
CONTRIBUTIONS TOWARDS SOLVING THE PARALLEL
MACHINE SCHEDULING PROBLEM WITH NON-AVAILABILITY

PERIODS

by

Mark Manser

Submitted in partial fulfillment of the requirements
for the degree of Master of Applied Science

at

Dalhousie University
Halifax, Nova Scotia

August 2021

© Copyright by Mark Manser, 2021

Dedicated to the late Dr. Eldon Gunn

ii

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . vii

Acknowledgements . viii

Chapter 1 Introduction . 1

1.1 Preliminaries . 2
1.1.1 Parallel Machine Scheduling Notation 2
1.1.2 Accounting For Non-Availability Periods & Resumability . . . 4
1.1.3 Solution Methods . 6

1.2 Literature Review . 8
1.2.1 Results for the Makespan Problem with Machine Non-Availability 8
1.2.2 Results for the TWC Problem with Machine Non-Availability 11

1.3 Motivation and Research Goals . 14

Chapter 2 Makespan Minimization Problem 17

2.1 Definition of the Makespan Problem 17

2.2 MILP Modelling of the Makespan Problem 18

2.3 New contributions to improve the MILP 21
2.3.1 Adding new constraints to the MILP 21
2.3.2 Adding symmetry breaking . 22
2.3.3 Adding lower bounds . 24
2.3.4 Using warm-start . 27
2.3.5 MILP Experiments . 27

2.4 CP Modelling of the Makespan Problem 30

2.5 CP Experiments . 36

2.6 Comparison of MILP & CP . 38

Chapter 3 Total Weighted Completion Time Minimization 40

3.1 Definition of the Total Weighted Completion Time Problem 40

iii

3.2 Constructive Heuristic . 40

3.3 MILP Modelling of the Total Weighted Completion Time Problem . . 41

3.4 MILP Experiments . 43
3.4.1 Experiment #1: Validation example 43
3.4.2 Experiment #2: Impact of altering job weights 45
3.4.3 Experiment #3: Graham’s Experiment for TWC 46

3.5 CP Modelling of the Total Weighted Completion Time Problem . . . 48

3.6 CP Experiments . 49

3.7 Comparison of MILP, CP, & Heuristic 50

Chapter 4 Conclusion & Directions For Further Research 53

Bibliography . 55

Appendix A. GLPK MILP Code for the minimum makespan problem 62

Appendix B. GLPK MILP Code for the minimum TWC problem . . 66

iv

List of Tables

2.1 Graham’s Experiment (MILP): Time to Prove Optimal Solution 28

2.2 Graham’s Experiment (MILP): Improved Lower Bounds 29

2.3 Graham’s Experiment (MILP): Time to Reach Optimal Solution 30

2.4 Example Feasible Solutions: Disjunctive Constraint 32

2.5 Graham’s Experiment (CP): Time To Prove Optimal Solution . 37

2.6 Graham’s Experiment (CP): Time to Reach Optimal Solution . 37

2.7 Graham’s Experiment - Time to Prove Optimality 38

2.8 Graham’s Experiment - Time to Reach Optimality 39

3.1 Instance from Mellouli et al. 44

3.2 Altered Job Weights . 45

3.3 Graham’s Experiment (MILP): Total Weighted Completion Time 47

3.4 Graham’s Experiment TWC - CP 50

3.5 Graham’s Experiment TWC - Small Instances 51

3.6 Graham’s Experiment TWC - Large Instances 52

v

List of Figures

1.1 Optimal Solution With and Without Non-Availability Period . 5

1.2 Types of Resumability . 5

2.1 Illustration of the penalty incurred when a job is interrupted . 17

2.2 Availability Sections of Planning Horizon 26

2.3 Liquid Processing Time Analogy 26

2.4 Disjunctive Global Constraint Example Solutions 32

3.1 Mellouli Example - Setup . 44

3.2 Instance from Mellouli - Solution 44

3.3 Setup for second experiment 45

3.4 Altered Job Weights - Solutions 46

3.5 Tot Weighted Completion Time - 4 Machines, 9 Jobs - Opt Sol 47

vi

Abstract

An abundance of research exists studying parallel machine scheduling, but only a

portion of this research has focused on the case with non-availability periods and job

resumability factors. Research considering this case has mostly focused on limited

cases such as a small, fixed number of machines or fixed number of non-availability

periods. In this research, we improve the runtime of the model by Beaton et al.

(2016) who proposed a mixed-integer linear programming (MILP) model allowing

an arbitrary number of machines, non-availability periods, and resumability factor

for small instances of the makespan minimization case. We propose a new MILP

model for the Total Weighted Completion Time (TWC) case and two constraint

programming (CP) models for both the makespan and TWC cases and find that the

CP models outperform the MILP for the TWC case. We confirm that the well-known

Weighted Shortest Processing Time heuristic works well for large TWC instances.

vii

Acknowledgements

Thank you to my friends and family for your love and support throughout my journey

in the fields of industrial engineering and operations research. A special thank you

to my supervisor Dr. Claver Diallo, a friend and mentor without whom I surely

would not have completed this thesis. I also express my sincerest gratitude to Dr.

John Blake, a member of my supervisory committee, and to Dr. Majid Taghavi, the

external examiner. They have provided valuable suggestions and insightful comments.

viii

Chapter 1

Introduction

Scheduling plays an important role in the modern economy and in everyday life. Ap-

pointments, meetings, conferences, and recreational activities all need to be organized

to occur within the set time intervals. Proper scheduling ensures that all of these ac-

tivities can occur without unnecessary waiting periods and avoids resource conflicts.

In short, scheduling provides us with confidence that activities can be executed effi-

ciently.

Depending upon the type of activity being scheduled, a different performance

metric may be used to describe what makes a schedule efficient. For example, a

repair shop may be tasked with completing all tasks of a work order in as short a

time as possible (called makespan) in order to return a vehicle to service promptly.

A contract manufacturer may wish to prioritize the completion of its jobs according

to their economic value (total weighted completion time). A satellite specialist may

need to schedule events to start or end as close to a certain alignment time as possible

(weighted earliness and tardiness). In general, scheduling involves assigning tasks to

a finite number of resources in a way that does not exceed capacity and satisfies some

target or optimizes some performance metric.

A common approach for modelling such problems is the machine scheduling prob-

lem which represents resources as machines and activities as jobs which must be

assigned to machines. This type of problem has been the subject of a vast and di-

verse amount of research over past decades and continues today due to its impact

in all parts of our lives. A common assumption in machine scheduling problems is

that machines are continuously available throughout the planning horizon. This is

not always the case, and there is opportunity for improved performance by determin-

ing how to best schedule jobs that must stop before and resume immediately after

1

2

non-availability periods, especially in the case of interruption penalties.

1.1 Preliminaries

1.1.1 Parallel Machine Scheduling Notation

Parallel machine scheduling problems can be described using a notation originally

proposed by Graham et al. [27]. This notation is usually presented as the ordered

triple α | β | γ which represent the environment, the job characteristics, and the

objective or performance metric respectively.

The environment parameter α classifies the environment in which the machine

operates as either single, parallel, or dedicated [57]. A single machine environment

is one in which all jobs must be processed on one machine. A parallel (or multiple)

machine environment allows jobs to be processed on more than one machine. Each

parallel machine may be either identical, meaning that jobs require the same amount

of time to process regardless of the machine to which they are assigned; uniform,

meaning that all jobs assigned to that machine require an amount of time to pro-

cess that is a constant (called speed factor) multiple of their base processing time;

or unrelated meaning that there is, in general, no relation between the machines. A

dedicated machine environment is one in which jobs have multiple steps that must be

processed on different machines. Examples include open shops where machines are

uniform (different speed factors) and each job must be processed on each machine;

job shops where the order of machines on which a job must be processed differs by

job; and flow shops where there is a single machine sequence and all jobs must be

processed on machines according to that sequence[31].

The job characteristics parameter β specifies the choices (and consequences) that

can be made in scheduling the processing of each job. Examples include whether jobs

can be preempted (interrupted prior to completion in order to start a different job),

resumed (processing interrupted and then continued at a later time, possibly with

some rework or other considerations), and also whether there exists non-availability

periods in the schedule that must be accommodated. Preemption has many types, two

3

of the more common of which are operational and arbitrary [57]. Operational preemp-

tion requires that a job must be resumed on the same machine upon which it started

whereas arbitrary preemption relaxes this requirement allowing the job to resume on

any machine to which it could otherwise be assigned. Problems where jobs cannot be

preempted are intuitively called non-preemptive. Resumability refers to the rework

penalty that is incurred when a job resumes immediately after an interruption. Jobs

can be fully-resumable (no rework penalty), non-resumable (job must restart from

its beginning) [47], or semi-resumable (incur a rework penalty proportional to some

fraction of the work completed prior to interruption) [48]. The parameter β, as well

as the other parameters, can be a compound parameter, in which case it is usually

hyphenated to separate sub-parameters. This allows the combination of multiple job

characteristics in a single model such as resumability and non-availability periods [31].

The objective metric parameter γ specifies the metric to be optimized. Exam-

ples include minimizing makespan (end time of last job completed on any machine),

weighted total completion time (scalar product of each job’s end time and a numeric

weight given for each job), and total lateness (sum of completion time of each job

subtract its due date) [31].

The following scheduling problems are considered in this research:

Pm | ar − ai,q | Cmax

Pm | r − ai,q |
∑︂

wjCj

In the first scheduling problem the first parameter (α) has value Pm which repre-

sents the parallel machine problem. The second, compound parameter (β) has first

value ar which represents an arbitrary resumability factor falling anywhere between 0

and 1, where 0 represents zero rework required (fully-resumable case) and 1 represents

100% rework required (non-resumable case). The second value of the β parameter

has value ai,q which represents the number of non-availability periods q on each ma-

chine i. This research considers an arbitrary number of machines and an arbitrary

number of non-availability periods per machine. The third parameter (γ) has value

Cmax where C represents the completion time of jobs and therefore Cmax represents

4

the maximum completion time of any job (a.k.a makespan) which is to be minimized.

In the second scheduling problem the β parameter has first value r which repre-

sents the fully-resumable case (nr would represent the non-resumable case). The γ

parameter has value
∑︁
wjCj which means Total Weighted Completion Time (TWC),

or equivalently the scalar product of machine completion times and their priority

scores.

1.1.2 Accounting For Non-Availability Periods & Resumability

We now discuss the importance of considering non-availability periods when schedul-

ing. Consider the following situation generalized from Hashemian [31]: Two jobs j1

and j2 need to be scheduled on parallel machines M1 and M2 to minimize makespan.

Job j1 has a longer duration than job j2. We refer to Figure 1.1 for this example. If

there are no non-availability periods, then the obvious solution is to assign each job

to a different machine arbitrarily. However, if there are non-availability periods the

decision making process requires more thought. If the jobs must not be interrupted,

then only jobs that can be completed during the time preceding a non-availability

period may be scheduled. As such, longer jobs could only start after the end of the

non-availability period. If the jobs can be interrupted, then we wish to avoid un-

necessary interruptions such as in Figure 1.1 where the interruption of job j1 by the

non-availability period causes it to have two sections, the later of which completes

at a later time than if the jobs had been assigned to opposite machines. This is

because job j2 would have completed before the start of the non-availability period,

also shown in Figure 1.1 if it had been assigned to machine M1 and the longer job

j1 would not have been interrupted on machine M2.

Yet another factor needs to be considered when scheduling if a rework penalty is

introduced. Figure 1.2 shows how the completion time of a job changes depending

upon the magnitude of the rework penalty. In such cases the scheduling decision

must also account for the amount of processing time completed prior to interruption

in addition to the duration of the non-availability period.

The interaction between a job’s completion time and the amount of processing

5

Figure 1.1: Optimal Solution With and Without Non-Availability Period

Figure 1.2: Types of Resumability

6

time completed before successive jobs are interrupted leads to an extremely chal-

lenging scheduling problem. Indeed, even makespan minimization problems with two

machines are NP-Hard as shown by Lenstra et al. [53]. Given the importance of these

types of scheduling problems, it is thus no surprise that special methodologies have

been developed in attempts to find good solutions to the problems.

1.1.3 Solution Methods

Given the importance and complexity of the parallel machine scheduling problem,

many heuristic methods have been designed to find good solutions quickly. Many of

these heuristics involve the well-known List Scheduling (LS) procedure. In LS, jobs

are sorted according to a sorting rule and then, one at a time, in sorted order, a

machine is chosen to which they are assigned using an assignment rule. Examples of

sorting rules include Longest Processing Time (LPT) such as in the LPT2 heuristic of

Lee [47], and Weighted Shortest Processing Time (WSPT) [69] where jobs are sorted

in decreasing order of their priority to processing time ratio. Examples of assignment

rules include choosing the machine with the earliest available starting time, or in the

case of non-availability periods, choosing the machine which will result in the job

completing earliest.

A common exact method used for scheduling is Mixed Integer Linear Program-

ming (MILP). Formulating a parallel machine scheduling problem as a MILP typically

involves defining binary variables representing the assignment of jobs to specific ma-

chines, defining a linear objective function that is some (possibly indirect) function

of the assignment variables, and expressing the restrictions on job assignments and

job start times as linear constraints. The model is then solved using a generic MILP

solver which produces progressively better solutions using a combination of branching

strategies, cutting planes, and heuristics. The strength of a MILP model generally

comes from the strength of its linear programming relaxation. Unfortunately, it is

well known that many scheduling problems suffer from weak linear programming re-

laxations which is a major contributor to the difficulty of proving optimality using

MILP models.

7

An alternative exact method that is well known to have achieved significant suc-

cess on scheduling problems (at least for the minimum makespan objective [42]) is

Constraint Programming (CP). Unlike MILP, the strength of CP does not (at least

traditionally) rely upon the strength of a linear programming relaxation. In fact,

many CP models need not be linear at all. Historically, CP has instead been a

method focused on finding feasible solutions to problems. However, optimality can

be achieved by successively solving feasibility problems and then adding a constraint

that any solution must improve upon the objective function value of the incumbent

solution.

One limitation of CP is that all variables and coefficients must be integers. This

is because (finite domain) CP solvers represent each variable as its integer domain.

However, this has not posed a problem for many scheduling problems since researchers

have traditionally been most interested in solving problems where time variables are

guaranteed to be integer valued, or the time resolution of the model can be scaled

such that this is achieved. A strength of this domain-based representation is that it

allows the use of specialized filtering algorithms to eliminate values that cannot lead

to a feasible solution, thereby reducing the search space. The domains of variables

are watched by the solver and when a value in the domain of one variable is filtered,

the effect is propagated to other constraints which then determine the values that

can be filtered from the domains of other variables as a consequence. This process

cascades, reducing the number of domain values.

CP solvers also use different types of search strategies. Fixed search strategies are

typically problem-specific and user-provided. These often consist of a variable selec-

tion strategy that decides upon which variable to branch in the search tree, and a

value selection strategy that selects the next integer value in the domain to try. This

is often sufficient control to implement some of the scheduling heuristics that have

proven so effective which is a major contributor to the success of CP for scheduling

problems, along with the filtering power of specialized global constraints [70].

More recently, several solvers have adopted Lazy Clause Generation [63][20], a

8

technique that leverages improvements from Boolean satisfiability (SAT) solving.

This technique has improved solvers’ abilities to learn from mistakes during search

via explanations and often leads to significant reductions in solve times along with

allowing some solvers [65] to develop effective automatic search. Historically, when

modelling with CP it has often been advantageous to represent a problem as combi-

nations of global constraints [9]. This is because global constraints provide the strong

filtering and propagation that lead to efficient solving. Consequently, equivalent CP

and MILP models can look quite different.

1.2 Literature Review

1.2.1 Results for the Makespan Problem with Machine Non-Availability

Much of the machine scheduling literature consists of special restricted cases of the

problems considered in this research.

The case of minimizing makespan with identical parallel machines where each

machine has at most a single non-availability period and one of the machines is al-

ways available (Pm | r − am−1,1 | Cmax) was studied by Lee [46]. He proposed an

algorithm based on Longest Processing Time (LPT) for m machines with optimality

bound (3
2
− 1

2m
)× Copt that struggles [47] when non-availabilities are scheduled later

than time 0 or if there is a non-availability period on each machine. The optimality

bound shrinks to (3
2
− 1

2mavail
) × Copt when we can exclude some machines because

they are not available for a duration greater than the current makespan [49]. Lee

[46] proposed a second Modified Longest Processing Time (MLPT) algorithm with

optimality bound 4
3
Copt which was later improved to 5

4
Copt by Guohui et al [29]. Lee

[47] introduced the LPT2 algorithm to better handle the case where non-availabilities

are scheduled later than time 0. LPT2 differs from LPT in that a job is scheduled

on the machine that would cause it to finish earliest rather than on the machine with

the earliest start time. Still using the assumption that at least one of the machines

is always available, Lee proved that the optimality bound for LPT2 for this problem

is (1 +
(1− 1

m
)

2
)Copt.

9

Two identical machines with one machine having a single non-availability period

and one machine always being available (P2 | r−a1,1 | Cmax) was solved optimally for

up to 100 jobs by Liao et al. [55] by decomposing the problem into four sub-problems.

The case where each job can only be assigned to a subset of machines and each

machine has a non-availability period (Pm | r −Mj − am,1 | Cmax) was considered by

Liao and Sheen [56]. They used a network flow approach to formulate the problem as

a series of maximum flow problems that were then solved by a polynomial time search

algorithm that either verified the infeasibility of the problem or otherwise solved it

optimally.

Lee [47] showed that the case of non-resumable jobs was NP-Hard, even for a

single machine with a single non-availability period (1 | nr − a | Cmax), and strongly

NP-Hard with more than one non-availability period. However, an optimality bound

of 4
3
Copt can still be achieved by sorting the jobs in decreasing order of processing

time and then assigning as many jobs as possible to the machine prior to the non-

availability period and the remaining jobs after the non-availability period.

Non-resumable jobs with multiple machines and a single non-availability period

(Pm | nr − am,1 | Cmax) was considered by Lee [47] who showed that the optimality

bound for list scheduling with arbitrarily-ordered jobs was mCopt and the optimality

bound for the LPT heuristic was Copt m+1
2

where m is the number of machines.

A single machine with non-resumable jobs and periodic maintenance periods that

must be scheduled to start and end within a pre-defined interval (1 | nr−fpa | Cmax)
was considered by Chen [14] who proposed binary integer programming (BIP) models

capable of solving problems up to 100 jobs to optimality as well as heuristic using

LPT sorting rule to solve larger instances within 1% of optimality.

Two parallel machines with non-preemptable jobs where one machine is always

active and the other has a periodic non-availability period (P2,M1PU | Cmax) was

considered by Xu and Yang [73] who proposed a BIP to optimally solve the problem

10

as well as approximation methods focused on average case analysis.

Multiple machines where machines are not initially available and jobs have a

(release, delivery) time pair (P,NCinc | rj − qj | Cmax) was considered by Gharbi and

Haouari [25] who proposed a branch-and-bound algorithm and semi-preemptive lower

bounding procedure based on max-flow for optimally solving medium sized problems.

The value NCinc in the first parameter denotes the type of availability, in this case

increasing since the machines are not initially available.

Two machines with a non-availability period on one machine and batch trans-

portation to a delivery centre after processing (P2 | r − a,D | Cmax) is considered by

Pan et al. [64] who proposed the H2 algorithm to optimally solve the problem with

a worst-case ratio of 3
2
.

A single machine with non-resumable jobs and flexible preventive maintenance

(FPM) (P2 | nr − FPM | Cmax) is considered by Chen et al. [16] who propose

two MILP models, a branch-and-bound procedure, and four heuristics for solving

the problem. FPM means that the machine cannot run longer than a time interval

T without a non-availability. Similarly, two machines with non-resumable jobs and

FPM (P2 | nr − FPM | Cmax) is considered by Chen et al. [15]. Two MILP models

are proposed along with heuristics and solution improvement procedures for solving

the problem.

Three machines with periodic non-availability periods, schedulable non-availability

periods, and tool-change non-availability periods was considered by Xu et al. [74] who

proposed a mixed BIP to solve the problem.

Multiple identical machines with resumable jobs and a single non-availability pe-

riod (Pm|r − am,1|Cmax) as well as an arbitrary number of non-availability periods

(Pm|r − am,q|Cmax) were considered by Hashemian et al. [31] [32] who proposed ILP

models for both problems as well as an exact implicit enumeration algorithm to op-

timally solve large instances.

11

Multiple machines with arbitrary resumability factor and an arbitrary number

of non-availability periods (Pm|ar − am,q|Cmax) was considered by Beaton et al. [7]

who proposed a MILP model for small instances and four heuristics for finding good

solutions to large problems.

Several authors have reviewed the literature on availability constraints: Lee et

al. (1997)[50], Schmidt (2000)[68], Sanlaville and Schmidt (2008)[67], Ma et al.

(2010)[57], Kaabi and Harrath (2014)[34]. Most of the reviewed studies proposed

methods for either one or two machines or considered a maximum number of non-

availability periods on multiple machines. To the best of our knowledge, only Beaton

et al. [7] propose a general MILP formulation.

1.2.2 Results for the Weighted Completion Time Problem with

Machine Non-Availability

While the single machine minimum Total Completion Time (TC) problem (1 ||
∑︁
Cj)

can be solved in polynomial time by the well-known Shortest Processing Time (SPT)

heuristic, and the single machine minimum Total Weighted Completion Time (TWC)

problem (1 ||
∑︁
wjCj) can be solved in polynomial time by the Weighted Short-

est Processing Time (WSPT) heuristic [69], the multiple parallel machine minimum

TWC problem (Pm ||
∑︁
wjCj) was proven to be NP-Hard [11]. Readers are referred

to the literature review of Kramer et al. [40] that covers the research on this topic

ranging from the early work of Eastman et al. [19] who proposed a lower bound and

a simple upper bound heuristic similar to WSPT for parallel machine TWC which

was proven to have optimality bound
√
2+1
2

· TWCopt by Kawaguchi and Kyan [38],

all the way to their own work proposing an arc-flow formulation that can optimally

solve problems containing up to 400 jobs and finds good solutions up to 1000 jobs.

For the case of minimum TWC on a single machine with non-resumable jobs

and a single non-availability period (1 | nr − a |
∑︁
wjCj), Lee [47] showed that the

objective bound of the WSPT heuristic is infinite even if all weights are equal.

12

A single machine with non-resumable jobs, one non-availability period, and unit

weights (1 | nr − a |
∑︁
Cj) was considered by Adiri et al. [3] who showed that an

optimality bound of the SPT heuristic was 1
4

and this was later improved to 2
7

by Lee

and Liman [51].

A single machine with preemptive jobs and multiple non-availability periods

(Pm, h1,q | pmtn |
∑︁
wjCj) was considered by Wang et al. [72]. Note that hi,q

in the first parameter of the notation specifies that there are i machines with q

non-availability periods and is sometimes omitted if it can be inferred. Wang et al.

addressed the two important special cases of proportional weights and a single non-

availability period.

A single machine with non-resumable jobs and a single non-availability period

(1 | nr − a |
∑︁
wjCj) was considered by Kacem and Mahjoub [37] who proposed a

fully polynomial time approximation scheme with approximation factor 1+ϵ and give

a chronology of approximation improvement for the problem. Kacem et al. [36] also

proposed 3 exact methods: branch & bound (B&B), dynamic programming (DP),

and MILP. B&B and DP were found to be complimentary and could optimally solve

problems with up to 3000 jobs. Kacem and Chu [35] later proposed an improved

B&B coupled with lower bound and heuristics that could solve problems with up to

6000 jobs.

A single machine with preemptive jobs with a release time (and optionally a single

non-availability period) (1 | pmtn, rj |
∑︁
wjCj) was considered by Batsyn et al. [6]

who proposed an online Weighted Shortest Remaining Processing Time (WSRPT)

heuristic for problems with thousands of jobs with average relative error less than

0.1%.

A single machine with multiple non-availability periods and jobs that cannot be

preempted by non-availability periods (1, hq ||
∑︁
wjCj) was considered by Sadfi et al.

[66] who proposed four lower bounding procedures, the best of which had an average

relative error of 0.4% converging to 0 as n→ 500 jobs.

13

Minimizing TWC and Maximum Lateness (ML) on a single machine with semi-

resumable jobs and one or two maintenance periods that must also be scheduled

within a fixed time window T was considered by Graves and Lee [28]. They show

that when the planning horizon duration is long by comparison to the width of the

maintenance time window the problem is NP-Complete and they propose a pseudo-

polynomial time dynamic programming method for both objective functions. They

also show that when the planning horizon duration is short by comparison to the

width of the maintenance time window and one maintenance period must occur, then

minimizing TWC is still NP-Complete but the SPT heuristic is optimal for the Total

Completion Time (TC) case and the Earliest Due Date (EDD) heuristic is optimal

for the ML case.

The case of minimizing TWC on multiple machines with non-preemtive jobs and

release dates and multiple non-availability periods (Pm, hq | rj |
∑︁
wjCj) was consid-

ered by Nessah and Chu [61] who proposed a polynomial time infinite split scheduling

lower bound that improved some 2, 7, and 15 machine problems by up to 95% when

coupled with existing B&B procedures for the problem.

A single machine with periodic maintenance (1 | pm |
∑︁
wjCj) was considered

by Krim et al. [41] who proposed a MILP model and heuristics for up to 1000 jobs

with 10% average relative error.

Two machines where one machine becomes unavailable after a fixed time was

considered by Lee and Liman [52] who proved it was NP-Complete and proposed a

pseudo-polynomial time dynamic programming model for its solution, as well as a

heuristic with 50% error bound.

Two machines with one machine having a single non-availability period and resum-

able jobs (P2, h2,1 | r−a |
∑︁
wjCj) and the case of non-resumable jobs (P2, h2,1 | nr−

a |
∑︁
wjCj) were studied by Lee [47] who proposed dynamic programming models

for each case. The similar case with non-resumable jobs (P2, h2,1 | nr − a |
∑︁
wjCj)

14

and multiple machines (Pm, h1,1 | nr − a |
∑︁
wjCj) was considered by Zhao et al.

[76] who proposed a fully polynomial time approximation scheme (FPTAS).

For multiple machines with a single non-availability period and non-preemptive

jobs (Pm, hi,1 ||
∑︁
wjCj), Mellouli et al. [58] proposed lower bounds based upon

Lagrangian relaxation, a heuristic, and column-generation methods. For the unit

weight version Mellouli et al. [59] proposed four MILP models, a dynamic program-

ming model, two B&B procedures, dominance properties, and a constructive lower

bound, some of which can solve problems with up to 4 machines and 50 jobs. Yoo

and Lee [75] studied a similar problem, distinguishing between the independent and

dependent maintenance cases where simultaneously multiple machines and only one

machine may experience a non-availability period respectively.

Several cases of minimizing TWC on multiple machines with either resumable

or non-resumable jobs and preventive maintenance non-availability periods or fixed-

job non-availability periods with job weights equal to processing times and other

limiting restrictions was considered by Fu et al. [21][22] who proposed inapproxima-

bility proofs for some problems and FPTAS for others.

Li & Yang [54] reviewed the literature on Total Weighted Completion Time (TWC)

focusing on unrelated parallel machines. It is clear from the above review that there

is a need for a formulation for the general case of the minimum Total Weighted

Completion Time (TWC) problem for parallel machines with multiple arbitrary non-

availability periods.

1.3 Motivation and Research Goals

Most scheduling problems in the literature make the assumption that each machine is

available continuously over a finite or infinite horizon. While this assumption greatly

simplifies the problem and may be valid in situations where interruptions are negli-

gible, there are many cases where interruptions should not be ignored. For example,

scheduled preventive maintenance, operator breaks, and shift changes are examples

of foreseeable interruptions that, when accounted for, need not have as severe an

15

impact on a schedule as when ignored. Additionally, when a task resumes after an

interruption, some amount of rework may be required causing further deviations. For

this reason, there is value in developing methods that determine how to best mitigate

the impact of schedule interruptions.

Most papers dealing with the parallel machine scheduling problem with non-

availability periods deal with makespan minimization (Beaton et al. [7]; Hashemian

et al. [32]). Our first research goal is to improve upon the results of the existing

Mixed Integer Linear Programming (MILP) models for parallel machine scheduling

with makespan minimization, multiple non-availability periods, and arbitrary resum-

ability. We propose extensions to the model of Beaton et al. [7] that allows us to

prove optimality of an additional instance of the Graham’s experiment benchmark.

We also propose two constraint programming models as an alternative, open-source,

exact solution method that performs comparably to the commercial solvers used for

solving the MILP.

The Total Weighted Completion Time (TWC) performance metric is less common

in the parallel machine scheduling literature than the makespan performance metric.

Even less common are papers that combine parallel machine scheduling, TWC as

performance metric, and non-availability periods. Mellouli et al. [59] and Yoo and

Lee (2016) [75] deal with multiple parallel machines with TWC and only one non-

availability period per machine. Zhao and Tang [76] consider two parallel machines

scheduling problem where one machine is not available in a specified time period (i.e.,

2 machines and 1 non-availability period in all).

Our second research goal is to propose, to the best of our knowledge, the first MILP

formulation to deal with identical parallel machine scheduling for total weighted com-

pletion times with multiple non-availability periods on all machines without additional

restrictions. This is achieved by combining the position-based modelling approach by

Mönch and Shen [60] and the non-availability modelling approach by Beaton et al. [7].

It is assumed that all jobs are resumable after an interruption by a non-availability

16

interval. The semi-resumable and non-resumable cases will be covered as future ex-

tensions. We also propose a Graham’s experiment benchmark for this problem as

well as two constraint programming models that outperform the MILP model. For

larger problems, we propose using a Weighted Shortest Processing Time (WSPT) [69]

heuristic and show that it quickly provides near-optimal solutions on the benchmark.

The rest of this thesis is organized as follow. Chapter 2 deals with the makespan

minimization problem. It is defined and is modelled mathematically in its MILP and

CP versions. Various numerical experiments are then conducted to test and compare

several solution methods and improvements. Chapter 3 deals with the total weighted

completion times problem. The proposed new MILP formulation is presented and

numerical experiments conducted to compare the results obtained using the MILP

and two CP versions. Lastly, Chapter 4 presents the conclusions along with some

suggestions and areas for future study.

Chapter 2

Makespan Minimization Problem

In this chapter, we focus on the parallel machine scheduling problem with the objec-

tive of minimizing the makespan. The makespan problem is defined in section 2.1

and an existing MILP formulation is presented in 2.2. Our suggested contributions

for improving the MILP formulation of the problem are introduced and evaluated in

section 2.3. Two constraint programmings models are introduced in section 2.4 and

compared to the MILP formulations in section 2.6.

2.1 Definition of the Makespan Problem

Givenm parallel machines, N jobs with processing times pj, ri non-availability periods

per machine i with corresponding start times siq and end times eiq and rework factor

α, the makespan minimization problem is to assign each job j to a machine i such

that jobs assigned to the same machine do not overlap and the completion time of

the job ending last (makespan) is minimized. Jobs can only be interrupted by non-

availability periods (not preempted by other jobs). If a job is interrupted by a non-

availability period, it must resume immediately after the end of the non-availability

period having its remaining duration extended by a rework penalty equal to the

portion of its processing time completed before interruption wiq multiplied by the

rework factor α (See Figure 2.1).

Figure 2.1: Illustration of the penalty incurred when a job is interrupted. Adapted
from [7]

17

18

2.2 MILP Modelling of the Makespan Problem

We begin by reviewing the MILP model of Beaton et al. [7] for makespan minimization

which we then extend with symmetry-breaking constraints and an improved lower

bound. The model of Beaton et al. [7] makes the following assumptions that we also

adopt throughout this thesis.

1. All machines are identical and can perform all operations.

2. Each machine can only process one job at a time.

3. Each job consists of only one operation.

4. The amount of time between consecutive non-availability periods must be at

least as long as the longest processing time.

5. All jobs are available at time zero, however some machines may not be available

at that time.

6. The non-availability periods are pre-determined and their durations are also

known and constant.

The following notation is used in the formulation of the MILP [7].

i Machine index

j Job index

q Non-availability period index

N The total number of jobs

m The total number of machines

ri The total number of non-availability periods on machine i

siq The starting time of non-availability period q on machine i

eiq The ending time of non-availability period q on machine i

diq The duration of non-availability period q on machine i (diq = eiq − siq)

pj The processing time of job j

α The resumability factor (between 0 and 1; 0 gives the fully resumable

19

case and 1 gives the non-resumable case)

Cmax The makespan

M A sufficiently large positive number

The MILP models the case of minimizing the makespan of N jobs on m parallel

machines where machine i has ri non-availability periods. It uses a resumability factor

α to specify the amount of rework time incurred for each job as a percentage of the

processing time completed before each job is interrupted; thus allowing the model to

cover fully-resumable and non-resumable scheduling as special cases of semi-resumable

scheduling [48]. The amount of processing time completed prior to a job being inter-

rupted by a non-availability period is given by wiq and therefore, the amount of rework

needing to be completed immediately after the end of the non-availability period is

α ·wiq. Once the rework is completed, the job continues processing for the remaining

portion of the job’s original processing time. This results in a total processing time

equal to pj + αwiq for each job. Model components for the MILP of Beaton et al.

[7], including the objective function, decision variables, and constraints are as follows.

Decision Variables:

xij =

⎧⎨⎩1 if job j is assigned to machine i

0 otherwise

yiq =

⎧⎨⎩1 if all jobs on machine i are completed before siq

0 otherwise

bijq =

⎧⎨⎩1 if job j is completed before siq

0 otherwise

wiq = The amount of time between the completion of the last job before

non-availability period q on machine i and the start of non-availability period q

The MILP is then as follows:

min Cmax (2.1)

20

s.t.:
N∑︂
j=1

pjxij +

q−1∑︂
k=1

(dik + αwik) ≤ siq +M(1− yiq) ∀i, q (2.2)

N∑︂
j=1

pjxij +

ri∑︂
q=1

(diq(1− yiq) + αwiq) ≤ Cmax ∀i (2.3)

m∑︂
i=1

xij = 1 ∀i (2.4)

wiq ≥ siq(1− yiq)−
N∑︂
j=1

pjbijq −
q−1∑︂
k=1

(dik + αwik) ∀i, q (2.5)

wiq ≤ siq −
N∑︂
j=1

pjbijq −
q−1∑︂
k=1

(dik + αwik) ∀i, q (2.6)

bi,j,q+1 ≥ bijq ∀i, j, q (2.7)

bijq ≤ xij ∀i, j, q (2.8)
N∑︂
j=1

(pjbi,j,q+1 − pjbijq) ≤ si,q+1 − eiq − αwiq + wiq ∀i, q (2.9)

xij ∈ {0, 1} ∀i, j (2.10)

yiq ∈ {0, 1} ∀i, q (2.11)

bijq ∈ {0, 1} ∀i, j, q (2.12)

Cmax ≥ 0 (2.13)

wiq ≥ 0 ∀i, q (2.14)

Constraint (2.2) sets yiq equal to one if all jobs on machine i are completed before

the start of non-availability period q. Constraint (2.3) excludes a non-availability

period from the calculation of the makespan if all jobs scheduled on the machine are

completed before the start of the non-availability period. Constraint (2.4) ensures

that all jobs are assigned to exactly one machine. Constraints (2.5) and (2.6) define

the amount of uncompleted work for each job that is interrupted by a non-availability

period. The amount of uncompleted work will equal 0 in the case where all jobs are

completed before the non-availability period, and consequently no rework will be

added to the makespan in this case. Constraint (2.7) ensures that if a job is com-

pleted on a machine before a non-availability period, then it must also be completed

21

before the next non-availability period on that machine. Constraint (2.8) ensures that

a job can only be completed before a non-availability period on a machine on which

it is scheduled. Finally, constraint (2.9) ensures that only jobs that can be completed

within the time preceding a non-availability period will be chosen to do so.

After running several numerical experiments, Beaton et al. [7] conclude that

the MILP is difficult to solve optimally and suggest further developments. In what

follows, several ideas such as adding new constraints, symmetry breaking and using

CP will be investigated.

2.3 New contributions to improve the MILP

We now give a detailed description of our proposed additions to the MILP model of

Beaton et al. [7].

2.3.1 Adding new constraints to the MILP

First, it should be noted that we experimented with adding the following three con-

straints to the model, but ultimately they were omitted since they did not significantly

reduce runtime. However, constraint 2.15 may be particularly relevant to anyone at-

tempting to apply decomposition methods to this problem because it helps avoid an

invalid value of yi,1 when no jobs are assigned to a machine with a non-availability

period starting at time 0. This is a possible erroneous outcome when decomposing

by machine which considers each machine’s schedule in isolation.

N∑︂
j=1

xij ≥ 1− yi,1 ∀i|si,1 = 0 (2.15)

yiq ≤ yi,q+1 ∀i, q ∈ 1..ri − 1 (2.16)

bijq ≥ yiq − (1− xij) ∀i, j, q (2.17)

Constraint (2.15) ensures that if the first non-availability period on a machine

begins at time 0, and no jobs are scheduled on that machine, then all jobs are com-

plete on that machine before the first non-availability period. Constraint 2.16 ensures

that if all jobs are completed before a non-availability period, then all jobs are also

22

completed before subsequent non-availability periods. This extends the same ratio-

nale of constraint 2.7 to the yiq variables. Constraint 2.17 ensures that if all jobs

are completed before non-availability period q on machine i then either job j is not

assigned to machine i, or job j is assigned to machine i such that it is completed

before non-availability period q.

2.3.2 Adding symmetry breaking

Symmetry breaking is the process of eliminating solutions that are equivalent to one

another conceptually yet are different in the implementation of a model [24]. Elimi-

nating symmetries can help speed up the solving process by preventing a solver from

wasting time visiting solutions that are equivalent to one another. Symmetry break-

ing in parallel machine scheduling is a commonly applied technique [33][39]. In the

model of Beaton et al. [7], one type of symmetry occurs from the fact that all jobs

can be swapped between any two identical machines and this will give an equivalent

solution despite the fact that the xij variables will have their values swapped between

the machines.

Two mutually-exclusive approaches to symmetry-breaking are proposed. The first

is chaining lexicographic ordering constraints, a technique that is well-established in

the constraint programming community [13], and the second is ordering identical ma-

chines in decreasing order of their individual machine makespans. For the first we use

the linearized implementation of the “lex_chain_lesseq" global constraint [2] from

the Minizinc constraint programming library [62]. The formulation requires defining

the following new indices, parameters, and auxiliary variables.

Indices & Parameters:

G The number of identical machine groups

g Identical machine group index

V g The number of identical machine indices in machine group g

Hg An ordered list of the subset of machine indices i belonging

to machine group g (length(Hg) = V g)

23

h The index of Hg. Used for indexing successive pairs of machine

indices in Hg.

Decision Variables:

fleqg,i∈Hg
h|h<V g ,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if xHg

h,j
is equal to xHg

h+1,j

or if both xHg
h,j

is less than xHg
h+1,j

and fltg,Hg
h,j

equals 0

0 otherwise

fltg,i∈Hg
h|h<V g ,j =

⎧⎨⎩1 if xHg
h,j

is stricly less than xHg
h+1,j

and fleqg,Hg
h,j

equals 0

0 otherwise

Constraints:

N∑︂
j=1

fltg,Hg
h,j

≤ 1 ∀g, h|h < V g (2.18)

fleqg,Hg
h,1

+ fltg,Hg
h,1

= 1 ∀g, h|h < V g (2.19)

fleqg,Hg
h,j−1 = fleqg,Hg

h,j
+ fltg,Hg

h,j
∀g, h|h < V g, j > 1 (2.20)

xHg
h,j

− xHg
h+1,j

≤ 1− fleqg,Hg
h,j

∀g, h|h < V g, j (2.21)

xHg
h+1,j

− xHg
h,j

≤ 1− fleqg,Hg
h,j

∀g, h|h < V g, j (2.22)

xHg
h,j

− xHg
h+1,j

+ 1 ≤ 2 · (1− fltg,Hg
h,j
) ∀g, h|h < V g, j (2.23)

The effect of the lexicographic constraints can be visualized as follows. For a given

identical machine group g, construct an array Ag with N rows and V g columns. Lo-

cate variable xi,j at row j and column h of Ag. Column h represents the xij variables

of machine i = Hg
h. The lexicographic constraints require the columns of Ag to be or-

dered lexicographically from left to right. This breaks the symmetry of swapping the

assignment of all xij solution values between columns of Ag. This can be visualized

as follows for the case of G = 2, V1 = 3, V2 = 2, H1 = [1, 3, 5], H2 = [2, 4].

24

A1 =

⎡⎢⎢⎢⎢⎢⎣
x1,1 x3,1 x5,1

x1,2 x3,2 x5,2
...

...
...

x1,N x3,N x5,N

⎤⎥⎥⎥⎥⎥⎦, A2 =

⎡⎢⎢⎢⎢⎢⎣
x2,1 x4,1

x2,2 x4,2
...

...

x2,N x4,N

⎤⎥⎥⎥⎥⎥⎦
The second, mutually-exclusive symmetry-breaking approach involves ordering

identical machines in decreasing order of their individual machine makespans. To do

this, we first note that the left hand side of constraint 2.3 represents the machine

makespan of machine i. Therefore, we just need to add an inequality constraint for

successive values of machine i:

N∑︂
j=1

pjxHg
h,j

+

r
H

g
h∑︂

q=1

(dHg
h,q
(1− yHg

h,q
) + αwHg

h,q
)

≤
N∑︂
j=1

pjxHg
h+1,j

+

r
H

g
h+1∑︂
q=1

(dHg
h+1,q

(1− yHg
h+1,q

) + αwHg
h+1,q

) ∀g, h|h < V g

(2.24)

2.3.3 Adding lower bounds

Another addition to the model of Beaton et al. [7], is to calculate and add a lower

bound on the makespan. The lower bound consists of dividing the sum of the job pro-

cessing times across machines such that each machine has an equal machine makespan

while accounting for non-availability periods. This is the equivalent of the well known

lower bound for machines without non-availabilities that consists of averaging total

processing time across all machines. This is not a new idea but providing a lower

bound is a common practice when introducing a new formulation, or in this case when

no lower bound had been described for the formulation.

The lower bound is computed by:

1. Partitioning the planning horizon by creating a section break at the start and

end of each non-availability period;

2. Indexing the time interval between successive section breaks by index sec;

25

3. Calculating the duration of each interval section_duration and the number of

available machines in each interval m_avail_machines_in_section.

4. Applying the pseudo-code given in Algorithm 1 below.

Algorithm 1: Calculate Makespan Lower Bound
Result: Makespan_LB

remaining_p =
∑︁N

j=1 pj;

sec = 1;

lb = 0;

while remaining_p > 0 do
section_p = m_avail_machines_in_section[sec] *

section_duration[sec];

if section_p <= remaining_p then

lb += section_duration[sec];

remaining_p -= section_p;

else

lb += remaining_p / m_avail_machines_in_section[sec];

remaining_p = 0;

end

sec += 1;

end

This algorithm can be visualized with the help of Figure 2.2 for an example with

five availability sections. The number of available machines in each section is (2, 2,

3, 2, 3) respectively, and the job processing times are (5, 5, 3, 3, 2). At each iteration

the algorithm assigns an equal portion of the remaining total processing time to each

available machine in the section up to an amount equal to the area of the section

(available machines multiplied by section duration). If the remaining total processing

time is less than the total area of the section then the remaining total processing time

is evenly distributed among the available machines in the section. The lower bound

is the sum of the section widths filled in this way.

26

One way to think of the end result is using the analogy of how a liquid (processing

time) would fill in the space around obstacles (non-availability periods) in a container

(machine schedules). Figure 2.3 provides a visual aid showing how the processing

time could fill around the non-availability periods if the processing time of jobs was

infinitesimally divisible like a liquid. In this figure the algorithm is broken into it-

erations for each job processing time to aid in understanding the analogy, but the

algorithm does not require this and instead just uses the sum of all job processing

times.

Figure 2.2: Availability Sections of Planning Horizon

Figure 2.3: Liquid Processing Time Analogy

27

2.3.4 Using warm-start

Lastly, we also propose warm-starting the solving of the MILP using a good initial

feasible solution from a constructive heuristic. Beaton et al. [7] proposed 4 heuristics

(LPT2, LPT2-Swap, LPT2-GS1, and LPT2-GS2) based upon a modified version of

the LPT2 longest processing time heuristic of Lee [47] for the general semi-resumable

case with non-availability periods. Given that Beaton et al. [7] showed that the

heuristics generally produce a good initial feasible solution quickly compared to the

runtime of the MILP. We implement and sequentially run all four of LPT2, LPT2-

Swap, LPT2-GS1, and LPT2-GS2. We use the best result from the four heuristics as

the warm-start for the MILP.

2.3.5 MILP Experiments

In this section, we discuss the experiments conducted to evaluate the performance of

our proposed additions to the MILP model. We chose to use instances of the modified

Graham’s Experiment benchmark of Beaton et al. [7] to facilitate comparison. Fur-

thermore, to help minimize the effect of hardware improvements, all experiments were

conducted on a 10 year old laptop with an Intel Core i7-2720QM CPU @ 2.20GHz

and 8 GB of 1333MHz DDR3 RAM running Ubuntu 20.04.2 LTS. The MILP solver

used was Gurobi 9.1.2, and all experiments used the best non-default parameter set-

tings found during tuning: MIPFocus = 2 and Cuts = 3 which tell the solver to focus

more attention on proving optimality and to apply very aggressive cut generation

respectively [30]. A time limit of 1200 seconds was enforced for all instances.

The original Graham’s Experiment [26] consists of m machines onto which 2m+1

jobs must be scheduled. The jobs are given in decreasing order of processing time:

2m− 1, 2m− 1, 2m− 2, 2m− 2, ..., m+ 1, m+ 1, m, m, m. As the original experi-

ment did not contain non-availability periods, Beaton et al. [7] proposed a modified

version with ⌊m
10
⌋ non-availability periods separated by 2m time units. There are

2 groups of identical machines in the experiment: group 1 contains the machines

with odd indices, and group 2 contains the machines with even indices. The first

non-availability period of machines in group 1 starts at time 0 while the first non-

availability period of machines in group 2 starts at time 2m. To maintain consistency

28

with Beaton et al. [7], we test three levels of the resumability factor α: (0, 0.5, and 1).

First, the MILP model of Beaton et al. [7] was run without modification to estab-

lish a baseline denoted Base. Next, we added the lexicographic ordering constraints

(2.18 - 2.23) to get model LEX. Model LB consists of Base plus the lower bound cal-

culated by Algorithm 1 which gives the lower bounds in table 2.2. Model LEX + LB

combines Base with both the lexicographic ordering constraints and the lower bound.

Model LB + UB combines Base with the lower bound and warm-starts the MILP

with the best solution from the four heuristics of Beaton et al. [7]. Finally, model

MM combines Base with the machine makespan symmetry-breaking from constraint

(2.24).

Table 2.1: Graham’s Experiment (MILP): Time to Prove Optimal Solution
Time (s)

m N α Base Lex LB Lex+LB LB+UB MM
10 21 0.14 1.01 0.13 0.24 0.19 0.43
15 31 0 1.79 3.57 1.12 0.66 0.94 2.20
20 41 7.26 20.68 11.07 12.33 9.06 20.56
25 51 11.34 28.31 160.95 307.68 233.38 92.81
10 21 1.03 2.45 1.29 1.49 0.78 10.76
15 31 0.5 8.42 10.76 2.52 8.93 1.4 415
20 41 − 761 55 775 863 −
25 51 − − − − − −
10 21 2.25 6.81 2.56 6.13 1.95 35.22
15 31 1 50.86 180.29 11.39 225.21 23.78 −
20 41 − − − − − −
25 51 − − − − − −

*Values given as "−" did not prove optimality within 1200 seconds.

Table 2.1 shows the time to prove optimality whereas table 2.3 shows the time to

reach the optimal solution (when the optimal solution has already been determined).

The results in Table 2.1 suggest that the fully-resumable case (α = 0) is the easi-

est variation of the problem; all models are able to prove optimality within the 1200

29

Table 2.2: Graham’s Experiment (MILP): Improved Lower Bounds
m N Lower Bound
10 21 32
15 31 48
20 41 67.5
25 51 84.12

second time limit, even for the 25 machine problem. This is consistent with the find-

ings of Beaton et al. [7]. The results suggest that the problem becomes more difficult

for the MILP formulations with increasing α, which is information that was not clear

from the limited previous results. This is supported by the increased runtimes and

the fact that none of the models were able to prove optimality beyond 15 machines

when α = 1.

Our proposed additions do appear to improve the model if only modestly, with

four out of the five combinations of additions proving optimality of the 20 machine

problem with α = 0.5, an instance that remained open. There appears to be additive

effects when combining various model additions: while model LB was able to prove

optimality of the 20 machine, α = 0.5 instance in only 55 seconds, its progress

slowed for larger instances when paired with LEX and the heuristic upper bound.

Overall, no one model dominated the others, but lower bounding looks promising, and

lexicographic ordering did succeed in reducing the number of explored branches in

the search tree; although this did not lead to a faster proof of optimality in all cases.

The machine makespan symmetry breaking performed worst in general, increasing the

solution time in most cases. One possibility why the machine makespan symmetry

breaking might have slowed the solve time is because it changed the cuts that the

Gurobi solver was able to generate and cutting planes play a major role in the efficient

solution of this problem. Further investigation may be needed before concluding that

machine makespan symmetry breaking cannot be helpful.

The results in Table 2.3 further show that even when the MILP models were not

able to prove optimality, they were frequently able to determine the optimal solution

within a relatively short amount of time.

30

Table 2.3: Graham’s Experiment (MILP): Time to Reach Optimal Solution
CPU Time (s)

m N α Base Lex LB Lex+LB LB+UB MM
10 21 0.14 1.01 0.13 0.24 0.19 0.43
15 31 0 1.79 3.57 1.12 0.66 0.94 2.2
20 41 7.26 20.68 9 3 9.06 20.56
25 51 4 20 11 71 9 92.81
10 21 1.03 < 1 1.29 < 1 < 1 7
15 31 0.5 8.42 10.76 1 8.93 1.4 415
20 41 52 96 39 42 15 −
25 51 − − − − − −
10 21 < 1 < 1 < 1 < 1 < 1 4
15 31 1 1 4 1 2 1 96
20 41 − − − − − −
25 51 − − − − − −

*Values given as "−" did not achieve known optimal objective value within 1200 seconds, or
optimal objective value is unknown.

2.4 CP Modelling of the Makespan Problem

Two different approaches to modelling the makespan minimization problem using con-

straint programming are developed. The first is a traditional CP scheduling approach

using specialized global constraints for scheduling and explicit interval variables. The

second is a verbatim translation of the Base MILP model into constraint program-

ming.

In order to model the problem using CP, we must restrict ourselves to instances

where decision variables are guaranteed to take on integer values. This initially ap-

pears to present a problem for the semi-resumable case since, for example, α = 0.5

will result in a fractional amount of rework any time that the amount of processing

time completed before a non-availability period assumes an odd value. The number

of decimals required to represent a solution exactly could also increase with each

additional non-availability period overlapped on a machine. For example, given a

single-machine problem with α = 0.5, non-availability period start times s1,1 = 3,

s1,2 = 8, end times e1,1 = 4, e1,2 = 9, and job processing times p1 = 5, p2 = 5 an

31

optimal solution involves scheduling job 1 at time 0 resulting in w1,1 = 3 units of

processing time prior to interruption, and therefore α · w1,1 = 0.5 · 3 = 1.5 units of

rework. This causes job 2 to begin at fractional time unit 3 + 1 + 1.5 + 2 = 7.5,

w1,2 = 0.5, α · w1,2 = 0.5 · 0.5 = 0.25 units of rework, and therefore job 2 ends at

fractional time unit 7.5+ 0.5+ 1+ 0.25+ 4.5 = 13.75. As a solution to this problem,

we note that α is most commonly an approximation in practice, and typically can

be represented with sufficient accuracy by a rational number. By noting that the

number of decimals is a function of the maximum number of non-availability periods

on any machine, we then propose to apply the following scaling factor to the time

dimension:

Φ = max
1≤i≤m

(αriden) · (α
ri
num) (2.25)

where αnum and αden are the numerator and denominator of the rational number

α respectively when given as a fraction.

In the MILP model, many types of unnecessary symmetry were avoided by omit-

ting any explicit notion of ordering between the jobs on a machine. In this traditional

CP formulation, we include these symmetries by representing each job with an explicit

start, end, duration, and interval variable [45]. In addition to making the model easier

to adapt to different objective functions, this allows the use of powerful scheduling

constraints over the interval variables. Interval variables are both a useful modelling

abstraction that encapsulates the relation between start, end, and duration variables

and helps define precedence constraints when they exist; as well as a means to allow

the solver to perform additional reasoning. Interval variables can be made optional by

pairing them with the xi,j variables to cover the case where a job may not be present

on a particular machine [43][44]. Many powerful global constraints exist for scheduling

problems that are a major contributor to the success of CP models for scheduling[70].

CP solvers can use specialized data structures to help global scheduling constraints

efficiently propagate filtered domain values[71]. The disjunctive scheduling global

constraint (also known as the NoOverlap constraint) takes a list of (optional) interval

variables representing jobs and ensures that none of the interval variables assigned to

32

a machine overlap[12].

A numerical example [1] from the global constraint catalogue [9][8] showing the

effect of the disjunctive constraint is as follows: Let (s1 ∈ [1, 4], s2 ∈ [1, 3], s3 ∈ [2, 5],

s4 ∈ [1, 6]) and (d1 ∈ [2, 4], d2 ∈ [1, 6], d3 ∈ [4, 4], d4 ∈ [1, 3]) be job start time and

duration variables respectively. The disjunctive global constraint would result in the

four (sj, dj) feasible solutions of non-overlapping jobs on a single machine as given in

Table 2.4 and depicted in Figure 2.4.

Table 2.4: Example Feasible Solutions: Disjunctive Constraint
Feasible Solution s1 d1 s2 d2 s3 d3 s4 d4

1 1 2 3 1 5 4 4 1
2 2 2 1 1 5 4 4 1
3 3 2 1 1 5 4 2 1
4 3 2 2 1 5 4 1 1

Figure 2.4: Disjunctive Global Constraint Example Solutions
*Adapted From: https://sofdem.github.io/gccat/ctrs/disjunctive-2-tikz.png

33

The following additional parameters, decision variables are introduced and used

to develop a traditional CP scheduling model using specialized global constraints for

scheduling and explicit interval variables.

Indices & Parameters:

αnum The numerator of α when α is expressed as a rational fraction

αden The denominator of α when α is expressed as a rational fraction

Φ Scaling factor to ensure integer decision variable values

ψijq Earliest start time of job j that results in interruption by non-availability period q

*Other indices & parameters same as MILP model

Decision Variables:

Cmax Makespan

xij =

⎧⎨⎩1 if job j is assigned to machine i

0 otherwise

dur_rwij Rework duration

dur_rwnumij Rework duration numerator (intermediate variable

only defined if αnum ̸= 1)

stij Start time of job j if assigned to mahine i

etij End time without rework

durij Duration without rework

Intrvij Interval variable for portion of job without rework

wij Processing time of job j completed before a non-availability period

et_rwij End time with rework

Intrv_rwij Interval variable for rework portion of job

gteψijq =

⎧⎨⎩1 if job j is assigned to machine i and stij ≥ ψijq

0 otherwise

34

lteqijq =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if job j is assigned to machine i and starts before

non-availability period q

0 otherwise

qhas_rwijq =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if job j is assigned to machine i and is interrupted

by non-availability period q

0 otherwise

has_rwij =

⎧⎨⎩1 if job j is assigned to machine i and is interrupted

0 otherwise

no_rwij =

⎧⎨⎩1 if job j is assigned to machine i and is not interrupted

0 otherwise

min Cmax

s.t.:
m∑︂
i=1

xij = 1 ∀i, j (2.26)

¬xij =⇒ ¬has_rwij ∀i, j (2.27)

xij =⇒ stij + durij = etij ∀i, j (2.28)

xij =⇒ etij + dur_rwij = et_rwij ∀i, j (2.29)

no_rwij ⇔ (xij ∧ ¬has_rwij) ∀i, j (2.30)

¬gteψi,j,1 ∧ ¬lteqi,j,1 ∧ ¬qhas_rwi,j,1 ∀i|si,1 = 0, j (2.31)

gteψijq ⇔ (stij ≥ Φ · ψijq) ∀i, j, q|si,q > 0 (2.32)

lteqijq ⇔ (stij ≤ Φ · siq) ∀i, j, q|si,q > 0 (2.33)

qhas_rwijq ⇔ (gteψijq ∧ lteqijq) ∀i, q|si,q > 0 (2.34)

if αnum ̸= 1 : dur_rwnumij = αnum · wij ∀i, j (2.35)

if αnum ̸= 1 : dur_rwij =
dur_rwnumij

αden
∀i, j (2.36)

35

if αnum = 1 : dur_rwij =
wij
αden

∀i, j (2.37)

no_rwij =⇒ (durij = Φ · pj) ∀i, j (2.38)

qhas_rwijq =⇒ (durij = Φ · (pj + diq)) ∀i, j, q (2.39)

¬has_rwij =⇒ (wij = 0) ∀i, j (2.40)

qhas_rwijq =⇒ (wij = Φ · siq − stij) ∀i, j, q (2.41)

disjunctive([Intrvij, Intrv_rwij]) ∀i (2.42)

has_rwij =⇒ (

ri∑︂
q=1

qhas_rwijq = 1) ∀i, j (2.43)

¬has_rwij =⇒ (

ri∑︂
q=1

qhas_rwijq = 0) ∀i, j (2.44)

Cmax ≥ 0 (2.45)

dur_rwij, dur_rwnumij , stij, etij, durij, wij, et_rwij ≥ 0 ∀i, j (2.46)

has_rwij, no_rwij ∈ {0, 1} ∀i, j (2.47)

gteψijq, lteqijq, qhas_rwijq ∈ {0, 1} ∀i, j, q (2.48)

where ∧, ∨, ¬, =⇒ , ⇔ are logical AND, OR, NOT, IMPLICATION, and

EQUALITY respectively.

Constraints (2.26) ensure that each one of the jobs is assigned to exactly one ma-

chine. Constraints (2.27) ensure that jobs do not have rework on machines to which

they are not assigned. Constraints (2.28) and (2.29) are defined implicitly by the

creation of the interval variables and define the relation between start time, duration,

and end time of non-rework and rework interval variables. Constraints (2.30) imple-

ment the definition of the no_rwij Boolean variable. Constraints (2.31) ensure no

jobs can be labelled as being interrupted by a non-availability period starting at time

0. This is primarily a modelling convenience as these Boolean variables are removed

by the CP Presolve. Constraints (2.32), (2.33) and (2.34) implement the definition

of gteψijq, lteqijq and qhas_rwijq respectively. Constraints (2.35), (2.36) and (2.37)

calculate the amount of rework for a job. They are separate constraints because

most CP solvers will not allow multiplication by a fraction since this could result in

36

fractional decision variable values. The division by αdem actually performs integer di-

vision, but this is not a problem because we are a priori guaranteed an integer solution

because of the scaling factor Φ. Constraints (2.38) and (2.39) restrict the non-rework

portion of the job to equal one of only three values: 0 if the job is not assigned to

the machine, the processing time if the job is not interrupted, or the processing time

plus the non-availability period duration if interrupted. Constraints (2.40) link the

Boolean no_rwij variable to the integer rework variable. Constraints (2.41) link job

rework to job start time. Constraints (2.42) ensure that all jobs on a machine do

not overlap. Constraints (2.43) and (2.44) ensure a job is defined as overlapping at

most one non-availability period and links to the corresponding indicator Boolean

variables. Constraints (2.45 – 2.48) are binary and non-negativity constraints.

The second CP model is a direct translation of the Base MILP model into CP.

To do this, we use the same scale-factor Φ to ensure integer decision variable values,

but otherwise the model is the same.

2.5 CP Experiments

To test the effectiveness of the CP formulation of the makespan minimization prob-

lem, we construct and solve equivalent instances of the same Graham’s Experiment

benchmark as the MILP experiments. The CP models were solved using the CP-

SAT solver of Google ORTools version 9.0.9163 [65] on the same laptop as the MILP

experiments. The solver parameter num_search_workers was set to 8 which causes

a portfolio of different solving approaches to be executed across 8 different cores in

parallel.

The results in Table 2.5 show that the traditional CP model is unable to prove

optimality in even the easiest instances whereas the verbatim CP translation of the

Base MILP model proves optimality in at least one instance for each value of α.

However, Table 2.6 shows that despite not proving optimality, both CP models had

found the optimal solution for many of the instances within a relatively short amount

of time.

37

Table 2.5: Graham’s Experiment (CP): Time To Prove Optimal Solution
CPU Time (s)

m N α Trad Verb
10 21 − 0.91
15 31 0 − 4.56
20 41 − −
25 51 − −
10 21 − 17.59
15 31 0.5 − 749.48
20 41 − −
25 51 − −
10 21 − 31.51
15 31 1 − −
20 41 − −
25 51 − −

*Values given as "−" did not prove optimality within 1200 seconds.

Table 2.6: Graham’s Experiment (CP): Time to Reach Optimal Solution
CPU Time (s)

m N α Trad Verb
10 21 0.99 0.91
15 31 0 12.67 4.55
20 41 94.82 −
25 51 25.13 30.27
10 21 0.71 0.25
15 31 0.5 8.66 6.69
20 41 28.02 5.64
25 51 − −
10 21 1.83 0.08
15 31 1 5.23 6.64
20 41 − −
25 51 − −

*Values given as "−" did not achieve known optimal objective value within 1200 seconds, or
optimal objective value is unknown.

38

2.6 Comparison of MILP & CP

Having run identical experiments on both formulation types, we are in a position to

compare the strengths and weaknesses of both approaches for this particular schedul-

ing problem. From Table 2.7, we can see that the combination of the commercial

Gurobi solver and the MILP formulations are the clear winner when it comes to

proving optimality. On the other hand, Table 2.8 shows that both MILP and CP

have similar performance for the time required to find (but not prove) an optimal

solution, especially for the α > 0 cases. One downside of the CP model is the re-

quirement to estimate an upper bound on the required length of the planning horizon

(upper bound on makespan variable and job start and end times). This can lead

to large finite domains which can cause the model to use significantly more memory

than the MILP models. Fortunately, the good performance of constructive heuristics

could go a long way towards keeping this a priori upper bound small and thus reduc-

ing memory consumption. Both the MILP and CP solvers labelled many solutions as

having been found by heuristics.

Table 2.7: Graham’s Experiment - Time to Prove Optimality
CPU Time (s)

MILP CP
m N α Base Lex LB Lex+LB LB+UB MM Trad Verb
10 21 0.14 1.01 0.13 0.24 0.19 0.43 − 0.9
15 31 0 1.79 3.57 1.12 0.66 0.94 2.2 − 4.56
20 41 7.26 20.68 11.07 12.33 9.06 20.56 − −
25 51 11.34 28.31 160.95 307.68 233.38 92.81 − −
10 21 1.03 2.45 1.29 1.49 0.78 10.76 − 17.59
15 31 0.5 8.42 10.76 2.52 8.93 1.4 415 − 749.48
20 41 − 761 55 775 863 − − −
25 51 − − − − − − − −
10 21 2.25 6.81 2.56 6.13 1.95 35.22 − 31.51
15 31 1 50.86 180.29 11.39 225.21 23.78 − − −
20 41 − − − − − − − −
25 51 − − − − − − − −

*Values given as "−" did not prove optimality within 1200 seconds.

39

Table 2.8: Graham’s Experiment - Time to Reach Optimality
CPU Time (s)

MILP CP
m N α Base Lex LB Lex+LB LB+UB MM Trad Verb
10 21 0.14 1.01 0.13 0.24 0.19 0.43 0.99 0.9
15 31 0 1.79 3.57 1.12 0.66 0.94 2.2 12.67 4.55
20 41 7.26 20.68 9 3 9.06 20.56 94.82 −
25 51 4 20 11 71 9 92.81 25.13 30.27
10 21 1.03 < 1 1.29 < 1 < 1 7 0.7 0.25
15 31 0.5 8.42 10.76 1 8.93 1.4 415 8.66 6.69
20 41 52 96 39 42 15 − 28.02 5.64
25 51 − − − − − − − −
10 21 < 1 < 1 < 1 < 1 < 1 4 1.83 0.08
15 31 1 1 4 1 2 1 96 5.23 6.64
20 41 − − − − − − − −
25 51 − − − − − − − −
*Values given as "−" did not achieve known optimal objective value within 1200 seconds, or

optimal objective value is unknown.

Chapter 3

Total Weighted Completion Time Minimization

In this chapter, we discuss the problem of solving parallel machine scheduling prob-

lems with non-availability periods for the case of minimizing total weighted completion

time (TWC). We only deal with the resumable case and leave the non-resumable and

semi-resumable cases as future extensions. TWC models situations where jobs have

been assigned priorities.

3.1 Definition of the Total Weighted Completion Time Problem

Conceptually, the minimum TWC version of the problem is identical to the minimum

makespan version except that instead of minimizing the end time of the job finishing

last, we are instead in the situation that each job has an associated weight wj and

the objective is to minimize the sum:

TWC =
N∑︂
j=1

wj · Cj (3.1)

Although this may seem like a small change, it requires a completely different formu-

lation approach to model the problem.

3.2 Constructive Heuristic

It is well known that the weighted shortest processing time (WSPT) heuristic is

optimal for the single machine scheduling problem with TWC [69]. Therefore, this

heuristic could be used as a method for generating an initial feasible solution for the

parallel machine scheduling problem with non-availability periods to minimize TWC.

The idea of using a variation of the WSPT heuristic for parallel machine scheduling is

not new but is commonly coupled with the introduction of new formulations. Using

the same notation as Beaton et al. [7] for describing the LPT2 heuristic of Lee [47],

40

41

we let Li be the load (current latest end time of assigned jobs) of machine i. The

next job j will be scheduled on machine i∗ such that:

i∗ =

⎧⎨⎩argmin{Li + pj : i = 1...m} if Li + pj ≤ siq

argmin{Li + pj + diq + α(siq − Li) : i = 1...m} if Li + pj > siq

(3.2)

The TWC can be calculated using Eq. (3.1) once all jobs have been assigned to

a machine. The version of the WSPT heuristic for this problem is then given by the

following algorithm:

WSPT:

• Step 1: Sort N jobs in decreasing order of wj

pj

• Step 2: Set j = 1, resulting in the WSPT job selection rule

• Step 3: Assign job j to machine i∗ using the LPT2 machine selection rule in

Eq. (3.2)

• Step 4: if j = N then go to the next step, otherwise set j = j + 1 and go to

Step 3

• Step 5: Calculate TWC by using Eq. (3.1)

3.3 MILP Modelling of the Total Weighted Completion Time Problem

In this section we propose a model for TWC minimization combining the position-

based modelling approach by Mönch and Shen [60] and the non-availability modelling

approach by Beaton et al. [7]. Assumptions are as in the makespan minimization

model.

We use the same notation for the formulation of the TWC MILP model as in the

makespan MILP model with the addition of the following parameter:

wj: weight of job j.

42

Decision variables:

xj,i =

⎧⎨⎩1 if job j is assigned to machine i

0 otherwise

zj,k =

⎧⎨⎩1 if job j is a predecessor of job k

0 otherwise

bi,j,q =

⎧⎨⎩1 if job j is completed after non-availability q on machine i

0 otherwise

Sj = Start time of job j

Cj = End time of job j

The proposed MILP model is given by:

min
N∑︂
j=1

wj · Cj (3.3)

s.t.:
m∑︂
i=1

xji = 1 ∀j (3.4)

Sk + pk −M · (2− xj,i − xk,i + zj,k) ≤ Sj ∀i, j, k(k ̸= j) (3.5)

Sj + pj −M · (3− xj,i − xk,i − zj,k) ≤ Sk ∀i, j, k(k ̸= j) (3.6)

Sj + pj · xj,i +
ri∑︂
q=1

di,q · bi,j,q ≤ Cj ∀j, i (3.7)

Cj ≤ si,q +M · bi,j,q ∀i, j, q (3.8)

bi,j,q+1 ≤ bi,j,q ∀i, j, q ≤ ri (3.9)

xj,i, zj,k, bi,j,q ∈ {0, 1} ∀i, j, k, q (3.10)

Sj, Cj ≥ 0 ∀j (3.11)

Constraints (3.4) ensure each job is assigned to exactly one machine. Constraints

(3.5) and (3.6) define the precedence relations between jobs. Constraints (3.7) define

43

the completion time of jobs. The completion time of job j is at least equal to the sum

of its starting time on a given machine, its processing time if assigned to that machine,

and the duration of all nonavailability periods that occur between the start of the job

and its completion. Constraints (3.8) determine whether a job completes before or

after a non-availability period. Constraints (3.9) state that if a job is completed after

a non-availability period, then it is also completed after preceding non-availability

periods. Constraints (3.9) are not required but are used to reduce computation times

by the same mechanism as constraints (2.7) in the makespan model. Constraints

(3.10) and (3.11) are binary and non-negativity constraints respectively.

3.4 MILP Experiments

In this section, we discuss the experiments conducted to evaluate the performance of

our proposed MILP model. We start by showing results for examples from Mellouli

et al. [59] used to verify the model correctness. Next, we propose a new modified

Graham’s Experiment benchmark for the TWC problem. As with the makespan

problem, all experiments were conducted on a 10 year old laptop with an Intel Core

i7-2720QM CPU @ 2.20GHz and 8 GB of 1333MHz DDR3 RAM running Ubuntu

20.04.2 LTS. The MILP solver used was Gurobi 9.1.2, and all experiments used the

best non-default parameter settings found during tuning: MIPFocus = 2 and Cuts

= 3 which tell the solver to focus more attention on proving optimality and to apply

very aggressive cut generation respectively [30]. A time limit of 1200 seconds was

enforced for all instances.

3.4.1 Experiment #1: Validation example

The goal of the first numerical example is to verify the correctness of our proposed

MILP model. It is tested on a problem published in the literature: an instance from

Mellouli et al. [59]. This instance involves 3 machines, 10 jobs, unit weights, and

the processing times in Table 3.1 below. Each machine has only one non-availability

period as depicted in Figure 3.1. This is one shortcoming of the Mellouli et al. [59]

paper.

44

Table 3.1: Instance from Mellouli et al. [59]
Jobs j 1 2 3 4 5 6 7 8 9 10

Processing Times pj 1 1 1 2 3 3 4 4 5 5

Figure 3.1: Mellouli Example - Setup

Figure 3.2: Instance from Mellouli - Solution

45

Our model obtains the optimal solution TWC∗ = 56, which is represented in

Figure 3.2

3.4.2 Experiment #2: Impact of altering job weights

The next example shows how changing the weights affects the solution. It involves 2

machines, 5 jobs, and multiple non-availability periods per machine. The processing

times are given in Table 3.2. Initially unit weights are used followed by the weights

in Table 3.2.

Table 3.2: Altered Job Weights
Jobs j 1 2 3 4 5

Processing Times pj 5 5 3 3 2
Weights wj 3 1 1 3 1

Figure 3.3: Setup for second experiment

From the results in Figures 3.3 and 3.4, we can see that when we increase the

weights for jobs 1 and 4, the model moves them earlier in the schedule as indicated

by the red arrows attached at the completion times. This example also shows that our

formulation is capable of dealing with multiple non-availability periods per machines.

The solutions depict how jobs are split by non-availability periods.

46

Figure 3.4: Altered Job Weights - Solutions

3.4.3 Experiment #3: Graham’s Experiment for weighted completion

times

A modified version of Graham’s Experiment is implemented for the total weighted

completion time problem. The original Graham’s Experiment [26] consists of m

machines onto which 2m+1 jobs must be scheduled. The jobs are given in decreasing

order of processing time: 2m− 1, 2m− 1, 2m− 2, 2m− 2, ..., m + 1, m + 1, m, m,

m. As the original experiment did not contain non-availability periods, we propose

a modified version with ⌊m
2
⌋ non-availability periods separated by 2m time units.

Each non-availability period has a duration lasting ⌊m
2
⌋ time units. Note that this is

different from the makespan problem which used ⌊m
10
⌋ non-availability periods, each

with a duration lasting ⌊m
4
⌋ time units. There are 2 groups of identical machines in

the experiment: group 1 contains the machines with odd indices, and group 2 contains

the machines with even indices. The first non-availability period of machines in group

1 starts at time 0 while the first non-availability period of machines in group 2 starts

at time 2m. The weights for machines are calculated as:

wj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⌊(j + 1)

3
4 ⌋+ 2 ∀j ≤ ⌊N

2
⌋ − 1

⌊(N − j)
3
4 ⌋+ 2 ∀⌊N

2
⌋ − 1 < j < N

3 j = N

(3.12)

This formula for the weights was chosen because it scales well for large numbers of

jobs and machines, puts the most weight on the jobs with processing times near the

mean, and gives similar weights to short and long jobs with processing times equal

47

distances from the mean.

Table 3.3: Graham’s Experiment (MILP): Total Weighted Completion Time
CPU Time (s)

m N LB UB Time TimeUB

2 5 75 75 0.09 < 0.09

3 7 167 167 3.37 < 2

4 9 284.09 332 1200 1
5 11 348.63 533 1200 6
6 13 488 817 1200 22

*Values were recorded after 1200 seconds of run time

Table 3.3 shows the lower bound and upper bound achieved within the time given

in the time column (time limit of 1200 seconds, or shorter if optimality was proven).

The TimeUB column gives the earliest time at which the upper bound was achieved.

The results in Table 3.3 show that we are only able to solve TWC problems to provable

optimality for 3 machines and 7 jobs using our proposed MILP formulation. This is

in contrast to 15 or more machines and 31 or more jobs for the makespan benchmark.

This speaks to the difficulty of the problem. It is known from other experiments that

332 is the optimal objective value for the 4 machine, 9 job instance. Given that the

MILP model was able to find this solution within approximately 1 second, and that

the 5 and 6 machine instances stop progressing the upper bound after a similarly short

amount of time, this suggests that the MILP model may be able to quickly find the

optimal solution for small instances even if it is not able to prove optimality, similarly

to the makespan model. Figure 3.5 shows an optimal solution to the 4 machine, 9

job instance obtained after 7342.85 seconds.

Figure 3.5: Total Weighted Completion Time - 4 Machines, 9 Jobs - Optimal Solution

48

3.5 CP Modelling of the Total Weighted Completion Time Problem

We propose two different formulation approaches to modelling the minimum TWC

problem using constraint programming. The first is a traditional CP scheduling

approach using specialized global constraints for scheduling and explicit interval vari-

ables. The second is a verbatim translation of the MILP model into constraint pro-

gramming.

One of the benefits of the traditional CP scheduling model for the makespan prob-

lem is that absent the objective function it is a basis for parallel machine scheduling

problems with non-availability periods and arbitrary resumability in general. This

means that with minor additions we can model many different objectives. This is in

general not the case for the MILP makespan model which lacks explicit task start

and end times. In what follows, we leverage this fact to express the CP model for

minimizing TWC as additions to the CP model for makespan minimization.

The key difference that allows modelling TWC is the addition of encapsulat-

ing interval variables. Whereas the non-rework and rework interval variables of the

makespan model have one interval variable for each combination of job and machine,

each job gains just a single additional encapsulating interval variable and the encap-

sulating interval variable is not optional. This is similar to how the start and end time

variables of jobs are not associated with machines in the MILP model for TWC. The

start and end of a job’s encapsulating interval variable is set equal to the start time

of the non-rework interval variable and the end time of the rework interval variable

corresponding to whichever machine the job is assigned respectively.

The weight parameter is used again:

wj: weight of job j

The following decision variables are added:

TWC Total weighted completion time objective variable

stencj Start time of encapsulating interval variable for job j

etencj End time of encapsulating interval variable for job j

49

durencj Duration of encapsulating interval variable for job j

Intrvencj Encapsulating interval variable for job j

The objective function becomes:

min TWC (3.13)

s.t.1:
N∑︂
j=1

wj · etencj = TWC (3.14)

xij =⇒ (stij = stencj) ∀i, j (3.15)

xij =⇒ (et_rwij = etencj) ∀i, j (3.16)

stencj + durencj = etencj ∀i, j (3.17)

TWC ≥ 0 (3.18)

stencj , etencj , durencj ≥ 0 ∀j (3.19)

Constraint (3.14) defines the weighted completion time objective variable. Con-

straints (3.15) and (3.16) ensure that the start and end of a job’s encapsulating interval

variable is set equal to the start time of the non-rework interval variable and the end

time of the rework interval variable corresponding to whichever machine the job is

assigned respectively. Constraints (3.17) are defined implicitly by the creation of the

encapsulating interval variables and define the relation between start time, duration,

and end time of the encapsulating interval variables. Constraints (3.18) and (3.19)

are non-negativity constraints.

The second CP model is a direct translation into CP of the proposed MILP model

for minimum TWC. To do this we use the same scale-factor Φ to ensure integer

decision variable values, but otherwise the model is the same.

3.6 CP Experiments

To test the effectiveness of the CP formulation of the minimum TWC problem we

construct and solve equivalent instances of the same Graham’s Experiment benchmark
1∧, ∨, ¬, =⇒ , ⇔ are logical AND, OR, NOT, IMPLICATION, and EQUALITY respectively.

50

as the MILP experiments. The CP models were solved using the CP-SAT solver of

Google ORTools version 9.0.9163 [65] on the same laptop as the MILP experiments.

The solver parameter num_search_workers was set to 8 which causes a portfolio of

different solving approaches to be executed across 8 different cores in parallel. Both

Table 3.4: Graham’s Experiment Total Weighted Completion Time - CP
CPTrad CPV erb

m N LB UB Time TimeUB LB UB Time TimeUB

2 5 75 75 0.02 0.01 75 75 0.02 0.01
3 7 167 167 1.14 0.15 167 167 0.96 0.07
4 9 332 332 819.34 0.5 332 332 96.89 2.26
5 11 424 533 1200 49.99 424 533 1200 5.59
6 13 502 817 1200 22 625 817 1200 15.79

*Values were recorded after 1200 seconds of run time

the traditional CP scheduling model and the verbatim translation of the MILP model

to CP showed their strength on the minimum TWC instances proving optimality on

the two, three, and four machine instances. This is largely due to the core-based

MAX-SAT solver which is one of the algorithms in the portfolio of solvers applied

to the problem. The core-based MAX-SAT solver is based upon ideas of minimum

unsatisfiable subset/core (MUS/MUC) extraction [5][10] and SAT-based MaxSAT

solving [4][18][23][17], and is especially well suited for problems with a sum objective

involving variables with a similar structure in the constraints which happens to be

the case for this problem.

3.7 Comparison of MILP, CP, & Heuristic

Having run identical experiments for the MILP model, CP model, and WSPT heuris-

tic, we are in a position to compare the strengths and weaknesses of each approach

for this particular scheduling problem.

From Table 3.5, we can see that the MILP and CP models found the same upper

bound for the small instances of the proposed modified Graham’s Experiment within

a relatively short amount of time. However, unlike the makespan problem where the

MILP formulation was the clear winner for proving optimality, both the traditional

51

CP scheduling model and the verbatim CP scheduling model were better at proving

optimality for the TWC problem. Whereas the MILP model could only prove opti-

mality for the 2 and 3 machine problems, the CP models were able to prove optimality

up to the 4 machine problem as well as finding a superior lower bound than the MILP

on the 5 and 6 machine problems. The results also suggest that the verbatim trans-

lation of the MILP to CP may perform better than the traditional CP model given

that it found the best lower bound for the 6 machine problem and had the short-

est runtimes for both proving optimality and time until finding the optimal (or best

known) solution on most of the instances. The WSPT heuristic also performed ex-

tremely well finding solutions within 1.5% of the best known solution within 1 second.

For larger instances, we compared the best exact solver (verbatim CP) to the

WSPT heuristic. The results from Table 3.6 show that the CP model was able to

find a better feasible solution than the heuristic within the twenty minute time limit

for the 10 and 15 machine problems, but the 20 machine problem proved too difficult

and CP was bested by the heuristic. Based upon these results, we would recommend

using the verbatim CP model on instances of size up to 15 machines and either

heuristic methods, or exact solvers with heuristic warm-starts for larger problems.

Table 3.5: Graham’s Experiment Total Weighted Completion Time - Small Instances
MILP CPTrad CPV erb WSPT

m N LB UB Time TimeUB LB UB Time TimeUB LB UB Time TimeUB UB UB
BEST

TimeUB

2 5 75 75 0.09 < 0.09 75 75 0.02 0.01 75 75 0.02 0.01 75 1 < 1

3 7 167 167 3.37 < 2 167 167 1.14 0.15 167 167 0.96 0.07 169 1.012 < 1

4 9 284.09 332 1200 1 332 332 819.34 0.5 332 332 96.89 2.26 333 1.003 < 1

5 11 348.63 533 1200 6 424 533 1200 49.99 424 533 1200 5.59 541 1.015 < 1

6 13 488 817 1200 22 502 817 1200 22 625 817 1200 15.79 827 1.012 < 1

*Values were recorded after 1200 seconds of run time

52

Table 3.6: Graham’s Experiment Total Weighted Completion Time - Large Instances
CPV erb WSPT

m N LB UB Time TimeUB UB UB
BEST

TimeUB

10 21 1715 2661 1200 415.67 2693 1.012 < 1

15 31 4497 7058 1200 921.21 7076 1.003 < 1

20 41 8857 14592 1200 1076.27 14440 0.990 < 1

*Values were recorded after 1200 seconds of run time

Chapter 4

Conclusion & Directions For Further Research

An abundance of research exists studying parallel machine scheduling, but only a

portion of this research has focused on the case with non-availability periods and job

resumability factors. Research considering this case has mostly focused on limited

cases such as a small, fixed number of machines or fixed number of non-availability

periods.

In this research, we improve the runtime of the MILP model of Beaton et al. [7]

that allows an arbitrary number of machines, non-availability periods, and arbitrary

resumability factor for the makespan minimization case. We did this by consider-

ing different model additions including: lexicographic ordering constraints to break

symmetry in the ordering of identical machines, a lower bound on the makespan con-

sisting of averaging total job processing time across machines while accounting for

non-availability periods, and warm-starting the model with the best solution from the

four heuristics of Beaton et al. [7]. Four different configurations of model additions

were able to prove optimality of the 20 machine, semi-resumable case of the modified

Graham’s Experiment for the first time. Additionally, even when the MILP models

were not able to prove optimality, they were frequently able to find the optimal solu-

tion within a relatively short amount of time.

We also proposed two different constraint programming (CP) models for the

makespan case; the first a traditional CP scheduling model involving explicit job

start time, end time, duration, and interval variables that takes advantage of the

powerful filtering and propagation algorithms of the global disjunctive scheduling

constraint, and the second a verbatim translation of the MILP model into an equiv-

alent CP model. While the CP models were less effective at proving optimality, they

performed similarly to the MILP model for finding the optimal solution, especially

53

54

for the semi-resumable and non-resumable cases.

We proposed a new MILP model for the Total Weighted Completion Time (TWC)

case allowing an arbitrary number of machines and non-availability periods for the

fully-resumable case as well as a new modified Graham’s Experiment benchmark for

testing solution approaches. The correctness of the model was verified by comparison

with an example from Mellouli et al [59]. Similar to the makespan case, we also in-

troduced a traditional CP scheduling model and a verbatim translation of the MILP

model into an equivalent CP model. For the TWC objective, we found that both CP

models outperformed the MILP model by proving optimality of a larger instance as

well as finding improved lower bounds on problems where optimality was not proven.

Additionally, we confirmed that a weighted shortest processing time (WSPT) heuris-

tic performs extremely well for the TWC objective finding solutions within 1.5% of

the best solution from an exact solver in less than one second. Furthermore, the ex-

act solvers began to struggle with larger problem instances and the WSPT heuristic

outperformed the best exact solver at the 20 machine problem with a 20 minute time

limit.

There are many possible directions for future research on the topic of parallel

machine scheduling with non-availability periods and arbitrary resumability factor.

In future research we intend to extend the exact TWC model to handle arbitrary

resumability. Another interesting line of research would be to generalize the model

to allow scheduling both jobs and non-availability periods. We could also consider

different performance metrics such as weighted earliness and tardiness or minimum

lateness, the effect of machine eligibility constraints, and the effect of stochastic values

such as processing times and non-availability period start times and durations.

Bibliography

[1] Disjunctive global constraint definition. https://sofdem.github.io/gccat/
gccat/Cdisjunctive.html. Accessed: 2021-08-05.

[2] lex_chain_lesseq_bool.mzn linearized global constraint definition.
https://github.com/MiniZinc/libminizinc/blob/master/share/
minizinc/linear/fzn_lex_chain_lesseq_bool.mzn. Accessed: 2021-07-
28.

[3] Igal Adiri, John Bruno, Esther Frostig, and AHG Rinnooy Kan. Single machine
flow-time scheduling with a single breakdown. Acta Informatica, 26(7):679–696,
1989.

[4] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Sat-based maxsat algo-
rithms. Artificial Intelligence, 196:77–105, 2013.

[5] Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. Improving glucose
for incremental sat solving with assumptions: Application to mus extraction. In
International conference on theory and applications of satisfiability testing, pages
309–317. Springer, 2013.

[6] Mikhail Batsyn, Boris Goldengorin, Panos M Pardalos, and Pavel Sukhov. Online
heuristic for the preemptive single machine scheduling problem of minimizing the
total weighted completion time. Optimization Methods and Software, 29(5):955–
963, 2014.

[7] Clifford Beaton, Claver Diallo, and Eldon Gunn. Makespan minimization for par-
allel machine scheduling of semi-resumable and non-resumable jobs with multiple
availability constraints. INFOR: Information Systems and Operational Research,
54(4):305–316, 2016.

[8] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit. Global
constraint catalogue: Past, present and future. Constraints, 12(1):21–62, 2007.

[9] Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global constraint
catalog. 2005.

[10] Jeremias Berg and Matti Järvisalo. Weight-aware core extraction in sat-based
maxsat solving. In International Conference on Principles and Practice of Con-
straint Programming, pages 652–670. Springer, 2017.

[11] James Bruno, Edward G Coffman Jr, and Ravi Sethi. Scheduling independent
tasks to reduce mean finishing time. Communications of the ACM, 17(7):382–
387, 1974.

55

https://sofdem.github.io/gccat/gccat/Cdisjunctive.html
https://sofdem.github.io/gccat/gccat/Cdisjunctive.html
https://github.com/MiniZinc/libminizinc/blob/master/share/minizinc/linear/fzn_lex_chain_lesseq_bool.mzn
https://github.com/MiniZinc/libminizinc/blob/master/share/minizinc/linear/fzn_lex_chain_lesseq_bool.mzn

56

[12] Jacques Carlier. The one-machine sequencing problem. European Journal of
Operational Research, 11(1):42–47, 1982.

[13] Mats Carlsson and Nicolas Beldiceanu. Arc-consistency for a chain of lexico-
graphic ordering constraints, 2002.

[14] Jen-Shiang Chen. Scheduling of nonresumable jobs and flexible maintenance
activities on a single machine to minimize makespan. European Journal of Op-
erational Research, 190(1):90–102, 2008.

[15] Ya-Yong Chen, Pei-Yu Huang, Cheng-Jun Huang, Shen-Quan Huang, and Fuh-
Der Chou. Makespan minimization for scheduling on two identical parallel
machiens with flexible maintenance and nonresumable jobs. Journal of Industrial
and Production Engineering, 38(4):271–284, 2021.

[16] Yarong Chen, Chenjun Huang, Fuh-Der Chou, and Shenquan Huang. Single-
machine scheduling problem with flexible maintenance and non-resumable jobs
to minimise makespan. IET Collaborative Intelligent Manufacturing, 2(4):174–
181, 2020.

[17] Jessica Davies and Fahiem Bacchus. Solving maxsat by solving a sequence of
simpler sat instances. In International conference on principles and practice of
constraint programming, pages 225–239. Springer, 2011.

[18] Toby Davies, Graeme Gange, and Peter Stuckey. Automatic logic-based ben-
ders decomposition with minizinc. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

[19] Willard L Eastman, Shimon Even, and I Martin Isaacs. Bounds for the optimal
scheduling of n jobs on m processors. Management science, 11(2):268–279, 1964.

[20] Thibaut Feydy and Peter J Stuckey. Lazy clause generation reengineered. In
International Conference on Principles and Practice of Constraint Programming,
pages 352–366. Springer, 2009.

[21] Bin Fu, Yumei Huo, and Hairong Zhao. Exponential inapproximability and
fptas for scheduling with availability constraints. Theoretical Computer Science,
410(27-29):2663–2674, 2009.

[22] Bin Fu, Yumei Huo, and Hairong Zhao. Approximation schemes for parallel
machine scheduling with availability constraints. Discrete Applied Mathematics,
159(15):1555–1565, 2011.

[23] Zhaohui Fu and Sharad Malik. On solving the partial max-sat problem. In
International Conference on Theory and Applications of Satisfiability Testing,
pages 252–265. Springer, 2006.

[24] Ian P Gent, Karen E Petrie, and Jean-François Puget. Symmetry in constraint
programming. Foundations of Artificial Intelligence, 2:329–376, 2006.

57

[25] Anis Gharbi and Mohamed Haouari. Optimal parallel machines scheduling with
availability constraints. Discrete Applied Mathematics, 148(1):63–87, 2005.

[26] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM journal
on Applied Mathematics, 17(2):416–429, 1969.

[27] Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and
AHG Rinnooy Kan. Optimization and approximation in deterministic sequenc-
ing and scheduling: a survey. In Annals of discrete mathematics, volume 5, pages
287–326. Elsevier, 1979.

[28] Gregory H Graves and Chung-Yee Lee. Scheduling maintenance and semiresum-
able jobs on a single machine. Naval Research Logistics (NRL), 46(7):845–863,
1999.

[29] Lin Guohui, He Yong, Yao Yujun, and Lu Haiyan. Exact bounds of the modified
lpt algorithms applying to parallel machines scheduling with nonsimultaneous
machine available times. Applied Mathematics-A Journal of Chinese Universities,
12(1):109–116, 1997.

[30] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021.

[31] Navid Hashemian. Makespan minimization for parallel machines scheduling with
availability constraints. 2010.

[32] Navid Hashemian, Claver Diallo, and Béla Vizvári. Makespan minimization for
parallel machines scheduling with multiple availability constraints. Annals of
Operations Research, 213(1):173–186, 2014.

[33] Raf Jans. Solving lot-sizing problems on parallel identical machines using
symmetry-breaking constraints. INFORMS Journal on Computing, 21(1):123–
136, 2009.

[34] Jihene Kaabi and Youssef Harrath. A survey of parallel machine scheduling un-
der availability constraints. International Journal of Computer and Information
Technology, 3(2):238–245, 2014.

[35] Imed Kacem and Chengbin Chu. Efficient branch-and-bound algorithm for mini-
mizing the weighted sum of completion times on a single machine with one avail-
ability constraint. International Journal of Production Economics, 112(1):138–
150, 2008.

[36] Imed Kacem, Chengbin Chu, and Ahmed Souissi. Single-machine scheduling
with an availability constraint to minimize the weighted sum of the completion
times. Computers & operations research, 35(3):827–844, 2008.

58

[37] Imed Kacem and A Ridha Mahjoub. Fully polynomial time approximation
scheme for the weighted flow-time minimization on a single machine with a fixed
non-availability interval. Computers & Industrial Engineering, 56(4):1708–1712,
2009.

[38] Tsuyoshi Kawaguchi and Seiki Kyan. Worst case bound of an lrf schedule for the
mean weighted flow-time problem. SIAM Journal on Computing, 15(4):1119–
1129, 1986.

[39] Daniel Kowalczyk and Roel Leus. An exact algorithm for parallel machine
scheduling with conflicts. Journal of Scheduling, 20(4):355–372, 2017.

[40] Arthur Kramer, Mauro Dell’Amico, and Manuel Iori. Enhanced arc-flow for-
mulations to minimize weighted completion time on identical parallel machines.
European Journal of Operational Research, 275(1):67–79, 2019.

[41] Hanane Krim, Rachid Benmansour, David Duvivier, Daoud Aït-Kadi, and Said
Hanafi. Heuristics for the single machine weighted sum of completion times
scheduling problem with periodic maintenance. Computational Optimization and
Applications, 75(1):291–320, 2020.

[42] Wen-Yang Ku and J Christopher Beck. Mixed integer programming models
for job shop scheduling: A computational analysis. Computers & Operations
Research, 73:165–173, 2016.

[43] Philippe Laborie and Jerome Rogerie. Reasoning with conditional time-intervals.
In FLAIRS conference, pages 555–560, 2008.

[44] Philippe Laborie, Jerome Rogerie, Paul Shaw, and Petr Vilím. Reasoning with
conditional time-intervals. part ii: An algebraical model for resources. In Twenty-
Second International FLAIRS Conference, 2009.

[45] Philippe Laborie, Jérôme Rogerie, Paul Shaw, Petr Vilím, and Ferenc Katai.
Interval-based language for modeling scheduling problems: An extension to con-
straint programming. In Algebraic Modeling Systems, pages 111–143. Springer,
2012.

[46] Chung-Yee Lee. Parallel machines scheduling with nonsimultaneous machine
available time. Discrete Applied Mathematics, 30(1):53–61, 1991.

[47] Chung-Yee Lee. Machine scheduling with an availability constraint. Journal of
global optimization, 9(3-4):395–416, 1996.

[48] Chung-Yee Lee. Two-machine flowshop scheduling with availability constraints.
European Journal of Operational Research, 114(2):420–429, 1999.

[49] Chung-Yee Lee, Yong He, and Guochun Tang. A note on “parallel machine
scheduling with non-simultaneous machine available time”. Discrete Applied
Mathematics, 100(1-2):133–135, 2000.

59

[50] Chung-Yee Lee, Lei Lei, and Michael Pinedo. Current trends in deterministic
scheduling. Annals of operations Research, 70:1–41, 1997.

[51] Chung-Yee Lee and Surya Danusaputro Liman. Single machine flow-time
scheduling with scheduled maintenance. Acta Informatica, 29(4):375–382, 1992.

[52] Chung-Yee Lee and Surya Danusaputro Liman. Capacitated two-parallel ma-
chines scheduling to minimize sum of job completion times. Discrete Applied
Mathematics, 41(3):211–222, 1993.

[53] Jan Karel Lenstra, AHG Rinnooy Kan, and Peter Brucker. Complexity of ma-
chine scheduling problems. In Annals of discrete mathematics, volume 1, pages
343–362. Elsevier, 1977.

[54] Kai Li and Shan-lin Yang. Non-identical parallel-machine scheduling research
with minimizing total weighted completion times: Models, relaxations and algo-
rithms. Applied mathematical modelling, 33(4):2145–2158, 2009.

[55] Ching-Jong Liao, Der-Lin Shyur, and Chien-Hung Lin. Makespan minimization
for two parallel machines with an availability constraint. European Journal of
Operational Research, 160(2):445–456, 2005.

[56] Lu-Wen Liao and Gwo-Ji Sheen. Parallel machine scheduling with machine avail-
ability and eligibility constraints. European Journal of Operational Research,
184(2):458–467, 2008.

[57] Ying Ma, Chengbin Chu, and Chunrong Zuo. A survey of scheduling with deter-
ministic machine availability constraints. Computers & Industrial Engineering,
58(2):199–211, 2010.

[58] Racem Mellouli, Imed Kacem, Chérif Sadfi, and Chengbin Chu. Lagrangian re-
laxation and column generation-based lower bounds for the pm, hj1||sum wici
scheduling problem. Applied Mathematics and Computation, 219(22):10783–
10805, 2013.

[59] Racem Mellouli, Cherif Sadfi, Chengbin Chu, and Imed Kacem. Identical
parallel-machine scheduling under availability constraints to minimize the sum of
completion times. European Journal of Operational Research, 197(3):1150–1165,
2009.

[60] Lars Mönch and Liji Shen. Parallel machine scheduling with the total weighted
delivery time performance measure in distributed manufacturing. Computers &
Operations Research, 127:105126, 2021.

[61] Rabia Nessah and Chengbin Chu. Infinite split scheduling: a new lower bound of
total weighted completion time on parallel machines with job release dates and
unavailability periods. Annals of Operations Research, 181(1):359–375, 2010.

60

[62] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J
Duck, and Guido Tack. Minizinc: Towards a standard cp modelling language. In
International Conference on Principles and Practice of Constraint Programming,
pages 529–543. Springer, 2007.

[63] Olga Ohrimenko, Peter J Stuckey, and Michael Codish. Propagation via lazy
clause generation. Constraints, 14(3):357–391, 2009.

[64] Jason Chao-Hsien Pan and Chi-Shiang Su. Two parallel machines problem with
job delivery coordination and availability constraint. Annals of Operations Re-
search, 235(1):653–664, 2015.

[65] Laurent Perron and Vincent Furnon. Or-tools.

[66] Cherif Sadfi, Imed Kacem, and Wei Liu. Lower bounds for total weighted com-
pletion scheduling problem with availability constraints. In 2009 International
Conference on Computers & Industrial Engineering, pages 159–163. IEEE, 2009.

[67] Eric Sanlaville and Günter Schmidt. Machine scheduling with availability con-
straints. Acta Informatica, 35(9):795–811, 1998.

[68] Günter Schmidt. Scheduling with limited machine availability. European Journal
of Operational Research, 121(1):1–15, 2000.

[69] Wayne E Smith et al. Various optimizers for single-stage production. Naval
Research Logistics Quarterly, 3(1-2):59–66, 1956.

[70] Petr Vilím. Global constraints in scheduling. 2007.

[71] Petr Vilím, Roman Barták, and Ondřej Čepek. Unary resource constraint with
optional activities. In International Conference on Principles and Practice of
Constraint Programming, pages 62–76. Springer, 2004.

[72] Guoqing Wang, Hongyi Sun, and Chengbin Chu. Preemptive scheduling with
availability constraints to minimize total weighted completion times. Annals of
Operations Research, 133(1-4):183–192, 2005.

[73] Dehua Xu and Dar-Li Yang. Makespan minimization for two parallel machines
scheduling with a periodic availability constraint: mathematical programming
model, average-case analysis, and anomalies. Applied Mathematical Modelling,
37(14-15):7561–7567, 2013.

[74] Zhijun Xu, Aihua Liu, and Qi Wang. Mixed 0–1 programming model for three
parallel machines scheduling problem with machine-dependent unavailable con-
straints. In 2016 13th International Conference on Service Systems and Service
Management (ICSSSM), pages 1–4. IEEE, 2016.

[75] Jaewook Yoo and Ik Sun Lee. Parallel machine scheduling with maintenance
activities. Computers & Industrial Engineering, 101:361–371, 2016.

61

[76] Chuanli Zhao, Min Ji, and Hengyong Tang. Parallel-machine scheduling with
an availability constraint. Computers & Industrial Engineering, 61(3):778–781,
2011.

Appendix A. GLPK/Gusek MILP Code for the makespan

minimization problem

################# Parameters ##################################

#number of machines

param m;

set M := 1..m;

#number of jobs

param n;

set N := 1..n;

#number of unavailability periods on machine i

param r{i in M};

set R{i in M} := 1..r[i];

#processing times

param p{j in N};

#resumability factor

param alpha, default 0;

#Starting time of unavailability periods

param s{i in M, q in R[i]};

#Ending time of unavailability periods

param e{i in M, q in R[i]};

#Duration of unavailability periods

param D{i in M, q in R[i]} := e[i,q] - s[i,q];

62

63

#big M

param Z, default 10000;

############ Decision Variables ###############################

1 if job j is assigned to machine i, 0 otherwise

var x{i in M, j in N}, binary;

1 if jobs on machine i are completed before siq, 0 otherwise

var y{i in M, q in R[i]}, binary;

amount of time after the last job has been completed before

unavailability q

var w{i in M, q in R[i]}, >= 0;

1 if job j is completed before unavailability q on machine i,

0 otherwise

var b{i in M, j in N, q in R[i]}, binary;

#makespan

var Cmax, >= 0;

################# Objective ###################################

minimize f: Cmax;

################# Constraints #################################

s.t. c1{i in M, q in R[i]}:

64

sum{j in N}p[j]*x[i,j] + sum{k in 1..q-1}(D[i,k]

+ alpha*w[i,k]) <= s[i,q] + Z*(1-y[i,q]);

s.t. c2{i in M}:

sum{j in N}p[j]*x[i,j] + sum{q in R[i]}(D[i,q]*(1-y[i,q])

+ alpha*w[i,q]) <= Cmax;

s.t. c3{j in N}: sum{i in M}x[i,j] = 1;

s.t. c4{i in M, q in R[i]}:

w[i,q]>=s[i,q]*(1-y[i,q]) - sum{j in N}p[j]*b[i,j,q]

- sum{k in 1..q-1}(D[i,k] + alpha*w[i,k]);

s.t. c5{i in M, q in R[i]}:

w[i,q] <= s[i,q] - sum{j in N}p[j]*b[i,j,q]

- sum{k in 1..q-1}(D[i,k] + alpha*w[i,k]);

s.t. c6{i in M, j in N, q in R[i]}: b[i,j,q] <= x[i,j];

s.t. c7{i in M, j in N, q in 1..r[i]-1}: b[i,j,q+1] >= b[i,j,q];

s.t. c8{i in M, q in 1..r[i]-1}:

sum{j in N}(p[j]*b[i,j,q+1]-p[j]*b[i,j,q])

<= s[i,q+1] - e[i,q] - alpha*w[i,q] + w[i,q];

solve;

display f, x, y, w, b, D;

data;

param m := 2;

param n := 10;

param alpha := 0.5;

param r :=

1 2

2 2;

param p :=

1 2

65

2 17

3 4

4 7

5 10

6 12

7 9

8 10

9 17

10 14

;

param s :=

1 1 1

1 2 4

2 1 3

2 2 7

;

param e:=

1 1 2

1 2 5

2 1 5

2 2 8

;

end;

Appendix B. GLPK/Gusek MILP Code for the weighted

completion times minimization problem

MILP Parallel Machine Scheduling Weighted Completion Times

With Multiple Non-availability Periods

param m; #number of machines

set M := 1..m;

param n; #number of jobs

set N :=1..n;

#number of unavailability periods on machine i

param r{i in M};

set R{i in M} := 1..r[i];

param p{j in N}; #processing times

param w{j in N}; #weights

#Starting time of unavailability periods

param s{i in M, q in R[i]};

#Ending time of unavailabilty periods

param e{i in M, q in R[i]};

#Duration of unavailability periods

param D{i in M, q in R[i]} := e[i,q] - s[i,q];

param Z, default 500; #big M

66

67

Decision Variables

1 if job j is assigned to machine i, 0 otherwise

var x{j in N, i in M}, binary;

1 if job j is scheduled before job k on machine,

0 otherwise

var z{j in N, k in N}, binary;

1 if job j is completed after unavailability q on machine i,

0 otherwise

var b{i in M, j in N, q in R[i]}, binary;

start time of job j

var S{j in N}, >= 0;

#completion time of job j

var C{j in N}, >= 0;

Objective

minimize f: sum{j in 1..n} w[j]*C[j];

Constraints

s.t. ct1{j in 1..n}: sum{i in M} x[j,i] = 1;

s.t. ct2{j in 1..n, k in 1..n, i in M: j<>k}:

S[k] + p[k] -Z*(2-x[j,i]-x[k,i]+z[j,k]) <= S[j];

68

s.t. ct3{j in 1..n, k in 1..n, i in M: j<>k}:

S[j] + p[j] -Z*(3-x[j,i]-x[k,i]-z[j,k]) <= S[k];

s.t. ct4{j in 1..n, i in M}:

S[j] + p[j]*x[j,i] + sum{q in 1..r[i]} D[i,q]*b[i,j,q] <= C[j];

s.t. ct5{j in 1..n, i in M, q in 1..r[i]}:

C[j] <= s[i,q] + Z*b[i,j,q];

s.t. ct6{i in M, j in N, q in 1..r[i]-1}:

b[i,j,q+1] <= b[i,j,q];

solve;

display f, C, S, x, z, b, D;

data;

param m := 3;

param n := 10;

param r :=

1 1

2 1

3 1

;

param p :=

1 1

2 1

3 1

4 2

5 3

6 3

7 4

8 4

9 5

10 5

69

;

param w :=

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

;

param s :=

1 1 5

2 1 5

3 1 7

;

param e :=

1 1 7

2 1 8

3 1 8

;

end;

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Preliminaries
	Parallel Machine Scheduling Notation
	Accounting For Non-Availability Periods & Resumability
	Solution Methods

	Literature Review
	Results for the Makespan Problem with Machine Non-Availability
	Results for the TWC Problem with Machine Non-Availability

	Motivation and Research Goals

	Makespan Minimization Problem
	Definition of the Makespan Problem
	MILP Modelling of the Makespan Problem
	New contributions to improve the MILP
	Adding new constraints to the MILP
	Adding symmetry breaking
	Adding lower bounds
	Using warm-start
	MILP Experiments

	CP Modelling of the Makespan Problem
	CP Experiments
	Comparison of MILP & CP

	Total Weighted Completion Time Minimization
	Definition of the Total Weighted Completion Time Problem
	Constructive Heuristic
	MILP Modelling of the Total Weighted Completion Time Problem
	MILP Experiments
	Experiment #1: Validation example
	Experiment #2: Impact of altering job weights
	Experiment #3: Graham's Experiment for TWC

	CP Modelling of the Total Weighted Completion Time Problem
	CP Experiments
	Comparison of MILP, CP, & Heuristic

	Conclusion & Directions For Further Research
	Bibliography
	Appendix A. GLPK MILP Code for the minimum makespan problem
	Appendix B. GLPK MILP Code for the minimum TWC problem

