ConcerNING THE EFrEcT 0F GravITY ON THE (CONCENTRATION

oF A SorLuTeE.—By Harorp S. Davis, B. A., Dalhousie
College, Halifax, N. S.*

Read 31st. May, 1911,

Suppose that a solution of uniform concentration is placed
in a tube of constant cross-scetion and of vertical height, /, and
is exposed to the influence of gravity.

In general the concentration must now change throughout
the solution in order to produce equilibrinm which obtains after

an infinite time.

If (Fig. 1) the height
of the tube is represented
by M N, and the concen-
tration at any point by a
distance @ perpendicular
to M. N, then « will trace
out a line A B represent-
ing the concentration of
the solution at any point.
At the beginning, A B will
be a straight line parallel
to xy. At final equil-
ibrium it will be a straight
line which iis in general
inclined to MN. See L.
Vegard, Contributions to
the Theory of Solutions,
Phil. Mag., series 6, no.
77, page 258). TFor any
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time ¢ less than infinity, A B will represent the distribution of

the solute.

*Published in this part by permission of the council of the N. S, Institute of

Science.
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292 CONCERNING THE EFFECT OF GRAVITY

In the article referred to above, Vegard proves from con-
siderations of dynamical and thermodynamical equilibrium,
that the final distribution of the solute will depend on whether
the density of the solution at that particular concentration
inereases or decreases for an infinitely small increase in con-
centration. In the special case in which a small change in
concentration makes no corresponding change in density, the
concentration of the solution will remain uniform throughout
even when exposed to gravity.

Suppose now the homogeneous solution is exposed to grav-
ity, its concentration will begin to change, solute flowing from
the' top to the bottom or vice versa, according as the density at
that particular concentration increases or decreases with the
concentration. This flow will be comparatively large at first,
but will fall away to zero as an exponential function of the time.
When equilibrinm is reached, there is the same concentration
gradient at everv height of the column. Tf now we consider
the force of gravity removed, the solution will begin to diffuse
back to its initial condition of uniform concentration. and it
seems reasonable to suppose that the flow will be exaetly similar
to that in the original solution, that is it will be comparatively
lavge at first, and will fall away as an exponential function of
the time.

If this be true, then the original diffusion flow is exactly
similar to one in a tube not exposed to any force such as gravity
and where the initial concentration gradient is equal to that
which actually exists in final equilibrinm in the solution exposed
to gravity.

Now it is always assumed that the diffusion of a solute is
analagous to the flow of heat, and obeys Fourier’s linear diffu-
sion law, and the conditions in the differential equation:
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Where T — time.
¢ == concentration of solute,
x = distance from any fixed plane perpendicular
to the direction of flow.

D = a constant for that particular solvent and solute.

Assuming this, the other condition we have is that no solute
passes through the limiting lavers A N or B M (Fig. 1).

To get this problem into a form suitable for mathematical
analysis let us imagine that we have an infinite number of
tubes of solution such as in (Fig. 1) of length I, and with a
concentration gradient as in final equilibrium. Suppose now
we place these together end to end so that the end of greatest
concentration in one meets the end of greatest concentration
in the other (Fig. 2).
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Diffusion begins and the solute in the tube M N flows in the
direetion of the gradient and similarly in the other tubes. The
concentration at the plane M I> therefore decreases and that at
n Q increases. But since there is no gradient at the planc
P M or at the plane n @, so solute can pass through them,
whieh is the condition required in our problem.

Now, since the concentration in M » obevs Fourier’s linear
diffusion law, it is a function of the distance & from the plane
P M, and of the time T , and may be expanded in a Fourier’s
series, but since ® () = ® (—a) onlyv cosine terms enter.
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In the same way ;
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and if @ = I - then @ (x) = —
x = o then ® (x) =

@ = - then ® (z)=o0

which shows that the analysis is correct physically. So that at
any time, T
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which is a Fourier’s Series as is readily seen.

If then we have (D) the diffusion coefficient of the sub-
stance and (I) the length of the solution tube, and (a) the
initial difference in concentration at the limiting layer from
that at final equilibrium, we can calculate what will be the
value'of (@) at any future time.

Three things are necessary that this change in concentra-
tion, due to gravity, may be detected in a solution in a reason-
able time:

(1) The change in density with concentration must be
large at that concentration.

(2) The diffusion constant must be as large as possible.
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(3) The substance must lend itself readily to the detec-
tion of change in concentration.

It scems likelv that some organic solutes and solvents ean
be found which will have all these factors at a maximum. Data
on the first two factors can be found for some substances in
Landolt Bornstein’s tables, and of these cane sugar seems to be
one of the most satisfactory. It has a large diffusion eonstant,
and can be obtained very pure, and its concentration can be
accurately estimated by the polariscope.

The following ecalculations are made for a tube 3 meters in
length, and 1) for cane sugar is taken as .300 as about the mean
of the results of Grahm and Arrhenius.

D =.300 where the em. is the unit of length, the gram the
unit of mass, and the day the unit of time.

Caleulation of the fall for one year; that is, for @ at x =20,
and t = 365.

—10x%.3x 365 ~9x10x0.3 x 365
00000 x 1 1 90000 x 1
at = 8,01 € +g—€ ........
il
~0.012 ~0.108
Sat 1
= 71‘2 € + f)_ € 8k e e & S s
oy A0 (0-988. 4+ 0.098 ... )
ol

= 0.9a approximately.

So that in a tube of this length the fall in concentration of
the sugar solution at the end of one year wounld only he about
one-tenth of the total fall after an infinite time. For a con-
centration of 1 to 4 this wonld be about ten per ecent. of

—1T —6
10x10  x150=15x10  gr. which is a change of con-
centration that in a solution of that strength would defy deree-
tion.
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Nor would any material advantage be obtained by either
shortening or lengthening the tube, for in the first case the
total effect is decreased and soon gets beyond the limit of detec-,
tion, and in the other, the time to obtain the same percentage
fall is inecreased so as to soon debar experimental verification.

This effect would then be difficult to show in the laboratory,
except perhaps for some organic substances, and for these there
is no available data on diffusion constants or on density. In
nature, however, there are immense bodies of water in the
ocaen. These have been there for a long time, though with
disturbing factors, and here this effect might be detected.

Practically the only comprehensive and reliable data on the
composition of sea water is to be found in the Reports of H.
M. 8. Challenger, Physics and Chemistry, vol. 1. A great
number of samples of waters from various latitudes and depths
were secured and analysed. The whole results are given. There
is also an excellent report on deep-sea temperatures.

Now it will be well to consider whether there arc other
factors present which would modify the effect in question.
These are:

(1) Ocean currents which tend by continually stirring up

the water to keep the whole at constant concentration.

(2) The effect of hydrostatic pressure. In the article

referred to above, Vegard assumes that the fluid is
incompressible and his results are worked out on that
assumption.  (See also Ostwald, Solutions, Muir’s
translation, 1894, p. 61).

(8) Temperature.

The effect of temperature on the concentration of a solute
is difficult to calenlate for this reason.

Proc. & TRans. N, &, Inst, Scr, Vor. XII, TRANS — 20,



298 CONCERNING THE EFFECT OF GRAVITY

O
Varouv

7y
L Qv r O

C

Fic. 3.

Suppose we have the space A, B, C. D (Fig. 3) filled with
a liquid and its vapour, and attempt to form a temperature
gradient between A, B and D, C. Then, if we keep the planes
A,B and C,D at two fixed and different temperatures, the
same amount of heat will not pass out through the one at lower
temperature as passes in through the one at higher temperature
for two reasons:

(1) The liquid itself will circulate and do work because
every liquid changes its specific volume with tem-
perature, consequently if it expands with heat, the
heated part will rise to the top and give place to
cooler and vice versa if it contracts.

(2) The vapour will circulate from points of higher vapour
pressure to those of lower.

It would then be impossible to obtain a permanent fixed
horizontal temperature gradient in a liquid. Perhaps this fact
has some bearing on ocean currents and trade-winds, since the
tendency is for the water at the poles to be colder than that at
the equator. Currents of water and water vapour must result.

The only possible permanent temperature gradient, then,
which can exist in a liquid, that changes its specific volume with
temperature, is a vertical one. The direction of this gradient
will be from top to bottom or vice versa according as the liquid
expands or contracts with heat.

Suppose such a gradient to exist in a solvent, and let solute
be introduced without disturbing the solvent till it is saturated
at each point. Then if we neglect the change in specific gravity
due to the introduction of solute or suppose it to be less than
that due to the temperature gradient, there will be an increase
or decrease in the concentration with height, in the case of a
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temperature gradient from top to bottom, according as the
solubility increases or decreases with temperature,

[f such a concentration gradient exists for the saturated
solution. there would still exist one, thought not the same in
magnitude in solutions not saturated.

Taking the case where increase of temperature is followed
by increase of solubility as is the case of most salts in sea water,
and where the direction of the temperature gradient and of the
flow of heat is downward, as in the ocean, the concentration will
inerease from the bottom upward.

Now the temperature of the ocean decreases fairly rapidly
d>wn to about 800 fathoms, from about 70 F. to 38 F., bu
after that for the next 1,000 fathoms or more it decreases only
1 to 2 F, so that the temperature of the ocean at great depths
is remarkably constant. See Challenger Reports, vol. 1, table
6, and also the report on deep-sea temperatures).

G ONCENTRATION
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The effect of temperature will thus be a decrease in con-
centration with depth down to the point where the temperature
becomes fairly constant. After this the effect of temperature will
gradually die away.
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Superposed on this is the effect of gravity, which, as we have
seen, will, for inorganic salts, be to increase the concentration
with the depth. I have roughly represented the first effect by
the curve (1), Fig. 4, and that of the second by curve (2). They
will give a resultant curve (3) of change in concentration with
depth, and if we suppose the first effect to be the greater near
the surface, then the concentration will first decrease, not neces-
sarily uniformly, down to a certain point where the two effects
just counterbalance, and from thence will inerease steadily to
the bottom.

This would account for the actual distribution of the saline
contents of sea water as actually found from the summary of
the rcsearches on the “Challenger” as given by Dittmar. (See
Encyclopedia Britannica, 9th edit., “Sea Water”).

“In places where there is active dilution at the surface, the
salinity as a rule increases down to some 50 or 100 fathoms,
but thence downward it follows the general rule, thal is, it
decreases down to 800 or 1.000 fathoms, and thence increases
steadily to the bottom.”

Of the data available from the reports on the concentration
of the separate constituents, only that of the absorbed gases is
of value since the others were determined relatively to the total
chlorine content.

Apart from the fact of the large increase of solubility of
gases with temperature, the increase of density with concentra-
tion, though positive, is extremely small and difficult to measure.
(S e Ostwald, Solutions, p. 32).

Tt was found that:

(1) The amount of nitrogen increases with the depth.

(2) Tke amount of.oxygen decreases with the depth.

But as a matter of fact, the increase of density with con-
centration for oxvgen is greater than for nitrogen, which ought
therefore to show a greater increase with the depth.

Dittmar cxplains the decrease of oxygen as being due to
oxidation.

(For the greater part of the mathematics in this paper T am
indebted to Dr. H. T, Bronson, of the Department of Physies.
Dalhousie College.)
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