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Abstract 

 

The main goal is to develop decision policies for individual forest stand management.  It 

addresses three major areas of interest in the optimal management of individual forest 

stands: incorporating a two-species growth and yield model into a single stand 

management model, incorporating a comprehensive list of management options into a 

single stand management model, and incorporating uncertainty into a single stand 

management model.  Dynamic programming (DP) is a natural framework to study forest 

management with uncertainty.  The forest stand management problem, as modelled in 

this thesis, has a large dimensional state space with a mix of discrete and continuous state 

variables.  The DP model used to study this problem is solved by value iteration with the 

objective of understanding infinite horizon policies.  However, since some of the state 

variables are continuous, all states can’t be examined in an attempt to create the cost-to-

go function.  Therefore, the cost-to-go function value is calculated at a given stage of the 

algorithm at a finite set of state points and then the cost-to-go values are approximated on 

the continuous portion of the state space using a continuous function.  All of this is done 

with random processes impacting state transitions. 

 With the mixed-species growth model developed in this thesis, a comprehensive 

list of management options can be incorporated into the DP model and, with the addition 

of uncertainty from sources such as market prices and natural disasters, near optimal 

stand management policies are developed.  Solving the DP model with the required level 

of detail lead to the development of insight into function fitting on continuous state 

spaces and to the development of cost-to-go function approximation bounds.  Studying 

the policies shows that the addition of uncertainty to the model captures the dynamics 

between market prices and stand definitions, and leads to policies that are better suited to 

decision making in a stochastic environment, when compared with policies that are 

developed with a deterministic model.  Enough precision is built into the DP model to 

give answers to typical questions forest managers would ask. 
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Chapter 1: Introduction 

 

Forests are of vital economic importance throughout Canada.  For example, in the 

province of Nova Scotia, in 2009, the forest industry directly employed 7300 people and 

exported $0.8 billion worth of forest products (Natural Resources Canada 2010).  In order 

to maximize the benefit to the economy, it is critical that we be able to make proper 

managerial decisions with respect to the resource. 

This work focuses on specific issues related to the optimal management of an 

individual forest stand.  The landowner must decide on what silvicultural treatments to 

apply and when to apply them to meet current economic objectives and to ensure long 

term sustainability of the resource.  These decisions include whether to do pre-

commercial thinning and at what age and spacing, whether to do commercial thinning 

and at what age and intensity and whether to replant or to let the forests naturally 

regenerate after regeneration harvesting.  The decisions also include whether to pursue 

even-aged or uneven-aged management. These decisions must be based on knowledge of 

the current state of the forest but also on the effects of these silvicultural treatments on 

the future state of the forest. 

Because of the length of the growth period of a forest stand and the complexity of 

management policies, it is necessary to use models in order to predict future effects of the 

silvicultural treatments on the state of a forest stand.  To study these effects, managers 

need to properly understand the growth dynamics as well as the yield potential of this 

complex mix of species.  Using this knowledge, they need to develop decision models 

that incorporate market dynamics, growth and yield (GNY) dynamics and potential 

natural disasters such as insect outbreak or hurricanes.  Models will be presented in 

chapter 2 and the application of those models is discussed in detail in chapter 3.  The role 

of decision models is to compute optimal policies that allow decision makers to manage 

the resource while facing uncertain outcomes from their decisions. 

 In this chapter, we establish the interest of this work which is to develop decision 

policies for real problems.  This leads to a discussion of the challenges in dealing with 

these real problems and concludes with the contribution of this work.   
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1.1 Main Areas of Interest 

 

The main goal of this thesis is to develop decision policies for individual forest 

stand management.  More specifically, we deal with the issues faced when developing 

optimal policies for mixed-species even-aged stands in a stochastic environment.  This 

research addresses three major areas of interest in the optimal management of individual 

forest stands: 

 

i. Incorporating a two-species growth and yield model into a single stand 

management model 

 

 When studying forest management, growth and yield models are necessary tools.  

They can be divided into two broad categories: individual tree growth models and whole 

stand growth models.  Both are simple yet useful abstractions of a complex biological 

system.  Individual tree models are not discussed.  The reader is directed to these papers 

for an overview of these models (Andreassen and Tomter (2003), Zhao et al. (2004), 

Yang et al. (2003), Huang and Titus (1999)).  In Nova Scotia, the Department of Natural 

Resources (NS DNR) has developed separate softwood and hardwood stand level growth 

and yield models (NSDNR (1993b), O’Keefe and McGrath (2006)).  In section 2.7, we 

propose a method for combining these models to allow modeling of the growth of two 

species groups together in the same stand.  Species groups refer to groups that have 

distinct growth dynamics and need to be combined together into a single stand.  The 

modeling results are presented in chapter 3. 

 

ii. Incorporating a comprehensive list of management options into a single stand 

management model 

 

 The simplest way to describe an individual forest stand is to use the stand age.  A 

simple stand will have a single species and management can be represented as one 

decision, the age at which to harvest the stand.  This type of decision making, which can 
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be done visually on a graph (Faustmann 1849) is important to understand the basic 

behaviour of individual forest stands.  Chapter 2 will discuss these models in detail. 

 Growth dynamics and decision making for real forest stands is more complex.  

Typical stands have more than one species and each species grows differently.  Chapter 2 

presents the models for combining more than one species on the same stand and chapter 3 

presents results of the application of those models.  Growth of a stand depends on many 

factors such as land capability, diameter of the trees, stand basal area, age and previous 

silvicultural treatments.   

 If we have complex forest stands that include multiple species that have different 

continuous growth rates, we need to find a way to make optimal decisions about the 

silvicultural treatments to apply to these stands.  The list of silvicultural options is 

extensive and complex.  They will be presented in chapter 2 and, in chapter 4, we discuss 

how they are incorporated into one model. 

 

iii. Incorporating uncertainty into a single stand management model 

 

 Uncertainty is a fact of life regardless of the planning horizon.  Three of these 

sources of uncertainty are discussed in detail.   

 

1) Market price uncertainty for wood products.   

2) Natural disasters such as forest fires, hurricanes and insect outbreaks.   

3) The length of the regeneration period of a natural stand. 

 

Dynamic programming (DP) is a natural framework to study forest management 

with uncertainty.  Optimal management regimes (Pelkki 1999), uncertain market price 

dynamics (Yoshimoto 2002) and changing forest growth conditions (Jacobsen and 

Thorsen 2003) are some of the areas where DP has been applied.  In this thesis, the 

sources of uncertainty discussed above have been incorporated into a stochastic dynamic 

programming model aimed at providing optimal decision policies.  This model is 

formulated in chapter 4. 
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Most individual forest stand management models found in the literature take a 

simple approach with simplified state variables and decision structures.  We attempt to 

advance the science of individual forest stand modeling by using a more detailed state 

representation that allows for the use of more realistic growth models and the 

examination of more complex silvicultural alternatives.  In chapter 4, we examine the 

contrast between the level of detail in previous research and what we propose in this 

thesis. 

 

1.2 The Challenges for a Dynamic Programming Approach 

 

In this work, we consider a stochastic setting with more treatment types, and 

management alternatives and a more complex state space than has been found in the 

literature.  Our approach is based on stochastic approximate dynamic programming and 

we will discuss the insights that can be gained from this approach in the next section. 

The complexity of DP models for individual forest stand management 

optimization can be measured by the amount of detail in 4 areas: forest state descriptors, 

treatment types, market price levels, and management decisions. 

Forest state descriptors are variables that describe the state of the stand at any 

given point between beginning of growth and regeneration harvesting.  In the literature, 

variables such as volume, residual basal area or number of trees describe stand density 

(Haight et al. (1985), Brodie and Kao (1979), Amidon and Akin (1968)).  In some 

studies, the use of volume alone was appropriate to discuss rotation ages for pure, single 

species, even-aged stands.  The rotation age is the planned number of years between the 

formation or regeneration of a crop or forest stand and its final cutting at a specified stage 

or maturity (Canadian Forest Service 2010).  Other studies required the use of residual 

basal area and number of trees to describe the state of the stand in order to study the 

impact of partial harvesting on the optimization of stand management.  In this work, the 

number of state variables is sufficient to give an appropriate understanding of the growth 

and yield dynamics for a stochastic two-species forest stand management model. 

Treatment types reflect the history of the past decisions that have been made 

about the management of the stand.  The majority of the reviewed papers optimize 
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models for one treatment type at a time (Arthaud and Klemperer (1988), Peltola and 

Knapp (2001), Brodie et al. (1978)) or don’t differentiate between treatment types.  Most 

studies use variables that can describe the state of the stand regardless of treatment 

history.  Lien et al. (2007) use volume only to describe the stand in a study of the effect 

of risk aversion on the management of recently harvested forest land in Norway.  They 

study one type of stand.  Haight et al. (1985), Brodie and Kao (1979), Amidon and Akin 

(1968), Arthaud and Klemperer (1988), Brodie et al. (1978) all applied methods that 

optimize the management of a stand over a set of decisions that keep the stand type as a 

natural or plantation through the entire optimization horizon without changing from one 

to the other.  Here, we add decisions that can change the treatment type of the stand from 

plantations to natural stands and vice-versa.  Five treatment types are considered. 

Market price levels, or market states, are selling prices for wood products 

removed from a stand.  Rollin et al. (2005) use low, medium and high market states to 

study the management of uneven-aged forests in the French Jura.  Haight and Holmes 

(1991) used 40 price levels to study the relationship between the age of a stand and 

market prices, and their effect on the cut / no cut decision for loblolly pine plantations in 

the south-eastern US.  In this research, we use a sufficient number of market states to 

capture the dynamic nature of the decision policies and we’ll see that three price levels 

are not sufficient in some cases. 

Management decisions are options available to the forester in order to remove 

trees from a stand to either encourage better growth of the remaining trees or to create 

revenue.  Most studies limit the number of decisions either for simplicity (Lien et al. 

2007) or because of limitations to the size of the model being used (Haight et al. 1985).  

Here, a forest stand is represented by a dynamic system that is evolving over time.  In 

addition to the dynamics of the stand, market dynamics have an impact on the structure of 

the DP model and on the decision policies.  The decision maker will observe the state of 

the forest stand and the state of the market, and make decisions about the silvicultural 

treatments to apply to the stand. 

The decision structure in individual forest stand management optimization models 

is the most important issue.  As the state of the stand and the market state evolve, the 

timing of the observation of those states has an impact on the structure of the DP model.  
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Whether we observe the state of the stand and of the market before or after making a 

decision will have an impact on how the stochastics are incorporated into the DP 

recursion equation.  These impacts will be discussed in detail in chapter 4.  

 Dealing with a high dimensional state space poses challenges for dynamic 

programming.  We use stochastic dynamic programming because it is the only 

optimization technique that allows us to deal with the stochastic nature of decision 

making in individual forest stand management.  One approach to developing DP in a 

multi-dimensional state space with several continuous variables is to choose a small 

number of discrete states and to evaluate the cost-to-go (CTG) function at those chosen 

states.  In our context, we can’t analytically determine the exact value of the CTG 

function for any state.  Therefore we develop an approximation function.  Regression was 

the first technique used to approximate the CTG function but the complexity of the state 

space made it impossible for multiple regression to always give an appropriate 

approximation without using some sort of bounding scheme to limit its function 

approximation value.  Therefore, we develop an approach, based on approximation based 

control, for creating bounds on the approximation of the CTG function.  A radial basis 

functions (RBF) gives proper approximations for most values of the cost-to-go function 

because it interpolates between values.  However, its implementation isn’t trivial.  In 

addition, in some instances, the shape of the approximating curve between discrete states 

causes some combinations of state variable values to yield inappropriate approximations.  

Distance weighted interpolation (DWI) has proven to be accurate in approximating the 

CTG function as long as the distances used in the weighting scheme are properly scaled.  

The implementation of these techniques and the challenges they bring are discussed in 

chapter 4 and 5 and results show that they all lead to policies that are close to optimal. 

Stochastics force the structure of the problem to change when compared to a 

deterministic problem and has been a major challenge for researchers in this field.  There 

are several proper ways of dealing with the stochastics but the deciding factor is the 

timing of the silvicultural decision with the timing of when you learn the value of the 

uncertain variables such as market prices.  Many studies give policies that don’t allow the 

decision maker to observe the state of the forest stand and market prices before the 

making a decision (Kao and Brodie (1979), Pelkki and Arthaud (1997), Pelkki (1997), 
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Arthaud and Pelkki (1996)).  These studies do not take advantage of DP to develop 

proper decision policies.  Studies which properly account for the stochastic aspect of 

forest management include Haight et al. (1985), Haight (1993), Haight (1991) and Hool 

(1966).  We want to add more detail to make the resulting management policies more 

useful to forest managers.  We can develop policies that account for the stochastic aspect 

of forestry by using DP as described in chapter 4 while structuring the problem so that the 

variable nature of the prices of the wood products market and the unpredictable nature of 

natural disasters such as insect outbreaks, forest fires and hurricanes are modeled at a 

level of detail that allows us to study their effect on policy.   

 

1.3 Contributions of this Research 

 

The model developed in this research solves an infinite horizon discounted 

stochastic dynamic programming problem for a mixed-species forest stand.  As discussed 

briefly in section 1.1, mixed-species in our context refers to two species groups.  Value 

iteration is used to solve the DP algorithm and cost-to-go function approximations, for 

the continuous portions of the state space, are done using three different approximation 

architectures, the results of which are discussed in chapter 5.  This section gives a brief 

overview of the contributions of this thesis which are mostly in the areas of the impact of 

uncertainty and mixed-species modelling on decision making in individual forest stand 

management. 

There were no mixed-species whole stand models readily available to us so we 

develop a method, based on the concept of crown closure, for combining single-species 

models together in a mixed-species growth model.  Essentially, spacing between trees 

drives diameter growth and spacing is a function of crown closure.  We take advantage of 

this relationship and develop a methodology for combining and growing two or more 

species types together in one stand.  This has helped us understand the relationship 

between two species at a stand level and is an important contribution.  Simulation and 

function fitting were used to develop knowledge of how stands react to having different 

types and percentages of basal area removal.  The final model includes user adjustable 

variables such as forest stand characteristics along with economic parameters such as 
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silvicultural costs, market prices and user definable discount rates.  The proposed 

approach gives us a great deal of flexibility in studying the interaction between species in 

the same stand.   

Silviculture is a complicated process and the approach developed in this thesis 

allows us to examine pre-commercial thinning, commercial thinning, plantations and 

regeneration in one model and leads to the development of complex transitory policies.  

These complex policies then allow us to discuss the trade-off between taking all the wood 

on a stand with a regeneration harvest versus taking a proportion of it with a commercial 

thinning and leaving some behind for a future harvest.  The impact of this added decision 

flexibility is discussed and is a contribution of this work. 

In chapter 4, we establish the framework for incorporating stochastics into the DP 

model and we establish that the timing of the decision in reference to the observations 

made by the decision maker of the state of the market and the forest stand has an 

important impact on the structure of the DP algorithm.  Essentially, the foresters need to 

understand uncertainty and the impact of not incorporating it into their models.  The key 

is to focus on the decision problem, to exploit uncertainty and to not make decisions 

based on average prices.  In the same chapter, the importance of incorporating this 

information into the DP model is discussed.  The value iteration approach developed for 

solving the DP algorithm with the level of detail required to make decisions while 

considering a high dimensional state space, a comprehensive list of management options 

and stochastic elements is an important contribution.  To the best of our knowledge, this 

level of detail has not previously been combined into a single stand-level management 

model.   

Trying out different function fitting methodologies for the CTG function has led 

to some insight into the relationship between the methodology and the definition of the 

state space it is fitting on.  As we demonstrate in chapter 5, proper scaling of the values of 

the variables in these models can be the difference between a good fit and a very bad fit.  

This work will show that some methodologies are good at approximating a function value 

for points that are close to evaluation states in state space     but aren’t very good at 

approximating a function value for the continuous portion of the state space between 

evaluation states.  We’ll discuss why this is so.  The complexity of the state space and the 
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challenge it poses has led to the implementation of CTG function approximation bounds, 

derived from control theory.  These bounds guarantee consistency as defined by 

Bertsekas (2000) and, although it is mostly a technical issue, their application in this 

context is a contribution of this research. 

 

1.4 Overview of Thesis 

 

Figure 1-1 shows a flow chart which gives an overview of this thesis and guides 

the reader in understanding the links between topics.  The three main areas of interest are 

described in section 1.1 and are identified at the top of figure 1-1.  The basics of forest 

management and the details of combining two species together are presented in chapters 

2 and 3.  Chapter 4 focuses on the development of approximate dynamic programming 

approaches to the individual forest stand management optimization problem and critical 

issues related to these approaches.  More specifically, it’s the amount of detail required to 

study the main areas of interest that has created challenges which are discussed in detail 

in chapter 4.  Chapter 5 presents results in four sections, each of which is related directly 

to the three main areas of interest.  Chapter 6 discusses how the goals set out in the thesis 

have been met, reflects on the contribution of this work, and presents some opportunities 

for future research. 
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Figure 1-1 – Flow chart of thesis structure 
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Chapter 2: Issues in Forest Management and Forest Stand Growth Models 

 

 Some of the forest management terminology and approaches used in this 

document are specific to Nova Scotia.  The single-species growth models have been 

developed by Nova Scotia Department of Natural Resources based on data collected in 

Nova Scotia which renders them specific to this jurisdiction.  Applying this approach to 

another jurisdiction would require replacing the growth models in the DP model with 

jurisdiction specific growth models.  Forest stand management options used as actions in 

the DP model are applied as suggested in the Forestry Field Handbook published by 

NSDNR.  This chapter presents forest management as it applies to Nova Scotia and as 

implemented in this thesis.  The context of the models in this work is established in the 

introduction.  Sections 2.2 to 2.4 present detailed forest stand definitions and section 2.5 

discusses the regeneration period that precedes the establishment of growing stock in a 

recently harvested stand.  Section 2.6 presents methods for growing a single-species 

forest stand while section 2.7 discusses a proposed approach to combining two species 

into a mixed-species stand along with arguments which support its use.  Section 2.8 

discusses yield calculations for single-species stands and how this extends to a mixed-

species stand.  Section 2.9 presents approaches to modeling natural disasters.  The focus 

of this chapter is on establishing single-species individual stand definitions, on describing 

procedures for combining those two species into a single stand and growing it, and on 

discussing the effects of natural disasters on mixed-species stands. 

 

2.1 Introduction 

 

Three levels of forest management are recognized: individual tree level, stand 

level and forest level (Davis et al. 2005).  Each of these levels of management requires 

the use of specific modeling and optimizing techniques which are briefly presented here. 

Individual tree management models require knowledge about the characteristics 

of every tree in a stand and thus can’t be developed without having a very well structured 

long term data collection program.  Many studies have focused on using individual tree 

models as the basis for better understanding the growth and yield dynamics of a forest 
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stand (Andreassen and Tomter (2003), Hynynen and Ojansuu (2003), and Zhao et al. 

(2004)).  These models look to understand the interactions between trees in a stand by 

considering descriptive information such as tree species, tree age and tree diameter, and 

spatial information such as the spacing between trees.  This information is used to 

develop detailed knowledge about individual tree growth and mortality so stand models 

can be constructed in which growth and mortality for all individual trees are combined to 

get average stand growth.  Multiple linear regression and artificial neural networks 

(ANN) have proven to be useful tools in the development of these growth and mortality 

models.  ANN`s are particularly well suited for the binary response of tree mortality 

(Guan and Gertner (1995), Hasenauer et al. (2001)).  The ANN can be programmed to 

give a binary output based on any given number of inputs.  This type of analysis can lead 

to very detailed knowledge of how stands grow but the level of detail and data, 

descriptive and spatial, required in order to obtain that knowledge is difficult to find. 

 “A forest stand is a community of trees possessing sufficient uniformity in 

composition, age, arrangement, or condition to be distinguishable from the forest or other 

growth on adjoining areas, thus forming a silvicultural or management entity” (Canadian 

Council of Forest Ministers 2010).  Stand level models can vary from simple single state 

representations of volume over time to more complex, multi state models which attempt 

to more accurately represent the factors that determine tree growth and mortality.  These 

more complex stands are discussed later in this chapter.   

Forest level management refers to the large scale landscape level management 

where, typically, the goal is to maximize long term objectives such as maximum 

sustained yield and/or maximum connectedness of unharvested areas to protect fauna, 

among others.  In forest management, the term forest refers to an area managed for the 

production of timber and other forest produce, or maintained under woody vegetation for 

such indirect benefits as the protection of watersheds, the provision of recreation areas, or 

the preservation of natural habitat (Canadian Council of Forest Ministers 2010).  

Individual stands that make up a forest will typically have different characteristics.  A 

forest can contain many thousands of stands thus requiring each stand to have a simple 

definition so the model doesn’t become too cumbersome to manage.  Optimizing the 

management of a forest requires the optimization of a forest level objective while making 
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individual stand harvesting decisions.  Optimal management policies for this type of 

application are often developed using a number of operations research (OR) techniques 

including, but not limited to, linear programming, integer programming, simulation and 

goal programming. 

Many textbooks have been written on the subject of using OR techniques to 

develop forest management policies (Buongiorno and Gilless (2003), Davis et al. (2005)).  

As discussed in the first chapter, the objective of this thesis is to develop optimal 

management policies for mixed-species even-aged individual forest stands.  In this 

chapter, we discuss stand level management especially as it applies here.  We start by 

discussing simple single-species even-aged stand level growth and yield (GNY) along 

with a basic set of stand management options or decisions to be made.  A host of 

management objectives are briefly discussed and put into context.  Some of them aren’t 

applicable to our problem and the reasons are discussed.  The addition of a second 

species to a stand requires additional stand variables and the expansion of the list of stand 

management options.  We will discuss why this is important and how it affects this work. 

The last section discusses the impact of natural disasters on forest stand management and 

presents our modeling approach. 

 

2.2 Basic Forest Stand Definitions 

 

In general, the literature distinguishes between 4 types of forest stands (Smith et 

al. 1997).  Pure even-aged stands are stands in which at least 80% of the trees in the main 

crown canopy are of a single species (Canadian Council of Forest Ministers 2010) and 

are typically stands that, after the last regeneration harvest or removal of all trees on the 

stand, were planted or were treated to remain single-species stands by removing most of 

the competing vegetation.  Slightly more complicated are the stands that grow from 

advanced regeneration, small trees growing under the canopy, present before a 

regeneration harvest.  These stands aren’t studied directly here but the concept of a stand 

containing advanced regeneration is important and will be discussed in section 2.5.  

Uneven-aged stands have trees or groups of trees at different stages of development and 

have more complex growth patterns.  Uneven-aged stands are not discussed in this thesis.  
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Mixed-stands have more than one species and can be even-aged or uneven-aged which 

makes them even more complicated to manage.  This discussion starts with pure even-

aged stands and moves towards the more complex stands.  

The simplest way to describe a pure even aged stand is to use one stand variable 

such as age where the age refers to the age of the stand since its last regeneration harvest 

and is the first basic variable used in calculating the volume of a stand.  Volume refers to 

the total volume of wood products such as boards, veneer, fibre and other commercial 

products that can be extracted from the trees on a stand and is typically measured in m
3
.  

There are charts available to calculate these volumes for any given stand based on 

characteristics that can be observed on the stand such as age (Keys and McGrath 2002).   

 

Figure 2-1 – MAI curves for a fully stocked natural unmanaged red spruce stand 

(NSDNR 1993a) 
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Figure 2-1 shows the rate of growth of fully stocked natural unmanaged red 

spruce stands in Nova Scotia (NSDNR 1993a).  The concept of stocking is discussed in 

the next section.  The graph has 4 different scales: the bottom axis is the age in years 

since the last regeneration harvest, the left axis is mean annual increment (MAI) in metric 

units which is defined below, the top axis is the quadratic mean stand diameter which we 

will discuss in detail in section 2.3 and the right axis is MAI in imperial units.  MAI is the 

average annual volume growth of the stand per year since the last regeneration harvest 

and is measured in m
3
 per hectare per year (m

3
·ha

-1
·yr

-1
) in metric units and cords of 

stocked wood per acre per year (cds·ac
-1

·yr
-1

) in imperial units.  Metric units are used in 

this thesis.  MAI is calculated by dividing the total volume of wood on a stand by the age.  

For example, a stand with 212
 
m

3
 of wood at age 40 would have a mean annual volume 

increment of 5.3 m
3
·ha

-1
·yr

-1
 at age 40.   

LC class in this graph refers to land capability class of the stand.  LC is an 

indicator of the rate of growth of the volume of wood on a stand.  A higher LC indicates a 

stand that has capability for a higher rate of volume growth.  The red and green curves on 

the graph plot the average volume growth of the stand per year since the last regeneration 

harvest for stands of different LC classes.  Total volume on any stand continues to grow 

until the stand dies.  But the rate of growth, MAI, changes throughout the entire life of 

the stand.  The steep part of the curve at low stump ages reflects the rapid growth of 

wood volume in young stands.  MAI rises to a maximum value and then drops as the rate 

of growth of the trees on an old stand slows down.  The example of MAI given in the 

previous paragraph falls on the curve for LC 6.     

Ideally, from the point of view of volume growth, the stand would be cut at peak 

MAI.  Based on the curves in figure 2-1, the stand would be cut at different ages 

depending on the LC of the stand.  If the objective is to maximize total volume over time, 

the rotation age can be chosen to be the age at peak MAI.  The rotation age is a recurring 

age at which a regeneration harvest is done. 

A stand with LC 12 has a peak MAI at age 40 and figure 2-1 indicates a sharp fall 

off before and after that age therefore there is a very narrow range of ages at which MAI 

is at or near its maximum.  However, most stands in Nova Scotia are measured as LC 4 to 

6 and very few stands are above LC 6.  Although the MAI curve for LC 5 in figure 2-1 



16 

shows peak MAI is reached around age 70, MAI stays relatively constant between ages 

55 and 90 ranging between 5.0 and 5.3 m
3
·ha

-1
·yr

-1
.  So, choosing a rotation age that 

maximizes MAI, in this case, may be mathematically simple but, in practice, other 

management objectives may need to be considered and there may be times where cutting 

before or after peak MAI is a better decision. 

Table 2-1 shows the total volume and MAI for a stand with LC 6.  MAI is the 

total volume divided by the age of the stand.  Based on the table and using an objective of 

maximizing MAI for a stand with LC 6, we should cut the stand between the ages of 60 

and 70 years even if the volume of wood on the stand continues to grow up to 100 years.  

It only takes 60 years to get to 372 m
3
 of wood.  If we wait to age 100 before harvesting 

the stand, the volume will grow to 550 m
3
 which is a gain of 178 m

3
 in 40 years.  If the 

stand is cut at age 60 and begins growing again, it will grow to 212 m
3
 by the time it 

reaches age 40 which is 34 m
3
 more than letting the stand grow to age 100 without 

harvesting at age 60.  A 60 year cycle followed by a 40 year cycle yields 584 m
3
 while a 

100 year cycle yields only 550 m
3
.  Strictly on a volume basis, the first option is the 

better one.  We observe that two 50 year cycles would yield an even higher total volume 

of 600 m
3
.  MAI stays relatively unchanged between the ages of 50 and 90 years which 

will lead to a variety of optimal policies when the management period is short enough to 

include only a few growth and harvest cycles. 

 

Table 2-1 – MAI and corresponding volume for a fully stocked natural unmanaged red 

spruce stand (LC 6) 
Age (years) 20 30 40 50 60 70 80 90 100 

Total volume (m
3
) 24 105 212 300 372 434 480 522 550 

MAI (m
3
·ha

-1
·yr

-1
) 1.2 3.5 5.3 6 6.2 6.2 6 5.8 5.5 

 

The data shown in figure 2-1 and table 2-1 are for a fully stocked natural 

unmanaged red spruce stand in Nova Scotia and the curves would be different for other 

types of stands.  In the case described above, if the only objective is the maximization of 

total volume, the management policy is simple: determine LC for the stand, check the 

chart and cut the stand at the age indicated by the highest point of the MAI curve that 

corresponds to the land capability of the stand.  Repeat the cycle.   
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 Wood products created from cutting trees on a stand can be divided into many 

types such as wood fibre for pulp, firewood, construction material, and veneer.  For the 

purpose of our discussion and for the rest of this document, those products will be 

divided into two categories: merchantable volume (  ) and sawtimber volume (  ).  

Merchantable refers to a tree or stand that has attained sufficient size, quality, and/or 

volume to make it suitable for harvesting (Canadian Council of Forest Ministers 2010).  

In Nova Scotia, merchantable volume is the inside bark volume, per unit area, of trees 

with minimum diameter of 9 cm at diameter breast height.  The merchantable bole 

excludes the stump (15 cm height) and top portion of the bole < 7.6 cm diameter inside 

bark.  Sawtimber refers to trees that will yield logs suitable in size and quality for the 

production of lumber (Canadian Council of Forest Ministers 2010).  Here, sawtimber 

volume is the inside bark bole volume, per unit of area, of trees greater than 14 cm at 

diameter breast height.  The sawtimber bole excludes the stump (15 cm height) and top 

portion of the bole < 10 cm diameter inside bark.  When a stand begins growing, it 

doesn’t contain any    and when the trees reach a certain minimum diameter, which 

depends on the tree species, it contains    but no   .  As the stand ages, the total 

volume grows but the proportion of    gradually shifts towards 100%   .  Therefore, 

depending on the type of product the land owner wants to produce on his/her land, strictly 

managing to maximize MAI might not be the best objective. 

Maximizing the value of the wood products instead of only the volume on the 

stand will most certainly change the optimal policy.  The unit used for calculating the 

value of wood on the stand is $/m
3
 and is higher for    than the rest of   .  As the 

volume of wood products on the stand continues to grow throughout the life of a stand, so 

does the total value of the stand.  Similarly to MAI, we can calculate mean annual value 

increment of the stand over its entire life since the last regeneration harvest.  Because of 

the length of planning periods in forestry, net present value (NPV) criterion will be used 

in the rest of this work and the objective will be to maximize NPV.  The discount value 

used to calculate those NPVs is a much debated topic and it will be discussed in detail in 

chapter 4. 

Thus far, volume, which was derived from age and transformed to dollar value, 

has been used to describe a stand.  Generally speaking, larger trees bring a premium in 
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price because of the value of the large timber products, and market values fluctuate and 

vary depending on demand for different wood products, so there may be advantages to 

having one size of tree over another.  In addition, the same tree may be transformed 

differently depending on the value of the different wood products on the market.  Simply 

put, volume shouldn’t be the only measure by which the stand is evaluated.  Therefore, 

the next section describes an unmanaged natural stand using more than one variable 

which leads to the discussion of more complex stands. 

 

2.3 Expanded Definition of an Unmanaged Natural Stand 

 

In the previous section, a stand was defined using ages and volume which can be 

converted to dollars.  An unmanaged stand can be defined using only age.  All other stand 

characteristics such as quadratic mean stand diameter, average height of the trees and the 

average spacing between the trees depend on the age for an unmanaged natural stand and 

those characteristics are all used to calculate wood volume.  Therefore, it is important to 

properly define the relationship between age and quadratic mean stand diameter, height 

and spacing before continuing.  NS DNR has developed equations to represent these 

relationships and they have been published in a series of research reports that are 

available on the forestry section of the NS DNR website 

(http://www.gov.ns.ca/natr/forestry/). 

Quadratic mean stand diameter can’t be properly defined without first discussing 

basal area.  The basal area of a tree is the round surface area of the stem of a tree when 

the tree is cut at 1.37m from the ground which is known as breast height (Canadian 

Council of Forest Ministers 2010).  So a tree with a diameter at breast height of 10 cm 

would have a tree basal area (   ) of 0.007854 m
2
 (π·r

2
).  The total basal area of a stand 

is the sum of the     of all the trees on a stand.  The quadratic mean stand diameter of 

the trees on a stand is a basal area weighted average.  More precisely, it is the diameter of 

a tree of average basal area (Gove 2003).  For example, if a stand has 150 m
2
 of basal 

area and 2800 trees, the stand would have a quadratic mean stand diameter of 26.12 cm 

(               ).  Here, quadratic mean stand diameter is referred to as diameter 

( ) and the total stand basal area is referred to as basal area (  ). 
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We consider two measures of height for a stand: dominant height (   ) and 

average height (   ).  Dominant trees are trees with crowns extending above the general 

level of the main canopy of even-aged groups of trees and receiving full light from above 

and partial light from the sides (Canadian Council of Forest Ministers 2010).  Dominant 

height refers to the average height of the dominant trees on a stand and the number of 

trees used to calculate this average is not fixed but is limited to a few trees. 

The average height refers to the average of the dominant and codominant trees on 

the stand.  Codominant trees have crowns which form the general level of the main 

canopy in even-aged groups of trees and receive full light from above and comparatively 

little from the sides.  The dominant trees in a stand are easier to measure and it has been 

shown that there exists a relationship between the dominant height and the average height 

of a stand (Staebler 1948).  This concept has been implemented by NS DNR and the 

equations for the relationship between dominant height and average height used in this 

thesis are taken from their work (NSDNR (1993b), O’Keefe and McGrath (2006)).  The 

height growth of the dominant and codominant trees on a stand is only dependent on the 

growth-supporting factors of a piece of land (Smith et al. 1997, p.52).   

Site index (  ) is an expression of forest site quality based on the height, at a 

specified age, usually 50 years in Nova Scotia, of dominant and codominant trees in a 

stand (Canadian Council of Forest Ministers 2010).  Figure 2-2 shows the relationship 

between LC and site index for Nova Scotia softwoods.   

A stand with LC 5 would have an approximate site index of 15.5m at age 50.  NS 

DNR has established equations for the relationship between age and site index for 

softwood and hardwood in Nova Scotia (NSDNR (1993b), O’Keefe and McGrath (2006)) 

and has incorporated it into all of its growth and yield models.  In the rest of this 

document,    will be used in the formulas but LC will be used when referring to the 

figures taken from the Forestry Field Handbook (NSDNR 1993a). 

In an unmanaged natural stand, stand quadratic mean diameter ( ) and average 

height (   ) only depend on age and, once determined, the volume of wood on the stand 

can be calculated using formulas that incorporate tree shape parameters for different 

species (NSDNR (1993b), O’Keefe and McGrath (2006)).  That volume is then used to 
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create decision tools such as those in figure 2-1 and table 2-1.  The equations for 

calculating the yield are presented in section 2.8. 

 

Figure 2-2 – Land capability for Nova Scotia softwoods (NSDNR 1993a) 

 

Fully stocked unmanaged natural stands always have the maximum number of 

trees per hectare, or maximum stocking, that the LC will allow.  The number of trees per 

area of land is sometimes referred to as density.  The maximum stocking, or maximum 

density, depends on    where   stands for softwood (S) or hardwood (H).  If we plot the 

maximum number of trees for all diameters for a given LC, we obtain a curve such as the 

one in figure 2-3 which is referred to as the maximum stocking line. 
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Figure 2-3 – Graph indicating maximum stocking for any diameter in an unmanaged 

softwood stand (NSDNR 1993a) 

 

The concepts of maximum stocking and crown closure are closely related.  The 

crown of a tree includes all branches, twigs and leaves extending from the trunk of the 

tree and, together, the crowns of all the trees on the stand form a more or less continuous 

cover that is referred to as the canopy (Canadian Council of Forest Ministers 2010).  

Crown closure (  ) is a measure of the proportion of the ground covered by the vertical 

projection to the ground of the crown of all the trees on the stand (Canadian Council of 

Forest Ministers).  If the vertical projections of all the trees on the stand cover 100% of 
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the ground, which means there are no open areas in the forest canopy, the stand is said to 

have reached 100% crown closure.  The maximum stocking line in figure 2-3 refers to 

100% crown closure for any diameter and indicates the maximum number of trees 

(           a stand can support for a given diameter, land capability and species.  The 

graph in figure 2-3 shows an average for SW in N.S. and is the one used in this research.  

The diameter of a tree grows faster when the trees have more space to grow hence a    

less than 100% means the diameter of the trees grows faster but there are fewer trees per 

hectare because there is more space between them.  The effects of having a    < 100% 

are discussed in section 2.6. 

 One more variable is needed to properly describe an unmanaged natural stand.  

This variable is presented here but applies to all types of stands.  Stocking, not to be 

confused with maximum stocking from figure 2-3, is a qualitative expression of the 

adequacy of tree cover on an area, in terms of crown closure, number of trees, basal area, 

or volume, in relation to a pre-established norm (Canadian Council of Forest Ministers 

2010).  For our purposes, stocking is the proportion of the area of a stand that can grow 

trees.  A stand may have wide open areas that aren’t growing any trees for a number of 

reasons such as swamps, silvicultural activity and rocky outcrops.  Those areas not 

growing any trees are added together for the entire stand and subtracted from the total 

area of the stand and this yields the stand stocking as a proportion.  Stand stocking will be 

used when calculating yield in section 2.8. 

 Crown closure (  ) and stocking go together to describe a stand.  A stand with 

40% stocking and 100% crown closure isn’t the same stand as 40% crown closure on a 

100% stocked stand.  The first stand has 60% of its surface grouped in wide open areas 

with no growing trees while the rest of the stand is supporting as many trees as it can 

(100%   ) for the average diameter of the growing trees.  The second stand has trees 

spread out on its entire surface without any big open areas but the trees are spread apart 

in such a way that only 40% of the ground is covered by the vertical projection of the 

crowns of the trees.  These two stands will not grow the same way as    plays a big role 

in determining the diameter growth of trees on a stand with less than 100%   . 

Up to now, we have only discussed one management option or decision for one 

type of stand: what age to perform a regeneration harvest on a natural unmanaged red 
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spruce stand at which point another growth cycle begins.  With the addition of crown 

closure as a variable, we can start discussing managed softwood stands and the 

management options that either lead to or are applicable to managed stands. 

 

2.4 Managed Stand 

 

The term “density” presented in the previous section refers to the number of trees 

per hectare of land and is a function of   ,    and stocking, and is possibly a 

consequence of the history of what has been done to the stand since the last regeneration 

harvest.  In fully stocked unmanaged natural stands, the density is assumed to be equal to 

the maximum stocking where, in managed stands, the density can be below maximum 

stocking.  The maximum stocking line in figure 2-3 is an average value over the forest 

region therefore we assume that the stand being studied is an average stand and that the 

maximum stocking line applies.  In this section, we will discuss the difference between 

unmanaged and managed stands and present new management options and an expanded 

stand definition. 

A managed stand can be described as a stand that has had its    reduced below 

100% or below the maximum stocking line at least once during its growing cycle in order 

to encourage accelerated diameter growth.  The objective of a managed stand is to have 

trees that will grow well for the LC, that have good economic value and that are far 

enough apart to encourage good diameter growth.  In this work, pre-commercial 

thinnings (PCT) and commercial thinnings (CT) are ways of getting managed stands. 

Managed stands are more complex to model and manage than unmanaged natural 

stands because of more complicated growth and yield models and of the additional 

decision possibilities associated with a PCT or a CT.  All stands, managed or unmanaged, 

are divided into 5 categories or treatment types (TRT) depending on the type of 

silvicultural treatment that has been applied to the stand.  They are presented in table 2-2.  

Treatment type 1 stands are those discussed in the previous section and only occur when 

the management decision is to let the stand naturally regenerate after a regeneration 

harvest without any silvicultural intervention.   
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Table 2-2 – Treatment types 
Treatment Description 

1 Unmanaged natural stand 

2 Pre-commercially thinned natural stand 

3 Unthinned plantation 

4 Commercially thinned plantation 

5 Commercially thinned natural stand 

 

In order to explain the four other main treatment types in table 2-2, we now 

present descriptions of PCT and CT.  PCT is a thinning that does not yield trees of 

commercial value and is usually designed to improve crop spacing and to improve 

growth, quality, and percentage of desirable trees (Canadian Council of Forest Ministers 

2010).  For example, an unmanaged natural softwood stand with an average diameter at 

breast height      of 5cm will have approximately 21000 trees per hectare.  This yields a 

space between trees (     of 0.68m.  That spacing is measured from tree trunk to tree 

trunk.  Add the crown to those trees and the stand is impassable and doesn’t allow any 

room for the trees to grow until some of them die and make room for the others.  PCT 

only applies to unmanaged natural stands.  Herbicides and/or cutting trees are the two 

most common techniques used to release stands (Smith et al. 1997).  This discussion is 

limited to the importance of PCT as a silvicultural treatment and does not expand to a 

discussion of the techniques used in such treatments.  In reference to the treatment types 

in table 2-2, an unmanaged natural stand is a treatment type 1 (TRT=1).  After applying a 

PCT to a TRT=1 stand, it becomes TRT=2. 

In commercial thinning, the removal of trees is delayed until the stand has enough 

trees of marketable value so that releasing the stand not only gives more room for the 

remaining trees to grow but the trees being removed can be sold to create revenue 

(Canadian Council of Forest Ministers 2010).  The following two variables are critical 

when making commercial thinning (CT) decisions for single-species even-aged stands: 

what percentage of the stand basal area to remove (     ) and what type of CT to 

apply (       ).   

The balance between percentage removed and percentage remaining is critical.  

There has to be enough volume of wood products removed by the CT operation to be 

economically viable but there must also be enough trees left behind to ensure that at least 
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one more commercial operation will be economically fruitful and that the stand is 

protected from natural disasters which are discussed in section 2.9. 

There are many types of CT but this discussion is limited to three types: thinning 

from above or selection thinning, thinning from below or low thinning, and thinning 

across the diameter distribution (Canadian Council of Forest Ministers (2010), Pelkki 

(1999), Smith et al. (1997), Mäkinen and Isomäki (2004a), Mäkinen and Isomäki 

(2004b)).  The type of CT refers to which size of tree will be targeted first when 

removing a given percentage of the   .  The % of    to remove (     ) is 

transformed into an amount in m
2
 referred to as the target    removal.  Thinning from 

above means removing the largest trees first until the target    removal is reached.  In 

thinning from below, the smallest commercially viable trees are removed until the target 

   removal is reached.  The third type of CT requires dividing the trees into groups by 

diameter size and making sure to remove the same number of trees from each group until 

the target    removal has been reached.  With these three types of CT, the removal of 

trees is done in such a way that    remains uniform over the entire area of the stand.  The 

detailed methodology for calculating the effect of commercial thinning on the average 

diameter of the stand, on crown closure and on softwood percentage is briefly discussed 

in section 2.8 with detailed equations and examples presented in chapter 3. 

We can now discuss the remaining treatment types in table 2-2.  An un-thinned 

plantation (TRT=3) means that the trees on the stand were planted and the stand was 

treated in such a way as to ensure that it remains a plantation, by the removal of 

competing vegetation for example, but no CT was applied to the stand since it was 

planted.  It`s assumed that there is no unexpected mortality and that all planted trees 

survive and grow to be mature trees.  When a CT is applied to a plantation, it goes from 

TRT=3 to TRT=4.  When a CT is applied to an unmanaged natural stand (TRT=1) or a 

pre-commercially thinned natural stand (TRT=2), it becomes a commercially thinned 

natural stand (TRT=5).  Figure 2-1 and table 2-1 are based on data for an unmanaged 

natural red spruce stand which is only one of the softwood species growing in Nova 

Scotia.  Figure 2-2 presents data that is generalized for all softwood (SW) species in the 

province.  Similar data exists for hardwoods (HW).  HW stands can be defined the same 

way SW stands were defined in this chapter.  Hardwood plantations aren’t grown 
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commercially in N.S. because of the costs associated with protecting them from the fauna 

as the leaves, twigs and buds are a source of food for many species.  Natural stands will 

grow with a mix of SW and HW and the mix depends on a long list of factors, soil 

characteristics and weather being two of the most important. In order to properly define 

an unmanaged natural stand that includes both species,      is added and is generally 

defined to mean the proportion of the total stand basal area that is SW.  Therefore, 

       is the proportion of the stand basal area that is HW.  What this means in actual 

volumes of wood products will be discussed in section 2.8.  With the addition of SW 

percentage as a variable, a few more details can be added for PCT and CT. 

When doing a PCT, there are 3 options: leaving the mix of species as is where 

     remains unchanged, preferring SW, or preferring HW.  Preferring one of the two 

species means that during the operation of releasing the stand, if the operator has to 

choose between the removal of a SW or a HW tree, the preferred species will remain and 

the other will be removed.  Modelling the latter two options of PCT, in this work, means 

removing all SW or all HW and spacing the remaining trees according to the guidelines 

for PCT published by NS DNR. 

When doing a CT in a stand with two species, the total BA removal amount in m
2
 

must be divided between SW and HW.  This is referred to as the BA removal split % 

(          ).  For example, if 30m
2
 of basal area is to be removed and            is 

80% SW, we would remove 24m
2
 of SW and 6m

2
 of HW. 

After a regeneration harvest, the forest manager can do a fill planting on the stand 

followed by early competition control. The Canadian Council of Forest Ministers defines 

fill planting as the planting of trees in areas of inadequate stocking to achieve the desired 

level of stocking, either in plantations or areas of natural regeneration, and early 

competition control as a treatment designed to reduce the competitive effect of 

undesirable vegetation threatening the success of the regeneration of desirable tree 

species.  Doing a fill planting followed by early competition control will ensure the stand 

recovers as a fully stocked natural unmanaged stand in the period immediately following 

a regeneration harvest.  This management option applies to any stand after a regeneration 

harvest regardless of the past history of the stand. 
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The distinctions made between treatment types in table 2-2 are important because 

stands grow differently depending on how they were treated since the last regeneration 

harvest so they need to be kept separate.  The next four sections present the procedures 

for growing and calculating the yield from a forest stand. 

 

2.5 Regeneration Period 

 

Before discussing growth models, the period of time between the removal of all 

trees from a stand and the beginning of growth of a new stand needs to be discussed.  

After a regeneration harvest or a natural disaster, a stand doesn’t always recover quickly 

unless money is invested in preparing the stand and trees are planted to ensure 

regeneration of the stand at the next time period.  Without planting, the small trees living 

under the canopy of the mature stand, which are called advanced regeneration and are 

counted on to help the stand recover its growing stock, can sustain damage from a 

regeneration harvest or a natural disaster and affects the capacity of the stand to recover 

after such events and for the trees to reach breast height.  In this research, we consider 

four regeneration states of age 0 (           ).  These four states have an increasing 

probability of regenerating and containing growing stock at the next time period.  When a 

stand is in one of these regeneration states at time   and the decision is to do nothing and 

let it grow, one of two states may occur at time  +5:  

i) The stand still doesn’t contain any growing stock but it has a higher 

probability of containing growing stock at time  +10 

ii) The stand is equivalent to a 5 year old natural stand and grows 

accordingly. 

 

A stand    can remain in a non-regenerated condition for 4 -   periods.  The 

probability that a stand    will regenerate is     and the probability it proceeds to state 

     is 1 -     where the     are increasing with   and     = 1.  One of these states 

occurs after a regeneration harvest or natural disaster as a function of many factors such 

as the type of equipment used for the regeneration harvest and stand characteristics, as 

well as the type and severity of the natural disaster that has affected the stand. 
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At each subsequent time period after the stand has entered a regeneration state, 

the stand will progress from one regeneration state to another with an increasing 

probability of regeneration until the stand contains growing stock and is no longer in a 

regeneration state. 

Figure 2.4 shows the probabilities of regeneration for each regeneration state.  It 

should be interpreted as follows: when a stand is in state    at time  , it has     

probability of being a fully stocked 5 year old natural stand at time  +5 and 1 -     

probability of being in a regeneration state with a higher probability of regeneration at 

time t+5. 

 

 

 

 

 

 

 

 

 

Figure 2-4 – Transition probabilities of the regeneration states after regeneration harvest   

 

States don’t automatically enter a regeneration state at   .  For example, after a 

regeneration harvest, the stand enters state    if no planting or competition control is 

applied to the stand.  This is done because the presence of advanced regeneration on the 

stand raises the probability of regeneration.  On the other hand, a high intensity fire 

destroys advanced regeneration which puts the stand in state    in the period 

immediately following the fire.  A regeneration state doesn’t occur until 5 years after the 

regeneration harvest or natural disaster.  Therefore,    occurs 5 years after a stand that 

has been cut or destroyed.  In the worst case scenario, a stand goes through the 4 

regeneration states in succession starting with    and 25 years elapse from 

harvest/natural disaster to beginning or growth. 

Using example probabilities     = 30%,     = 50%,     = 70% and     = 100%, 

we can calculate the probability of the stand taking between 1 and 5 periods to 
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regenerate.  There is 0% probability that the stand will regenerate after 1 period which we 

note as P(X>1) = 1 where X is the number of periods before growing stock appears on 

the stand after a regeneration harvest or natural disaster.  With the probability that state 

   will contain growing stock at the next period set at 30%, we can write P(X=2) = 0.3 

and P(X≥3) = 0.7.  Using the same logic, we conclude the following probabilities: 

 

   P(X=3) = 0.7  0.5 = 0.35 

   P(X≥4) = 1 – 0.3 – 0.35 = 0.35 

   P(X=4) = 0.35  0.7 = 0.245 

   P(X≥5) = 0.35 – 0.245 = 0.105 

 

 We can’t have more than 5 periods of delay before regeneration so P(X=5) = 

0.105.  The number of periods of delay can be combined with the probabilities of 

occurrence to calculate the expected number of periods of delay before a natural 

unmanaged stand has growing stock after a regeneration harvest or natural disaster. 

 

   = 20.3 + 30.35 + 40.245 + 50.105 = 3.155 

 

The decision maker can, at any point in the regeneration process, plant trees on the 

stand which would guarantee growing stock on the stand at the next time period.  In 

practical terms, any decision maker wishing to use this type of approach will need to have 

a clear understanding or definition of what   ,   ,    and    stands look like in order to 

determine the state of the stand at decision time. 

 

2.6 Growing a Single-Species Forest Stand 

 

 The terms growth and yield are often used together but they are two separate 

terms.  Growth refers to the change, over time, of average stand diameter, crown closure 

and species percentage.  Height is always a function of age and site index (   ) and 

doesn’t depend on TRT.  Therefore, height is not used as a stand variable in any of the 

growth models.  Equivalently, we could have used height and site index and treated age 
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as a derived variable.  The yield of a stand refers to the volume of wood products that are 

available for harvest on a stand at any given time.  The yield equations are the same for 

all TRT types but differ between SW and HW because of the tree shape characteristics.  

Yield models will be presented in section 2.8. 

 NS DNR has collected and analyzed data from permanent sample plots spread 

across the province over a period of 40 years (at 5 year intervals).  This data has been 

used to create equations that define the diameter growth of HW and SW stands for each 

of the treatment types presented in table 2-2 (NSDNR (1993b), O’Keefe and McGrath 

(2006)).  Stands of treatment types 3 and 4 are pure SW stands without HW.  Stands of 

TRT types 1, 2 and 5 can include SW and/or HW. 

In most stand level growth models, site index (   ) is an important factor.  In any 

given stand, there may be a site index for SW and one for HW.  In this work, growing a 

stand means using the equations to determine the values of the stand variables 5 years in 

the future.  This section presents procedures for growing single-species stands for all 

TRT types.  The next section discusses mixed-species stand growth and the next chapter 

presents some modeling results.   

In order to simplify the discussion yet show relationships between variables more 

clearly, the following set of variables is used in stand growth and yield modeling.   

 

     crown closure fraction at time   

     stocking (% area forested) at time   

     
  percentage of total basal area of the stand at time   that is species type   

   
  stand quadratic mean diameter at time   for species type   (centimeters) 

     height age for stand at time   
 

The   subscript in the variables above represents time.  NS DNR did their data 

collection, at 5 year intervals, over a 40 year period.  Therefore, the growth equations are 

built for 5 year intervals and  +5 means 5 years have elapsed.   

The age discussed so far in this chapter refers to the height age.  It`s the actual age 

of the stand since it`s last regeneration harvest and is the one used to calculate the height 

of the dominant trees on the stand using the site index curves.  Diameter age or fake age 
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(   
 ) is used when calculating diameter growth for certain types of managed stands. 

Fake age isn’t the actual age of the stand but rather an age that represents the current state 

of the stand which may be the result of a series of silvicultural operations that modified 

diameter and spacing since the last regeneration harvest.  With either    
  or      we can 

write      + 5 =       . 

 Once growing stock is established on the stand, growth of the stand can be 

calculated using the models in this section.  The growth models discussed in this section 

can be divided into 5 sets based on the stand characteristics and they are presented in 

table 2-3.  For stands of TRT types 2, 3, 4 and 5, spacing (   
 ) and species are used to 

determine which set of equations to use for growth calculations.     
  is calculated using 

equation (2-1). 

  

     
  

   
 

           
  
 

   
 

     (2-1) 

 

 Functions    presented in this section and the next are taken from NS DNR 

research reports and can be found in appendix A. 

 

Table 2-3 – Sets of forest stand growth equations 

Set 1 TRT = 1 (non-species specific) 

Set 2 TRT types 2, 3, 4, 5 with     ≥ 3.1m (softwood only) 

Set 3 TRT types 2, 4, 5 with     < 3.1m (softwood only) 

Set 4 TRT = 3 with     < 3.1m (softwood only) 

Set 5 TRT types 2, 5 (hardwood only) 
  

Set 1: 

 This set includes all unmanaged natural stands which are the easiest growth to 

calculate as they are always at 100% crown closure.  Therefore the number of trees on the 

stand depends only on   
  which is a function of     and    .  Growing the stand is 

simply a matter of adding 5 years to the current age (     ).  All other stand variables are 

dependent on the new age      .  Equations (2-2), (2-3) and (2-4) are used to calculate 

  
  which is required for yield calculations. 
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       (2-2) 

    
         

        (2-3) 

    
         

            (2-4) 

 

Set 2: 

 This set includes softwood stands of TRT types 2, 3, 4 and 5 that have    
  

    .  Rather than one equation, calculating     
  for this set requires a sequence of 

preliminary values which are calculated with the equations presented in appendix A.  

Using   
  and the appropriate maximum stocking line,          

  is obtained.  The stand 

crown closure,    ,   
  and          

  are used to calculate     
 .   

  

      
       

               
        (2-5) 

 

Set 3: 

 This set includes softwood stands of TRT types 2, 4 and 5 that have    
  < 3.1m.  

We calculate a fake age (   
 ) corresponding to the observed spacing, diameter and site 

index and it may differ from the actual age of the stand (   
 ).  For a given site index and 

spacing,    is the inverse of   . 

 

     
        

    
          (2-6) 

 

5 years of growth are added to    
  and the new diameter is calculated with      

 .    

 

      
          

     
          (2-7) 

 

Set 4: 

This set includes softwood stands of TRT type 3 that have    
      .  

Plantations (TRT=3) are similar to natural stands in that the stand grows differently if it’s 

been thinned but plantations don’t contain any hardwood so there is only one set of 
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growth equations.  The diameter growth of a plantation with    
  < 3.1m can’t be 

calculated directly with one equation.  Rather     
  and     

  are calculated and the 

difference between the two values is the diameter growth for the next 5 years. 

 

      
          

     
          (2-8) 

      
          

     
          (2-9) 

      
    

      
      

     (2-10) 

 

Set 5: 

This set includes all hardwood stands of TRT types 2 and 5 regardless of spacing.  

The hardwood diameter growth model doesn’t explicitly depend on spacing therefore 

there is only one diameter growth model (eq. 2-11).   

 

      
       

     
          (2-11) 

 

The last step in the process for any single-species stand of treatment types 2, 3, 4 

and 5 is to calculate crown closure (     ) which doesn’t have a species indicator.  The 

growth models assume that crown closure is the same for both species.  Using     
  and 

the appropriate maximum stocking line,            
  is obtained.  Using equations (2-

12) and (2-13),         
  and       are calculated. 

 

          
         

       (2-12) 

        
        

 

           
         (2-13) 

 

The next section discusses how the growth of two species in a single stand is 

modeled in this thesis. 
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2.7 Proposed Method for Growing a Mixed-species Forest Stand 

 

Up to this point in chapter 2, all growth models presented are those developed by 

NS DNR.  They are divided into sets for easier presentation.  In this section, we propose a 

new method for combining growth models for more than one species into a single stand 

mixed-species growth model.  It follows directly from the models presented up to this 

point and is one of the contributions of this thesis.  Some results of applying this 

modelling approach to typical stands found in Nova Scotia are presented in chapter 3. 

The previous section divided the growth models into 5 sets and, with the 

exception of set 1 which deals only with natural unmanaged stands, they are all single 

species diameter growth models.  In set 1, diameter and height growth depend only on 

age and site index of the stand.  In that case, any information related to species mix on the 

stand will be used solely for volume calculation and are not covered by the modelling 

approach proposed here.  Sets 2 to 5 deal with managed natural stands and plantations 

and are divided according to species and/or spacing. With single species stands, the 

equations in the previous section can be applied directly without considering the mixed-

species approach proposed here.  When dealing with a mixed-species stand, the sets of 

growth equations in the previous section all apply as presented but we work on the basis 

that each species grows as if it were alone on a smaller stand.  In this section, we explain 

the proposed approach of how to calculate the respective spacing for each species type 

when they are growing together on the same stand, how to grow each of them according 

to their respective growth equations and how to put them back together to calculate the 

new values of the stand variables.   

The main observation that drives our approach is that trees, whether softwood or 

hardwood, experience the same crown closure.  This crown closure creates an effective 

spacing for each species.  This then can drive all the models.  In chapter 3, the proposed 

methodology is illustrated by way of some examples. 

The proposed approach can be summed up by the following steps: 

 

Step 1: Calculate the fraction of the stand covered by each species type; 
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Step 2: Calculate the respective spacing for each species type.  This is done 

based on the fact that crown closure is the same for each species type; 

Step 3: Given the spacing for each species type, calculate diameter growth 

using the respective growth models; 

Step 4: Combine the two species types to calculate the stand characteristics of 

the new stand. 

 

What follows is a detailed explanation of each step with accompanying diagrams 

and equations where appropriate. 

 

Step 1: Calculate the fraction of the stand covered by each species type 

 

The procedure starts with the calculation of the maximum stocking basal area for 

each species type, were each a pure single-species stand, using the function below: 

 

       
           

             
  
 

   
 

 

 

 

Using the equations for          
  published by NS DNR (NSDNR (1993b), 

O’Keefe and McGrath (2006)) which depend on   , we determine that a pure single-

species SW stand has approximately twice as much BA as a pure single-species HW 

stand (        = 60m
2
 vs.         = 30m

2
).  With this difference of maximum    

for the two species, the fraction of the ground area of the stand covered by each species 

type in a mixed-species stand isn’t the same as      and     , which are the percentages 

of stand total basal area for each species type.  Therefore, we define          as the 

fraction of ground area of the stand covered by species   to yield     .  We require that 

 

          

 

   

 

 With two species, the solution is easy:           is the solution to 
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where      is given as a stand variable.  The solution is: 

 

         
  

 

  
 

       
     

       
 

    
          

     

 

 and          
  = 1 –          

 , which are then used to calculate spacing in step 2. 

 

Step 2: Calculate spacing between the trees 

 

 In section 2.3, crown closure was defined as a measure of the proportion of the 

ground covered by the vertical projection to the ground of the crown of all trees on the 

stand.  In this step of the proposed approach, we take advantage of the fact that crown 

closure is the same for both species which leads to the calculation of spacing as explained 

below.  

 Given the number of trees on the stand for each species and the area of the stand 

covered by each species, we can calculate the spacing between SW and HW trees as they 

are perceived by the individual trees on the stand.  It is this spacing that is used in the 

diameter growth models from the previous section. 

 If crown closure < 100%, the actual number of trees on a pure single-species stand 

(      
 ) is a proportion of          

  according to the following relationship: 

 

      
           

     

 

On a mixed-species stand, a fraction of the stand is covered by each species type so we 

adjust the number of trees as follows: 
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Given that a stand is defined as being one hectare in size and that a hectare is 10,000m
2
 

(100m  100m), we calculate the spacing for each species as follows: 

 

   
   

               
 

      
 

 

  

 Given the spacing for each species type, we proceed to step 3 where diameter 

growth is calculated. 

 

Step 3: Grow the species types according to their respective growth equations 

 

 What follows is an explanation of the adjustments that need to be made to each set 

of equations in section 2.6 for combining SW and HW in the same stand.  Equations from 

set 2 are used when        m but the growth equations don’t explicitly depend on 

spacing.  In this case, the spacing calculated above is only used to determine whether the 

equations from set 2 should be used.  The same goes for set 5.  In sets 3 and 4, the 

diameter growth equations explicitly depend on     and    .  Once the spacing for each 

species has been calculated as described in the previous step, growth equations in sets 3 

and 4 are applied as described in the previous section to determine diameter growth hence 

the new diameters for SW and HW.   

 With spacing for both species types known, the appropriate set of growth 

equations is chosen and SW and HW diameter growth is calculated. 

 

Step 4: Combine the species to calculate the values of the stand variables for the new 

stand 

  

Given the diameter growth calculated in the previous step, we add it to   
  and 

calculate     
  which is used to calculate            

  using maximum stocking lines 

published by NS DNR.  The following equations are then used to calculate the stand 

characteristics post-growth.   
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The next section explains how to calculate the volume of wood and the amount of 

wood products on a stand. 

 

2.8 Calculating Yield for a Forest Stand 

 

Yield is the volume of wood products removed from a stand through a 

combination of commercial thinning (CT) and/or regeneration harvests and, in this work, 

is measured in m
3
 and transferred to dollars.  For evaluating the monetary value of wood 

products, they are separated into two groups:    
  and    

 . 

The procedure differs between CT and regeneration harvests.  For a regeneration 

harvest, all wood products are removed and revenue from the wood products and the cost 

of cutting and removing the wood can be calculated.  There is no change in   
  or    

  to 

calculate because all trees are removed and growth of the stand starts over at age zero.  

The steps described below for calculating yield take this into consideration. 

 

Step 1:  For a regeneration harvest, go to step 3.  In the case of CT, calculate the amount 

of BA removed from applying CT to the stand using equations (2-22a), (2-22b) and (2-

23) below. 

 

     
     

      
     

   
     

   
  

          

   
   (2-22a) 

     
     

      
     

   
     

   
     

          

   
   (2-22b) 
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         (2-23) 

 

The notation over BA in     
  indicates the resulting value after CT but before a 

period of growth.   The notation over BA in        
  indicates the amount removed during 

CT.  Go to step 2. 

 

Step 2:  Calculate the change in stand average diameter due to CT by using the equations 

presented in section 3-2 and appendix D.  Add or subtract the diameter change to   
  to 

yield    
 .  Go to step 4. 

 

Step 3:  Set        
  =    

 ,    
  =   

  and                
 
  =       

 .  Go to step 5. 

 

Step 4:  Complete preliminary calculations of values needed for yield calculation using 

equations (2-24) to (2-26) and go to step 5. 

 

       
 
  

    
 

           
   
 

   
 

      (2-24) 

                
 
        

        
 
     (2-25) 

    
               

 

         
     (2-26) 

 

Step 5:  Complete yield calculations that lead to    
  and    

 .  Those calculations are 

shown in detail in Appendix A as they are not done with one equation but rather by a 

series of long procedures      which differ between natural and plantation stands.  The 

inputs required are indicated below. 

 

                
      

         
                 

 
     (2-27) 

 

Natural disasters have an impact on how stands grow and how much wood can be 

harvested from them so they are presented in the next section and the effects on growth 

and yield are discussed.  
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2.9 Natural Disasters 

 

Natural disasters are incorporated into the models because they are an important 

source of uncertainty faced by decision makers.  Three major types of natural disasters 

are simulated: hurricanes, forest fires and insect outbreaks.  When a stand is affected by a 

natural disaster, we model it as if it may or may not succumb to the disaster.  If it doesn’t 

succumb, no damage is done and the stand remains unchanged.  If it does succumb, we 

model this as if it will be completely wiped out and the value of the wood products on the 

stand would only be enough to pay for the cost of removing them, therefore the stand has 

no salvage value.  We could have modeled it as if removal of knocked down trees could 

be done at a profit.  In this case, the profit would be calculated as if it had occurred 

subsequent to a CT or regeneration harvest action.  After succumbing, the probability of 

regenerating rapidly as a healthy natural stand depends on the type of natural disaster that 

occurred and the intensity of that disaster.  The probability of ending up in one of the 

three regeneration states (  ,   ,   ) at the beginning of the next period following a 

natural disaster is the joint probability of any one of the three natural disasters occurring 

at a given intensity and sending the stand to that state.  The probability of not succumbing 

is 1 – ∑(probabilities of succumbing). 

 Before proceeding to the details of each type of natural disaster, we discuss the 

general approach taken to simulate natural disasters.  Fires and hurricanes are defined by 

their size and return interval as well as their probabilities of occurrence at any one of 

three intensity levels.  If a fire or hurricane occurs, its intensity will impact the 

regeneration state in which the stand ends up in the next period.  In the case of insect 

outbreaks, they are modelled as if only the return interval matters.  Therefore, if an 

outbreak occurs, there is only one intensity level and if the stand succumbs, it will end up 

in the regeneration state with the lowest probability of regeneration.   

 Table 2-4 shows basic parameters for natural disasters used in this work.  These 

values are used as reasonable estimates for the forested region in the west of Nova Scotia 

simply as a demonstrative example and aren’t based on any known data for the region.  

These values are used to calculate the probability that a natural disaster will occur and 

that a stand will be affected. 
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Table 2-4 – Basic parameters for natural disasters in this work 

Approximate forested area in the west of Nova Scotia (hectares) 1,691,300 

Average number of fires per year 3.5 

Average size of a fire (hectares) 10,000 

Return interval of major hurricanes (years) 50 

Average area of wind for a major hurricane (hectares) 400,000 

Return interval of major insect outbreaks (years) 50 

 

 The probabilities of occurrence at any given level of intensity for fires and 

hurricanes will be given in the two next sections.  In addition to the probabilities of 

occurrence and the intensity for each type of natural disaster, we need to discuss how 

each stand will resist to each type and intensity of natural disaster.  In this thesis, this 

depends on stand characteristics where larger trees have better resistance to fire but lower 

resistance to hurricanes and vice-versa for small trees.  In this work, the intensity of 

natural disasters is used as one way of characterizing the transition to the different 

regeneration states subsequent to the occurrence of natural disasters.  Large trees have a 

higher probability of succumbing to insect outbreaks.  The reasons for these levels of 

susceptibility and the specific probabilities are discussed in the next three sections.  The 

susceptibility values are chosen as illustrative examples and not by analysing any data.  

They are chosen to demonstrate the approach and could be adjusted to suit a different 

scenario. 

 

2.9.1 Hurricanes 

 

Modelling hurricanes is a matter of determining the probabilities that a stand will 

end up in any one of the regeneration states in any given period.  This is done by 

multiplying three probabilities together: 

 Probability that a hurricane arrives and a stand is affected 

 Probability a given intensity hurricane occurs if one occurs 

 Joint probability a stand succumbs if a hurricane occurs 

 



42 

Hurricanes are characterized by their return interval or inter-arrival time in years, 

the average area of wind in hectares and three levels of intensity with a joint probability 

of 100%.  The first step is to calculate the probability a hurricane will arrive in any given 

period.  Many studies have characterized the arrival process of a hurricane as a Poisson 

process (Brodin and Rootzén (2009), Cox et al. (2004)).  The mean of the Poisson 

process (E(X)) is expressed as  

 

 E(X) =   =  
                      

               
    (2-28) 

 

The conditional probability a stand is affected by a hurricane if it occurs is 

calculated. 

 

 P(stand affected | hurr. occurs) = 
                  

                  
  (2-29) 

 

The forested portion of the west of the province is considered to be the study area.  

The probability a stand will be affected in any period can be calculated by multiplying 

the probabilities in equations (2-28) and (2-29) with each other.   

The general practice when referring to hurricanes is to describe them by their 

intensity levels.  Three intensity levels are used: low, medium and high.  Each intensity of 

hurricane has its own probability of occurrence if a hurricane occurs.  These probabilities 

are given in table 2-5 along with the resulting state in brackets.  The lower intensity 

hurricane is modelled as resulting in a worst regeneration state as it is assumed that the 

stand will have trees that aren’t completely knocked down and will block sun from 

getting to the small regeneration present under the canopy of the stand before the 

hurricane.  

 

Table 2-5 – Example probabilities of different intensity hurricanes occurring 

Probability of low intensity hurricane if it occurs (new state =   ) 0.5 

Probability of medium intensity hurricane if it occurs (new state =   ) 0.3 

Probability of high intensity hurricane if it occurs (new state =   ) 0.2 
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The conditional probability a stand succumbs if a hurricane occurs, uses the 

probabilities in table 2-5 and the probabilities of succumbing, or susceptibility, given in 

figure 2-5.   

 

 
Figure 2-5 – Probabilities of succumbing, or susceptibility, to hurricanes of different 

intensities 

 

The height, diameter and crown closure of a stand affect its susceptibility to a 

hurricane (Duryea and Kampf (2008), Gilman et al. (2008)).  In order to qualify this 

effect, we use susceptibility or the probability a stand succumbs if a hurricane occurs.  

Figure 2-5 shows the three levels of intensity for hurricanes and the corresponding 

probabilities of succumbing for stands of varying ages.  In this thesis, the probabilities of 

succumbing only depend on age for hurricanes although diameter and height could also 

have been used, as age, diameter and height are very closely correlated for all stand types.  

Crown closure has not been used as a factor in the susceptibility of trees to hurricanes. 

 Probabilities of susceptibility range from 10% for young stands where trees are 

less than 1 cm average diameter to 100% for very old stands with tall large trees.  The 

examples in table 2-6 are for unmanaged natural stands and are taken from figure 2-5.   
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Table 2-6 – Example age dependent probabilities of succumbing to a hurricane of low, 

medium or high intensity for an unmanaged natural stand 

Hurricane Chart 

Age Low int. Med. Int. High int. 

10 0.172 0.218 0.264 

15 0.208 0.252 0.296 

20 0.244 0.286 0.328 

 

The example below shows how to calculate the probability that a 15 year old 

natural unmanaged stand will succumb to a hurricane and end up in state    .  A low 

intensity hurricane is the only one that can send a stand to the regeneration state   .   

 

 Return interval of major hurricanes = 50 years 

 Average area of wind = 400 000 ha 

 Size of study area = 1 691 300 ha (estimated forested portion of N.S.) 

 E(X) =   = 
 

  
     

 Probability hurricane arrives in period = 1 – P(X=0) 

        =   
     

  
   

         

  
 

        = 0.0952 

 Conditional probability stand affected by hurricane =  
       

         
 = 0.2365 

 Prob. hurricane arrives and stand affected = 0.0952  0.2365 = 0.0225 

 Probability of succumbing and ending up in    = P (   | hurricane) =  

(Prob. hurricane arrives and stand affected)  

(Prob. of low intensity hurricane if it occurs)  

(Joint conditional prob. stand succumbs if hurricane occurs) =  

0.02250.5(0.2080.5+0.2520.3+0.2960.2) = 0.0027 

 

 We could calculate the probabilities of ending up in state    and    for the same 

stand by using the probabilities of occurrence of medium and high intensity hurricanes 

given in table 2-5 and replacing them in the equation above in place of the probability of  

occurrence of a low intensity hurricane.  This procedure needs to be repeated for any 
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stand, regardless of treatment type, for which probabilities of succumbing to hurricanes 

are required. 

 

2.9.2 Forest Fires 

 

Modeling forest fires is treated in a similar manner as modeling hurricanes.  Many 

studies characterize the occurrence of a forest fire as a Poisson process (Cunningham and 

Martell (1973), Martell and Sun (2008)).  Equations (2-30) and (2-31) reflect the nature 

of forest fires given the occurrence rate follows a Poisson process. 

 

E(X) =   =  length of study period  (  fires per year in study area)     (2-30) 

 

P(stand affected | fire occurs) = 
 avg. fires per year    (avg. size of each fire)

size of study area
    (2-31) 

 

The probability a stand is affected in any period is calculated by multiplying the 

probabilities in equations (2-30) and (2-31) with each other.  The rest of the procedure for 

calculating the probability of ending up in a regeneration state in any period due to a 

forest fire is identical to the procedure for hurricanes.  The probabilities presented in table 

2-7 are slightly different than those for hurricanes.   

 

Table 2-7 – Example probabilities of different intensity fires occurring 

 

Probability of low intensity fire if it occurs (new state =   ) 0.3 

Probability of medium intensity fire if it occurs (new state =   ) 0.5 

Probability of high intensity fire if it occurs (new state =   ) 0.2 
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Figure 2-6 – Probabilities of succumbing to fires of different intensities 

 

 

Figure 2-6 shows the probabilities of succumbing, or susceptibility, for a range of 

ages.  The susceptibilities are reversed when compared to hurricanes because small trees 

don’t have a thick bark to protect them from the intense heat of a fire therefore we model 

a young stand as having a higher probability of ending up in a worst regeneration state.  

These probabilities are a function of age but they could also have been given as a 

function of diameter as it’s closely related to age for all treatment types.   

 

Table 2-8 – Example age dependent probabilities of succumbing to a fire of low, medium 

or high intensity for an unmanaged natural stand 

Fire Chart 

Age Low int. Med. int. High int. 

10 0.928 0.932 0.936 

15 0.892 0.898 0.904 

20 0.856 0.864 0.872 

 

The examples given in table 2-8 are taken from figure 2-6 and are used in the 

following example.  This example shows the steps in calculating the probability of a 15 

year old stand succumbing to a forest fire and ending up in state   .  A high intensity fire 

is the only one that can result in a stand going to a regeneration state   .   
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Average number of major forest fires per year in study area = 3.5 

 Average size of each fire = 2857.1 ha 

 Size of study area = 1 691 300 ha 

 E(X) =   = 5  3.5 = 17.5 

 Probability fire occurs in period = 1 – P(X=0) 

         =   
     

  
   

e-17.517.50

0 
 = 1 

 Conditional prob. stand burned by fire =  
5 3.5 2857.1

1 691 000
 = 0.0296 

 Prob. fire occurs and stand is burned = 1  0.0296 = 0.0296 

 Probability of succumbing and ending up in    = P (   | fire) =  

(Prob. fire occurs and stand is burned)  

(Prob. of high intensity fire if it occurs)  

(Joint cond. prob. stand succumbs if fire occurs) =  

0.02960.2(0.8920.3+0.8980.5+0.9040.2) = 0.0053 

 

The probabilities of ending up in regeneration states    and    are also calculated 

the same way as is described in the previous section. 

 

2.9.3 Insect Outbreaks 

 

The probability of occurrence is calculated the same way as it is for hurricanes 

therefore equation (2-28) is used for  .  The occurrence of damaging insect outbreaks has 

been modeled using a Poisson process in some cases (Batabyal and Beladi 2009).  There 

are two major differences with insect outbreaks in comparison with the other two natural 

disasters.  First, there isn’t any conditional probability the stand will be affected.  If an 

outbreak occurs, the stand will be affected therefore 

 

 P (stand affected | insect outbreak occurs) = 1 
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Second, with insect outbreaks, it’s assumed that if the stand succumbs, the 

damage will be such that the stand will end up in the worst possible state for natural 

regeneration (  ) with 0% probability of ending up in state    or   .  In other words, 

there aren’t different levels of intensity for insect outbreaks.   

 

 
Figure 2-7 – Probabilities of succumbing to insect outbreaks 

 

Figure 2-7 shows age dependent probabilities of succumbing to an insect 

outbreak.  The values shown in table 2-9 are taken from figure 2-7.  Larger trees are 

modeled as having a higher probability of succumbing because they offer better food and 

shelter for invading insects. 

 

Table 2-9 – Example age dependent probabilities of succumbing to an insect outbreak for 

an unmanaged natural stand 

Age (years) 0 5 10 15 20 25 30 35 

Susceptibility 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 

  

The example below shows steps in calculating the probability that a 15 year old 

stand will succumb to an insect outbreak and end up in state   . 

 

 Return interval of major insect outbreak = 30 years 

 E(X) =   = 
5

30
=0.1666 
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 Probability insect outbreak occurs in period = 1 – P(X=0) 

       = 1  
e-  x

x 
=1  

e-0.16660.16660

0 
 0.1535 

 Probability of succumbing and ending up in    = P (   | outbreak) =  

(Prob. insect outbreak occurs)  

(Prob. stand succumbs if insect outbreak occurs) =  

0.15350.175 = 0.0268 

 

We need the joint probability that a stand will end up in one of the regeneration 

states in the time period immediately following a hurricane.  For a 15 year old 

unmanaged natural stand, given the probabilities of ending up in regeneration state    

calculated as examples for each natural disaster, we have 

 

 P (  ) = P (   | hurricane) + P (   | fire) + P (   | insect outbreak) 

             = 0.0027 + 0.0053 + 0.0039 = 0.0119 

 

In order to calculate the probability that no natural disaster will occur and affect 

the stand, we need to calculate the same probabilities for    and    for the same stand 

and then calculate the probability that the stand doesn’t succumb to a natural disaster. 

 

 P (not succumbing) = 1 - P (  ) - P (  ) - P (  ) 

 

The procedure is repeated for any stand where these probabilities are needed.  The 

next chapter presents examples of growth and yield models for mixed-species stands.  

Variable removal percentages for commercial thinning are also discussed and examples 

are presented.
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Chapter 3: Mixed-species Forest Stands - Some Results from Models 

 

 The previous chapter presented models for growth and yield of mixed-species 

stands as well as for variable thinning models.  Important assumptions were made for the 

models to hold.  This chapter is divided into three sections with a focus on presenting 

computer results for the forest stand management models discussed in the previous 

chapter.  The models are tested to show that they perform reasonably under the 

assumptions made.   

In order to show that the models developed and presented here perform 

reasonably, they are tested for stands with 0%, 10% and 20% HW as well as 0%, 10% 

and 20% SW and results are shown in section 3.1.  The results are compared with NS 

DNR single-species models for validation.  If the models produce reasonable results for 

the stands listed above, this at least suggests the results will be reasonable for other 

stands.  This is as strong a claim as can be made because models for growing mixed-

species stands don’t exist therefore aren’t available for comparison with the proposed 

approach. 

Sections 3.2 and 3.3 discuss the development and application of CT thinning in 

more detail than is currently available from NSDNR.  Section 3.2 shows simulation 

results for the development of the variable removal methodology used for commercial 

thinning (CT) in this research.  The development of the method is explained and an 

example is given of its application to a mixed-species stand.  Section 3.3 explains how the 

methodology developed in section 3.2 is applied to calculate the yield for a CT operation 

on a mixed-species stand.    

 

3.1 Mixed-species Growth Models 

 

 Detailed growth models are presented in sections 2.6 and 2.7 and functions are 

detailed in appendix A.  The first part of this section compares the proposed model in 

section 2.7 with NS DNR single-species models for validation.  The second part 

demonstrates long-term performance for mixed-species stands and demonstrates the 

difference between plantations and natural stands.   
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3.1.1 Comparison with Single-Species Models 

 

 We recall that, given a uniform stand, every tree in the stand sees the same crown 

closure (  ).  But with different maximum stocking basal areas, the spacing isn’t the same 

for each species.  Furthermore, SW grows faster than HW.  Therefore SW stands reach 

full stocking faster than HW stands when starting at the same diameter and same   .  

 In order for the proposed mixed-species growth model to accurately calculate the 

growth of each species in a mixed-species stand, the model must accurately represent SW 

and HW growth in pure stands.  The proposed approach uses    and species percentage to 

calculate the spacing between trees for each species.  When a stand contains only one 

species, the spacing calculation is done using equation (2-1) and each species grows as in 

table 3-1 which shows the growth of pure SW and HW stands starting from the same    

and the same   . The    columns clearly show the difference in the rates at which the 

pure SW and HW stands reach 100% crown closure.  In a mixed-species stand that 

combines SW and HW, the presence of SW will speed up the rate at which the HW 

portion of the stand reaches 100% crown closure therefore reducing its gain in diameter 

growth as opposed to a pure HW stand.  The presence of HW in a mixed-species stand 

will slow the rate at which the SW portion of the stand reaches 100% crown closure 

therefore accelerating diameter growth of SW as opposed to a pure SW stand.  In other 

words, adding HW to a mixed-species stand reduces total stand BA, for the same   , 

which raises spacing between trees and encourages faster diameter growth.  These 

findings are consistent with other results reported in the literature (Andreassen and 

Tomter (2003) and Huang and Titus (1995)).  Table 3-1 will serve as the benchmark for 

comparison in order to validate the mixed-species model.   

 Tables 3-2 and 3-3 show the effect of 10% and 20% HW in a mixed-species stand.  

As expected, with the same starting    and    as table 3-1, the effect on diameter growth 

is exactly as described in the beginning of this section.  The presence of 10% HW in a 

mixed-species stand gives SW a 2.16% gain in diameter growth over a 20 year period 

(21.25cm vs. 20.80cm).  The presence of 20% HW gives SW a 2.71% gain in diameter 

growth over the same 20 year period (21.38cm vs. 20.80cm) when compared with the 

pure SW stand.  The pure SW stand reaches 100% crown closure in 20 years and the 
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presence of 10 and 20% HW only has a small effect on the rate at which the stand reaches 

100% crown closure.  There is not enough HW BA to have a strong influence on SW 

growth.  These findings are consistent with the expected effect of the presence of small 

amounts of HW to an almost pure single-species SW stand.  The smaller full stocking 

basal area and larger spacing of HW has the effect of creating a little more space for the 

SW trees to grow when the HW is present in small amounts in a predominantly SW stand.   

 

Table 3-1 – Growth for pure SW and HW stands,     =     = 16m 

 Year          SW    HW         

0 15.00 15.00 60 60 35.05 17.57 

5 16.84 15.95 74 67 44.16 19.87 

10 18.38 16.80 88 73 52.64 22.05 

15 19.69 17.58 99 78 60.39 24.13 

20 20.80 18.29 100 84 61.22 26.12 

25 21.89 18.94 100 89 61.67 28.03 

30 22.95 19.56 100 94 62.09 29.88 

35 24.00 20.13 100 99 62.49 31.66 

40 25.03 20.68 100 100 62.87 32.38 

45 26.04 21.21 100 100 63.23 32.63 

 

Table 3-2 – Growth for a mixed-species stand with 10% HW,     =     = 16m 

Year 
Softwood  Hardwood 

           
                 

0 15.00 90  15.00 10 60 28.69 3.19 

5 16.97 91  15.95 9 74 36.74 3.60 

10 18.64 92  16.72 8 87 44.30 3.96 

15 20.05 92  17.38 8 98 51.26 4.28 

20 21.25 92  17.95 8 100 52.68 4.41 

25 22.40 92  18.51 8 100 53.08 4.45 

30 23.52 92  19.06 8 100 53.45 4.49 

35 24.63 92  19.60 8 100 53.81 4.53 

40 25.71 92  20.14 8 100 54.14 4.57 

45 26.77 92  20.68 8 100 54.46 4.60 

 

 When we study stands that are predominantly HW with small proportions of SW, 

the effect on diameter growth is exactly as described in the beginning of this section.  The 

presence of 10% SW in a mixed-species stand causes a 0.16% loss of diameter growth for 

HW over a 20 year period (18.26cm vs. 18.29cm).  The presence of 20% SW causes a 

loss of 0.33% in hardwood diameter growth over the same 20 year period (18.23cm vs. 
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18.29cm) when compared with a pure HW stand.  The pure HW stand reaches 100% 

crown closure in 40 years whereas the presence of 10 and 20% SW slightly reduces that 

time.  Although the time to reach 100% crown closure is slightly affected, there is not 

enough     present to have a strong influence on hardwood diameter growth.   

 

Table 3-3 – Growth for a mixed-species stand with 20% HW,     =     = 16m 

Year 
Softwood  Hardwood 

           
                 

0 15.00 80  15.00 20 60 23.39 5.85 

5 16.97 82  15.95 18 73 29.95 6.61 

10 18.67 83  16.74 17 84 36.22 7.28 

15 20.12 84  17.41 16 95 42.10 7.88 

20 21.38 84  18.00 16 100 44.81 8.40 

25 22.52 84  18.56 16 100 45.15 8.48 

30 23.65 84  19.11 16 100 45.47 8.56 

35 24.75 84  19.65 16 100 45.76 8.63 

40 25.83 84  20.19 16 100 46.05 8.71 

 

 The findings in table 3-4 and 3-5 are consistent with the expected effect of the 

presence of small amounts of SW to an almost pure single-species HW stand.  The larger 

full stocking basal area and smaller spacing of SW has the effect of removing growing 

space for the HW trees when the SW is present in small amounts in a predominantly HW 

stand.   

 

Table 3-4 – Growth for a mixed-species stand with 10% SW,     =     = 16m 

Year 
Softwood  Hardwood 

           
                 

0 15.00 10  15.00 90 60 1.85 16.65 

5 16.97 11  15.95 89 67 2.37 18.82 

10 18.80 12  16.80 88 74 2.90 20.87 

15 20.47 13  17.56 87 80 3.45 22.82 

20 22.01 14  18.26 86 86 3.98 24.67 

25 23.41 15  18.90 85 91 4.50 26.44 

30 24.68 15  19.50 85 96 4.97 28.14 

35 25.82 15  20.06 85 100 5.19 29.44 

40 26.88 15  20.60 85 100 5.22 29.68 

 

 

 



54 

Table 3-5 – Growth for a mixed-species stand with 20% SW,     =     = 16m 

Year 
Softwood  Hardwood 

           
                 

0 15.00 20  15.00 80 60 3.90 15.62 

5 16.97 22  15.95 78 68 5.00 17.65 

10 18.78 24  16.79 76 75 6.12 19.57 

15 20.44 25  17.55 75 81 7.25 21.37 

20 21.94 27  18.23 73 88 8.35 23.07 

25 23.30 28  18.86 72 94 9.42 24.69 

30 24.52 28  19.45 72 99 10.13 26.25 

35 25.63 28  19.99 72 100 10.32 26.80 

40 26.69 28  20.53 72 100 10.38 27.02 

 

 The method proposed in section 2.7 for combining single species stand level 

growth models produces reasonable results for the stands tested and is consistent with the 

results in the sources cited earlier which at least suggests that the results will be 

reasonable for other stands. 

   

3.1.2 Mixed-species Examples 

 

 We now present three examples to demonstrate the application of the proposed 

model to managed and unmanaged mixed-species stands. The first example is for TRT=1 

only.  The focus of this example is to show the relationship between stand variables in an 

unmanaged natural mixed-species stand over time.  The second example uses a 

commercially thinned natural stand (TRT=5) and demonstrates the application of the 

proposed methodology to managed mixed-species natural stands.  The last example is 

used to demonstrate the difference between plantations and natural stands. 

 

Unmanaged mixed-species natural stand 

 

 The growth of unmanaged natural mixed-species stands depends only on the 

number of years since the last final harvest (   ) and the percentage of softwood 

naturally present in the stand (    ).  Table 3-6 shows an example of a stand that starts 

with     = 30 years and      = 50%.  Stand stocking is 100%.   
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Table 3-6 – Example of growth for a natural untreated stand with stand stocking = 100% 

and     =     = 16m at age 50 years 

Year     
Softwood  Hardwood 

                            
                 

0 30 7.3 50  5.9 50 0.32 0.68 14.75 14.75 

5 35 8.3 49  6.9 51 0.32 0.68 15.09 15.54 

10 40 9.4 49  8.0 51 0.32 0.68 15.38 16.22 

15 45 10.4 48  9.0 52 0.32 0.68 15.64 16.82 

20 50 11.3 48  9.9 52 0.32 0.68 15.87 17.36 

25 55 12.2 47  10.8 53 0.32 0.68 16.07 17.82 

30 60 13.0 47  11.6 53 0.32 0.68 16.25 18.24 

35 65 13.8 47  12.4 53 0.32 0.68 16.41 18.61 

40 70 14.6 47  13.1 53 0.32 0.68 16.55 18.95 

45 75 15.3 46  13.8 54 0.32 0.68 16.68 19.24 

50 80 15.9 46  14.4 54 0.32 0.68 16.80 19.51 

55 85 16.5 46  15.0 54 0.32 0.68 16.90 19.75 

60 90 17.1 46  15.5 54 0.32 0.68 16.99 19.96 

 

 Based on the example in table 3-6, starting at age 30 and for rest of the life of the 

stand, the softwood trees always have a larger diameter than the hardwood trees but the 

diameters essentially gain the same amount at each time period.  Based on the method 

proposed in section 2.7, the fraction of the stand covered by each species will not change 

over the life of the stand, as long as the stand starts with    = 100%, as evidenced by the 

results shown in table 3-6.  Furthermore, all stands in this thesis are even-aged throughout 

the entire growth cycle of the stand which means that, by definition, all trees on the stand 

are essentially the same age.  According to this definition, no new younger trees will 

grow in to replace the ones currently growing until after a regeneration harvest.  

Therefore, it makes sense for the space occupied by each species to remain unchanged 

when the stand is at full stocking.  Because the trees grow at different rates and 

                    for a given diameter, and based on the relationship between 

species percentage and          
  given in section 2.7,      drifts slightly from the 

initial values but the change isn’t significant. 
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Managed natural stands 

 An example of a commercially thinned natural stand with 60% SW basal area and 

15cm diameter for SW and HW is shown in table 3-7.  The example in table 3-8 has the 

same species split but HW has an initial diameter of 9.4 cm.   

 

Table 3-7 – Example of growth for a stand with TRT = 5 and     =     = 16m  at age 50 

years with identical starting diameters 

Year 
Softwood  Hardwood 

                               
                 

0 15.0 60  15.0 40 0.429 0.571 60 15.05 10.03 

5 16.8 63  15.9 37 0.457 0.543 70 18.96 11.34 

10 18.5 65  16.8 35 0.479 0.521 79 22.82 12.53 

15 19.9 66  17.5 34 0.496 0.504 88 26.55 13.62 

20 21.2 67  18.1 33 0.510 0.490 96 30.09 14.63 

25 22.3 67  18.7 33 0.510 0.490 100 31.55 15.37 

30 23.4 67  19.2 33 0.510 0.490 100 31.76 15.51 

35 24.4 67  19.8 33 0.510 0.490 100 31.96 15.65 

 

Table 3-8 – Example of growth for a stand with TRT = 5 and     =     = 16m at age 50 

years with different starting diameters 

Year 
Softwood  Hardwood 

                               
                 

0 15.0 60  9.4 40 0.394 0.606 60 13.81 9.21 

5 16.8 60  10.5 40 0.402 0.598 73 17.40 11.41 

10 18.4 61  11.3 39 0.409 0.591 85 20.80 13.42 

15 19.8 61  12.1 39 0.415 0.585 95 23.98 15.26 

20 20.9 61  12.8 39 0.415 0.585 100 25.41 16.30 

25 22.0 61  13.4 39 0.415 0.585 100 25.59 16.55 

30 23.1 61  14.0 39 0.415 0.585 100 25.77 16.78 

35 24.1 60  14.6 40 0.415 0.585 100 25.93 17.00 

 

 There are two noticeable differences between these examples and the last example 

in the previous section.  First, crown closure increases steadily until it reaches 100% in 25 

years in table 3-7 and 20 years in table 3-8.  The fraction of a stand covered by each 

species changes until the stand reaches crown closure at which point it stops changing.  

     changes only slightly as it did in the previous example.  Second, the diameter is the 

same for SW and HW in table 3-7 which could not occur in an unmanaged natural stand.  

Because these stands may have been treated since the last final harvest, the diameter 

growth could have been altered from its natural state. 
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 In table 3-7, SW and HW have the same initial diameter.  The result is a rapid 

change in      until crown closure is reached which is caused by the faster SW diameter 

growth and larger number of SW trees on the stand.  In table 3-8, there are more 

hardwood trees because of the smaller   .  This results in a higher           and a 

higher        which allows the HW to retain its fraction of the stand area.  The larger 

       allows the HW to gain basal area faster in table 3-8 compared to table 3-7. 

 

Comparison of plantations and natural stands 

 

 In forests that are managed for maximum economic gain, forest managers often 

opt for plantations over natural stands when choosing what type of stand will replace 

another after a regeneration harvest.  This will be discussed in detail in chapter 5 when 

the results of the optimization are presented.  The last example in this section isn’t used to 

show the progression of a stand over time but rather to show the difference between 

natural stands and plantations which may serve to illustrate why many jurisdictions 

around the world are seeing natural forests being replaced by plantations when the main 

management objective is of a purely economic nature.  Tables 3-9 and 3-10 show the 

contrast between natural and plantation stands.  These values are taken directly from the 

NS DNR growth and yield models. 

 

Table 3-9 – Example of an unmanaged natural stand (TRT = 1),     =     = 16m at age 

50 years, ha = 70 years 

Softwood  Hardwood 
                            

                 

15.0 100  0 0 1.000 0.000 51.12 0 

 

Table 3-10 – Example of an non-commercially thinned plantation (TRT = 3),     =     = 

16m at age 50 years, ha = 70 years 

Softwood  Hardwood 
                            

                 

15.0 100  0 0 1.000 0.000 58.30 0 

 

 Plantations don’t contain hardwoods in N.S. therefore the comparison is done with 

a single-species SW natural stand.  The main difference is the amount of BA in a 
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plantation compared to a natural stand.  The trees in plantations are planted in a very 

organized pattern with very little wasted space which allows the plantation to have a 

slightly higher number of trees per hectare at full stocking when compared to natural 

stands.  Essentially, for the same diameter,           for a plantation is higher than 

          for a natural stand which yields a higher BA for a plantation.  

 

3.2 Commercial Thinning Methods 

 

The growth and yield models of the NS DNR only model thinning from below.  

These regression models were developed using data from Nova Scotia`s fully stocked 

research permanent sample plots (PSP) collected over a 15 year period where there is 

only data available for removal from below therefore it is currently the only method of 

simulating commercial thinning in Nova Scotia forests (NSDNR (1993b), O’Keefe and 

McGrath (2006)).  For the purpose of this work, models are required for other removal 

types and this section details the methodology used to develop those models. 

Previous work (Gunn et al. 2000) has developed a family of Weibull distributions 

whose parameters depend only on   .  In that work, the authors show that the diameter 

distribution of trees in a stand after thinning is not readily distinguishable from the 

diameter distribution before the thinning.  We take advantage of this property and use the 

Weibull simulation built for the work by Gunn et al. (2000) to simulate commercial 

thinning for SW and HW, from above and below, for a range of quadratic mean diameters 

and basal area removal percentages.  The results of those simulations are then used to 

create an approach to calculating the diameter change for a range of species, diameters, 

removal types and percentages. 

What follows is a step by step brief overview of the method used to develop the 

CT models used in the DP model.   

 

Step 1: Choose the average stand diameter and CT parameter values to 

simulate; 

Step 2: Create a stand with randomly distributed trees where the trees are 

created by randomly simulating their individual diameters based on the 
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Weibull distribution.  The number and size of trees on the stand are 

functions of the average stand diameter; 

Step 3: CT is applied to the stand created in step 2 by removing trees according 

to the CT parameter values being simulated; 

Step 4: The post-CT stand average diameter is recorded for future retrieval 

along with the pre-CT diameter and CT parameter values used in step 3; 

Step 5: Steps 1 through 4 are repeated for the range of diameters and CT 

parameters required in the DP model; 

Step 6: Repeat for a reasonable number of replications.  The data collected in 

steps 1 through 5 for all replications is used to determine the parameters 

of the linear equation fit on the data. 

 

 Steps 1 through 5 make up one replication of the simulation and the choice of the 

number of replications is explained in step 6 below.  The 6 steps are described in greater 

detail below. These steps are applied for one type of CT, either thinning from above or 

from below, and for each species separately.   

 

Step 1: Choose the average stand diameter and CT parameters 

 

For a single simulated stand, a combination of quadratic mean diameter      and 

basal area removal percentage         is chosen.  For the purpose of this work, 

simulations are done for each combination of species and thinning type with    ranging 

from 14 to 35 cm in 1 cm increments and       of 0.05 to 0.4 in 0.05 increments.  

Stands with    14cm have very little commercial value therefore they are not 

simulated.  In commercial timber operations in Nova Scotia, stand average diameters of 

35 cm are rare thus it has been chosen as an arbitrary maximum diameter.  Removing less 

than 5% of the wood on a stand during a CT wouldn’t remove enough timber to be 

economically sustainable and removing more than 40% would leave the stand with very 

little protection against the wind.  The combination of 22 values of    with each of the 8 

values of       gives 176 combinations.  Combined together, the 176 combinations 

represent one simulation replication. 
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Step 2: Create a stand 

 

A stand containing   trees is created using the method that follows.  The model 

developed by Gunn et al. (2000) gives the equations below for creating the individual 

trees on a stand.  A random number between 0 and 1 is picked from a uniform 

distribution and used to determine the diameter of a tree    based on a Weibull 

distribution for   .  The parameters used in the    equation are all dependent on   .  

Parameters  ,  , and   are different for hardwood and softwood. 

 

                  
   

 

 Softwood:    = 0.75  (0.374     
+ 0.004      ) 

     = -0.2877 + 0.7784     

     = 3.7143 – 
     

    
       

 Hardwood:    = 0.75  (0.4382    ) 

     = -0.0898 + 0.7195     

     = 2.8128 – 
      

       
  

 

During each replication, a virtual parcel of land is divided into 128 cells where 

each cell corresponds to a manageable cell size for the worker doing the commercial 

thinning as decisions about which trees to remove need to be made among the trees that 

are in sight of the worker.  For each simulated stand, the stand starts at 100% crown 

closure with   trees where             for the given    and the trees are randomly 

distributed among the 128 cells and then sorted by diameter inside each cell. 

 

Step 3: Apply Commercial Thinning 

 

In this step, thinning is done either from above or from below, and for SW and 

HW.  In the case of thinning from above, it is applied to the stand created in step 2 by 

removing the largest tree from each cell starting from cell 1 and moving through 

subsequent cells until the desired basal area has been removed from the stand. If the 
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desired basal area removal hasn’t been reached after having gone through the 128 cells, 

the process restarts at cell 1.  When thinning from below, the same process is followed 

except that the smallest tree in each cell is removed.  The spatial distribution of the trees 

in a cell forces workers to remove trees that normally would stay or leave trees that would 

normally be removed.  For example, when doing thinning from above, if two big trees are 

side by side, both wouldn’t be removed in subsequent commercial thinnings (CT) because 

it would leave a big opening in the stand.  During the simulation of each stand, 20% of 

the trees that would normally be removed are randomly skipped.  Once the desired basal 

area has been removed, the new number of trees and the new stand diameter are 

calculated. 

 

Step 4: Record data for future retrieval 

 

In this step,    before CT,    after CT and       are stored to be used in step 

6.  This step is done for all combinations of species type, CT type,    and      . 

 

Step 5: Repeat steps 1 through 4 

 

 Steps 1 through 4 are repeated 30 times each for the combinations described in 

step 1 where 30 is a large enough number of replications given the small amount of 

variability shown in figure 3.1 for each combination of    and      . 

 

Step 6: Create CT linear model 

 

A total of 5280 stands are simulated (30 replications  22 diameters  8       

values).  Figure 3-1 shows the 5280 simulations for thinning from below for SW in three 

dimensions:    before CT,    after CT and      .  It shows that there is a linear 

relationship between    and       and the new diameter after CT for thinning from 

below for SW.  Similar results were found for thinning from below for HW as well as for 

thinning from above for both species types.  Results of those simulations are presented in 

appendix D. 
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Figure 3-1 – Plot of 5280 diameter change simulations for CT from below for SW 

 

 

For the implementation in the DP model, we take advantage of the linear 

relationship shown in figure 3-1 and fit a linear model to the data to determine the 

diameter change for a stand given    and      .  The fitting is done on a plane where 

the four corners have (x,y,z) coordinates shown in table 3-11. 

 

Table 3-11 – (x,y,z) coordinates for the plane shown in figure 3-1 
 Coordinates 

Corner x (   before CT) y (     ) z (   change after CT) 

C1 14 cm 5% 0.35 cm 

C2 14 cm 40% 1.89 cm 

C3 35 cm 5% 1.70 cm 

C4 35 cm 40% 9.46 cm 

 

The z coordinates are the average values for the    change for all simulation 

replications where    before CT and       are equal to those shown in table 3-11.  

Equations (3-1) to (3-3) are standard linear interpolation equations.  Equation (3-1) 

calculates the diameter change for        
  = 14cm and a given value of       between 

5% and 40%.  Equation (3-2) calculates the diameter change for        
  = 35cm for the 

C3 

C4 

C1 

C2 
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same       as above.  Equation (3-3) interpolates between the values calculated in 

equations (3-1) and (3-2) for a given    between 14cm and 35cm. 

 

 14Rem = (      - 0.05) / 0.35 * (14_high - 14_low) + 14_low  (3-1) 

 35Rem = (      - 0.05) / 0.35 * (35_high - 35_low) + 35_low  (3-2) 

     =   + (   - 14) / 21 * (35Rem - 14Rem) + 14Rem       (3-3) 

 

 where  14_low – Average diameter change for       = 5% and    = 14 cm 

  14_high – Average diameter change for       = 40% and    = 14 cm 

  35_low – Average diameter change for       = 5% and    = 35 cm 

  35_high – Average diameter change for       = 40% and    = 35 cm 

  14Rem – Average diameter change for a given       with    = 14 cm 

  35Rem – Average diameter change for a given       with    = 35 cm 

      is the average diameter of the stand immediately following the CT 

 

An example is given below for a softwood stand with thinning from below with 

   = 21.5 cm and       = 35%.   

 

 14_low = 0.35 cm, 14_high = 1.89 cm, 35_low = 1.70 cm, 35_high = 9.46 cm 

 14Rem = (0.35 - 0.05) / 0.35 * (1.89 – 0.35) + 0.35 = 1.67 cm 

 35Rem = (0.35 - 0.05) / 0.35 * (9.46 – 1.70) + 1.70 = 8.35 cm 

     = 21.5 + (21.5 - 14) / 21 * (8.35 – 1.67) + 1.67 = 25.56 cm 

 

In this example,    rises by 4.06 cm due to the thinning from below.  NS DNR 

has published a diameter adjustment equation for thinning from below so it is useful to 

compare it to the method presented above.  Equation (3-4) is used by NS DNR for 

thinning from below. 

 

          0.00437           0.25        (3-4) 

 

 There aren’t any readily available testing procedures for comparing a regression 

model to a data set if the underlying data for the regression model isn’t known.  

Therefore, plotting the proposed method and the NS DNR regression equation on the 

same graph and calculating the largest difference between the two curves for a typical 
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range of diameters and       encountered in the DP model is a reasonable method of 

comparison.   

 Figures 3-2a and 3-2b plot the proposed model and the NS DNR model for SW, 

removal from below and       values of 10%, 20%, 30% and 40%.  For example, the 

largest difference between the proposed method and the NS DNR model for SW with 

      = 20% is at    = 35 cm where the NS DNR model yields a new diameter of 

38.31 cm and the proposed model gives 40.02 cm which is a difference of 1.71 cm or 

4.5%.  For the purposes of this thesis, we are treating this error as acceptable. 

 

  

Figure 3-2a – Comparison of proposed CT diameter adjustment model and equivalent NS 

DNR model for 10% and 20% basal area removal from below for SW – proposed model 

in blue and NS DNR model in red 

 

  

Figure 3-2b – Comparison of proposed CT diameter adjustment model and equivalent NS 

DNR model for 30% and 40% basal area removal from below for SW – proposed model 

in blue and NS DNR model in red 
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An example of the application of the proposed thinning model is given in table 3-

12.  In a stand with SW and HW, it is assumed that the change in diameter for each 

species is the same as if it were two smaller single-species stands with the same diameter 

and basal area.  Table 3-12 shows the results, immediately before and after thinning, of a 

mixed-species stand thinned from below with 30%      , split 75/25 between 

softwood and hardwood.  This stand has 47.3 m
2
 of total basal area before thinning and 

30% of that is removed from the stand for a total removal of 14.2 m
2
.  The basal area 

removed has to be split between SW and HW as follows: 10.6 m
2
 SW and 3.6 m

2
 HW.  

The actual removal amounts represent 32% of the SW on the stand and 25% of the 

hardwood on the stand before the thinning.  These actual       percentages are used to 

calculate    and    as well as     and     immediately following thinning.  The 

updated value for      is calculated using the new values of    .   

 

Table 3-12 – Example of the use of the proposed method for calculating the changes in 

  ,      and     that result from thinning from below in a mixed-species stand where 

      = 30% and            = 75% SW 

Before thinning  After thinning 

                                       

20 cm 18 cm 70% 33.1 m
2
 14.2 m

2
  23.3 cm 20.3 cm 67.8% 22.4 m

2
 10.6 m

2
 

  

3.3 Yield From Commercial Thinning 

 

 All commercial thinnings have the same type of result regardless of the type of 

stand so only one example is presented here.  The example is for a 60 year old 

unmanaged natural stand with stand stocking = 100%.  The stand has a site index of 16m 

for both species at    = 50 years and      = 75%.  The diameters and basal areas before 

thinning are    = 17.41 cm,    = 15.38 cm,     = 32.92 m
2
 and     = 10.97 m

2
.  Table 

3-13 shows the resulting stand when we apply       = 30% split 50/50 between 

softwood and hardwood.  Table 3-14 shows results for the same split but with       = 

40%.   
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Table 3-13 – Example of a CT on an unmanaged natural stand (TRT = 1),     =     = 

16m,    = 60 years,      = 75%,       = 30%,            = 50% (    is in m
3
) 

Thinning                                           

From below 18.62 20.90 99% 48.9% 106.78 80.46 39.77 26.91 13.80 15.00 

Across all diameters 17.39 15.18 99% 49.5% 119.00 109.13 39.95 27.72 17.39 15.18 

From above 16.61 11.37 99% 49.9% 125.86 125.86 40.23 29.05 23.32 15.48 

 

Table 3-14 – Example of a CT on an unmanaged natural stand (TRT = 1),     =     = 

16m,    = 60 years,      = 75%,       = 40%,            = 50% (    is in m
3
) 

Thinning                                           

From below 18.93 0.00 100% 44.3% 144.95 112.68 41.96 29.12 14.20 15.18 

Across all diameters 17.39 0.00 100% 44.8% 158.67 145.51 41.96 29.12 17.39 15.18 

From above 16.35 0.00 100% 45.1% 167.56 167.56 41.96 29.12 22.88 15.18 

 

 In both tables, as the diameter of the trees removed (   ) goes up, the average 

diameter of the trees left behind (   ) goes down.  Thinning from below removes the 

smaller trees therefore the trees that are left on the stand will be larger than the ones left 

behind after thinning from above.  Merchantable volume (  ) and sawtimber volume 

(  ) are also higher when we remove the larger trees even though the amount of basal 

area removed is the same.  The size of trees removed accounts for the difference in 

volume for the same amount of basal area removed.  The last two columns in tables 3-13 

and 3-14 show the diameter of the trees that were removed and the results are as 

expected.  Thinning from above removes larger trees than thinning from below.  The 

stand has 75% softwood before thinning therefore the removal of 30% of the total stand 

basal area with a 50/50 split leaves very little hardwood on the stand.  The removal of 

40% of the total stand basal area takes all the hardwood from the stand and this is 

reflected in the value of          in both tables.  With       = 40% and the removal of all 

hardwood from the stand,    ,     and DIAMREM
H
 are the same for all types of 

thinning.  The new crown closure is lower with 40% basal area removal than it is for 30% 

removal because more trees have been removed therefore leaving bigger gaps in the 

canopy of the stand. 

 After thinning, all of the stands in tables 3-13 and 3-14 grow according to the 

equations presented in section 2.7.  As an example of this growth, table 3-15 shows 35 
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years of growth for the first stand in table 3-13.  Without commercial thinning, the 

original stand would have grown as shown in table 3-16.   

 

Table 3-15 – 35 year growth of the resulting stand after thinning from below – first stand 

shown in table 3-13 

 
Softwood Hardwood 

                               
Year                   

0 18.62 99 20.90 1 0.979 0.021 49 32.36 0.33 

5 20.69 99 21.93 1 0.982 0.018 60 39.97 0.36 

10 22.45 99 22.79 1 0.983 0.017 69 47.02 0.39 

15 23.94 99 23.53 1 0.984 0.016 78 53.47 0.41 

20 25.20 99 24.19 1 0.985 0.015 86 59.28 0.44 

25 26.29 99 24.78 1 0.986 0.014 93 64.49 0.46 

30 27.22 99 25.32 1 0.986 0.014 99 69.13 0.48 

35 28.01 99 25.82 1 0.986 0.014 100 70.08 0.49 

 

Table 3-16 – 35 year growth of the original stand described at the beginning of section 

3.3 

 
Softwood Hardwood 

                               
Year                   

0 17.4 75 15.4 25 0.628 0.372 100 32.92 10.97 

5 18.6 75 16.3 25 0.628 0.372 100 33.29 11.17 

10 19.7 75 17.1 25 0.628 0.372 100 33.62 11.35 

15 20.8 75 17.9 25 0.628 0.372 100 33.91 11.51 

20 21.8 75 18.6 25 0.628 0.372 100 34.18 11.65 

25 22.7 75 19.3 25 0.628 0.372 100 34.42 11.77 

30 23.6 74 19.9 26 0.628 0.372 100 34.63 11.89 

35 24.4 74 20.4 26 0.628 0.372 100 34.82 11.99 

 

 Thinning from below created a stand with only 1% hardwood basal area.  With 

    = 0.33 m
2
 and    = 20.9 cm, there are only 10 hardwood trees left on the stand after 

commercial thinning.  Commercial thinning opened up the stand and created space for the 

trees to grow more quickly.  The difference between tables 3-15 and 3-16 is worth noting.  

As expected, diameter growth is higher when the stand    is below 100%.  The difference 

in stand total basal area after 35 years is very high with 46.81m
2
 for the untreated stand 

and 70.57m
2
 for the commercially thinned stand.  The difference is easily explained.  The 

untreated stand is close to its maximum stand basal area because table 3-16 starts with a 

60 year old stand.  It remains at or near the same total stand basal area for 35 years with 

very little gain.  The trees are getting bigger but the number of trees is decreasing.  In the 
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commercially thinned case, the stand is well below crown closure which means the trees 

are gaining significantly more diameter growth but the number of trees stays steady with 

large gains in total stand basal area.  The other critical difference is that the commercially 

thinned stand has 99% softwood which, in a pure stand, has a much higher maximum 

total stand basal area than hardwood.   

 A natural question arising from the results in table 3-13 is how does the stand 

grow after thinning from above?  Table 3-17 shows 35 years of growth for the third stand 

in table 3-13.  The main difference between thinning from below and thinning from above 

is in the rate at which the crown closure reaches 100%.  The stand that was thinned from 

above reaches 100% crown closure earlier at which point diameter growth slows and the 

stand as a whole gains less basal area.  The difference isn’t significant but after 35 years 

of growth, the stand that was thinned from below has 1.13 m
2
 more total stand basal area 

than the stand that was thinned from above.  This is explained by the fact that thinning 

from above leaves the smaller trees which grow faster and close the canopy of the stand 

slightly faster than the larger trees left behind with thinning from below.  The slight delay 

in reaching 100% crown closure causes the stand to gain a little more basal area in the 

case of thinning from below.  

 Starting with a stand that has 100% SW, as is the case in table 3-18, yields slightly 

higher total basal area after 35 years of growth (71.01 m
2
 vs. 70.57 m

2
) when compared to 

the case with 99% SW shown in table 3-15.  As discussed earlier, adding a small amount 

of hardwood to the stand raises spacing between trees which yields a smaller number of 

trees per hectare, which in turn translates to a slightly lower stand basal area.   

 

Table 3-17 – 35 year growth of the resulting stand after thinning from above – third stand 

shown in table 3-13 

 
Softwood Hardwood 

                               
Year                   

0 16.61 99 11.37 1 0.976 0.024 50 32.40 0.33 

5 18.59 99 12.54 1 0.977 0.023 62 40.59 0.40 

10 20.26 99 13.51 1 0.977 0.023 72 48.22 0.46 

15 21.68 99 14.34 1 0.978 0.022 82 55.19 0.52 

20 22.88 99 15.06 1 0.978 0.022 91 61.49 0.57 

25 23.91 99 15.71 1 0.979 0.021 98 67.14 0.62 

30 24.79 99 16.30 1 0.979 0.021 100 68.50 0.64 

35 25.63 99 16.87 1 0.979 0.021 100 68.79 0.65 
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Table 3-18 – 35 year growth for a stand with the same initial    and    as the first stand 

in table 3-15 but with    = 0 and      = 100% 

 
Softwood Hardwood 

                               
Year                   

0 18.62 100 0 0 1.0 0.0 49 33.01 0 

5 20.70 100 0 0 1.0 0.0 60 40.78 0 

10 22.44 100 0 0 1.0 0.0 69 47.96 0 

15 23.93 100 0 0 1.0 0.0 78 54.50 0 

20 25.19 100 0 0 1.0 0.0 86 60.40 0 

25 26.26 100 0 0 1.0 0.0 93 65.68 0 

30 27.19 100 0 0 1.0 0.0 99 70.36 0 

35 27.97 100 0 0 1.0 0.0 100 71.01 0 

   

3.4 Concluding Remarks 

  

 Development of the mixed-species model used in this thesis is based on the idea 

that all trees on a stand, regardless of species type, experience crown closure as being the 

same.  The examples presented in this chapter rely on the fact that crown closure is 

directly related to spacing between the trees on a stand and, in the growth and yield 

models published by NS DNR, spacing is the major driving force of individual SW and 

HW diameter growth models.  The models and examples in this chapter have led to an 

important principle: slow growing species with a low maximum density such as 

hardwood, when mixed with faster growing higher density species such as softwood, will 

give the faster growing species more room to grow by slowing the rate at which the stand 

reaches crown closure thus resulting in a gain in diameter growth.  The reverse of this 

principle also holds.  As discussed in section 3.1, these observations were previously 

made by Andreassen and Tomter (2003) and Huang and Titus (1995) which further 

supports the claim that the mixed-species models developed and used in this work are 

reasonable. 
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Chapter 4: Dynamic Programming Approaches to the Individual Forest Stand 

Optimization Problem 

 

The problem statement and the context of this thesis were presented in chapter 1.  

Stochastic dynamic programming was established as the method of choice for optimizing 

mixed-species forest stand management policies when facing uncertain outcomes.  This 

chapter discusses DP as it applies in this research.  Specifically, the forest stand 

management problem has a large dimensional state space with a mix of discrete and 

continuous state variables.  Because the cost and profit functions and the dynamics are 

complex, no analytical solution is possible.  Thus we resort to numerical methods.  We 

would like to understand infinite horizon policies.  The method we have chosen to 

explore this is value iteration.  However, since some of our state variables are continuous, 

we cannot examine all states in attempting to create the cost-to-go function.  The 

approach we are using is to attempt to calculate the cost-to-go function at a given stage of 

the algorithm at a finite set of state points and then attempt to interpolate or approximate 

these cost-to-go values with a continuous function on the continuous portion of the state 

space. 

The focus in this chapter is on the critical issues related to developing a DP model 

in the context of individual forest stand management: stochastic processes, cost-to-go 

function approximations, policy simulation, rate of convergence and termination criteria 

for the value iteration DP algorithm, and choosing appropriate values for the discount 

factors.  But first, the DP problem is presented.   The notation and presentation format 

used in this chapter is borrowed from Bertsekas (2000).   

 

4.1 Dynamic Programming Basics 

 

 The combination of continuous variables such as    ,   ,     ,    and market 

prices is referred to as state    which is an element of space   .  The evolution of the 

state is influenced by decisions    made at discrete instances of time and by random 

disturbances    that are observed after the decisions have been made.  This system has 

the form: 
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                        = 0, 1, …, N-1    (4-1) 

where     indexes discrete time and is referred to as periods 

    is a combination of the state of the forest stand    which is 

dependent upon past management of the stand, and the state of 

the market prices of wood products    which is independent 

of    (      ) 

   is the decision variable or control to be selected at period        

             

    is a random parameter that depends on    and    (      ) 

N  is the number of time periods 

   is a set of functions that describes the system and how    (   

and     transitions occur in response to    and   . 
 

 The control    is constrained to take values in a given nonempty set  

       which depends on the current state   ; that is,            for all        and  .  

   is the set of feasible states.  It is a combination of continuous and discrete variables 

and will be discussed in greater detail later.  The random disturbance    is characterized 

by a probability distribution P( ∙ |   ,   ).  Disturbances that may affect state transitions 

include natural disasters, uncertain regeneration after a regeneration harvest and random 

market prices. 

 The yield equations presented in chapter 2 are used to calculate expected revenue 

by combining volume of wood products removed from the stand, after taking action    in 

forest state   , with random market prices   .  The cost of obtaining the wood products 

is subtracted from the expected revenue to yield expected profit.  The expected profit is 

additive in the sense that the expected profit gained at period  , denoted by 

            , accumulates over time.  The total expected profit is given by:   

  

            

   

   

            

 

where        is the terminal profit gained from the forest and market states at the end of 

the planning horizon and where the expectation is with respect to the joint probability of 

the random disturbances such as natural disasters, market fluctuations and uncertain 
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regeneration which will be discussed in detail in this chapter.  Therefore, a problem can 

be formulated as the optimization of the expected total profit where the optimization is 

done over the set of controls                and each control is selected with full 

knowledge of   .  The literature refers to    as the cost function therefore we will refer to 

   as the cost function in this thesis to retain consistency even though the objective is 

maximization of profit. 

 We are interested in closed-loop forest stand optimization which needs to find a 

set of functions            -  that maps state    into management decisions    so as 

to maximize profit.  The meaning of    is that, for each k and each possible state   , 

 

   =        = the management option that should be applied to the state at period 

  if the state is    according to the set of functions    

  

and is such that                 for all       .  The sequence of functions   

            is referred to as a policy or control law.  Given an initial state   , an 

admissible policy   and functions   ,   = 0, 1, …, N, we can write 

 

                                 

   

   

  

 

In the DP literature,        is generally referred to as the cost function or value 

function with respect to state    for policy  .  Here, it is referred to as the cost function to 

retain consistency even though    is a profit.  An optimal policy    is one that maximizes 

the cost function 

 

           
   

       

 

where Π is the set of all admissible policies.  Note that    is associated with    so the 

optimal cost depends on   . 
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   assigns to each initial state    the optimal cost        and is referred to as the optimal 

cost function.  Equation (4-2) is referred to as the basic problem. 

DP rests on a very simple idea, the principle of optimality (Bellman 1957).   The 

principle of optimality states the following fact: 

 

Let       
    

        
   be an optimal policy for the basic problem in 

equation (4-2).  Assume that, when using   , a given forest stand and 

market state    occurs at period  .  Consider the sub-problem whereby 

we are at    at period   and wish to maximize the “cost-to-go” function 

from period   to period     

 

                          

   

   

  

 

Then the truncated policy    
      

        
   is optimal for this sub-

problem. 

 

To see this, if the truncated policy wasn’t optimal, the policy for the basic 

problem could be modified by using the optimal truncated policy from period   onwards, 

contradicting the assumption of optimality for the basic problem.  The above stated fact is 

intuitive but, nevertheless, fundamental to the DP algorithm stated below. 

 

For every initial state   , the optimal cost-to-go        of the basic 

problem is equal to       , given by the last step of the following 

algorithm, which proceeds backwards in time from period     to 

period 0 

                        (4-3) 

 

(4-2) 
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        = 0,1,…,N-1      (4-4)

  

where the expectation is taken with respect to the probability 

distribution of wk, which depends on    and   , and   is the discount 

factor.  Furthermore, if   
    

      maximizes the right side of eq. 

(4-4) for each    and  , the policy       
    

        
   is optimal.  

For a mathematical proof of this proposition, see (Bertsekas 2000).   

 

The formulation above is strictly a finite horizon framework which has 

applications in numerous fields.  Solution methods for this algorithm are well covered in 

(Bertsekas 2001).  We now formulate the basic problem as an infinite horizon discounted 

problem.  The discount rate   is discussed in detail in section 4.3.  Infinite horizon DP 

problems can be formulated many ways.  Several of them are presented in Bertsekas 

(2001).  Two reasons support the use of the formulation used in this thesis: the profit per 

stage is finite and discounting leads to the development of optimal policies that are useful 

in forest stand management.  

In the infinite horizon framework, by letting    , there is essentially no 

difference in being in a given state at stage   or stage    .  In this framework, it makes 

sense to talk about a stationary policy of the form           that depends only on the 

state and not the period.  For every stationary policy  , the associated cost function 

satisfies 

 

       
 
                                           

 

We are looking for a stationary policy   which we state as being optimal if 

            for all states  .  The DP algorithm in equations 4-3 and 4-4 can be restated 

in an infinite horizon discounted form as follows: 
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                                        (4 5) 

 

The formulation in equation (4-5) is used when probabilities are realized after the 

decision is made.  Were it the other way around, the DP algorithm would have the form 

                     which is not used in this work.  Because the variables used to 

describe the state of the individual forest stand are mostly continuous and    and    are 

complicated, no analytical solution is possible and we resort to numerical methods.  In 

order to solve the DP algorithm with numerical methods and find the optimal stationary 

policy, the state space must be discretized in some way.  For a complex state space, 

numerical execution of the DP algorithm may be time consuming but DP is the only 

general approach for sequential optimization under uncertainty (Bertsekas 2000).   

Assuming    is the bounded profit per stage, we will discuss two numerical 

approaches to solving the basic problem in its infinite horizon form.  The first approach, 

value iteration, is essentially the DP algorithm for a finite number of periods N with N 

allowed to increase.  In the limit, this DP yields the optimal profit function and optimal 

policy.  The second approach, policy iteration, generates a sequence of stationary 

policies, each with improved profit over the preceding one.  With a finite number of states 

and controls, policy iteration converges in a finite number of iterations but when the 

number of states and controls is large, solving the linear system in the policy evaluation 

step of the policy iteration approach can be time consuming.  Value iteration is the only 

option investigated for solving the DP algorithm in this thesis and it presents some 

challenges.   

 For the value iteration approach, we have opted to evaluate the CTG function at a 

finite number of discrete states that are chosen to reasonably represent the continuous 

state space   where the subscript   is dropped because the state space is independent of 

time.    is divided into five subsets   ,   = 1,…,5, based on the treatment types discussed 

in chapter 2.  The discrete states   chosen to represent    are referred to as evaluation 

states and they form a finite set   
            

     .  Taking action   in state   leads to state 

 , and the set of all states   is referred to as   
       where   

       
       although there 

may be states that appear in both sets.  The states in each subset are defined by a set of 
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variables that adequately represent the complexity of the stands in their respective subset 

and are shown in table 4-1.  The number of discrete evaluation states in each subset is 

given in brackets after the subset indicator for the base case scenario.  The higher number 

of discrete evaluation states in subsets 2 and 5 reflect the elevated level of variability and 

complexity within those particular subsets.  An example list of states in   
     is given in 

appendix C. 

 Treatment type 1, unmanaged natural stands, becomes   
     and these states are 

defined by age and stocking.  The data collected to create the growth equations was 

collected at 5 year intervals and the maximum MAI for a typical stand in Nova Scotia 

occurs at well below 100 years of age so discrete states are created to cover the range 

from 0 to 95 years.  Stocking was defined in chapter 2 and we have chosen to study 

natural stands with stocking values of 75% and 100%.  Given 19 ages, each with two 

stocking percentages, we get 38 states.  The base case scenario is described at the 

beginning of chapter 5. 

 

Table 4-1 – Description of the evaluation states for the 5 subsets.   
Subset Variable Min. 

value 

Max. 

value 

Explanation 

   (38)    
(years) 

0 95 Max MAI for typical stands in N.S. is reached between 

50 and 80 years – MAI for all stands is on the decline at 

age 95 

st 75% 100% Forest stands are on homogenous parcels of land 

therefore stands are normally chosen to not include non-

productive land (stocking can be less than 100%) 

   (275)    
(years) 

5 95 Same explanation as    for maximum value. NS DNR 

recommends a minimum height for pre-commercial 

thinning which is reflected by the minimum age 

  (cm) 5.3 30.8    is a function of    (minimum    for softwood is 15 

years),      and    

  (cm) 1.1 20.7    is a function of    (minimum    for hardwood is 5 

years),      and    

    (%) 0 100 Stands range from 100% SW to 100% HW 

   (%) 5.7 100 Recommended spacing for a pre-commercial thinning in 

N.S. is between 2.1m and 3.0m depending on the 

species – this yields a very low cc in young stands 
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Table 4-1 Continued…   

Subset Variable Min. 

value 

Max. 

value 

Explanation 

   (76)    
(years) 

5 95 Same explanation as    for maximum value.  A 

plantation is guaranteed to produce growing stock in the 

first period after planting therefore a plantation has a 

minimum age of 5 years (one period). 

   (cm) 0 28.1 Minimum    is zero because the growing stock on a 

plantation stand has not reached breast height at 5 years.  

The maximum depends on    and the initial planting 

density 

Initial 

planting 

density 

1000 4000 These minimum and maximum values are well below 

and well above current practice in N.S. and serve the 

purpose of studying other management possibilities 

   (90)    
(years) 

10 100 Same explanation as    for maximum value.  The 

minimum age is slightly below the age that would yield 

the minimum recommended diameter for CT according 

to NS DNR. 

   (cm) 3.9 33.4    is a function of    and    

   (%) 40 100 This range reflects the NS DNR maximum 

recommended removal percentage for CT 

   (648)    
(years) 

25 105 Same explanation as    for maximum value. NS DNR 

recommends a minimum diameter for commercial 

thinning which is reflected by the minimum age 

   (cm) 8.5 37.2    is a function of   ,      and    

   (cm) 6.8 28.3    is a function of   ,      and    

     (%) 0 100 Stands range from 100% SW to 100% HW 

   (%) 40 100 This range reflects the NS DNR maximum 

recommended removal percentage for CT 

  

 The control space is also continuous which we have chosen to approximate by 

choosing a finite set of discrete controls.  At each iteration of the DP algorithm, the 

expected CTG must be calculated for each evaluation state   by optimizing over the 

controls   in       for each   in each subset   
       = 1,…,5.  The discrete set of controls 

     must be kept small so the number of calculations required at each iteration doesn’t 

get out of hand.   

 As discussed in chapter 2, some actions will result in a state transition between 

two subsets therefore the discrete set of evaluation states within each subset must be 

chosen carefully.  Figure 4-1 illustrates all possible state transitions between the 5 

subsets.  The arrows indicate possible transitions which depend on   .  For example, a 

stand in subset    can go to subset    if a CT is applied to it but it can’t go back to subset 

   without first getting a regeneration harvest which takes it to subset    and then being 
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pre-commercially thinned.  Subsets    and    can be reached from any subset by doing a 

regeneration harvest and either by letting the stand naturally regenerate (  ) or by 

planting trees (  ).  Therefore, figure 4-1 indicates all possible single-stage state 

transitions for the five subsets. 

 

 

  

 

 

 

 

 

 

Figure 4-1 – Representation of single-stage state transitions for subsets        

  

 As observed by Gunn (2005): 

 

“An interesting dichotomy exists in DP models in forest stand 

management.  On the one hand, we find models with complex state 

variables but deterministic dynamics and prices.  On the other, we 

find models with stochastic prices and/or dynamics but very simple 

state representation. We generally don’t find both.” 

 

The general interest of this work is to build models that yield optimal policies 

with the complex state space and dynamics discussed above.  Many studies use a small 

finite set of discrete values of one or two continuous state variables where the set of 

discrete values is chosen to best represent the range of values most likely to occur for 

each state variable.  Most of them have a single state descriptor such as age (Brodie and 

Kao 1979), volume (Schreuder 1971) or basal area (Chen et al. 1980).   

Many studies in forestry have focussed on simple state descriptions and, in 

addition, all state transitions are deterministic and the set of controls is limited to a few 

discrete control options.  With deterministic state transitions, forward DP recursions can 

S1 

S5 S4 

S2 S3 
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be used and the reader is directed to these studies as examples of this approach (Amidon 

and Akin (1968), Brodie and Kao (1979), Haight et al. (1985), Arthaud (1986), Pelkki 

(1997), Pelkki and Arthaud (1997), Pelkki and Kirillova (2004)).  These papers have a 

common thread: they seek to develop optimal thinning strategies, optimal growing stock 

and/or optimal rotation ages in a deterministic setting.  Because these researchers were 

only considering deterministic problems, the use of a forward formulation made it easier 

to search for an optimal network path by reducing the number of states to consider. 

 Although forward recursions are not used in this research, an important concept 

coined as “neighborhood storage” by Brodie and Kao (1979) is a good precursor to our 

discussion of approximate DP.  Brodie et al. (1978) acknowledge that the continuous 

nature of growth models may dictate a growth increment that leads to a value for a state 

variable that isn’t included in the finite set of discrete evaluation states, which they call 

nodes, chosen to represent the continuous variable in the model.  The dotted lines in 

figure 4-2 illustrate period to period transitions that don’t take state    to one of the 

discrete states in the finite set       at period    .   

 

 

Figure 4-2 – State transition illustration 

 

 The four decisions         applicable to state    result in a transition to states that 

aren’t part of      .  The ovals in figure 4-2 represent neighbourhoods.  In order to gain 

precision, Brodie et al. (1978) want to eliminate the need to round values of state 

variables computed from continuous functions to the nearest node.  When solving the DP 

algorithm, the CTG function values for all state transitions that take the state to a given 

neighbourhood are compared together and the best is kept while the others are discarded.  

i1 

i2 

i3 

i 4 

i1 

i2 

i 3 

i 4 

Period k Period k+1 
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The authors acknowledge that this process may eliminate network paths that may become 

optimal in later stages of the algorithm but state that this effect is minor if the 

neighbourhoods are small.  However, smaller neighbourhoods mean more variables and 

the problem of a high number of nodes and of computational intensity remains.   

 This discussion of forward recursion is used to illustrate the challenge of 

numerically solving DP problems with continuous variables.  Success of the 

“neighbourhood storage location” concept requires consistency (Bertsekas 2000) as does 

any approach that attempts to find good approximations to the actual CTG functions.   

 The approach taken in this thesis is to calculate    for all evaluation states   in 

each subset    and then fit a continuous function on these values, one for each subset.  

Fitting these functions has proved very challenging.  The three function fitting 

approaches, or approximation architectures, used are described in detail in section 4.4.  

These continuous functions are used at the next iteration of the DP algorithm to 

approximate the CTG function value for the continuous portion of the state space between 

evaluation states.  The elements of         are part of the continuous portion of the state 

space between evaluation states.  This process is repeated at each iteration of the DP 

algorithm.  The detailed steps of the value iteration procedure are described in section 4.6.   

 The following section describes the stochastic processes associated with the 

random disturbances   .   

 

4.2 Stochastic Processes 

 

 For discussion purposes, we recall the system equation                  .  

The random disturbances        ,           are characterized by probabilities  

           where             is the probability of occurrence of   , when the current 

state is    and the current action is   .  In this thesis,    are finite sets.  We also recall 

that    has a forest state component    and a market state component   .   

 As discussed earlier, when using DP to find optimal management policies for 

individual forest stand modeling, we have a system with a finite number of evaluation 

states.  For each evaluation state, we have a finite number of decisions and, for each 

decision, a finite number of stochastic outcomes.  Thus, there are a finite number of result 
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states   that we can reach from a given evaluation state  .  Therefore, the random 

disturbances in this system can be represented in terms of their probabilities of transition 

between states.  In other words, we need to know          which is the conditional 

probability, at period  , that the next state will be   given that the current state is   and 

control   is chosen.  It is given by 

 

                              . 

 

 If we assume that the system is stationary, that is the transition possibilities, the 

profit per stage and control sets do not change from stage to stage, then the transition 

probabilities can be defined by 

 

                 . 

 

 Using this definition of the transition probabilities and denoting by        the 

expected profit per stage at evaluation state   when control   is applied, where the 

random process   is implicit based on the definitions above, the infinite horizon DP 

algorithm given by equation (4-5) can be re-written in discrete form as  

 

         
      

        

 

                                                        (4  ) 

   

 In order to compute      , the transition probabilities        must be further 

discussed.  There are many ways for stochastic processes to enter into forest stand 

management.  In this research, two processes in particular are discussed: the state of the 

market (M) and the state of the forest stand (F), and these two processes are assumed to 

be independent of each other.  Lembersky and Johnson (1975) described it best: 
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“The joint distribution of these processes is the product of an action 

dependent forest stand transition probability and an action independent 

market transition probability.” 

 

 If we express        in terms of these two independent stochastic processes, we 

can rewrite the transition probabilities as a product of the two processes: 

 

                                  (4-7) 

 

 where    and    are components of evaluation state   and      and      are 

components of result state  .  The nature of the stochastic processes in equation (4-7) is 

such that any future state is independent of any past state and only depends on the present 

state.  Therefore, the expected CTG value for any result state   is the expected future 

profit created from choosing a control while being faced with random state transitions.  

The next two sections discuss in detail the two stochastic processes in equation (4-7). 

 

4.2.1 Market State Dynamics 

 

A review of the literature in this area has yielded a number of studies where the 

prices are correlated between time periods and a similar number where they are not.  

Whether the prices between periods are correlated or not will affect the type of DP model 

used and the policies that are derived from it.  Haight and Holmes (1991) is a good 

example of this effect.  Stationary price series can be modeled using Markov Decision 

Processes with an infinite horizon DP optimization.  For non-stationary prices, finite 

horizon DP with prices modeled as an autoregressive or Brownian motion process are 

necessary.  Because the focus is on the use of infinite horizon models, and because the 

growth equations are based on five year growth increments, the 5 year joint discrete 

probability mass function            for the prices of the main products in this study 

will be modelled using Markov processes.   
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Of great significance is the timing of the decision relative to observing the market 

prices for the products.  The timing of the decision, before or after the market prices have 

been observed, changes the structure of the DP algorithm and likely the resulting policy.   

As stated earlier, in all cases, we assume prices are independent of the forest state 

and the decision taken in the previous stage.  Very few studies consider making a 

decision before observing market prices because it takes flexibility away from the 

decision maker.  When the decision is put off until after the market state and forest state 

are observed, the additional information can lead to higher returns. 

Yoshimoto and Shoji (1998) consider the case where the decision maker isn’t 

given the opportunity of making a decision with full knowledge of the current market 

state.  Plantinga (1998) also considers the cases where a decision is made with and 

without observing the market before hand.  The paper goes on to explain the differences 

between the maximization problems for each of these cases.  In each case, an option price 

is calculated.  The option price indicates the price above which harvest is done in the 

current period and below which it is delayed until the next period.  The study by 

Plantinga highlights the importance of considering the timing of the decision. 

 The two studies referenced above highlight the fact that using pricing information 

to make better decisions is much more desirable.  There is an extensive literature in the 

area of price modeling of commodities and this literature is filled with studies where the 

decision maker is allowed to observe the market state before making a decision.  These 

studies span every decade since the 1970’s and table 4-2 shows a list of papers in forestry 

that consider stochastic prices with stationary random processes where prices are 

independent of previous price information and states the authors’ reason for using them.   

 

Table 4-2 – Studies that use stationary random price models and the reasons stated for 

their use 
Studies Reason for use 

Brazee and Mendelsohn (1988) Review of data has shown it is an appropriate model 

Haight (1990) Difficult to obtain data 

Haight and Smith (1991) Difficult to obtain data 

Forboseh et al. (1996) Complexity of autoregressive and non-stationary price models 

Forboseh and Pickens (1996) Assumption made without justification 

Lu and Gong (2003) Relatively long decision intervals 



84 

 This table doesn’t present a comprehensive review of papers in the area but rather 

a sampling of the work that has been done in this area over the last three decades.  The 

objective of this study is not to undertake an extensive review of price models and to 

model all of them but rather to develop a methodology with sufficient flexibility to allow 

for the implementation of a variety of price models.  As our focus is on infinite horizon 

models, a stationary price model is used.  Prices are based on the Normal distribution 

where, at period   + 1, prices that are closer to the mean of the distribution, have a higher 

probability of occurrence.  The prices and probabilities used in this study are presented in 

section 5.1.  In addition, the DP algorithm is structured so that the decision is made with 

full knowledge of the current forest and market states. 

 

4.2.2 Growth and Yield Dynamics 

 

Although the literature on stochastic prices exists in abundance, the uncertainty in 

the growth and yield of individual forest stands hasn’t garnered nearly as much attention.  

The stochastic growth literature can be divided into two main groups: discrete and 

continuous.  As discussed earlier, in forest stand management, discrete evaluation states 

are chosen to numerically solve the DP recursion.  Therefore, the review presented here 

will concentrate on stochastic growth in the discrete context. 

In the discrete context, most studies have generally concentrated on developing a 

small number of states in order to simplify numerical calculations and simply 

demonstrate the optimization approach.  Lembersky and Johnson (1975) defined 48 stand 

indicants which were combinations of diameter at breast height ( ) and number of trees 

per hectare.  They used a Markov decision process algorithm to solve the model for an 

optimal policy which “assigns an action to every possible combination of observed states 

and periods”.  In order to develop their state transition probabilities, the equivalent of 

            , the authors relied on data from an experimental forest.  The authors do a 

wonderful job of developing and solving the model but the size of their model, and 

therefore the number of states, is limited by the computer processing power available at 

the time.  Carlsson (1992) has access to much more computing power but still uses state 

variables that don’t adequately model the complexity of a forest stand.  By limiting the 
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state variables to stand age and volume of the two species in his study, his model lacks 

information critical to decision making at a level of detail required here.  Although the 

state space is restricted as is acknowledged by the author, the state transition matrices for 

price and stand states are well stated.   

Buongiorno authors or co-authors three papers which use Markov decision 

process models to develop optimal stand management policies (Rollin et al. (2005), 

Buongiorno (2001), Buongiorno and Zhou (2005)).  In the first study, only 6 stand states 

are used and the resulting management policy is well defined for the 6 states.  

Unfortunately, a management policy based on only 6 states does not contain enough 

information to represent growth processes in the detail required in this study.  The other 

two papers expand on the state space somewhat by having two species of trees, three 

product classes per species and two levels for each class.  The result is 64 stand states 

with the accompanying transition probability matrices for all state combinations (64 x 64 

= 4096) but the resulting state space is still very sparse. 

All of the papers listed above have taken the same approach to stochastic growth.  

They establish a list of states and define matrices that give transition probabilities 

between stand states.  A similar approach is used in this study but the continuous nature 

of forest stand variables requires a slight modification.  In the case of natural disasters, 

the first source of uncertainty, the transition probability matrix is replaced by a set of 

transition probability rules, or regression equations, that are continuous.  These transition 

probability rules are explained in section 2.9.  The second source of uncertainty, 

regeneration uncertainty after a regeneration harvest or natural disaster, is represented by 

the probabilities described in section 2.5.  A third source of uncertainty, natural variation 

in the growth of a forest stand, is implicit in the regression equations used to calculate its 

growth therefore it doesn’t need to be incorporated into the transition probability rule or 

represented by a Markov process.               is the joint probability of the first two 

sources of GNY uncertainty stated above.  The first source, natural disasters, needs to be 

considered every time an action is taken and a state transition occurs from an evaluation 

state to a result state.  There is always a small possibility that any stand will succumb to a 

natural disaster and be sent to a regeneration state.  The second source of uncertainty only 

applies when the stand is in a regeneration state. 



86 

Given the timing of the decision relative to observing the forest and market states, 

the profit function        becomes a deterministic value and the DP algorithm in 

equation (4-6) is restated as  

 

         
      

                

 

                                       4 8  

 

where   is in       and the   are in         .  In section 4.4, we will discuss how 

this equation is modified in order to account for the continuous state space. 

 

4.3 Setting the Value of the Discount Rate 

 

The choice of value of the discount rate heavily influences the outcome of any 

optimization attempt (Bateman and Lovett (2000), Meilby et al. (2001), Ward et al. 

(2004)) yet there is no consensus in the literature on how the discount rate should be 

chosen or even what that rate represents in real world applications.   

Davis and Johnson (1987) propose that the discount rate used in forest 

management is the equivalent of the guiding interest rate used by government, 

corporations and individuals when making important economic decisions.  The rest of the 

discussion in this section will be closely based on the terminology in Davis and Johnson’s 

text.  The guiding rate can be described as the highest return on investment that could be 

obtained if the money being invested in a forestry project was invested in other ventures.  

This guiding rate includes three elements: pure rate, inflation rate and risk rate.  The pure 

rate is the rate of using money over time such as bank interest rate or long term interest 

rate that could be obtained in another investment.  The inflation rate is the rate at which 

the value of money or buying power decreases on a yearly basis.  The risk rate is an 

indication of the uncertainty of the future.  The higher the risk of the investment in 

forestry, the higher is the risk rate.  If an individual or corporation views the future return 

on a forestry investment as uncertain with a relatively high risk of natural disaster or 

market uncertainty for example, a higher risk component will be added to the guiding rate 

in order to give more importance to immediate or short term returns and less to long term 
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returns.  The sum of the three rates gives the guiding rate.  A high guiding rate means 

greater discounting of future returns to the present.  This puts more emphasis on 

immediate satisfaction and less on future gains.  The discount rate is therefore, in a sense, 

an indication of time preference of money.   

Of course, governments, corporations and individuals have different guiding rates.  

Individual land owners are normally not interested in long term investments which they 

see as being risky.  Thus, they have a high risk rate which translates to a high guiding 

rate.  A forestry investment in their case will likely be short lived and the proceeds from 

harvesting will be used to help pay for other investments such as children’s education, 

retirement funds or house renovations.  Large corporations normally have a lower guiding 

rate as they have capital for long term investment.  Some corporations don’t mind long 

term investment as long as the risk is relatively low.  Thus their guiding rate will be low 

as long as the upper management of the corporation sees investment in forestry as a low 

risk.  Government will normally have very low guiding rates as they have provincial or 

national responsibility.  They will normally have low pure rates such as government 

bonds and low risk rates that lead to long term low risk forest production on crown land.   

Samuelson (1976) asks: “What interest rate is appropriate for forestry?”.  This 

paper by Samuelson has, arguably, been the most influential paper in the forest 

economics literature.  However, in his paper, Samuelson states that he does not want to 

pronounce himself on the exact value to be used for discount rates in forestry.  What he 

does do is give a thorough description of the questions that need to be considered when 

deciding the value of the discount factor.  Samuelson states that one of the things we need 

in order to discuss forest economics correctly is to concentrate on the real rate of interest 

or the actual interest rate on money minus the presumed known rate of overall price 

inflation.  Prices used in the model must be free of inflation in order to use an inflation-

free discount rate.  But there are other complications.  Marginal tax rates, capital-gains 

tax treatments and income tax laws modify the real taxation rate to be applied to 

economic calculations.  Much work must be done by individuals, corporations and 

governments to develop a reasonable valuation of the real rate of interest that incorporates 

all of these elements. 
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Samuelson discusses at length the impact of the chosen policies on long term 

sustainability of the forest.  Because government controls harvesting on a major portion 

of land in our country, the policies implemented by the government will have a large 

effect on long term sustainability of our forests.  These policies are a direct result of the 

discount rate used in the analysis of forestry models.  How much wealth or forests should 

be used to lower the federal debt that is passed on to the future generations and how much 

should be left for future generations to enjoy?  This is, essentially, a social question and 

the discount rate used in both cases will be different.  Historically, governments have 

owned much timber land and have, for the most part, managed it conservatively.  Were it 

not for this, there would be much less forests in the North America today.  Samuelson 

states that “were the government to rent out public land to the private lumber companies 

at the maximum economic return competition will establish, this is a sure prescription for 

future chopping down of trees”.  Essentially, the only certain conclusion from this work is 

that the discount rate used in forestry economics must be chosen to represent the 

economic situation of the decision maker doing the study.  There is no value that fits 

every situation.  Essentially, the management policy that results from the discount rate 

being used should be one with which the decision maker is comfortable. 

To the contrary, Pearse (1967) argues that private companies need to use a 

discount rate equivalent to the rate of interest that could be obtained if they directed it to 

its highest alternative use.  He goes on to say that if this isn’t the case “society as a whole 

suffers from the misallocation of economic resources”.  In a purely economic sense, 

Pearse may be right but he does not discuss the impact these rates would have on the 

structure or age distribution of the forest.  High discount rates are going to create short 

rotation periods or young rotation ages.  Young rotation ages can’t be employed 

perpetually by all stakeholders in forestry without destroying all old growth forests and 

reducing all forests to young stands that offer little habitat to a lot of wildlife.  This is one 

of the reasons that discount rates are often discussed in the context of social 

responsibility.  Is it socially responsible to use high discount rates when we know what 

the effects could be on the structure of the forest and the habitat of wildlife?  

Paradoxically, is it reasonable to expect corporations to get involved in forestry at a much 

lower rate of return than they could get elsewhere?  Most people agree that we need to 



89 

continue the exploitation of our most abundant renewable resource.  How we go about 

this isn’t as unanimous. 

The reasons for choosing discount rates seem to be as numerous as the researchers 

that are studying their impact on forestry management.  The examples given here support 

the argument that no single rate will fit every situation.  Brukas et al. (2001) show results 

that indicate that the discount rate should depend on the species being studied.  With 

slower growing species such as some hardwoods, a lower discount rate should be used to 

ensure that future revenues are not discounted too much while the opposite is true for 

faster growing species.  They report discount rates that range between 4% and 8% in the 

USA and then state that the “opportunity cost of capital should not be that different 

between various regions of the USA”. 

 De Graaf et al. (2003) study the forest industry in Amazonia.  They compare the 

net present value for different management options using discount rates of 5, 8, 10, 15 

and 20%.  In one case, there was a 97% reduction in annual value between 5% and 20% 

discount rates.  This study clearly shows the need to properly choose this rate.  Ashton et 

al. (2001) studying forests in Sri Lanka use real rates of 4% and 6%.  The higher rate 

includes a 2% risk rate.  Some economists would probably consider this risk rate 

relatively low considering the short-term concession system and unstable rights to harvest 

present in Sri Lanka as described by the authors.  Hanewinkel (2001) studies forestry in 

Germany and uses very low discount rates of 1 and 3%.  The forests in his study are state 

owned national forests and the discount rate employed gives a measure of the importance 

of the time element involved (Davis et al. 2005).  Hence, governments, with their 

provincial and national responsibilities, often use low discount rates because, in general, 

they have the lowest time preference of any stakeholders in forestry. 

 Many studies have taken an empirical approach to determining socially acceptable 

discount rates.  In these studies, multiple scenarios were developed based on time and 

money preferences and respondents were asked to choose which scenarios they would 

prefer.  In some instances, respondents were asked to consider themselves as government 

agencies and choose what is appropriate for a government to do.  Discount rates weren’t 

explicitly stated but they were implied by the answers given by the respondents because 

the scenarios had been developed with different discount rates.  Results vary greatly but 
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generally respect the notions put forward in (Samuelson 1976).  Here are some examples 

of those studies. 

 Luckert and Adamowicz (1993) ask respondents to choose between scenarios 

where they are in control of a forest.  They are then asked to choose between the same 

scenarios if the forest is managed by a public resource management agency and that the 

revenues accrue to the state.  These two scenarios are repeated with the resource in 

question being stocks and bonds.  Implied discount rates are inflation free and risk free.  

For publicly managed goods, more respondents tend to avoid scenarios with high implicit 

discount rates and to choose scenarios with constant flows of cash with their implied 0% 

discount rates.  Another telling result is that respondents seem to be more likely to choose 

the high discount rate for stocks and bonds than for forests.  Although this study has 

many shortcomings acknowledged by the authors and the authors caution the reader to 

read the results with skepticism, the results point toward the fact that individuals, and 

therefore society, tend to see natural resource management under a different light than 

other investments.  This is an important consideration in this study. Results show that 

respondents may have an aversion to instability and that the rapidly changing times we 

are going through may be causing a perception that natural resources are a safer 

investment than stocks and bonds.   

In another study of comparison of scenarios by respondents, Pope and Perry 

(1989) administer questionnaires to business and natural science students and ask them to 

pick from 5 alternative income streams based on two scenarios.  The first scenario is one 

where the student receives an endowment which will be passed on to their heirs.  The 

second scenario assumes the endowment is publicly owned and managed.  For the 

privately owned and managed scenario, the authors report that “most respondents 

preferred a relatively low level of resource depletion at least in terms of its income-

producing potential as opposed to business students who, as a group, demonstrated a 

significantly higher preference for more rapid depletion of the resources, suggesting 

relatively high discounting of the future”.  These results show that the point of view of the 

decision maker can potentially have a major impact on the management decision. 

Lumley (1997) conducts a study among farmers in the Philippines that mainly 

discusses income and borrowing.  Philippine society is extremely poor and lending 
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institutions aren’t regulated like they are in well developed countries.  It is generally 

accepted that time preference for money is affected by age, education and wealth.  

Young, educated, rich people tend to have more of what they need at the any given time 

and tend to better understand that the future may bring good things.  Yet, in this study, the 

poorest farmers who pay the highest interest on their loans which are taken out for food 

and farming investment have, on all sites studied, lower time preferences than the richest 

farmers.  A relationship seems to exist between soil conservation and income.  On all 

sites but one, the poorest farmers adopted soil conservation in a higher percentage than 

the richest farmers.  Lumley states that we lack the data and knowledge to provide 

definitive answers to explain this behaviour but that perhaps ethics plays a role in 

decision making. 

In a study by Taylor et al. (2003), researchers measured respondents’ preference 

for timber harvesting or recreation in the Rose Creek Educational Forest in Alberta.  The 

researchers choose several levels of discounting for each of these options and present the 

respondents with management options without indicating the discounting associated with 

each option.  Respondents appear to be more accepting of uneven flows in recreation 

services, the level of recreation services available to the public may vary over time, than 

they are of uneven flows of timber harvests.  This may arise because they feel forests 

provide many ecosystem benefits and thus they are unwilling to deviate significantly 

from even flow for timber.  Generally, results in this study indicate that respondents 

prefer lower discount rates which translate to lower harvests and more recreation areas as 

long as the lower harvests are consistent. 

Samuelson (1976) aptly concludes that it is unlikely that there is a simple answer 

to the question “what interest rate is appropriate for forestry?”  We use discount rates in 

forestry essentially to bias current versus future profits.  Another view is that we can 

guard against uncertainty.  The computations carried out and discussed in this thesis can 

be seen as a way of studying these tradeoffs.  
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4.4 Approximating the CTG Function 

 

 The idea of neighbourhood storage locations in forward DP can be viewed as a 

piecewise constant approximation of the CTG function which has important drawbacks 

such as those discussed in section 4.1.  Nonetheless, the idea of function approximation is 

a central topic in approximate dynamic programming but it would make sense to use 

continuous approximations if the state variables are continuous.  We now discuss the 

challenges associated with continuous approximations of the CTG function. 

 These approximations are done through the use of approximation architectures 

such as multiple linear regression, radial basis functions and distance weighted 

interpolation.  In particular, we replace         with            where   is a vector of 

parameters that are optimized to minimize the difference between         and            

at a given set of evaluation states which depend on the approximation architecture being 

used.  We can rewrite the DP algorithm as  

 

         
      

                

 

                                             (4 9) 

 

       implicitly depends on   but it is omitted in       to simplify notation. 

Depending on the type of approximation architecture being used, the vector of parameters 

  may be pre-computed once before the optimization begins and remain unchanged for 

the duration of the optimization, or it may be necessary to recompute   at each iteration of 

the DP algorithm.  In the latter case, the architecture in question uses the values of       

as inputs in the calculation of  . 

 Regardless of the approximation architecture being used, calculating   always 

requires the use of the values of the variables that define the discrete evaluation states.  

The range of values for each variable is shown in table 4-1.  Scaling values of the 

independent variables when fitting functions on scattered data is a common practice.  

Here, all values for the variables that define the discrete evaluation states are scaled to 

take on values between 0 and 1.  This is done by dividing the discrete values for each 
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variable by the largest value of that variable in table 4-1.  For example, a stand from 

subset    with     = 40 years would have its age scaled to 0.42 (40/95) where 95 is the 

maximum age for any discrete evaluation state in   .  Unless specifically stated 

otherwise, when referring to the distance in this section, we are referring to this scaled 

distance. 

 Approximation architectures can be divided into two broad classes: non-averager 

methods and averager methods (Gordon 1995).  Non-averager methods approximate the 

CTG function by fitting a function (  ) at some or all of the discrete evaluation states in 

each   
      =1,…,5, which we refer to as basis points, and minimizing some measure of 

the error between   and    at those basis points.  The quality of the fit is a function of the 

complexity and spatial distribution of the basis points and the ability of the architecture to 

approximate the shape of  .  Multiple regression and radial basis functions are examples 

of non-averager methods.  Averager methods only use information about the spatial 

distribution of the basis points in the calculation of the parameter vector  , or what is 

commonly referred to as the vector of weights.  Distance Weighted Interpolation is an 

example of an averager method.  The next two sections discuss these methods in detail. 

  

4.4.1 Non-Averager Methods 

 

 Non-averager methods may be further classified as linear or non-linear.  A linear 

architecture is of the general form: 

 

                

 

   

                                 (4 10)                    

 

where   ,        , are the components of the parameter vector  ,   is the number 

of elements in  , and    are fixed easily computable functions and are referred to as the 

basis functions (Bertsekas and Tsitsiklis 1996).  The training data pairs          are fit 

using a linear architecture by minimizing 
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over the vector  .  Non-linear architectures are not discussed here.   

Two non-averager methods are used: multiple regression and radial basis 

functions (RBF).  Multiple regression is well known for its properties of fitting scattered 

data if the underlying model is known or can be approximated.  Therefore, we must 

assume that we know something about the shape of the function we are trying to 

approximate.  This shape is represented by the terms in the regression model which take 

the following form                    where   are the regressors,   are the 

unknown parameters and   is a vector of errors in approximation rather than the random 

errors as in the usual regression model.  Each discreet state in       is defined by 2, 3 or 5 

variables and linear and non-linear combinations of those variables can be used as 

regressors.  Techniques such as the method of least squares can be used to determine the 

value of the coefficients of the equation, or vector of parameters, and an analysis of the 

residuals and the ANOVA information can give some indication of the validity of the 

model.  In matrix form, the multiple regression model can be stated as        where 

  is the response,   is a matrix of regressors,   is a vector of unknown parameters and   

is a vector of errors.  Using the method of least squares to minimize  , we can calculate 

            .  In reference to equation (4-10),    ,     and          .  TRT 

type 4 stands are described using 3 variables:    ,    and   .  The proposed regression 

model for TRT = 4 has nine terms and the choice of the terms is discussed in section 

5.2.1.  They are:    ,   ,   ,     ,   
 
,    ,       ,       ,      .  For this set 

of terms and for TRT = 4, constructing the   matrix means adding a row to the matrix for 

every evaluation state for TRT = 4 with the values of the entries in each row equal to the 

values of the nine terms above calculated using values of the stand variables for each of 

the evaluation states.    

Radial basis functions are typically used to build up function approximations and 

we need to approximate the cost-to-go function values at states            .  Here, basis 

function values are calculated at a finite number of states    which we call centers and 
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which are chosen from the set of states      .  Section 5.2.2 gives examples using two 

sets of centers.  The basis functions are radially symmetric about these centers which 

means their values depend only on the Euclidian distance from each center to each of the 

evaluation states, and on the shape of the basis function.  Buhmann (2000) states many 

positive properties of RBF’s one of which is its attribute of being universally applicable 

regardless of the dimension of the problem which makes it an attractive method for 

forestry where we find multi-dimension continuous state spaces.  The interpolant         is 

used to approximate      and is of the form: 

 

                     

 

   

                                 (4 11)                

 

where    are the centers chosen from the set      ,   is the discrete result state for 

which we want to approximate the CTG function,   is the radial basis function,    are 

reals,   is the number of centers, and   is the dimension of the Euclidian norm.  The 

summation in equation (4-11) is done over all centers.  Four of the most mentioned forms 

of the radial basis function are the thin plate spline         , the multiquadric 

            , the inverse multiquadric              , and the Gaussian 

      
 
 where   is a tunable shape parameter (Buhmann (2000), Fasshauer (1997), 

Rippa (1999)).  The first two are probably the best known and most often used versions of 

the RBF and are the ones used in this research.   

In order to calculate the elements    and ensure exactness of the method, we will 

force          at all states       
     where       are the CTG function values at those 

states.  The first step is to create a set of equations, one for each   , using equation (4-12).  

 

                    

 

   

  for                     (4 12)  

 

 We know   and we use   = 2 thus we have   unknowns, the   , and   equations 

giving a linear system      =    where the elements of the     square   matrix are 
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given by             for      , and the   elements of vector   are the values of 

     .  If   is invertible, we have   =        which yields the weights   .  

 We then use equation 4-11 and calculate the   distances between state   and each 

center    using the Euclidian norm.  The chosen RBF is applied to each of those   

distance values and, when multiplied with its weight    and summed for   = 1,…,M, we 

obtain the approximation         for state  .  Micchelli (1986) gives general conditions of 

  that ensure nonsingularity of  .  The two functions chosen for implementation both 

meet those conditions. Here is an example of the calculation of   where the three states in 

table 4-3 are taken from   
    .  The maximum values for each variable in   

    , used for 

scaling purposes, are     = 95,    = 28.7 and initial planting density = 4000. 

 

Table 4-3 – Three states taken from   
     

    
(years) 

   
(cm) 

Initial planting density 

(trees / hectare) 

20 11.3 1000 

25 13.6 1750 

30 15.7 2500 

 

 If we use          as a radial basis function where           , we can 

create a matrix with 9 elements in a 3x3 layout where the elements on the diagonal of the 

matrix are all 0 and the first element of the second row of the   matrix       is 

 

   
20 25

95
 
 

  
11.3 13.6

28.7
 
 

  
1000 1750

4000
 
 

 0.044 

 

    0.044
2    0.044   0.00263 

 

All of the elements of   can be calculated in this manner.   

 The results in chapter 5 show that the matrix inversion discussed above can be 

challenging when the dimension of   is large.  It may be advantages to only use a fraction 

of the centers to calculate the    values, in which case we have what we call a reduced 

basis RBF which means a reduction in the number of centers through which    is forced to 
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pass.  In chapter 5, we investigate this and discuss the effect of reducing the number of 

centers, if any, on the accuracy of the RBF function approximation architecture. 

An important component of the radial basis function is the tunable shape 

parameter  .  Rippa (1999) discusses several algorithms that may be used to set a good 

value for  .  In essence, the algorithms minimize the root mean square (RMS) of the 

difference between the interpolant    and the function  .  This process is iterative and the 

value of   is influenced primarily by the shape of the function to be approximated.  

Although there are differences in RMS between different values of   in Rippa’s work, no 

convincing arguments are given that would justify the extra investment into a complex 

scheme of determining the optimal value of   when there are simpler methods (Hardy 

(1971), Franke (1982)).  Section 5.2.2 shows results that demonstrate that fairly simple 

choices of   give satisfactory results. 

Gordon (1995) shows that convergence isn’t guaranteed when using non-averager 

methods.  The main reason is the uncertain behaviour of the approximation architecture 

between basis points when fitting a cost function with a high dimensional state space.  

There is no implied upper or lower bound when approximating with non-averager 

methods.  However, in control theory, bounding the response of a system to a given input 

is standard practice (Farrell and Polycarpou 2006).  For example, electric motor control 

requires algorithms that track the power output of a motor in response to an input such as 

the accelerator pedal of a vehicle.  This is done to avoid overshooting in order to ensure 

smooth acceleration of the vehicle.  A similar concept is applied in this thesis in order to 

create adaptive upper and lower bounds on the approximation of   at the result states  .  

They are based on the idea of adaptive approximation based control where the bounds of 

the approximation are taken from the values of the CTG function in the neighbourhood of 

the result state for which the CTG is being approximated.  The neighbourhood of result 

state   is made up of evaluation states from the same treatment type.  These evaluation 

states are divided into 2
N
 subsets where N = number of variables that define  .  The 

evaluation state from each subset which is in closest proximity to result state   is included 

in its neighbourhood.  The following algorithm describes the process of defining the 

neighbourhood and calculating the bounds.   
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Step 1:  Start with a given result state     
       for which we need to define CTG 

approximation bounds.  Set       = 0 for m = 1 to M where M = number of states in 

  
    .  Set            = ∞, for   = 1 to 2

N
 where N = the number of variables that 

define state  .  Set m = 1 and go to step 2. 

 

Step 2:  Retrieve      
     from memory where    is an evaluation state from the same 

TRT type as state  .  Determine the subset (    ) for state    in N-space relative to state 

 .  For illustrative purposes, if N = 2, we have 4 possible subsets for state    relative to 

state   as shown in the figure below. 

 

 

 

 

 

 

 

Figure 4-3 – Illustrative example of neighbourhood around state   formed by points 1 to 4 

 

The Cartesian coordinates for points 1 to 4 are        , i = 1…4.  The four possible 

positions for state    relative to state   in terms of its       coordinates are: 

 

        :               

        :               

        :               

        :               

 

In the context of this thesis, the coordinates are the values of the variables for states    

and  .  The procedure naturally extends to any value of N.  If all 2
N
 subsets are non-

empty, the neighbourhood creates a convex hull which includes result state  .  Go to step 

3. 

 

1 

3 4 

j 
2 

x 

y 
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Step 3:  For each evaluation state in each subset      where a = 1,…, 2
N
, calculate the 

Euclidian distance between states    and   using scaled values (0-1) of the state variables: 

 

              

 

If                  where            is the minimum distance recorded for     , 

we set                 .        is the vector of evaluations states, one from each 

subset     , that make up the neighbourhood that includes result state  .  Set 

              and go to step 4. 

 

Step 4:  Set   =   + 1.  If   = M, end procedure.  Otherwise, go to step 2. 

 

 The steps in the algorithm above are repeated for all result states before the DP 

optimization begins.  At the end of each iteration of the DP algorithm, starting with 

iteration 1, the following procedure is applied for each result state  . 

 

Step 1:  Given a state     
      , set a = 1 and k = 1.  Set      

     = 0 and      
     

      where       ≥ largest value of       for all states     
    .  Go to step 2. 

 

Step 2:  Set   =            and retrieve      .  Go to step 3. 

 

Step 3:  If            
     then      

          .  If            
     then      

          .  

Go to step 4. 

 

Step 4:  If   = 2
N
 where N is the number of variables that define  , end the procedure.  

Otherwise, set   =   + 1 and go to step 1. 

 

The preceding two algorithms describe how to determine the neighbourhood for 

result state   and how to calculate CTG function approximation bounds for  .  When 

solving the DP algorithm, the CTG function approximation for state   is adjusted as 

required according to what follows: if               
    , then               

    .  



100 

Similarly, if                
    , then               

    .  Otherwise,          isn’t 

adjusted. 

The procedures described above can be used with MR and RBF’s.  However, as 

well see in chapter 5, the implementation of the RBF approximation architecture in this 

work doesn’t require the use of CTG approximation bounds.  The DP algorithm 

maximizes       at each iteration by choosing the action that yields the largest CTG 

function value.           is an element of       therefore if its value is over or under 

evaluated, it may have an impact on the optimal policy.  Results in section 5.2.1 show 

some examples of the application of the bounds and the resulting adjustments applied to 

the approximated CTG function. 

 

4.4.2 Averager Methods 

 

 The method proposed in this section is derived from Sheppard (1968).  With 

averager methods, a decision must be made about which evaluation states will be part of 

the set of states, or basis points, used to approximate the CTG function for result state  .  

Those states are chosen based on their proximity to   and the set is referred to as   .  A 

weight     is calculated for each element of    and we have 

 

    
    

   

   

 In our context, the CTG function approximation is then given by  

 

               
    

        

 

where   is the vector of parameters used to fit the CTG function, the elements     of the 

parameter vector are generally calculated based on the distance between   and each 

individual basis point, and       are the cost-to-go values for the evaluation states or basis 

points in    from the previous iteration of the DP algorithm.  With averager methods, the 
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CTG function approximation            is implicitly bounded above and below because 

the sum of the weights     is always 1. 

 Distance weighted interpolation (DWI) is the averager method used in this thesis.  

There are many DWI weighting schemes but the first step in the approximation of the 

CTG function for result state       
       is the calculation, for each  , of the distance 

between   and all discrete evaluation states       
     using the Euclidean norm     

        where the value of each defining variable for states   and   are scaled to a value 

between 0 and 1 as described in the beginning of this section.  The number of elements in 

   =   and doesn’t have to be equal to the number of evaluation states in   
    .  If   is 

smaller than the number of states in   
    , the   elements of    are chosen based on the 

distances     where closer proximity is preferred.  The results in section 5.2.3 support the 

use of a reduced basis. 

 Then,   weight factors          are calculated for each result state   as follows: 

 

          
           

           

 

 

 where   = 1,…,  

 

and finally, the weights     are calculated and used for the approximation. 

 

    
        

          
 where   = 1,…,  

 

 The idea is to use a small number of states   to do the approximation in order to 

reduce the influence of states with much higher or much lower CTG values that are 

relatively far away from the result state   for which the CTG function value is being 

approximated.  For discussion and comparison, the results in section 5.2.3 use 2, 10 and 

40 weights for the approximation.  These values were chosen to represent three distinct 

cases.  Using 2 weights means restraining the function approximation to CTG values of 

the evaluation states in the immediate neighbourhood around the result state being 

approximated.  Using 40 weights allows the approximation to adapt to large fluctuations 
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of the CTG function values at the evaluation states beyond the immediate neighbourhood 

of the result state being approximated.  The impact of using a varying number of weights 

is discussed in section 5.2.3.  One advantage of the averager method is that weights can 

all be pre-computed before the optimization begins and stored for retrieval at every 

iteration of the optimization because we can calculate all result states   for all 

combinations of   and its applicable actions  . 

 The distance            is critical to the implementation of DWI as an 

approximation architecture for DP.  In this work, where discrete evaluation and result 

states are defined by up to five variables that take on a wide range of values, scaling of 

the distance between points is critical to the success of the method and results in section 

5.2.3 support this claim. 

 

4.5 Rate of Convergence and Termination Criteria 

 

 Bertsekas and Tsitsiklis (1996) discuss the fact that infinite horizon approximate 

value iteration can have convergence issues if the approximation architecture doesn’t 

closely represent the intermediate CTG functions obtained in the course of the value 

iteration algorithm.  The presence of implicit bounds in averager methods and calculated 

bounds in non-averager methods ensures that cost-to-go function approximations on the 

continuous portion of the state space are consistent with the cost-to-go function values at 

the evaluation states.  Because approximate value iteration additively builds 

approximations to the CTG function values at the evaluation states, inconsistent cost-to-

go function approximations on the continuous portion of the state space could prevent the 

DP algorithm from converging in a finite number of iterations. 

 As discussed in Bertsekas (2001), the value iteration algorithm will yield a stable 

policy before the CTG value converges to the optimal value   .  Therefore, it is useful to 

discuss what type of termination criteria should be used in value iteration. 

 In order to lighten notation in this section, we introduce the transform   which 

should be viewed as a mapping that transforms the function   on   into the function    on 

  where 
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 We know that, in the case where exact values of      can be obtained and for all  , 

 

   
   

               

  

 Furthermore, the error sequence                is bounded by a constant 

multiple of   .  The reader is directed to Bertsekas (2001) for the mathematical proof. 

 Without discussing the details of the proof, it follows that the upper    
   and 

lower    
   bounds on the change of CTG function value for all evaluation states between 

iterations of the DP algorithm are given by  

 

  
  

 

   
     
       

                  

  
  

 

   
     
       

                  

 

In our DP model, the value iteration algorithm is terminated when   
    

    where   is 

the stopping criterion.    is chosen so that the CTG value of the DP algorithm doesn’t 

converge before the policy has converged and is small enough so that a very good 

approximation of       can be obtained.  If       is the CTG function value for state   and  

policy  , then we can write: 

   
 
                

 

Therefore, when   
    

  is sufficiently small, value iteration is terminated and   is the 

approximation we obtain for the optimal policy. 

 In order to verify that the policy obtained from this algorithm indeed yields a CTG 

value that is near optimal,   can be simulated to obtain bounds of the CTG function value 

for the simulated policy given an initial state  .  These bounds should contain       in 
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order to confirm that the simulated   is in fact a good approximation for   .  In section 

4.7, policy simulation is discussed in more detail and examples are given. 

 It is clear that the discount factor, which was discussed in section 4.3, influences 

the bounds   
  and   

 .  The next section explains how the DP algorithm is implemented. 

 

4.6 Overview of the Computer Implementation of Approximate Dynamic 

Programming in this Thesis 

 

 Sections 4.1 to 4.5 explain how each element of the approximate DP optimization 

modeling approach works.  In some instances, this is done without being specific about 

the implementation. 

 In this section, we describe the implementation of the proposed approximate DP 

algorithm using the value iteration approach.  Equation 4-9 is reproduced here for the 

purpose of describing the steps in developing and solving it. 

 

         
      

                

 

                                            (4 12) 

 

 The steps described below show how the DP algorithm above is implemented 

using VB and Excel. 

 

Step 1 : Launching the optimization 

 

 While launching the optimization, the user sets the scenario to be studied by 

setting values for all variables shown in the screen shot in figure 4-4.   
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Figure 4-4 – Screen shot of the user interface built using VB   

 

There are four areas in which the user has control over the optimization: 

 

(i) Basic information: The values of these characteristics depend on the stand 

being studied and the user preferences for managing that stand. 

(ii) Approximation architecture: The user has control over which 

approximation architecture to use for approximating the CTG function. 

(iii) Selling prices and management costs: These values depend on the market 

and on the user’s costs for managing its stand.  The number of price levels 

is an indicator of the level of detail preferred by the user. 

(iv) Natural disasters: These values depend on long term expected occurances 

of hurricanes, forest fires and insect infestations. 

 When the optimization is launched, an Excel spreadsheet is created and is used to 

store all user data as well as all data and results pertaining to the optimization for the user 

to see at the end of the optimization. 
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Step 2 : Defining a set of discrete evaluation states and calculating growth and yield 

 

 The Nova Scotia Department of Natural Resources publishes guidelines in the 

form of a Forestry Field Handbook (NSDNR 1993a). Those guidelines recommend how 

and when each management option may be applied to a forest stand. Therefore, only a 

specific range of values may exist for any given treatment type.  A set of discrete 

evaluation states has been chosen to give a reasonable representation for each of the 5 

treatment types and as a way of covering the state space of the cost-to-go functions.  

Those states can have the applicable management options applied to them and the results 

saved for retrieval during the optimization.. 

 In reference to equation 4-12,        is the current net profit of taking action   

when in evaluation state   which contains forest and market state information.  Random 

disturbances don’t have any effect on        as all actions  , taken in evaluation state  , 

result in a specific volume of wood products being removed from the stand as defined by 

function       .  Furthermore, the decision maker observes the state of the market before 

making a decision.  Therefore profit gained from taking action   when in state   is 

deterministic.  Therefore, that step in the process can be done offline and saved for future 

retrieval.  In addition,          defines all result states that may occur at the next period 

subsequent to 5 years of growth after taking action   in state   given disturbances  .  

This can also be done offline for every       combination.   

   

Step 3 : Offline calculations for function approximation 

 

 Many of the calculations for averager and non-averager methods can be done 

offline before the approximation begins.  All preliminary calculations that don’t depend 

on the CTG values are done before the optimization begins and are stored for retrieval at 

each iteration of the DP algorithm.   

 For each result state   calculated at step 2, and for each approximation 

architecture, a set of preliminary calculations, explained below, can be done in order to 

reduce the time required to do the approximation during the optimization.  
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MR : We recall the equations presented in section 4.4.1 for calculating the vector of 

parameters and reproduce one in particular that can be partially computed before the 

optimization begins:             .  The terms in the vector of regressors   are given 

in section 5.2.1 and an example of how to construct it is given in section 4.4.1.  It uses the 

values of the variables for the evaluation states created in step 2 of this procedure and 

therefore           can be calculated once and stored which will make the calculation of 

  at each iteration of the optimization more efficient. 

 

RBF : In section 4.4.1, we are working with a linear system of equations       

where   can be precomputed.  The detailed steps are explained in section 4.4.1.   

DWI : The weights used to calculate the CTG approximation all depend on the distance 

between points and not on the CTG values.  In this case, the weights are pre-computed 

using the method described in section 4.4.2. 

 

Step 4 : Calculating CTG values for all discrete evaluation states 

 

 We recall that states   and   are combinations of a forest state and a market state.  

Equation 4-12 is used to calculate the CTG value       for all discrete evaluation states  .  

      has two components:  

 

(1)        : The current net profit of taking action   in state  .  The volume of 

wood removed from the stand, when taking decision   in state  , is 

transformed to a monetary value according to the procedures described in 

chapter 2. 

(2)          
              : the discounted expected CTG value of taking decision 

  in state   given transition probabilities        and discount factor   where 

           is an approximate value calculated using one of the approximation 

architectures presented in section 4.4.  Step 6 of this algorithm explains how   

is updated at each iteration of the algorithm and the steps involved in using the 

approximation architectures to calculate an approximate value for the CTG 

function at any state   are explained below.   
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For TRT = 1 and 3, function approximations don’t need to be computed.  The 

state space for those two treatment types are continuous but the nature of the growth 

models for both species types is such that the discreet states in   
     and   

     can be 

chosen so that 5 years of growth starting at any       
     or       

     will result in state j 

being equal to one of the states in   
     or   

     given that the action taken is to let the 

stand grown.  In these cases,            is simply a value retrieved from a table which 

contains values of       from the previous iteration. 

 

(i) Multiple Regression – The parameter vector values for the regression 

equations were updated for TRT = 2, 4 and 5 at step 6 of the last 

iteration.  These regression equation parameters are now used to 

approximate the CTG function value for state   where the value of the 

variables in the regression model are equal to the values of the state 

variables that define discreet state  .  Section 5.2.1 describes the order 

and terms of the regression model used in this thesis. 

(ii) Radial Basis Functions – The weights    were updated at step 6 of the 

previous iteration for TRT = 2, 4 and 5.  The next step is to calculate, 

with equation (4-11), Euclidian norms of the distances between each 

center    and the discreet state   for which we need to approximate the 

CTG function values.  With these distances, we can calculate the values 

of the RBF for each   , which when multiplied with the weights    and 

summed, yield the CTG function approximations. 

(iii) Distance Weighted Interpolation – The weights were calculated at step 3 

of this algorithm.  Section 4.4.2 explains how to use DWI to calculate the 

CTG function approximations. 

 

 This process is repeated for all applicable evaluation state/decision combinations 

and the values of       are all stored for future retrieval. 
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Note: In the first iteration of the DP algorithm,             is zero for all result states   

because the CTG values are being calculated for the first time so   = 0 for all states in the 

case of TRT = 2, 4 and 5, while the value of         is also zero for all states for TRT = 1 

and 3. 

 

Step 5 : Checking if the DP algorithm stopping criteria have been met 

 

 Section 4.5 gives a detailed explanation of how the stopping criteria are calculated 

and, when it`s appropriate, how to stop the DP algorithm.  If the stopping criteria have 

been met, the DP algorithm is deemed to have converged to an acceptable policy   

which, along with the CTG value for all evaluation states, is displayed in an Excel 

workbook.  The algorithm is stopped at this point.  If the stopping criteria haven’t been 

met, the algorithm proceeds the step 6. 

 

Step 6 : Updating the vector of parameters   

 

 We now have a CTG function value       for each evaluation state  .  We recall 

that   
     is a set of discrete states chosen to represent the continuous space   .  In this 

step of the algorithm, we use the precomputed values from step 3 and update the values of 

the fitting parameters    for the chosen approximation architecture.   

 In the case of multiple regression, this means that we now have the values of   

which are the      .  We can now complete the calculation of   as described in section 

4.4.1 which yields the following multiple regression model: 

 

                   

 

where the   ,   = 1,…,   will be replaced by the values of the state variables that 

define the discreet state   for which we need to approximate the CTG function at the next 

iteration of the DP algorithm. 
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 As for RBF approximations, given the values of the vector   which are the       

values calculated at step 4, the values of the weights    can be updated using the 

procedure in section 4.4.1. 

 Finally, for DWI, the weights don’t depend on the values of       therefore they 

don’t change at each iteration of the DP algorithm. 

 For each of the approximation architectures above, the process of updating the 

parameter vector needs to be done for TRT = 2, 4 and 5.  This thesis uses backward 

recursive value iteration therefore, at each iteration of the algorithm, we are moving one 

5-year period back in time and   from the current iteration becomes     at the next 

iteration.  Return to step 4. 

 

4.7 Policy Simulation 

 

 The optimal stationary policy   obtained from solving the infinite horizon 

stochastic DP problem must be verified as discussed in section 4.5.  This section 

discusses how   is simulated in the context of this work. 

 A policy is a vector of decisions, one for each evaluation state, which results from 

solving the value iteration algorithm which yielded the vector of CTG function values   .  

The optimization yielded two vectors that have matching entries where each evaluation 

state has an associated decision      and CTG function value      .  Simulating   for a 

long time period will yield a CTG function value   
    .    

     is used to differentiate it 

from       which is the value of the CTG function obtained from solving the DP problem 

with the value iteration algorithm.  If   is a good approximation to   ,   
     should be 

close to      .  

 What follows is a step by step description of how policy   is simulated for state   

to yield   
     where    is used to represent state  .  The simulation advances in 5 year 

increments and subscript   represents the number of years since the beginning of the 

simulation replication.  Note that many of the states generated in the course of the 

simulation are not in the set of evaluations states.  Thus, the policy corresponding to this 

state is not available without explicitly carrying out the DP calculation using the 
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calculated approximate CTG function.  However, an approximate policy choice is to 

instead use the policy corresponding to the closest evaluation state. 

 

Step 1 : Choose an initial starting state    along with stand and simulation parameter 

values for the simulation.  Set t = 0.  Go to step 2. 

 

Step 2 : Based on policy  , take action    associated with the evaluation state closest to 

state   .  Based on this choice of   , calculate the resulting state      at time  +5.  

Calculate the profit gained from applying action    to state                and transform 

to net present value (NPV) at time 0.  These profits are all transformed to NPV’s 

according to             where      -  .  The distances between states are measured 

with a Euclidean norm with scaled variable values identical to the one described in 

section 4.4.  Go to step 3. 

 

Step 3 : Generate a random number between 0 and 1.  Compare this random number with 

the natural disaster probabilities calculated in section 4.2.  If a natural disaster occurs, 

state      that would have occurred as calculated in step 2 is modified to reflect the 

impact of the natural disaster which is for      to become a regeneration state.  If      is 

a regeneration state, either because of the action applied in step 2 or because of a natural 

disaster, go to step 4.  Otherwise, go to step 5. 

 

Step 4 : Apply the optimal action prescribed by policy  .  If the optimal action is to treat 

the stand in such a way that it either becomes a well stocked natural stand or a plantation, 

action    is applied which results in state     .  If the optimal action is to do nothing, 

generate a random number between 0 and 1, and compare this value with the regeneration 

probabilities associated with the regeneration state.  If, according to the regeneration 

probabilities, the stand regenerates,      is a 5 year old natural stand.  If the stand doesn’t 

regenerate,      is still a regeneration state with a higher probability of regenerating at 

the next time period.  Go to step 5. 

 

Step 5 : Store   ,   , NPV            and       for future retrieval. 
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Step 6 : If                                , stop the simulation.  The 

                       is the maximum profit that could have occurred if a 

regeneration harvest had been done given the current state of the forest stand.  Otherwise, 

set       and go to step 2. 

 

 Steps 1 to 6 make up one simulation replication where   
                  .  

When enough replications have been done, an average and a standard deviation are 

calculated and are used to build a confidence interval (CI).  As long as the confidence 

interval contains       for state   and policy  , we can say with a confidence level of (1-

 ) that   is a good approximation to   . 

 Let       be the sample variance of the CTG value   
     over the   simulation 

experiments.   Then we calculate a confidence interval CI as 

 

CI       
      

 
 

 
     

 
 where  

      
 
 
 is the value from the student   distribution 

 

 The number of replications of the simulation has an important impact on the width 

of the confidence interval.  A very large number of replications may create a confidence 

interval so narrow that it would be difficult for       to fall within its bounds.  If the 

estimate    is such that              then we say that    has an absolute error of  .  

The confidence interval constructed with the formula above assumes that       will not 

change appreciably as the number of replications increases.  The approximate number of 

replications,      , required to obtain an error of   is given by Law and Kelton (2000): 

 

              such that  
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 We can determine       by iteratively increasing   by 1 until a value of   is 

obtained for which         
 

 
     

 
  .  If         and if we make         

additional replications of the simulation, then the estimate    should have an absolute 

error of approximately  .  In practice, the total net present values of individual simulation 

replications ( ) may not be distributed normally therefore the authors recommend the use 

of the t-distribution as it gives better coverage than a confidence interval constructed 

using the normal distribution.  The better coverage is related to the fact that, although the 

t-distribution assumes normal distribution, the value of a t-distribution with degrees of 

freedom less than   is higher for the same level of confidence than that of a normal 

distribution.   

 Since each discrete state has its corresponding      and      , any state can be 

chosen as the starting point of the simulation and the corresponding       compared to the 

confidence interval above.  Section 5.3.3 shows results of confidence intervals 

constructed for a few discrete states and for different sets of parameters of the DP model. 
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Chapter 5: Results and Discussion 

 

 In chapter 1, we presented a flow chart which gave an overview of the thesis and 

guides the reader in understanding the links between topics.  For convenience, that flow 

chart is reproduced here and the discussion topics in this chapter are based on the 

structure presented in this flow chart. 

 

Figure 5-1 – Flow chart of thesis structure 

 (i) Incorporating 2 

species into 1 model 
(ii) Incorporating a 

comprehensive list of 

management options 

(iii) Incorporating 

uncertainty 

Chapter 2 explains how 

and chapter 3 contains 

results Studying these has led to the DP model which is 

discussed in detail in chapter 4 

The amount of detail required in the DP model has created 

challenges in 4 areas: forest stand descriptors, treatment types, 

market price levels, management options 

This level of detail has led to 4 main topics of discussion for 

which the results are the focus of chapter 5 

 

Structuring the 

model for 

stochastics – 

section 5.1 focuses 

on the importance 

of including 

stochastics in the 

model 

Dealing with the 

high dimensional 

state space – section 

5.2 focuses on the 

approximation of 

the CTG function 

presented in section 

4.4 

Optimization 

related discussion 

– section 5.3 

discusses some 

results for topics 

presented in 

sections 4.3, 4.5 

and 4.7 

Three main areas of interest 

described in chapter 1 

Policy related 

discussion – 

section 5.4 

discusses how 

interpretation of 

the policies can 

lead to sound 

management 
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 The flow chart in figure 5-1 indicates four main topics of discussion that are the 

focus of chapter 5.  The importance of the first topic, structuring the model for 

stochastics, is introduced in chapter 1 and developed in detail in section 4.2.  Supporting 

results are presented in section 5.1.  The second topic, dealing with the high dimensional 

state space, is present throughout chapter 4 as it has a major impact on the structure of the 

DP model.  However, the need for appropriate approximation architectures in discussed 

in detail in section 4.4 and supporting results are presented in section 5.2.  The third topic, 

optimization related discussions, focuses on the items presented in sections 4.3, 4.5 and 

4.7, namely setting the value of the discount rate, the rate of convergence and termination 

criteria of the DP model, and policy simulation.  Supporting results are presented in 

section 5.3.  In section 5.4, we present some examples of the type of policy discussion 

that can occur with the model developed, the importance of which is established in the 

first page of the thesis. 

 In the development of the DP model, a basic set of parameters was chosen to 

represent an average forest stand in Nova Scotia as well as 2010 market and forest 

management conditions.  Table 5-1 shows basic parameters for natural disasters and the 

explanation of how this information is used in the DP model is described in sections 2.9 

and 4.4.   

 

Table 5-1 – Basic parameters for natural disasters in the DP model 

Approximate forested area in the west of the province 

of Nova Scotia (hectares) 

1,691,300 

Average number of fires per year 3.5 

Return interval of major hurricanes (years) 50 

Average area of wind for a major hurricane (hectares) 400,000 

Return interval of major insect outbreaks (years) 50 

 

 Detailed examples of susceptibility calculations are explained in section 2.9.  

Table 5-2 shows basic parameters for the DP model which will be referred to as the base 

case scenario in the rest of this chapter.  Unless otherwise specified, distance weighted 

interpolation is always used as the approximation architecture in the DP model.  See 

section 5.2 for results that support this choice.  Appendix B lists all possible actions that 

may apply during the optimization including for what treatment type they are applicable 
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as well as the resulting treatment type after the action has been taken.  Appendix B also 

explains how       and            are used to calculate the actual removal for CT 

for any given stand.   

 

Table 5-2 – Basic parameters of the DP model 
Annual discount rate 2% 
Site index SW (in meters at age 50) 16.76m 
Site index HW (in meters at age 50) 17m 
Minimum dominant stand height (hardwood) for doing a pre-commercial thinning 6.1m 
Minimum dominant stand height (softwood) for doing a pre-commercial thinning 2m 
Maximum average stand height for doing a pre-commercial thinning 9m 
Percentage of stand covered with softwood when a stand does naturally regenerate 75% 
Natural stocking percentage of the forest 75% 
Average selling price of softwood merchantable volume  $13.07/m

3 

Average selling price of softwood board volume  $30.76/m
3 

Average selling price of hardwood merchantable volume  $22.40/m
3 

Average selling price of hardwood board volume  $46.23/m
3 

Number of price level 1 
Cost of planting less than 2500 trees on one hectare $1,350 
Cost of planting 2500 or more trees on one hectare $1,500 
Cost of surveying one hectare of newly harvested land $70 
Cost of doing fill planting on one hectare $300 
Cost of doing pre-commercial thinning on one hectare $750 
Cost of one hour of labour for doing commercial thinning or final felling $40 
Flat cost of doing a commercial thinning on one hectare $750 

 

 As stated in chapters 1 and 4, we have an interest in the development of optimal 

policies for the management of a mixed-species stand.  As random events such as 

changing prices, regeneration and natural disasters occur, policies need to reflect current 

observed state of the stand and market and the state most likely to occur in the future.  

Together, they dictate the path taken by the stand and market states and, in reaction to 

these random changes, the policies that create maximum economic value for the decision 

maker.  In other words, when the state of the forest stand and of the market changes 

randomly, we need to make decisions that are optimal given the current state and the 

stochastics of both future states and optimal decisions.  This has been achieved and the 

results presented in sections 5.1 and 5.4 rely heavily on the interpretation of these optimal 

policies.  Therefore, it is useful to present a set of optimal policies and explain the general 

tendencies before going into specifics in the rest of the chapter.  Given the parameters of 
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the stand being studied and, with the observed state of the forest stand and of the market, 

the decision maker chooses an action based on the optimal policies.   

 The policies presented in table 5-3 are for the base case scenario with the 

exception that 6 price levels are used to discuss transitions in policies whereas the base 

case scenario only has 1 price level.   

 

Table 5-3 – Partial policies for the base case scenario with the exception that there are six 

price levels instead of one 

  

Natural unmanaged stands  Commercially or pre-commercially thinned natural stands 
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5 100 1 1 1 1 1 1  1 15 5.2 0 100 8.4 2 2 2 2 2 2 

10 100 12 12 12 12 12 12  2 20 6.9 0 100 14.1 2 2 2 2 2 2 

15 100 12 12 12 12 12 12  3 40 8.7 7.0 92 46.5 2 2 2 2 2 2 

20 100 1 1 1 1 1 1  4 45 10.6 0 100 44.5 2 2 2 2 2 2 

25 100 1 1 1 1 1 1  5 50 12.1 0 100 44.7 2 2 2 2 2 2 

30 100 1 1 1 1 1 1  6 55 13.5 0 100 44.9 2 2 2 2 2 2 

35 100 1 1 39 39 39 39  7 55 15.0 0 100 51.1 2 2 2 2 2 2 

40 100 1 38 38 38 38 38  8 55 14.0 0 100 51.6 2 2 2 2 2 2 

45 100 38 38 38 38 38 38  9 60 15.0 0 100 45.0 2 2 2 2 2 2 

50 100 19 19 37 38 38 38  10 60 15.4 0 100 51.8 2 2 2 2 2 2 

55 100 37 37 37 37 38 7  11 65 16.8 0 100 51.9 2 2 2 2 2 7 

60 100 28 37 37 37 7 7  12 70 18.2 0 100 52.1 2 2 2 2 2 7 

65 100 37 37 37 7 7 7  13 75 19.4 0 100 52.2 2 2 2 7 7 7 

70 100 1 37 7 7 7 7   
      

     

75 100 1 1 7 7 7 7  14 65 17.4 0 100 51.7 2 2 2 2 2 7 

80 100 1 1 7 7 7 7  15 70 22.0 0 100 59 2 2 2 7 7 7 

85 100 1 1 7 7 7 7   
      

     

90 100 1 1 7 7 7 7  16 100 27.2 0 100 52.0 2 2 7 7 7 7 

95 100 19 19 7 7 7 7   
      

     
 
 1 - Let grow  12 - PCT, remove HW  37 - CT, rmv 40% BA, splt 25% (abv) 

 2 - Let grow  19 - CT, rmv 40% BA, splt 25% (blw)  38 - CT, rmv 40% BA, splt 50% (abv) 

 7 - ReHar, plt 2500 tr/ha  28 - CT, rmv 40% BA, splt 25% (cros)  39 - CT, rmv 40% BA, splt 75% (abv) 

 

 All states in the left side of the table are natural unmanaged stands (TRT=1) and 

they are discrete elements of      , and all states in the right side of the table are either 

pre-commercially (TRT=2) or commercially thinned (TRT=5) stands.  Each of the colour 

coded numbers makes reference to an action to be applied to the stand.  A pre-

commercial thinning action takes the stand from TRT=1 to TRT=2 and a commercial 
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thinning action applied to a natural unmanaged stand takes the stand from TRT=1 to 

TRT=5.  The legend given under table 5-3 and wherever else it is useful in the remainder 

of this chapter uses the following shortcuts: ReHar = regeneration harvest, plt = 

plantation, tr/ha = trees per hectare, rmv = remove, splt =            for SW, blw = 

remove trees from below, cros = remove trees from across the diameter distribution, abv 

= remove trees from above.  The reader is reminded that the natural stands on the left 

have 100% crown closure on a 100% stocked stand therefore the stand is supporting as 

many trees as it possibly can for its age.  These natural stands have an average SW 

content of 75%.   

 Action 1 is to do nothing and let the stand grow for one 5-year period.  In all 

cases, taking action 1 simply means the stand will be 5 years older at the next decision 

time.  For 5 year old natural stands, it is optimal to do nothing as the trees aren’t tall 

enough to do a pre-commercial thinning and the diameters aren’t large enough to have 

any commercial value.  Action 12 is a pre-commercial thinning that eliminates hardwood 

and spaces softwood to NS DNR recommended spacing between trees and it is optimal to 

apply this action regardless of price at ages 10 and 15 because NS DNR recommends 

minimum heights for doing a pre-commercial thinning which correspond approximately 

to a 10 year old stand.  Taking action 12 with 10 and 15 year old natural stands, and 

letting them grow 5 years, results in transitions to the first two stands respectively (stands 

1 and 2) in the right side of table 5-3.  We notice that the new stands have had all their 

hardwood removed (     = 100%) and that the new crown closure percentage is very 

low.  In both cases, it is optimal to do nothing and let the stand grow (action 2) regardless 

of the observed state of the market.  As random disturbances occur and the state of the 

forest stand and market evolve, the policies are used to continually make optimal 

decisions based on the state observed at decision time. 

Going back to natural unmanaged stands, pre-commercial thinning is permitted 

beyond 15 years of age but only occurs at ages 10 and 15 because by age 20, the natural 

stand has self-thinned itself to a point that investing in a PCT to thin out the stand is no 

longer the optimal action to take.  Therefore, between the ages of 20 and 30 inclusively, it 

is optimal to do nothing and let the stand grow.  At those ages, the average diameter of 

the trees is still too small to have any commercial value.  
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 Decisions 19 to 39 are commercial thinning actions which are optimal for a wide 

range of ages and prices.  Once a stand reaches the age where commercial thinning 

becomes a viable option, the observed market state becomes an important factor in 

choosing the optimal action.  Generally speaking, CT removes enough wood to create 

enough revenue to make a profit at the time of harvest and spaces or releases trees so that 

they may grow larger diameters, and therefore more volume, than they would have grown 

without being released.  The type of commercial thinning that is optimal is a function of 

the observed market state at decision time where, at higher prices, CT is done from above 

so maximum volume can be removed from a given amount of BA while prices are high.   

  All CT actions remove 40% of the total basal area on the stand and, aside from a 

few exceptions, CT actions are clustered into two groups.  The first group, actions 19, 28 

and 37, all remove the basal area by taking it as 25% SW and 75% HW.  The only 

difference is the manner in which it is taken where 19 takes trees from the small 

diameters (from below), 28 takes the trees from across the diameter distribution and 37 

takes the trees from the largest diameters (from above).  In the second group, actions 38 

and 39, CT is done from above where the basal area removed is 50% and 75% SW 

respectively with the balance in HW.  Doing a commercial thinning from above yields 

slightly higher volumes for the same basal area but, more importantly, it creates a larger 

proportion of    which has a much higher market value, and higher market prices 

encourage the removal of larger trees because there is a high probability that prices will 

come down at the next period.  The majority of the CT actions in the policy from the left 

hand side of table 5-3 lead to a state where the optimal action is to do nothing for at least 

5 years.  Stands 3 to 13 from the right side of table 5-3 are a sampling of the resulting 

forest stands after taking actions 19, 28, 37, 38 or 39 with the natural stands in the left 

side of table 5-3.  Two characteristics are similar for all these stands:      =100% for all 

stands except stand 3 which still contains a small percentage of HW and    varies within 

a narrow range of 44% to 52%.  At such low   , it makes no sense to remove any trees as 

there isn’t enough    and    to justify the removal. The policies in the right side of 

table 5-3 reflect this as it is optimal to do nothing for all stands up to 60 years of age 

(state 10).  Starting at age 65, some regeneration harvests appear at very high prices with 

more appearing at age 75 (state 14).  At this age, the stand diameter is high enough that it 
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is optimal to do a regeneration harvest if the prices are simply above the mean.  States 14 

and 15 are shown to demonstrate that taking action 2 when in state 14 yields state 15, and 

that with the rise in    and diameter, there is a significant change in policy in just 5 years. 

 The last two commercial thinning actions on the left hand bottom corner are due 

to the fact that the stand can’t grow another period after 95 years of age because the 

model doesn’t include a state for the 100 year old natural stand.  Therefore, a CT is done 

which creates immediate profit and sends the stand to TRT=5 where the age of the stands 

can go as high as 105 years old.  Not surprisingly, the policy for the resulting state at the 

next time period, represented by state 16 in the right hand side of table 5-3 is identical to 

the policy for all natural stands between the ages 75 and 90. 

 Starting at age 55 with natural stands, it is optimal to do a regeneration harvest for 

very high prices.  The older the stand, the higher the probability, based on market prices, 

that we will do a regeneration harvest but there is a lower limit to the price at which the 

harvest occurs.  At prices 1 and 2 for ages 75 to 90, it is optimal to wait an extra time 

period before doing a harvest as the volume of wood is quite high at this point and the 

loss of revenue due to a harvest being done at low prices can’t be recovered with future 

harvests because of discounting.   

 This introduction serves the purpose of pointing out how the policies can be 

interpreted and used for optimal decision making.  Context specific policy interpretations 

are done throughout this chapter. 

 

5.1 Structuring the Model for Stochastics 

 

 In section 4.2, uncertainty is divided into two independent stochastic processes: 

market state dynamics and growth and yield dynamics.  As discussed in section 4.2.1, 

market state uncertainty is implemented, in the DP model, as a normal distribution where 

the prices at period  +1 that are closer to the mean price have a higher probability of 

occurrence.  The mean price for all wood products is stationary as discussed in chapter 4.  

Section 5.1.1 shows results that support the need to include this market state uncertainty 

in the DP model.  As discussed in section 4.2.2, growth and yield dynamics are 

represented by two independent Markov chains and, in the implementation of the DP 
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model, one of those Markov chains, stochastic regeneration, is represented by a transition 

probability matrix and the other, natural disasters, is represented by a transition 

probability rule.  Those Markov chains are discussed in detail in sections 2.5 and 2.9 

respectively.  Sections 5.1.2 and 5.1.3 discuss the impact of not incorporating growth and 

yield dynamics into the DP model. 

 

5.1.1 Market State Uncertainty 

 

 In individual forest stand management, decisions are made after the state of the 

market is observed and the information gathered during this observation is used to 

optimize the decision making process.  When the DP model is structured so the decision 

making can be made in this manner, considerable economic gains are observed over the 

case where this information is not included in the decision making process.   

 Prices and probabilities used with the base case scenario are shown in table 5-4. 

 

Table 5-4 – 2010 market prices and their probability of occurrence in any time period 

 
Price 1 Price 2 Price 3 Price 4 Price 5 Price 6 

Probability of occurrence 0.00383 0.087381 0.408789 0.408789 0.087381 0.003799 
Z-value -3.333 -2 -0.666 0.666 2 3.333 
Softwood    $9.82 $11.12 $12.42 $13.72 $15.02 $16.32 
Hardwood    $16.80 $19.04 $21.28 $23.52 $25.76 $28.00 
Softwood    $23.06 $26.14 $29.22 $32.30 $35.38 $38.46 
Hardwood    $34.68 $39.30 $43.92 $48.54 $53.16 $57.78 

 

 Mean prices and variance were chosen such that HW products are worth more 

than SW products and that there is enough difference between the highest and lowest 

prices for the policies to be different where price is a contributing factor.  There is no 

good long term market price data available for Nova Scotia, therefore we make the 

assumption that the prices used in the model are reasonable and that they aren’t correlated 

between discrete time periods, which is a requirement for the infinite horizon approach 

used in this thesis.  The average of prices 3 and 4 is equal to the average of the normal 

distribution.  The probabilities of occurrence are the cumulative probabilities for six 

equally divided intervals of the Normal distribution between Z = -4 and Z = +4 where the 
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Z-values given in the table are the mid-points of those six intervals.  It is worth noting 

that the prices for    and    for both species are perfectly correlated. 

 Table 5-5 shows optimal policies and their resulting cost-to-go values for fully 

stocked natural stands.  In order to save space in this section and the rest of the chapter, 

most policies will be presented as partial policies as the complete policies, in each case, 

would take up several pages.  In this specific case, the complete policy for natural stands 

has two different stocking percentages: 100% and 75% but only the 100% case is shown.  

A comparison of the policies for 75% and 100% stocking is discussed in section 5.4.2. 

 

Table 5-5 – Optimal policies and the resulting CTG values for fully stocked natural 

stands from one optimization that included the 6 price levels given in table 5-4 

  

Policies – 6 prices CTG values – 6 prices 

Age Stocking 1 2 3 4 5 6 1 2 3 4 5 6 

5 100% 1 1 1 1 1 1 $8,920 $8,920 $8,920 $8,920 $8,920 $8,920 

10 100% 12 12 12 12 12 12 $9,972 $9,972 $9,972 $9,972 $9,972 $9,972 

15 100% 12 12 12 12 12 12 $10,870 $10,870 $10,870 $10,870 $10,870 $10,870 

20 100% 1 1 1 1 1 1 $11,733 $11,733 $11,733 $11,733 $11,733 $11,733 

25 100% 1 1 1 1 1 1 $13,259 $13,259 $13,259 $13,259 $13,259 $13,259 

30 100% 1 1 1 1 1 1 $15,046 $15,046 $15,046 $15,046 $15,046 $15,046 

35 100% 1 1 39 39 39 39 $16,817 $16,817 $16,938 $17,305 $17,672 $18,039 

40 100% 1 38 38 38 38 38 $18,519 $18,707 $19,057 $19,408 $19,758 $20,108 

45 100% 38 38 38 38 38 38 $20,137 $20,582 $21,026 $21,470 $21,915 $22,359 

50 100% 19 19 37 38 38 38 $21,814 $22,054 $22,356 $22,794 $23,326 $23,859 

55 100% 37 37 37 37 38 7 $22,909 $23,285 $23,661 $24,037 $24,434 $25,351 

60 100% 28 37 37 37 7 7 $23,825 $24,233 $24,656 $25,078 $26,006 $28,123 

65 100% 37 37 37 7 7 7 $24,350 $24,813 $25,277 $25,847 $28,198 $30,549 

70 100% 1 37 7 7 7 7 $23,938 $24,383 $24,996 $27,551 $30,106 $32,660 

75 100% 1 1 7 7 7 7 $24,833 $24,833 $26,338 $29,079 $31,820 $34,560 

80 100% 1 1 7 7 7 7 $25,554 $25,554 $27,384 $30,269 $33,154 $36,038 

85 100% 1 1 7 7 7 7 $26,197 $26,197 $28,231 $31,235 $34,240 $37,244 

90 100% 1 1 7 7 7 7 $26,753 $26,753 $28,996 $32,109 $35,222 $38,334 

95 100% 19 19 7 7 7 7 $26,428 $27,014 $29,690 $32,900 $36,111 $39,322 
 
 1 - Let grow  19 - CT, rmv 40% BA, splt 25% (blw)  38 - CT, rmv 40% BA, splt 50% (abv) 

 7 - ReHar, plt 2500 tr/ha  28 - CT, rmv 40% BA, splt 25% (cros)  39 - CT, rmv 40% BA, splt 75% (abv) 

 12 - PCT, remove HW  37 - CT, rmv 40% BA, splt 25% (abv)  

 

 Focusing on the policy for age 35 in table 5-5, there are two recommended 

actions: doing nothing (1) or doing a commercial thinning from above with 40% basal 

area removal which is split 75/25 between softwood and hardwood (39).  If prices 1 or 2 

are observed, the optimal policy is to do nothing and let the stand grow another 5 years 
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which results in a CTG value of $16,817.  The CTG is the same for prices 1 and 2 

because, in both cases, the optimal action is to do nothing and, because prices in period 

 +1 are independent of prices in period  , the expected value of          is the same for 

prices 1 and 2 at period  . For prices 3 to 6, the policy is the same and the resulting state 

is the same but the CTG value rises because revenue is created today from the CT which 

has different values based on the different currently observed prices.   

 In contrast, table 5-6 shows policies for 6 individual optimizations each one using 

1 of the 6 prices in table 5-4.   

 

Table 5-6 – Optimal policies and the resulting CTG values for fully stocked natural 

stands from 6 individual optimizations each with one of the prices given in table 5-4 

  

Policies CTG values 

Age Stocking P
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Price 1 Price 2 Price 3 Price 4 Price 5 Price 6 

5 100% 1 1 1 1 1 1 $4,876 $6,370 $7,864 $9,358 $10,872 $12,405 

10 100% 12 12 12 12 12 12 $5,451 $7,121 $8,791 $10,461 $12,153 $13,868 

15 100% 12 12 12 12 12 12 $5,974 $7,783 $9,591 $11,400 $13,233 $15,089 

20 100% 1 1 1 1 1 1 $6,675 $8,539 $10,404 $12,269 $14,151 $16,051 

25 100% 1 1 1 1 1 1 $7,551 $9,655 $11,759 $13,863 $15,987 $18,131 

30 100% 1 1 1 1 1 1 $8,578 $10,962 $13,346 $15,731 $18,138 $20,567 

35 100% 39 39 39 39 39 39 $9,784 $12,497 $15,211 $17,925 $20,664 $23,428 

40 100% 38 38 38 38 38 38 $11,155 $14,113 $17,072 $20,030 $23,014 $26,022 

45 100% 38 38 38 38 38 38 $12,435 $15,640 $18,845 $22,050 $25,280 $28,536 

50 100% 38 38 38 38 38 37 $13,253 $16,620 $19,989 $23,358 $26,753 $30,184 

55 100% 37 37 37 37 37 37 $14,025 $17,562 $21,100 $24,638 $28,205 $31,801 

60 100% 37 37 37 37 37 37 $14,666 $18,331 $21,996 $25,662 $29,358 $33,085 

65 100% 37 37 37 37 37 37 $15,083 $18,833 $22,585 $26,336 $30,120 $33,934 

70 100% 6 6 6 6 7 8 $15,926 $19,883 $23,839 $27,796 $31,795 $35,840 

75 100% 6 6 6 6 7 8 $16,900 $21,041 $25,183 $29,324 $33,508 $37,738 

80 100% 6 6 6 6 7 8 $17,661 $21,946 $26,230 $30,515 $34,841 $39,214 

85 100% 6 6 6 6 7 8 $18,271 $22,675 $27,078 $31,481 $35,925 $40,417 

90 100% 6 6 6 6 7 8 $18,824 $23,334 $27,845 $32,355 $36,906 $41,505 

95 100% 6 6 6 6 7 8 $19,324 $23,932 $28,539 $33,147 $37,795 $42,491 
 
 1 - Let grow  8 - ReHar, plt 3250 tr/ha  38 - CT, rmv 40% BA, splt 50% (abv) 

 6 - ReHar, plt 1750 tr/ha  12 - PCT, remove HW  39 - CT, rmv 40% BA, splt 75% (abv) 

 7 - ReHar, plt 2500 tr/ha  37 - CT, rmv 40% BA, splt 25% (abv)  

 

 There is a large difference in policy and CTG values between tables 5-5 and 5-6.  

For prices 1, 2 and 3, all CTG values are lower in table 5-6 than in table 5-5.  For prices 

4, 5 and 6, the opposite occurs.  In table 5-5, if the current observed price is lower than 
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the mean price, there is a higher than 50% probability that the price observed at the next 

time period will be higher than the current price.  If the current observed price is higher 

than the mean price, there is a higher than 50% probability that the price observed at the 

next time period will be lower than the current price.  The effect of these probabilities is 

explained below. 

 Managing a stand using the policies in table 5-6 is the equivalent of making 

decisions based solely on the current volume of wood on the stand without considering 

the current state of the market and the possibility of observing a higher or lower price at 

the next period because only one of those prices can be observed at any given time and it 

remains unchanged forever.  If the current price is as high as the decision maker expects it 

to get with the prospect of the price going down at the next decision period and the stand 

being observed is 55 years old, the optimal policy in table 5-5 is to harvest the stand now 

to take advantage of the current high price.  In the case where prices are fixed (table 5-6), 

the optimal policy is to do a commercial thinning which generates some revenue but not 

as much as a regeneration harvest.  If the decision maker is using the policies in table 5-6 

expecting high prices to remain the same in the future but prices go down, a loss of profit 

may occur because of the use of an inappropriate policy. 

 Similarly, if observed prices are currently low and the decision maker doesn’t 

consider the possibility that those prices are likely to go up in the next period, an 

important loss of profit may occur from taking the wrong action.  Returning to the policy 

for the 35 year old stand, the optimal action for price 1 according to table 5-6 is to do the 

same CT as described earlier for the higher prices.  Whereas, in table 5-5 we only did a 

CT if the current observed price was price 3 or higher, in table 5-6, it is done regardless 

of the current observed price.  For price 1, this decision incurs a lost profit of $7,033 

($16,817 - $9,784).  Even when the decision is the same for both policies for any given 

price, the CTG value is different because the decision maker will be choosing actions at 

each subsequent time period and, in the case of the policy in table 5-5, decisions will 

always be made with the knowledge that the prices may go up or down in the future 

depending on the current observed price.   
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Table 5-7 – Optimal policies for 75% stocked and 100% stocked natural stands from one 

optimization that included the 6 price levels given in table 5-4 

 
100% stocking 75% stocking 

Age 1 2 3 4 5 6 1 2 3 4 5 6 

5 1 1 1 1 1 1 1 1 1 1 1 1 

10 12 12 12 12 12 12 12 12 12 12 12 12 

15 12 12 12 12 12 12 12 12 12 12 12 12 

20 1 1 1 1 1 1 12 12 12 12 12 12 

25 1 1 1 1 1 1 12 12 12 12 12 12 

30 1 1 1 1 1 1 1 1 1 1 1 1 

35 1 1 39 39 39 39 1 1 1 1 1 1 

40 1 38 38 38 38 38 31 31 31 31 31 31 

45 38 38 38 38 38 38 31 31 31 31 31 31 

50 19 19 37 38 38 38 31 31 31 31 31 31 

55 37 37 37 37 38 7 34 34 34 34 34 34 

60 28 37 37 37 7 7 34 34 34 7 7 7 

65 37 37 37 7 7 7 1 1 7 7 7 7 

70 1 37 7 7 7 7 1 1 7 7 7 7 

75 1 1 7 7 7 7 1 1 7 7 7 7 

80 1 1 7 7 7 7 1 1 7 7 7 7 

85 1 1 7 7 7 7 1 1 7 7 7 7 

90 1 1 7 7 7 7 1 1 7 7 7 7 

95 19 19 7 7 7 7 16 7 7 7 7 7 
 
 1 - Let grow  16 - CT, rmv 30% BA, splt 25% (blw)    34 - CT, rmv 30% BA, splt 25% (abv) 

 7 - ReHar, plt 2500 tr/ha  19 - CT, rmv 40% BA, splt 25% (blw)  37 - CT, rmv 40% BA, splt 25% (abv) 

 12 - PCT, remove HW  28 - CT, rmv 40% BA, splt 25% (cros)  38 - CT, rmv 40% BA, splt 50% (abv) 

  31 - CT, rmv 20% BA, splt 25% (abv)  39 - CT, rmv 40% BA, splt 75% (abv) 

 

 Table 5-7 shows the policies for the base case scenario for 75% stocked and 100% 

stocked natural stands.  The reduction in stocking paired with the random prices yields 

very different policies that are worth investigating.  Note that a stand that starts at 75% 

stocking will remain so for the duration of the optimization even after a regeneration 

harvest is applied to the stand.  If we observe the policies by chronological age, the first 

difference is the appearance of PCT actions for 20 and 25 year old stands in the 75% 

stocked stand, for all prices.  PCT is optimal at all ages where it is an acceptable option 

according to NS DNR.  This makes sense as the 75% stocked stand has less volume 

therefore doing a PCT opens up the stand and accelerates the diameter growth of the trees 

that are present.  CT actions are also very different for the 75% stocked case.  The 

window of opportunity for CT in the 75% stocked case is between the ages of 40-60 

whereas it is 35-70 in the fully stocked case.  In addition, all CT actions remove 40% of 
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the basal area when the stand is fully stocked and only 20% or 30% when the stand is 

75% stocked which makes sense since the stand has less basal area to begin with.  The 

smaller removal percentage will only take a small portion of the basal area on the stand 

and release the remaining trees to give them extra growing room.  The most unexpected 

difference in CT thinning policy is where prices don’t have much of an effect on the 

policy for the 75% stocked stand.  For example, from ages 40 to 50 in the 75% stocked 

case, it is optimal to do the same CT regardless of the price.  The same occurs at age 55 

for a different CT action.  The policy for the fully stocked stand is very different where 

the optimal action depends on age and price for all ages except 45 years.  The 

regeneration harvest actions are similar except that, in the fully stocked case, there is a 

clear relationship between age and price.  It is optimal to harvest the stand at lower prices 

as the stand gets older.   

 The results in this section indicate that important profit losses may be associated 

with policies that don’t consider the uncertainty of market prices in the modelling of 

individual forest stand management.  Also, these results show that the incorporation of 

uncertainty to the model in the form of random prices is important because it allows us to 

capture the dynamics between prices and stand definitions.  The next section explains 

what effects natural disasters can have on policies and CTG values. 

 

5.1.2 Natural Disaster Uncertainty 

 

 Three types of natural disasters are of interest: forest fires, hurricanes and insect 

infestations.  They all have different effects on any individual forest stand.  In general, 

forest fires have more effect on small trees that don’t have any protection against the heat, 

hurricanes have more effect on larger trees because they can blow over and insect 

infestations have the same effect on all trees because they all offer food and shelter.  For 

the basic parameters of the natural disasters discussed in this section, see table 5-1 at the 

beginning of this chapter. 

 As expected, the addition of natural disasters to the DP model affects optimal 

policies and CTG values.  Table 5-7 shows the policies for 100% stocked TRT=1 stands, 



127 

one of which is never subject to natural disasters and three others that are subject to each 

natural disaster independently of the other two types. 

 

Table 5-7 – Policies for natural disasters added one at a time to the base model 

 

Age 

Natural disasters 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 

No natural disasters 1 12 12 1 1 1 1 38 38 38 37 37 28 37 3 3 

Fire only 1 12 12 1 1 1 1 38 38 37 37 37 37 6 6 6 

Hurricane only 1 12 12 1 1 1 1 38 38 37 37 37 37 6 6 6 

Insects only 1 12 12 1 1 1 39 38 38 37 37 37 37 7 7 7 
 
 1 - Let grow  7 - ReHar, plt 2500 tr/ha  37 - CT, rmv 40% BA, splt 25% (abv) 

 3 - ReHar, natural regen  12 - PCT, remove HW  38 - CT, rmv 40% BA, splt 50% (abv) 

 6 - ReHar, plt 1750 tr/ha  28 - CT, rmv 40% BA, splt 25% (cros)  39 - CT, rmv 40% BA, splt 75% (abv) 

 

 In these four models, other sources of uncertainty, namely natural regeneration 

and market price uncertainty, have been eliminated in order to study the effect of each 

natural disaster added one at a time to the model.  Results show that the prospect of losing 

current or future revenue because of a natural disaster causes the policy to become 

slightly more conservative.  This is indicated by the switch from action 3 at age 75 

without natural disasters to action 6 or 7 at age 70 when disasters can potentially occur.  

The plantations created by actions 6 or 7 grow faster and have, in general, shorter rotation 

cycles therefore providing protection from the potential future loss due to a natural 

disaster.  In contrast, there is less investment to make in natural stands, with the 

accompanying slower increase in volume, so if there is no threat of losing revenue due to 

a natural disaster, letting the stand regenerate naturally gives longer rotation ages and is 

the optimal decision.   

 Insects are the most devastating natural disaster as they have the most effect on 

policy.  According to the policy in table 5-7, instead of waiting until the stand reaches age 

40 to recommend a CT as is the case when not facing any potential of natural disasters, it 

is recommended at age 35 when potentially facing natural disasters which shortens the 

amount of time it takes the stand to get to the regeneration harvest.  The shorter the 

regeneration period, the less probability the stand will be affected by a natural disaster in 

its lifecycle. 
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 Figure 5-2 shows the change in CTG value associated with each natural disaster 

when compared to the case without natural disasters. 

 

Figure 5-2 – CTG value changes for all three natural disasters added one at a time to the 

base model 

 

 According to table 5-7, for hurricanes and fires, there are policy changes at 10, 20, 

40, 50 and 70 years of ages.  The curves in figure 5-2 show jumps, in the CTG value 

change, that coincide with those policy changes.  For example, taking decision 38 at age 

40 creates revenue immediately by doing a CT and leaves fewer trees to be potentially 

damaged by a natural disaster which would affect future revenue.  Thus figure 5-2 shows 

the reduction of the effect of natural disasters after CT becomes the optimal decision in 

the case of forest fires and hurricanes.  As the stand gets close to the age where it is 

optimal to do a regeneration harvest, there is a sharp increase in the effect of natural 

disasters on the CTG value.  Further investigation shows that all stands, where a CT is the 

optimal decision at ages 60 and 65, will wait at least two periods following CT before a 

regeneration harvest becomes optimal.  Table 5-8 shows, for TRT=1 stands with 100% 

stocking and ages 60 and 65, the resulting states at the next period immediately following 

CT actions 28 and 37.  Table 5-9 shows, for each result state in table 5-8, the nearby 

evaluation states with their Euclidian distances and the policies at those states.   
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Table 5-8 – TRT=1 stands with 100% stocking with result states for actions 28 and 37 

Age Decision  Result state TRT Age               

60 37  1 5 65 16.8 0 1 52 

65 28  2 5 70 18.7 0 1 52 

65 37  3 5 70 18.2 0 1 52 

 

Table 5-9 – The evaluation states that are nearest to the result states from table 5-8 

Result state 

Euclidian 

distance Age               Policy 

1 0.007464 65 19.8 0 55 1 2 

1 0.010109 55 17.2 0 55 1 2 

1 0.020771 65 19.8 0 40 1 2 

1 0.023416 55 17.2 0 40 1 2 

2 0.004183 65 19.8 0 55 1 2 

2 0.012058 75 22.2 0 55 1 6 

2 0.017333 65 19.8 0 40 1 2 

2 0.022985 55 17.2 0 55 1 2 

3 0.005176 65 19.8 0 55 1 2 

3 0.014895 75 22.2 0 55 1 6 

3 0.018905 65 19.8 0 40 1 2 

3 0.021912 55 17.2 0 55 1 2 

 

As the potential for natural disaster has equal probability of occurrence at each period, 

there is a high risk of losing revenues in two subsequent periods.   

 In order to further study the effect of natural disasters on CTG values and policies, 

we compare average natural disaster cases, those studied so far, to severe natural 

disasters.  In the severe case, hurricanes are larger and return more often, insect 

infestations return more often and fires burn larger areas.  Table 5-10 shows the basic 

parameters used to calculate the probability that a natural disaster occurs and the stand is 

affected.   

 

Table 5-10 – Basic parameters for average natural disasters and severe natural disasters 

 

Average Severe 

Approximate forested area in the west of the province 

of Nova Scotia (hectares) 

1,691,300 1,691,300 

Average number of fires per year 3.5 3.5 

Average size of a fire (hectares) 10,000 30,000 

Return interval of major hurricanes (years) 50 15 

Average area of wind for a major hurricane (hectares) 400,000 800,000 

Return interval of major insect outbreaks (years) 50 15 
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 The rest of the values presented in section 2.9 are identical.  Therefore, 

susceptibility of the stands doesn’t change in the severe case but the higher number and 

size of fires, the shorter return interval of hurricanes and insect outbreaks and the larger 

size of hurricanes leads to a higher probability that a stand will end up in a regeneration 

state.    

 Figure 5-3 shows the reduction in CTG values associated with severe natural 

disasters when compared to average natural disasters, for 100% stocked unmanaged 

natural stands.  The graph shows the effect for each natural disaster added to the model 

one at a time. 

 

Figure 5-3 – Reduction in optimal CTG value between the average natural disasters and 

the severe case 

 

 The actual values in the graph aren’t as important as the shape of the curves 

because the CTG value changes would be different depending on the values used for the 

severe cases.  However, the shape of the curves shows that after the age 70, when the first 

regeneration harvest occurs, the effect of making the natural disasters more severe is 

constant.  The optimal policies for the average and severe cases are shown in table 5-11. 
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Table 5-11 – Policies for 100% stocked unmanaged natural stands with average and 

severe natural disasters added to the model one at a time in the base case scenario 

 
Age 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 

Average 

Fire 1 12 12 1 1 1 1 38 38 37 37 37 37 6 6 6 6 6 6 

Hurricane 1 12 12 1 1 1 1 38 38 37 37 37 37 6 6 6 6 6 6 

Insects 1 12 12 1 1 1 39 38 38 37 37 37 37 7 7 7 7 7 7 

Severe 

Fire 1 12 12 1 1 1 39 38 38 38 37 37 37 6 6 6 6 6 6 

Hurricane 1 12 12 1 1 1 39 38 38 37 37 37 37 6 6 6 6 6 6 

Insects 1 12 12 1 1 1 39 38 38 38 37 37 3 3 3 3 3 3 3 
 
1 - Let grow 7 - ReHar, plt 2500 tr/ha  38 - CT, rmv 40% BA, splt 50% (abv) 

3 - ReHar, natural regen 12 - PCT, remove HW  39 - CT, rmv 40% BA, splt 75% (abv) 

6 - ReHar, plt 1750 tr/ha 37 - CT, rmv 40% BA, splt 25% (abv)  

 

As the stand gets older and the volume of wood, and therefore the monetary value of the 

stand, grows, severe natural disasters have a larger and larger effect on the CTG values.  

The regeneration harvests at age 65-70 create large revenues after which a stand doesn’t 

provide any revenue for a lengthy period.  Therefore, after the initial regeneration harvest, 

severe natural disasters cause a constant reduction in CTG values.  In terms of policy, the 

largest change shown in table 5-11 is for severe insect outbreaks where the optimal policy 

for older stands changes from creating plantations to letting the stands grow naturally.  

This change is due to a long term reduction of the value of the stand which leads to earlier 

harvest and the elimination of investment in plantations in favour of a natural 

regeneration option that costs much less in terms of initial set-up.   

 Results show that managing a forest stand without considering the effects of 

natural disasters when the forest stand being managed is susceptible to natural disasters 

may lead to suboptimal decision making. 

 

5.1.3 Regeneration Uncertainty 

 

 Regeneration uncertainty was presented in detail in section 2.5 and the result of 

incorporating it into the DP model is discussed here.  Table 5-12 shows the optimal 

policies and CTG values for untreated natural stands in the case where the stand may take 

several periods to regenerate, hereafter referred to as uncertain regeneration, and the case 

where regeneration is guaranteed in the first period following a regeneration harvest, 

hereafter referred to as certain regeneration.  In reference to the results discussed in 
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section 2.5, the average number of periods of regeneration is 2.155 which means that, on 

average, the stands take 10.77 years to regenerate which leads to a reduction of CTG 

value for all stands and to a change in optimal policy.   

 

Table 5-12 – Policies and CTG values for the cases where natural stands have an 

uncertain regeneration period and the case where there isn’t uncertainty 

  

Policies CTG values 

Age Stocking 
No regeneration 

uncertainty 

Uncertain 

regeneration 

period 

No regeneration 

uncertainty 

Uncertain 

regeneration 

period 

5 1 1 1 $14,603 $12,725 

10 1 12 12 $16,139 $14,064 

15 1 1 12 $15,625 $15,133 

20 1 1 1 $17,268 $16,657 

25 1 1 1 $19,084 $18,410 

30 1 1 1 $21,091 $20,346 

35 1 1 1 $23,309 $22,487 

40 1 38 38 $25,761 $24,853 

45 1 38 38 $27,498 $27,121 

50 1 38 37 $28,984 $28,427 

55 1 37 37 $30,253 $29,845 

60 1 37 37 $31,200 $30,761 

65 1 28 37 $31,940 $31,325 

70 1 37 6 $32,384 $30,884 

75 1 3 6 $33,032 $32,327 

80 1 3 6 $34,075 $33,454 

85 1 3 6 $34,995 $34,368 

90 1 3 6 $35,828 $35,197 

95 1 3 6 $36,583 $35,947 
 
 1 - Let grow  12 - PCT, remove HW  38 - CT, rmv 40% BA, splt 50% (abv) 

 3 - ReHar, natural regen  28 - CT, rmv 40% BA, splt 25% (cros)  39 - CT, rmv 40% BA, splt 75% (abv) 

 6 - ReHar, plt 1750 tr/ha  37 - CT, rmv 40% BA, splt 25% (abv)  

  

 In the certain regeneration case, if we start with a 5 year old natural unmanaged 

stand, table 5-12 tells us that it is optimal to do a pre-commercial thinning at age 10 at 

which point the stand becomes a TRT=2 stand.  Table 5-13 shows partial policies for pre-

commercially thinned stands (TRT=2) for the base case scenario with certain 

regeneration.  This policy shows that it is optimal to do nothing until age 40 and, 

regardless of crown closure, it’s optimal to do a regeneration harvest at age 40 and let the 

stand naturally regeneration, at which point the policy in table 5-12 applies and the cycle 

restarts.  The life cycle is very different for a 5 year old natural unmanaged stand in the 
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case with uncertain regeneration.  In this case, the policy in table 5-12 tells us that it’s 

optimal to do a pre-commercial thinning at age 10 at which point the stand becomes a 

TRT=2 stand.  Table 5-14 shows the optimal policy for a TRT=2 stand in the uncertain 

regeneration case and, regardless of crown closure, it is optimal to do a regeneration 

harvest between ages 35 and 45, and plant 1750 trees/hectare at which point the stand 

becomes a TRT=3 stand.  Table 5-15 shows the policy for a TRT=3 stand with an initial 

planting density of 1750 trees/hectare in the case of uncertain regeneration.  This policy 

shows that it is optimal to let the stand grow up to age 50 at which point a regeneration 

harvest is done and the cycle restarts.   

 

Table 5-13 – Partial optimal policy for TRT=2 (pre-commercially thinned) for the base 

case scenario with certain regeneration 

Age               Optimal decision 

30 13.1 0 33.3 1 2 

30 15.1 0 33.3 1 2 

40 15.5 0 40 1 3 

40 16.9 0 40 1 3 

30 13.1 0 58.3 1 2 

30 15.1 0 58.3 1 2 

40 15.5 0 70 1 3 

40 16.9 0 70 1 3 

30 13.1 0 83.3 1 2 

30 15.1 0 83.3 1 2 

40 15.5 0 100 1 3 

40 16.9 0 100 1 3 
 
 2 - Let grow  3 - ReHar, natural regen  6 - ReHar, plt 1750 tr/ha 

 

Table 5-14 – Partial optimal policy for TRT=2 (pre-commercially thinned) for the base 

case scenario with uncertain regeneration 

Age               Optimal decision 

35 15.0 0 33.3 1 2 

35 16.7 0 33.3 1 2 

45 17.0 0 40 1 6 

45 18.2 0 40 1 6 

35 15.0 0 58.3 1 2 

35 16.7 0 58.3 1 2 

45 17.0 0 70 1 6 

45 18.2 0 70 1 6 

35 15.0 0 83.3 1 2 

35 16.7 0 83.3 1 2 

45 17.0 0 100 1 6 

45 18.2 0 100 1 6 
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Table 5-15 – Partial optimal policy for TRT=3 (plantation) for the base case scenario with 

uncertain regeneration 

Age    Initial planting density Optimal policy 

5 0 1750 2 

10 4.7 1750 2 

15 8.9 1750 2 

20 12.1 1750 2 

25 14.7 1750 2 

30 16.8 1750 2 

35 18.6 1750 2 

40 20.1 1750 2 

45 21.5 1750 2 

50 22.6 1750 6 

 

 The life cycle of the 5 year old natural unmanaged stand is very different when 

natural regeneration isn’t guaranteed after a regeneration harvest if no planting is done.  

The results discussed in sections 5.1.1 to 5.1.3 support the claim that modelling individual 

forest stand management without incorporating uncertainty into the model can lead to 

poor decision making which may have economic impacts. 

 

5.2 Dealing with the High Dimensional State Space 

 

 The biggest challenge created by the high dimensional state space, and the one 

which is discussed in this section, is the approximation of the CTG function values in the 

DP algorithm.  Section 4.4 discusses two classes of approximation architectures: averager 

and non-averager methods.  As discussed in section 4.4, averager methods are generally 

better at approximating the CTG function in high dimensional state spaces.  Results in 

this section support that claim.   

 Section 4.6 presents details of the DP algorithm and identifies when the 

approximation architecture is used to approximate the CTG function.  Calculating       

requires the approximation            for each admissible state/decision combination.  

There are two key components in this approximation: proper scaling of the discrete states 

and the need to bound the CTG function approximation.    

 Scaling has a significant effect on the implementation of radial basis functions 

(RBF) and distance weighted interpolation (DWI) while bounding the CTG function is 

critical when using multiple regression (MR) for function approximation.  The rest of this 
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section focuses on these three CTG function approximations and the critical elements that 

ensure accurate approximation.  Section 5.2.1 discusses the implementation of multiple 

regression as the first non-averager approximation architecture in the DP model and 

includes a discussion on the difficulty of choosing the appropriate terms for the regression 

model.  Results also show the importance of CTG bounds on its accuracy as an 

approximation architecture for DP.  Section 5.2.2 shows implementation results for radial 

basis functions and discusses the choice of the shape parameter  .  The impact of scaling 

is discussed at length.  In section 5.2.3, results show that distance weighted interpolation, 

the only averager method studied, does a good job of approximating the CTG function 

without the difficulties associated with non-averager methods.   

 

5.2.1 Multiple Regression 

 

As discussed in chapter 2, there are five treatment types but in the implementation 

of the DP model, we only need to develop CTG function approximations for three of 

those 5 because the other two describe stands that follow a pre-defined path through the 

state space as they grow and discrete states exist for every state of the forest stand that 

can occur through its life cycle.  As a reminder, the 5 treatment types are restated in table 

5-16. 

 

Table 5-16 – Treatment types 

Treatment Description 

1 Unmanaged natural stand 

2 Pre-commercially thinned natural stand 

3 Unthinned plantation 

4 Commercially thinned plantation 

5 Commercially thinned natural stand 

 

CTG function values are calculated for each of those discrete states at each 

iteration of the DP model, saved in an array and retrieved at a subsequent iteration.  

Therefore, no approximation is required for two of the 5 treatment types.  For the other 

three, TRT=2, TRT=4 and TRT=5, the terms of the regression equation are defined based 
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on the variables representing its discrete states.  Table 5-17 gives the terms in the 

regression equation.   

 

Table 5-17 – Terms in the multiple regression equation for CTG function approximations 

(TRT=2, TRT=4 and TRT=5) 
TRT Terms 

4    ,   ,   ,     ,   
 
,    ,       ,       ,       

2, 5    ,   ,   ,     ,   ,     ,   
 
,   

 
,      ,    ,       ,       ,         , 

      ,      ,        ,      ,        ,      ,         

 

A second order polynomial was arbitrarily chosen for all treatment types with the 

terms being limited to two way interactions between variables.  The fitting is done on 

known deterministic CTG function values at the data points therefore the results shown 

here aren’t for a model fit on random data.  These results are used simply for discussion 

and for analysing which terms should remain in the model. 

For TRT=4, only the three state variables and all two way interactions are used as 

terms in the regression equation.  ANOVA results in table 5-18 support the use of this set 

of terms with very high values for R
2
 and F-statistic.  The F-statistic with 9 and 140 

degrees of freedom and a 95% level of confidence is 1.95.  These results were obtained 

by doing a regression analysis using the 9 terms in table 5-17 and the CTG function 

values for TRT=4 from the first iteration of the DP optimization with the base case 

scenario. 

 

Table 5-18 – ANOVA results for TRT=4 optimal CTG function values for the base case 

scenario (R
2
 = 0.9901) 

  df SS MS F Significance F 

Regression 9 17,190,166,540 1.91E+09 1554.043 1.4E-135 

Residual 140 172,068,952 1229064 

  Total 149 17,362,235,493 

    

Table 5-19 shows the t-statistic values for the terms in the regression equation 

where the first column indicates the terms used in the regression equation and the three 

columns with t-statistics indicate which terms were used in three different regressions 

using the same data set.   This information is used only for purposes of deciding which 

terms should remain in the model and not for doing any statistical testing.  The t-statistic 
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for 9 degrees of freedom and 95% confidence level is 2.2622 so this value is used for 

deciding which terms explain variation.  Therefore, based on the results from table 5-19, 

the following terms should be removed from the model:   ,     ,   
 
 and       .  

The t-statistics for the 5 term regression show that one additional term should be 

removed:       .   

 

Table 5-19 – T-statistics for the terms given in table 4 for TRT=4 and fitted on the CTG 

function values from the first iteration of the DP optimization of the base case model 

Term T-statistics with 9 terms T-statistics with 5 terms T-statistics with 4 terms 

Intercept -9.80512 -3.1574 -4.16911 

    7.273237 3.458408 7.686034 

   0.21985 --- --- 

   9.189767 4.51568 4.814916 

     -2.0691 --- --- 

  
 
 -0.19153 --- --- 

    -10.7209 -5.24492 -5.17448 

       -0.75562 --- --- 

       2.757003 2.230362 --- 

      5.575867 10.75619 15.23759 

 

However, in regression analysis, it isn’t sufficient to use ANOVA information to 

determine which terms should be included in the regression model.  Figure 5-4 shows 

residual plots for 5-term and 4-term regressions.  Both of these clearly indicate that the 

terms used in the model are not sufficient to explain all of the variability in the response 

variable.  The quadratic form of the residuals versus age plots below indicates that a term 

that includes      needs to be added to the model to improve the fit of the relation, 

which is clearly not linear.  The process of adding variables to the model and verifying 

the residuals graphs is done iteratively until we get a model that yields residual plots such 

as those in figure 5-5.  Alternatively, we could have searched for a model which yields 

random errors as those in figure 5-5 and which minimizes the maximum error. 
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Figure 5-4 – Residual plots for the 5 term and 4 term models shown in table 5-19 

 

The graphs in figure 5-5 show residual plots for the same regression model that 

created the plots in figure 5-4 but with the 9 terms shown in table 5-17.  The inclusion of 

those 9 terms gives the ANOVA results in table 5-18 and the residual plots in figure 5-5 

which don’t show any discernable tendencies.   

Figure 5-5 – Residual plots for the multiple regression results shown in table 5-18 

 

The randomness of the residuals and the very high F-statistic for the regression 

seem to indicate that the multiple regression approximation architecture closely models 

the CTG function values yet the value of the residuals in figure 5-4 tell a different story.  

The maximum and minimum values for the residuals are respectively $2,444.84 and  

$-2,831.60.  DP is sensitive to the values of the CTG function approximations as it will 

always take the highest value when choosing between more than one option.  If the 

multiple regression shown above can overestimate the CTG function value by almost 

$2,500 for any given state, the DP optimization is affected.  In addition, it is inconsistent 
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in its function approximation.  For example, for a stand defined by     = 80 years,    = 

30.0cm and    = 40%, the CTG function approximation is $20,245.50 while for a stand 

defined by     = 80 years,    = 33.3cm and    = 40%, the CTG function approximation 

is  $19,974.52.  The actual CTG value for these two stands is identical at $20,519.45.  

The analysis discussed above for TRT=4 was repeated for TRT=2 and TRT=5 and that 

analysis led to the development of regression models with the terms listed in table 5-17.   

Figure 5-6 shows the multiple regression CTG function approximation for 

iteration 1 of the deterministic base case scenario (TRT=2).  This graph was created by 

selecting a series of 5 evaluation states and 17 result states that closely represent the 

growth, using NS DNR GNY models, of a randomly chosen initial state and plotting its 

actual CTG function values, in the case of the evaluation states, and its approximate CTG 

function values, in the case of the result states.   Those states are given in table 5-20.   

 

Figure 5-6 – Actual and approximate CTG values for the same optimization as above but 

for TRT=2 (multiple regression CTG function approximation) 

 

The irregular placement of the CTG function values for evaluation states in figure 

5-6 is caused by the fact that we are only plotting the CTG values for 1 of 5 dimensions.  

The graph is different when plotted against the other 4 variables but plotting them would 
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lead us to the same conclusions so they are omitted.  The graph shows portions of the set 

of result states where it is overestimating the CTG function and others where the opposite 

occurs.  For the set of result states and CTG function values plotted in figure 5-6, multiple 

regression does a decent job of approximating the CTG function but as shown on the 

residual plots of figure 5-5, there may be large discrepancies in CTG function 

approximations for many states. 

 

Table 5-20 – Evaluation and result states used to create the graph in figure 5-6 

E
v

al
u

at
io

n
 

st
at

es
 

Age    (cm)    (cm)    (%)      (%) 

20 6.5 5.5 33 20 

30 11.1 9.7 33 58.3 

40 15.5 12.1 33 70 

50 18.5 13.9 33 100 

60 21.3 15.3 33 100 

R
es

u
lt

 s
ta

te
s 

20 6.5 5.5 33 20 

22.5 8.0 6.7 30 27 

25 9.5 8.0 26 34 

27.5 10.7 8.8 27 41 

30 11.9 9.7 28 48 

32.5 13.0 10.3 28 55 

35 14.0 11.0 29 61 

37.5 15.0 11.6 29 67 

40 15.9 12.1 30 73 

42.5 16.7 12.6 30 78 

45 17.5 13.1 30 84 

47.5 18.2 13.5 31 89 

50 18.9 13.9 31 93 

52.5 19.5 14.2 31 97 

55 20.1 14.6 31 100 

57.5 20.7 14.9 32 100 

60 21.3 15.3 33 100 

 

Large discrepancies in CTG function approximations have led to the 

implementation of the CTG bounds explained in section 4.4.1.  Upper and lower bounds 

are calculated for each result state where a CTG approximation is required.  This is done 

at every iteration of the DP algorithm as the CTG values are changing thus the bounds 

must follow.  If an approximation falls outside those bounds, it’s adjusted to be within the 

calculated bounds by lowering or raising its value but if it is within the bounds, no 

adjustment is made.   
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Figure 5-7 – States for which the approximate CTG value is outside the CTG bounds and 

the difference indicates by how much they have to be adjusted 

 

For iteration 1 of the DP optimization of the base case scenario with all 

uncertainty removed using the multiple regression approximation architecture for TRT=2, 

figure 5-7 shows graphs of the states for which the approximate CTG value needs to be 

adjusted.  The graph on the left indicates that young stands are particularly difficult to 

approximate and generally give CTG values which are below the lower limit.  At young 

ages, stands grow quickly and the value of wood on the stand grows rapidly therefore, the 

quadratic regression equation can’t react to this sudden change in CTG values.  At old 

ages, once the stand has reached maximum MAI and it starts to decline, the rate of 

growth of value of a stand slows.  The regression equation doesn’t react well to this 

change.  Putting in place CTG bounds ensures that the CTG value of young and old 

stands aren’t under or over estimated.   

In table 5-21, a set of result states was chosen for TRT=2 to illustrate the 

importance of using upper and lower approximation levels with the multiple regression 

approximation architectures.  The table shows 9 result states that need the largest 

adjustment.  For example, the CTG function approximation for result state 9, using MR, 

is $38,400.90.  But the highest and lowest values observed for the CTG function in the 

neighbourhood of result state 9 at the previous DP iteration were respectively $36,281.23 

and $15,422.10.  The lack of use of an upper approximation bound would lead to an over-

evaluation of $2,119.67.  The lack of use of approximation bounds for these 9 result 

states would lead to an over-evaluation of a forest stand by as much as 18.2% in one case 

and an under-evaluation of $1,779.73 in another.  Setting these bounds and adjusting the 
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value of the CTG function approximation accordingly ensures consistency in CTG 

function approximations. 

 

Table 5-21 – 9 result states, from TRT=2 in the base case scenario with all uncertainty 

removed, that need the largest adjustments of CTG value approximations  

State Lower bound CTG approximation Upper bound Difference 

1 $0 $-1,779.73 $0 $-1,779.73 

2 $0 $-1,779.73 $0 $-1,779.73 

3 $0 $-1,586.25 $5,385.63 $-1,586.25 

4 $0 $-958.98 $0 $-958.98 

5 $0 $6,364.65 $5,385.63 $979.02 

6 $15,422.10 $37,810.31 $36,281.23 $1,529.07 

7 $7,709.61 $14,539.82 $12,839.93 $1,699.89 

8 $7,709.61 $14,802.79 $12,839.93 $1,962.86 

9 $15,422.10 $38,400.90 $36,281.23 $2,119.67 

 

5.2.2 Radial Basis Functions 

 

We recall from section 4.4.1 that, in order to ensure exactness of the method, we 

will force          at all centers    where       are the CTG function values at those 

centers.  We also recall the set of equations                     
 
     for   

    used to calculate the weights   .  We assume that   and   are given and fixed thus 

we have m unknowns, the   , and m equations giving a linear system A    = f, where the 

elements of A are given by             and f =       .  If A is invertible, we have  

  = f A
-1

 and by substituting in        , we have an interpolation equation.  The results in 

this section will focus on two of the four forms of RBF mentioned in section 4.4.1, 

namely the thin plate spline           and the multiquadric                

where   is a tunable shape parameter.   

 Matrix inversion is impacted by the condition of the matrix to be inverted.  In the 

context of this research, the condition of the matrix is a function of the number of centers 

used for the RBF and the scaling of the distances between those centers.  Scaling, in all 

cases, improves the condition of the matrix.  However, there is a trade-off between the 

improved condition of the matrix due to the reduction in the number of centers, and the 

quality of the CTG function approximation due to a higher number of centers.  A lower 

number of centers yields a more accurate inverted A matrix (A
-1

) for the calculation of the 
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  parameter vector.  However, when approximating the CTG function using         with a 

small number of centers, the shape of the RBF may cause the CTG approximation to be 

much higher or lower than the actual CTG value.  Figure 5.8 shows an example of the use 

of RBF’s for CTG function approximation for TRT=2.  On this graph, the CTG function 

is shown for 8 evaluation states (in red) as a function of stand age.  The full basis RBF 

and reduced basis RBF are plotted on the same graph by varying the value of the 5 

variables that define a TRT=2 stand as follows: if the first 2 evaluation states on the graph 

are represented by    and   , the states used for plotting the two RBF curves are given by  

                  where   varies from 0 to 1.  Both RBF curves fit exactly at the 

evaluation states which were used as basis points. There are only slight differences 

between the full basis and reduced basis RBF’s for the majority of the range being shown 

in figure 5.8. This might indicate that we can take advantage of the reduced computation 

associated with the reduced basis RBF.  However, there is an exception at low ages where 

the CTG function approximation is negative which is infeasible.  With fewer basis points 

through which it is forced to pass, the reduced basis RBF can have some difficulty fitting 

on portions of the range of variable values.  The use of CTG approximation bounds may 

eliminate these errors.  A note is made about their use with RBF’s at the end of this 

section. 

 

 

Figure 5-8 – RBF fits for TRT=2 
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  In the DP model, the A matrix is formed by the application of the chosen RBF to 

the distance between the basis points chosen out of the set of evaluation states that 

represent the continuous state space of individual forest stand descriptors.  This distance 

is calculated using the Euclidian norm on 3 or 5 dimensional data sets.  These data sets 

are a combination of forest stand descriptors with a wide range of values such as 0 to 105 

for the age and 0 to 1 for the softwood percentage of the stand.  Before calculating the 

Euclidian norm, each dimension of all discrete states is transformed to a value on a scale 

between 0 and 1.  For example, treatment type 3 stands are defined by three variables: 

age, softwood diameter and initial planting density.  The maximum discrete value for age 

in the model is 95 years, the maximum softwood diameter is 29.1cm and the maximum 

initial planting density is 4000.  Given 1 and 2 below: 

 

State 1: age = 50 years,   = 20cm, initial planting density = 2000 

State 2: age = 60 years,   = 22cm, initial planting density = 2400. 

 

The scaled distance or scaled Euclidian norm for these two states is calculated as: 

 

           
60 50

95
 
2

  
22 20

29.1
 
2

  
2400 2000

4000
 
2

= 0.0258 

 

Without scaling, the distance would be 160,104 which is largely dominated by the 

initial planting density.  All elements of the A matrix for treatment types 2, 4 and 5 are 

calculated using this transformation of the Euclidian norm.  In order to avoid the problem 

of fitting between basis points that is depicted in figure 5-8, all evaluation states are used 

as basis points for the RBF in the DP model and scaling is done for all of them.  The use 

of such large basis, 294 in the case of TRT=2 and 1080 in the case of TRT=5, leads to a 

very large A matrix that needs to be inverted.  Without scaling of distances, the condition 

of the A matrix for TRT=2 is 1.9502 x 10
18

 versus 6.9496 x 10
7
 for the A matrix with 

scaled distances.  Both these condition numbers are nowhere near the scale of the 

condition number for the matrix inverted for the example in figure 5-8.  The larger the 

condition number, the more difficult it is to invert the matrix with any level of accuracy 
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even with the best inversion algorithms.  Therefore, it is critical to properly scale the 

distances.   

GNU Octave (Eaton 2009), an open source software similar to Matlab, was used 

to do the matrix inversion.  It was also used to calculate the condition number of the 

matrix to invert.  Figure 5-9 shows the difference between the approximate CTG values 

and actual CTG values for the 294 basis points chosen as the centers for fitting the RBF.  

The 294 centers represent 100% of the discrete states for TRT=2 in the DP model.  The 

distances in this case are scaled.  The largest absolute difference between the approximate 

CTG values and actual CTG values for the 294 basis points is 0.00809.  If the matrix 

inversion was done without error, the difference would be zero. 

Without scaling of the distances, the results are much different.  Figure 5-10 

shows those differences.  In this second example, the ill-conditioning of the A matrix 

yields poor approximations at the basis points.  These differences should all be zero if the 

inversion could be done without loss of precision.  The matrix inversion was done using 

the same inversion algorithm for the results in figure 5-9 and 5-10. 

 

Figure 5-9 – Difference between approximate CTG value and actual CTG for the 294 

discrete states for TRT=2 with those 294 states being used as centers in the RBF with 

distances scaled to 0-1 
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Figure 5-10 – Difference between approximate CTG value and actual CTG for the 294 

discrete states for TRT=2 with those 294 states being used as centers in the RBF without 

scaled distances 

 

 The beginning of this section discusses the trade-off between the additional 

accuracy gained by adding centers to the basis used for the RBF versus the added 

difficulty in doing the matrix inversion with additional centers.  One eighth (37) of the 

294 evaluation states for TRT=2 were randomly chosen to cover the entire range of state 

variable values and, with proper scaling of the distances between these centers, the 

condition number of the A matrix is 5.8042 x 10
4
 which is three orders of magnitude 

better than the condition number for the matrix with all evaluation states being used as 

centers in the RBF.  In the case of the smaller number of centers, the largest absolute 

difference between the actual CTG value and the approximate CTG value at the 37 

centers is 1.3424 x 10
-10

.  In contrast with differences in the case where all discrete states 

are used as centers, this is 7 orders of magnitude better.  However, as discussed earlier, 

there is a trade-off for this additional precision.  Figure 5-11 shows the distribution of the 

differences at the 294 discrete states when 37 centers are used for the RBF.  Although it’s 

difficult to show the behaviour of the CTG approximation architecture between the 

centers in a meaningful way, it clearly doesn’t perform as well as the full basis.   
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Figure 5-11 – Difference between approximate CTG value and actual CTG for the 294 

discrete states for TRT=2 with 37 states being used as centers in the RBF with scaled 

distances 

 

  Function approximation using RBF’s requires a high degree of precision and is 

very sensitive to a small change in the A matrix.  For example, multiplying f A
-1

 to 

obtain   using single precision variables in Visual Basic yields a maximum absolute error 

of 2582.03 in the CTG value at the centers whereas, using double precision, the 

maximum absolute error is 0.00809.  Adding precision, when doing a calculation as 

simple as a matrix multiplication, yields more accurate results.   

 All of the RBF results discussed so far use thin plate splines.  In the case of the 

inverse multiquadric, the shape parameter   has a big impact on the capacity of the RBF 

to fit the CTG function values with accuracy.  Figure 5-12 shows the differences between 

the actual CTG and approximate CTG at the 294 centers using the multiquadric with   = 

1 and   = 0.1.  The condition number of the A matrix are, in the case of   = 1, 2.8051 x 

10
12

, and in the case of   = 0.1, 4.2821 x 10
9
.  The latter gives better precision.  As 

discussed in section 4.4.1, there are no algorithms to find the optimal value of the shape 

parameter  , only good values.  Therefore, given the precision of the thin plate spline, no 

further effort has been put into finding a better value for  .   
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 Figure 5-12 - Differences between the actual CTG and approximate CTG at the 294 

centers using the multiquadric with   = 0.1 and   = 1  

 

  Given that RBF’s give such good approximations when using a large number of 

centers, the addition of CTG bounds to the process of approximating the CTG function 

with the RBF doesn’t seem necessary.  A DP optimization of the base case scenario 

described at the beginning of this chapter was done using the thin plate spline RBF as the 

approximation architecture.  During iteration 10 of the optimization, statistics were 

collected on the number of states with approximate CTG values which fell outside the 

CTG bounds.  None were observed which is in stark contrast with the results discussed in 

the previous section.  Although RBF’s are more complicated to calculate than multiple 

regression, the additional accuracy combined with the processing capability of present 

day computers, which is adequate and provides solutions to the DP model in a matter of 

minutes, are reason enough to use RBF’s over MR for DP. 

 

5.2.3 Distance Weighted Interpolation 

 

 In section 4.4.2, we discussed the importance of properly scaling the distances 

between points when implementing DWI as an approximation architecture in DP.  Results 

in this section show the impact that a slight modification in the weighting scheme can 
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 From section 4.4.2, we recall that  

 

          
           

           

 

 

 where   = 1,…,  

 

where   is the number of evaluation states used for approximation and     is the 

Euclidian norm between evaluation states   and result states  .  Finally, the weight     is 

calculated and used for the approximation           . 

 

    
        

          
                            

    

                      
    

    

 

 When using DWI for function approximation where there is a large set of 

evaluation states representing the space where the function is being approximated, it 

makes sense to use a small portion of this set (  ) to approximate CTG function at each 

result state  .     should be sufficiently large for the approximation to closely follow the 

changes in the function it is fitting.  Table 5-22 shows the CTG function values for a set 

of evaluation states for TRT=2 from the same DP optimization as table 5-23.  Table 5-23 

shows a list of result states that create a path through time for a TRT=2 stand that starts 

with state variable values shown in the first line of the table and grows for 70 years.  The 

CTG function values shown in the last three columns are approximations of the CTG 

function at the result states during the first iteration of the DP optimization of the base 

case scenario.  The approximations are done using DWI with   = 2, 10 and 40.   

 Figure 5-13 shows a plot of the values from tables 5-22 and 5-23.  With   = 2, 

there are large approximation errors as the approximation moves through the state space 

from one result state to the next.  The approximations are exact at the evaluation states 

but don’t do a good job of interpolating between the evaluation states because there aren’t 

enough states being used to do the interpolation.  The approximations with   = 10 and 

  = 40 are almost undistinguishable from one another except for the range of 40 to 50 

years.  The CTG approximation shown in figure 5-13 is typically how DWI function 
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fitting behaves in the DP model and is a reasonable method of approximating a function 

which, in this case, has 5 continuous variables and uses only 294 evaluation states to 

cover its entire range. 

 

Figure 5-13 – Plot as a function of age for the CTG function values and DWI 

approximations given in tables 5-22 and 5-23 
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Table 5-23 – CTG function value approximations for a set of result states during the first 

iteration of the base case scenario DP optimization using DWI with 2, 10 and 40 centers 
Result states CTG function approximations using DWI 

Age    (cm)    (cm)    (%)      (%) 2 centers 10 centers 40 centers 

20 6.5 5.5 33 20 $0 $0 $0 

22.5 8.1 6.8 30 27 $7 $2 $21 

25 9.8 8.2 27 34 $178 $125 $178 

27.5 11.0 9.1 28 41 $703 $722 $580 

30 12.3 9.9 28 48 $1,352 $1,419 $1,248 

32.5 13.3 10.6 29 55 $1,539 $1,537 $1,552 

35 14.4 11.3 30 61 $2,225 $1,923 $2,279 

37.5 15.4 11.9 30 67 $3,494 $3,495 $3,486 

40 16.3 12.4 31 73 $3,573 $3,567 $3,576 

42.5 17.1 12.9 31 78 $3,790 $3,642 $3,913 

45 17.9 13.4 31 84 $4,751 $4,936 $5,121 

47.5 18.7 13.8 32 89 $7,082 $7,238 $6,701 

50 19.4 14.2 32 93 $7,289 $7,276 $7,280 

52.5 20.0 14.6 32 97 $7,413 $7,336 $7,425 

55 20.7 14.9 32 100 $8,396 $8,909 $8,378 

57.5 21.3 15.3 32 100 $8,955 $8,963 $8,953 

60 21.8 15.6 32 100 $8,992 $8,992 $8,992 

62.5 22.4 15.9 32 100 $9,056 $9,030 $9,060 

65 23.0 16.3 32 100 $9,683 $9,865 $9,679 

67.5 23.6 16.6 32 100 $10,428 $10,448 $10,422 

70 24.1 16.9 32 100 $10,447 $10,447 $10,447 

72.5 24.7 17.2 32 100 $10,481 $10,469 $10,484 

75 25.2 17.6 32 100 $10,819 $10,483 $10,835 

77.5 25.8 17.9 32 100 $11,651 $11,715 $11,637 

80 26.3 18.2 31 100 $11,713 $11,714 $11,713 

82.5 26.8 18.5 31 100 $11,730 $11,723 $11,731 

85 27.4 18.8 31 100 $11,962 $11,734 $11,965 

87.5 27.9 19.2 32 100 $12,754 $12,801 $12,746 

90 28.5 19.7 33 100 $12,818 $12,820 $12,817 

 

 The denominator in the          function puts a large emphasis on any increase 

in distance between evaluation states   and result states  .  This means that the value of 

the weights      for any evaluation state beyond the first few closest states in the 

neighbourhood, regardless of  , decrease quickly.  For example, table 5-24 gives ten 

distances and their corresponding weights for a randomly chosen result state   from TRT 

= 2, and its ten closest neighbouring evaluation states  .  Although the distances for   = 1 

and   = 2 are relatively close to each other, the weights heavily favour   = 1.  Starting at 

  = 3, the weights are negligible.  This is typically the case, therefore for the 

implementation of DWI in the DP model, we use   = 4. 
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Table 5-24 – Distances and weights for result state   and its 10 closest neighbouring 

evaluation states   
  Distance          

1 0.000696 0.941383 

2 0.002785 0.05621 

3 0.01763 0.00098 

4 0.018854 0.00083 

5 0.02151 0.000593 

6 0.075952 2.76E-06 

7 0.083091 7.95E-07 

8 0.09 6.9E-08 

9 0.090696 4.19E-08 

10 0.092785 1.27E-09 

  

Table 5-25 – Example CTG function approximation for the first four evaluation states of 

TRT = 2 

Evaluation 

state   
Decision   

States   that are 

closest to 

result state   
Distance      

CTG value 

state   
Approximate 

CTG 

1 2 1 2 0.008026 0.675757 $948.16 

$1,096.12 

1 2 2 100 0.011188 0.169413 $1,671.47 

1 2 3 3 0.011737 0.131690 $1,022.30 

1 2 4 101 0.014899 0.023140 $1,624.88 

2 2 1 102 0.003859 0.825683 $1,700.96 

$1,685.42 

2 2 2 101 0.007476 0.148587 $1,624.88 

2 2 3 100 0.014141 0.014986 $1,671.47 

2 2 4 5 0.015102 0.010743 $1,347.17 

3 2 1 102 0.008071 0.489278 $1,700.96 

$1,534.52 

3 2 2 5 0.008253 0.457503 $1,347.17 

3 2 3 101 0.014668 0.052231 $1,624.88 

3 2 4 4 0.022296 0.000989 $1,085.22 

4 2 2 102 0.015592 0.954662 $1,347.17 

$1,360.70 

4 2 3 101 0.025176 0.038047 $1,700.96 

4 2 4 4 0.025196 0.003656 $1,624.88 

4 2 5 3 0.03478 0.003635 $1,085.22 

 

 The impact of the weighting scheme is shown in the examples given in table 5-25.  

Evaluation states 1 through 4 in the first column are the first 4 states out of 294 states 

representing TRT = 2.  The second column indicates that the results shown in this table 

result from taking the same decision for all four states which is to do nothing and let the 

stand grow an additional 5 years.  The fourth column gives the 4 evaluation states that are 

the closest to the result state, at time  +5 after taking action 2 in each evaluation state   at 
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time  .  Tables 5-26 and 5-27 show the value of the descriptor variables for the states in 

table 5-25. 

 The distances and weights for the four discrete states in table 5-25 indicate the 

large bias towards increasing distance.  The table shows that many of the same states are 

being used for CTG function approximation but the large bias towards increasing distance 

results in large changes in CTG value approximation for these four young stands.  

Nevertheless, this bias towards increasing distance is necessary and has proved to work 

well because there are portions of the state space where the CTG value changes rapidly so 

it’s important that the closest states be given a substantial portion of the total weight.   

 

Table 5-26 – Four evaluation states for TRT = 2 shown in table 5-25 at period   with 

result states at period     after 5 years of growth 

 
Evaluation states Result states 

State        
    

          
             

      
              

  

1 10 0 2.59 8.9 0 15 0 4.94 26.5 0 
2 20 0 5.49 20 0 25 0 7.55 34.3 0 
3 20 0 6.26 20 0 25 0 8.30 32.2 0 
4 20 0 7.02 20 0 25 0 9.05 30.7 0 

 

Table 5-27 – Values of the state variables for the evaluation states shown in column four 

of table 5-25 

Evaluation states          
    

          
  

2 20 0 5.5 20 0 
3 20 0 6.3 20 0 
4 20 0 7.0 20 0 
5 30 0 9.7 33.3 0 

100 20 0 5.5 35 0 
101 20 0 6.3 35 0 
102 20 0 7.0 35 0 

  

5.2.4 Choosing an Approximation Architecture 

 

 For the implementation of the DP model and for the results presented in this 

chapter, it is useful to choose one of the approximation architectures and keep it for all 

results in order to compare policies and CTG values across a broad spectrum of scenarios.  

Evidence is given through sections 5.2.1 to 5.2.3 that support the use of all three 
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approximation architectures.  The performance of DWI and RBF’s is clearly superior to 

MR, therefore the final choice is made between the latter two architectures.   

 Figure 5-14 shows DWI and two versions of RBF used to fit the same path 

through time as that shown in figure 5-13.   

 

 

Figure 5-14 – Actual and approximate CTG values for a typical individual forest stand 

(TRT=2) as it grows through time, plotted against the age of the stand 

 

 The reduced basis RBF, although easier to implement than the full basis, clearly 

suffers from a lack of performance in the lower portion of the graph.  The full basis RBF 

doesn’t suffer from the same difficulties because it covers the state space with a denser 

mesh of basis points which allows it to more closely approximate the CTG function.  This 

is a reflection of the fact that, with RBF’s, the approximations are forced to be equal to 

the CTG function values at the basis points.  Therefore, more basis points means more 

contact points between the CTG function and the RBF function.  For the set of states 

plotted in figure 5-14, the full basis RBF does a better job than the reduced basis RBF of 

approximating the CTG function.   
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 Figure 5-15 shows the same approximations as those in figure 5-14 but plotted 

against crown closure instead of age.  The last 5 evaluation states used for plotting all 

have    = 100% and all three approximation architectures fit the CTG function values 

well between those points.   

 When comparing the approximation results of the RBF and DWI approximation 

architectures, we observe that DWI may make small sudden changes in CTG function 

approximations but its average error along the path in figures 5-14 and 5-15 is small.  

Because of the challenges encountered when implementing RBF’s with Visual Basic, and 

because of the effectiveness of DWI in fitting CTG functions, all results discussed in this 

chapter are obtained using DWI as the approximation architecture in the DP model.  

 

 

Figure 5-15 – Actual and approximate CTG values for a typical individual forest stand 

(TRT=2) as it grows through time, plotted against crown closure percentage 
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convergence to the optimal policy and the optimal CTG value.  The stopping criteria for 

value iteration DP is an important factor in determining when the optimal CTG value has 

been reached and the results in section 5.3.2 will discuss the impact of that stopping 

criteria.  As discussed in section 4.7, policy simulation is used to verify that the optimal 

policy and the optimal CTG value obtained from the DP optimization match.  Section 

5.3.3 discusses the results of that simulation. 

 

5.3.1 Effect of the Discount Rate 

 

 In this section, the results focus on the effect of the discount rate on CTG values 

and optimal policies.  As can be seen, the discount rate has a significant effect on policies.  

In practical applications, it would be up to the decision maker to choose the policy that 

matches their guiding interest rate. 

 Table 5-28 shows how policies change for natural stands as the interest rate rises.  

  

Table 5-28 – Policy for fully stocked natural stands for the base case scenario with 

variable yearly interest rate 

  

Yearly interest rate 

Age Stocking 0.1% 1% 2% 3% 4% 5% 6% 8% 10% 12% 15% 

5 100% 1 1 1 1 1 1 1 1 1 1 1 

10 100% 12 12 12 12 12 12 1 1 1 1 1 

15 100% 1 12 12 12 12 12 12 1 1 1 1 

20 100% 1 1 1 1 1 1 1 1 1 1 1 

25 100% 1 1 1 1 1 1 1 1 1 1 1 

30 100% 1 1 1 1 1 1 1 1 1 1 1 

35 100% 1 1 39 39 39 39 39 39 39 39 3 

40 100% 38 38 38 38 38 38 38 38 3 3 3 

45 100% 38 38 38 38 38 38 38 3 3 3 3 

50 100% 38 37 38 38 38 38 4 3 3 3 3 

55 100% 37 37 37 37 4 4 4 3 3 3 3 

60 100% 37 37 37 4 4 4 4 3 3 3 3 

65 100% 37 37 37 4 4 4 4 3 3 3 3 

70 100% 7 7 6 4 4 4 4 3 3 3 3 

75 100% 7 7 6 4 4 4 4 3 3 3 3 

80 100% 7 7 6 4 4 4 4 3 3 3 3 

85 100% 7 7 6 4 4 4 4 3 3 3 3 

90 100% 7 7 6 4 4 4 4 3 3 3 3 

95 100% 7 7 6 4 4 4 4 3 3 3 3 
 
 1 - Let grow  6 - ReHar, plt 1750 tr/ha  37 - CT, rmv 40% BA, splt 25% (abv) 

 3 - ReHar, natural regen  7 - ReHar, plt 2500 tr/ha  38 - CT, rmv 40% BA, splt 50% (abv) 

 4 - ReHar, fill plant, no ECC  12 - PCT, remove HW  39 - CT, rmv 40% BA, splt 75% (abv) 
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 Very low interest rates put emphasis on volume MAI and try to maximize it as 

there is very little loss in present value of future profits.  We don’t have MAI charts for 

mixed species stand in Nova Scotia but volume maximum MAI for a typical TRT=1 pure 

softwood stand is between 60 and 70 years for a stand with     = 17m at 50 years of age.  

This is reflected in the policy in table 5-28.  At a very low interest rate of 0.1%, a 

regeneration harvest would only be optimal for a stand that is 70 years or more but there 

are many CT opportunities from age 40 to age 65.  CT creates profit at the time of the 

harvest but also leaves trees for future harvesting and revenue creation.  Because of the 

slow rate of decline in present value due to the low interest rate, it is optimal to wait for 

maximum volume MAI before doing a harvest.  In contrast, with a guiding rate of 15%, 

the stand should be harvested at age 35 which is the first age at which the stand has any 

harvestable volume.  Future profits are discounted so much that as soon as the stand can 

create some profit, it is harvested and no future investment is made by planting or doing a 

PCT or CT.  Table 5-28 shows a clear transition in policy from very low to very high 

interest rates for fully stocked natural stands.   

 Decision 12 is a PCT where hardwood trees are removed and softwood trees are 

spaced accordingly and, at low interest rates, it makes sense to invest in doing a PCT to 

release the trees on the stand as that is an investment in future growth of the stand.  In 

terms of the regeneration harvest, the age at which to do the regeneration harvest and 

what to do with the stand after the regeneration harvest shifts as the interest rate goes up.  

At low interest rates, it is optimal to plant more trees per hectare which cost more to do.  

At a higher planting density, the diameter of the trees will grow more slowly but there 

will be more of them therefore, in the long term it is worth the investment.  At 2% 

interest, fewer trees are planted (1750 vs. 2500) and starting at 3%, the optimal policy is 

not to grow a plantation but rather to fill plant which is much cheaper than planting and 

the result is a fully stocked natural stand.  And at very high interest rate, the optimal 

decision is to do the regeneration harvest and let the stand regenerate on its own without 

any monetary investment other than surveying the land.  And all of these regeneration 

harvests are occurring at younger and younger ages as the interest rate goes up. 

 However, the case with 75% stocked natural stands shows different policies that 

warrant discussion.  These policies are found in table 5-29.  Focusing on the policy for 
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4% interest rate, the change from optimal policy 1 to optimal policy 12 at age 25 requires 

further investigation.  We would expect that once the policy has changed from 1 to 12 and 

back to 1, it would remain 1 until there is enough wood volume to warrant either a CT or 

a regeneration harvest.   

 

Table 5-29 – Policy for 75% stocked natural stands for the base case scenario with 

variable yearly interest rate 

  

Yearly interest rate 

Age Stocking 0.1% 1% 2% 3% 4% 5% 6% 8% 10% 12% 15% 

5 75% 1 1 1 1 1 1 1 1 1 1 1 

10 75% 12 12 12 12 12 12 1 1 1 1 1 

15 75% 12 12 12 12 12 12 12 12 1 1 1 

20 75% 1 1 12 1 1 1 1 1 1 1 1 

25 75% 1 1 12 12 12 12 12 12 1 1 1 

30 75% 1 1 1 1 12 12 12 12 12 1 1 

35 75% 1 1 1 1 1 1 1 1 3 3 3 

40 75% 31 31 31 31 31 31 31 3 3 3 3 

45 75% 31 31 31 31 31 31 31 3 3 3 3 

50 75% 31 31 31 31 31 4 4 3 3 3 3 

55 75% 34 34 34 34 34 4 4 3 3 3 3 

60 75% 34 34 6 4 4 4 4 3 3 3 3 

65 75% 7 7 6 4 4 4 4 3 3 3 3 

70 75% 7 7 6 4 4 4 4 3 3 3 3 

75 75% 7 7 6 4 4 4 4 3 3 3 3 

80 75% 7 7 6 4 4 4 4 3 3 3 3 

85 75% 7 7 6 4 4 4 4 3 3 3 3 

90 75% 7 7 6 4 4 4 4 3 3 3 3 

95 75% 7 7 6 4 4 4 4 3 3 3 3 
 
 1 - Let grow  6 - ReHar, plt 1750 tr/ha  31 - CT, rmv 20% BA, splt 25% (abv) 

 3 - ReHar, natural regen  7 - ReHar, plt 2500 tr/ha  34 - CT, rmv 30% BA, splt 50% (abv) 

 4 - ReHar, fill plant, no ECC  12 - PCT, remove HW  

 

 Table 5-30 shows CTG function values for a discount rate of 4%, for decisions 1 

and 12, and for ages 5 to 40.             is the profit in the current period from taking 

decision 1 or 12 with the current stand,           is the approximate CTG function 

value of ending up in state   after having taken decision   in state  , and          is the 

           plus the discounted          .  From these results, we can see that there 

isn’t much difference between the optimal CTG value when we do nothing and when we 

do a PCT at ages 10, 20 and 30.  Both decisions 1 and 12 have monotonically increasing 

         values as the age increases but they increase at different rates.  At age 20, the 

difference in totalnet value between decisions 1 and 12 is only $72 and a slight difference 
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in approximations of           values for decisions 1 and 12 could have led to a 

different optimal policy at age 20.  Section 5.2.3 discussed some of the effects of the 

weighting scheme in DWI and the results shown in table 5-30 were obtained using DWI 

as the approximation architecture in the DP.  Therefore, it isn’t surprising that the policy 

is slightly different than expected.   

 

Table 5-30 – CTG values of natural stands (TRT=1) for a 4% discount rate  

Age Decision Currentnet Futurenet Totalnet 

5 1 0 $3,516.44 $2,879.01 

10 1 0 $4,220.04 $3,455.07 

10 12 -750 $5,273.72 $3,567.76 

15 1 0 $4,431.35 $3,628.08 

15 12 -750 $6,176.41 $4,306.82 

20 1 0 $5,536.43 $4,532.84 

20 12 -750 $6,363.50 $4,459.99 

25 1 0 $5,643.63 $4,620.61 

25 12 -750 $7,875.46 $5,697.88 

30 1 0 $6,989.88 $5,722.83 

30 12 -750 $8,022.00 $5,817.86 

35 1 0 $8,847.54 $7,243.76 

40 1 0 $9,858.77 $8,071.68 

  

 Section 4.3 puts emphasis on properly choosing the guiding rate that represents 

the decision maker’s preference.  Results in this section show that changing the discount 

rate has a big impact on the optimal policy and the CTG function value.  Therefore, 

choosing that discount rate is indeed very important.  The next section discusses the rate 

of convergence of the DP optimization where the discount rate also has an impact.   

 

5.3.2 Rate of Convergence and Termination Criterion 

  

 The most important factors in the convergence of the value iteration algorithm 

implemented in this thesis are the value of the discount rate, the value of the stopping 

criteria and the consistency of the CTG function value approximations.  Results in section 

5.1 show that CTG function approximations consistently represent the known CTG 

function values they are approximating.  Therefore, results in this section focus on the 

other two important factors.   
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 The equations used to determine when the DP algorithm should be stopped are 

given in section 4.5.  They are presented here for convenience: 

 

  
  

 

   
     
       

                  

  
  

 

   
     
       

                  

 

  
    

    

 

where   is the stopping criterion and   is the discount factor.  Table 5-31 shows results 

for the base case scenario with the value of the stopping criterion set to 0.2 and DWI used 

for CTG function approximations.  These optimizations were done using compiled VB, 

running in the Vista Business Operating System (OS) on a Toshiba Tecra M8 laptop with 

a 2.0 gigahertz dual core Intel processor with 2MB L2 cache and 800 megahertz front 

side bus, and 3GB of DDR2 SDRAM running at 667 megahertz. 

  

Table 5-31 – Results for the base case scenario with stopping criterion = 0.2 and DWI 

used for CTG function approximation 

  (%) 
# iterations for 

convergence 

Iteration # of last 

policy change 

Largest CTG value 

change at last 

policy change 

CPU time 

(seconds) 

Set-up --- --- --- 905 

0.1 835 258 $244.70 125 

1.0 199 65 $81.25 47 

2.0 83 50 $13.40 17 

3.0 57 30 $28.80 56 

4.0 43 23 $22.81 12 

5.0 34 16 $54.47 111 

6.0 28 14 $52.24 12 

8.0 20 9 $52.38 96 

10.0 17 10 $6.84 4 

12.0 14 9 $9.54 9 

15.0 11 3 $1,174.14 53 

 

 There is a clear relationship between the discount rate and the number of iterations 

to convergence.  The first line shows a CPU time of 905 seconds for set-up and is the 
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time needed for the VB code to set-up the Excel application and to do the preliminary 

calculations described in steps 1, 2 and 3 in section 4.6.  905 seconds is the shortest time 

observed during a test of 10 set-up runs discussed below.  The rest of the values of CPU 

time are the time to convergence of the DP algorithm, starting with the first iteration, 

assuming the set-up time of 905 seconds was always the same for each optimization 

which may not be the case.  Clearly, there is some inconsistency in CPU time for the total 

optimization and set-up times.  Set-up time variability was tested by running the set-up 

portion of the DP optimization 10 times, on the same laptop, while performing simple 

web surfing and word processing operations, which are the same conditions under which 

the optimizations in table 5-31 were done.  The average set-up time for those 10 test runs 

was 934 seconds with a standard deviation of 22.02.  The minimum observed set-up time 

was 905 seconds and the maximum was 981 seconds.  This leads to us to believe that 

simple tasks such as word processing and web browsing, which were done during the DP 

optimizations, may have affected the CPU times.  Table 5-31 also shows the number of 

iterations to convergence versus the iteration number of the last policy change.  The 

number of policy changes is recorded during each iteration of the DP algorithm.  If the 

policy for an evaluation state changes from one iteration to the next, it is counted as one 

policy change for that iteration.  This verification is done for each evaluation state at each 

iteration and the number of policy changes is recorded for each iteration and shown in 

table 5-31.  The iteration number shown in column three is the last iteration during which 

a policy change was recorded.  The fourth column of the same table shows the largest 

CTG function value change for the last iteration where there is a policy change.  Clearly, 

regardless of the discount rate, the CTG function values have not converged when the 

policy stops changing.  Table 5-32 shows results for the base case scenario with discount 

rate = 3%.   

 We recall that the value iteration algorithm is terminated when the maximum CTG 

value change    
    

   is smaller than the stopping criteria ( ).  Therefore, smaller 

values of   lead to more iterations.  The example shown in table 5-32 supports this claim.  

The optimization would have been terminated approximately at iteration 50 with   = 1 

whereas it would have gone approximately to iteration 70 with   = 0.5. 
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 The results in this section support the claim that the termination criterion value 

and the discount rate are important contributing factors to the length of each optimization.  

The next section shows results that support the claim that the cost-to-go values and 

policies are consistent. 

 

Table 5-32 – Number of policy changes and the maximum CTG value change for 

iterations 15 to 90 for the optimization of the base case scenario with 3% discount rate 

Iteration 
Number of 

policy changes 

Maximum CTG 

value change 

% of maximum 

CTG value  

15 994 $913.94 1.98% 

20 7 $333.59 0.72% 

25 0 $115.51 0.25% 

30 1 $28.80 0.062% 

35 0 $12.74 0.028% 

40 0 $4.91 0.011% 

45 0 $1.68 0.0036% 

50 0 $0.65 Negligible 

55 0 $0.27 Negligible 

60 0 $0.11 Negligible 

65 0 $0.054 Negligible 

70 0 $0.048 Negligible 

75 0 $0.024 Negligible 

80 0 $0.024 Negligible 

85 0 $0.024 Negligible 

90 0 $0.006 Negligible 

  

5.3.3 Policy Simulation 

 

 Section 4.7 establishes the need and method for simulating policies as a means to 

verify that the DP optimization yields policies and CTG values that are close to optimal.  

Using this method, results in this section show that the DP model does yield near optimal 

policies.  The methods in section 4.7 are applied to calculate confidence intervals (CI) for 

these simulations and the number of replications required to obtain a pre-determined 

error.  As discussed in section 4.7, the number of replications needed during a simulation 

is dependent on the value of  .  During a simulation, the number of replications required 

to achieve an absolute error   is recalculated at each replication and the simulation is 

stopped when    , where   is the replication number and   is the number of 

replications that yield an error of  .  As a general rule of thumb, Law and Kelton (2000) 
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suggest using a value of   that is equivalent to 15% of the optimal CTG function value of 

the DP algorithm for the starting state   being simulated.  This value is very conservative 

for our purposes and would lead to pre-mature termination of the policy simulation and 

lead to very wide confidence intervals that aren’t very useful in determining if   
     is a 

good approximation to      .  Much tighter confidence intervals can be calculated and 

this is discussed later.  

 We state, in section 4.7, that   is simulated until future revenues created from 

harvests no longer have any significant discounted present value.  Therefore, the length of 

each replication should reflect the value of the discount rate which explains why 

simulation 5 is longer than the others.  Simulations 1 and 2 could have been shortened but 

there isn’t any significant additional cost to letting those replications go to 295 years.  

The states chosen for the simulation were chosen either because they were recurring 

states and thus are important to study, or they were transient states that offer the 

possibility to simulate a larger part of the policy.   

  

Table 5-33– Details of five policy simulations 
Number Discount 

 rate 

# of price 

 breaks 

Length of 

each replication 

Approximation 

architecture 

Starting state 

1 0.04 3 295 years DWI TRT = 3 

Age = 25 

Initial density 

= 2500 

2 0.04 3 295 years DWI TRT = 3 

Age = 35 

Initial density 

= 3250 

3 0.03 1 295 years Multiple 

regression 

TRT = 3 

Age = 30 

Initial density 

= 2500 

4 0.03 1 295 years Multiple 

regression 

TRT = 3 

Age = 45 

Initial density 

= 3250 

5 0.02 1 620 years DWI TRT = 1 

Age = 15 

Stocking = 

100% 

 

 Simulations 1 and 2 have three price levels so they require the simulation of 

random market prices.  The simulation average given in table 5-34 is the average    of the 



164 

CTG values for all the replications    for a given simulated optimal policy.  The value 

of the relative error   given in table 5-34 is for the number of replications       shown in 

the next column.  The number of replications shown in the last column is the number it 

would have taken had we used   = 15% to decide when to stop the simulation.  In all 

cases, the confidence interval contains       for starting state   and policy   with   

smaller than what is recommended by Law and Kelton (2000).  Therefore, according to 

the discussion in section 4.5, we can say with 95% confidence and a relatively small 

absolute error, that   is a good approximation to    in those 5 cases.   

 

Table 5-34 – Confidence intervals for the 5 simulations described above 
Simul. Lower CI Simulation 

average 

Upper CI DP CTG 

function 

value 

        # replications 

with   = 15%  

1 $3,061.85 $3,390.17 $3,718.48 $3,403.40 9.7% 50 7 

2 $6784.36 $6,913.09 $7,041.82 $6,945.36 1.9% 50 4 

3 $4,803.22 $5,163.84 $5,524.45 $4,890.85 7.0% 50 5 

4 $7,813.62 $8,003.00 $8,192.37 $7,999.86 2.4% 50 3 

5 $11,032.46 $11,565.85 $12,099.24 $11,399.81 4.6% 150 6 

 

 What follows is a discussion of the distribution of the simulated CTG values and 

how they relate to the policies they are simulating.   

 Figure 5-16 shows a histogram of the distribution of simulated CTG values for the 

first 4 simulations.  Simulations 1 and 2 have three price levels therefore simulation is 

done with random market values.  The distribution of CTG values for these simulations 

reflects the random nature of market prices where the CTG values for a majority of the 

replications are situated around the mean with values above and below.  Simulation 3 has 

almost 80% of its replications produce CTG values within a narrow range whereas the 

values in simulation 4 are distributed more evenly.  The distribution of CTG values for 

simulation 5 is very similar to that of simulation 4 so the chart is omitted to save space. 

 In simulation 3, the average number of time periods per replication where a stand 

is affected by a natural disaster is 2.62 and few of them occur before the first regeneration 

harvest which occurs 15 years, or three time periods, after the start of the replication.  The 

policy simulated in simulation 3 states that, given the starting forest state, it is optimal to 

do nothing until age 40 at which point, it is optimal to do a regeneration harvest and 

replant 2500 trees/hectare.  Of course, if a natural disaster occurs before the regeneration 
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harvest can occur at age 40, no salvage is possible and the plant/grow cycle restarts.  The 

starting state is 15 years away from its first harvest therefore the majority of the revenue 

created by harvests in simulation 3 occur early in the replication and are highly 

discounted to the present.   

 

Figure 5-16 – Histograms for simulations 1-4 

 

 In simulation 4, the average number of stands affected by natural disasters per 

replication is 3.38 which means that, on average, potential profits are cancelled more 

often than in simulation 3 and this creates more variability in profits because they occur 

randomly over time and discounting affects the monetary impact of each natural disaster.  

By contrast, the optimal policy for the starting state in simulation 4 is to do an immediate 

regeneration harvest which creates profit that isn’t discounted and can’t be affected by a 

natural disaster.  Yet, because this revenue occurs so early in the replication and 
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discounting is low, potential future revenues that could contribute a substantial quantity to 

the CTG value are subject to being cancelled by a natural disaster.  This creates 

variability between replications.  

 Simulation 5 has a lower discount rate therefore it is run much longer.  The 

starting state is such that the optimal action at the first time step of the replication is to do 

a PCT and remove all hardwood which takes the stand to TRT=2.  The optimal action for 

a pre-commercially thinned stand is to do nothing until age 40 where it is optimal to do a 

regeneration harvest and plant 1750 trees/hectare.  The optimal policy for the resulting 

plantation is to let it grow until age 45 and restart the plant/grow/harvest cycle.  Low 

discounting yields higher present values for future profits.  The simulated CTG values for 

this policy are highly variable because the first opportunity for creating profit is at the 6
th

 

time step of the simulation which gives a high probability, relative to the first 4 

simulations, that a natural disaster will occur and destroy the stand.  Combine that with 

the fact that future profits still have a high present value, and you get a high level of 

variability in simulated CTG values.  Therefore, it takes a larger number of replications to 

achieve the desired precision.   

 The randomness of natural disasters has an important impact on the present net 

value of the stand.   In the five simulations presented here, when a natural disaster occurs 

and a stand ends up in a regeneration state, it takes at least 40 years before revenue can be 

created from a harvest.  If a natural disaster occurs early in the replication before a 

harvest can occur, the next earliest harvest after the natural disaster is 40 years hence.  

The four graphs in figure 5-16 reflect this phenomenon.  In all simulations, there is a 

small number of replications with very small CTG values.  In these cases, natural 

disasters occur very early in the replication before a harvest can be done to create 

revenue.  Discounting limits the ability of future harvests to add to the total CTG value of 

the simulated policy.  The starting state in simulations 2 and 4 are older stands that have a 

better chance, statistically, of being harvested before a natural disaster destroys the stand.  

Consequently, there aren’t any very low CTG values in those two simulations whereas 

there are a few in simulations 1 and 3.   

 Results in this section show that the policies created with the DP are near optimal 

and the simulation results are consistent with the stochastic processes that are 
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incorporated into the DP model.  The next section discusses how proper interpretation 

and implementation of the policies can lead to sound management. 

 

5.4 Policy Discussion 

 

 The main goal stated in section 1.1 is to develop decision policies for individual 

forest stand management.  In the first three sections of this chapter, we use policies and 

changes in policy to explain and demonstrate the implementation of the DP model.  In 

this section, we focus on the policies themselves and what they mean for individual forest 

stand management.  The policies developed with the DP model are complex and the 

discussion in this section demonstrates their real world application.  Section 5.4.1 

demonstrates that the optimal policies developed with the DP model reflect the 

underlying growth and yield models used to construct the DP model.  Section 5.4.2 

discusses the implication of managing individual forest stands according to these optimal 

policies. 

 

5.4.1 Policies Reflect Underlying GNY and Stochastic Models 

 

 The results, for most optimizations, are a reflection of the softwood percentage 

and crown closure of the stand.  Softwood trees grow faster than hardwood in Nova 

Scotia and diameter growth is directly related to crown closure.  When crown closure is at 

or near 100%, the growth rate of trees is at its lowest.  Therefore, when stands have large 

trees and high crown closure, it is often optimal to do a CT to create revenue and release 

the trees, or to do a regeneration harvest.  Figure 5-17 shows the same optimal policy for 

commercially thinned natural stands (TRT = 5) on two different graphs.  The top graph 

shows softwood diameter vs. age, and the bottom graph shows crown closure percentage 

vs. age.  There are 1080 evaluation states in subset   
     and the optimal policy for the 

majority (807) of these states is to do a regeneration harvest.  Another 219 states have an 

optimal policy of doing nothing and letting the stand grow an additional 5 year period.  

The 807 states where it is optimal to do a regeneration harvest have been removed from 

the graph in order to concentrate on a relatively small number of cases.  The remaining 54 
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states (5% of all states) combine together to show that a second CT is only done when 

crown closure is above 80% and when the softwood portion of the stand has an average 

diameter above 22cm but these optimal CT actions will not be applied often in the course 

of managing any given stand.  The stands that lead to a second CT are mostly transient 

states in the infinite horizon. 

 

Figure 5-17 – Optimal policy for commercially thinned natural stands for the base case 

scenario described at the beginning of chapter 5 

 

 In one isolated case, the optimal policy is to remove 20% of the BA on the stand 

and to make that removal 75% hardwood.  This policy is a reflection of growth and yield 
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models because the stand average diameter is small and removing HW leaves a stand that 

is mostly softwood which grows faster than hardwood.  All other CT are done at larger 

diameters and only SW trees are removed in those cases (split = 100% SW).  Regardless 

of the type of CT, if the proportion of SW on the stand is small before the CT, the result 

is a stand with very little SW after CT, and at the next decision period, a regeneration 

harvest is done and the stand becomes a SW plantation.  This sequence is a reflection of 

the growth rate of SW being higher than that of the HW.  Wherever possible, the removal 

of commercially valuable SW trees is preferred.    

 As indicated above, management of individual forest stands puts emphasis on 

growing SW rather than HW stands.  In Nova Scotia, modelling mixed-species stands is 

difficult because the hardwood growth and yield models don’t have a good way of 

quantifying the quality of hardwood trees.  The selling price per cubic meter of hardwood 

   is higher for larger trees because the products that are made with large hardwood trees 

command a premium price on the market.  Bigger higher quality trees are worth more 

money per m
3
 but the hardwood growth and yield model doesn’t reflect this. 

 Hardwood plantations don’t exist in Nova Scotia because twigs and buds on very 

young hardwood trees are a source of food for many herbivores (Doucet and Thompson 

2008) so young hardwood trees have to be protected from deer and rabbits where there 

are enough of them to have a serious effect on the trees.  Such an investment is not made 

in Nova Scotia.  Therefore, the growth and yield models used in the DP model don’t 

include the option of creating hardwood plantations. 

 The reality in Nova Scotia is that softwood trees grow faster than hardwood trees 

in similar conditions.  The policies reflect this reality.  Regardless of the discount rate and 

market prices used in the DP optimization, anytime a pre-commercial thinning is the 

optimal policy, it’s always optimal to remove all hardwood and space softwood 

accordingly.   

 The structure of stochastics is also reflected in the policies.  Several examples 

were given in section 5.1 for the three sources of uncertainty.  Further observations are 

given here to support the argument that the policies reflect the dynamics of price 

uncertainty.  As discussed in section 5.1.1, very high and very low prices have less 

probability of occurrence than average prices.  This probability distribution is reflected in 
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optimizations that have more than one price level.  Table 5-35 shows the policies for 

three states.   

 

Table 5-35 – Policies for three states and 6 different price levels.  The numbers in color 

are the optimal decision in each of these three states 

 
Age 

(yrs) 
   

(cm) 
   

(cm) 

   

(%) 
     
(%) 

Initial 

planting 

density P
ri

ce
 1

 

P
ri

ce
 2

 

P
ri

ce
 3

 

P
ri

ce
 4

 

P
ri

ce
 5

 

P
ri

ce
 6

 

State 1 85 27.3 19.4 100 33 N/A 21 21 21 21 7 7 

State 2 90 28.1 19.9 60 5 N/A 2 7 7 7 7 7 

State 3 5 0 0 N/A 100 2500 2 2 2 2 2 2 
 
 2 - Let grow  6 - ReHar, plt 2500 tr/ha  21 - CT, rmv 40% BA, splt 75% (blw) 

 

 Prices 1 to 6 are low to high prices.  Decision 2 is to do nothing, decision 21 is a 

CT with 40%       from below with            = 75% SW, and 7 is a regeneration 

harvest followed by planting 2500 SW trees per hectare.  If decision 21 is taken when in 

state 1, state 2 occurs at the next time interval (5 years).  If decision 7 is taken in either 

state 1 or 2, the resulting state at the next time interval is state 3.   

 Interestingly, with low to average prices in state 1, the optimal decision is to 

remove most of the softwood (decision 21) and let the hardwood grow another 5 years at 

which point the entire stand is harvested unless a very low price is observed.  With a 

young plantation, the optimal decision is always to do nothing because PCT is not an 

option with plantations and there isn’t any growing stock (   = 0) at this young age.  

There is no correlation between prices from one period to the next and this is reflected in 

the policy.  It takes advantage of a high price in the current time interval by doing a 

regeneration harvest because there is a high probability that the price in the next period 

will be lower.  Seemingly in contrast, state 1 has enough HW that if the price is low, it’s 

optimal to remove almost all SW from the stand and leave the HW to grow an extra 5 

years before the entire stand is harvested.  But since there is very little SW on the stand to 

begin with, it makes sense to remove it and give the HW more room to grow.  HW will 

gain 1.5m
3
 more volume by growing 5 years after it’s been released following the CT.   

 Another set of policies is given in table 5-36.  It shows the optimal policy and 

optimal CTG value for 3 states of TRT = 4 for the base case scenario without uncertainty.  
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Decision 2 is to do nothing and let the stand grow and decision 3 is to do a regeneration 

harvest and let the stand grow naturally without any intervention.   

 

Table 5-36 – Optimal policy and CTG values for three states in the base case scenario 

without uncertainty 

Age (yrs)    (cm)    (%) # trees Optimal decision Optimal CTG value 

50 18.6 55 1100 Let grow $27,940.70 

50 22.3 55 825 ReHar, natural regen $26,590.20 

50 26 55 650 ReHar, natural regen $27,061.00 

 

 At first glance, we would expect the CTG value to be higher for a stand of the 

same age, same crown closure and with a larger diameter.  Using the maximum stocking 

line for softwood plantations, similar to figure 2-3, we determine, based on crown closure 

which is a percentage of maximum stocking for any given diameter, the number of trees 

on each of the stands in table 5-36.  The equal crown closure for the three stands indicates 

approximately equal basal area for each stand.  The growth models indicate that the stand 

with the smallest diameter which has the largest number of trees will gain the most basal 

area in the next 5 years (7.8 m
2
) whereas the other two stands will gain much less basal 

area (2.3 m
2
 and 1.95 m

2
).  Therefore, it is optimal to do a regeneration harvest at the 

current time period for the two stands with the largest diameter and keep the stand with 

the smallest diameter for an additional 5 years at which point it is optimal to harvest it.  

The policies given by the DP model are as expected given the growth and yield models 

used to build it.   

 

5.4.2 Policy Interpretation 

 

 We start this section by further discussing the policies given in table 5-35.  CT 

productivity, the number of cubic meters of wood products harvested per hour, is higher 

when the average stand diameter is larger.  In the case of state 1 from table 5-35, the 

hardwood is left on the stand because it can be harvested at the next period with a larger 

diameter and thus a higher productivity which will reduce the cost per unit of volume 

harvested.  This is an example of real life policy implementation and interpretation that 

can be done with the structure proposed in this thesis. 
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 The policies developed with the proposed DP model allow us to do what-if and 

cause-effect analysis of the resulting policies.  Enough precision is built into the DP 

model to give answers to typical questions forest managers would ask.  The rest of this 

section is structured in a question and answer format. 

 

1. Do very small values of the discount factor cause regeneration harvests to appear 

at a later age?   

 

 We need to differentiate between regeneration harvests and rotation ages.  A 

regeneration harvest removes all trees from the stand and any wood products that have 

commercial value are sold to create revenue.  The rotation age is the age at which a stand 

will receive its regeneration harvest over an infinite horizon.  According to the policies in 

table 5-29, starting with stands that are already 25 years old or more, the answer is yes.  

However, looking at the entire optimal policy for the base case scenario, we observe that 

starting with a 5 year old natural stand, the optimal policy is to do a PCT at age 10 in 

which case the stand becomes a TRT = 2 stand.  The optimal policy for the resulting 

stand is to wait until the stand age is 45 years to do a regeneration harvest and plant 1750 

trees/hectare.  Scanning the rest of the policy, regardless of the discount rate used for the 

base case scenario, the optimal infinite horizon policy is always for the stand to get to a 

45 year rotation age.  But the management policy is vastly different.  A very high 

discount rate (6%) creates a rotation of natural stands that are pre-commercially thinned 

at 15 years and harvested at 45 years.  The policy for 6% discount is given in table 5-37. 

Decision 12 at age 15 for TRT = 1 yields the first TRT = 2 stand 5 years later.  The right 

side of the table shows the succession of states up to age 45 where it is optimal to take 

decision 4 which creates a natural stand and the cycle restarts.  A very low discount rate 

(0.1%) creates a rotation age of 45 years on a softwood plantation with initial density of 

2500 trees/ha.  The policy for 0.1% is given in table 5.38.  Decision 12 at age 10 creates 

a 15 years old TRT = 2 stand which is shown in the right table.  It is optimal to let the 

stand grow to age 45 and do a regeneration harvest and plant 2500 trees/hectare.  Once 

the stand is a plantation, it is optimal to let the stand grown to age 45 and restart the 

cycle of harvesting, planting and letting grow.  The transition between these policies 
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occurs between 1 and 3%.  The policies in tables 5-37 and 5-38 are portions of the entire 

policy only for the states through which the stand will transition given the decisions 

made using the optimal policies for 6% and 0.1% discounting. 

 

Table 5-37 – Partial optimal policy for the base case scenario with discount rate = 6% 
TRT = 1 

  

TRT = 2 

    
Age (yrs) Stocking Decision 

 

Age 

(yrs) 
   

(cm) 

   

(cm) 

   
(%) 

     

(%) Decision 

5 75% 1 

 

20 6.9 0 14 100% 2 

10 75% 1 

 

25 10.1 0 29 100% 2 

15 75% 12 

 

30 12.7 0 44 100% 2 

1 – Do nothing 

 

35 14.8 0 59 100% 2 

4 – ReHar, fill plant, no ECC 

 

40 16.6 0 73 100% 2 

12 – PCT, remove HW 

 

45 18.0 0 86 100% 4 

 

Table 5-38 – Partial optimal policy for the base case scenario with discount rate = 0.1% 
TRT = 1 

   

TRT = 2 

    
Age (yrs) Stocking Decision 

  

Age 

(yrs) 
   

(cm) 

   
(cm) 

   

(%) 
     

(%) Decision 

5 75% 1 

  

15 5.2 0 8.4 100% 2 

10 75% 12 

  

20 8.8 0 23 100% 2 

     

25 11.7 0 38 100% 2 

TRT = 3 

   

30 14.0 0 53 100% 2 

Age (yrs)    (cm) 

Initial 

Planting 

Density Decision 

 

35 15.9 0 68 100% 2 

 

40 17.4 0 81 100% 2 

 

45 18.8 0 93 100% 7 

5 0 2500 2 

  10 4.2 2500 2 

 

1 – Do nothing 

15 7.9 2500 2 

 

2 – Do nothing 

20 10.7 2500 2 

 

7 – ReHar, plt 2500 tr/ha 

25 13.0 2500 2 

 

12 – PCT, remove HW 

30 14.9 2500 2 

       35 16.5 2500 2 

       40 17.9 2500 2 

       45 19.1 2500 7 

        

In Markov chain terminology, there are very few recurrent states in individual forest 

stand management.  Most states are transient and will never be visited again. 
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2. Is it feasible to manage a stand as a HW only stand?   

 

 As discussed on several occasions, hardwood plantations don’t exist in Nova 

Scotia.  However, hardwood does grow naturally in mixed wood stands and hardwood 

growth models do exist for Nova Scotia.  The DP model can be used to answer the 

question above.  The entire focus of this work has been on economic objectives with 

certain assumed values for hardwood and softwood.  Strictly economically speaking, 

given the choice between starting with a young softwood stand and a young hardwood 

stand, assuming a hardwood stand could grow without being killed by predators at no 

extra cost for protection, the softwood stand would have 16 times the present net value of 

the hardwood stand with an annual discount rate of 2%.  A 5 year old natural pure 

softwood stand has an optimal CTG value of 12,947$ and a 5 year old natural pure 

hardwood stand has an optimal CTG value of 789$.  In the softwood only model, the 

recurrent state is a 45 year old softwood plantation with an initial planting density of 1750 

trees/hectare and, in the hardwood only model, the recurrent state is a 110 year old natural 

stand.  Table 5-39 shows the optimal policy for a pure softwood stand which has a 

rotation age of 45 years old and the partial policy for the hardwood stand where the 

policy from age 25 to 90 doesn’t change. 

 

Table 5-39 – Policies for pure SW and HW stands with parameters from base case 

scenario 
Softwood 

 

Hardwood 

Age 

(yrs)    (cm) 

Initial  

Planting  

Density Decision 

 

Age (yrs) Stocking Decision 

5 0 1750 2 

 

5 0.75 1 

10 4.8 1750 2 

 

10 0.75 1 

15 9.0 1750 2 

 

15 0.75 1 

20 12.2 1750 2 

 

20 0.75 1 

25 14.8 1750 2 

 

        
30 16.9 1750 2 

 

95 0.75 1 

35 18.7 1750 2 

 

100 0.75 1 

40 20.3 1750 2 

 

105 0.75 1 

45 21.6 1750 6 

 

110 0.75 3 
 

1 – Do nothing 2 – Do nothing 3 – ReHar, Nat Regen 6 – ReHar, plt 1750 tr/ha 
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 With a stand that can’t contain any softwood on an infinite horizon, it is never 

optimal to do a commercial thinning or pre-commercial thinning.  In certain scenarios, it 

is optimal for a small number of transient states to keep hardwood for future harvests but 

none of the scenarios studied in this research had a recurrent state that was 100% 

hardwood unless the DP model was programmed to not include softwood.  With the 

assumptions made in this thesis, hardwood management is unlikely to be optimal in an 

even aged management regime but with different numbers, anything is possible. 

 

3. If planning to do mixed management (HW and SW) in even-aged stands, does the 

species mix change during the life of the stand? 

 

 The species mix is measured by the proportion of the stand basal area represented 

by each species.  When the crown closure is below 100%, each species on the stand 

grows to fill in the open spaces in the stand until it reaches 100% crown closure.  As this 

growth occurs, the SW and HW portions of the stand are filling in that space at different 

rates.  Once the stand has reached 100% crown closure, the SW and HW portions of the 

stand continue to grow according to their respective fully stocked growth models or 

maximum stocking lines.  At this point, the species mix stabilizes as there are no longer 

any open spaces to be filled in by the growing trees.  Therefore, the answer to the 

question above is that the species mix changes if a stand has open spaces for the trees to 

fill.  Interestingly, a stand with two very different SW and HW diameters, which has open 

spaces for the trees to fill, will have large changes in species mix because the total stand 

BA for one of the species changes very quickly.  Table 5-40 shows one example of this 

change.   

 

Table 5-40 – Example of species mix change for even-aged stand with initial crown 

closure = 50% 

Year 
Softwood Hardwood 

   (cm)         (cm)      

0 12.00 80 2.00 20 

5 13.85 69 3.58 31 

10 15.12 67 4.63 33 

15 16.18 66 5.48 34 
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 The stand in table 5-40 has an initial crown closure = 50%.  Crown closure 

reaches 100% in 15 years after which there are only small changes in species mix, where 

     drops to 60% by year 85.  Notice the changes in diameter where the SW gains 35% 

growth and the HW diameter gains 174% growth.  The difference in diameter growth 

percentage accounts for the swing in     . 

 

4. Can we force the model to prefer a species over the other with the right 

parameters?   

 

 There are many user definable parameters in the DP model and they can be 

divided into two major categories: growth and yield, and economic factors.  These two 

will be discussed separately.   

 In the case of growth and yield parameters, they are not controlled by the user but 

are dependent on the stand being modelled.  There are many examples in this chapter of 

the policies given by the DP model for typical stands found in Nova Scotia.  Here are a 

few scenarios to demonstrate how the DP model handles atypical stands.   

 For example, with a site index that is much higher for HW than for SW, 17m at 50 

years for HW and 12m for SW, the optimal policy eventually transforms all stands into 

plantations which is the same as the base case model.  However, starting with a 5 year old 

natural stand with 100% stocking, the optimal policy is not to do a PCT at age 10 as is the 

case with the base case scenario, but rather to let the stand grow as a natural stand up to 

age 50 at which point a CT from above is done with 40% removal and split 50/50 

between SW and HW.  After the CT, the stand grows for another 10 years before a 

regeneration harvest occurs and it’s transformed to a plantation.   

 In another case, with a stand that has 25% SW in a naturally regenerated stand 

instead of the common value of 75%, the change in policy is significant.  The policies are 

given in table 5-41.  With 6% annual discounting, there is a change in policy for a small 

number of transient states, mostly for natural stands.  For the case of 100% stocking with 

25% SW, pre-commercial thinning is optimal at ages 25 and 30, and we wait an extra 5 

years before doing a commercial thinning.  These changes are not surprising as the stand 
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with 25% SW has very few trees of commercial value at those young ages, and doing a 

PCT will eliminate HW, space the remaining SW trees accordingly, and give them room 

to grow until it is optimal to do a regeneration harvest.  In the case of 75% stocking, the 

changes are in the type of commercial thinning that is optimal.  With a stand that contains 

75% softwood, it is optimal to do 20% BA removal with a split of 25% SW / 75% HW.  

When the stand contains 25% SW, is it optimal to remove 40% of the BA and split it 

50/50 or 75% SW / 25% HW.  Thinning is done from above in all these cases.  In the first 

case, when there is a large proportion of SW, it is optimal to remove the HW and leave 

the softwood so that it gains as much diameter growth as possible.  In the latter case, it is 

optimal to remove at least half of the SW on the stand and leave the HW to grow at least 

another 5 years.   

 

Table 5-41 – Optimal policies for natural stands with a 6% discount rate and 25% vs 75% 

SW in a natural regenerated stand 

Age Stocking 75% SW 25% SW Stocking 75% SW 25% SW 

5 100% 1 1 75% 1 1 

10 100% 1 1 75% 1 1 

15 100% 12 12 75% 12 12 

20 100% 1 1 75% 1 1 

25 100% 1 12 75% 12 12 

30 100% 1 12 75% 12 12 

35 100% 39 1 75% 1 38 

40 100% 38 39 75% 31 38 

45 100% 38 39 75% 31 39 

50 100% 4 4 75% 4 39 

55 100% 4 4 75% 4 4 

 

 These policies make sense because SW is more valuable and should be kept on the 

stand if there is a significant portion of the stand covered with it.  However, if a stand is 

left with mostly hardwood but with softwood in the mix and less than 100% crown 

closure, the faster growth rate of SW will allow it to fill the gaps in the stand faster and 

slow the rate of growth of the HW.  The policies reflect the dynamics of growth of each 

species. 

 Economic factors are a combination of user preferences mostly in the form of the 

discount rate, with observed market prices and common silvicultural practices and their 

costs.  Average market prices and their effects on policy are presented in detail in this 
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chapter and their effect and importance is supported by the results discussed.  In Nova 

Scotia, silvicultural practices and costs are mainly governed by government policy in the 

form of a credit system which is part of the sustainable forest management policy 

(NSDNR 2009).  The credit system assigns a number of credits per hectare for 

silviculture operations  The costs used in the DP model are a reflection of that system and 

it is not in the scope of this work to debate that system.  The discount rate is the focus of 

section 5.3.1 and its impact is supported by results.  Therefore, policy discussion in the 

last part of this section will focus on atypical market states, and on user preferences for 

the discount rate as discussed in section 4.3.   

 In an atypical scenario where prices are higher than usual for both SW products 

(42% higher), we get a change in policy as expected.  In the base case scenario with 

average market prices, there are more transient states, meaning that some stands take 

longer to get to the plantation state which has a rotation age of 40 years and a plantation 

density of 1750 trees per hectare. In the atypical case described above, within a maximum 

of 45 years starting with any stand, all stands are transformed into SW plantations with a 

planting density of 3250 trees per hectare and a rotation age of 40 years.  The higher 

market prices support a higher planting density which has a higher planting cost per 

hectare.  In a different scenario with HW prices higher than usual, there is no change in 

the optimal policy.  HW prices have to be extremely high relative to SW in order to have 

any impact on policy.  Results show that if the prices of HW are high enough (360% 

higher than normal), the optimal policy changes from one of converting all stands to SW 

plantations, to one of fill planting and changing the stand to a fully stocked natural stand 

which has a 25% HW proportion.  But the case being described here is one where the 

prices of HW are 7.5 times higher than those of SW which is very unlikely to occur in 

practice in the current economy.  Therefore, there is no reason to believe that softwood 

plantations will be replaced by stands containing a majority of hardwood in any 

commercial operations in the foreseeable future in Nova Scotia, strictly based on typical 

market prices and the dynamics of growth and yield of typical Nova Scotia forest stands.  
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Chapter 6: Conclusion 

 

 We focus on issues related to the optimal management of an individual forest 

stand.  More specifically, we are interested in developing policies that allow forest 

managers to make decisions while considering information such as the state of the market 

and of the forest, and some knowledge of the uncertainty in regards to market and forest 

growth dynamics.  There are three main areas of interest related to the objective of 

developing management policies:  

 

i. Incorporating a two-species growth and yield model into a single stand 

management model 

ii. Incorporating a comprehensive list of management options into a single stand 

management model 

iii. Incorporating uncertainty into a single stand management model. 

 

The forest stand management problem, as modelled in this thesis, has a large 

dimensional state space with a mix of discrete and continuous state variables.  Because 

the cost and profit functions and the dynamics are complex, no analytical solution is 

possible.  Thus we resort to numerical methods and value iteration to solve the DP 

problem.  However, since some of our state variables are continuous, we cannot examine 

all states in attempting to create the cost-to-go function.  Therefore, we calculate the cost 

to go function at a given stage of the algorithm at a finite set of state points and then 

approximate these cost-to-go values with a continuous function on the continuous portion 

of the state space.  These cost-to-go function estimates are computed as expected values 

in the context of the random processes impacting state transitions. 

The approach used created challenges, which are documented throughout chapters 

2 to 5.  These challenges include the need to deal with a mix of discrete and continuous 

state variables, random disturbances and a large number of stand management options.  

The main challenge with DP in a context such as the one here is finding a way to reduce 

the need to use a very large number of discrete values of the continuous variables in order 

to solve the DP algorithm.  We accomplish this by using a relatively small number of 
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evaluation states and approximating the cost-to-go function on the continuous portion of 

the state space.  The small number of evaluation states allows us to consider a large 

number of management options and to study the effect of several sources of uncertainty, 

individually or collectively.  The ability to consider this level of detail is a focus of this 

work.   

In these concluding remarks, we focus on the contributions of this thesis and give 

opportunities for future research. 

 

6.1 Contributions 

 

 In section 1.3, a brief overview of the contributions was given.  In this section, we 

recall the main contributions and discuss why they are important. 

 Foresters need to understand uncertainty and, most importantly, the impact of not 

incorporating it into their models.  The three forms of uncertainty studied in this thesis, 

prices, regeneration and natural disasters, weren’t meant to be an exhaustive study of the 

uncertainty inherent in forest stand management.  Rather, the goal was to properly 

describe a framework for incorporating uncertainty into a model for the development of 

optimal forest stand management policies.  The key is to focus on the decision problem 

and to exploit uncertainty.  For example, decisions shouldn’t be made based on average 

prices because, if current market conditions aren’t good, the potential exists for doing 

better than average if a decision is delayed based on the knowledge that better market 

conditions are likely to occur at the next decision period.  Also, as discussed in chapter 5, 

knowing that a natural disaster may potentially destroy a stand when it is almost ready to 

be harvested could lead to an accelerated decision to remove a portion or all of the wood 

on the stand in order to avoid the potential loss of profit.  Therefore, understanding and 

exploiting uncertainty makes sense from a decision problem perspective. 

 In order to study mixed-species individual forest stands in detail, a methodology 

had to be developed to combine individual species growth models for SW and HW 

together into a single growth model.  The concept presented in this thesis relies on the 

fact that crown closure is directly related to spacing between the trees on a stand and, in 

the growth and yield models published by NS DNR (NSDNR (1993b), O’Keefe and 
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McGrath (2006)), spacing is the major driving force of individual SW and HW growth 

models.  The proposed model capitalizes on this fact and calculates the fraction of the 

area of a stand covered by each species, given their respective basal areas, which leads to 

a different spacing for softwood and hardwood.  The respective spacing is then used to 

calculate diameter growth before combining the two species and calculating the crown 

closure for the new stand.  The proposed method allows us to study the interaction 

between species growing together on the same stand with a great deal of flexibility. 

 Once we can combine two species together and study how they grow and interact, 

we can start modelling commercial thinning of these stands in more detail.  NS DNR only 

has diameter change models for commercial thinning (CT) from below for both softwood 

and hardwood as individual species.  In order to incorporate a comprehensive list of 

management options into one single stand management model, a model had to be 

developed for CT from above for softwood and hardwood.  We also had to develop an 

approach to modeling CT on a mixed-species forest stand.  Section 3.2 describes the 

development of the method and the resulting diameter change equations for SW and HW, 

with thinning from above and below with user definable removal percentages.  The 

method used to develop the new diameter change models is based on work by Gunn et al. 

(2000) and uses simulation to model a range of tree removal on a stand.  This allows us to 

expand the list of silvicultural options considered while developing policies for individual 

forest stand management.  The expansion of the list of silvicultural options leads to the 

development of treatment types, which reflect the history of the past decisions that have 

been made about the management of the stand.  The majority of the reviewed papers 

optimize models for one treatment type at a time (Arthaud and Klemperer (1988), Peltola 

and Knapp (2001), Brodie et al. (1978)) or don’t differentiate between treatment types.  

Most studies use variables that can describe the state of the stand regardless of treatment 

history.  The development of the mixed-species model has lead to the development of the 

list of management options used in this work which wouldn’t have been otherwise 

possible. 

 With the development of the mixed-species growth and CT model, detailed lists of 

forest stand silvicultural options can be created.  The list of 48 management options used 

in the DP model includes letting the stand grow, doing regeneration harvests followed by 
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plantations or naturally regenerated stands, doing three types of pre-commercial thinning 

on natural stands to encourage better growth of the trees on the stand, and doing 

commercial thinning with a wide range of combinations of removal types, removal 

percentages and removal split between SW and HW.  All these management options can 

be applied to a stand with any proportions of HW and SW.  The ability to deal with this 

range of management options provides the ability to generate policies that cannot be 

examined otherwise.  Two observations warrant discussion.  To clarify, a regeneration 

harvest leaves a stand with no standing trees and is often referred to as a clear cut.  The 

first is that transitory policies developed in this work are complex and, in some cases, the 

inclusion of CT as a decision option allows the decision maker to delay clear cutting the 

stand and may lead to higher profits than if the only choices of decision were clear cut / 

no clear cut which is the case in many studies.  The second observation is one of the 

possible social impact of having the choice between clear cut and commercial thinning.  

In the cases where the best decision, on a purely economic level, is to do a clear cut, the 

policies developed in this work could allow us to use commercial thinning instead of 

clear cutting if the loss of profit incurred due to the use of a less economical policy is 

acceptable to society.  At least, the comparison can be made using these policies.  On a 

landscape level, or multi-stand level, the use of commercial thinning could reduce the 

need for doing large amounts of clear cutting.  

 In DP, the approximation architecture used for CTG function approximations at 

each step of the value iteration algorithm and for each state/decision combination must 

ensure that cost-to-go function approximations on the continuous portion of the state 

space are consistent with the cost-to-go function values at the evaluation states.  Because 

approximate value iteration additively builds approximations to the CTG function values 

at the evaluation states, inconsistent cost-to-go function approximations on the continuous 

portion of the state space could prevent the DP algorithm from converging in a finite 

number of iterations (Bertsekas 2001).  In the case of multiple regression (MR), the 

creation of approximation bounds ensures this condition is met and allows us to use a 

simple approximation technique that is easy to implement but would not otherwise be 

suitable for use in this context. Therefore, when using MR as an approximation 

architecture to solve the DP model in a high dimensional state space where the exact form 
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of the cost-to-go function is not known, the proposed method allows us to calculate more 

consistent cost-to-go function approximations.  In the case of RBFs and DWI, much 

emphasis was put on properly scaling the distances between basis points.  This isn’t a 

contribution as much as a reiteration that DP is not trivial and requires careful 

consideration of the state space in order for the optimization to converge and for the 

resulting policies to be good approximations of the optimal policies. 

 Past research has properly demonstrated the development of optimal policies for 

individual forest stand management in a stochastic setting (Haight and Holmes (1991), 

Plantinga (1998)).  The main challenge here stems from the fact that we have an infinite 

number of states, which makes it impossible to exactly solve the DP model.  Thus, we 

resort to approximating the CTG function, and consequently the policies, at 1600 

evaluation states, some of which are described by 5 variables, divided into 5 distinct 

treatment types, with the addition of three sources of random disturbances all combined 

together with 48 silvicultural options.  All of these elements are considered 

simultaneously and the resulting policies are good approximations to the optimal policies 

in the continuous context.  The policies are highly detailed and span a wide range of 

management options and treatment types, which include mixed-species stands.  Chapter 5 

gives a sample of the type of policy analysis that is achievable when working with 

management policies as detailed as the ones developed in this work.  The use of 

approximate DP in the development of optimal policies for the individual forest stand 

management problem is worth the effort because these types of policies can’t be obtained 

any other way. 

 

6.2 Limitations 

  

 Additional avenues could have been investigated and they are discussed in this 

section.  They revolve around additional details or methods that could have been added to 

the DP model and include defining susceptibility to natural disasters by including crown 

closure, finding actual market price data from Nova Scotia and using it in the DP model, 

using policy iteration to solve the DP algorithm, adding more approximation architecture 

possibilities and modeling using a finite horizon framework. 
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 Whereas the height, diameter and crown closure of a stand affect its susceptibility 

to a hurricane (Duryea and Kampf 2008), Gilman et al. (2008)), susceptibility was 

modelled as depending only on age or diameter.  Crown closure information is included 

in stand definitions therefore it could have been incorporated into the DP model.  

However, the challenge lies in finding models that appropriately describe the relationship 

between diameter, crown closure and hurricane variables.  The approach used 

demonstrates how natural disaster information can be incorporated into the DP model.  If 

better natural disaster information were available, it could easily be substituted into the 

DP model. 

 As discussed in section 5.1.1, there is no good long-term price information for 

forest products in Nova Scotia.  The intent of this work is to show the structure that can 

be used with any stationary price information.  There is price information available for 

the New England states in the United States of America which has a mix of tree species 

similar to Nova Scotia but research would need to be conducted to determine if such 

information is transferrable to Nova Scotia’s economic reality and wood products 

industry. 

 Section 4.1 mentions a second approach to solving the DP algorithm: policy 

iteration.  Policy iteration generates a sequence of stationary policies, each with improved 

profit over the preceding one.  With a finite number of states and controls, policy iteration 

converges in a finite number of iterations but when the number of states and controls is 

large, solving the linear system in the policy evaluation step of the policy iteration 

approach can be time consuming.  The main advantage of policy iteration over value 

iteration is that, in general, it converges in a smaller number of iterations (Bertsekas 

2001).  However, finding exact values of the CTG function for a given policy at the 

policy evaluation step of the algorithm requires solving a complex system of linear 

equations where the dimension of this system is equal to the number of evaluation states.  

With over 1600 states in the DP model, the dimension of the system of linear equations 

renders the method unattractive thus value iteration is used. 

 A considerable amount of time was spent on developing and refining three 

approximation architectures to be used in the value iteration algorithm.  The chosen 

architectures represent both averager and non-averager methods, and represent very 
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different ways of approaching function approximation.  However, together, they only 

represent a portion of available function approximation methods.  Methods such as 

splines and artificial neural networks (ANN) could be used for CTG function value 

approximations and they would present their own challenges.  For example, neural 

networks need to be retrained at each iteration of the DP algorithm when new values of 

the CTG function are calculated.  Furthermore, ANN’s in general don’t force the output 

of the network to be equal to the known function values at any evaluation state.  Splines 

might suffer the same issues as multiple regression because they are simply piecewise 

polynomials used to fit the CTG function on subsets of the state space.  In both these 

cases, it may be necessary to incorporate approximation bounds similar to those used with 

multiple regression. 

 The finite horizon framework is very closely related to its infinite horizon 

counterpart with only a few modifications required to make the transfer.  The finite 

horizon framework can be used, and in some cases is required, when any of the 

components of the DP model aren’t stationary.  These could include but not be limited to 

market price dynamics, natural disaster susceptibility probabilities and growth and yield 

models.  The main objective of this thesis was to develop a flexible modeling approach 

and demonstrate its use.  However, finite horizon modeling opens up possibilities that 

will be discussed in the next section. 

 

6.3 Opportunities for future research 

 

 The structure is now in place to study other objectives.  Whereas the objective of 

this study was strictly to maximize profit for maximum economic gain, most stakeholders 

in forestry have specific objectives when managing forest stands.  As long as those 

objectives can be described in economic terms, they can be studied with the model 

developed in this work.  Objectives such as protection of habitat, carbon sequestration 

and public use of forests are all worthy objectives but they require the transformation of 

those objectives into economic terms.  For example, Kline et al. (2000) develop an 

empirical model describing owners’ willingness to accept an economic incentive to adopt 

a 200-foot harvest buffer along streams as a function of their forest ownership objectives 
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and socioeconomic characteristics.  Slaney et al. (2009) employ a spruce budworm 

(Choristoneura fumiferana Clem.) decision support system to examine costs and benefits 

of sequestering, or protecting, carbon in forests through pest management.  Results 

provide forest managers with important information needed to justify such carbon 

sequestration programs on economic grounds.  Bestard and Font (2010) develop a model 

where the goal is to improve current applications of inferring the recreational value of 

forests in the region of Mallorca, Spain.  The stated objective is to better understand and 

implement policies and regulations on a wider geographical area.  In these three cases, the 

studies have found ways to describe their objectives in economic terms to be included 

into their models.  The nature of the model developed is well suited for these types of 

approaches and could be adapted to include these types of objectives. 

 Finite horizon DP is another possible avenue of research.  As discussed earlier, the 

finite horizon framework can be used, and in some cases is required, when any of the 

components of the DP model aren’t stationary.  These could include but not be limited to 

market price dynamics, natural disaster susceptibility probabilities and growth and yield 

models.  In these three cases, there is a vast literature on non-stationary models and 

incorporating them into the DP model requires modifications of the transition 

probabilities used in the value iteration algorithm.  The structure used in this thesis allows 

for those modifications and is a natural extension of the DP model.  Finite horizon DP 

could also allow us to study the effect, on the optimal policies, of adding a termination 

state and stopping the DP model after a finite number of periods.  The use of a 

termination state allows the study of scenarios where a specified use of the stand is pre-

planned at a given termination date but there is a need to develop a policy to get to that 

termination date.  Examples of termination states include turning the stand into a public 

use property, or forcing a final harvest of the stand at a specific date for economic reasons 

of the forest stand owner.  In all these cases, the structure of the DP model wouldn’t be 

very different and would allow for the study of a host of new scenarios.   

 The policies developed in this thesis are more detailed than what has been seen 

before because the DP model uses function approximations that allow us to considerably 

reduce the number of evaluation states and thus add a comprehensive set of management 

options to the model.  Even with a very large number of iterations, the VB code written 
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for this DP model converges to an optimal policy in less than 15 minutes of computer 

processing time which is short.  We assume that much more complexity could be added 

to the model without causing the optimization time to become unmanageable.  This 

additional complexity could come in the form of a multi-stand analysis.  Studying a new 

set of objectives as described above with a multi-stand forest could lead to useful policy 

development and interpretation.  The complexity of the DP model would grow quickly 

but the structure can handle that additional complexity.  The only real limit to the size of 

the model, and therefore its level of detail, is the limit of the computer on which it is 

being modelled and the programming language in which it is being coded. 
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Appendix A: Growth Functions 

 

The functions in this appendix were initially based on Fortran code received from NS 

DNR (McGrath 2005).  They were adjusted, as needed, according to growth and yield 

models published by the Nova Scotia Department of Natural Resources (NSDNR 

(1993b), O'Keefe and McGrath (2006)) and are used to calculate growth and yield in this 

thesis.  The notation    was used in chapter 2.  The   refers to the function numbers in this 

appendix. 

 

Function 1 – Dominant height: 

 

This function calculates dominant height of natural unmanaged stands based on age of the 

stand since last regeneration harvest (    .  The height of the trees on a stand depends on 

site index (   ).  Softwood and hardwood have different equations but the stand can only 

have one dominant height.  The dominant height of the stand is the average of the 

dominant heights of softwood and hardwood. 

 

              
   

Softwood :  

    
  measured in meters 

    measured in meters at age 50 years 

A =            

B = − 0.019070142 

C = 3.063581805 

D = − 0.228589318 

    
                             

                 
           

 

Hardwood : 

 

    
  measured in meters 

    measured in meters at age 50 years 

A =     

B = 10.5513 

C = - 0.0192 

D = 0.0339 

E = 1.7826 

F = 0.7565 

G = 1.076 
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Function 2 – Average height: 

 

This function gives a simple relationship between dominant height and average height of 

trees in a single species softwood or hardwood stand.  In the case of softwood, the 

function is applicable to all TRT types.  As for hardwood, the appropriate functions are 

given below. 

 

    
           

 

Softwood : 

 

     and     
  measured in meters 

    
                                              

              
          

 

Hardwood : 

 

     and     
          in meters 

    
                    for TRT=1 

    
                    for TRT types 2, 3, 4 and 5 

 

Function 3 – Diameter for natural unmanaged stands : 

 

This function calculates the diameter for softwood and hardwood with different formulas 

that depend on average height for each species and on site index in the case of hardwood.  

It is only applicable to natural unmanaged stands. 

 

  
         

       
 

Softwood : 

 

    
  measured in meters 

  
  measured in centimeters 

A = 0.286385 

B = 0.134989 

C = 0.00137156 

D = 0.0000546409 

E = 0.000000820707 

F = 0.00000000724082 

G = 0.0000000000372075 

H = 0.000000000000102997 

J = 0.000000000000000118654 

M =     
   3.2808 

  
  = (A + B  (  − 4.5) − C  (  − 4.5)

2
 + D  (  − 4.5)

3
 − E  (  − 4.5)

4
 + F  (  − 

4.5)
5
 − G  (  − 4.5)

6
 + H  (  − 4.5)

7
 − J  (  − 4.5)

8
)  2.54 
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Hardwood : 

 

    measured in meters at age 50 years 

    
  measured in meters 

  
  measured in centimeters 

  
                           

                   
   

 

Function 4 – Diameter growth for softwood  : 

 

This function uses information about the current state of the stand to calculate the 

quadratic mean diameter of the softwood trees on a stand with an additional 5 years of 

growth.  This function applies to softwood stands of TRT types 2, 3, 4 and 5 that have 

   
      . 

 

    
       

               
       

 

         
  measured in trees per hectare 

cct measured in percentage 

  
   measured in centimeters 

    
  measured in centimeters 

SI
S
 measured in meters at age 50 years 

B1 = 0.02785202 

B2 = -0.367548143 

B3 = -0.005540854 

DBHIB = (  
 / 2.54 - 0.016384) / 1.057711 

TMPBA =           0.005454  (         
  
 cct   100) / 2.47105 

D5IB = (B1  SI
S
  3.28084 + B2)              

    
  = ((DBHIB + D5IB)  1.057711 + 0.016384)  2.54 

 

Function 5 – Diameter and spacing dependent age : 

 

This function calculates a diameter dependent age and is used in conjunction with 

function 6 to calculate the diameter of the stand after 5 years of growth.  It is only 

applicable to softwood stands of TRT types 2, 4 and 5 that have    
      . 

 

   
        

    
       

 

  
  measured in centimeters 

   
  measured in meters 

    measured in meters at age 50 years 

A = 0.963860501 

B = 0.063249499 

C = -0.179264128 

D = 0.789203213 

E = -0.029174191 

DBHIB = (  
    2.54 - 0.016384)   1.057711 
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  = (ln(1−                 

                                      ))   E 

 

 

 

Function 6 – Age and spacing dependent diameter : 

 

In conjunction with function 5, this function calculates the diameter of a softwood stand 

after   years of growth.  It is only applicable to softwood stands of TRT types 2, 4 and 5 

that have    
      . 

 

    
          

       
       

 

     
  measured in meters 

    measured in meters at age 50 years 

     
  in   years 

A = 0.016384 

B = 1.057711 

C = 0.963860501 

D = 0.063249499 

E = 0.179264128 

F = 0.029174191 

G = 0.789203213 

H =      
         

J =            

    
                                 

   
 

        

 

Function 7 – Hardwood diameter  : 

 

This function is used to calculate the diameter i years in the future or past based on basal 

area and diameter at time t.  This function is only applicable to hardwood stands of TRT 

type 2 and 5.  

 

    
       

     
        

 

    
  and   

  measured in centimeters 

    measured in meters at age 50 years 

   
  measured in m

2 

A = 0.6636 

B = 0.0971 

C = 0.0625 

D = 0.0005 

E = 0.3062 
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Function 8 : 

 

To calculate crown closure for any stand of TRT types 2, 3, 4 or 5, we need the number 

of trees on the stand (        
 ) for each species.   

 

        
         

   
 

    
  measured in centimeters 

        
                                  

     
        

 

        
                            

          

 

Function 9 : 

 

Calculating MV and SV requires the use of a series of equations, which we`ll call 

procedures, that determine the portion of the total stand volume that can be harvested.  

There are four procedures categorized by their species and TRT types.   

 Procedure 1 – Softwood, TRT = 1 

 Procedure 2 – Hardwood, TRT = 1 

 Procedure 3 – Softwood, TRT types 2, 3, 4, 5 

 Procedure 4 – Hardwood, TRT types 2, 3, 4, 5 

 

Procedure 1 
 

Step 1: Calculate merchantable basal area as a fraction of stand total basal area 

 

   measured in centimeters 

       measured in m
2
 

    measured in m
2
 

If     ≥ 20.32) Then 

        = 1 

ElseIf     ≤ 7.1) Then 

        = 0 

Else 

 A = 0.82932659 

 B = 0.7183961 

 C = 0.10184704 

 E = 0.0000066210904 

 F = 0.0054868242 

 G =    / 2.54 

        = −A   B  G − C  G
2
 + F  G

3
 − E  G

5 

 If (       > 1) Then 

         = 1 

 ElseIf (       < 0.05) Then 

         = 0 

 End If 
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End If 

       =             

 

 

If (       < 0.1) Then 

         = 0 

End If 

 

Step 2 : Calculate ratio of        to     

 

       =            

 

Step 3 : Calculate merchantable diameter 

 

         measured in centimeters 

If (       ≥ 1) Then 

          =    

ElseIf         ≤ 0) Then 

          = 0 

ElseIf     ≥ 20.32) Then 

          =    

ElseIf     ≤ 2.54) Then 

          = 0 

Else 

 A = 3.0746534 

 B = 0.30615578 

 C = 0.040103103 

          = (A + B     / 2.54 + C  (   / 2.54)
2
)  2.54 

End If 

 

Step 4 : Calculate merchantable frequency 

 

         measured in number of trees per hectare 

If (           0) Then 

          =          (3.141592654  (           200)
2
) 

Else 

          = 0 

End If 

 

Step 5 : Calculate board basal area 

 

       measured in m
2
 

If (       ≤ 0) Then 

        = 0 

ElseIf (         ≤ 0) Then 

        = 0 
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Else 

 X1 = 1   ((           2.54)
6
) 

 X2 = (          2.54)
10 

 X3 = 1   ((           2.54)
5
) 

 X4 = (           2.54)
9 

 X5 = (           2.54)
2
 

 X6 = 1   ((           2.54)
10

) 

 A = 1.0794209 

 B = 21281.691 

 C = 0.00000000000088421416 

 D = 6064.0629 

 E = 0.000000000011016046 

 F = 0.00050860475 

 G = 394808.99 

        = A + B  X1 – C  X2 – D  X3 + E  X4 – F  X5 – G  X6 

End If 

       =                

If (       >       ) Then 

        =        

ElseIf (       ≤ 0) Then 

        = 0 

End If 

 

Step 6 : Calculate board diameter 

 

         measured in centimetres 

If (         > 25.4) Then 

          =          

ElseIf (         = 0) Then 

          = 0 

Else 

 X1 = 1   (           2.54) 

 X2 = (          2.54)
10

 

 X3 = (           2.54)
0.1

 

 X4 = (           2.54)
0.5

 

 X5 = 1   (           2.54)
6
 

 X6 = 1   (           2.54)
10

 

 A = -8.5204673 

 B = 7.0903534 

 C = 1.224994310
-20

 

 D = 7.6542127 

 E = 0.2563372 

 F = 493.03614 

 G = 55803.496 

       = A + B  X1 – C  X2 + D  X3 – E  X4 – F  X5 + G  X6 

          =                  
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End If 

If (       < 0 or          < 14.22) Then 

          = 0 

End If 

If (         <         ) Then 

          =          

End If 

 

Step 7 : Calculate board frequency 

 

         measured in number of trees per hectare 

If (         > 25.4) Then 

          =          

ElseIf (         < 12.7) Then 

          = 0 

Else 

          =          (3.141592654 * (           200) ^ 2) 

End If 

If (         >         ) Then 

          =          

End If 

 

Step 8 : Calculate merchantable height 

 

        measured in meters 

       =        /     

If (       = 1 or      > 24.4) Then 

         =      

ElseIf (       = 0) Then 

         = 0 

Else 

 A = 15.277829 

 B = 1.4316388 

 C = 0.53584452 

 D = 185.70383 

 E = 0.00000046086744 

 F = 134.91889 

 G = 68.753896 

 H = 31.713797 

 J = 0.030025568 

 K =      * 3.2808 

        = (−A   B  K − C  K         + D  (      )
4
 + E  (K   

      )
3
 − F  (      )

5
 − G  (      )

2
 + H  (      )

0.5
 + 

J  K         )   3.2808 

End If 

If (          0) Then 
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 If (        <     ) Then 

          =      

 End If 

End If 

Step 9 : Calculate board height 

 

        measured in meters 

If (       > 0) Then 

        =        /        

End If 

If (       ≤ 0) Then 

         = 0 

ElseIf (       > 1) Then 

         =         

ElseIf (        = 0) Then 

         = 0 

Else 

 A = 9.3709292 

 B = 0.046206221 

 C = 0.00074921477 

 D = 0.0000040028957 

 E = 2.8348874 

 F = 3.1858712 

 G =         * 3.2808 

        = (A + B  G
2
 − C  G

3
 + D  G

4
 − E         − F  (      )

5
)   

3.2808 

End If 

If (        <         or         > 24.4) Then 

         =         

End If 

 

Step 10 : Calculate merchantable volume and board volume 

 

    and     
measured in m

3
 per hectare 

A = 1.226 

B = 315.832 

If (        > 0 and          > 0) Then 

 C = ((3   (           2.54))
2
)  (1 + (0.5   (         3.2808))) 

    = 0.069972228  (          ((           2.54)
2
   (A + (B   

(         3.2808))))  (0.9604 − 0.166  C − 0.7868  C
2
)) 

 If (    < 0) Then 

      = 0 

 End If 

Else 

     = 0 

End If 
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If (        > 0 And          > 0) Then 

 E = ((4   (           2.54))
2
)  (1 + (0.5   (         3.2808))) 

    
= 0.01396074  (          ((           2.54)

2
   (A + (B   

(         3.2808))))  (5.316 − 1.5928  E − 4.3747  E
2
)) 

 If (    
< 0) Then 

      
= 0 

 End If 

Else 

     
= 0 

End If 

 

Procedure 2 
 

Step 1: Calculate merchantable basal area as a fraction of stand total basal area 

 

   measured in centimeters 

        measured in m
2
 

    measured in m
2
 

If (   < 4.1) Then 

        = 0 

Else 

          
=                   

 
 
            

 

        =          BA
H
 

End If 

 

Step 2 : Calculate ratio of         to     

 

       =            

 

Step 3 : Calculate merchantable diameter 

 

         measured in centimeters 

If (   < 4.1) Then 

          = 0 

ElseIf (   > 25) Then 

          =    

Else 

          = 0.76293     + 5.9041 

End If 

 

Step 4 : Calculate merchantable frequency 

 

         measured in number of trees per hectare 

If (           0) Then 

          =          (3.141592654  (           200)
2
) 
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Else 

          = 0 

End If 

 

 

Step 5 : Calculate board basal area 

 

       measured in m
2
 

If (         < 11) Then 

        = 0 

Else 

         =                       
 
 
            

 

        =                  

End If 

 

Step 6 : Calculate board diameter 

 

         measured in centimetres 

If (         < 11) Then 

          = 0 

ElseIf (         > 31) Then 

          =          

Else 

          = 0.832332           + 5.214265 

Endif 

 

Step 7 : Calculate board frequency 

 

         measured in number of trees per hectare 

If (         < 11) Then 

          = 0 

Else 

          =          (3.141592654  (           200)
2
) 

End If 

 

Step 8 : Calculate merchantable height 

 

        measured in meters 

If (   < 4.1) Then 

         = 0 

Else 

         =                         
 
 
           

 

End If 

 

Step 9 : Calculate board height 
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        measured in meters 

If    < 11 Then 

         = 0 

Else 

         =                           
 
 
           

 

End If 

 

Step 10 : Calculate merchantable volume and board volume 

 

    and     
measured in m

3
 per hectare 

A = 1.046 

B = 383.972 

B2 = 0.145 

R1 = 0.9057 

R2 = -0.0708 

R3 = -0.8375 

R4 = 0.0043891 

R5 = 0.04365 

R6 = 0.3048 

If (        > 0 and          > 0) Then 

     = (R4  (        )
2
  (1 – R5 B2)

2
)   (A + R6  B          ) 

 S = 0.15 

 T= 7.0 

    = (T
2
   ((        )

2
  ((1 – R5  B2)

2
)))  (1 + S          ) 

        = R1 + R2     + R3      

     =             

     =               

 If (    < 0) Then 

      = 0 

 End If 

Else 

     = 0 

End If 

If (        > 0 And          > 0) Then 

     = (R4  (        )
2
  (1 – R5  B2)

2
)   (A + R6  B          ) 

 S = 0.15 

 t = 10.0 

    = (T
2
   ((        )

2
  ((1 – R5  B2)

2
)))  (1 + S          ) 

        = R1 + R2     + R3      

     =             

     
=               

 If (    
< 0) Then 

      
= 0 

 End If 
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Else 

     
= 0 

End If 

 

 

If (    
>    ) Then 

     
=     

End If 

 

Procedure 3 
 

Step 1: Calculate merchantable basal area as a fraction of stand total basal area 

 

   measured in centimeters 

        measured in m
2
 

    measured in m
2
 

If (   < 7.11) Then 

        = 0 

Else 

                   = 1 –                
              

 

 If (       < 0) Then 

         = 0 

 End If 

End If  

       =             

If (       < 0.1) Then 

        = 0 

End If 

 

Step 2 : Calculate merchantable frequency 

 

         and        
measured in number of trees per hectare 

If (   < 7.11) Then 

        = 0 

Else 

        = 1 –                
              

           

 

End If 

         =                
 

If (       < 0.1) Then 

                     = 0 

End If 

 

Step 3 : Calculate merchantable diameter 

 

          measured in centimeters 
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If (         < 1) Then 

          = 0 

Else 

          = 200  (         (          3.141592654))
0.5

 

End If 

 

Step 4 : Calculate board basal area 

 

       measured in m
2
 

If (         < 11.4) Then 

        = 0 

Else 

        = 1 –               
                      

 

 If (       < 0) Then 

         = 0 

 Else 

         =                

 End If 

End If 

 

Step 5 : Calculate board frequency 

 

         measured in number of trees per hectare 

If (         < 11.4) Then 

        = 0 

Else 

        = 1 –                
                      

 

End If 

If (       < 0) Then 

        = 0 

End If 

         =                  

 

Step 6 : Calculate board diameter 

 

         measured in centimetres 

If          < 1 Then 

          = 0 

Else 

          = 200  (         (          3.141592654))
0.5

 

End If 

 

Step 7 : Calculate stand average height 

 

     and      measured in meters 
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A = − 1.466091 

B = 0.861959 

C = 0.00108537 

     = A + B  (      3.2808) + C  (      3.2808)
2
)   3.2808 

 

 

Step 8 : Calculate merchantable height 

 

        measured in meters 

       =        /     

If (       = 1 or      > 24.4) Then 

         =      

ElseIf (       = 0) Then 

         = 0 

Else 

 A = 15.277829 

 B = 1.4316388 

 C = 0.53584452 

 D = 185.70383 

 E = 0.00000046086744 

 F = 134.91889 

 G = 68.753896 

 H = 31.713797 

 J = 0.030025568 

 K =       3.2808 

        = (−A   B  K − C  K         + D  (      )
4
 + E  (K   

      )
3
 − F  (      )

5
 − G  (      )

2
 + H  (      )

0.5
 + 

J  K         )   3.2808 

End If 

If (          0) Then 

 If (        <     ) Then 

          =      

 End If 

End If 

 

Step 9 : Calculate board height 

 

        measured in meters 

If (       > 0) Then 

        =        /        

End If 

If (       ≤ 0) Then 

         = 0 

ElseIf (       > 1) Then 

         =         

ElseIf (        = 0) Then 
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         = 0 

Else 

 A = 9.3709292 

 B = 0.046206221 

 C = 0.00074921477 

 D = 0.0000040028957 

 E = 2.8348874 

 F = 3.1858712 

 G =          3.2808 

        = (A + B  G
2
 − C  G

3
 + D  G

4
 − E         − F  (      )

5
)   

3.2808 

End If 

If (        <         or         > 24.4) Then 

         =         

End If 

 

Step 10 : Calculate merchantable volume and board volume 

 

    and     
measured in m

3
 per hectare 

A = 1.226 

B = 315.832 

If (        > 0 and          > 0) Then 

 C = ((3   (           2.54))
2
)  (1 + (0.5   (         3.2808))) 

    = 0.069972228  (          ((           2.54)
2
   (A + (B   

(         3.2808))))  (0.9604 − 0.166  C − 0.7868  C
2
)) 

 If (    < 0) Then 

      = 0 

 End If 

Else 

     = 0 

End If 

If (        > 0 And          > 0) Then 

 E = ((4   (           2.54))
2
)  (1 + (0.5   (         3.2808))) 

    
= 0.01396074  (          ((           2.54)

2
   (A + (B   

(         3.2808))))  (5.316 − 1.5928  E − 4.3747  E
2
)) 

 If (    
< 0) Then 

      
= 0 

 End If 

Else 

     
= 0 

End If 

 

Procedure 4 

 

Step 1: Calculate merchantable basal area as a fraction of stand total basal area 
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   measured in centimeters 

        measured in m
2
 

    measured in m
2
 

If (   < 7.11) Then 

        = 0 

Else 

                   = 1 –                
              

 

 If (       < 0) Then 

         = 0 

 End If 

End If  

       =             

If (       < 0.1) Then 

        = 0 

End If 

 

Step 2 : Calculate merchantable frequency 

 

         and        
measured in number of trees per hectare 

If (   < 7.11) Then 

        = 0 

Else 

        = 1 –                
              

           

 

End If 

         =                

If (       < 0.1) Then 

                     = 0 

End If 

 

Step 3 : Calculate merchantable diameter 

 

         measured in centimeters 

If (         < 1) Then 

          = 0 

Else 

          = 200  (         (          3.141592654))
0.5

 

End If 

 

Step 4 : Calculate board basal area 

 

       measured in m
2
 

If (         < 11.4) Then 

        = 0 

Else 
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        = 1 –  
                                   

 

 If (       < 0) Then 

         = 0 

 Else 

         =                

 End If 

End If 

 

Step 5 : Calculate board frequency 

 

         measured in number of trees per hectare 

If (         < 11.4) Then 

        = 0 

Else 

        = 1 –                
                      

 

End If 

If (       < 0) Then 

        = 0 

End If 

         =                  

 

Step 6 : Calculate board diameter 

 

         measured in centimetres 

If          < 1 Then 

          = 0 

Else 

          = 200  (         (          3.141592654))
0.5

 

End If 

 

Step 7 : Calculate stand average height 

 

     and      measured in meters 

     = 0.962       − 0.3979 

 

Step 8 : Calculate merchantable height 

 

        measured in meters 

       =        /     

If (       = 1 or      > 24.4) Then 

         =      

ElseIf (       = 0) Then 

         = 0 

Else 

 A = 15.277829 
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 B = 1.4316388 

 C = 0.53584452 

 D = 185.70383 

 E = 0.00000046086744 

 F = 134.91889 

 G = 68.753896 

 H = 31.713797 

 J = 0.030025568 

 K =      * 3.2808 

        = (−A   B  K − C  K         + D  (      )
4
 + E  (K   

      )
3
 − F  (      )

5
 − G  (      )

2
 + H  (      )

0.5
 + 

J  K         )   3.2808 

End If 

If (          0) Then 

 If (        <     ) Then 

          =      

 End If 

End If 

 

Step 9 : Calculate board height 

 

        measured in meters 

If (       > 0) Then 

        =        /        

End If 

If (       ≤ 0) Then 

         = 0 

ElseIf (       > 1) Then 

         =         

ElseIf (        = 0) Then 

         = 0 

Else 

 A = 9.3709292 

 B = 0.046206221 

 C = 0.00074921477 

 D = 0.0000040028957 

 E = 2.8348874 

 F = 3.1858712 

 G =         * 3.2808 

        = (A + B  G
2
 − C  G

3
 + D  G

4
 − E         − F  (      )

5
)   

3.2808 

End If 

If (        <         or         > 24.4) Then 

         =         

End If 

 



221 

Step 10 : Calculate merchantable volume and board volume 

 

    and     
measured in m

3
 per hectare 

A = 1.046 

B = 383.972 

B2 = 0.145 

R1 = 0.9057 

R2 = -0.0708 

R3 = -0.8375 

R4 = 0.0043891 

R5 = 0.04365 

R6 = 0.3048 

If (        > 0 and          > 0) Then 

     = (R4  (        )
2
  (1 – R5 B2)

2
)   (A + R6  B          ) 

 S = 0.15 

 T= 7.0 

    = (T
2
   ((        )

2
  ((1 – R5  B2)

2
)))  (1 + S          ) 

        = R1 + R2     + R3      

     =             

     =               

 If (    < 0) Then 

      = 0 

 End If 

Else 

     = 0 

End If 

If (        > 0 And          > 0) Then 

     = (R4  (        )
2
  (1 – R5  B2)

2
)   (A + R6  B          ) 

 S = 0.15 

 t = 10.0 

    = (T
2
   ((        )

2
  ((1 – R5  B2)

2
)))  (1 + S          ) 

       = R1 + R2     + R3      

     =             

     
=               

 If (    
< 0) Then 

      
= 0 

 End If 

Else 

     
= 0 

End If 

 

If (    
>    ) Then 

     
=     

End If 

 

  



222 

Appendix B: List of Controls for the DP Model 

 

This section lists controls             with the subset    in which they are applicable 

and the subset    to which      belongs after having taken decision   .  After the table, 

a short section explains how       and            are used to calculate the actual 

amount of basal area removed for each species type. 

 

 Decision (  ) 
   in which 

it applies 

Resulting    for 

     after    is 

applied to    

1 – Do nothing and let grow 1 1 

2 – Do nothing and let grow 2,3,4,5 Same    

3 – Regeneration harvest or site prep, survey and let regenerate 

naturally 

1,2,3,4,5 1 

4 - Regeneration harvest or site prep and fill plant without early 

competition control 

1,2,3,4,5 1 

5 - Regeneration harvest or site prep and plant 1000 trees/ha with 

100% softwood 

1,2,3,4,5 3 

6 - Regeneration harvest or site prep and plant 1750 trees/ha with 

100% softwood 

1,2,3,4,5 3 

7 - Regeneration harvest or site prep and plant 2500 trees/ha with 

100% softwood 

1,2,3,4,5 3 

8 - Regeneration harvest or site prep and plant 3250 trees/ha with 

100% softwood 

1,2,3,4,5 3 

9 - Regeneration harvest or site prep and plant 4000 trees/ha with 

100% softwood 

1,2,3,4,5 3 

10 - Pre-Commercial thinning - keep mixed wood 1 2 

11 - Pre-Commercial thinning - eliminate softwood and space 

hardwood if needed 

1 2 

12 - Pre-Commercial thinning - eliminate hardwood and space 

softwood if needed 

1 2 

13 - Commercial thinning (CT) -       = 20%,            = 

25% SW from below 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

14 - Commercial thinning (CT) -       = 20%,            = 

50% SW from below 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

15 - Commercial thinning (CT) -       = 20%,            = 

75% SW from below 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

16 - Commercial thinning (CT) -       = 30%,            = 

25% SW from below 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

17 - Commercial thinning (CT) -       = 30%,            = 

50% SW from below 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

18 - Commercial thinning (CT) -       = 30%,            = 

75% SW from below 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

19 - Commercial thinning (CT) -       = 40%,            = 

25% SW from below 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

20 - Commercial thinning (CT) -       = 40%,            = 

50% SW from below 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 
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 Decision (  ) 

 

   in which 

it applies 

 

Resulting    for 

     after    is 

applied to    

21 - Commercial thinning (CT) -       = 40%,            = 

75% SW from below 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

22 - Commercial thinning (CT) -       = 20%,            = 

25% SW across the diameter distribution 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

23 - Commercial thinning (CT) -       = 20%,            = 

50% SW across the diameter distribution 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

24 - Commercial thinning (CT) -       = 20%,            = 

75% SW across the diameter distribution 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

25 - Commercial thinning (CT) -       = 30%,            = 

25% SW across the diameter distribution 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

26 - Commercial thinning (CT) -       = 30%,            = 

50% SW across the diameter distribution 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

27 - Commercial thinning (CT) -       = 30%,            = 

75% SW across the diameter distribution 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

28 - Commercial thinning (CT) -       = 40%,            = 

25% SW across the diameter distribution 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

29 - Commercial thinning (CT) -       = 40%,            = 

50% SW across the diameter distribution 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

30 - Commercial thinning (CT) -       = 40%,            = 

75% SW across the diameter distribution 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

31 - Commercial thinning (CT) -       = 20%,            = 

25% SW from above 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

32 - Commercial thinning (CT) -       = 20%,            = 

50% SW from above 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

33 - Commercial thinning (CT) -       = 20%,            = 

75% SW from above 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

34 - Commercial thinning (CT) -       = 30%,            = 

25% SW from above 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

35 - Commercial thinning (CT) -       = 30%,            = 

50% SW from above 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

36 - Commercial thinning (CT) -       = 30%,            = 

75% SW from above 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

37 - Commercial thinning (CT) -       = 40%,            = 

25% SW from above 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

38 - Commercial thinning (CT) -       = 40%,            = 

50% SW from above 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

39 - Commercial thinning (CT) -       = 40%,            = 

75% SW from above 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

40 - Commercial thinning (CT) -       = 20%,            = 

100% SW from below 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

41 - Commercial thinning (CT) -       = 30%,            = 

100% SW from below 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

42 - Commercial thinning (CT) -       = 40%,            = 

100% SW from below 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

43 - Commercial thinning (CT) -       = 20%,            = 

100% SW across the diameter distribution 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 
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 Decision (  ) 

 

   in which 

it applies 

 

Resulting    for 

     after    is 

applied to    

44 - Commercial thinning (CT) -       = 30%,            = 

100% SW across the diameter distribution 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

45 - Commercial thinning (CT) -       = 40%,            = 

100% SW across the diameter distribution 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

46 - Commercial thinning (CT) -       = 20%,            = 

100% SW from above 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

47 - Commercial thinning (CT) -       = 30%,            = 

100% SW from above 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

48 - Commercial thinning (CT) -       = 40%,            = 

100% SW from above 

1,2,3,4,5 4 if    = 3 or 4, 

5 otherwise 

 

 The table above shows three values for       and four values for            

which yields 12 possible combinations.  With some stands, it isn’t possible to apply the 

combined       and            as specified.  Therefore, the following rules apply for 

commercial thinning: 

                                      
   

                                          
   

             
                       

  
 

                  
           

                       
 

 

where    = total stand basal area (m
2
),             = actual amount of basal area 

removed for each species type (m
2
) and              = actual percentage of the stand 

basal area removed.  Therefore, if there isn’t enough SW or HW to remove the amount 

prescribed by the CT action being applied, those amounts are adjusted accordingly.  For 

example, a stand has 50m
2
 of total basal area which is split 80%SW / 20%HW.  

Therefore, the stand contains 40m
2
 of SW and 10m

2
 of HW.  If action 37 were to be 

applied to this stand, it would require removal of 40% of the total basal area or 20m
2
 

which should be split 25% SW and 75% HW or 5m
2
 SW and 15m

2
 HW.  However, the 
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stand only contains 10m
2
 HW.  According to the equations given above, action 37, for the 

stand shown as an example here, means: 
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Appendix C: Example List of Evaluation States 

 

This section gives an example list of evaluation states for each subset in      .    

 

Subset   
     

Age (years) 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 

Stocking % 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

                    
Age (years) 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 

Stocking % 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 

  

Subset   
     

Units of measure: age = years,    =    = cm,    =      = percentage 

Age               
 

Age          %      
 

Age          %      

10 0.0 2.6 9 0 

 

30 11.1 9.7 58 66 

 

60 22.5 15.3 100 33 

10 3.2 2.6 9 33 

 

30 13.1 9.7 58 66 

 

60 23.7 15.3 100 33 

10 3.2 2.6 9 66 

 

30 15.1 9.7 58 66 

 

60 21.3 15.3 100 66 

10 3.2 0.0 9 100 

 

30 11.1 0.0 58 100 

 

60 22.5 15.3 100 66 

10 0.0 2.6 16 0 

 

30 13.1 0.0 58 100 

 

60 23.7 15.3 100 66 

10 3.2 2.6 16 33 

 

30 15.1 0.0 58 100 

 

60 21.3 0.0 100 100 

10 3.2 2.6 16 66 

 

30 0.0 9.7 83 0 

 

60 22.5 0.0 100 100 

10 3.2 0.0 16 100 

 

30 11.1 9.7 83 33 

 

60 23.7 0.0 100 100 

10 0.0 2.6 22 0 

 

30 13.1 9.7 83 33 

 

70 0.0 16.8 40 0 

10 3.2 2.6 22 33 

 

30 15.1 9.7 83 33 

 

70 24.0 16.8 40 33 

10 3.2 2.6 22 66 

 

30 11.1 9.7 83 66 

 

70 25.1 16.8 40 33 

10 3.2 0.0 22 100 

 

30 13.1 9.7 83 66 

 

70 26.3 16.8 40 33 

20 0.0 5.5 20 0 

 

30 15.1 9.7 83 66 

 

70 24.0 16.8 40 66 

20 0.0 6.3 20 0 

 

30 11.1 0.0 83 100 

 

70 25.1 16.8 40 66 

20 0.0 7.0 20 0 

 

30 13.1 0.0 83 100 

 

70 26.3 16.8 40 66 

20 6.5 5.5 20 33 

 

30 15.1 0.0 83 100 

 

70 24.0 0.0 40 100 

20 6.5 6.3 20 33 

 

40 0.0 12.1 40 0 

 

70 25.1 0.0 40 100 

20 6.5 7.0 20 33 

 

40 15.5 12.1 40 33 

 

70 26.3 0.0 40 100 

20 8.5 5.5 20 33 

 

40 16.9 12.1 40 33 

 

70 0.0 16.8 70 0 

20 8.5 6.3 20 33 

 

40 18.2 12.1 40 33 

 

70 24.0 16.8 70 33 

20 8.5 7.0 20 33 

 

40 15.5 12.1 40 66 

 

70 25.1 16.8 70 33 

20 10.5 5.5 20 33 

 

40 16.9 12.1 40 66 

 

70 26.3 16.8 70 33 

20 10.5 6.3 20 33 

 

40 18.2 12.1 40 66 

 

70 24.0 16.8 70 66 

20 10.5 7.0 20 33 

 

40 15.5 0.0 40 100 

 

70 25.1 16.8 70 66 

20 6.5 5.5 20 66 

 

40 16.9 0.0 40 100 

 

70 26.3 16.8 70 66 

20 6.5 6.3 20 66 

 

40 18.2 0.0 40 100 

 

70 24.0 0.0 70 100 

20 6.5 7.0 20 66 

 

40 0.0 12.1 70 0 

 

70 25.1 0.0 70 100 
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     continued… 

          Age               

 

Age          %      

 

Age          %      

20 8.5 5.5 20 66 

 

40 15.5 12.1 70 33 

 

70 26.3 0.0 70 100 

20 8.5 6.3 20 66 

 

40 16.9 12.1 70 33 

 

70 0.0 16.8 100 0 

20 8.5 7.0 20 66 

 

40 18.2 12.1 70 33 

 

70 24.0 16.8 100 33 

20 10.5 5.5 20 66 

 

40 15.5 12.1 70 66 

 

70 25.1 16.8 100 33 

20 10.5 6.3 20 66 

 

40 16.9 12.1 70 66 

 

70 26.3 16.8 100 33 

20 10.5 7.0 20 66 

 

40 18.2 12.1 70 66 

 

70 24.0 16.8 100 66 

20 6.5 0.0 20 100 

 

40 15.5 0.0 70 100 

 

70 25.1 16.8 100 66 

20 8.5 0.0 20 100 

 

40 16.9 0.0 70 100 

 

70 26.3 16.8 100 66 

20 10.5 0.0 20 100 

 

40 18.2 0.0 70 100 

 

70 24.0 0.0 100 100 

20 0.0 5.5 35 0 

 

40 0.0 12.1 100 0 

 

70 25.1 0.0 100 100 

20 0.0 6.3 35 0 

 

40 15.5 12.1 100 33 

 

70 26.3 0.0 100 100 

20 0.0 7.0 35 0 

 

40 16.9 12.1 100 33 

 

80 0.0 18.2 40 0 

20 6.5 5.5 35 33 

 

40 18.2 12.1 100 33 

 

80 26.6 18.2 40 33 

20 6.5 6.3 35 33 

 

40 15.5 12.1 100 66 

 

80 27.4 18.2 40 33 

20 6.5 7.0 35 33 

 

40 16.9 12.1 100 66 

 

80 28.2 18.2 40 33 

20 8.5 5.5 35 33 

 

40 18.2 12.1 100 66 

 

80 26.6 18.2 40 66 

20 8.5 6.3 35 33 

 

40 15.5 0.0 100 100 

 

80 27.4 18.2 40 66 

20 8.5 7.0 35 33 

 

40 16.9 0.0 100 100 

 

80 28.2 18.2 40 66 

20 10.5 5.5 35 33 

 

40 18.2 0.0 100 100 

 

80 26.6 0.0 40 100 

20 10.5 6.3 35 33 

 

50 0.0 13.9 40 0 

 

80 27.4 0.0 40 100 

20 10.5 7.0 35 33 

 

50 18.5 13.9 40 33 

 

80 28.2 0.0 40 100 

20 6.5 5.5 35 66 

 

50 19.8 13.9 40 33 

 

80 0.0 18.2 70 0 

20 6.5 6.3 35 66 

 

50 21.0 13.9 40 33 

 

80 26.6 18.2 70 33 

20 6.5 7.0 35 66 

 

50 18.5 13.9 40 66 

 

80 27.4 18.2 70 33 

20 8.5 5.5 35 66 

 

50 19.8 13.9 40 66 

 

80 28.2 18.2 70 33 

20 8.5 6.3 35 66 

 

50 21.0 13.9 40 66 

 

80 26.6 18.2 70 66 

20 8.5 7.0 35 66 

 

50 18.5 0.0 40 100 

 

80 27.4 18.2 70 66 

20 10.5 5.5 35 66 

 

50 19.8 0.0 40 100 

 

80 28.2 18.2 70 66 

20 10.5 6.3 35 66 

 

50 21.0 0.0 40 100 

 

80 26.6 0.0 70 100 

20 10.5 7.0 35 66 

 

50 0.0 13.9 70 0 

 

80 27.4 0.0 70 100 

20 6.5 0.0 35 100 

 

50 18.5 13.9 70 33 

 

80 28.2 0.0 70 100 

20 8.5 0.0 35 100 

 

50 19.8 13.9 70 33 

 

80 0.0 18.2 100 0 

20 10.5 0.0 35 100 

 

50 21.0 13.9 70 33 

 

80 26.6 18.2 100 33 

20 0.0 5.5 50 0 

 

50 18.5 13.9 70 66 

 

80 27.4 18.2 100 33 

20 0.0 6.3 50 0 

 

50 19.8 13.9 70 66 

 

80 28.2 18.2 100 33 

20 0.0 7.0 50 0 

 

50 21.0 13.9 70 66 

 

80 26.6 18.2 100 66 

20 6.5 5.5 50 33 

 

50 18.5 0.0 70 100 

 

80 27.4 18.2 100 66 

20 6.5 6.3 50 33 

 

50 19.8 0.0 70 100 

 

80 28.2 18.2 100 66 

20 6.5 7.0 50 33 

 

50 21.0 0.0 70 100 

 

80 26.6 0.0 100 100 

20 8.5 5.5 50 33 

 

50 0.0 13.9 100 0 

 

80 27.4 0.0 100 100 

20 8.5 6.3 50 33 

 

50 18.5 13.9 100 33 

 

80 28.2 0.0 100 100 

20 8.5 7.0 50 33 

 

50 19.8 13.9 100 33 

 

90 0.0 19.7 40 0 

20 10.5 5.5 50 33 

 

50 21.0 13.9 100 33 

 

90 28.5 19.7 40 33 

20 10.5 6.3 50 33 

 

50 18.5 13.9 100 66 

 

90 29.3 19.7 40 33 

20 10.5 7.0 50 33 

 

50 19.8 13.9 100 66 

 

90 30.1 19.7 40 33 
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     continued… 

        Age               

 

Age          %      

 

Age          %      

20 6.5 5.5 50 66 

 

50 21.0 13.9 100 66 

 

90 28.5 19.7 40 66 

20 6.5 6.3 50 66 

 

50 18.5 0.0 100 100 

 

90 29.3 19.7 40 66 

20 6.5 7.0 50 66 

 

50 19.8 0.0 100 100 

 

90 30.1 19.7 40 66 

20 8.5 5.5 50 66 

 

50 21.0 0.0 100 100 

 

90 28.5 0.0 40 100 

20 8.5 6.3 50 66 

 

60 0.0 15.3 40 0 

 

90 29.3 0.0 40 100 

20 8.5 7.0 50 66 

 

60 21.3 15.3 40 33 

 

90 30.1 0.0 40 100 

20 10.5 5.5 50 66 

 

60 22.5 15.3 40 33 

 

90 0.0 19.7 70 0 

20 10.5 6.3 50 66 

 

60 23.7 15.3 40 33 

 

90 28.5 19.7 70 33 

20 10.5 7.0 50 66 

 

60 21.3 15.3 40 66 

 

90 29.3 19.7 70 33 

20 6.5 0.0 50 100 

 

60 22.5 15.3 40 66 

 

90 30.1 19.7 70 33 

20 8.5 0.0 50 100 

 

60 23.7 15.3 40 66 

 

90 28.5 19.7 70 66 

20 10.5 0.0 50 100 

 

60 21.3 0.0 40 100 

 

90 29.3 19.7 70 66 

30 0.0 9.7 33 0 

 

60 22.5 0.0 40 100 

 

90 30.1 19.7 70 66 

30 11.1 9.7 33 33 

 

60 23.7 0.0 40 100 

 

90 28.5 0.0 70 100 

30 13.1 9.7 33 33 

 

60 0.0 15.3 70 0 

 

90 29.3 0.0 70 100 

30 15.1 9.7 33 33 

 

60 21.3 15.3 70 33 

 

90 30.1 0.0 70 100 

30 11.1 9.7 33 66 

 

60 22.5 15.3 70 33 

 

90 0.0 19.7 100 0 

30 13.1 9.7 33 66 

 

60 23.7 15.3 70 33 

 

90 28.5 19.7 100 33 

30 15.1 9.7 33 66 

 

60 21.3 15.3 70 66 

 

90 29.3 19.7 100 33 

30 11.1 0.0 33 100 

 

60 22.5 15.3 70 66 

 

90 30.1 19.7 100 33 

30 13.1 0.0 33 100 

 

60 23.7 15.3 70 66 

 

90 28.5 19.7 100 66 

30 15.1 0.0 33 100 

 

60 21.3 0.0 70 100 

 

90 29.3 19.7 100 66 

30 0.0 9.7 58 0 

 

60 22.5 0.0 70 100 

 

90 30.1 19.7 100 66 

30 11.1 9.7 58 33 

 

60 23.7 0.0 70 100 

 

90 28.5 0.0 100 100 

30 13.1 9.7 58 33 

 

60 0.0 15.3 100 0 

 

90 29.3 0.0 100 100 

30 15.1 9.7 58 33 

 

60 21.3 15.3 100 33 

 

90 30.1 0.0 100 100 

 

Subset   
     

Units of measure: age = years,    = cm, initial planting density = trees/hectare 

Age    
Initial planting 

density  
Age    

Initial planting 

density  
Age    

Initial planting 

density 

5 0.0 1000 

 

70 26.2 1750 

 

40 16.6 3250 

10 5.9 1000 

 

75 26.8 1750 

 

45 17.8 3250 

15 8.8 1000 

 

80 27.4 1750 

 

50 18.8 3250 

20 11.5 1000 

 

85 28.0 1750 

 

55 19.7 3250 

25 13.9 1000 

 

90 28.7 1750 

 

60 20.5 3250 

30 15.9 1000 

 

95 29.3 1750 

 

65 21.2 3250 

35 17.7 1000 

 

5 0.0 2500 

 

70 21.8 3250 

40 19.3 1000 

 

10 4.3 2500 

 

75 22.4 3250 

45 20.7 1000 

 

15 8.0 2500 

 

80 22.8 3250 

50 21.9 1000 

 

20 10.8 2500 

 

85 23.2 3250 

55 23.0 1000 

 

25 13.1 2500 

 

90 23.6 3250 

60 24.0 1000 

 

30 15.0 2500 

 

95 23.9 3250 
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     continued… 

      
Age    

Initial planting 

density  
Age    

Initial planting 

density  
Age    

Initial planting 

density 

65 24.8 1000 

 

35 16.6 2500 

 

5 0.0 4000 

70 25.6 1000 

 

40 18.0 2500 

 

10 3.7 4000 

75 26.4 1000 

 

45 19.2 2500 

 

15 6.9 4000 

80 27.0 1000 

 

50 20.3 2500 

 

20 9.3 4000 

85 27.7 1000 

 

55 21.2 2500 

 

25 11.3 4000 

90 28.3 1000 

 

60 22.1 2500 

 

30 13.0 4000 

95 28.9 1000 

 

65 22.8 2500 

 

35 14.4 4000 

5 0.0 1750 

 

70 23.5 2500 

 

40 15.6 4000 

10 4.8 1750 

 

75 24.0 2500 

 

45 16.8 4000 

15 9.0 1750 

 

80 24.5 2500 

 

50 17.7 4000 

20 12.2 1750 

 

85 25.0 2500 

 

55 18.6 4000 

25 14.8 1750 

 

90 25.3 2500 

 

60 19.4 4000 

30 16.9 1750 

 

95 25.7 2500 

 

65 20.1 4000 

35 18.7 1750 

 

5 0.0 3250 

 

70 20.7 4000 

40 20.3 1750 

 

10 3.9 3250 

 

75 21.2 4000 

45 21.6 1750 

 

15 7.3 3250 

 

80 21.7 4000 

50 22.7 1750 

 

20 10.0 3250 

 

85 22.0 4000 

55 23.8 1750 

 

25 12.1 3250 

 

90 22.4 4000 

60 24.7 1750 

 

30 13.8 3250 

 

95 22.7 4000 

65 25.5 1750 

 

35 15.3 3250 

     

Subset   
     

Units of measure: age is in years,    is in centimeters and    is a percentage 

Age       

 

Age       

 

Age       

10 3.7 40 

 

40 22.6 55 

 

70 27.7 85 

10 5.7 40 

 

40 15.8 70 

 

70 31.3 85 

10 7.7 40 

 

40 19.2 70 

 

70 24.1 100 

10 3.7 55 

 

40 22.6 70 

 

70 27.7 100 

10 5.7 55 

 

40 15.8 85 

 

70 31.3 100 

10 7.7 55 

 

40 19.2 85 

 

80 26.7 40 

10 3.7 70 

 

40 22.6 85 

 

80 30.0 40 

10 5.7 70 

 

40 15.8 100 

 

80 33.3 40 

10 7.7 70 

 

40 19.2 100 

 

80 26.7 55 

10 3.7 85 

 

40 22.6 100 

 

80 30.0 55 

10 5.7 85 

 

50 18.6 40 

 

80 33.3 55 

10 7.7 85 

 

50 22.3 40 

 

80 26.7 70 

10 3.7 100 

 

50 26.0 40 

 

80 30.0 70 

10 5.7 100 

 

50 18.6 55 

 

80 33.3 70 

10 7.7 100 

 

50 22.3 55 

 

80 26.7 85 

20 9.3 40 

 

50 26.0 55 

 

80 30.0 85 

20 11.4 40 

 

50 18.6 70 

 

80 33.3 85 

20 13.5 40 

 

50 22.3 70 

 

80 26.7 100 
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     continued… 

      Age       

 

Age       

 

Age       

20 9.3 55 

 

50 26.0 70 

 

80 30.0 100 

20 11.4 55 

 

50 18.6 85 

 

80 33.3 100 

20 13.5 55 

 

50 22.3 85 

 

90 28.0 40 

20 9.3 70 

 

50 26.0 85 

 

90 31.5 40 

20 11.4 70 

 

50 18.6 100 

 

90 35.1 40 

20 13.5 70 

 

50 22.3 100 

 

90 28.0 55 

20 9.3 85 

 

50 26.0 100 

 

90 31.5 55 

20 11.4 85 

 

60 21.4 40 

 

90 35.1 55 

20 13.5 85 

 

60 25.1 40 

 

90 28.0 70 

20 9.3 100 

 

60 28.9 40 

 

90 31.5 70 

20 11.4 100 

 

60 21.4 55 

 

90 35.1 70 

20 13.5 100 

 

60 25.1 55 

 

90 28.0 85 

30 13.0 40 

 

60 28.9 55 

 

90 31.5 85 

30 15.7 40 

 

60 21.4 70 

 

90 35.1 85 

30 18.5 40 

 

60 25.1 70 

 

90 28.0 100 

30 13.0 55 

 

60 28.9 70 

 

90 31.5 100 

30 15.7 55 

 

60 21.4 85 

 

90 35.1 100 

30 18.5 55 

 

60 25.1 85 

 

100 29.2 40 

30 13.0 70 

 

60 28.9 85 

 

100 32.9 40 

30 15.7 70 

 

60 21.4 100 

 

100 36.6 40 

30 18.5 70 

 

60 25.1 100 

 

100 29.2 55 

30 13.0 85 

 

60 28.9 100 

 

100 32.9 55 

30 15.7 85 

 

70 24.1 40 

 

100 36.6 55 

30 18.5 85 

 

70 27.7 40 

 

100 29.2 70 

30 13.0 100 

 

70 31.3 40 

 

100 32.9 70 

30 15.7 100 

 

70 24.1 55 

 

100 36.6 70 

30 18.5 100 

 

70 27.7 55 

 

100 29.2 85 

40 15.8 40 

 

70 31.3 55 

 

100 32.9 85 

40 19.2 40 

 

70 24.1 70 

 

100 36.6 85 

40 22.6 40 

 

70 27.7 70 

 

100 29.2 100 

40 15.8 55 

 

70 31.3 70 

 

100 32.9 100 

40 19.2 55 

 

70 24.1 85 

 

100 36.6 100 

 

Subset   
     

Units of measure: age = years,    =    = cm,    =      = percentage 

Age               

 

Age               

 

Age               

30 0.0 8.4 40 0 

 

60 23.7 20.1 55 66 

 

70 26.2 19.7 85 33 

30 0.0 10.0 40 0 

 

60 28.5 15.5 55 66 

 

70 26.2 22.1 85 33 

30 0.0 11.6 40 0 

 

60 28.5 17.8 55 66 

 

70 31.0 17.3 85 33 

40 0.0 11.0 40 0 

 

60 28.5 20.1 55 66 

 

70 31.0 19.7 85 33 

40 0.0 13.0 40 0 

 

70 21.5 17.3 55 66 

 

70 31.0 22.1 85 33 

40 0.0 15.0 40 0 

 

70 21.5 19.7 55 66 

 

80 23.7 18.8 85 33 

50 0.0 13.4 40 0 

 

70 21.5 22.1 55 66 

 

80 23.7 21.2 85 33 
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          Age               

 

Age               

 

Age               

50 0.0 15.6 40 0 

 

70 26.2 17.3 55 66 

 

80 23.7 23.7 85 33 

50 0.0 17.8 40 0 

 

70 26.2 19.7 55 66 

 

80 28.4 18.8 85 33 

60 0.0 15.5 40 0 

 

70 26.2 22.1 55 66 

 

80 28.4 21.2 85 33 

60 0.0 17.8 40 0 

 

70 31.0 17.3 55 66 

 

80 28.4 23.7 85 33 

60 0.0 20.1 40 0 

 

70 31.0 19.7 55 66 

 

80 33.0 18.8 85 33 

70 0.0 17.3 40 0 

 

70 31.0 22.1 55 66 

 

80 33.0 21.2 85 33 

70 0.0 19.7 40 0 

 

80 23.7 18.8 55 66 

 

80 33.0 23.7 85 33 

70 0.0 22.1 40 0 

 

80 23.7 21.2 55 66 

 

90 25.7 20.1 85 33 

80 0.0 18.8 40 0 

 

80 23.7 23.7 55 66 

 

90 25.7 22.6 85 33 

80 0.0 21.2 40 0 

 

80 28.4 18.8 55 66 

 

90 25.7 25.2 85 33 

80 0.0 23.7 40 0 

 

80 28.4 21.2 55 66 

 

90 30.3 20.1 85 33 

90 0.0 20.1 40 0 

 

80 28.4 23.7 55 66 

 

90 30.3 22.6 85 33 

90 0.0 22.6 40 0 

 

80 33.0 18.8 55 66 

 

90 30.3 25.2 85 33 

90 0.0 25.2 40 0 

 

80 33.0 21.2 55 66 

 

90 34.9 20.1 85 33 

100 0.0 21.1 40 0 

 

80 33.0 23.7 55 66 

 

90 34.9 22.6 85 33 

100 0.0 23.8 40 0 

 

90 25.7 20.1 55 66 

 

90 34.9 25.2 85 33 

100 0.0 26.5 40 0 

 

90 25.7 22.6 55 66 

 

100 27.4 21.1 85 33 

30 9.8 8.4 40 33 

 

90 25.7 25.2 55 66 

 

100 27.4 23.8 85 33 

30 9.8 10.0 40 33 

 

90 30.3 20.1 55 66 

 

100 27.4 26.5 85 33 

30 9.8 11.6 40 33 

 

90 30.3 22.6 55 66 

 

100 32.0 21.1 85 33 

30 13.8 8.4 40 33 

 

90 30.3 25.2 55 66 

 

100 32.0 23.8 85 33 

30 13.8 10.0 40 33 

 

90 34.9 20.1 55 66 

 

100 32.0 26.5 85 33 

30 13.8 11.6 40 33 

 

90 34.9 22.6 55 66 

 

100 36.7 21.1 85 33 

30 17.8 8.4 40 33 

 

90 34.9 25.2 55 66 

 

100 36.7 23.8 85 33 

30 17.8 10.0 40 33 

 

100 27.4 21.1 55 66 

 

100 36.7 26.5 85 33 

30 17.8 11.6 40 33 

 

100 27.4 23.8 55 66 

 

30 9.8 8.4 85 66 

40 13.0 11.0 40 33 

 

100 27.4 26.5 55 66 

 

30 9.8 10.0 85 66 

40 13.0 13.0 40 33 

 

100 32.0 21.1 55 66 

 

30 9.8 11.6 85 66 

40 13.0 15.0 40 33 

 

100 32.0 23.8 55 66 

 

30 13.8 8.4 85 66 

40 17.6 11.0 40 33 

 

100 32.0 26.5 55 66 

 

30 13.8 10.0 85 66 

40 17.6 13.0 40 33 

 

100 36.7 21.1 55 66 

 

30 13.8 11.6 85 66 

40 17.6 15.0 40 33 

 

100 36.7 23.8 55 66 

 

30 17.8 8.4 85 66 

40 22.1 11.0 40 33 

 

100 36.7 26.5 55 66 

 

30 17.8 10.0 85 66 

40 22.1 13.0 40 33 

 

30 9.8 0.0 55 100 

 

30 17.8 11.6 85 66 

40 22.1 15.0 40 33 

 

30 13.8 0.0 55 100 

 

40 13.0 11.0 85 66 

50 16.1 13.4 40 33 

 

30 17.8 0.0 55 100 

 

40 13.0 13.0 85 66 

50 16.1 15.6 40 33 

 

40 13.0 0.0 55 100 

 

40 13.0 15.0 85 66 

50 16.1 17.8 40 33 

 

40 17.6 0.0 55 100 

 

40 17.6 11.0 85 66 

50 20.8 13.4 40 33 

 

40 22.1 0.0 55 100 

 

40 17.6 13.0 85 66 

50 20.8 15.6 40 33 

 

50 16.1 0.0 55 100 

 

40 17.6 15.0 85 66 

50 20.8 17.8 40 33 

 

50 20.8 0.0 55 100 

 

40 22.1 11.0 85 66 

50 25.6 13.4 40 33 

 

50 25.6 0.0 55 100 

 

40 22.1 13.0 85 66 

50 25.6 15.6 40 33 

 

60 18.9 0.0 55 100 

 

40 22.1 15.0 85 66 

50 25.6 17.8 40 33 

 

60 23.7 0.0 55 100 

 

50 16.1 13.4 85 66 

60 18.9 15.5 40 33 

 

60 28.5 0.0 55 100 

 

50 16.1 15.6 85 66 
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          Age               

 

Age               

 

Age               

60 18.9 17.8 40 33 

 

70 21.5 0.0 55 100 

 

50 16.1 17.8 85 66 

60 18.9 20.1 40 33 

 

70 26.2 0.0 55 100 

 

50 20.8 13.4 85 66 

60 23.7 15.5 40 33 

 

70 31.0 0.0 55 100 

 

50 20.8 15.6 85 66 

60 23.7 17.8 40 33 

 

80 23.7 0.0 55 100 

 

50 20.8 17.8 85 66 

60 23.7 20.1 40 33 

 

80 28.4 0.0 55 100 

 

50 25.6 13.4 85 66 

60 28.5 15.5 40 33 

 

80 33.0 0.0 55 100 

 

50 25.6 15.6 85 66 

60 28.5 17.8 40 33 

 

90 25.7 0.0 55 100 

 

50 25.6 17.8 85 66 

60 28.5 20.1 40 33 

 

90 30.3 0.0 55 100 

 

60 18.9 15.5 85 66 

70 21.5 17.3 40 33 

 

90 34.9 0.0 55 100 

 

60 18.9 17.8 85 66 

70 21.5 19.7 40 33 

 

100 27.4 0.0 55 100 

 

60 18.9 20.1 85 66 

70 21.5 22.1 40 33 

 

100 32.0 0.0 55 100 

 

60 23.7 15.5 85 66 

70 26.2 17.3 40 33 

 

100 36.7 0.0 55 100 

 

60 23.7 17.8 85 66 

70 26.2 19.7 40 33 

 

30 0.0 8.4 70 0 

 

60 23.7 20.1 85 66 

70 26.2 22.1 40 33 

 

30 0.0 10.0 70 0 

 

60 28.5 15.5 85 66 

70 31.0 17.3 40 33 

 

30 0.0 11.6 70 0 

 

60 28.5 17.8 85 66 

70 31.0 19.7 40 33 

 

40 0.0 11.0 70 0 

 

60 28.5 20.1 85 66 

70 31.0 22.1 40 33 

 

40 0.0 13.0 70 0 

 

70 21.5 17.3 85 66 

80 23.7 18.8 40 33 

 

40 0.0 15.0 70 0 

 

70 21.5 19.7 85 66 

80 23.7 21.2 40 33 

 

50 0.0 13.4 70 0 

 

70 21.5 22.1 85 66 

80 23.7 23.7 40 33 

 

50 0.0 15.6 70 0 

 

70 26.2 17.3 85 66 

80 28.4 18.8 40 33 

 

50 0.0 17.8 70 0 

 

70 26.2 19.7 85 66 

80 28.4 21.2 40 33 

 

60 0.0 15.5 70 0 

 

70 26.2 22.1 85 66 

80 28.4 23.7 40 33 

 

60 0.0 17.8 70 0 

 

70 31.0 17.3 85 66 

80 33.0 18.8 40 33 

 

60 0.0 20.1 70 0 

 

70 31.0 19.7 85 66 

80 33.0 21.2 40 33 

 

70 0.0 17.3 70 0 

 

70 31.0 22.1 85 66 

80 33.0 23.7 40 33 

 

70 0.0 19.7 70 0 

 

80 23.7 18.8 85 66 

90 25.7 20.1 40 33 

 

70 0.0 22.1 70 0 

 

80 23.7 21.2 85 66 

90 25.7 22.6 40 33 

 

80 0.0 18.8 70 0 

 

80 23.7 23.7 85 66 

90 25.7 25.2 40 33 

 

80 0.0 21.2 70 0 

 

80 28.4 18.8 85 66 

90 30.3 20.1 40 33 

 

80 0.0 23.7 70 0 

 

80 28.4 21.2 85 66 

90 30.3 22.6 40 33 

 

90 0.0 20.1 70 0 

 

80 28.4 23.7 85 66 

90 30.3 25.2 40 33 

 

90 0.0 22.6 70 0 

 

80 33.0 18.8 85 66 

90 34.9 20.1 40 33 

 

90 0.0 25.2 70 0 

 

80 33.0 21.2 85 66 

90 34.9 22.6 40 33 

 

100 0.0 21.1 70 0 

 

80 33.0 23.7 85 66 

90 34.9 25.2 40 33 

 

100 0.0 23.8 70 0 

 

90 25.7 20.1 85 66 

100 27.4 21.1 40 33 

 

100 0.0 26.5 70 0 

 

90 25.7 22.6 85 66 

100 27.4 23.8 40 33 

 

30 9.8 8.4 70 33 

 

90 25.7 25.2 85 66 

100 27.4 26.5 40 33 

 

30 9.8 10.0 70 33 

 

90 30.3 20.1 85 66 

100 32.0 21.1 40 33 

 

30 9.8 11.6 70 33 

 

90 30.3 22.6 85 66 

100 32.0 23.8 40 33 

 

30 13.8 8.4 70 33 

 

90 30.3 25.2 85 66 

100 32.0 26.5 40 33 

 

30 13.8 10.0 70 33 

 

90 34.9 20.1 85 66 

100 36.7 21.1 40 33 

 

30 13.8 11.6 70 33 

 

90 34.9 22.6 85 66 

100 36.7 23.8 40 33 

 

30 17.8 8.4 70 33 

 

90 34.9 25.2 85 66 

100 36.7 26.5 40 33 

 

30 17.8 10.0 70 33 

 

100 27.4 21.1 85 66 

30 9.8 8.4 40 66 

 

30 17.8 11.6 70 33 

 

100 27.4 23.8 85 66 
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Age               

 

Age               

30 9.8 10.0 40 66 

 

40 13.0 11.0 70 33 

 

100 27.4 26.5 85 66 

30 9.8 11.6 40 66 

 

40 13.0 13.0 70 33 

 

100 32.0 21.1 85 66 

30 13.8 8.4 40 66 

 

40 13.0 15.0 70 33 

 

100 32.0 23.8 85 66 

30 13.8 10.0 40 66 

 

40 17.6 11.0 70 33 

 

100 32.0 26.5 85 66 

30 13.8 11.6 40 66 

 

40 17.6 13.0 70 33 

 

100 36.7 21.1 85 66 

30 17.8 8.4 40 66 

 

40 17.6 15.0 70 33 

 

100 36.7 23.8 85 66 

30 17.8 10.0 40 66 

 

40 22.1 11.0 70 33 

 

100 36.7 26.5 85 66 

30 17.8 11.6 40 66 

 

40 22.1 13.0 70 33 

 

30 9.8 0.0 85 100 

40 13.0 11.0 40 66 

 

40 22.1 15.0 70 33 

 

30 13.8 0.0 85 100 

40 13.0 13.0 40 66 

 

50 16.1 13.4 70 33 

 

30 17.8 0.0 85 100 

40 13.0 15.0 40 66 

 

50 16.1 15.6 70 33 

 

40 13.0 0.0 85 100 

40 17.6 11.0 40 66 

 

50 16.1 17.8 70 33 

 

40 17.6 0.0 85 100 

40 17.6 13.0 40 66 

 

50 20.8 13.4 70 33 

 

40 22.1 0.0 85 100 

40 17.6 15.0 40 66 

 

50 20.8 15.6 70 33 

 

50 16.1 0.0 85 100 

40 22.1 11.0 40 66 

 

50 20.8 17.8 70 33 

 

50 20.8 0.0 85 100 

40 22.1 13.0 40 66 

 

50 25.6 13.4 70 33 

 

50 25.6 0.0 85 100 

40 22.1 15.0 40 66 

 

50 25.6 15.6 70 33 

 

60 18.9 0.0 85 100 

50 16.1 13.4 40 66 

 

50 25.6 17.8 70 33 

 

60 23.7 0.0 85 100 

50 16.1 15.6 40 66 

 

60 18.9 15.5 70 33 

 

60 28.5 0.0 85 100 

50 16.1 17.8 40 66 

 

60 18.9 17.8 70 33 

 

70 21.5 0.0 85 100 

50 20.8 13.4 40 66 

 

60 18.9 20.1 70 33 

 

70 26.2 0.0 85 100 

50 20.8 15.6 40 66 

 

60 23.7 15.5 70 33 

 

70 31.0 0.0 85 100 

50 20.8 17.8 40 66 

 

60 23.7 17.8 70 33 

 

80 23.7 0.0 85 100 

50 25.6 13.4 40 66 

 

60 23.7 20.1 70 33 

 

80 28.4 0.0 85 100 

50 25.6 15.6 40 66 

 

60 28.5 15.5 70 33 

 

80 33.0 0.0 85 100 

50 25.6 17.8 40 66 

 

60 28.5 17.8 70 33 

 

90 25.7 0.0 85 100 

60 18.9 15.5 40 66 

 

60 28.5 20.1 70 33 

 

90 30.3 0.0 85 100 

60 18.9 17.8 40 66 

 

70 21.5 17.3 70 33 

 

90 34.9 0.0 85 100 

60 18.9 20.1 40 66 

 

70 21.5 19.7 70 33 

 

100 27.4 0.0 85 100 

60 23.7 15.5 40 66 

 

70 21.5 22.1 70 33 

 

100 32.0 0.0 85 100 

60 23.7 17.8 40 66 

 

70 26.2 17.3 70 33 

 

100 36.7 0.0 85 100 

60 23.7 20.1 40 66 

 

70 26.2 19.7 70 33 

 

30 0.0 8.4 100 0 

60 28.5 15.5 40 66 

 

70 26.2 22.1 70 33 

 

30 0.0 10.0 100 0 

60 28.5 17.8 40 66 

 

70 31.0 17.3 70 33 

 

30 0.0 11.6 100 0 

60 28.5 20.1 40 66 

 

70 31.0 19.7 70 33 

 

40 0.0 11.0 100 0 

70 21.5 17.3 40 66 

 

70 31.0 22.1 70 33 

 

40 0.0 13.0 100 0 

70 21.5 19.7 40 66 

 

80 23.7 18.8 70 33 

 

40 0.0 15.0 100 0 

70 21.5 22.1 40 66 

 

80 23.7 21.2 70 33 

 

50 0.0 13.4 100 0 

70 26.2 17.3 40 66 

 

80 23.7 23.7 70 33 

 

50 0.0 15.6 100 0 

70 26.2 19.7 40 66 

 

80 28.4 18.8 70 33 

 

50 0.0 17.8 100 0 

70 26.2 22.1 40 66 

 

80 28.4 21.2 70 33 

 

60 0.0 15.5 100 0 

70 31.0 17.3 40 66 

 

80 28.4 23.7 70 33 

 

60 0.0 17.8 100 0 

70 31.0 19.7 40 66 

 

80 33.0 18.8 70 33 

 

60 0.0 20.1 100 0 

70 31.0 22.1 40 66 

 

80 33.0 21.2 70 33 

 

70 0.0 17.3 100 0 

80 23.7 18.8 40 66 

 

80 33.0 23.7 70 33 

 

70 0.0 19.7 100 0 
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Age               

 

Age               

80 23.7 21.2 40 66 

 

90 25.7 20.1 70 33 

 

70 0.0 22.1 100 0 

80 23.7 23.7 40 66 

 

90 25.7 22.6 70 33 

 

80 0.0 18.8 100 0 

80 28.4 18.8 40 66 

 

90 25.7 25.2 70 33 

 

80 0.0 21.2 100 0 

80 28.4 21.2 40 66 

 

90 30.3 20.1 70 33 

 

80 0.0 23.7 100 0 

80 28.4 23.7 40 66 

 

90 30.3 22.6 70 33 

 

90 0.0 20.1 100 0 

80 33.0 18.8 40 66 

 

90 30.3 25.2 70 33 

 

90 0.0 22.6 100 0 

80 33.0 21.2 40 66 

 

90 34.9 20.1 70 33 

 

90 0.0 25.2 100 0 

80 33.0 23.7 40 66 

 

90 34.9 22.6 70 33 

 

100 0.0 21.1 100 0 

90 25.7 20.1 40 66 

 

90 34.9 25.2 70 33 

 

100 0.0 23.8 100 0 

90 25.7 22.6 40 66 

 

100 27.4 21.1 70 33 

 

100 0.0 26.5 100 0 

90 25.7 25.2 40 66 

 

100 27.4 23.8 70 33 

 

30 9.8 8.4 100 33 

90 30.3 20.1 40 66 

 

100 27.4 26.5 70 33 

 

30 9.8 10.0 100 33 

90 30.3 22.6 40 66 

 

100 32.0 21.1 70 33 

 

30 9.8 11.6 100 33 

90 30.3 25.2 40 66 

 

100 32.0 23.8 70 33 

 

30 13.8 8.4 100 33 

90 34.9 20.1 40 66 

 

100 32.0 26.5 70 33 

 

30 13.8 10.0 100 33 

90 34.9 22.6 40 66 

 

100 36.7 21.1 70 33 

 

30 13.8 11.6 100 33 

90 34.9 25.2 40 66 

 

100 36.7 23.8 70 33 

 

30 17.8 8.4 100 33 

100 27.4 21.1 40 66 

 

100 36.7 26.5 70 33 

 

30 17.8 10.0 100 33 

100 27.4 23.8 40 66 

 

30 9.8 8.4 70 66 

 

30 17.8 11.6 100 33 

100 27.4 26.5 40 66 

 

30 9.8 10.0 70 66 

 

40 13.0 11.0 100 33 

100 32.0 21.1 40 66 

 

30 9.8 11.6 70 66 

 

40 13.0 13.0 100 33 

100 32.0 23.8 40 66 

 

30 13.8 8.4 70 66 

 

40 13.0 15.0 100 33 

100 32.0 26.5 40 66 

 

30 13.8 10.0 70 66 

 

40 17.6 11.0 100 33 

100 36.7 21.1 40 66 

 

30 13.8 11.6 70 66 

 

40 17.6 13.0 100 33 

100 36.7 23.8 40 66 

 

30 17.8 8.4 70 66 

 

40 17.6 15.0 100 33 

100 36.7 26.5 40 66 

 

30 17.8 10.0 70 66 

 

40 22.1 11.0 100 33 

30 9.8 0.0 40 100 

 

30 17.8 11.6 70 66 

 

40 22.1 13.0 100 33 

30 13.8 0.0 40 100 

 

40 13.0 11.0 70 66 

 

40 22.1 15.0 100 33 

30 17.8 0.0 40 100 

 

40 13.0 13.0 70 66 

 

50 16.1 13.4 100 33 

40 13.0 0.0 40 100 

 

40 13.0 15.0 70 66 

 

50 16.1 15.6 100 33 

40 17.6 0.0 40 100 

 

40 17.6 11.0 70 66 

 

50 16.1 17.8 100 33 

40 22.1 0.0 40 100 

 

40 17.6 13.0 70 66 

 

50 20.8 13.4 100 33 

50 16.1 0.0 40 100 

 

40 17.6 15.0 70 66 

 

50 20.8 15.6 100 33 

50 20.8 0.0 40 100 

 

40 22.1 11.0 70 66 

 

50 20.8 17.8 100 33 

50 25.6 0.0 40 100 

 

40 22.1 13.0 70 66 

 

50 25.6 13.4 100 33 

60 18.9 0.0 40 100 

 

40 22.1 15.0 70 66 

 

50 25.6 15.6 100 33 

60 23.7 0.0 40 100 

 

50 16.1 13.4 70 66 

 

50 25.6 17.8 100 33 

60 28.5 0.0 40 100 

 

50 16.1 15.6 70 66 

 

60 18.9 15.5 100 33 

70 21.5 0.0 40 100 

 

50 16.1 17.8 70 66 

 

60 18.9 17.8 100 33 

70 26.2 0.0 40 100 

 

50 20.8 13.4 70 66 

 

60 18.9 20.1 100 33 

70 31.0 0.0 40 100 

 

50 20.8 15.6 70 66 

 

60 23.7 15.5 100 33 

80 23.7 0.0 40 100 

 

50 20.8 17.8 70 66 

 

60 23.7 17.8 100 33 

80 28.4 0.0 40 100 

 

50 25.6 13.4 70 66 

 

60 23.7 20.1 100 33 

80 33.0 0.0 40 100 

 

50 25.6 15.6 70 66 

 

60 28.5 15.5 100 33 

90 25.7 0.0 40 100 

 

50 25.6 17.8 70 66 

 

60 28.5 17.8 100 33 
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90 30.3 0.0 40 100 

 

60 18.9 15.5 70 66 

 

60 28.5 20.1 100 33 

90 34.9 0.0 40 100 

 

60 18.9 17.8 70 66 

 

70 21.5 17.3 100 33 

100 27.4 0.0 40 100 

 

60 18.9 20.1 70 66 

 

70 21.5 19.7 100 33 

100 32.0 0.0 40 100 

 

60 23.7 15.5 70 66 

 

70 21.5 22.1 100 33 

100 36.7 0.0 40 100 

 

60 23.7 17.8 70 66 

 

70 26.2 17.3 100 33 

30 0.0 8.4 55 0 

 

60 23.7 20.1 70 66 

 

70 26.2 19.7 100 33 

30 0.0 10.0 55 0 

 

60 28.5 15.5 70 66 

 

70 26.2 22.1 100 33 

30 0.0 11.6 55 0 

 

60 28.5 17.8 70 66 

 

70 31.0 17.3 100 33 

40 0.0 11.0 55 0 

 

60 28.5 20.1 70 66 

 

70 31.0 19.7 100 33 

40 0.0 13.0 55 0 

 

70 21.5 17.3 70 66 

 

70 31.0 22.1 100 33 

40 0.0 15.0 55 0 

 

70 21.5 19.7 70 66 

 

80 23.7 18.8 100 33 

50 0.0 13.4 55 0 

 

70 21.5 22.1 70 66 

 

80 23.7 21.2 100 33 

50 0.0 15.6 55 0 

 

70 26.2 17.3 70 66 

 

80 23.7 23.7 100 33 

50 0.0 17.8 55 0 

 

70 26.2 19.7 70 66 

 

80 28.4 18.8 100 33 

60 0.0 15.5 55 0 

 

70 26.2 22.1 70 66 

 

80 28.4 21.2 100 33 

60 0.0 17.8 55 0 

 

70 31.0 17.3 70 66 

 

80 28.4 23.7 100 33 

60 0.0 20.1 55 0 

 

70 31.0 19.7 70 66 

 

80 33.0 18.8 100 33 

70 0.0 17.3 55 0 

 

70 31.0 22.1 70 66 

 

80 33.0 21.2 100 33 

70 0.0 19.7 55 0 

 

80 23.7 18.8 70 66 

 

80 33.0 23.7 100 33 

70 0.0 22.1 55 0 

 

80 23.7 21.2 70 66 

 

90 25.7 20.1 100 33 

80 0.0 18.8 55 0 

 

80 23.7 23.7 70 66 

 

90 25.7 22.6 100 33 

80 0.0 21.2 55 0 

 

80 28.4 18.8 70 66 

 

90 25.7 25.2 100 33 

80 0.0 23.7 55 0 

 

80 28.4 21.2 70 66 

 

90 30.3 20.1 100 33 

90 0.0 20.1 55 0 

 

80 28.4 23.7 70 66 

 

90 30.3 22.6 100 33 

90 0.0 22.6 55 0 

 

80 33.0 18.8 70 66 

 

90 30.3 25.2 100 33 

90 0.0 25.2 55 0 

 

80 33.0 21.2 70 66 

 

90 34.9 20.1 100 33 

100 0.0 21.1 55 0 

 

80 33.0 23.7 70 66 

 

90 34.9 22.6 100 33 

100 0.0 23.8 55 0 

 

90 25.7 20.1 70 66 

 

90 34.9 25.2 100 33 

100 0.0 26.5 55 0 

 

90 25.7 22.6 70 66 

 

100 27.4 21.1 100 33 

30 9.8 8.4 55 33 

 

90 25.7 25.2 70 66 

 

100 27.4 23.8 100 33 

30 9.8 10.0 55 33 

 

90 30.3 20.1 70 66 

 

100 27.4 26.5 100 33 

30 9.8 11.6 55 33 

 

90 30.3 22.6 70 66 

 

100 32.0 21.1 100 33 

30 13.8 8.4 55 33 

 

90 30.3 25.2 70 66 

 

100 32.0 23.8 100 33 

30 13.8 10.0 55 33 

 

90 34.9 20.1 70 66 

 

100 32.0 26.5 100 33 

30 13.8 11.6 55 33 

 

90 34.9 22.6 70 66 

 

100 36.7 21.1 100 33 

30 17.8 8.4 55 33 

 

90 34.9 25.2 70 66 

 

100 36.7 23.8 100 33 

30 17.8 10.0 55 33 

 

100 27.4 21.1 70 66 

 

100 36.7 26.5 100 33 

30 17.8 11.6 55 33 

 

100 27.4 23.8 70 66 

 

30 9.8 8.4 100 66 

40 13.0 11.0 55 33 

 

100 27.4 26.5 70 66 

 

30 9.8 10.0 100 66 

40 13.0 13.0 55 33 

 

100 32.0 21.1 70 66 

 

30 9.8 11.6 100 66 

40 13.0 15.0 55 33 

 

100 32.0 23.8 70 66 

 

30 13.8 8.4 100 66 

40 17.6 11.0 55 33 

 

100 32.0 26.5 70 66 

 

30 13.8 10.0 100 66 

40 17.6 13.0 55 33 

 

100 36.7 21.1 70 66 

 

30 13.8 11.6 100 66 

40 17.6 15.0 55 33 

 

100 36.7 23.8 70 66 

 

30 17.8 8.4 100 66 

40 22.1 11.0 55 33 

 

100 36.7 26.5 70 66 

 

30 17.8 10.0 100 66 
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     continued… 

          Age               

 

Age               

 

Age               

40 22.1 13.0 55 33 

 

30 9.8 0.0 70 100 

 

30 17.8 11.6 100 66 

40 22.1 15.0 55 33 

 

30 13.8 0.0 70 100 

 

40 13.0 11.0 100 66 

50 16.1 13.4 55 33 

 

30 17.8 0.0 70 100 

 

40 13.0 13.0 100 66 

50 16.1 15.6 55 33 

 

40 13.0 0.0 70 100 

 

40 13.0 15.0 100 66 

50 16.1 17.8 55 33 

 

40 17.6 0.0 70 100 

 

40 17.6 11.0 100 66 

50 20.8 13.4 55 33 

 

40 22.1 0.0 70 100 

 

40 17.6 13.0 100 66 

50 20.8 15.6 55 33 

 

50 16.1 0.0 70 100 

 

40 17.6 15.0 100 66 

50 20.8 17.8 55 33 

 

50 20.8 0.0 70 100 

 

40 22.1 11.0 100 66 

50 25.6 13.4 55 33 

 

50 25.6 0.0 70 100 

 

40 22.1 13.0 100 66 

50 25.6 15.6 55 33 

 

60 18.9 0.0 70 100 

 

40 22.1 15.0 100 66 

50 25.6 17.8 55 33 

 

60 23.7 0.0 70 100 

 

50 16.1 13.4 100 66 

60 18.9 15.5 55 33 

 

60 28.5 0.0 70 100 

 

50 16.1 15.6 100 66 

60 18.9 17.8 55 33 

 

70 21.5 0.0 70 100 

 

50 16.1 17.8 100 66 

60 18.9 20.1 55 33 

 

70 26.2 0.0 70 100 

 

50 20.8 13.4 100 66 

60 23.7 15.5 55 33 

 

70 31.0 0.0 70 100 

 

50 20.8 15.6 100 66 

60 23.7 17.8 55 33 

 

80 23.7 0.0 70 100 

 

50 20.8 17.8 100 66 

60 23.7 20.1 55 33 

 

80 28.4 0.0 70 100 

 

50 25.6 13.4 100 66 

60 28.5 15.5 55 33 

 

80 33.0 0.0 70 100 

 

50 25.6 15.6 100 66 

60 28.5 17.8 55 33 

 

90 25.7 0.0 70 100 

 

50 25.6 17.8 100 66 

60 28.5 20.1 55 33 

 

90 30.3 0.0 70 100 

 

60 18.9 15.5 100 66 

70 21.5 17.3 55 33 

 

90 34.9 0.0 70 100 

 

60 18.9 17.8 100 66 

70 21.5 19.7 55 33 

 

100 27.4 0.0 70 100 

 

60 18.9 20.1 100 66 

70 21.5 22.1 55 33 

 

100 32.0 0.0 70 100 

 

60 23.7 15.5 100 66 

70 26.2 17.3 55 33 

 

100 36.7 0.0 70 100 

 

60 23.7 17.8 100 66 

70 26.2 19.7 55 33 

 

30 0.0 8.4 85 0 

 

60 23.7 20.1 100 66 

70 26.2 22.1 55 33 

 

30 0.0 10.0 85 0 

 

60 28.5 15.5 100 66 

70 31.0 17.3 55 33 

 

30 0.0 11.6 85 0 

 

60 28.5 17.8 100 66 

70 31.0 19.7 55 33 

 

40 0.0 11.0 85 0 

 

60 28.5 20.1 100 66 

70 31.0 22.1 55 33 

 

40 0.0 13.0 85 0 

 

70 21.5 17.3 100 66 

80 23.7 18.8 55 33 

 

40 0.0 15.0 85 0 

 

70 21.5 19.7 100 66 

80 23.7 21.2 55 33 

 

50 0.0 13.4 85 0 

 

70 21.5 22.1 100 66 

80 23.7 23.7 55 33 

 

50 0.0 15.6 85 0 

 

70 26.2 17.3 100 66 

80 28.4 18.8 55 33 

 

50 0.0 17.8 85 0 

 

70 26.2 19.7 100 66 

80 28.4 21.2 55 33 

 

60 0.0 15.5 85 0 

 

70 26.2 22.1 100 66 

80 28.4 23.7 55 33 

 

60 0.0 17.8 85 0 

 

70 31.0 17.3 100 66 

80 33.0 18.8 55 33 

 

60 0.0 20.1 85 0 

 

70 31.0 19.7 100 66 

80 33.0 21.2 55 33 

 

70 0.0 17.3 85 0 

 

70 31.0 22.1 100 66 

80 33.0 23.7 55 33 

 

70 0.0 19.7 85 0 

 

80 23.7 18.8 100 66 

90 25.7 20.1 55 33 

 

70 0.0 22.1 85 0 

 

80 23.7 21.2 100 66 

90 25.7 22.6 55 33 

 

80 0.0 18.8 85 0 

 

80 23.7 23.7 100 66 

90 25.7 25.2 55 33 

 

80 0.0 21.2 85 0 

 

80 28.4 18.8 100 66 

90 30.3 20.1 55 33 

 

80 0.0 23.7 85 0 

 

80 28.4 21.2 100 66 

90 30.3 22.6 55 33 

 

90 0.0 20.1 85 0 

 

80 28.4 23.7 100 66 

90 30.3 25.2 55 33 

 

90 0.0 22.6 85 0 

 

80 33.0 18.8 100 66 

90 34.9 20.1 55 33 

 

90 0.0 25.2 85 0 

 

80 33.0 21.2 100 66 
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     continued… 

          Age               

 

Age               

 

Age               

90 34.9 22.6 55 33 

 

100 0.0 21.1 85 0 

 

80 33.0 23.7 100 66 

90 34.9 25.2 55 33 

 

100 0.0 23.8 85 0 

 

90 25.7 20.1 100 66 

100 27.4 21.1 55 33 

 

100 0.0 26.5 85 0 

 

90 25.7 22.6 100 66 

100 27.4 23.8 55 33 

 

30 9.8 8.4 85 33 

 

90 25.7 25.2 100 66 

100 27.4 26.5 55 33 

 

30 9.8 10.0 85 33 

 

90 30.3 20.1 100 66 

100 32.0 21.1 55 33 

 

30 9.8 11.6 85 33 

 

90 30.3 22.6 100 66 

100 32.0 23.8 55 33 

 

30 13.8 8.4 85 33 

 

90 30.3 25.2 100 66 

100 32.0 26.5 55 33 

 

30 13.8 10.0 85 33 

 

90 34.9 20.1 100 66 

100 36.7 21.1 55 33 

 

30 13.8 11.6 85 33 

 

90 34.9 22.6 100 66 

100 36.7 23.8 55 33 

 

30 17.8 8.4 85 33 

 

90 34.9 25.2 100 66 

100 36.7 26.5 55 33 

 

30 17.8 10.0 85 33 

 

100 27.4 21.1 100 66 

30 9.8 8.4 55 66 

 

30 17.8 11.6 85 33 

 

100 27.4 23.8 100 66 

30 9.8 10.0 55 66 

 

40 13.0 11.0 85 33 

 

100 27.4 26.5 100 66 

30 9.8 11.6 55 66 

 

40 13.0 13.0 85 33 

 

100 32.0 21.1 100 66 

30 13.8 8.4 55 66 

 

40 13.0 15.0 85 33 

 

100 32.0 23.8 100 66 

30 13.8 10.0 55 66 

 

40 17.6 11.0 85 33 

 

100 32.0 26.5 100 66 

30 13.8 11.6 55 66 

 

40 17.6 13.0 85 33 

 

100 36.7 21.1 100 66 

30 17.8 8.4 55 66 

 

40 17.6 15.0 85 33 

 

100 36.7 23.8 100 66 

30 17.8 10.0 55 66 

 

40 22.1 11.0 85 33 

 

100 36.7 26.5 100 66 

30 17.8 11.6 55 66 

 

40 22.1 13.0 85 33 

 

30 9.8 0.0 100 100 

40 13.0 11.0 55 66 

 

40 22.1 15.0 85 33 

 

30 13.8 0.0 100 100 

40 13.0 13.0 55 66 

 

50 16.1 13.4 85 33 

 

30 17.8 0.0 100 100 

40 13.0 15.0 55 66 

 

50 16.1 15.6 85 33 

 

40 13.0 0.0 100 100 

40 17.6 11.0 55 66 

 

50 16.1 17.8 85 33 

 

40 17.6 0.0 100 100 

40 17.6 13.0 55 66 

 

50 20.8 13.4 85 33 

 

40 22.1 0.0 100 100 

40 17.6 15.0 55 66 

 

50 20.8 15.6 85 33 

 

50 16.1 0.0 100 100 

40 22.1 11.0 55 66 

 

50 20.8 17.8 85 33 

 

50 20.8 0.0 100 100 

40 22.1 13.0 55 66 

 

50 25.6 13.4 85 33 

 

50 25.6 0.0 100 100 

40 22.1 15.0 55 66 

 

50 25.6 15.6 85 33 

 

60 18.9 0.0 100 100 

50 16.1 13.4 55 66 

 

50 25.6 17.8 85 33 

 

60 23.7 0.0 100 100 

50 16.1 15.6 55 66 

 

60 18.9 15.5 85 33 

 

60 28.5 0.0 100 100 

50 16.1 17.8 55 66 

 

60 18.9 17.8 85 33 

 

70 21.5 0.0 100 100 

50 20.8 13.4 55 66 

 

60 18.9 20.1 85 33 

 

70 26.2 0.0 100 100 

50 20.8 15.6 55 66 

 

60 23.7 15.5 85 33 

 

70 31.0 0.0 100 100 

50 20.8 17.8 55 66 

 

60 23.7 17.8 85 33 

 

80 23.7 0.0 100 100 

50 25.6 13.4 55 66 

 

60 23.7 20.1 85 33 

 

80 28.4 0.0 100 100 

50 25.6 15.6 55 66 

 

60 28.5 15.5 85 33 

 

80 33.0 0.0 100 100 

50 25.6 17.8 55 66 

 

60 28.5 17.8 85 33 

 

90 25.7 0.0 100 100 

60 18.9 15.5 55 66 

 

60 28.5 20.1 85 33 

 

90 30.3 0.0 100 100 

60 18.9 17.8 55 66 

 

70 21.5 17.3 85 33 

 

90 34.9 0.0 100 100 

60 18.9 20.1 55 66 

 

70 21.5 19.7 85 33 

 

100 27.4 0.0 100 100 

60 23.7 15.5 55 66 

 

70 21.5 22.1 85 33 

 

100 32.0 0.0 100 100 

60 23.7 17.8 55 66 

 

70 26.2 17.3 85 33 

 

100 36.7 0.0 100 100 
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Appendix D: Commercial Thinning Equations 

  

 This appendix shows the equations and supporting data for commercial thinning 

as it was implemented in this thesis.  See section 3.2 for equations and graph for thinning 

from below for softwood.  Equations (D-1) and (D-2) are the same when thinning from 

above and from below for softwood or hardwood.  Equation (D-3) is used for thinning 

from below where     goes up subsequent to thinning and equation (D-4) is used for 

thinning from above where     goes down. 

 

 14Rem = (       - 0.05) / 0.35 * (14_high - 14_low) + 14_low  (D-1) 

 35Rem = (       - 0.05) / 0.35 * (35_high - 35_low) + 35_low  (D-2) 

  

 Thinning from below:     =   + (   - 14) / 21 * (35Rem - 14Rem) + 14Rem    

           (D-3) 

  

 Thinning from above:     =   - ((   - 14) / 21 * (35Rem - 14Rem) + 14Rem)  

              (D-4) 

 

 where         is the actual basal area percentage to be removed for species   

  14_low – Average diameter change for        = 5% and    = 14 cm 

  14_high – Average diameter change for        = 40% and    = 14 cm 

  35_low – Average diameter change for        = 5% and    = 35 cm 

  35_high – Average diameter change for        = 40% and    = 35 cm 

  14Rem – Average diameter change for a given        with    = 14 cm 

  35Rem – Average diameter change for a given        with    = 35 cm 

      is the average diameter of the stand immediately following the CT 

 

Softwood thinning from above  

 

 For each combination of species type and thinning type, equations (D-1) and (D-2) 

are used to calculate the diameter growth for a stand with 14 cm and 35 cm diameters for 

the given        percentage.  The values in equations (D-1a) and (D-2a) are for 

softwood thinning from above. 

 

 14Rem = (       - 0.05) / 0.35 * (1.5345 – 0.1947) + 0.1947  (D-1a) 

 35Rem = (       - 0.05) / 0.35 * (2.9183 – 0.3254) + 0.3254  (D-2a) 
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Figure D-1 - Plot of 5280 diameter change simulations for CT from above for SW 

 

Hardwood thinning from below 

 

 14Rem = (       - 0.05) / 0.35 * (2.3199 – 0.6675) + 0.6675  (D-1b) 

 35Rem = (       - 0.05) / 0.35 * (8.0899 – 1.0476) + 1.0476  (D-2b) 

 

 

Figure D-2 - Plot of 5280 diameter change simulations for CT from below for HW 
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Hardwood thinning from above 

 

 14Rem = (       - 0.05) / 0.35 * (1.5243 – 0.215) + 0.215  (D-1c) 

 35Rem = (       - 0.05) / 0.35 * (3.0908 – 0.3517) + 0.3517  (D-2c) 

 

 

Figure D-3 - Plot of 5280 diameter change simulations for CT from above for HW 
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Appendix E: Visual Basic Code for the DP Model 

 

 The DP model used in this thesis was built using the Visual Basic coding language 

and is included in this thesis in its entirety.  It is available as a download in text file 

format from Dalhousie University or from the author upon request.  The code uses a form 

on which the user can enter scenario specific parameter values before launching the DP 

optimization.  A screen shot of the form is shown in section 4.6.  Please contact the 

author if this form is needed to run the code. 

  


