), (β − 1), γ]− CP[α, c, ⊖, (β − 1), γ],

then Right can respond to

CP[α1, ⊖, α2, (c− 1), (2n− 1), (β − 1), γ]− CP[α1, ⊖, α2, (c− 1), (β − 1), γ],

which is zero by induction since 2n− 1 > c− 1 with c− 1 even.

If Right plays in the second component to a position of the form

CP[α, c, ⊖, (2n− 1), (β − 1), γ]− CP[α, c, (β − 2), γ1, ⊖, γ2],

then Right can respond to

CP[α, c, (2n− 2), (β − 2), γ1, ⊖, γ2]− CP[α, c, (β − 2), γ1, ⊖, γ2].

By Lemma 4.4.14, this is at most

CP[α, c, (2n), (β − 2), γ1, ⊖, γ2]− CP[α, c, (β − 2), γ1, ⊖, γ2]

which is zero by induction since c < 2n.

(b) If Left moves in G past c to

CP[α1, ⊖, (α2 − 1), (c− 1), (2n− 1), (β − 1), γ]−H,

then Right responds with the ‘mirror’ move in H to

CP[α1, ⊖, (α2 − 1), (c− 1), (2n− 1), (β − 1), γ]−CP[α1, ⊖, (α2 − 1), (2n− 1), (β − 1), γ]

186

which is zero by induction since (2n− 1) ≤ (c− 1) with c− 1 even.

(c) If Right moves in H past 2n, then Left can respond with the ‘mirror’ move in

G to some

CP[α1, ⊖, α2, (c− 1), (2n− 1), (β − 1), γ]− CP[α1, ⊖, α2, (2n− 1), (β − 1), γ]

which Left wins by induction since 2n− 1 ≤ c− 1 with c− 1 even.

The following gives an example of how we can even out positions.

Example 4.4.16. Even it out:

CP[1, 1, 3, 2, ⊖, 1, 4, 5, 6, 3, 1, 2]

= CP[1, 1, 2, ⊖, 1, 4, 3, 1, 2]

= CP[1, 1, ⊖, 1, 3, 1, 2]

= CP[1, 1, ⊖, 1, 3, 1]

Low Points Are Big

Our final necessary reduction is based on the fact that since we cannot cross over

zeros, any larger integers outside of a smaller one from the roller do not ‘act’ any

larger and so we can, in fact, cut the tops off all bumps outside of the smaller integer

that are higher than it. That is, the number of times the roller crosses the smaller

inside integer is what determines the possible number of times the outside larger

integer can be crossed before it is pruned.

Lemma 4.4.17. [Low Point reduction] Let α, β, γ be (possibly empty) sequences of

nonnegative integers and let c, d ∈ Z>0 such that c and d are both odd with c < d.

Then,

CP[α, d, c, β,⊖, γ] = CP[α, c, c, β,⊖, γ],

and

CP[α, ⊖, β, c, d, γ] = CP[α, ⊖, β, c, c, γ].

187

Proof. Let G = CP[α, d, c, β,⊖, γ] and H = CP[α, c, c, β,⊖, γ]. We consider the game

G−H and claim that it is a second player win.

If Left plays in a component, Right can always respond with the ‘mirror’ move in

the other component. After such play, they finally reach a position

CP[α′, d′, 1, β′, ⊖, γ′]− CP[α′, 1, 1, β′, ⊖, γ′]

with d′ > 1 odd and Left to play. Again, Right can always mirror Left’s move in the

other component, until he crosses d′ to some position

CP[α1, ⊖, (α2 − 1), (d′ − 1)]− CP[α1, ⊖, (α2 − 1)] ≤ 0.

The following gives an example of how we can cut the tops off and keep it low.

Example 4.4.18. Keep it low:

CP[1, 1⊖, 3, 5, 1, 3, 3, 0, 7, 9]

= CP[1, 1⊖, 3, 5, 1, 3, 3, 0]

= CP[1, 1⊖, 3, 5, 1, 3, 3]

= CP[1, 1⊖, 3, 5, 1, 1, 1]

= CP[1, 1⊖, 3, 3, 1, 1, 1]

Main Theorem

Finally, all of this comes together to give us our game values. We notice that from re-

peated application we have equivalent games that are made up of odd, non-increasing

strings of integers as we move out from the roller. We also note that because of the

reduction of Lemma 4.4.9, the game is either CP[⊖] or there exists at least one 1 on

the outside of the roller.

This leads us to our main theorem which gives us the value of the game as the

ordinal sum of the game based on those outside ones and all the other bits in the

middle.

Theorem 4.4.19 (Ordinal Sum Approach). Let α = ⟨ai⟩mi=1 and β = ⟨bi⟩ni=1 be (pos-

sibly empty) sequences of odd integers such that ∀i < j, 1 < ai ≤ aj and bi ≥ bj > 1.

188

Let a, b ∈ Z≥0. Then,

CP[1a, α, ⊖, β, 1b] = CP[1a, ⊖, 1b]:CP[α, ⊖, β] = {a− 1 |1− b}:CP[α, ⊖, β].

Proof. Let G = CP[1a, α, ⊖, β, 1b] and H = CP[1a, ⊖, 1b]:CP[α, ⊖, β]. We claim that

G−H is a second player win.

If Left plays in G to CP[1k, ⊖] where 0 ≤ k < a, then Right can move to zero by

playing to the CP[1k, ⊖] in the H component.

If Left plays in G to some CP[1a, α1, ⊖, (α2 − 1), β, 1b], then Right can respond by

playing in H to CP[1a, ⊖, 1b]:CP[α1, ⊖, (α2 − 1), β], leaving position

CP[1a, α1, ⊖, (α2 − 1), β, 1b]− CP[1a, ⊖, 1b]:CP[α1, ⊖, (α2 − 1), β]

which is zero by induction.

Similarly, if Left plays in H to CP[⊖, 1k] where 0 ≤ k < b, then Right can move

to zero by playing to CP[⊖, 1k] in the G component.

If Left plays in H to CP[1a, ⊖, 1b]:CP[α, (β1 − 1), ⊖, β2], then Right can respond

by playing in G to CP[1a, α, (β1 − 1), ⊖, β2, 1
b], leaving position

CP[1a, α1, ⊖, (α2 − 1), β, 1b]− CP[1a, ⊖, 1b]:CP[α1, ⊖, (α2 − 1), β]

which is zero by induction.

The following gives an example of the application of this ordinal sum approach.

Example 4.4.20. Ordinal sum approach:

CP[1, 1, 5, ⊖, 7, 3, 1]

= CP[1, 1, ⊖, 1]:CP[5, ⊖, 7, 3]

= {1 |0}:CP[3, ⊖, 5, 1]

= {1 |0}:(CP[⊖, 1]:CP[3, ⊖, 5])

= {1 |0}:(−1:CP[1, ⊖, 3])

= {1 |0}:(−1:(1:−1))

= {1 |0}:

−1:1

2


= {1 |0}:3

4

= {1, {1 |0, {1 |0}} |0, {1, {1 |0, {1 |0}} |0, {1 |0}}}

189

Finally, we answer a question posed by Nowakowski and Ottaway in [23]. They

simply ask who wins in the game

CP[1, 2, 3, ⊖, 4, 1, 3]+CP[1, 1, 3, 2, ⊖, 1, 3, 1]+CP[3, 3, 2, 1, 2, ⊖, 2, 2, 1]+CP[1, 2, ⊖, 3, 1, 2].

We make use of all of our strategies to arrive at the solution.

CP[1, 2, 3, ⊖, 4, 1, 3] + CP[1, 1, 3, 2, ⊖, 1, 3, 1] + CP[3, 3, 2, 1, 2, ⊖, 2, 2, 1] + CP[1, 2, ⊖, 3, 1, 2]

= CP[1, 3, ⊖, 1, 3] + CP[1, 1, ⊖, 1, 3, 1] + CP[1, ⊖, 1] + CP[1, ⊖, 3, 1] (Even it out)

= CP[1, 3, ⊖, 1, 1] + CP[1, 1, ⊖, 1, 1, 1] + CP[1, ⊖, 1] + CP[1, ⊖, 3, 1] (Low points rule)

= {0 |−1}:1 + {1 |−2} + {0 |0} + {0 |0}:−1 (Main Theorem)

= {0, {0 |−1} |−1} + {1 |−2} + ∗ + ↓ ∗

= {{1 ↓, {1 ↓ |↓} |↓} | {−2 ↓, {−2 ↓ |−3 ↓} |−3 ↓}}

< 0

=⇒ Right wins

Thus, through the ordinal sum approach, we are able to provide them with the

actual value of the game. To have simply answered the question “who wins?”, we

could have stopped at the point right after we utilized the main theorem and noted

that the reduced canonical form of this simplifies everything quite nicely. In fact, we

see that

rcf (G) = {{1 |0} |{−2 |−3}} < 0.

Chapter 5

Conclusion

5.1 P-Positions: Where We Will End

“You learn from a conglomeration of the incredible past:

whatever experience gotten in any way whatsoever.”

- Bob Dylan

Understanding the underlying structure of a game can give rise to new solutions

and perspectives on how to approach a game. Once the hidden structure is known,

the analysis of a game can then sometimes follow rather simply. However, spotting

this often-camouflaged structure is the true art. Exploration of various interactions,

and further understanding of functions that describe these interactions, will help to

fill the combinatorial game theorists’ toolkit.

Once the interactions are spotted, understanding of the functions describing them

can be valuable. A better comprehension of how and when these functions can be of

use to us will allow us to better make use of these tools meant to simplify a game.

We have made use of these tools in order to obtain results for several games. We

were able to apply ordinal sums to give a solution to the game of lenres played on

zeros and ones and were also able to give an alternate solution to the game of shove.

Through the application of side-sums, we were able to identify a solution to the game

of restricted toppling dominoes.

In terms of the overarching structure of posets of games, this too can serve a

valuable purpose. Once we have a better understanding of the forms of games that

can exist within a classification of games, such as that of option-closed games, we

can gain insight into the restrictions that may be placed on options within that set.

190

191

Oslo games are a tractable subset of all loopy games. Understanding of their form

and structure may lead to insight into that of other loopy games. We have seen that

the addition of a Left pass can sometimes serve to simplify otherwise difficult games.

Through addition of the Left pass, we were able to fully solve the Oslo variants of

wythoff’s game, the known killer octal .007, and grundy’s game. We would

like to think that better understanding of these variants might give insight into the

non-Oslo variants of these games.

In general, answers always lead to more questions. As such, we now air the laundry

list of questions that have arisen during the work that has led us to this end.

5.2 N -Positions: Where We Want To Go Next

“We go in there and we work on altering those ideas

and in many cases go in different directions.”

- Les Paul

With respect to juxtapositions of games, part of the challenge is finding that

internal structure. How can you readily see/know when these structures exist? The

structures that we were able to describe in the analyzed games that made use of

both ordinal sums and side-sum was at first hidden, lurking within the nuances of

the games themselves. However, once “found”, clean solutions presented themselves.

How do we view these games in a different light so that we might illuminate that

which had first seemed to be camouflaged?

Much remains to be understood regarding the application of ordinal sums and

what their use is in simplifying a game.

Question 5.2.1. For games G and H, What can be said about the bounds of G:H−G

as a function of base G? As a function of both base and branch?

From the Branch Outcome theorem (2.2.11), we know that if a game H is confused

with zero, then G:H is confused with G.

Question 5.2.2. If starting with a game G′, can we find a base G and some H ∥ 0

such that G′ = G:H?

192

Question 5.2.3. Can every nonzero game be represented as an ordinal sum (with

nonzero base and branch)?

With respect to Oslo games, much is left to be done. Consideration of Oslo games

is still in its infancy. More questions remain open than have been answered. For now,

from the long list of possible topics to be explored, we briefly list those that might

be of the most relevance moving forward.

With respect to the structure of the lattice of Oslo games, many questions remain

open. For instance, while on will be the maximal element for all Oslo lattices, we

think that there will be a maximal element, specific to the day, sitting below on. If

this is so, what is the description of this maximal element? One could also look to

dimension of this lattice. What is the largest antichain formed from the set of join-

irreducibles? One could also explore sublattices; what cover-preserving sublattices, if

any, appear forever?

Yet another realm to explore is the possible applications of the side-out function.

What if we were to look at other forms of H⊙G. For instance, what about over⊙G.

Since over kills all-small games, how will over⊙G affect all-small games G? What

of under⊙G?

In terms of game application, further understanding of other “hard” games with

a Left pass would be interesting to look at. For instance, what can be said of the

Oslo version of other octal games or subtraction games?

Lastly, one final area that would certainly be worth pushing forward, would be the

application and understanding of uponic weight. What values can be obtained? The

surface of this concept has only just been scratched. However, it is clear that the game

upon∗ plays a leading role in Oslo games. Uponic weight is introduced as a possible

tool in better understanding that role. What if the values in the lattice of Oslo games

were changed to their uponic weight? How would this affect the structure? What

can be said of the underlying game based on the uponic weight of its Oslo version?

Currently our definition of uponic weight relates the uponic weight of an Oslo game

to the atomic weight of the passified version of the underlying game.

Question 5.2.4. What can be said of the relationship between a game and its passified

version?

193

Question 5.2.5. For a game G, can we find a bijection between the uponic weight of

oslo (G) and the atomic weight of the underlying game G?

In combinatorial game theory, we are always considering where to go next. As it

seems that answers breed questions faster than questions breed answers, we are sure

to have an unlimited supply of enticing work ahead and new directions to explore!

Appendix A

Rulesets

“You have to learn the rules of the game.

Then you have to play better than anyone else.”

- Albert Einstein

The following is a compilation of the rulesets of all games referenced in the thesis.

A.1 Cricket Pitch

The game of cricket pitch uses a row of nonnegative integers (or bumps) and a

roller that is placed between any two bumps or at either end. Left (Right) moves

the roller to the left (right), flattening each bump it passes over by 1. Once a bump

has been reduced to zero, the roller may not cross it again. At least one bump must

decrease in size at each move.

The game can be represented as a path graph with weighted edges. In this visual

representation, the bumps are edge-weights in the graph and the roller is located on

one of the vertices. On a move, the roller is moved to the left by Left (right by Right)

to another vertex. In doing so, the edge-weight of all edges traversed having positive

edge-weight is decreased by one. Edges having weight zero may not be crossed.

The game of cricket pitch was introduced by Nowakowski and Ottaway [23] as

an example of an option-closed game.

Variant: roll the lawn

194

195

A.2 Grundy’s Game

In grundy’s game, the only legal move is to split a single heap of tokens into two

smaller heaps of different sizes. The winner is the the player who is last able to split

a heap. For instance, a heap of size 4 can be split into two heaps, one of size 1 and

the other of size 3. However, it could not have been split into two heaps both of size

2. A heap of size 3 can be split into heaps of size 1 and 2. Heaps of size 1 and 2 can

no longer be split.

Variant: oslo grundy=grundy’s game with a pass for left.

A.3 Hackenbush

A position in the game of hackenbush consists of a edges colored black, white or

gray. The ground will be shown as a horizontal line. On a move, Left is allowed

to cut either black or gray lines. Right is allowed to cut white or gray lines. That

edge, along with any portion of the edges no longer connected to the ground is then

removed.

The game of hackenbush was first introduced by Berlekamp, Conway and Guy

in Winning Ways [3].

A.4 Independence Game

In the independence game, we start with a graph G and an independent set I ⊆
V (G) that is initally set to I = ∅. On her turn, Right chooses a vertex and adds it

to the set I such that I remains an independent set. On his turn, Left may swap 2

adjacent vertices, provided that I remains independent. The game ends when I is a

maximal independent set.

A.5 LenRes

The game of lenres is played on a sequence of integers. On his turn, Left is allowed

to move any integer from its current position, to replace (cover) any other integer

to the right (east) of it that is larger than, or up (north) from, it. Right is allowed

to move to cover to the right (east) any integer that is less than, or down (south)

196

from, it. Thus, the name comes from an acronym of the ruleset: Left-East-North,

Right-East-South.

The game of lenres was created by Richard Nowakowski in a fourth-year Intro-

duction to Game Theory class. It was originally considered by Richard Nowakowski

and Paul Ottaway who looked at it within a class of one-dimensional games that

they were interested in. They were able to analyze certain simple positions, yet no

meaningful conjectures were formed[22].

A.6 Maze

The game of maze is played on a board with a token starting in the top-left position.

Solid edges on the board are walls that may not be crossed. On a move, Left is

allowed to move the token downward any distance and Right is allowed to move the

token any number of squares to the right, neither moving it over a sold wall.

This game can be considered using multiple tokens on the same board. In this

case, the tokens do not affect one another, and so their positions can be thought of

as the disjunctive sum.

The game of maze was introduced in Lessons in Play [2] and considered by

Nowakowski and Ottaway in [23] and later by McKay, Nowakowski and Siegel in

[21].

A.7 Nim

In the game of nim, players take turns removing stones from distinct piles, called nim-

heaps. On a turn, a player may remove any number of stones, provided he removes at

least one, from any one pile. nim is the quintessential example of an impartial game.

nim was first introduced by Charles Bouton[6].

Variants: subtraction games, wythoff’s game

A.8 Octal Game .007

The octal game octal .007 is played on heaps of tokens. On a move, a player is

allowed to take 3 tokens from any one pile at which point he may split that pile into

197

2 separate heaps, if he would like. Thus, from heaps of size 0, 1 and 2, there are no

allowed moves. Thus, heaps of size 1 and 2 have value 0. From a heap of size 3, each

player has a move to 0 and so this has value ∗. From a heap of size 6, a choice exists

to split the remaining pile. Each player can move to either a single heap of size 3 or

to two heaps of sizes 1 and 2. Hence, this has value ∗2.

Variant: oslo(octal .007)=octal .007 with a pass for left.

A.9 Push

The game of push is played on finite strips of squares. Each square can either be

empty or occupied by a black or white piece. Left moves by choosing a black piece

and moving it one square to the left, Right by choosing a white piece and doing the

same.

At most one piece can occupy a square at a time. Any pieces immediately adjacent

and to the left of that which is being moved are also pushed one square to the left.

Once a piece is pushed past the left end of the strip, it is removed from play.

The game of push was introduced in Lessons in Play as a tool for demonstrating

various properties of games[2].

A.10 Restricted Toppling Dominoes

The game of X/Y-restricted toppling dominoes is played on a row of black,

white or gray dominoes. The X and Y in its name are placeholders for either “E” or

“W” and depict which direction Left and Right, respectively, are allowed to topple

their dominoes. The letter E, for east, implies toppling to the right and the letter

W, for west, implies toppling to the left. On his move, Left may choose either a

black or gray domino and topple it in the designated X direction. Every domino in

that direction also topples over. All toppled dominoes are removed from the game.

Right maybe topple either a white or gray domino in the designated Y direction, with

similar effect.

Variant: toppling dominoes

198

A.11 Roll The Lawn

The game of roll the lawn uses a row of nonnegative integers (or bumps) and a

roller that is placed between any two bumps or at either end. Left (Right) moves the

roller to the left (right), flattening each bump it passes over by 1 unless the bump

has already been completely flattened to zero. At least one bump must decrease in

size at each move.

The game can be represented as a path graph with weighted edges. In this visual

representation, the bumps are edge-weights in the graph and the roller is located on

one of the vertices. On a move, the roller is moved to the left by Left (right by Right)

to another vertex. In doing so, the edge-weight of all edges traversed having positive

edge-weight is decreased by one.

The game of roll the lawn was introduced by Nowakowski and Ottaway [23]

as an example of an option-closed game. Ottaway looked at this game under Misère

Play in his Ph.D. thesis [24].

Variant: cricket pitch

A.12 Shove

The game of shove is played on finite strips of squares. Each square can either be

empty or be occupied by a black or white piece. Left moves by choosing a black piece

and moving it one square to the left, Right by choosing a white piece and doing the

same.

When a piece is moved to the left one square, all pieces to the left of it on the

board are also moved over one square. Once a piece is pushed passed the left end of

the strip, it is removed from play.

The game of shove was introduced in Lessons in Play as a tool for demonstrating

various properties of games [2].

Variant: push

199

A.13 Subtraction Games

A subtraction game is played on a pile of stones. Each player is assigned a

subtraction set. On his turn, a player may remove any number of stones so long as

that number belongs to his subtraction set and provided that he removes at least one

stone from the pile.

Variant: nim

A.14 Toppling Dominoes

The game of toppling dominoes is played on a row of black, white or gray dominoes.

On his move, Left may choose either a black or gray domino and topple it either left

or right. Every domino in that direction also topples over. All toppled dominoes are

removed from the game. Right maybe topple either a white or gray domino, with

similar effect.

Variant: restricted toppling dominoes

A.15 Wythoff’s Game

wythoff’s game was introduced in 1907 by Willem A. Wythoff [33].

In wythoff’s game, play begins with two heaps of tokens. On a move, a player

may take any number of tokens from one pile or an equal number of tokens from both

piles, provided at least one token is removed on a turn. The player taking the last

token wins.

For example, starting from a set of heaps of size x and x+ y (x, y ≥ 0), a position

we will denote as W (x, x + y), legal moves are to any (i) W (i, x + y) for 0 ≤ i < x;

(ii) W (x, j) for 0 ≤ j < x + y; or W (k, k + y) where 0 ≤ k < x.

Variants: nim, oslo wythoff=wythoff’s game with a pass for left.

Bibliography

[1] Michael H. Albert and Richard J. Nowakowski. Lattices of games, preprint 2011,
to appear in Order.

[2] Michael H. Albert, Richard J. Nowakowski and David Wolfe. Lessons in Play:
An Introduction to Combinatorial Game Theory. A K Peters, Ltd., Wellesley,
MA, 2007.

[3] Elwyn R. Berlekamp, John H. Conway and Richard K. Guy. Winning Ways for
Your Mathematical Plays, volume 1. A K Peters, Natick, MA, 2nd edition, 2001.

[4] Kirby A. Baker. Dimension, join-independence and breadth in partially ordered
sets, Honors Thesis, Harvard University, Cambridge, MA, 1961.

[5] Garrett Birkhoff. Lattice Theory, 3rd edition. American Mathematical Society
Colloquium Publications, volume 25, 1967.

[6] Charles L. Bouton. Nim, a game with a complete mathematical theory, Annals
of Mathematics, Princeton(2), 3(1902), pages 35–39.

[7] Dan Calistrate. The reduced canonical form of a game. In Games of No Chance,
ed. R. J. Nowakowski, Cambridge University Press, Mathematical Sciences Re-
search Institute Publications 29, pages 409–416 (1996).

[8] Dan Calistrate, Marc Paulhus and David Wolfe. On the lattice structure of finite
games. In More Games of No Chance, ed. R. J. Nowakowski, Cambridge Uni-
versity Press, Mathematical Sciences Research Institute Publications 42, pages
25–30 (2002).

[9] John H. Conway. On Numbers and Games, A K Peters, Ltd., Natick, MA, 2nd
edition, 2001.

[10] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, UK, 2nd edition, 2002.

[11] Ben Dushnik and E. W. Miller. Partially ordered sets, American Journal of
Mathematics, Volume 63, #3, pages 600–610 (July 1941).

[12] Achim Flammenkamp. Sprague-Grundy values of octal games, wwwhomes.uni-
bielefeld.de/achim/octal.html (2011).

[13] Jonathan L. Gross and Jay Yellen. Graph Theory and its Applications, Chapman
& Hall/ CRC, Boca Raton, FL, 2nd edition, 2006.

[14] J. P. Grossman and Aaron N. Siegel. Reductions of partizan forms. In Games of
No Chance 3, Cambridge University Press, MSRI Publications 56, pages 427–445
(2009).

200

201

[15] P. M. Grundy. Mathematics and games. Eureka, 2 pages 6-8 (1939). Reprinted,
27, pages 9-11 (1964).

[16] Richard K. Guy. Unsolved problems in combinatorial games. In Games of No
Chance, ed. R. J. Nowakowski, Cambridge University Press, Mathematical Sci-
ences Research Institute Publications 29, pages 475–479 (1996).

[17] David Kelly and Ivan Rival. Planar lattices, Canadian Journal of Mathematics,
Volume XXVII, #3, pages 636–665 (1975).

[18] juxtaposition. (2010). In Merriam-Webster Online Dictionary. Retrieved Jan-
uary 19, 2010, from http://www.merriam-webster.com/dictionary/juxtaposition

[19] shove. (2011). In Merriam-Webster Online Dictionary. Retrieved January 17,
2011, from http://www.merriam-webster.com/dictionary/shove

[20] Neil Anderson McKay. Personal communication, August 2010.

[21] Neil A. McKay, Richard J. Nowakowski and Angela A. Siegel. Navigating the
Maze, submitted 2010.

[22] Richard J. Nowakowski. Personal communication, August 2010.

[23] Richard J. Nowakowski and Paul Ottaway. Option-closed games, submitted 2008.

[24] Paul Ottaway. Combinatorial Games with Restricted Options under Normal and
Misere Play, Ph.D. Thesis, Dalhousie University, 2009.

[25] Carlos Pereira dos Santos and Jorge Nuno Silva. Konane has infinite Nim-
dimension, Integers: Electronic Journal of Combinatorial Number Theory, Vol-
ume 8, #G02 (2008).

[26] Dierk Schleicher and Michael Stoll, An introduction to Conway’s Games and
Numbers, http://212.201.48.1/stoll/papers/games12.pdf (2004).

[27] Aaron N. Siegel. Combinatorial Games Suite, http://cgsuite.sourceforge.net
(2000), a software tool for investigating games.

[28] Aaron N. Siegel, Loopy games and computation, Ph.D. Thesis, University of
California Berkeley, 2005.

[29] Aaron N. Siegel. Reduced canonical forms of stoppers, Electronic Journal of
Combinatorics, Volume 13, #R57 (2006).

[30] Aaron N. Siegel. Coping with cycles. In Games of No Chance 3, Cambridge
University Press, MSRI Publications 56, pages 91–123 (2009).

[31] R. P. Sprague. Über mathematische Kampfspiele, Tohoku Mathematical Journal,
41, pages 438-444 (1935-36).

202

[32] Douglas B. West. Introduction to Graph Theory. Prentice Hall, Upper Saddle
River, NJ, 2nd edition, 2001.

[33] Willem Abraham Wythoff, A modification of the game of Nim, Nieuw Archief.
voor Viskunde (2), 7 (1907), 199-202.

Index

Inf , 36

Inf -dominated, 37

Inf -reversible, 37

cricket pitch, 179, 194, 198

grundy’s game, 132, 195

hackenbush, 64, 65, 195

independence game, 138, 195

lenres, 83, 195

maze, 172, 196

nim, 196, 199

octal .007, 135, 196

oslo grundy, 195

oslo wythoff, 199

oslo(octal .007), 135, 197

push, 91, 197, 198

restricted toppling dominoes, 105,

197, 199

roll the lawn, 177, 194, 198

shove, 91, 198

subtraction games, 196, 199

toppling dominoes, 63, 197, 199

wythoff’s game, 128, 196, 199

Albert, Michael H., 63, 92, 93, 117

all-small, 35, 35

Allen, Meghan R., xv

antichain, 49

arithmetic-periodic, 131

atomic weight, 39, 41

base, 65

Berlekamp, Elwyn R., 32, 83, 195

birthday, 20

born by day n, 21

born on day n, 21

bottom element, 46

bounded, 55

bounded from above, 53

bounded from below, 53

Bouton, Charles L., 196

branch, 65

Branch Outcome Theorem, 69

bypassing a reversible option, 17

Calistrate, Dan, 50, 56, 117

canonical form, 16, 18

ceiling, 51

chain, 49

children, 117

closed, 157

closed set, 117, 118

comparable, 14, 48

complete lattice, 54

confused, 14

converse, 49

Conway, John H., 195

cover, 46

Cox, Danielle N., xv, 83

Dilcher, Karl, xv

disjunctive sum, 7

distributive lattice, 56

203

204

dominate, 16

dos Santos, Carlos P., 32, 33

doubly-irreducible, 58

down-set, see lower set

dual, 50

dual statement, 50

dyadic rationals, 26

endgame, 6

ending condition, 4

equalish, 37

equivalent under ⋆, 41

even it out, 183

exceptional values, 132

far star, 40

first left option, 144

first player win, 10

first right option, 144

Flammenkamp, Achim, 132

Flemming, Paula, xv

floor, 50

followers, 5

functions

option-closure, 149

ordinal sum, 65

side-out, 126

side-sum, 99

game, 5

game adjacency, 63

game tree, 5

games born by day n, 46

Gift Horse Principle, 19

gift horses, 19

greatest lower bound, 53

Guy, Richard K., 195

Hackenbush-dimension, 34, 74

Hasse diagram, 46

identical, 19, see isomorphic

incentives, 20

incomparable, 14, 49

independence number, 138

independent set, 138

infimum, 53

infinite, 34

infinitesimal, 36

infinitesimally close, 36

infinitesimally-dominated, 37

infinitesimally-reversible, 37

infinitesimals, 36

isomorphic, 19

join, 53

join-irreducible, 57

juxtaposition, 63

juxtapositions, 62

lattice, 54

least upper bound, 53

Left, 3

left gift horse, 19

left incentives, 20

Left odd low point, 181

left options, 4

left win, 11

left-option-closed, 149

205

left-option-closed antichains, 158

left-option-closed sequence, 146

left-option-closure, 149

left-threat, 152

left-threatbare, 152

linear extension, 59

linear order, 59

literal form, 19

Liu, Joanne, xv

loop-free games, 110

loopy games, 4, 110

lower bound, 53

lower cover, 46

lower set, 51

generated by, 52

lower set generated by T , 52

lower set of T , 52

lowerset

principal, 52

maximal antichain, 49

maximal independent set, 138

maximum antichain, 49

McKay, Neil A., xv, 172, 196

meet, 54

meet-irreducible, 58

negative, 8

Nim-dimension, 32

nim-heaps, 24

norm, 147

normal play convention, 4

Norton product, 40

Nowakowski, Richard, xv

Nowakowski, Richard J., 63, 83, 92, 93,

117, 143, 172, 177, 179, 194, 196,

198

number, 28

Number Avoidance Theorem, 30

numberish, 37

numbers, 28

option-closed, 144

option-closed games, 143

option-closed lattice, 158

option-closure, 149

options, 4

order filter, see upper set

order ideal, see lower set

ordinal sum, 65

ordinal sums from day n, 78

Oslo, 112

Oslo games, 110, 112

Ottaway, Paul, xv, 83, 143, 172, 177, 179,

194, 196, 198

outcome, 11

outcome class, 10

partial order, 45

partially ordered set, 45

passify, 123

Paulhus, Marc, 50, 56, 117

period, 132

planar, 60

poset, 45

positions, 5

preperiod, 132

principal, 52

206

prune, 179

push & shove, see Anneka & Dorian

RCF, see reduced canonical form

realized, 59

reduce, 180

reduced and pruned, 180

reduced canonical form, 35, 37

removing a dominated option, 17

reverses through, 18

reversible option, 17, 18

Right, 3

right gift horse, 19

right incentives, 20

Right odd low point, 181

right options, 4

right win, 11

right-option-closed, 149

right-option-closed antichains, 159

right-option-closed sequence, 146

right-option-closure, 149

right-threat, 152

right-threatbare, 152

Robar, Fiona, xv

Rolfe, Leah, xv

saltus, 132

second player win, 10

self-dual, 50

short game, 5

short games, 4

side-out function, 126

side-sum, 99

side-sums from day n, 102

Siegel, Aaron N., 110

Siegel, Angela A., 196

Siegel, Anneka, xv

Siegel, Dorian, xv

Siegel, Eric, xv

Siegel, Laurie, xv

Silva, Jorge N., 32, 33

simplest number, 29

Smith, Gretchen, xv

Stewart, Kim, xv

sublattice, 54

supremum, 53

switch, 143

theorems

cricket pitch, 187

lenres, 89

oslo grundy, 132

oslo wythoff, 129

restricted toppling dominoes, 107

Branch Outcome, 69

option-closed lattice, 167, 170

Oslo lattice, 119

threatbare games, 156

threatbare, 152

threatbare games, 152

tiny-n, 151

top element, 46

TwoSlo, 140

up-set, see upper set

uponic weight, 124

upper bound, 53

upper cover, 46

207

upper set, 52

generated by, 52

principal, 52

upper set generated by T , 52

upper set of T , 52

vertical Maze positions, 172

white/black strings, 105

winning strategy, 10

Wolfe, David, 50, 56, 63, 92, 93, 117

Wythoff, Willem A., 128, 199

	List of Tables
	List of Figures
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgements
	Introduction
	Overview Of Thesis
	Combinatorial Games
	Fundamentals
	hackenbush
	Outcome Classes
	Canonical Form
	Birthdays
	Impartial Games
	Partizan Games
	Game Dimension
	Reduced Canonical Form
	Atomic Weight

	Partial Orders & Lattices
	Games Born By Day n
	Chains And Antichains
	Duality
	Floor And Ceiling Functions
	Lower And Upper Sets
	Join And Meet
	Lattices
	Linear Orders, Dimension & Planarity

	Juxtapositions
	Juxtaposition Defined
	Ordinal Sums
	Ordinal Sums Of Numbers
	Hackenbush-Dimension Applied
	Ordinal Sums From Day n

	Ordinal Sum Applied
	lenres
	When push Comes To shove

	Side-Sums
	Side-Sum Function
	Side-Sum From Day n

	Side-Sum Applied
	Restricted Toppling Dominoes

	Loopy And Oslo Games
	Loopy Games
	Oslo Games
	Oslo Game Values

	Lattice Of Oslo Games
	Closed Sets
	Closed Set Application To Oslo Games

	Passification And Uponic Weight
	Loopy Subtraction Games

	Side-Out Function
	Oslo Examples
	A Classic Oslo Variant
	``Hard'' Games Made Simple
	An Open Oslo Game
	The Next Moves

	Option-Closed Games
	Structure
	Option-Closure Function
	Literal Requirements
	Threatbare Games

	Lattice Of Option-Closed Games
	An Option-Closed Compendium
	maze
	Roll The Lawn
	Cricket Pitch

	Conclusion
	¶-Positions: Where We Will End
	N-Positions: Where We Want To Go Next

	Rulesets
	Cricket Pitch
	Grundy's Game
	Hackenbush
	Independence Game
	LenRes
	Maze
	Nim
	Octal Game .007
	Push
	Restricted Toppling Dominoes
	Roll The Lawn
	Shove
	Subtraction Games
	Toppling Dominoes
	Wythoff's Game

	Bibliography
	Index

