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Abstract

Psychiatric researchers are interested in heterogeneity because mental illnesses can have

many (overlapping) causes and consequences. This limits the power and generalizability of

basic and clinical research findings. This thesis first demonstrates that existing heterogeneity

indices are inadequate for psychiatric research applications since they rely on (A) valid

categorical grouping of subjects/observations, and (B) assumption that distance on the space

of observable data is semantically relevant. To address these problems, we subsequently

introduce the representational Rényi heterogeneity (RRH) framework and compare it to stan-

dard heterogeneity indices. Comparisons using simple systems (beta mixture distributions)

and complex models of real world data (specifically a convolutional variational autoencoder

trained on natural images) attest to the interpretability and flexibility of RRH.

For application, we introduce the largest-ever machine learning (ML) based study of

lithium response prediction for patients with bipolar disorder, using only features collected

from patient interviews. In a sample of 1266 patients pooled across 7 international sites,

lithium response can be predicted with an area under the receiver operating characteristic

curve (AUC) of 0.80 (95% CI [0.78,0.82]), but with limited generalizability due to substantial

heterogeneity in classification signals between sites. We therefore used RRH to derive

exemplar scoring, which identifies regions of a feature space that are most reliably classified

with high accuracy. We consequently identify “canonical” clinical profiles of lithium

responders and non-responders, and show that subjects with high exemplar scores are

genetically distinct (AUC 0.88, IQR [0.83, 0.98]) compared to those with low exemplar

scores (AUC 0.66 [0.61, 0.80]; p<0.001).

An ancillary contribution of this thesis is a counterexample to the common statisti-

cal dogma against dichotomization of continuous variables. To this end, we show that

dichotomization of asymmetrically reliable variables can retain greater information and

statistical power than their raw (continuous) forms.

In sum, this thesis develops a method for heterogeneity measurement that is interpretable,

flexible, and useful, particularly for psychiatric research. As a result, we have also made

significant advancements toward the understanding and management of bipolar disorder.
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Chapter 1

Introduction

1.1 What is Heterogeneity?

Heterogeneity (or equivalently diversity) is a statistical concept that corresponds roughly to

the number of distinct configurations in which a system may be found. When one samples

from a homogeneous system, all observations in that sample will be identical. That is, a

homogeneous system is in a state of perfect conformity. Conversely, a heterogeneous system

yields samples in which observations have many differences between them. A heterogeneous

system is therefore said to diverge from the ground state of perfect conformity.1

1.2 Why is Heterogeneity Important?

Understanding heterogeneity is important for the study of many natural phenomena, albeit

for different reasons. Ecologists and conservationists must understand heterogeneity since

ecological biodiversity improves ecosystems’ productivity and robustness to perturbations

(such as those related to invasive species and human factors) [2]. Economists and soci-

ologists are interested in heterogeneity in the form of income inequality and industrial

concentration (i.e. the degree of heterogeneity in resource ownership or profit generation),

which can influence societal functioning, productivity, and political processes [3, 4]. Sta-

tistical physicists, network scientists, and many other disciplines, are also interested in

heterogeneity in relation to understanding systems’ complexity more generally [5].

The application domain of primary interest for the present thesis is medical science,

particularly that subdomain related to psychiatric disorders. Here, heterogeneity is of concern

mainly because it limits our ability to discover diagnostic tests and targeted therapies for

various conditions.

Example 1. Consider a randomized trial of a new drug, denoted DA, compared to drug DB , for

1This definition is inspired by Eliazar’s definition of inequality [1].

1



2

Table 1.1: Hypothetical schizophrenia (SCZ) drug trial results.

N (%) Readmitted within 1 year
DA (N=500) DB (N=500)

SCZ (N=1000) 250 (50%) 250 (50%)

the treatment of schizophrenia (SCZ). The primary outcome is the probability of hospital admission

within 5 years. The investigators randomize 1000 SCZ patients into groups receiving either DA or

DB , obtain the results in Table 1.1, and conclude that drugs A and B are similarly effective. However,

if SCZ is a heterogeneous diagnosis—for instance, containing two hypothetical subtypes SCZ-1 and

SCZ-2—then the results in Table 1.2 are plausible.

Table 1.2: Hypothetical schizophrenia (SCZ) drug trial results with subtyping.

N (%) Readmitted within 1 year
DA (N=500) DB (N=500)

SCZ-1 (N=500) 0 250 (100%)
SCZ-2 (N=500) 250 (100%) 0
SCZ (Pooled) (N=1000) 250 (50%) 250 (50%)

Tables 1.1 and 1.2 demonstrate the famous Yule-Simpson effect, more commonly known as

Simpson’s Paradox [6–9], where the relationship between two variables (here drug treatment and

readmission) is eliminated or reversed upon conditioning for a third (here disease subtype). In our

hypothetical case, both drugs A and B have extraordinarily high effect sizes, but these are obscured

when heterogeneity of SCZ is ignored. Thus, heterogeneity of clinical conditions may attenuate effect

sizes and limit progress toward improving diagnosis and treatment of various medical conditions.

Example 1 should not mislead the reader into believing that heterogeneity in medical

applications is present only under conditions where the Yule-Simpson effect exists. Indeed,

heterogeneity in the clinical group may exist, yet not be sufficient to observe the Yule-

Simpson effect.

Example 2. Let us randomize 1000 hypothetical patients diagnosed with “psychosis” to treatment

with drugs C (DC) or D (DD). Let us assume that patients in this sample have psychosis caused

either by SCZ or the manic phase of bipolar disorder. The results in Table 1.3 show the absence of a

Yule-Simpson effect, despite the fact that the pooled sample is heterogeneous.
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Table 1.3: Hypothetical psychosis drug trial results.

N (%) Readmitted within 1 year
DC (N=500) DD (N=500)

Psychosis (SCZ) (N=500) 200 (80%) 25 (10%)
Psychosis (Mania) (N=500) 200 (80%) 25 (10%)
Psychosis (N=1000) 400 (80%) 50 (10%)

Heterogeneity is therefore an important statistical concept in medical sciences, primarily

due to its impact on the estimation of diagnostic and therapeutic effect sizes [10]. However,

Examples 1 and 2 demonstrate the fact that heterogeneity in clinical groups may exist

regardless of effect size distributions.2 Indeed, whereas heterogeneity directly impacted

effect size estimates in Example 1, it had no impact (despite being present) in Example 2.

1.3 Why Should we Measure Heterogeneity?

Having established the importance of heterogeneity across various fields, we now turn to

the question of why we should be interested in measuring it. Firstly, the fact that some

collections are more diverse than others is a phenomenon observable through ordinary life

experience. Since intuition ostensibly treats heterogeneity in a fashion similar to other

measurable quantities (such as height, weight, and volume) then it stands to reason that

heterogeneity, too, should have a quantitative measure.

Another reason to seek a measure of heterogeneity is that it may be an important property

of a system in its own right. We have already noted that the robustness of an ecosystem

to invasive species is related to its biodiversity [2]. The degree of cell-type heterogeneity

in tumours may affect a cancer’s resistance to chemotherapy [11]. Heterogeneity is also a

defining feature of multiple sclerosis, which requires lesions in the brain’s white matter to

be “disseminated across space and time” (i.e. lesions are found at different locations and

there are multiple attacks) [12]. Patients with and without bipolar disorder may also have

different levels of heterogeneity in their mood states across time [13–15]. In such cases,

among others [16], heterogeneity may be a useful feature variable for statistical and other

modeling purposes. However, unlocking this potential requires development of quantitative

2Deriving a scenario in which one observes a Yule-Simpson effect without the presence of heterogeneity in the

clinical group is left as an exercise for the reader. Hint: the clinical sample is not really heterogeneous in this

case.
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measures.

1.4 What Constitutes a Heterogeneity Measure?

Chapters 2 and 3 address the question of what constitutes a heterogeneity measure, with

special consideration of limitations and constraints imposed by application to psychiatric

research problems. Specifically, Chapter 2 summarizes the different statistical properties

of heterogeneity implied by psychiatric research studies to date. These include deviance

(roughly the degree to which observations from a system differ qualitatively) and mul-

timodality (roughly the amount of “clustering” or “discrete states” present in a system).

To be useful in psychiatric research applications, a heterogeneity measure must capture

these properties. To this end, Chapter 2 also provides a cursory introduction to the Rényi

heterogeneity indices (also known as the Hill numbers [17] or Hannah-Kay indices [18]),

which capture both deviance and multimodality by measuring heterogeneity as the size of

a system’s event space (in units known as numbers equivalent [19, 20]). Since the Rényi

heterogeneity requires precise definition of the system’s event space, we argue that it has a

corollary benefit of reducing the general vagueness with which psychiatric researchers have

tended to use the term “heterogeneity.”

Chapter 3 provides a more detailed and technical review of the meaning and measurement

of heterogeneity by first defining the components of a system: an event space equipped with

an abundance measure and a distance function. Heterogeneity measures are then divided

into those applicable to event spaces with (A) categorical or (B) non-categorical topology.

Categorical systems are those in which pairwise distances between all configurations are

equal, rendering the event space permutation invariant. Conversely, non-categorical systems

are those whose event spaces are not permutation invariant, such as when elements have

ordinal or continuous distances.

1.5 Why Representational Rényi Heterogeneity?

Chapter 3 compiles an axiomatic basis for measures of heterogeneity, and proves that

most are satisfied by the Rényi heterogeneity first broached in Chapter 2. Specifically, we

emphasize the importance of a condition known as the replication principle [21–23], which

arguably provides the strongest support in favour of the Rényi family as the standard indices
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for heterogeneity measurement. The replication principle states that if we aggregate K

equally heterogeneous systems with non-overlapping event spaces, the pooled heterogeneity

should be K-fold higher than that of each subsystem. Interestingly, common heterogeneity

indices based on entropy [24–26] and variance [27, 28] violate this property (Chapter 3);

consequently, these indices can be considered true measures of heterogeneity to the degree

that a sphere’s radius can be considered a measure of its volume [22].

Chapter 3 also highlights important limitations of existing heterogeneity measures as

they apply to non-categorical systems. Specifically, we note that many such indices do not

carry units of numbers equivalent, and are thus inconsistent with our more general view of

heterogeneity as the size of a system’s event space (i.e. the number of system configurations).

Beyond some idiosyncratic limitations, the existing non-categorical heterogeneity indices

measured in numbers equivalent are shown to carry important problems: they require the

raw event space to be discretized into bins whose pairwise distances are measured using

a standard distance function, such as those of the Minkowski family. These limitations

virtually preclude their application to psychiatric research problems.

In Chapter 4, we propose an approach for measuring heterogeneity based on repre-

sentation learning. This method maps observable data onto a latent space upon which

(A) geometry of relevant semantic features are better captured and (B) the ordinary Rényi

heterogeneity formula, or a parametric variation thereof, can be tractably applied. This

obviates the need to both discretize the observable space and define a closed form distance

metric upon it. Consequently, our representational Rényi heterogeneity method resolves the

limitations of non-categorical numbers equivalent heterogeneity indices outlined in Chapter

3, and is thereby applicable to psychiatric research problems.

1.6 The Utility of Representational Rényi Heterogeneity for Computational

Psychiatry3

The psychiatric research community has organized several large scale consortia such as

ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis [29]), ConLiGen

(the International Consortium on Lithium Genetics; [30]), and the Psychiatric Genomics

Consortium [31], whose data-pooling efforts can yield sample sizes that enable application

3Some material from this section was published in Nunes A. Two common questions about machine learning

methods in psychiatric applications. Bipolar Disorders. 2019; In Press
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Figure 1.1: Demonstration of one instance of the Yule-Simpson effect in a multi-center
analysis setting. When data collected from each of five sites is pooled, a positive association
is observed (left plot). If this aggregate model were to be applied by individual sites,
it would yield incorrect predictions, since the true relationship—when one controls for
stratification—is reversed (rightmost plot).

of machine learning (ML) methods. Whereas classical statistical testing evaluates models’

explanatory power, model criticism under the ML paradigm (at least in the supervised do-

main) is concerned only with predictive power. This reliance on generalization performance

frees us from many of the asymptotic assumptions of orthodox statistical tests, thereby

allowing us to model nonlinear relationships between features and some relevant target

variable(s) [32].

Unfortunately, pooling samples collected at many international sites has also introduced

new sources of heterogeneity into the pooled datasets. For instance, it is possible—and some

might say nearly inevitable—that samples across sites are not independent and identically

distributed (iid). This carries the potential to yield a Yule-Simpson effect (Figure 1.1).

Indeed, it has most often been speculated that predictive performance is better when models

are tested on within-site data, since they are presumably more homogeneous than the

aggregated sets [33]. However, as we showed in Examples 1 and 2, the effects of sample

heterogeneity on a given group-level effect are not straightforward. Indeed, we have observed

multiple scenarios in which ML analysis of pooled—and nevertheless heterogeneous—

datasets resulted in improved classification performances [34, 35]. That being said, the

existence of between-site heterogeneity in multi-site datasets threatens the generalizability

of prediction models trained on these datasets.

In Chapters 5 and 6, we introduce one of our central applied research problems: learning
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to predict the effectiveness of lithium treatment in patients with bipolar disorder (BD),

based only on features that can be collected through clinical interviews [35]. Using a

simple ML classifier, we show that lithium response can be predicted with an area under the

receiver operating characteristic curve (ROC-AUC) of 0.80 (95% confidence interval, CI,

[0.78-0.82]). However, the features relevant for classification varied systematically across

constituent sites’ datasets. Therefore, the model developed in Chapter 5 continues to have a

significant generalization risk.

Chapter 7 develops a method to filter out heterogeneity introduced by multi-site sample

pooling in the lithium response prediction dataset studied in Chapter 5. Our method, which

we call exemplar scoring, is derived from an application of the representational Rényi

heterogeneity to this multi-site prediction problem. Using the exemplar scoring approach—

and by extension, the representational Rényi heterogeneity—we were able to rank subjects

according to the reliability with which their lithium responsiveness could be predicted based

on their clinical profiles. The best “exemplars” in the lithium response and non-response

classes showed highly consistent clinical profiles. These empirically derived clinical profiles

were similar to those found in past research [36–38]. Further evidence of validity is

provided by the fact that the best exemplars of lithium response and non-response could be

strongly discriminated using genomic data (ROC-AUC 0.88 [0.83, 0.98]), and that the most

informative genetic features agreed with existing knowledge concerning the biological bases

of lithium response in bipolar disorder [39–41]. These results, made possible by derivation

of the exemplar scoring method from representational Rényi heterogeneity, are the current

state-of-the art in genomic classification in computational psychiatry.

1.7 Summary

In sum, this thesis develops an approach to measure heterogeneity that retains the strong

axiomatic properties and interpretability of the Rényi heterogeneity (Chapters 2 and 3), yet

extends it to arbitrary data types while solving several limitations of existing state-of-the-art

comparator indices (Chapter 4). Our approach is demonstrably useful for measurement of

heterogeneity in computational psychiatric applications. Specifically, our measure enabled

development of an approach to identify clinical phenotypes that are reliably predictive of

lithium responsiveness in bipolar disorder (Chapters 5-7).



Chapter 2

Defining and Localizing Heterogeneity in Psychiatric Science1

Abstract. In this editorial, we note that while heterogeneity is often discussed at a relatively “high

level” in the psychiatric literature, two implicit definitions emerge. Specifically, heterogeneity is generally

viewed as one or both of (A) deviance (i.e. more or less qualitative differences between elements of

a set) or (B) multimodality (i.e. multiple “clusters” or components in a mixture distribution). Thus,

any measure that would be useful for psychiatric research applications must capture both deviance and

multimodality. We briefly introduce the Rényi heterogeneity family of indices, which capture these

properties. Moreover, we argue that the Rényi heterogeneity family’s units, known as numbers equivalent,

help improve the precision of heterogeneity as a concept in psychiatric research. More specifically, the

units of numbers equivalent require that we concretely specify the feature space upon which heterogeneity

is being measured.

2.1 Introduction

Despite advancements in research methods and the growth of large international data-

sharing initiatives [29], our understanding of the biological underpinnings of psychiatric

disorders remains limited. An often cited reason for this stagnation is the presence of

“heterogeneity,” whether intrinsic to the condition or an artifact of clinical assessment,

sampling, experimental protocol, or otherwise. However, for a concept of such longstanding

importance to psychiatric research, we have no consistent framework within which to study

heterogeneity itself.

In this editorial, we argue that heterogeneity must be understood and communicated

in two ways. First, we must have a sense of what heterogeneity is as a mathematical and

statistical concept. In this respect, we highlight that heterogeneity is generally viewed

as a combination of deviance (the degree of differences between elements in a set) and

multimodality (the number of clusters in a set or modes in a mixture distribution), both

of which can be expressed in a common and easily interpretable set of units known as the

1Published as Nunes A, Trappenberg T, and Alda M. We Need an Operational Framework for Heterogeneity

in Psychiatric Research. Journal of Psychiatry & Neuroscience. 2020;45(1):3-6

8
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numbers equivalent or effective numbers [20, 42]. Second, we must understand that the

conceptual relevance of heterogeneity is linked to “where” (in terms of levels of analysis) it

is expressed. That is, heterogeneity gains substantial conceptual power only when discussed

with specific reference to the space of features being deemed “heterogeneous.” Here, too, we

argue that the units of numbers equivalent can clarify the level at which heterogeneity is being

discussed. A central emphasis of this argument, overall, is that understanding heterogeneity

requires us to separate our understanding of it as a quantity from the conditions and features

that we deem to be “heterogeneous,” and the causes thereof.

2.2 What is Heterogeneity?

This section provides a brief overview of the different perspectives with which heterogeneity

has been viewed in psychiatric research: deviance and multimodality. We then unify these

components under a single set of units, known in ecology, economics, and political science

as “effective numbers” or “numbers equivalent” [4, 20, 21, 42].

2.2.1 Deviance

Deviance refers to the degree to which elements in a set or sample differ from one another

along one or more characteristics. This is most commonly measured using variance and

standard deviation [43], although model-based approaches are increasingly popular in the

psychiatric literature [44]. There are many other deviance-based heterogeneity indices [45],

but their use in the psychiatric literature remains limited at present for reasons we explore

further in forthcoming work [46].

Perhaps the most familiar measure of heterogeneity in the sciences is simply the variance.

Particularly notable are those versions employed in meta-analysis, including the variance of

between-study effects in mixed-effects meta-analysis [27], and the i2 statistic (which involves

a decomposition of variance into within- and between-study components) [28]. Logarithmic

ratios of variance (and coefficient of variation) and parametric models of variance have

been used in the neuroimaging literature to compare structural brain heterogeneity of

schizophrenic patients against controls [16, 47], Taking variance as one’s heterogeneity

index assumes that (squared) Euclidean distance of observations from their sample mean is

the proper measure of variability in that given system. Unfortunately, this assumption may
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be overly simplistic in complex real-world data [48].

Recently, researchers in psychiatric neuroimaging have developed an increasingly pop-

ular method, known as normative modeling, for characterizing heterogeneity in clinical

cohorts [44]. This approach begins by using a probabilistic model to learn a distribution

of “normal” variation of some clinical or biological feature given some relevant covari-

ate(s) such as age or neuropsychological function. Using extreme value statistics, one

then evaluates the degree to which individual subjects in some cohort deviate from their

predicted normative distribution, assuming that psychiatric disorders will tend to cause

stronger deviations from normative ranges over relevant variables. However, although this

method can be useful for characterizing sources of heterogeneity, it does not truly measure

the amount of heterogeneity in a system.

2.2.2 Multimodality

Multimodality refers to different categories, strata, or distributions being represented within

a given set or sample. In the psychiatric literature, the multimodality view of heterogeneity

is implied in studies of symptom combination diversity [49], microbial biodiversity [50],

and diversity of prescribing habits [51, 52], to name a few. However, it is the large number

of clustering and latent class analyses that signify our field’s tendency to view heterogeneity

as reflective of multimodality in our data.

The nature of clinical psychiatric nosology as a set of symptom checklists has prompted

many authors to combinatorially enumerate the number of possible symptom groupings

for different conditions. In these studies, each symptom combination is a categorical

“mode” in the set of all presentations for a given condition. For example, the number

of symptom combinations for major depressive disorder in the Diagnostic and Statistical

Manual of Mental Disorders (5th edition) [53] can be shown to equal 227 [54, 55], whereas

generalized anxiety disorder (GAD) and borderline personality disorder (BPD) can be

shown to have upper bounds of 42 and 256 combinations, respectively [49]. Under this

perspective, a condition’s heterogeneity is related to the size of the space of all possible

clinical presentations. In real world practice, however, there is significant inequality in the

distribution of symptom combination incidence. Consider that if each of the 42 presentations

of GAD were equally likely, but 99.999% of BPD patients fulfilled all nine criteria, then

BPD would be effectively less heterogeneous than GAD, despite having a larger absolute
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“space of presentations.”

To address the insensitivity of simple combinatorial enumeration to inequality in the

probability of different events, several indices view heterogeneity as a combination of both

(A) size of the event space and (B) the level of inequality in those events’ probabilities.

As we will see, these indices do not directly measure heterogeneity, but rather properties

that are correlated with heterogeneity. For instance, one may measure the degree of un-

certainty in the process of sampling from a population (this index is the Shannon entropy)

[25]. Indeed, the contents of samples from a more heterogeneous system should be more

uncertain. Heterogeneous sets should also be associated with a lower probability of sampling

identical pairs, and a greater expected absolute difference (with respect to some normalized

feature variables). These two properties of heterogeneity are captured by the famous Gini

index [24]. Both the Shannon and Gini indices, or variations thereof, have been used to

quantify diversity in psychiatric symptom presentations [49] and gut microbial flora [50] in

psychiatric disorders, as well as heterogeneity of psychotropic prescribing patterns [51, 55].

However, these indices can be difficult to interpret and synthesize because they do not

measure heterogeneity directly, but rather common secondary properties of heterogeneous

sets [22].

Perhaps the most common approach for characterizing heterogeneity in the psychiatric

literature has been to count the number of latent clusters or factors inferred from data under

some unsupervised learning model. A comprehensive review of these studies is beyond

our scope, but many of these studies have been reviewed elsewhere [56, 57]. The central

point to appreciate in our context is that these studies all implicitly prioritize multimodality

over deviance as the sine qua non of heterogeneity. When one measures heterogeneity by

latent cluster counting, he is not interested in the absolute amount of deviation between

observations, but rather only in the aggregation of samples into effectively homogeneous

groups. Once the individuals are aggregated into defined clusters, they are treated as now

belonging to categorical groups between which deviance is maximal and symmetrical, and

within which deviance is absent, since observations are now treated categorically.

Unfortunately, cluster counting approaches have several problems. Perhaps the most

significant is related to cluster validity, reproducibility, and the appropriateness of one

clustering approach compared to another [56]. Second, since latent classes are viewed as

categorical, these methods ignore any within- and between-cluster heterogeneity after the
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classes have been inferred; for instance, there would be no accounting for the fact that apples

are more similar to pears than they are to asphalt. Finally, and perhaps most straightforward,

is that the absolute number of clusters will encounter similar problems as the combinatorial

symptom enumeration methods discussed above, wherein inequality in cluster sizes is not

accounted for the reported “amount” of heterogeneity.

2.2.3 The Effective Numbers (or Numbers Equivalent)

Deviance and multimodality are distinct insofar as they evince one’s assumptions about

the “smoothness” of differences between observations in a sample. In situations where

the phenomenon of interest is thought to be a spectrum, then heterogeneity is typically

formalized and communicated in terms that emphasize relative “distances” between subjects.

However, when the phenomenon of interest is thought to have an internal stratification,

the multimodality view is dominant. The normative modeling paradigm takes a combined

perspective where extreme value testing can be used to identify “deviant modes.” Yet,

these perspectives all manifest in the same practical conclusion: heterogeneous systems all

generate a larger number of unique observations.

If a system generates a larger number of observations, then it must have an effectively

larger event space. This will be the case regardless of whether one is considering heterogene-

ity as deviance or multimodality. The word “effective” here is critical, because it accounts

for the fact that some systems with large potential event spaces may be “effectively” small

if most of the sampling probability is attached to only a few events (as in our example

comparing GAD and BPD in Section 2.2.2).

Through an index known as Rényi heterogeneity (synonymous with the Hill numbers

[17] in ecology or the Hannah-Kay [18] indices in economics), we can in fact measure a

system’s heterogeneity in units of numbers equivalent. For a system X with a probability

mass function p = (pk)k=1,2,...,K over discrete event space X = {1, 2, . . . , K}, the Rényi

heterogeneity is defined as

Πq (p) =

(
K∑

k=1

pqk

) 1
1−q

(2.1)

where q ≥ 0 is a parameter governing sensitivity to rare events. As a simple illustration,

consider a bipolar patient who spends 90% of his time depressed, 8% of his time manic and
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2% of his time euthymic. Plugging the distribution into Equation 2.1 gives

Πq ({0.9, 0.08, 0.02}) = (0.9q + 0.08q + 0.02q)
1

1−q . (2.2)

At q = 0 the relative probabilities are ignored and we obtain the patient’s effective

number of total mood states (Π0 = 3). At the limit of q → 1 we obtain the patient’s

effective number of typical mood states (Π1 = 1.5), and at q = 2 we obtain the patient’s

effective number of common mood states (Π2 = 1.2). Given a set of mood-state labels for

the same subject within two or more time “windows,” significance of differences in mood-

state heterogeneity may be computed most flexibly by comparison of bootstrap estimated

confidence intervals of the Rényi heterogeneity in those two states. In the specific case

of affective time-series data, for example, such statistical procedures may enable a more

precise quantification of the “evolution” of heterogeneity of mood states within and between

individuals.

Note that as we increased q, the measure becomes progressively less sensitive to the

presence of the less common states. When we cannot be assured that our sample covers the

whole event space—that is, when a system of interest is thought to have a large event space

populated mainly by many very rare events (such as the set of species in a gut microbiome)—

the value of q is generally set higher (typically q = 2). We recommend a default setting

of q = 1, which proportionally weights common and rare classes, and corresponds to the

commonly used perplexity measure.

Although the resolution parameter q introduces some nuances that are beyond our current

scope, the central feature of this measure can be nonetheless observed. Specifically, its

results are always reported in terms of the size of the event space. This has three benefits.

First, it is easily understood since it relies only on the intuitive concepts of counts and

sizes. Second, it respects a scaling law known as the replication principle [22] which means

that doubling the effective number of observations will result in a doubling of the Rényi

heterogeneity. Conversely, other indices such as the Shannon entropy, Gini index, and

variance will respond idiosyncratically to changes in the size of the event space, and none

will respect this doubling property.

The final benefit of measuring heterogeneity in terms of event space size is that it forces

us to clearly specify the characteristics and event space of the system whose heterogeneity

is being measured. For instance, we defined the affective event space as {Depressed, Manic,
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Euthymic} in the toy example above. Readers who astutely identified that the heterogeneity

value reported could be invalidated by the overly simplistic three-category “affective event

space,” have (perhaps implicitly) exploited this very benefit of Rényi heterogeneity. Under

our formulation, it is insufficient to simply refer to a disorder as “clinically heterogeneous,”

“genetically heterogeneous,” or worse still, “heterogeneous” in a more general sense. Where

one given disorder may be thought of as heterogeneous because of a large effective number

of presentations, another may be considered heterogeneous by virtue of a large effective

number of causal genetic variants. To this end, we bring further attention to the “localization”

of heterogeneity measurement at different levels of analysis.

2.3 Where is the Heterogeneity?

If we are to report heterogeneity in terms of an effective number, we must clearly answer the

question: “effective numbers of what?” This question is nontrivial, since the heterogeneity

of psychiatric (and other) disorders may differ in degree and relevance across levels of

analysis (e.g. genetic, structural, physiological, symptomatic, or otherwise). For instance,

syphilis is counted among one of medicine’s “great imitators” chiefly because of its large

number of clinical presentations. However, it is etiologically homogeneous, with all cases

caused by the spirochete, Treponema pallidum. Therefore, conditions such as syphilis may

be understood as entailing a sort of “distal expansion” of heterogeneity, with the point of

expansion beginning at the infection.

In relation to syphilis, other conditions such as, for instance, amyotrophic lateral scle-

rosis (ALS), might be thought to entail a “contraction” in heterogeneity across levels of

analysis (i.e across genetic→ molecular→ cellular→ · · · → clinical levels). Historically,

this condition has been sufficiently homogeneous from clinical and electrophysiological

perspectives to be distinct from other motor neuron diseases, but it has substantial underlying

genetic diversity. There are at least 20 autosomal dominant genetic causes alone of familial

ALS, the most prominent of which may be those involving the superoxide dismutase gene

(SOD1): itself a family of at least six mutations (A4V missense, I113T, A4T, H46R, A89V,

G93C) [58].

The metaphor of a condition such as ALS representing a “contraction” of heterogeneity

from etiology to clinical presentation may seem clear only in relation to a clear “expansion”

associated with syphilis infection. However, identifying relative differences in heterogeneity



15

across levels of analysis is not straightforward, since one may always identify novel but

insignificant variations in genetic makeup, biological structure, or clinical presentation. This

problem provides still further motivation for emphasizing the feature space upon which

heterogeneity is being reported, because comparing effective numbers of 10 and 20 genetic

variants is certainly more meaningful than comparing an effective number of 10 genetic

variants to 5 clinical phenotypes.

An additional point at which heterogeneity measurement may be relevant is with respect

to factors outside of the patient entirely, instead being associated with diagnostic instruments,

clinical practices, treatment protocols, and research methods. Quantifying heterogeneity

at these levels is an important step toward better isolating and measuring heterogeneity of

psychiatric disorders proper.

2.4 Concluding Remarks

Heterogeneity is the degree to which a system diverges from a state of perfect internal

conformity. Many psychiatric studies have attempted to describe heterogeneity of clinical

cohorts by either quantifying some form of deviance or multimodality in their data. However,

we have yet to develop a consistent operational framework within which to measure and

communicate heterogeneity. Developing such a framework will first require (A) adopting a

common set of easily understandable units for heterogeneity measures, and (B) clarifying

the different levels of analysis at which heterogeneity manifests.

Adopting measures with units of numbers equivalent is an important first step to advance

the precision with which we can study heterogeneity in psychiatric research. These measures

are well developed and accepted particularly for in ecological applications [22], but we must

further evaluate their strengths and limitations for psychiatric research applications. One

particular limitation that must be confronted is the fact that numbers equivalent heterogeneity

measures currently require the system’s event space to have a categorical component. As it

stands, this will be problematic in scenarios where the categorical groupings of patients are

either (A) unreliable or (B) of questionable validity.

The formulation of Rényi heterogeneity makes it clear that the “causes” of heterogeneity

will depend on the system whose heterogeneity is being measured. For instance, the

effective number of clinical presentations of major depressive disorder will depend on one’s

diagnostic criteria. Alternatively, the effective number of neurostructural phenotypes in
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bipolar disorder may be influenced by pharmacological treatments and diversity thereof.

The Rényi measure will fortunately admit a statistical procedure for identifying causes or

correlates of heterogeneity. In the latter example, if one can model a probability distribution

over the space of structural brain images (which can be done using standard unsupervised

learning methods), then the effects of medication use on neurostructural heterogeneity can

be isolated by exploiting a decomposition of the Rényi heterogeneity (originally proved by

the ecologist Lou Jost [59]), whose technical details we expand upon in Chapters 3 and 4.

Such a procedure for isolating heterogeneity caused by exogenous factors may better enable

us to characterize the heterogeneity intrinsic to the primary system of interest; the ability to

precisely quantify and decompose heterogeneity using the Rényi measure is a step in this

direction.

The greater precision afforded by developing rigorous measures of heterogeneity will

undoubtedly require us to speak of conditions’ heterogeneity in terms of more specific levels

of analysis. This will likely bring about another challenge: measuring only that heterogeneity

which is “relevant” to the phenomenon in question. For example, two brain images of the

same person may deviate from each other based on scanner noise, yet the semantic content

of those images—which may be known a priori or identifiable only by unsupervised feature

learning models such as autoencoders—is homogeneous. The specificity enforced by

reporting heterogeneity as “the effective number of X” could serve as such a filter, since

presumably one must justify why the heterogeneity of X is sufficiently important to measure

its numbers equivalent. However, answers to these questions await the results of these

measures’ real world applications to psychiatric research problems.



Chapter 3

The Meaning and Measure of Heterogeneity1

Abstract. Heterogeneity is an important concept in psychiatric research and science more broadly. It

negatively impacts effect size estimates under case-control paradigms, and it exposes important flaws in

our existing categorical nosology. Yet, our field has no precise definition of heterogeneity proper. We

tend to quantify heterogeneity by measuring associated correlates such as entropy or variance: practices

which are akin to accepting the radius of a sphere as a measure of its volume. Under a definition of

heterogeneity as the degree to which a system deviates from perfect conformity, this paper argues that its

proper measure roughly corresponds to the size of a system’s event/sample space, and has units known

as numbers equivalent. We arrive at this conclusion through focused review of more than 100 years

of (re)discoveries of indices by ecologists, economists, statistical physicists, and others. In parallel,

we review psychiatric approaches for quantifying heterogeneity, including but not limited to studies of

symptom heterogeneity, microbiome biodiversity, cluster-counting, and time-series analyses. We argue

that using numbers equivalent heterogeneity measures could improve the interpretability and synthesis

of psychiatric research on heterogeneity. However, significant limitations must be overcome for these

measures—largely developed for economic and ecological research—to be useful in modern translational

psychiatric science.

3.1 Introduction

Psychiatric discussions of heterogeneity are largely motivated by limitations of the case-

control paradigm: ignorance of (A) inter-individual differences within groups, and (B)

the fact that some group differences may be larger than others. These assumptions may

compromise effect size estimation [10], thereby impeding progress in understanding psy-

chopathology and its treatment. Chapter 1 provided several examples of this phenomenon

using the concept of the Yule-Simpson effect.

More broadly, the psychiatric literature has discussed heterogeneity in terms of meta-

analysis, the combinatorial enumerations of symptom profiles (i.e. the “number of ways”

disorder X can present) [49, 54, 55, 60, 61], cluster analyses of data from psychiatric

populations [62, 63], dimensional models [64], concentration or inequality measures [51, 52],
1Nunes A, Trappenberg T, and Alda M. The Meaning and Measure of Heterogeneity. Submitted manuscript.
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time-series complexity [65], and more recently in terms of “normative models” [44, 66].

These approaches evince a problem that has been noted in other fields: amidst a jungle

heterogeneity indices, we have neither a unified definition nor clear measure for this concept

[42]. If we are to seriously tackle the problem of heterogeneity in psychiatry, we believe it

is necessary to have a consistent, easily interpretable, and problem-agnostic framework for

its definition and measurement.

In this paper, we define heterogeneity as the degree to which a system diverges from a

state of perfect conformity (inspired by Eliazar’s definition of inequality [1]) and undertake

a focused review of more than 100 years of research concerning its measurement. Measures

developed in ecology, economics, statistical physics, and more are reviewed along with

some of their known psychiatric research applications. We broadly, though somewhat

artificially, split these measures into those that operate on categorical or non-categorical

data. Importantly, we highlight that generalizable and well-behaved heterogeneity measures

share a set of units known in ecology and economics as the numbers equivalent [17, 19–23],

which allow these measures to roughly capture the “size” of a system’s sample/state space

(one can also think about this as the number of states that a random variable can take).

However, since these measures have largely been developed outside of psychiatric research,

we identify several problems to be overcome before they can be widely applicable in modern

translational psychiatric science.

3.2 A Definition of Heterogeneity and Measurement in Categorical Systems

A system’s heterogeneity is the degree to which it diverges from a state of perfect conformity.

A “system” has three components (Figure 3.1A): (A) a set, “event space,” or “sample space”

X of distinct potential observations which one can also think of as “elements,” “partitions,”

“groups,” or “categories,” (B) a measure of distance d(xi, xj) between any two potential

elements xi and xj in X , and (C) a measure of abundance of each element in X . If the

abundance function sums to 1 over the entire set X , then the abundance measure is a

probability distribution.

In this section, we consider only categorical systems since they are an excellent starting

point for developing intuition about the measurement of heterogeneity. Categorical systems

are effectively defined by the following distance function (the discrete metric):
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Figure 3.1: Illustration of system components and influence on heterogeneity of samples.
Panel A depicts a categorical system comprised of a set four categories (equivalently
“elements” or “partitions”) connected by undirected edges whose lengths are proportional
to the distance between categories. In this case, the distances between categories are all
equal (symmetric), and the within-category distance is 0 (as evident in the depicted distance
matrix). These properties define the set as categorical. The size of the nodes represents
their relative abundance, which is also shown in the corresponding bar chart. Panel B
demonstrates samples from nine categorical systems with varying number of categories (2,
3, and 4) and varying levels of inequality in the abundance distribution. Systems in the upper
row have the highest level of inequality in abundance, whereas the systems shown in the
bottom row have perfectly even abundance distributions. Together, these plots demonstrate
that heterogeneity increases with both (A) increases in the number of categories and (B)
more evenly distributed abundance across categories.
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Dij = d (xi, xj) =

{
0 i = j

1 i 6= j
(3.1)

Like the case-control assumptions, this function states that (A) there are no inter-individual

differences within a group or category, and (B) all categories are maximally different,

thus meaning no two categories are more similar than any other two. This is one of the

central problems we seek to address by better understanding heterogeneity in computational

psychiatry. In Section 3.3 we will consider approaches that do not rely on Equation 3.1,

and further describe limitations precluding their application to computational psychiatric

research. Then, in Chapter 4, we will provide a framework to address those problems.

However, for the time being, it is important to begin with an understanding of heterogeneity

measurement in categorical systems, since this is the foundation of existing approaches.

It must be emphasized that in this section we acknowledge that most data are not strictly

categorical. For example, in classification problems, we attempt to predict some categorical

labels based on some other features of arbitrary type, and in clustering we often assign

categorical labels to clusters on a non-categorical space. We will deal with these problems

in Section 3.3. In this section, however, we are only considering data that consist of a set of

mutually exclusive categories, without reference to any other properties those categories

may be associated with in reality.

3.2.1 Measuring Heterogeneity by Partition Counting

A system in a state of perfect conformity is one whose event space X effectively has only

one element. All observations from this system will be identical. All else being equal,

systems that deviate further from perfect conformity will thus have larger event spaces

(Figure 3.1B). We therefore require that heterogeneity measures be strictly positive unless

the system consists of an empty event space.2

Axiom 1 (Non-negativity). For all vectors y sampled from an n-dimensional space of abundance

distributions Y ⊆ Rn≥0, the heterogeneity measure h(y) is strictly positive.

2Axiom 2 is trivial in practice, but we include it here simply for completeness.
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Axiom 2 (Null empty set). The heterogeneity measure h : Y → R≥0 equals 0 iff Y = ∅

Clearly, a simple count of the number of elements or partitions in X will satisfy Axioms

1 and 2. Partition counting methods are canonical examples of measures that fulfill the

axiom of monotonicity to set size (Axiom 3), which states that heterogeneity must increase

if a system’s event space grows in size.

Axiom 3 (Extensivity or Monotonicity to Set Size). Given a family of distributions y(n) =

(yi)
n
i=1 with a constant level of inequality for all n ∈ N+, the heterogeneity measure h must

satisfy

h(y(n+ δ)) > h(y(n)) ∀δ ∈ N+ (3.2)

Such partition counting methods work on the assumption that the size or “cardinality”

of X—the number of distinct partitions or elements it contains—measures that system’s

heterogeneity.

Partition counting methods are often used to quantify a disorder’s clinical heterogeneity

by the number of criteria-satisfying symptom combinations [49, 54, 55, 60, 61, 67, 68].

Here, one assumes that the “system” is the disorder in question. For each diagnosis, the

set X = {1, 2, . . . , n∗c} consists of a total of n∗c (the asterisk denotes that this is the “true”

value, which may or may not be known) categorically unique symptom combinations or

“presentations.” Estimating n∗c amounts to estimating the system’s heterogeneity. The next

few sections will describe several approaches for this estimation problem.

Combinatorially Estimating an Upper Bound for n∗c

Many studies estimate an upper bound for n∗c using combinatorial methods. In these

cases, one is not obtaining n∗c from empirical data (such as by counting the number of

distinct observations in a dataset); rather, one directly calculates the total number of unique

configurations that may be realized by that categorical system. Hence, this is an upper bound

on n∗c since empirical data could not exceed the computed value. For example, a diagnosis of

generalized anxiety disorder (GAD) under the Diagnostic and Statistical Manual of Mental

Disorders (5th ed.) [69], requires three or more of six symptoms. If we denote the total

number of available symptoms asN and the number of required symptoms asK, the number

of unique symptom combinations is
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S (N,K) =
N∑

k=K

N !

k! (N − k)!
(3.3)

One calculates that GAD has at most S (6, 3) = 42 unique presentations. Similarly, one

can verify that for borderline personality disorder S(9, 5) = 256, for catatonia S(12, 3) =

4017. For major depressive disorder (MDD), which has mandatory symptoms of either low

mood or loss of interest, one can show that there are 227 symptom combinations.

Estimating nc Empirically from Data

Zimmerman et al. [54] found a total of 170 unique symptom combinations in a survey

of 1500 MDD patients, suggesting that 25% of theoretical symptom combinations do not

occur. Similarly, Park et al. [55] found 119 unique combinations in 853 subjects further

highlighting that empirical estimates of n∗c are important complements to combinatorial

enumeration. Unfortunately, any sample short of a complete census will underestimate

n∗c , particularly if many of the categories in X are rare. Several approaches address this

problem.

The simplest, but most biased (lower limit), estimator of n∗c is the observed richness

(also known as species richness to ecologists) [42, 70], which is the observed number of

categories in the sample. We denote this quantity as Π0 = nc (the lack of asterisk denotes it

is an estimate).

A less biased approach for estimating n∗c is to compute a more appropriate lower bound

[70, 71], using the Chao estimators. These indices, which are standard in ecology, use

information about the frequency of rare categories to speculate on how many further rare

categories may exist who have not yet been sampled. If we denote fK as the number of

categories observed only K times, then the corresponding Chao estimator is as follows [72]:

Chao1 (f) =

{
Π0 +

f21
2f2

f2 > 0

Π0 + 1
2

(f1 (f1 − 1)) f2 = 0
(3.4)

If f2 > 0 then the Chao1 estimator has a corresponding variance estimator that can be used

to construct confidence intervals.

The observed richness values reported by Zimmerman et al. [54] and Park et al. [55]

underestimate the true number of MDD presentations. After abstracting the presentation

frequency tables from these papers (Figure 3.2A), we used the Chao estimator to recalculate
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Figure 3.2: Panel A: Distribution of symptom presentations in patients with major depressive
disorder as reported by Zimmerman et al. [54] and Park et al. [55] (data extracted from their
published tables). Panel B: Lorenz curves for the empirical distributions shown in Panel
A. Curve colours are matched between panels. In this case, the Lorenz curve demonstrates
the proportion of symptom combinations (PCombinations) that account for at least PSamples
proportion of observed presentations in the datasets. The diagonal (black) line represents
the line of perfect equality, which would occur only if all symptom combinations accounted
for the same proportion of observed presentations. The closer a Lorenz curve is to the upper
corner, the more inequality exists in the abundance distribution, which in this case would
indicate greater homogeneity of symptom presentations. Geometric calculation of the Gini
coefficient and Pietra indices is also demonstrated. The Gini index is the ratio of (A) the
area between the Lorenz curve and the line of perfect equality to (B) the total area above
the Lorenz curve. The Pietra index is the maximum distance from the Lorenz curve to the
line of perfect equality, and represents the proportion of observations that would need to be
transferred from the most common to the least common symptom combinations in order to
reach the line of perfect equality.

lower bound estimates on the number of MDD symptom combinations. In the Zimmerman

et al. [54] data, this was 189.8 (95% confidence interval, CI [189.3, 190.2]), compared to

144.1 (143.4, 144.9) for the Park et al. [55] data, and 200.6 (200.4, 200.9) in the pooled

sample. Thus, the heterogeneity of symptom combinations in MDD may be larger than

previously estimated using empirical data.

Observed richness and the Chao estimator have been used to quantify gut microbiomic

heterogeneity in people with psychiatric disorders, finding no difference between healthy

controls and males with attention deficit-hyperactivity disorder (ADHD) [50], but lower

microbiome diversity in patients with MDD [73].

The Chao estimators are notably related to capture-recapture methods [70, 74], which

estimate the size of difficult-to-sample population by examining overlap in repeated samples.

Applications include estimation of the prevalence of alcohol-related disorders [75], opioid
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addiction [76], and other conditions [77–83]. Krebs [84] provides an accessible introduction

to these approaches.

Limitations of Partition Counting Approaches

Partition counting methods ignore the abundance distribution’s skewness. For example,

imagine 99.999% of all patients showed a single presentation of MDD, with the remaining

0.001% spread across the other 226 symptom combinations. This system is effectively close

to perfect conformity, yet partition counting methods would nonetheless overestimate a

heterogeneity value of 227 presentations.

3.2.2 Measures Accounting for Inequality in Category Abundance

Consider a scenario in which 99.999% of all patients have the same presentation of MDD,

with the remaining 0.001% evenly spread across the other 226 symptom combinations. In

this section, we compute how far this system diverges from perfect conformity given the

highly skewed abundance distribution. We restrict our search to those indices that satisfy

several axioms, including symmetry (Axiom 4), which is applicable only to heterogeneity

measures on categorical spaces.

Axiom 4 (Symmetry). Given an abundance distribution y = (yi)
n
i=1 ∈ Y ⊆ Rn≥0 and a

permutation function σ : N+ → N+, the heterogeneity measure h : Y → R≥0 satisfies

h ([y1, y2, . . . , yi, . . . yn]) = h
([
yσ(1), yσ(2), . . . , yσ(i), . . . , yσ(n)

])
(3.5)

We also require that our measure be continuous and differentiable (Axiom 5).

Axiom 5 (Continuity and Differentiability). The heterogeneity measure h : Y → R≥0 is

continuous and differentiable ∀y ∈ Y ⊆ Rn≥0.

Further, we require satisfaction of the axiom of transfers [85, 86]. That is, any transfer

of abundance from a more abundant category to any less abundant category (thereby making

the abundance distribution more even) must increase heterogeneity. This is sensible, since in

the opposite scenario—progressively stacking all abundance onto a single category—would

push the system toward perfect conformity.
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Axiom 6 (Principle of Transfers). Given an abundance vector y = (yi)
n
i=1, if we define a new

vector y′ by the following transfer of some small amount of abundance,

y′k =





yk − ε k = j

yk + ε k = i

yk k 6= i ∧ k 6= j

(3.6)

where yj > yi then heterogeneity must increase, with a maximal value attained iff yi = yj .

Assuming that abundance measures are normalized such that they represent probability

distributions, the most common of these heterogeneity indices are entropies derived from

the Tsallis family [26], most notably the Shannon entropy [25],

H [p] = −
nc∑

i=1

pi log pi (3.7)

which measures the average amount of uncertainty in the system. If the logarithm is taken

with base 2, then Shannon entropy gives the average number of yes/no questions required to

classify an observation from the system.

The Gini-Simpson index (GSI), perhaps more commonly known simply as the Gini index

or Gini coefficient [24], is another historically important entropy:

GSI (p) = 1−
nc∑

i=1

p2
i (3.8)

Whereas Shannon entropy uses units of information, the GSI is the probability that two

observations from our system (sampled with replacement) will belong to different categories.

The GSI is related to a concentration index commonly attributed to Simpson or Herfindahl

[87, 88]:

Simpson (p) =
nc∑

i=1

p2
i = 1−GSI (p) (3.9)

The Simpson index gives the probability that two samples from our system will belong to

the same category. Psychiatric researchers have used this to measure the homogeneity of

physicians’ and health systems’ prescription repertoires [51, 52].

Olbert et al. [49] used the GSI and a normalized version of the Shannon entropy to

empirically quantify symptom heterogeneity in MDD and PTSD. Using data from ns =

84, 103 subjects with MDD in the National Comorbidity Survey Replication (NCS-R) [89],
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they found an observed richness of 137 unique symptom combinations. The probability

of sampling two individuals with MDD whose symptom profiles were different (i.e. the

GSI) was 0.96, suggesting a high degree of symptomatic diversity in MDD. However, their

Shannon entropy index (with base 2) was 3.9 bits, meaning that approximately four yes/no

questions could precisely identify a typical subject’s specific symptom profile given only

knowledge of their MDD diagnosis.

If one accepts that the GSI and Shannon entropy are both measures of heterogeneity,

then the results obtained by Olbert et al. [49] are puzzling. On the one hand, the GSI

suggests that most pairs of MDD patients will have different symptom profiles (GSI=96%).

Conversely, the Shannon entropy amounted to 55% of its theoretical maximum (3.9 of

7.09 bits), suggesting less heterogeneity than the GSI, illustrating the problem of multiple

meanings between entropic-based heterogeneity indices. Synthesizing the results from

such indices with different meanings can be challenging, and thus we seek measures with

conceptually standard units.

Another important problem with the entropy-based heterogeneity indices is that they do

not satisfy the axiom of replication (also known as the replication principle in ecology) [21–

23, 90]. The replication principle states that if we pool K completely unique independent

systems with equal amount of heterogeneity, h, then the heterogeneity should measure

K × h. Jost [22] noted this is akin to merging two spheres, each with volume V ; the

resulting volume of the pooled sphere should be 2V , which would not be the result if we

treated the sphere’s radius (a mere index of volume) as a measure.

Axiom 7 (The Replication Principle). We are given ns ∈ N≥2 systems, with respective dis-

tributions yi ∀i ∈ {1, 2, . . . , ns}, whose domains of support are non-overlapping, but whose

heterogeneities are equal:

h (yi) = h (yj) ∀(i, j) ∈ {1, 2, . . . , ns} (3.10)

Letting ȳ be the abundance distribution on the pooled ns systems, the replication principle

states that

h (ȳ) = nsh (yi) ∀i ∈ {1, 2, . . . , ns} (3.11)
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Proposition 1. Entropic heterogeneity measures of the Tsallis family [26] fail to satisfy the

replication principle.

Proof. Assume the total number of partitions in a system composed of K subsystems is n =
∑K

i=1 ni, where ni is the number of partitions in the i’th sample. The probability distribution

for system i is p = (pij)
ni
j=1. Recall that the domains of support for p1,p2, . . . ,pK are

disjoint. The Tsallis entropy of a single system is

Tq (pi) =
1−∑ni

j=1 p
q
ij

q − 1
(3.12)

and the Tsallis entropy of the pooled system, whose probability distribution is p̄ is as

follows:

Tq (p̄) =
1−∑n

k=1 p̄
q
k

q − 1
(3.13)

Since the domains for each of the K subsystems is disjoint, we have that

p̄ =
1

K
(p11, p12 . . . , p1n1 , p21, p22, . . . , p2n2 , . . . , pi1, pi2, . . . , pini , . . . , pK1, pK2, . . . , pKnK ) .

(3.14)

Substituting Equation 3.14 into Equation 3.13 yields the following expression

Tq (p̄) =
1−∑K

i=1

∑ni
j=1 K

−qpqij
q − 1

= 1−K−q
K∑

i=1

ni∑

j=1

pqij

=
1−K1−qλi

q − 1
,

(3.15)

where the last step follows from the facts that
∑ni

j=1 p
q
ij =

∑nk
j=1 p

q
kj ∀i, k, and where

λi =
∑ni

j=1 p
q
ij . Under these assumptions, we also have that

Tq (pi) =
1− λi
q − 1

. (3.16)

The replication principle asserts that Tq (p̄) = KTq (pi), which we henceforth prove to

be false.
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Tq (p̄) = KTq (pi) (3.17)

1− λiK1−q = K −Kλi (3.18)

λi =
K − 1

K −K1−q . (3.19)

The last inequality holds only at q = 1, which is irrelevant since Tq (p) is undefined

at that point (we will prove this in the limiting case of q → 1, below). Showing that

the above equality is not generally true is done by counter example. Substituting λi →∑ni−2
j=1 pqij + (pini − ε)q +

(
pi(ni−1) + ε

)q and differentiating with respect to ε, we obtain our

result:

∂

∂ε

(
ni−2∑

j=1

pqij +
(
pi(ni−1) + ε

)q
+ (pini − ε)q

)
=

∂

∂ε

(
K − 1

K −K1−q

)
(3.20)

1

K −K1−q −
(K − 1) (1− (1− q)K−q)

(K −K1−q)2 = 0 (3.21)

qK1−q −K1−q − qK−q +K−q +K − 1 = K −K1−q (3.22)

qK1−q − 1 = qK−q −K−q (3.23)

K−q = 0 (3.24)

Since K ≥ 1 and q ≥ 0, the final equality is false. Thus, for q 6= 1, the Tsallis family of

entropies does not satisfy the replication principle.

We now show the q → 1 case. We use L’Hôpital’s rule to obtain T1 (p):

T1 (pi) = −
ni∑

j=1

pij log (pij) , (3.25)

and similarly for T1 (p̄),

T1 (p̄) = −
K∑

i=1

ni∑

j=1

pij log
(pij
K

)

K
. (3.26)

The replication principle states that
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KT1 (p̄) = K2T1 (pi) (3.27)

−
M∑

i=1

ni∑

j=1

pi,j log
(pij
K

)
= −K2

ni∑

j=1

pij log (pij) , (3.28)

(3.29)

and since
∑K

i=1

∑ni
j=1 pij = K, with

∑ni
j=1 pij log pij = λi, we have

−Kλi −K logK = −K2λi. (3.30)

Solving for λ yields

λi =
logK

K − 1
, (3.31)

which is false since λi is a property of a single subsystem, independent of the number of

pooled subsystems K.

3.2.3 Numbers Equivalent Measures of Heterogeneity

The Rényi heterogeneity family of indices—which are the exponential of the Rényi entropy

[91]—satisfies the replication principle, and its units are the same units as partition counting

methods: the (effective) number of distinct elements in an event space,

Πq (p) =

(
nc∑

i=1

pqi

) 1
1−q

. (3.32)

This family is also known as the Hill numbers in ecology [17], and the Hannah-Kay indices

in economics [18]. The parameter q ≥ 0 serves as an “importance” attributed to more

abundant categories. When q = 0, the abundances are ignored, and we recover the observed

richness:

Π0 (p) =
nc∑

i=1

p0
i = nc (3.33)

Taking the limit as q → 1 yields the exponential of the Shannon entropy, which is the

perplexity [43] or the effective number of typical categories in the system:



30

Π1 (p) = e−
∑nc
i=1 pi log pi . (3.34)

An alternative derivation of Equation 3.34 makes the connection to typical set size more

clear. Consider sampling ns observations from a system with nc classes. The observed

frequencies over classes is denoted by p = (pi)i=1,2,...,nc
. The effective number of typical

samples of size ns is

N =
ns!∏nc
i=1 pi!

(3.35)

Taking logs of both sides, we have

logN = log ns!−
nc∑

i=1

log pi!, (3.36)

which by Stirling’s approximation, log x! = x log x− x, gives

logN = −
nc∑

i=1

pi log
pi
ns
, (3.37)

which reduces to Equation 3.7 when ns = 1. Its exponential is the effective number of

typical categories in the system, and is equal to Equation 3.34.

At q = 2, we have the inverse Simpson concentration [42],

Π2 (p) =
1∑nc
i=1 p

2
i

(3.38)

which is the effective number of common categories in the system, known to political

scientists as the effective number of parties [4]. This measure has been used to estimate the

effective number of common bacterial species in the microbiome of patients with MDD

[73].

The units of Rényi heterogeneity are known as numbers equivalent [19–21] by ecologists

and economists. Numbers equivalent can be intuitively understood as follows: for any system

A with a given abundance distribution, we can find a “hypothetical” categorical system

B whose abundance distribution is perfectly even, and whose heterogeneity is equal to

that of A. The number of partitions in this “equivalent” system B serves to measure the

heterogeneity of A. Numbers equivalent allow us to account for inequality in the abundance

distribution while retaining the units of set size.
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It is trivial to show that the Rényi heterogeneity satisfies Axioms 1 (non-negativity) and

4 (symmetry), as well as the axiom of invariance to scaling of the abundance distribution

(Axiom 8).

Axiom 8 (Scale-invariance). Given an abundance vector y = (yi)
n
i=1 and a positive scalar

k ∈ R+, h(ky) = h(y).

Axiom 8 holds because probabilities are normalized: that is, when pi = yi/(
∑n

j=1 yj). Here,

we prove that Rényi heterogeneity satisfies Axioms 3 and 6.

Proposition 2. The Rényi heterogeneity is monotonic to set size, and thereby obeys Axiom 3.

Proof. For p = (pi)
n
i=1, recall that Π0(p) = n. One can show that the derivative of the

Rényi entropy with respect to q is proportional to the negative Kullback-Leibler divergence
∑n

i=1 zi log zi
pi

, where zi = pqi/
∑n

i=1 p
q
i :

∂

∂q
Πq(p) =

1

(q − 1)2

n∑

i=1

zi log
zi
pi
, (3.39)

which means that Πq(p) is non-increasing with respect to q, and thus

Πq(p)

Π0(p)
≤ 1. (3.40)

Now define a hypothetical family of distributions p(n) = (pi)
n
i=1 with a constant level

of evenness, Πq(p(n))/Π0(p(n)). Thus

Πq(p(n))

Π0(p(n))
=

Πq(p(n+ 1))

Π0(p(n+ 1))
(3.41)

Πq(p(n))

n
=

Πq(p(n+ 1))

n+ 1
(3.42)

n+ 1

n
=

Πq(p(n+ 1))

Πq(p(n))
(3.43)

Proposition 3. The Rényi heterogeneity obeys Axiom 6 (the principle of transfers).

Proof. For some small ε transfer from pn to pn−1, where prior to transfer pn > pn−1, the

Rényi heterogeneity is
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Πq(p
′) =

(
(pn−1 + ε)q + (pn − ε)q +

n−2∑

i=1

pqi

) 1
1−q

. (3.44)

Solving for ∂
∂ε

Πq(p
′) = 0 gives

ε∗ =
1

2
(pn − pn−1) , (3.45)

which is a transfer that would set pn = pn−1. Recalling that (pn+pn−1) > 0 and q > 0, with

simple algebra one can show that Πq(p
′) has constant negative curvature at ε∗ and therefore

that no further transfers can increase heterogeneity beyond establishment of equality.

Rényi heterogeneity satisfies the replication principle (Axiom 7).

Proposition 4. Rényi heterogeneity obeys the replication principle (Axiom 7).

Proof. The Rényi heterogeneity for a single distribution pi = (pij)j=1,2,...,ni , where ni ∈ N+

is the size of the state space in system j, is

Πq(pi) =

(
ni∑

j=1

pqij

) 1
1−q

(3.46)

and for the aggregation of K subsystems is

Πq(p̄i) =

(
K∑

i=1

ni∑

j=1

(pij
K

)q
) 1

1−q

. (3.47)

The replication principle asserts that

Πq(p̄i) = KΠq(pi), (3.48)

which simple algebra shows to be true. Let λi =
∑ni

j=1 p
q
ij and recall that λi = λk ∀(i, k) ∈

{1, 2, . . . , K}. Then, KΠq(pi) = Kλ
1

1−q
i , and expanding the left hand side, we have
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Πq(p̄i) =

(
K−q

K∑

i=1

ni∑

j=1

pqij

) 1
1−q

=

(
K−q

K∑

i=1

λi

) 1
1−q

=
(
K1−qλi

) 1
1−q

= Kλ
1

1−q
i .

(3.49)

Proof that the Rényi heterogeneity satisfies the axiom of decomposability can be found

in Jost [59]. We also provide a more thorough treatment of decomposition in Chapter 4.

Briefly, if a system is composed of K pooled groups, then the overall heterogeneity (known

as γ-heterogeneity) must be decomposable into within- and between-group components

(“α-heterogeneity” and “β-heterogeneity,” respectively). Decomposition in categorical

systems must satisfy some important criteria (detailed by Jost [59]), including the fact that

within-group heterogeneity (α)—which can be interpreted as the average heterogeneity

within the composition’s subgroups (see Chapter 4)—must always be less than the pooled

system heterogeneity (γ). This is sensible, since pooling categorical systems should never

reduce heterogeneity. Heterogeneity decomposition is commonly employed in meta-analysis

(via the i2 statistic), albeit not using units of numbers equivalent.

3.2.4 Inequality Indices for Comparing Heterogeneity of Differently Sized Sets

It is sometimes useful to measure abundance inequality independently of the event space size

(but see Jost [92] for counterpoints). For instance, let each individual in a population be a

“partition” in our system, and the abundance measure his or her share of the total populations’

wealth. If we collect such data from two populations of different sizes and compare their

Rényi heterogeneity values, our results will be confounded by the population sizes; the

larger population will tend to have a higher heterogeneity despite potentially having more

wealth inequality. For this reason, isolated measures of inequality tend to be invariant to

the size of the event space: a property known as non-extensivity or the population principle

[93, 94]. This is essentially the opposite of Axiom 3, meaning that increases of the number



34

of states in a system should not change the heterogeneity index. From a practical standpoint,

this would mean that a measure of economic inequality should not change solely based on

the size of a population.

Axiom 9 (Non-extensivity or The Population Principle). Given a family of distributions y(n) =

(yi)
n
i=1 with a constant level of inequality for all n ∈ N+, the heterogeneity measure h must

satisfy

h(y(n+ δ)) = h(y(n)) ∀δ ∈ N+ (3.50)

There are two main approaches to compute these inequality measures: methods based

on the Lorenz curve [95], and derivations based on normalization of the Rényi heterogeneity

[92].

The most classically important characterization of inequality is based on the Lorenz

curve [95], which represents the percentage of total abundance in a system belonging to the

top x% of categories. For example, when examining the distribution of abundance across

presentations of MDD [54, 55], the Lorenz curve (shown in Figure 3.2B) shows that 50% of

all observed samples were attributable to only 7.1% of MDD symptom combinations in the

pooled sample. Several summary indices can be computed from the Lorenz curve, such as

the Gini coefficient (which we also discussed above) [24] or the Pietra index (also known

as the Robin Hood, Hoover, or Schutz coefficient) [96]. Some other Lorenzian inequality

indices are well reviewed elsewhere [94, 97].

The distribution and utilization of psychiatric resources has been quantified with Lorenz

curves [98–100], although other questions have also been addressed [101–104]. However,

(direct) Lorenzian inequality analysis is univariate, which limits applicability to modern

translational psychiatric research.

An alternative to the Lorenzian approach is to define a measure of “evenness” (conceptu-

ally the opposite of inequality) by expressing Rényi heterogeneity relative to its theoretical

maximum (the observed richness):

Π̃q (p) =
Πq (p)

nc
(3.51)

This is based on the more general concept of a diversity profile discussed in detail

elsewhere [59]. The range of Equation 12 is the (0, 1] interval, and it can be used to derive
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many well-known inequality indices such as Heip’s index [105], Pielou’s J [106], and

economists’ lauded Generalized Entropy Index (GEI) [93, 94], which is itself generalizes

several important indices [86, 107, 108]. This approach has not clearly been used for

inequality measurement in psychiatry.

Limitations of Categorical Heterogeneity Measures

The main problem with categorical heterogeneity measures are the assumptions of categori-

cal data. First, the categories to which one’s data belong must be (A) known a priori and (B)

scientifically valid. In some cases this will be more problematic than in others. For example,

defining species as categories (as ecologists do) is likely of greater validity than defining the

categories as DSM-5 diagnoses. There is simply more certainty about the validity of the

former than of the latter.

Second, one must assume that all members of the same category are identical in every

way, and that all between-category differences are equal. These assumptions about the

within- and between-category dissimilarity are surely violated in most psychiatric research

applications. For example, the analyses of Zimmerman et al. [54] and Park et al. [55] (and

our reanalysis thereof) did not account for the fact that different presentations will share

symptoms in common. Clearly, the proper distance metric for these data is not the discrete

metric (Equation 1), and they are thus not categorical data.

Despite these limitations, categorical heterogeneity measures—and particularly the

Rényi heterogeneity family—have advantages related to interpretation. The “size” of

a system’s event space is an intuitive and principled measure of deviation from perfect

conformity. In our MDD example, we spoke in terms of the easily understandable units of

“number of symptom combinations” rather than of bits or probabilities. Rényi heterogeneity

also respects the replication principle and can be decomposed into within- and between-

group components. We now seek a measure that retains these useful properties of Rényi

heterogeneity, while not being restricted to a categorical system.

3.3 Non-categorical Heterogeneity Indices

Non-categorical systems have elements that can vary in the degree to which they are similar

to each other. These indices are subdivided into two broad groups: those that split the
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observations into categories defined a priori, and those that either (A) do not assume such a

stratification at all or (B) attempt to learn it from the data.

3.3.1 Methods Requiring a priori Stratification

These methods first split observations from a system into one of nc pre-defined categories

(e.g. diagnoses or species). However, (A) the within-category distance can exceed 0 (e.g.

acknowledging that “tall” people still vary in height), and (B) the distance between pairs

of categories can be asymmetrical (e.g. lobsters are “further” from elephants than they are

from crabs).

The experimenter must choose a relevant distance measure, which will significantly

impact the heterogeneity estimates. Returning to our re-analysis of the MDD symptom

combination data [54, 55], we clarify that each of the 227 unique symptom combinations is

a distinct category in the event space X . However, we now specify the dissimilarity between

symptom combinations xi and xj using the Jaccard distance [109]:

Dij = 1− #Symptoms occurring in both xi and xj
#Symptoms occurring in either xi or xj

(3.52)

which takes values between 0 (complete overlap of symptoms) and 1 (no symptoms in com-

mon). This results in a 227× 227 matrix, D, of distances between symptom combinations.

To quantify heterogeneity, D must be summarized into a single non-negative value. The

most common approaches are related to Rao’s Quadratic Entropy (RQE) [110],

Q (D,p) =
nc∑

i=1

nc∑

j=1

Dijpipj (3.53)

which is the average pairwise distance between categories in the system. For our present

example, we have an RQE=0.35 for the Zimmerman et al. [54] data, RQE=0.38 for the

Park et al. [55] data, and RQE =0.37 in the pooled sample. Note that the RQE of one of

the subsets (Park et al. [55]) is greater than the pooled sample’s heterogeneity, which is

problematic, since pooling non-identical systems should monotonically increase the overall

heterogeneity. By using a different distance metric (the Hamming distance), this problem

disappears; we obtain RQE estimates of 2.89 (Zimmerman et al. [54]), 3.04 (Park et al.

[55]), and 3.05 (pooled). How are we to compare these estimates which are on ostensibly

different scales? Moreover, is one set of estimates “more correct” than the other?
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To solve this problem, researchers have sought to develop RQE-based measures with

units of numbers equivalent, since they do not appeal to the units of a given distance

metric [90, 111–114]. An added bonus is that numbers equivalent measures will obey

the replication principle [90, 113]. Unfortunately, current RQE-based numbers equivalent

measures have some idiosyncratic limitations that virtually obviate their psychiatric research

applicability. A more detailed exposition of these issues is given in Chapter 4, but for the

present instance, we note the functional Hill numbers [111] become insensitive to distance

between categories when they are equally abundant. Not surprisingly, we are unaware of

any studies in the psychiatric literature that employ non-categorical heterogeneity indices

with a priori stratification.

Two additional problems stand out with RQE-based and related approaches. First, these

heterogeneity indices are entirely dependent on the imposed stratification. In cases where

the imposed strata are unreliable or invalid (such as the case in which strata are DSM-5

psychiatric diagnoses), these aforementioned non-categorical heterogeneity indices will

unlikely be useful.

There is also a problem with defining the distance metric a priori. The distance metric

chosen determines which paths between points A and B in the data space are “allowed.” An

appropriate distance metric should allow only realistic paths between these points (Figure

3.3). For example, the straight-line distance between Toronto and Tokyo is irrelevant to

travelers, since that path cannot be traversed. In that vein, many real-world data are thought

to be embedded on lower dimensional manifolds in the data space [115]. In such cases,

the distance between points should be measured on paths along that manifold, which may

be curved. Since the manifolds of support will vary between datasets, it is unlikely that

predefined distance metrics (such as a global Euclidean distance) will accurately describe

the dispersion of one’s data. To our knowledge, this problem remains unaddressed in the

heterogeneity measurement literature.

3.3.2 Methods That do not Require a priori Stratification

There are three main approaches to quantify heterogeneity when no compelling a priori

stratification exists: (A) treating heterogeneity as the “volume” of a space that completely

encloses one’s data points, (B) clustering-based methods, and (C) dendrogram-based meth-

ods.
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Figure 3.3: Demonstration of how data in an observable space X can be concentrated along
a manifold (here just a curve). Panel A shows how the curve is simply an image of a
latent space Z projected through a generator function xi = gθ(zi). Panel B demonstrates
noisy data along the circular curve illustrated in Panel A. Measurement of the Euclidean
(straight-line) distance between Points A and B implies traversal across a region of X in
which no data lie. The correct approach is instead to measure distance with respect to the
data’s manifold of support.

Heterogeneity as a Convex Hull Volume

Roughly speaking, the space enclosed by the smallest perimeter around all pairwise paths in

one’s data is a convex hull. The volume of this space is sometimes used as a heterogeneity

index [116, 117], but if there are outliers or the data are not distributed uniformly within

the convex hull, heterogeneity will be overestimated (Figures 3.4A-C). We know of no

psychiatric study using convex hull volume to quantify heterogeneity.

Methods based on clustering and dendrogram construction

Psychiatric studies often characterize a heterogeneity as the number of latent categories

in some data. For example, cluster analytic studies of MDD have reported discovery of

between 1 and 5 strata (depending on the data), although these groups are qualitatively

inconsistent [57]. Similarly, cluster analyses in schizophrenia [62, 118–127], attention

deficit-hyperactivity disorder (ADHD) [128–133], autism [134–139] and other conditions

[63, 140–142] have returned proposals for various stratifications, with heterogeneity im-

plicitly “measured” by cluster counting. Further review of the psychiatric cluster analysis
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literature can be found elsewhere [56, 57]. However, we note that measurement of hetero-

geneity in cluster analyses by mere cluster counting will prove exquisitely sensitive to the

method by which one determines the optimal number of clusters, itself a difficult problem

that has been discussed extensively elsewhere [56].

There are three other prominent limitations of cluster counting. First, the cluster count

does not capture inequalities in the distribution of subjects across clusters. Cluster counting is

therefore a variation on observed richness. Second, the clusters themselves are consequently

assumed to be internally homogeneous and maximally dissimilar from the other clusters

(effectively re-instantiating the case-control paradigm). Finally, simply identifying the

statistically optimal number of clusters in a dataset does not guarantee that those clusters

are optimal in terms of their biological or scientific validity. To address this, many reports

have validated their inferred clusters using external data [143–146]. Notwithstanding, there

remain several open areas for improvement in measuring heterogeneity using cluster analysis,

particularly with respect to (A) evaluation of whether a clustering approach (i.e. mapping

some data onto a categorical space) is appropriate for some data in the first place, and

(B) accounting for uncertainty in the number of clusters, which overlaps with our above

discussion of partition counting methods.

An alternative approach involves measuring heterogeneity by first performing agglomera-

tive clustering, and then computing the sum of all branch lengths in the resulting hierarchical

tree (also known as a “dendrogram”) [147, 148]. This requires computing pairwise distances

between observations in one’s dataset. Figure 3.4 demonstrates this approach on some

synthetic data. It may be possible to compute an effective number from dendrogram-based

analyses [149]. Whereas the convex hull approach defines heterogeneity by the most extreme

points in a dataset, the dendrogram-based methods are sensitive to the density of sample

space coverage. Unfortunately, this will create a problem if there are truly multiple groups in

one’s data, since the dendrogram-based heterogeneity index increases if the groups’ feature

distributions become more similar (Figure 3.4E). To our knowledge, there are no applica-

tions of dendrogram-based heterogeneity measures in the psychiatric literature, although

gene co-expression studies (such as those employing Weighted Gene Correlation Network

Analysis) are ostensibly immediate targets for these indices [150–152].

Normative modeling is a recent notable alternative for characterizing heterogeneity in

clinical cohorts [66]. Briefly, this approach learns a model of normal variation, much like
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Figure 3.4: Illustration of convex hull and dendrogram-based heterogeneity indices for
non-categorical systems. Panel A illustrates the basic concept of a convex hull on synthetic
2-dimensional data. The volume of the hull is taken as an index of heterogeneity. Panel
B shows one problem with the convex hull method, which occurs when data lie along a
lower dimensional surface (here just a curve). In this example, the data are all concentrated
along the outer border of the hull, leaving the core unoccupied. However, the convex hull
volume index will nonetheless count the empty space toward the heterogeneity value. Panel
C illustrates the effect of outliers on convex hull volume. Since a convex hull is found by
creating a “shell” around one’s data, outlying points will expand this shell in ways that leave
much of the convex hull empty (though still counting toward the heterogeneity value). Panel
D shows the dendrogram computed using agglomerative clustering for a simple mixture of
five 2-dimensional (2D) Gaussians. The Functional Diversity (FD) measure, shown in the
title, is the sum of all branch lengths in this tree. Panel E shows a simple simulation with
five 2D Gaussians (standardized to lie within the bounds [-1.5, 1.5] in both axes) that were
progressively separated further. One can appreciate that the FD measure decreases as the
distributions become more distinct. This is the opposite effect demonstrated by the convex
hull volume, insofar as FD increases as the space becomes more densely populated with
data points.
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growth chart models in pediatrics, then evaluates the degree and uncertainty with which

individual subjects deviate from this normative range. The assumption is that pathological

states tend to deviate more extremely. Applications include (predominantly neuroimaging)

studies of autism [153, 154], ADHD [66, 155, 156], schizophrenia and psychosis [157,

158], bipolar disorder [157], and neurocognitive disorders [159, 160]. Although normative

modeling offers an important and novel non-categorical system within which to frame

the heterogeneity of psychiatric disorders, no study employing this method has offered

a measurement of heterogeneity. Thus, it would be of great interest to develop numbers

equivalent measures applicable within the normative modeling framework.

3.3.3 A Note on Meta-Analytic Heterogeneity

Standard mixed-effects meta-analysis employs a parametric index of heterogeneity on

non-categorical spaces [27]. A full discussion of this (likely familiar) topic is beyond our

present scope, but an illustration of the mixed-effects formulation is provided in Figure 3.5.

However, to motivate meta-analytic Rényi heterogeneity, it is important to demonstrate that

the current meta-analytic heterogeneity—which is the variance of the Gaussian distribution

over study effects—is an index that fails to satisfy the replication principle.

To illustrate failure of the variance to satisfy Axiom 7 (replication), we consider the

example of pooling n uniform distributions on the respective intervals {[γ0, γ1), [γ1, γ2),

. . . , [γn−1, γn]}. Since the replication principle requires that the pooled systems have equal

heterogeneity, we specify that γi−γi−1 = γj−1−γj ∀(i, j) ∈ {1, 2, . . . , n} and γi−1 < γi ∀i.
The probability density function (PDF) for the ith uniform distribution is defined on the

half open interval [γi−1, γi) as follows:

U(x|γi−1, γi) =

{
1

γi−γi−1
γi−1 ≤ x < γi

0 Otherwise
(3.54)

The variance for the uniform distribution on the half-open interval is the same as that of

the uniform distribution on the closed interval

Var(γi−1, γi) =
1

12
(γi − γi−1)2 , (3.55)

and the variance of n pooled uniform distributions is thus
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Figure 3.5: Illustration of the mixed-effects model for meta-analysis. The observed effects
for n individual studies (yi)

n
i=1 are each distributed according to study-level Gaussians with

effects θ = (θi)
n
i=1 and study-level standard deviations σ = (σ2

i )
n
i=1. The study-level effects

θ are modeled as distributed according to an isotropic Gaussian distribution over studies,
∀i ∈ {1, 2, . . . , n} θi ∼ N (θi|µ, τ 2), where µ is the true (summary) effect, and τ 2 is the
heterogeneity of study effects.
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Var(γ0, γn) =
1

12
(γn − γ0)2 . (3.56)

Recalling that |γn − γ0| = n|γi − γi−1|, one can use Equation 3.56 to easily show

that Var(γ0, γn) 6= nVar(γi−1, γi) and thus that variance does not satisfy the replication

principle.

Conversely, if we compute heterogeneity using the continuous Rényi heterogeneity,

Πq (p) =

(∫ b

a

pq(x) dx

) 1
1−q

, (3.57)

then we will satisfy Axiom 7. Expressing Equation 3.57 for the uniform distribution yields

Πq(γi−1, γi) = γi − γi−1, (3.58)

which is expected since Rényi heterogeneity measures the size of the base of support. It can

be easily shown to satisfy the replication principle:

Πq(γ0, γn) = nΠq(γi−1, γi) (3.59)
(∫ γn

γ0

(γn − γ0)q dx

) 1
1−q

= n

(∫ γi

γi−1

(γi − γi−1)q dx

) 1
1−q

(3.60)

γn − γ0 = n(γi − γi−1). (3.61)

One can also show that meta-analytic heterogeneity, if computed under the Rényi

formalism—can be decomposed into within and between-group components and thus

expressed in the units of numbers equivalent (“the effective range of distinct study effects”).

This decomposition is described further in Chapter 4 in the context of a deep neural network

with Gaussian latent variables.

3.3.4 A Note on Heterogeneity Indices for Time-Series and Dynamical Systems

We briefly discuss measurement of heterogeneity in time-series data by indices often known

as “complexity” measures. Psychiatric studies have employed geometric indices (such as

the Largest Lyapunov Exponent and recurrence plot analysis) [161, 162], entropic indices

(such as Kolmogorov-Sinai or metric entropy [163], approximate entropy [164], sample

and multiscale entropies [13, 15, 165], and Lempel-Ziv complexity [166, 167]), and various
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fractal dimension indices largely to electrophysiological data, although some studies have

evaluated functional neuroimaging [168] and other time-series [13, 15, 169]. Numerous

clinical and technical reviews of these indices exist [65, 164, 170–175], so we merely note

that numbers equivalent can also be of use in this domain. For example, the Shannon

entropy of a time series’ normalized power spectrum, also known as spectral entropy [171],

can be easily converted to the “effective number of typical frequencies” using Equation

10; reporting such a measure in terms of the effective number of frequency bands makes

interpretation and criticism more clear. If one reports that a time series of mood recordings

contains an effective number of three frequency bands, we may more readily appraise

whether such information is useful, and how so. With such clear units, one may decide that

indices expressing the “effective number of trajectories” or “effective number of ‘mood

states”’ might be more desirable.

Many conditions have been studied under this paradigm using various modalities [173,

174, 176]. For instance, our group has investigated the temporal dynamics of mood in

patients with bipolar disorder. The overall complexity of mood fluctuations is ostensibly

reduced among probands and their unaffected relatives [13, 15], with increases observed

within 60 days of a mood episode [169]. Unfortunately, on the whole it can be difficult to

interpret time-series complexity between studies, since the large number of indices (each

with their own units), experimental conditions, data modalities, and disorders can interact to

yield various—dare we say heterogeneous—conclusions.

3.3.5 Limitations of Non-categorical Heterogeneity Indices

Non-categorical heterogeneity indices are predominantly based on RQE [110]. Unfor-

tunately, the requirement of selecting a distance measure a priori introduces problems

comparing RQE across datasets with different distance metrics. Moreover, for real-world

datasets, standard methods of measuring distance will likely fail to respect data’s true

underlying geometry. This problem will be shared by dendrogram-based methods and

clustering-based approaches that demand pre specification of a distance measure.

The units of RQE-based heterogeneity indices are also not clearly appropriate for

thinking about heterogeneity, although one may correctly argue that heterogeneous systems

have larger overall amounts of pairwise distance between their elements [177]. Plainly,

these indices violate the replication principle which leads to unintuitive scaling behaviours
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[112, 113]. Although the numbers equivalent transformations of RQE have addressed

this problem to some extent, they have further limitations that virtually preclude their

application to research problems in the psychiatric domain. First, they continue to require

prespecified categories on the data as well as prespecified distance measures. Second, they

have idiosyncratic limitations—such as insensitivity to distance under equally abundant

categories [111]—that would be problematic in psychiatric use cases.

We showed above that meta-analytic heterogeneity is at present quantified by variance,

which fails to satisfy the replication principle.

Time series complexity measures, too, can be difficult to interpret and synthesize. In

many cases, time-series complexity measures based on numbers equivalent could simplify

interpretation. In the case of longitudinal self-ratings of mood, for example, reporting

heterogeneity as “the effective number of mood states” could meaningfully improve the

broader clinical interpretability of such results. However, no such study has heretofore

reported time-series heterogeneity in numbers equivalent, and so its evaluation in that context

remains an interesting future direction.

3.4 Discussion and Conclusions

This paper defined heterogeneity as the degree to which a system diverges from perfect con-

formity, and measures it by the effective size of a system’s event space. We have highlighted

assumptions, strengths, limitations, and psychiatric use-cases for various measures. A large

number of indices have been discovered (and rediscovered) independently for different

data types and fields of study. Although we believe each index is valuable in describing

unique properties of heterogeneous systems, their large variety of units and differences

in mathematical properties impede both (A) their synthesis across studies and (B) their

broader interpretability. However, we demonstrated that numbers equivalent measures

of heterogeneity—known in different fields as the Rényi heterogeneity, Hill numbers, or

Hannah-Kay indices—are cross-cutting measures that can potentially express the hetero-

geneity of a system as the size of an equally heterogeneous uniform event space. These

measures satisfy most heterogeneity axioms (including the replication principle) and are

standard measures of ecological biodiversity yet remain relatively absent from the psychi-

atric literature. In this section, we re-highlight some of the roadblocks to their psychiatric

implementation and future directions of research.
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One obstacle for implementation of numbers equivalent heterogeneity measures in psy-

chiatry is conceptual in nature. Heterogeneous systems have many correlated properties that,

in the absence of precise definition, could easily be mistaken for heterogeneity itself: they

have more sampling uncertainty and information, lower probability of sampling identical

pairs, lower modal probabilities, higher variance, less inequality in their probability distri-

butions, and larger event spaces. If one cares simply about “more vs. less” heterogeneity,

then any of these properties will be suitable indices. However, if one is interested in “how

much more/less” heterogeneity exists (such as when comparing groups), then only numbers

equivalent measures will show appropriate behaviour under pooling or decomposition. The

utility of such measures, including their easily understandable units, must be appreciated

through real-world applications.

The chief technical obstacle for adopting numbers equivalent measures in psychiatric

research is their limitations when applied to non-categorical data. Existing non-categorical

numbers equivalent measures satisfy the replication principle [90], but they still require

imposition of a priori stratification on the data, and assumption of a distance metric (see also

their further limitations in Chapter 4). Both limitations preclude adoption in translational

psychiatric research. First, if psychiatric science had reliable and valid strata to impose

on some data, then we might not have such concern with heterogeneity in the first place.

Second, the types of high-dimensional data often used in modern psychiatric research might

lie on latent spaces whose geometries do not admit application of pre-defined distance

functions [115]. In such systems, existing non-categorical numbers equivalent measures

may fail to accurately measure heterogeneity.

Numbers equivalent heterogeneity measures can be relevant for modern translational

psychiatric research, but existing indices (particularly for non-categorical systems) must be

adapted to suit the nature of our data and questions. We must do away with the requirement

for a priori data stratification and distance function specification. It will also be interesting

to study if, how, and under what circumstances existing measures of meta-analytic hetero-

geneity and time-series complexity should be expressed in numbers equivalent. Finally, it

would be of interest to investigate whether numbers equivalent heterogeneity measures are

indeed more broadly understandable or easier to synthesize across studies.



Chapter 4

Representational Rényi Heterogeneity1

Abstract. A discrete system’s heterogeneity is measured by the Rényi heterogeneity family of indices

(also known as Hill numbers or Hannah–Kay indices), whose units are the numbers equivalent. Un-

fortunately, numbers equivalent heterogeneity measures for non-categorical data require a priori (A)

categorical partitioning and (B) pairwise distance measurement on the observable data space, thereby

precluding application to problems with ill-defined categories or where semantically relevant features

must be learned as abstractions from some data. We thus introduce representational Rényi heterogeneity

(RRH), which transforms an observable domain onto a latent space upon which the Rényi heterogeneity

is both tractable and semantically relevant. This method requires neither a priori binning nor definition

of a distance function on the observable space. We show that RRH can generalize existing biodiversity

and economic equality indices. Compared with existing indices on a beta-mixture distribution, we show

that RRH responds more appropriately to changes in mixture component separation and weighting.

Finally, we demonstrate the measurement of RRH in a set of natural images, with respect to abstract

representations learned by a deep neural network. The RRH approach will further enable heterogeneity

measurement in disciplines whose data do not easily conform to the assumptions of existing indices.

4.1 Introduction

Measuring heterogeneity is of broad scientific importance, such as in studies of biodiversity

(ecology and microbiology) [22, 50], resource concentration (economics) [94], and consis-

tency of clinical trial results (biostatistics) [28], to name a few. In most of these cases, one

measures the heterogeneity of a discrete system equipped with a probability mass function.

Discrete systems assume that all observations of a given state are identical (zero distance),

and that all pairwise distances between states are permutation invariant. This assumption is

violated when relative distances between states are important. For example, an ecosystem

is not biodiverse if all species serve the same functional role [2]. Although species are

categorical labels, their pairwise differences in terms of ecological functions differ and

thus violate the discrete space assumptions. Mathematical ecologists have thus developed
1Nunes A, Alda M, Bardouille T, and Trappenberg T. Representational Rényi Heterogeneity. Entropy 2020,

22, 417.

47
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heterogeneity measures for non-categorical systems, which they generally call “functional

diversity indices” [45, 90, 111, 113, 114, 147]. These indices typically require a priori

discretization and specification of a distance function on the observable space.

The requirement for defining the state space a priori is problematic when the states

are incompletely observable: that is, when they may be noisy, unreliable, or invalid. For

example, consider sampling a patient from a population of individuals with psychiatric

disorders and assigning a categorical state label corresponding to his or her diagnosis

according to standard definitions [69]. Given that psychiatric conditions are not defined by

objective biomarkers, the individual’s diagnostic state will be uncertain. Indeed, many of

these conditions are inconsistently diagnosed across raters [178], and there is no guarantee

that they correspond to valid biological processes. Alternatively, it is possible that variation

within some categorical diagnostic groups is simply related to diagnostic “noise,” or nuisance

variation, but that variation within other diagnostic groups constitutes the presence of sub-

strata. Appropriate measurement of heterogeneity in such disciplines requires freedom from

the discretization requirement of existing non-categorical heterogeneity indices.

Pre-specified distance functions may fail to capture semantically relevant geometry

in the raw feature space. For example, the Euclidean distance between Edmonton and

Johannesburg is relatively useless since the straight-line path cannot be traversed. Rather,

the appropriate distances between points must account for the data’s underlying manifold

of support. Representation learning addresses this problem by learning a latent embedding

upon which distances are of greater semantic relevance [115]. Indeed, we have observed

superior clustering of natural images embedded on Riemannian manifolds [48] (but also

see Shao et al. [179]), and preservation of semantic hierarchies when linguistic data are

embedded on a hyperbolic space [180].

Therefore, we seek non-categorical heterogeneity indices without requisite a priori

definition of categorical state labels or a distance function. The present study proposes a

solution to these problems based on the measurement of heterogeneity on learned latent

representations, rather than on raw observable data. Our method, representational Rényi

heterogeneity (RRH), involves learning a mapping from the space of observable data to a

latent space upon which an existing measure (the Rényi heterogeneity [91], also known as

the Hill numbers [17] or Hannah–Kay indices [18]) is meaningful and tractable.

The paper is structured as follows. Section 4.2 introduces the original categorical
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formulation of Rényi heterogeneity and various approaches by which it has been generalized

for application on non-categorical spaces [111, 112, 114]. Limitations of these indices are

highlighted, thereby motivating Section 4.3, which introduces the theory of Representational

Rényi Heterogeneity (RRH), which generalizes the process for computing many indices of

biodiversity and economic equality. Section 4.4 provides an illustration of how RRH may

be measured in various analytical contexts. We provide an exact comparison of RRH to

existing non-categorical heterogeneity indices under a tractable mixture of beta distributions.

To highlight the generalizability of our approach to complex latent variable models, we also

provide an evaluation of RRH applied to the latent representations of a handwritten image

dataset [181] learned by a variational autoencoder [182]. Finally, in Section 4.5 we provide

a summary of our findings and discuss avenues for future work.

4.2 Existing Heterogeneity Indices

4.2.1 Rényi Heterogeneity in Categorical Systems

There are many approaches to derive Rényi heterogeneity [17, 18, 91]. Here, we loosely

follow the presentation of Eliazar & Sokolov [97] by using the metaphor of repeated

sampling from a discrete system X with event space X = {1, 2, . . . , n} and probability

distribution p = (pi)i=1,2,...,n. The probability that q ∈ N>1 independent and identically

distributed (i.i.d.) realizations of X , sampled with replacement, will be identical is

PX [x1 = x2 = · · · = xq] =
n∑

i=1

pqi . (4.1)

Now let X∗ be an idealized reference system with a uniform probability distribution over

n∗ categorical states, p∗ = (n−1
∗ )i=1,2,...,n∗

, and let (x∗1, x∗2, . . . , x∗q) be a sample of q i.i.d.

realizations of X∗ such that

PX [x1 = x2 = · · · = xq] = PX∗ [x∗1 = x∗2 = · · · = x∗q] =
n∗∑

i=1

n−q∗ . (4.2)

We call X∗ an “idealized” categorical system because its probability distribution is uniform,

and it is a “reference” system for X in that the probability of drawing homogeneous samples

of q observations from both systems is identical. Substituting Equation 4.2 into Equation

4.1 and solving for n∗ yields the Rényi heterogeneity of order q,
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Table 4.1: Relationships between Rényi heterogeneity and various diversity or inequality
indices for a system X with event space X = {1, 2, . . . , n} and probability distribution
p = (pi)i=1,2,...,n. The function 1[·] is an indicator function that evaluates to 1 if its argument
is true or to 0 otherwise.

Index Expression

Observed richness [70] Π0 (p) =
∑n

i=1 1[pi > 0]
Perplexity [43] Π1 (p) = exp {−∑n

i=1 pi log pi}
Inverse Simpson concentration [22] Π2 (p) = (

∑n
i=1 p

2
i )
−1

Berger-Parker Diversity Index [42, 183] Π∞ (p) = (maxi pi)
−1

Rényi entropy [91] Rq (p) = log Πq (p)
Shannon entropy [25] H (p) = log Π1 (p)

Tsallis entropy [26] Tq (p) = 1
q−1

(
1− Πq (p)1−q)

Simpson concentration [87] Simpson(p) = (Π2 (p))−1

Gini-Simpson index [24] GSI(p) = 1− Simpson(p)

Generalized entropy index [93, 94] GEI (p) = 1
q(q−1)

[(
1
n
Πq (p)

)1−q − 1
]

Πq (p) =

(
n∑

i=1

pqi

) 1
1−q

= n∗, (4.3)

whose units are the numbers equivalent of system X [19, 20, 22, 59], insofar as n∗ is the

number of states in an “equivalent” (idealized reference) system X∗. Thus far, we have

restricted the parameter q to take integer values greater than 1 solely to facilitate this intuitive

derivation in a concise fashion. However, the elasticity parameter q in Equation 4.3 can

be any real number (but q 6= 1), although in the context of heterogeneity measurement

only q ≥ 0 are used [22, 97]. Despite Equation 4.3 being udefined at q = 1 directly,

L’Hôpital’s rule can be used to show that the limit q → 1 exists, wherein it corresponds to

the exponential of Shannon’s entropy [25, 59], known as perplexity [43].

Equation 4.3 is the exponential of Rényi’s entropy [91], and is alternatively known as the

Hill numbers in ecology [17, 22], Hannah–Kay indices in economics [18], and generalized

inverse participation ratio in physics [97]. Interestingly, it generalizes or can be transformed

into several heterogeneity indices that are commonly employed across scientific disciplines

(Table 4.1).
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Properties of the Rényi Heterogeneity

Equation 4.3 satisfies several properties that render it a preferable measure of heterogeneity.

These have been detailed elsewhere [18, 22, 23, 42, 59, 97], but we focus on three properties

that are of particular relevance for the remainder of this paper.

First, Πq satisfies the principle of transfers [85, 86] which states that any equality-

increasing transfer of probability between states must increase the heterogeneity. The

maximal value of Πq is attained if and only if pi = pj for all (i, j) ∈ {1, 2, . . . , n}. This

property follows from Schur-concavity of Equation 4.3 [18].

Second, Πq satisfies the replication principle [21–23], which is equivalent to stating

that Equation 4.3 scales linearly with the number of equally probable states in an idealized

categorical system [97]. More formally, consider a set of systemsX1, X2, . . . , XN with prob-

ability distributions p1,p2, . . . ,pN over respective discrete event spaces X1,X2, . . . ,XN .

These systems are also assumed to satisfy the following properties:

1. Event spaces are disjoint: Xi ∩ Xj = ∅ for all (i, j) ∈ {1, 2, . . . , N} where i 6= j

2. All systems have equal heterogeneity: Πq (p1) = Πq (p2) = · · · = Πq (pi) = · · · =
Πq (pN)

The replication principle states that if we combine X1, X2, . . . , XN into a pooled system

X with probability distribution p̄, then

Πq (p̄) = NΠq (pi) (4.4)

must hold (see Appendix A.1 for proof that Rényi heterogeneity satisfies the replication

principle).

The replication principle suggests that Equation 4.3 satisfies a property known as de-

composability, in that the heterogeneity of a pooled system can be decomposed into that

arising from variation within and between component subsystems. However, we require

that this property be satisfied when either (A) subsystems’ event spaces are overlapping,

or (B) subsystems do not have equal heterogeneity. The decomposability property will be

particularly important for Section 4.3, and so we detail it further in Section 4.2.1.
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Decomposition of Categorical Rényi Heterogeneity

Consider a system X defined by pooling subsystems X1, X2, . . . , XN with potentially

overlapping event spaces X1,X2, . . . ,XN , respectively. The event space of the pooled

system is defined as

X = ∪Ni=1Xi = {1, 2, . . . , n} . (4.5)

Furthermore, we define the matrix P = (pij)
j=1,2,...,n
i=1,2,...,N whose ith row is the probability of

system Xi being observed in each state j ∈ {1, 2, . . . , n}.
It may be the case that some subsystems comprise a larger proportion of X than others.

For instance, if the probability distribution for subsystem Xi was estimated based on a larger

sample size than that of Xj , one may want to weight the contribution of Xi higher. Thus,

we define a column vector of weights w = (wi)i=1,2,...,N over the N subsystems such that
∑N

i=1 wi = 1 and wi ≥ 0 for all i. The probability distribution over states in the pooled

system X may thus be computed as p̄ =
∑N

i=1 wipi, from which the definition of pooled

heterogeneity follows:

ΠP
q (P,w) =

[
n∑

j=1

(
N∑

i=1

wipij

)q] 1
1−q

. (4.6)

One can interpret ΠP
q (P,w) as the effective number of states in the pooled categorical

system X .

Jost [59] showed that the within-group heterogeneity, which is the effective number of

unique states arising from individual component systems, can be defined as

ΠW
q (P,w) =



∑N

i=1 w
q
i

(∑n
j=1 p

q
ij

)

∑N
k=1 w

q
k




1
1−q

, (4.7)

For example, in the case where all subsystems have disjoint event spaces with hetero-

geneity equal to constant ν, then they each contribute ν unique states to the pooled system

X .

Deriving the between-group heterogeneity ΠB
q (P,w), is thus straightforward. If the

effective total number of states in the pooled system is ΠP
q (P,w), and the effective number

of unique states contributed by distinct subsystems is ΠW
q (P,w), then
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ΠB
q (P,w) =

ΠP
q (P,w)

ΠW
q (P,w)

(4.8)

is the effective number of completely distinct subsystems in the pooled system X . A word

of caution is warranted. If we require that within-group heterogeneity is a lower bound on

pooled heterogeneity [184], then Jost [59] showed that Equation 4.8 will hold (A) at any

value of q when weights are equal (i.e., wi = 1/N for all i ∈ {1, 2, . . . , N}), or (B) only at

q = 0 and q = 1 if weights are unequal.

Limitations of Categorical Rényi Heterogeneity

The chief limitation of Rényi heterogeneity (Equation 4.3) is its assumption that all states in a

systemX (with event spaceX = {1, 2, . . . , n} and probability distribution p = (pi)i=1,2,...,n)

are categorical. More formally, the dissimilarity between a pair of observations (x, y) ∈ X
from this system is defined by the discrete metric

d∗(x, y) = 1− δxy, (4.9)

where δxy is Kronecker’s delta, which takes a value of 1 if x = y and 0 otherwise. Since

the discrete metric assumption is an idealization, we have continued to use the asterisk to

qualify an arbitrary distance function d(·, ·) as categorical in nature. The resulting expected

pairwise distance matrix between states in X is

D∗ = [d∗(i, j)]j=1,2,...,n
i=1,2,...,n = 1 1> − I, (4.10)

where 1 = (1)i=1,2,...,n is a column vector of ones, and I = (δij)
j=1,2,...,n
i=1,2,...,n is the n×n identity

matrix.

Clearly, many systems of interest in the real world are not categorical. For example,

although we may label a sample of organisms according to their respective species, there

may be differences between these taxonomic classes that are relevant to the functioning of

the ecosystem as a whole [2]. It is also possible that no valid and reliable set of categorical

labels is known a priori for a system whose event space is naturally non-categorical.
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4.2.2 Non-Categorical Heterogeneity Indices

Consider a system X with probability distribution p = (pi)i=1,2,...,n defined over event

space X = {1, 2, . . . , n} and equipped with dissimilarity function dX(·, ·). We assume

that dX is more general than the discrete metric (Equation 4.9), and further still need not

be a true (metric) distance. For such systems, there are three heterogeneity indices whose

units are numbers equivalent, and respect the replication principle [90, 111–114]. Much

like our derivation of the Rényi heterogeneity in Section 4.2.1, these indices quantify the

heterogeneity of a non-categorical system as the number of states in an idealized reference

system, but differ primarily in how the idealized reference is defined. We begin with a

discussion of the Numbers-Equivalent Quadratic Entropy (Section 4.2.2), followed by the

Functional Hill Numbers (Section 4.2.2) and the Leinster–Cobbold index [114] (Section

4.2.2).

Numbers Equivalent Quadratic Entropy

Rao [110] introduced the diversity index commonly known as Rao’s quadratic entropy

(RQE),

Q1 (D,p) =
n∑

i=1

n∑

j=1

Dijpipj (4.11)

where D is an n× n matrix where Dij = dX(i, j) for states (i, j) ∈ X .

Ricotta & Szeidl [112] assume that Dij = 1 means that states i and j are maximally

dissimilar (i.e., categorically different), and that Dij = 0 means i = j, which occurs when

X is a categorical system. An arbitrary dissimilarity matrix D can be rescaled to respect

this assumption by applying the following transformation:

D̃ =
D−minij Dij

maxij Dij −minij Dij

. (4.12)

Under this transformation, Ricotta & Szeidl [112] search for an idealized categorical

reference system X∗ with event space X∗ = {1, 2, . . . , n∗}, probability distribution p∗ =

(n−1
∗ )i=1,2,...,n∗

, and RQE equal to that of X . For a column vector of ones, 1 = (1)i=1,2,...,n∗
,

and the identity matrix I = (δij)
j=1,2,...,n∗
i=1,2,...,n∗

, this is

Q1

(
D̃,p

)
= Q1

(
11> − I,p∗

)
. (4.13)
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Expanding the right-hand side, we have

Q1

(
D̃,p

)
=

n∗∑

i=1

n∗∑

j=1

n−2
∗ (1− δij) = 1− 1

n∗
. (4.14)

Recalling that Πq (p∗) = n∗ and substituting into Equation 4.14 yields

Πq (p∗) =
[
1−Q1

(
D̃,p

)]−1

, (4.15)

which establishes the units of
[
1−Q1

(
D̃,p

)]−1

as numbers equivalent.

For consistency, we require that Πq (p∗) = Πq (p) if D̃ were categorical. This only

holds at q = 2:

[
1−Q1

(
D̃,p

)]−1

=

[
1−

n∑

i=1

n∑

j=1

pipj (1− δij)
]−1

=

(
n∑

i=1

p2
i

)−1

= Π2 (p∗) .

(4.16)

Based on this result, Ricotta & Szeidl [112] define the numbers equivalent quadratic

entropy Q̂e as

Q̂e

(
D̃,p

)
=
(

1−Q1

(
D̃,p

))−1

. (4.17)

This can be interpreted as the inverse Simpson concentration of an idealized categorical

reference system whose average pairwise distance between states is equal to Q1

(
D̃,p

)
.

Functional Hill Numbers

Chiu & Chao [111] derived the Functional Hill Numbers, denoted Fq, based on a similar

procedure to that of Ricotta & Szeidl [112]. However, whereas Q̂e uses a purely categorical

system as the idealized reference, Fq requires only that

Q1 (D,p) =
n∗∑

i=1

n∗∑

j=1

Q1 (D,p) p∗ip∗j =
n∗∑

i=1

n∗∑

j=1

Q1 (D,p)n−2
∗ , (4.18)

which means that the idealized reference system is one for which the between-state dis-

tance matrix is set to Q1 (D,p) everywhere (or to 0 along the leading diagonal and

Q1 (D,p)n∗/(n∗ − 1) on the off diagonals).
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Chiu & Chao [111] generalized Rao’s quadratic entropy to include the elasticity parame-

ter q ≥ 0

Qq (D,p) =
n∑

i=1

n∑

j=1

Dij (pipj)
q , (4.19)

and sought to find n∗ for the idealized reference system satisfying Equation 4.18 and the

following:

Qq (D,p) =
n∗∑

i=1

n∗∑

j=1

Q1 (D,p)

(
1

n∗

1

n∗

)q
. (4.20)

Solving Equation 4.20 for n∗ yields the functional Hill numbers of order q:

Fq (D,p) =

(
Qq (D,p)

Q1 (D,p)

) 1
2(1−q)

= n∗, (4.21)

which is the effective number of states in an idealized categorical reference system whose

distance function is scaled by a factor of Q1 (D,p)n∗/(n∗ − 1).

Leinster–Cobbold Index

The index derived by Leinster & Cobbold [114], denoted Lq, is distinct from Q̂e and Fq in

two ways. First, for a given system X , the Lq is not derived based on finding an idealized

reference systemX∗ whose average between-state dissimilarity is equal to that ofX . Second,

it does not use a dissimilarity matrix; rather, it uses a measure of similarity or affinity.

The Leinster–Cobbold index may be derived by simple extension of Equation 4.3. As-

suming X has state space X = {1, 2, . . . , n} with probability distribution p = (pi)i=1,2,...,n,

we note that

Πq (p) =

(
n∑

i=1

pqi

) 1
1−q

=

[
n∑

i=1

pi (Ip)q−1
i

] 1
1−q

. (4.22)

Here, I is the n× n identity matrix representing the pairwise similarities between states

inX . The Leinster–Cobbold index generalizes I to be any n×n similarity matrix S, yielding

the following formula:

Lq (S,p) =




n∑

i=1

pi

(
n∑

j=1

Sijpj

)q−1



1
1−q

. (4.23)
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The similarity matrix can be obtained from a dissimilarity matrix by the transformation

Sij = e−uDij , where u ≥ 0 is a scaling factor. When u = 0, then S is 1 everywhere.

Conversely, when u→∞, then S approaches I. The Leinster–Cobbold index can thus be

interpreted as an effective number if the states are in an idealized reference system (i.e., one

with uniform probabilities over states) whose topology is also governed by the similarity

matrix S.

Limitations of Existing Non-Categorical Heterogeneity Indices

We illustrate several limitations of the Q̂e, Fq, and Lq indices using a simple 3-state system

X with event space X = {1, 2, 3} over which we specify a probability distribution

p(κ) =





(1, 0, 0)> κ = 0
(

1
3
, 1

3
, 1

3

)>
κ = 1

(0, 0, 1)> κ =∞(
1

1+
√
κ+κ

,
√
κ

1+
√
κ+κ

, κ
1+
√
κ+κ

)>
Otherwise

(4.24)

where 0 ≤ κ is a parameter that smoothly varies the level of inequality. When κ = 1 the

distribution is perfectly even (Figure 4.1A). Since an undirected graph of the system is

arranged in a triangle with height h and base b, we also specify the following parametric

distance matrix,

D(h, b) =




0 b
√

b2

4
+ h2

b 0
√

b2

4
+ h2

√
b2

4
+ h2

√
b2

4
+ h2 0


 , (4.25)

which allows us to smoothly vary the level of dissimilarity between states in X . Importantly,

Equation 4.25 allows us to generate distance matrices that are either metric (when h <

b
√

3/2; Definition 1) or ultrametric (when h ≥ b
√

3/2; Definition 2). This is illustrated in

Figure 4.1B.

Definition 1 (Metric distance). A function d : X ×X → R≥0 on a set X is a metric if and only

if all of the following conditions are satisfied for all (x, y, z) ∈ X :

1. Non-negativity: d(x, y) ≥ 0
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Figure 4.1: Illustration of simple three-state system under which we compare existing non-
categorical heterogeneity indices. Panel A depicts a three state system X as an undirected
graph, with node sizes corresponding to state probabilities governed by Equation 4.24. As
0 ≤ κ diverges further from κ = 1, the probability distribution over states becomes more
unequal. Panel B visually represents the parametric pairwise distance matrix D(h, b) of
Equation 4.25 (h is height, b is base length, Dij is distance between states i and j). In the
examples shown in Panels B and C, we set b = 1. Specifically, we provide visual illustration
of settings for which the distance function on X is a metric (Definition 1; when h < b

√
3/2)

or ultrametric (Definition 2; when h ≥ b
√

3/2). Panel C compares the numbers equivalent
quadratic entropy (solid lines marked Q̂e; Section 4.2.2), functional Hill numbers (at q = 1,
dashed lines marked F1; Section 4.2.2), and the Leinster–Cobbold Index (at q = 1, dotted
lines marked L1; Section 4.2.2) for reporting the heterogeneity of X . The y-axis reports
the value of respective indices. The x-axis plots the height parameter for the distance
matrix D(h, 1) (Equation 4.25 and Panel B). The range of h at which D(h, 1) is only a
metric is depicted by the gray shaded background. The range of h shown with a white
background is that for which D(h, 1) is ultrametric. For each index, we plot values for a
probability distribution over states that is perfectly even (κ = 1; dotted markers) or skewed
(κ = 10; vertical line markers). Panel D shows the sensitivity of the Leinster–Cobbold
index (L1; y-axis) to the scaling parameter 0 ≤ u (x-axis) used to transform a distance
matrix into a similarity matrix (Sij = e−uDij ). This is shown for three levels of skewness for
the probability distribution over states (no skewness at κ = 1, dotted markers; significant
skewness at κ = 10, vertical line markers; extreme skewness at κ = 100, square markers).
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2. Identity of indiscernibles: d(x, y) = 0 ⇐⇒ x = y

3. Symmetry: d(x, y) = d(y, x)

4. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

Definition 2 (Ultrametric distance). A function d : X × X → R≥0 on a set X is ultrametric if

and only if, for all (x, y, z) ∈ X , criteria 1-3 for a metric are satisfied (Definition 1), in addition

to the ultrametric triangle inequality:

d(x, z) ≤ max {d(x, y), d(y, z)} (4.26)

Figure 4.1C compares the Q̂e, Fq, and Lq indices when applied to X across variation

in between-state distances (via Equation 4.25) and skewness in the probability distribution

over states (Equation 4.24). With respect to the numbers equivalent quadratic entropy

(Q̂e; Section 4.2.2), we note that its behavior is categorically different with respect to

whether the distance matrix is ultrametric. That is Q̂e increases with the triangle height

parameter h (Equation 4.25) until it passes the ultrametric threshold, after which it decreases

monotonically with h. The behavior of Q̂e is sensible in the ultrametric range. When the

distance matrix is scaled, as in Equation 4.12, pulling one of the three states in X further

away from the remaining two should function similarly to progressively merging the latter

states. Thus, the behavior of Q̂e is highly sensitive to whether a given distance matrix is

ultrametric (which will often not be the case in real-world applications).

With respect to Fq, a notable benefit in comparison to Q̂e is that Fq behaves consistently

regardless of whether distance is ultrametric. However, Figure 4.1 shows other drawbacks.

First, we can see that Fq becomes insensitive to D(h, 1) when p(κ) is perfectly even (shown

analytically in Appendix A.1). Second, Fq can paradoxically estimate a greater number

of states than the theoretical maximum allows. That this occurs when the state probability

distribution is more unequal violates the principle of transfers [18, 42, 85, 86] (Section 4.2.1).

This is made more problematic since Figure 4.1C shows it occurs when one state is being

pushed closer to the others (i.e., with smaller values of h). To summarize, the functional

Hill numbers are estimating more states than are really present despite the reduction in

between-state distances and greater inequality in the probability mass function.

Figure 4.1C shows that the Leinster-Cobbold index compares favorably to Fq because

the former does not lose sensitivity to dissimilarity when p(κ) is perfectly even. However,
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Figure 4.1D shows that the Leinster-Cobbold index is particularly sensitive to the form

of similarity transformation. In the present case, the maximal value of the Lq gradually

approaches 3 as u grows (and only when u→∞ does it reach 3), while progressively losing

sensitivity to distance. As mentioned by Leinster & Cobbold [114], the choice of u or other

similarity transformation is dependent on the importance assigned to functional differences

between states. However, it is not clear how a given similarity transformation (e.g., u), and

therefore the idealized reference system of Lq, should be validated.

Above all of the idiosyncratic limitations of existing numbers equivalent heterogeneity

indices, we must highlight two basic assumptions they all share. First, they continue to

assume that some valid and reliable categorical partitioning on X is known a priori. Second,

they assume that a distance function specified a priori describes semantically relevant

geometry of the system in question. These two limitations are not independent, since an

unreliable categorical partitioning of the state space will lead to erroneous estimates of the

pairwise distances between states. Thus, we seek an approach for measuring heterogeneity

that has neither these limitations, nor those shown above to be specific to the other numbers

equivalent heterogeneity indices for non-categorical systems.

4.3 Representational Rényi Heterogeneity

In this section, we propose an alternative approach to the indices of Section 4.2.2 that

we call representational Rényi heterogeneity (RRH). It involves transforming X into a

representation Z, defined on an unobservable or latent event space Z , that satisfies two

criteria:

1. The representation Z captures the semantically relevant variation in X

2. Rényi heterogeneity can be directly computed on Z

Satisfaction of the first criterion can only be ascertained in a domain-specific fashion.

Since Z is essentially a model of X , investigators must justify that this model is appropriate

for the scientific question at hand. For example, an investigator may evaluate the ability of

X to be reconstructed from representation Z under cross-validation. The second criterion

simply means that the transformation of X → Z must specify a probability distribution on

Z upon which the Rényi heterogeneity can be directly computed.
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 (Observable)  (Latent)

xi
x j

z0

z1

p(z|x)

(A) Categorical Latent Space

 (Observable)  (Latent)

xi

zi

x j

z j
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(B) Non-Categorical Latent Space

Figure 4.2: Graphical illustration of the two main approaches for computing representational
Rényi heterogeneity. In both cases, we map sampled points on an observable space X onto
a latent space Z , upon which we apply the Rényi heterogeneity measure. The mapping is
illustrated by the curved arrows, and should yield a posterior distribution over the latent
space. Panel A shows the case in which the latent space is categorical (for example, discrete
components of a mixture distribution on a continuous space). Panel B illustrates the case in
which the latent space has non-categorical topology. A special case of the latter mapping may
include probabilistic principal components analysis. When the latent space is continuous,
we must derive a parametric form for the Rényi heterogeneity.

Figure 4.2 illustrates the basic idea of RRH. However, the specifics of this framework

differ based on the topology of the representation Z. Thus, the remainder of this section

discusses the following approaches:

A. Application of standard Rényi heterogeneity (Section 4.2.1) when Z is a categorical

representation

B. Deriving parametric forms for Rényi heterogeneity when Z is a non-categorical

representation

4.3.1 Rényi Heterogeneity on Categorical Representations

Let X be a system defined on an observable space X that is non-categorical and nx-

dimensional. Consider the scenario in which the semantically relevant variation in X is

categorical: for instance, images of different object categories stored in raw form as real-

valued vectors. An investigator may be interested in measuring the effective number of

states in X with respect to this categorical variation. This requires transforming X into

a semantically relevant categorical representation Z (such as one does in unsupervised

clustering) upon which Equation 4.3 can be applied.
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Assume we have a large random sample of N points X = (xi)i=1,2,...,N from system

X . We can conceptualize each discrete observation xi in this sample as the single point in

the event space of a perfectly homogeneous subsystem Xi. When pooled, the subsystems

{Xi}i=1,2,...,N constitute X . The contribution weights of each subsystem to X as a whole

are denoted w = (wi)i=1,2,...,N , where
∑N

i=1 wi = 1 and wi ≥ 0.

We now specify a vector-valued function f : X → P(Z) such that x 7→ f(x) =

[fj(x)]j=1,2,...,nz
is a mapping from nx-dimensional coordinates on the observable space, x ∈

X , onto an nz-dimensional discrete probability distribution over Z = {1, 2, . . . , nz}. Thus,

f(xi) can be conceptualized as mapping subsystem Xi onto its categorical representation

Zi. After defining f , the effective number of states in the latent representation of Xi can be

computed as

Πq (xi) =

(
nz∑

j=1

f qj (xi)

) 1
1−q

. (4.27)

When Πq (xi) = 1, then f assigns x to a single category with perfect certainty. Con-

versely, when Πq (xi) = nz, then either xi belongs to all categorical states with equal

probability, or f is maximally uncertain about the mapping of point xi.

Mapping all points X onto the categorical latent space yields a collection of subsystems

{Zi}i=1,2,...,N , which generate Z when pooled. Using Equation 4.6, we can compute the

effective number of total states in Z as the pooled heterogeneity:

ΠP
q (X,w) =

[
nz∑

j=1

(
N∑

i=1

wifj(xi)

)q] 1
1−q

, (4.28)

Unfortunately, ΠP
q (X,w) counts some heterogeneity that is due to uncertainty in the

model (i.e., that quantified by Equation 4.27). We, therefore, compute the effective number

of states in Z per point x ∈ X using the within-group heterogeneity formula (Equation 4.7):

ΠW
q (X,w) =



∑N

i=1 w
q
i

(∑nz
j=1 f

q
j (xi)

)

∑N
k=1 w

q
k




1
1−q

. (4.29)

Finally, the effective number of states (points) in X—with respect to the categorical

variation modeled by Z—can then be computed using the between-group heterogeneity

formula (Equation 4.8):
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ΠB
q (X,w) =

ΠP
q (X,w)

ΠW
q (X,w)

. (4.30)

Example 3 demonstrates that current methods of measuring biodiversity and wealth

concentration can be viewed as special cases of categorical RRH.

Example 3 (Classical measurement of biodiversity and economic equality as categorical RRH).

Definitions necessary for this example are shown in Table 4.2. The traditional analysis of species

diversity and economic equality can be recovered from an RRH-based formulation when f is assumed

to be deterministic and w =
(
N−1

)
i=1,2,...,N

. In this case within-group heterogeneity can be shown

to reduce to 1:

ΠW
q (X,w) =




N∑

i=1

N−q
∑N

k=1N
−q




nz∑

j=1

f qj (xi)






1
1−q

=

[
N∑

i=1

N−1 (1)

] 1
1−q

= 1.

(4.31)

Thus, we have

ΠB
q (X,w) = ΠP

q (X,w)

=



nz∑

j=1

(
N∑

i=1

N−1fj(xi)

)q


1
1−q

=



nz∑

j=1

(
Nj

N

)q



1
1−q

,

(4.32)

which yields the categorical Rényi heterogeneity (Hill numbers for biodiversity analysis and Hannah–

Kay indices in the economic setting [17, 18]), and by extension many diversity indices to which it

is connected (Table 4.1). Thus, traditional analysis of species biodiversity and economic equality

are special cases of representational Rényi heterogeneity where the representation is specified by

a mapping onto degenerate distributions over categorical labels. The only differences lie in the

definition of observable and latent spaces, and the representational models.

In the case of biodiversity analysis, the model f in real-world practice may simply be a human

expert assigning species labels to a sample of organisms from a field study. In the economic setting,



64

Table 4.2: Definitions in formulation of classical biodiversity and economic equality
analysis as categorical representational Rényi heterogeneity. Superscripted indexing on
x = (xi)

i=1,...,nx denotes that this is a row vector.

Analytical Context
Symbol Biodiversity Economic Equality
X Ecosystem, whose observation

yields an organism denoted by
vector x = (xi)

i=1,...,nx ∈ X

A system of resources, whose ob-
servation yields an asset denoted
by vector x = (xi)

i=1,...,nx ∈ X
X ⊆ Rnx nx-dimensional feature space of

organisms in the ecosystem
nx-dimensional feature space of
assets in the economy, whose
topology is such that the “eco-
nomic” or monetary value is
equal at each coordinate x ∈ X

Z = {z ∈ {0, 1}nz :
∑nz

i=1 zi = 1} nz-dimensional space of one-hot
species labels

nz-dimensional space of one-hot
labels over wealth-owning agents

f : X → P(Z) A model that performs the map-
ping x 7→ f(x) of organisms to
discrete probability distributions
over Z

A model that performs the map-
ping x 7→ f(x) of assets to
discrete probability distributions
over Z

Ni ∈ N+ The number of organisms ob-
served belonging to species i ∈
{1, . . . , nz}

The number of equal valued as-
sets belonging to agent i ∈
{1, . . . , nz}

N =
∑nz

i=1Ni The total number of organisms
observed

The total quantity of assets ob-
served

X = (xij)
j=1,...,nx

i=1,...,N A sample of N organisms A sample of N assets
w = (wi)i=1,...,N Sample weights, such that wi ≥ 0 and

∑N
i=1 wi = 1

one may speculate that f would essentially reduce to contracts specifying ownership of assets, whose

value is deemed by market forces.

4.3.2 Rényi Heterogeneity on Non-Categorical Representations

In Section 4.3.1, we dealt with instances in which semantically relevant variation in X is

categorical, such as when object categories are embedded in images stored as real-valued

vectors. Here, we consider scenarios in which the semantically relevant information in

an observable system X is non-categorical: for instance, where a piece of text contains

information about semantic concepts best represented as real-valued “word vectors” [185,

186]. Measuring the effective number of distinct states in X with respect to this continuous

variation requires transforming X into a semantically relevant continuous representation Z

upon which procedures analogous to those of Section 4.3.1 may be undertaken.

Let Z be defined on an nz-dimensional event space Z ⊆ Rnz over which there exists a
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family of parametric probability distributions P(Z) of a form chosen by the experimenter.

Let f : X → P(Z) be a model that performs the mapping x 7→ f(·|x) from a point x ∈ X
on the observable space to a probability density on Z . For example, if P(Z) is the family

of multivariate Gaussians, then f(z|xi) = N (z|µi,Σi), where µi and Σi are the Gaussian

mean and covariance functions at xi, respectively. Given a sample X = (xi)i=1,2,...,N , as in

Section 4.3.1, we compute the continuous analogue of Equation 4.27 as follows

Πq (xi) =

(∫

Z
f q(z|xi) dz

) 1
1−q

. (4.33)

This formula yields the effective size of the domain of a uniform distribution on Rnz

whose Rényi heterogeneity is equal to Πq (xi) (proof is given in Appendix A.1). Thus, it is

possible for Πq (xi) to be less than 1, though it will remain non-negative.

Similar to the procedure in Section 4.3.1, we now define a continuous version of the

within-observation heterogeneity

ΠW
q (X,w) =

[
N∑

i=1

wqi∑N
j=1 w

q
j

∫

Z
f q(z|xi) dz

] 1
1−q

, (4.34)

which estimates the effective size of the latent space occupied per observable point x ∈ X .

In order to compute the pooled heterogeneity ΠP
q (X,w), the experimenter must specify

the form of the pooled distribution, here denoted f̄w. The conceptually most simple approach

is non-parametric, using a model average,

f̄w (z|X) =
N∑

i=1

wif(z|xi), (4.35)

whereby the pooled heterogeneity would be

ΠP
q (X,w) =

[∫

Z

(
N∑

i=1

wif(z|xi)
)q

dz

] 1
1−q

. (4.36)

The integral in Equation 4.36 may often be analytically intractable and potentially

difficult to solve accurately in high dimensions with numerical methods. Furthermore, some

areas of Z may be assigned low probability by f(z|xi) for all i ∈ {1, 2, . . . , N}. This is not

a problem as the sample X becomes infinitely large. However, with finite samples, it may

be the case that some representational states in Z are unlikely simply because we have not
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z

0.0

0.1
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f

fw(z|X) =
N

i = 1
wif(z|xi)

fw(z|X) = f(X, w)
f(z|x1)
f(z|x2)

Figure 4.3: Illustration of approaches to computing the pooled distribution on a simple repre-
sentational space Z = R. In this example, two points on the observable space, (x1,x2) ∈ X ,
are mapped onto the latent space via model f(·|xi) for i ∈ {1, 2}, which indexes univariate
Gaussians over Z (depicted as hatched patterns for x1 and x2, respectively). A pooled
distribution computed non-parametrically by model-averaging (Equation 4.35) is depicted
as the solid black line. The parametrically pooled distribution (see Example 4) is depicted as
the dashed black line. The parametric approach implies the assumption that further samples
from X would yield latent space projections in some regions assigned low probability by
f(z|x1) and f(z|x2).

sampled from the corresponding regions of X . An alternative to Equation 4.35 is therefore

to specify a parametric pooled distribution

f̄w (·|X) = Ξf (X,w) , (4.37)

where Ξf is a deterministic function that combines f(·|xi) for i ∈ {1, 2, . . . , N} into a valid

probability density on Z . In this case, the pooled Rényi heterogeneity is simply

ΠP
q (X,w) =

(∫

Z
f̄ qw(z|X) dz

) 1
1−q

. (4.38)

Using either Equation 4.36 or 4.38 as the pooled heterogeneity and Equation 4.34 as the

within-group heterogeneity, the effective number of distinct states in X—with respect to the

non-categorical representation Z—can then be computed using Equation 4.30.

Figure 4.3 demonstrates the difference between the parametric and non-parametric

approaches to pooling for non-categorical RRH, and Example 4 demonstrates one approach

to parametric pooling for a mixture of multivariate Gaussians.
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Example 4 (Parametric pooling of multivariate Gaussian distributions). Let X = (xi)i=1,2,...,N be a

sample of nx-dimensional vectors from a system X with event space X ⊆ Rnx . Let Z be a latent

representation of X with nz-dimensional event space Z = Rnz . Let

f(z|xi) = N (z|µi,Σi) (4.39)

be a model that returns a multivariate Gaussian density with mean µi and covariance Σi given point

xi ∈ X . Finally, let w = (wi)i=1,2,...,N be weights assigned to each sample in X such that wi ≥ 0

and
∑N

i=1wi = 1.

If one assumes that the pooled distribution over Z given the set of components f(z|x1), f(z|x2),

. . ., f(z|xN ) is itself a multivariate Gaussian,

f̄w (z|X) = N (z|µ∗,Σ∗) (4.40)

with nz × 1 pooled mean,

µ∗ =

N∑

i=1

wiµi (4.41)

and nz × nz pooled covariance matrix

Σ∗ = −µ∗µ>∗ +
N∑

i=1

wi

[
Σi + µiµ

>
i

]
, (4.42)

then the pooled heterogeneity ΠP
q is therefore simply the Rényi heterogeneity of a multivariate

Gaussian,

Πq (Σ) =





Undefined q = 0

(2πe)
nz
2
√
|Σ| q = 1

(2π)
nz
2
√
|Σ| q =∞

(2π)
nz
2 q

nz
2(q−1)

√
|Σ| Otherwise

(4.43)

evaluated at Σ∗. The derivation is provided in Appendix A.1 [187]. Equation 4.43 at Σ∗ is interpreted

as the effective size of space Z occupied by the complete latent representation of X under model f .

The within-group heterogeneity can be obtained for the set of components [f(z|xi)]i=1,2,...,N by

solving Equation 4.34 for the Gaussian densities, yielding:
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ΠW
q (Σ1:N ,w) =





Undefined q = 0

exp
{

1
2

(
nz +

∑N
i=1wi log |2πΣi|

)}
q = 1

0 q =∞

(2π)
nz
2

(∑N
i=1

w̄qi |Σi|
1
2

q
nz
2

) 1
1−q

Otherwise

, (4.44)

where we denote Σ1:N = {Σi}i=1,2,...,N for parsimony, and w̄i = wi

(∑N
j=1w

q
j

)−1/q
. Equation

4.44 estimates the effective size of the nz-dimensional representational space occupied per state

x ∈ X .

The effective number of states in X with respect to the continuous representation Z is thus

the between-group heterogeneity ΠB
q which can be computed as the ratio Πq (Σ∗) /Π

W
q (Σ1:N ,w).

The properties of this decomposition—specifically the conditions under which ΠB
q ≥ 1 (Lande’s

requirement [59, 184])—are discussed further elsewhere [187].

4.4 Empirical Applications of Representational Rényi Heterogeneity

In this section, we demonstrate two applications of RRH under assumptions of categorical

(Section 4.4.1) and continuous (Section 4.4.2) latent spaces. First, Section 4.4.1, uses a

simple closed-form system consisting of a mixture of two beta distributions on the (0,1)

interval to give exact comparisons of the behavior of RRH against that of existing non-

categorical heterogeneity indices (Section 4.2.2). This experiment provides evidence that

existing non-categorical heterogeneity indices can demonstrate counterintuitive behavior

under various circumstances. Second, Section 4.4.2 demonstrates that RRH can yield

heterogeneity measurements that are sensible and tractably computed, even for highly

complex mappings f : X → P(Z). There, we use a deep neural network to compute

the effective number of observations in a database of handwritten images with respect to

compressed latent representations on a continuous space.

4.4.1 Comparison of Heterogeneity Indices Under a Mixture of Beta Distributions

Consider a systemX with event spaceX on the open interval (0, 1), containing an embedded,

unobservable, categorical structure represented by the latent system Z with event space
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Z = {1, 2}. The systems’ collective behavior is governed by the joint distribution of a beta

mixture model (BMM),

p(x, z) = 1[z = 1](1− θ1)Betaθ2,θ3 (x) + 1[z = 2]θ1Betaθ3,θ2 (x) , (4.45)

where Betaα,β (x) is the probability density function for a beta distribution with shape

parameters α, β, and θ = (θ1, θ2, θ3) are parameters. The indicator function 1[·] evaluates

to 1 if its argument is true, and to 0 otherwise. The prior distribution is

p(z) = 1[z = 1](1− θ1) + 1[z = 2]θ1, (4.46)

and marginal probability of observable data is as follows (see Figure 4.4 for illustrations):

p(x) = (1− θ1)Betaθ2,θ3 (x) + θ1Betaθ3,θ2 (x) . (4.47)

To facilitate exact comparisons between heterogeneity indices, below, let us assume we

have a model f : X → P(Z) that maps an observation x ∈ X onto a degenerate distribution

over Z:

fθ(z|x) = 1[z = 1]1[x ≤ τ(θ)] + 1[z = 2]1[x > τ(θ)]. (4.48)

The subscripting of fθ denotes that the model is optimized such that the threshold

0 ≤ τ(θ) ≤ 1 is the solution to

p (z = 1|x = τ(θ)) = p (z = 2|x = τ(θ)) , (4.49)

which is

τ(θ) =





[(
θ−1

1 − 1
) 1

2(θ2−θ3) (1− θ1)
1

2(θ2−θ3) θ
− 1

2(θ2−θ3)
1 + 1

]−1

θ2 − θ3 6= 0

0
(
(θ2 = θ3) ∧ (θ1 >

1
2
)
)

1 Otherwise
(4.50)

Under this model, the categorical RRH at point x ∈ X is
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Figure 4.4: Demonstration of data-generating distribution (top row; Equations 4.45-4.47),
and relationship between the representational model’s decision threshold (Equations 4.48,
and 4.50) and categorical representational Rényi heterogeneity (bottom row). The optimal
decision boundary (Equation 4.50) is shown as a gray vertical dashed line in all plots. Each
column depicts a specific parameterization of the data-generating system (parameters are
stated above the top row). Top Row: Probability density functions for data-generating
distributions. Shaded regions correspond to the two mixture components. Solid black lines
denote the marginal distribution (Equation 4.47). The x-axis represents the observable
domain, which is the (0,1) interval. Bottom Row: Effect of varying categorical representa-
tional Rényi heterogeneity (RRH) for q ∈ {1, 2,∞} across different category assignment
thresholds for the beta-mixture models shown in the top row. Varying levels of decision
boundary are plotted on the x-axis. The y-axis shows the resulting between-observation
RRH. Black dots highlight the RRH computed at the optimal decision boundary.
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Πq (x) =

(
2∑

i=1

f qθ (z = i|x)

) 1
1−q

= (1q [x ≤ τ(θ)] + 1
q [x > τ(θ)])

1
1−q = 1. (4.51)

The expected value of fθ(z = 2|x) with respect to the data generating distribution

(Equation 4.47) is

f̄θ(z = 2) = Ex∼p(x) [fθ(z = 2|x)]

=

∫ 1

0

p(x)1 [x > τ(θ)] dx

=

∫ 1

τ(θ)

p(x) dx

= (1− θ1)I1
x (θ2, θ3) + θ1I

1
x (θ3, θ2) ,

(4.52)

where Ix1x0 (a, b) is the generalized regularized incomplete beta function. Equation 4.52

implies that f̄θ(z = 1) = 1− f̄θ(z = 2). The pooled heterogeneity is thus expressed as a

function of θ as follows:

ΠP
q (θ) =





∑2
i=1 1[f̄θ(z = i) > 0] q = 0

exp
{
−∑2

i=1 f̄θ(z = i) log f̄θ(z = i)
}

q = 1
(
maxi f̄θ(z = i)

)−1
q =∞

(∑2
i=1 f̄

q
θ(z = i)

) 1
1−q Otherwise

. (4.53)

As a function of θ, the within-group heterogeneity is

ΠW
q (θ) =

[∫ 1

0

pq(x)∫ 1

0
pq(u) du

(
2∑

i=1

fθ(z = i|x)

)q

dx

] 1
1−q

=

[∫ 1

0

pq(x)∫ 1

0
pq(u) du

(1) dx

] 1
1−q

= 1,

(4.54)

and therefore the between-group heterogeneity is ΠB
q (θ) = ΠP

q (θ).

Analytic expressions for the existing non-categorical heterogeneity indices Q̂e (Equation

4.17), Fq (Equation 4.21), and Lq (Equation 4.23) were computed as “best-case” scenarios,
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as follows. First, the probability distributions over states for all expressions was the true

prior distribution (Equation 4.46). Distance matrices—and by extension, the similarity

matrix for Lq—were computed using the closed-form expectation of the absolute distance

between two beta-distributed random variables (see Appendix A.2 and the Supplementary

Materials).

Figure 4.5 compares the categorical RRH against Q̂e, Fq, and Lq for BMM distributions

of varying degrees of separation, and across different mixture component weights (0.5 ≤
θ1 < 1). Without significant loss of generality, we show only those comparisons at q = 1

(which excludes the numbers equivalent quadratic entropy), and q = 2.

The most salient differences between these indices occur when the BMM mixture

components completely overlap (i.e., at θ2 = θ3). The RRH correctly identifies that there is

effectively only one component, regardless of mixture weights. Only the Leinster–Cobbold

index showed invariance to the mixture weights when θ2 = θ3, but it could not correctly

identify that data were effectively unimodal.

The other stark difference arose when the mixture components were furthest apart

(here when θ2 = 5 and θ3 = 20). At this setting, the functional Hill numbers showed a

paradoxical increase in the heterogeneity estimate as the prior distribution on components

was skewed. The Leinster–Cobbold index was appropriately concave throughout the range

of prior weights, but it never reached a value of 2 at its peak (as expected based on the

predictions outlined in Section 4.2.2). Conversely, the RRH was always concave and reached

a peak of 2 when both mixture components were equally probable.

4.4.2 Representational Rényi Heterogeneity is Scalable to Deep Learning Models

In this example, the observable systemX is that of images of handwritten digits defined on an

event space X = [0, 1]784 of dimension nx = 784 (the black and white images are flattened

from 28× 28 pixel matrices into 784-dimensional vectors). Our sample X = (xij)
j=1,2,...,784
i=1,2,...,N

from this space is the familiar MNIST training dataset [181] (Figure 4.6), which consists

of N = 60, 000 images roughly evenly distributed across digits {0, 1, . . . , 9}, and where

approximately 10% of all images come from each class. We assume each image carries equal

importance, given by a weight vector w = (N−1)i=1,2,...,N . We are interested in measuring

the heterogeneity of X with respect to a continuous latent representation Z defined on event

space Z = R2. In the present example, this space is simply the continuous 2-dimensional
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Figure 4.5: Comparison of categorical representational Rényi heterogeneity (Πq), the
functional Hill numbers (Fq), the numbers equivalent quadratic entropy (Q̂e), and the
Leinster–Cobbold index (Lq) within the beta mixture model. Each row of plots corresponds
to a given separation between the beta mixture components. Column 1 illustrates the beta
mixture distributions upon which indices were compared. The x-axis plots the domain of the
distribution (open interval between 0 and 1). The y-axis shows the corresponding probability
density. Different line styles in Column 1 provides visual examples of the effect of changing
the θ1 parameter over the range [0.5,1]. Column 2 compares Πq (solid line), Fq (dashed
line), and Lq (dotted line), each at elasticity q = 1. The x-axis shows the value of the
0.5 ≤ θ1 < 1 parameter at which the indices were compared. Index values are plotted along
the y-axis. Column 3 compares the indices shown in Column 2, as well as Q̂e (dot-dashed
line).
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Figure 4.6: Sample images from the MNIST dataset [181].

compression of an image that best facilitates its reconstruction. We choose a dimensionality

of nz = 2 for the latent space in order to facilitate a pedagogically useful visualization of

the latent feature representation, below. Unlike Section 4.4.1, in the present case we have no

explicit representation of the true marginal distribution over the data, p(x).

Having defined the observable and latent spaces, measuring RRH now requires defining

a model f : X → P(Z) that maps a (flattened) image vector xi ∈ X onto a probability

distribution over the latent space. Our chosen model is the encoder module of a pre-trained

convolutional variational autoencoder (cVAE) provided by the Smart Geometry Processing

Group at University College London (Figure 4.7) [182, 188]:

fφ(z|xi) = N (z|m(xi),C(xi)) (4.55)

where φ are the encoder’s parameters, which specify a convolutional neural network (CNN)

whose output layer returns a 2 × 1 mean vector m(xi) and a 2 × 1 log-variance vector

s(xi) given xi. For simplicity, we denote the latter as the 2× 2 diagonal covariance matrix

C(xi) =
(
esj(xi)δjk

)k=1,2

j=1,2
. Further details of the cVAE and its training can be found in

Kingma and Welling [182, 188], although the specific implementation in this paper was a

pre-trained implementation by the Smart Geometry Processing Group at University College

London. Briefly, the cVAE learns to generate a compressed latent representation (via encoder

fφ, which is an approximate posterior distribution) that contains enough information about

the input xi to facilitate its reconstruction by a “decoder” module. The objective function is

a lower bound on the model evidence p(x), which if maximized is equivalent to minimizing

the Kullback–Leibler divergence between the approximate and true (but unknown) posteriors

fφ and p(z|x), respectively.

https://colab.research.google.com/github/smartgeometry-ucl/dl4g/blob/master/variational_autoencoder.ipynb
https://colab.research.google.com/github/smartgeometry-ucl/dl4g/blob/master/variational_autoencoder.ipynb
https://colab.research.google.com/github/smartgeometry-ucl/dl4g/blob/master/variational_autoencoder.ipynb
https://colab.research.google.com/github/smartgeometry-ucl/dl4g/blob/master/variational_autoencoder.ipynb
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Data: Xi∈
nx

Encoder:(zi|CNN(Xi))

Latent Representation

zi∈
nz

Decoder: CNN(zi)

Reconstruction: X i∈
nx

(a) Schematic of the model architecture. (b) Visualization of the two-dimensional latent
space.

Figure 4.7: Panel A: Illustration of the convolutional variational autoencoder (cVAE) [182].
The computational graph is depicted from top to bottom. An nx-dimensional input data Xi

(white rectangle) is passed through an encoder (in our experiment this is a convolutional
neural network, CNN) which parameterizes an nz-dimensional multivariate Gaussian over
the coordinates zi for the image’s embedding on the latent space Z = Rnz . The latent
embedding can then be passed through a decoder (blue rectangle) which is a neural network
employing transposed convolutions (here denoted CNN>) to yield a reconstruction X̂i of
the original input data. The objective function for this network is a variational lower bound
on the model evidence of the input data (see Kingma & Welling [182] for details). Panel
B: Depiction of the latent space learned by the cVAE. This model was a pre-trained model
from the Smart Geometry Processing Group at University College London.

https://colab.research.google.com/github/smartgeometry-ucl/dl4g/blob/master/variational_autoencoder.ipynb
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The continuous RRH under the model in Equation 4.55 for a single example xi ∈ X
can be computed by merely evaluating the Rényi heterogeneity of a multivariate Gaussian

(Equation 4.43 in Example 4) for the covariance matrix given by C(xi). This is interpreted

as the effective area of the 2-dimensional latent space consumed by representation of xi.

Since the handwritten digit images belong to groups of “Zeros, Ones, Twos, . . . , Nines,”

this section will call the quantity ΠW
q the within-observation heterogeneity (rather than

the “within-group” heterogeneity) in order to avoid its interpretation as measuring the

heterogeneity of a group of digits. Rather, it is interpreted as the effective area of latent

space consumed by representation of a single observation x ∈ X on average. It is computed

by evaluation of Equation 4.44 at C(X) = {C(xi)}i=1,2,...,N , given uniform weights on

samples.

Finally, to compute the pooled heterogeneity ΠP
q , we use the parametric pooling approach

detailed in Example 4, wherein the pooled distribution is a multivariate Gaussian with mean

and covariance given by Equations 4.41 and 4.42, respectively. The pooled heterogeneity is

then merely Equation 4.43 evaluated at C∗(X), and represents the total amount of area in

the latent space consumed by the representation of X under fφ. The effective number of

observations in X with respect to the continuous latent representation Z is, therefore, given

by the between-observation heterogeneity:

ΠB
q (C(X),w) =

ΠP
q (C∗(X))

ΠW
q (C(X),w)

. (4.56)

Equation 4.56 gives the effective number of observations in X because it uses the entire

sample X (of course, assuming X provides adequate coverage of the observable event

space). However, one could compute the effective number of observations in a subset of

X, if necessary. Let X(j) = (xk)k=1,2,...,Nj
be the subset of Nj points in X found in the

observable subspace Xj ⊂ X (such as the subspace of MNIST digits corresponding to a

given digit class). Given corresponding weights w(j) =
(
N−1
j

)
k=1,2,...,Nj

, Equation 4.56 is

then simply

ΠB
q

(
C(X(j)),w(j)

)
=

ΠP
q

(
C∗(X

(j))
)

ΠW
q (C(X),w(j))

. (4.57)

Figure 4.8 shows the effective number of observations in the subsets of MNIST images

belonging to each image class, under the continuous representation learned by the cVAE.

One can appreciate that the MNIST class of “Ones” (in the training set) has the smallest
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Figure 4.8: Heterogeneity for the subset of MNIST training data belonging to each digit
class respectively projected onto the latent space of the convolutional variational autoencoder
(cVAE). The leftmost plot shows the pooled heterogeneity for each digit class (the effective
total area of latent space occupied by encoding each digit class). The middle plot shows
the within-observation heterogeneity (the effective total area of latent space per encoded
observation of each digit class, respectively). The rightmost plot shows the between-
observation heterogeneity (the effective number of observations per digit class). Recall that
Rényi heterogeneity on a continuous distribution gives the effective size of the domain of
an equally heterogeneous uniform distribution on the same space, which explains why the
within-observation heterogeneity values here are less than 1.

effective number of observations. Subjective visual inspection of the MNIST samples in

Figure 4.6 may suggest that the Ones are indeed relatively more homogeneous as a group

than the other digits (this claim is given further objective support in Appendix A.3 based on

deep similarity metric learning [189, 190]).

Figure 4.9 demonstrates the correspondence of between-observation heterogeneity (i.e.,

the effective number of observations) and the visual diversity of different samples from

the latent space of our cVAE model. For each image in the MNIST training dataset, we

computed the effective location of its latent representation: m(xi) for i ∈ {1, 2, . . . , N}.
For each of these image representations, we defined a “neighborhood” including the 49

other images whose latent coordinates were closest in Euclidean distance (which is sensible

on the latent space given the Gaussian prior). For all such neighbourhoods defined, we then

reconstructed the corresponding images on X , whose between-observation heterogeneity

was then computed using Equation 4.57. Figure 4.9b shows the estimated effective number

of observations for the latent neighborhoods with the greatest and least heterogeneity. One

can appreciate that neighborhoods with ΠB
q close to 1 include images with considerably less

diversity than neighborhoods with ΠB
q closer to the upper limit of 49. These data suggest that

the between-observation heterogeneity—which is the effective number of observations in X
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(a) Illustration of analysis.

B
q = 44.39 B

q = 35.81 B
q = 33.69 B

q = 30.99

B
q = 1.33 B

q = 1.39 B
q = 1.51 B

q = 1.58

(b) Heterogeneity of patches in the latent space.

Figure 4.9: Visual illustration of MNIST image samples corresponding to different levels
of representational Rényi heterogeneity under the convolutional variational autoencoder
(cVAE). Panel (a) illustrates the approach to this analysis. Here, the surface Z shows
hypothetical contours of a probability distribution over the 2-dimensional latent feature
space. The surface X represents the observable space, upon which we have projected an
“image” of the latent space Z for illustrative purposes. We first compute the expected latent
locations m(xi) for each image xi ∈ X . (A1) We then define the latent neighbourhood of
image xi as the 49 images whose latent locations are closest to m(xi) in Euclidean distance.
(A2) Each coordinate in the neighbourhood of m(xi) is then projected onto a corresponding
patch on the observable space of images. (A3) These images are then projected as a group
back onto the latent space, where Equation 4.57 can be applied, given equal weights over
images, to compute the effective number of observations in the neighbourhood of xi. Panel
(b) plots the most and least heterogeneous neighbourhoods so that we may compare the
estimated effective number of observations with the visually appreciable sample diversity.

with respect to the latent features learned by a cVAE—can indeed correspond to visually

appreciable sample diversity.

4.5 Discussion

This paper introduced representational Rényi heterogeneity, a measurement approach that

satisfies the replication principle [21–23] and is decomposable [59] while requiring neither

a priori (A) categorical partitioning nor (B) specification of a distance function on the input

space. Rather, the experimenter is free to define a model that maps observable data onto a

semantically relevant domain upon which Rényi heterogeneity may be tractably computed,

and where a distance function need not be explicitly manipulated. These properties facilitate

heterogeneity measurements for several new applications. Compared to state-of-the-art

comparator indices under a beta mixture distribution, RRH more reliably quantified the
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number of unique mixture components (Section 4.4.1), and under a deep generative model

of image data, RRH was able to measure the effective number of distinct images with respect

to latent continuous representations (Section 4.4.2). In this section, we further synthesize

our conclusions, discuss their implications, and highlight open questions for future research.

The main problem we set out to address was that all state of the art numbers equivalent

heterogeneity measures (Section 4.2.2) require a priori specification of a distance function

and categorical partitioning on the observable space. To this end, we showed that RRH does

not require categorical partitioning of the input space (Section 4.3). Although our analysis

under the two-component BMM assumed that the number of components was known, RRH

was the only index able to accurately identify an effectively singular cluster (i.e., where

mixture components overlapped; Figure 4.5). We also showed that the categorical RRH

did not violate the principle of transfers [85, 86] (i.e., it was strictly concave with respect

to mixture component weights), unlike the functional Hill numbers (Figure 4.5). Future

studies should extend this evaluation to mixtures of other distributional forms in order to

better characterize the generalizability of our conclusions.

Sections 4.3.1 and 4.3.2 both showed that RRH does not require specification of a

distance function on the observable space. Instead, one must specify a model that maps

the observable space onto a probability distribution over the latent representation. This

is beneficial since input space distances are often irrelevant or misleading. For example,

latent representations of image data learned by a convolutional neural network will be robust

to translations of the inputs since convolution is translation invariant. However, pairwise

distances on the observable space will be exquisitely sensitive to semantically irrelevant

translations of input data. Furthermore, semantically relevant information must often be

learned from raw data using hierarchical abstraction. Ultimately, when (A) pre-defined

distance metrics are sensitive to noisy perturbations of the input space, or (B) the relevant

semantic content of some input data is best captured by a latent abstraction, the RRH measure

will be particularly useful. However, we emphasize that RRH does not limit the number of

assumptions required when measuring heterogeneity, but rather shifts the assumptions onto

the domain-specific mapping function, rather than to the heterogeneity measure itself. In

RRH, heterogeneity is always the effective number of states in a system with respect to a

latent/transformed representation. The assumptions are now primarily related to definition

of that representation. To this end, a representational model’s stability and appropriateness
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must be validated by the investigator using domain-specific methods.

The requirement of specifying a representational model f : X → P(Z) implies the

additional problem of model selection. In Section 4.3, we noted that the determination of

whether a model is appropriate must be made in a domain-specific fashion. For instance, the

method by which ecologists assign species labels prior to measurement of species diversity

implies the use of a mapping from the observable space of organisms to a degenerate

distribution over species labels (Example 3). In Section 4.4.2, we used the encoder module of

a cVAE (a generative model based on a convolutional neural network architecture [182, 188])

to represent images as 2-dimensional real-valued vectors in order to demonstrate our ability

to capture variation in digits’ written forms (see Figures 4.7B and 4.9). Someone concerned

with measuring heterogeneity of image batches in terms of the digit-class distribution could

choose a categorical latent representation corresponding to the digit classes (this would

return the effective number of digit classes per sample). Regardless, the model used to map

between observations and the latent space should be validated using either explanatory power

(e.g., maximization of a lower bound on the model evidence), generalizability (e.g., out of

sample predictive power), or another approach that is justifiable within the investigator’s

scientific domain of interest.

In addition to the results of empirical applications of RRH in Section 4.4, we were also

able to show that RRH generalizes the process by which species diversity and indices of

economic equality are computed (Example 3). In doing so, we are able to clarify some of the

assumptions inherent in those indices. Specifically, that assignment of species or ownership

labels (in ecological and economic settings, respectively) corresponds to mapping from

an observable space, such as the space of organisms’ identifiable features or the space of

economic resources, onto a degenerate distribution over the categorical labels (Table 4.2). It

is possible that altering the form of that mapping may yield new insights about ecological

and economic diversity.

In conclusion, we have introduced an approach for measuring heterogeneity that requires

neither (A) categorical partitioning nor (B) distance measure on the observable space. Our

RRH method enables measurement of heterogeneity in disciplines where categorical entities

are unreliably defined, or where relevant semantic content of some data is best captured by a

hierarchical abstraction. Furthermore, our approach includes many existing heterogeneity

indices as special cases, while facilitating clarification of many of their assumptions. Future
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work should evaluate the RRH in practice and under a broader array of models.



Chapter 5

Prediction of Lithium Response Using Clinical Data1

Abstract. Promptly establishing maintenance therapy could reduce morbidity and mortality in patients

with bipolar disorder. Using a machine learning approach, we sought to evaluate whether lithium

responsiveness (LR) is predictable using clinical markers. Using the largest existing sample of direct

interview-based clinical data from lithium treated patients (n=1266, 34.7% responders), collected across

7 sites, internationally, we trained a random forest model to classify LR—as defined by the previously

validated Alda scale—against 180 clinical predictors. Under appropriate cross-validation procedures, LR

was predictable in the pooled sample with an area under the receiver operating characteristic curve of

0.80 (95% CI 0.78-0.82) and a Cohen’s kappa of 0.46 (0.4-0.51). The model demonstrated a particularly

low false positive rate (specificity 0.91 [0.88-0.92]). Features related to clinical course and the absence of

rapid cycling appeared consistently informative. Clinical data can inform out-of-sample LR prediction to

a potentially clinically relevant degree. Despite the relevance of clinical course and the absence of rapid

cycling, there was substantial between-site heterogeneity with respect to feature importance. Future work

must focus on improving classification of true positives, better characterizing between- and within-site

heterogeneity, and further testing such models on new external datasets.

5.1 Introduction

Bipolar disorder (BD) is a severe neuropsychiatric disorder for which lithium treatment has

been a mainstay for over 60 years [191]. Treatment selection currently depends on empirical

trials, yet only 30% of patients treated with lithium will be fully responsive in the long term

[192]. This trial and error approach may further compound the approximate 9-10 years

between symptomatic onset until treatment with a mood stabilizer [193]. If a given patient

will ultimately be a lithium responder, it would be of interest to predict this early in order

to stabilize him or her expediently. Conversely, if the patient is unlikely to be a lithium

responder, prediction as such could avoid exposure to lithium’s non-trivial side-effects.

1Nunes A, Ardau R, Berghöfer A, Bocchetta A, Chillotti C, Deiana V, Garnham J, Grof E, Hajek T, Manchia

M, Müller-Oerlinghausen B, Pinna M, Pisanu C, O’Donovan C, Severino G, Slaney C, Suwalska A, Zvolsky

P, Cervantes P, Del Zompo M, Grof P, Rybakowski JK, Tondo L, Trappenberg T, and Alda M. Prediction of

Lithium Response using Clinical Data. Acta Psychiatrica Scandinavica. 2019;In Press.

82
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Great efforts have pursued biological predictors of lithium response (LR). Although

genetic studies have found some promising associations [30], the ability of models trained

on genomic data to predict LR in previously unseen patients remains unclear. Recently, in-

teresting neurophysiological markers related to hyperexcitability of neurons re-programmed

from patient-derived stem-cells have emerged [194, 195]. However, these methods are

resource and time intensive, and further testing is required to incorporate them into routine

clinical practice, since existing studies include very small sample sizes of highly selected

patients. It is therefore of interest to search for inexpensive markers that may be readily

available to clinicians at little to no additional cost beyond that of the necessary clinical

interview.

Information from clinical interview is readily available to all clinicians, and associations

between clinical factors and LR have been demonstrated. In the most recent meta-analysis

of LR in BD, Hui et al. [196] found that good LR was associated with the mania-depression

polarity sequence, absence of psychotic symptoms, shorter duration of illness prior to lithium

initiation, family history of BD, and later onset of illness. Other correlates have included low-

rates of psychiatric comorbidity [197], clinical course characterized by clear episodes marked

with good inter-episode functioning [36], and family history of LR [198] (although this did

not reach meta-analytic statistical significance in Hui et al. [196]). The LR phenotype is

often deemed “classical” in terms of its resemblance to the original Kraepelinian descriptions

[191]. However, Hui et al. [196] and Kessing [199], in his accompanying editorial, note that

the existing body of literature on clinical predictors of LR warrants a cautious interpretation:

there appears to be substantial meta-analytic heterogeneity, sample sizes have tended to be

small, and response has often not been defined using validated instruments. Therefore, the

predictive utility of clinical information is promising but warrants further scrutiny.

Hui et al. [196] identified the lack of multivariate analyses as an important gap in

the literature that limits our understanding of clinical prediction of LR. This is in large

part a result of nearly all studies using the orthodox statistical paradigm, which generally

admits application of neither high-dimensional nor non-linear models. Moreover, we add

that the discovery of “statistically significant” correlates of LR in associational models

does not necessarily translate into a model with strong out-of-sample predictive power.

The machine learning (ML) paradigm is uniquely well posed to address this problem.

Specifically, the evaluation of model performance is entirely concerned with a model’s



84

predictive performance on previously unobserved data. As a consequence, the models

typically used in ML make simultaneous use of many predictor variables and the (potentially

small) relationships between them.

One previous study attempted to predict LR using a ML approach in 192 patients

from the Bipolar CHOICE trial [200, 201]. Unfortunately, the sample size and duration

of treatment were limited. Moreover, their outcome incorporated no information about

individual change in symptoms over the treatment period, and their predictors could not

capture many of the essential features of the previously demonstrated “classical” phenotype.

Finally, their model performance was assessed in terms of the proportion of variance in the

Clinical Global Impressions-Bipolar version (CGI-BP) explained, which does not clearly

answer the question of most relevance to patients and psychiatrists: “what is the probability

that this patient will respond to lithium?”

The present study evaluated the capacity of a ML approach based on clinical interview-

based data to predict LR in BD. Our study was performed on the largest-ever cohort of

lithium-treated bipolar patients (n=1266) sourced from 7 international specialist clinics,

with a minimum treatment duration of 1 year, and using a validated response scale [202].

We hypothesized that clinical information would indeed offer predictive performance in

exceedance of chance, and that the features most relevant to predictive performance would

be reflective of the “classical” bipolar phenotype.

5.2 Material and Methods

5.2.1 Data Collection

Seven cohorts of men and women with bipolar I or bipolar II disorder were included in our

dataset (Table 5.1). To be eligible, patients had to be treated with lithium as their principal

mood stabilizer for a minimum of one year. Clinical assessments followed a strict procedure.

After providing informed consent, participants were interviewed using one of the structured

or semi-structured interviews (SADS-L, SCID or DIGS). Clinical diagnosis was confirmed

by DSM-IV criteria. We also used available medical records, narrative summaries of all

interviews, and details such as baseline assessments, clinical course, response to treatment,

treatment adherence, psychiatric and medical comorbidities, history of suicidal behaviour,

and symptom profiles in OPCRIT format [203].
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Table 5.1: Description of constituent datasets. Abbreviations: number of patients (N), lithium
responders (LR+), Cagliari (Centro Bini; CB), Cagliari (University; CU), International
Group for the Study of Lithium (IGSLi), Maritimes (MAR), Ontario (ON), Poznan (POZ).

Sample N (LR+) Description
CB 324 (21%) Patients followed at the Mood Disorder Lucio Bini Center in

Cagliari, Italy. Clinical data collection and response assessment
was done by two psychiatrists.

CU 206 (29%) Patients in the long term treatment program at the Lithium Clinic
of the Unit of the Clinical Pharmacology Center, University
Hospital of Cagliari, Italy. Clinical data collection and response
assessment was done by three psychiatrists and three clinical
psychopharmacologists.

IGSLi 70 (100%) Patients recruited for a genetic study of lithium responsive bipo-
lar disorder. [204] By design of that study, all patients were
lithium responders. Clinical data collection and response assess-
ment was done by three psychiatrists.

MAR 343 (20%) Patients followed by the Mood Disorders program at the Nova
Scotia Health Authority and the Maritime Bipolar Registry. Clin-
ical data collection and response assessment was done by two
psychiatrists and two research nurses working in pairs.

MTL 95 (16%) Patients followed by the Mood Disorders Program at the McGill
University Health Centre. Clinical data collection and response
assessment was done by one psychiatrist.

ON 117 (84%) Patients from our earlier studies of lithium responsive bipolar
disorder, [204, 205] which, like the IGSLi sample, explains the
greater proportion of responders. Clinical data collection and
response assessment was done by three psychiatrists (including
MA, who is now in the Maritimes).

POZ 111 (53%) Patients followed longitudinally by the Psychiatry Department
at the University of Poznan, Poland. Clinical data collection and
response assessment was done by two psychiatrists.

For uniform evaluation of treatment response, we used all available information including

data from clinical records, diagnostic interviews, and prospective follow-up assessed by

NIMH Life-Chart Method converted to a score on a scale previously validated and adopted

by a number of research groups including the genome-wide association study of LR by

the ConLiGen consortium [30, 206]. This is also known as the Alda score, which has

a range of 0 to 10, with scores of 7 and higher considered a good response. All centres

underwent inter-rater reliability training in preparation for the ConLiGen study, and achieved

a weighted kappa of 0.75 (for dichotomous response) and an intraclass correlation of 0.96
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for the total score (a continuous measure of response; data extracted from Manchia et al.

[202]).

5.2.2 Statistical Analysis

Demographic Statistics

All data were anonymized and aggregated. Demographic statistics were studied within and

between sites. Continuous variables were compared between using two-sample permutation

tests of independence using the perm package in R [207]. Categorical variables were

compared using the randomization chi-squared test. Demographic descriptive statistics

are presented in tabular format for lithium responders vs. lithium non-responders in the

aggregate sample. We also present comparisons across alternative stratifications in Appendix

B.1.

Classification Analyses

Our study is split into four phases: (A) analysis of data pooled across sites (henceforth the

aggregate analysis), (B) analysis of data within sites (henceforth the site-level analysis),

(C) an analysis in which we attempted to classify patients from one site with a model

trained on data from all other sites (henceforth the predict-one-site-out analysis), and (D) a

leave-one-site-out analysis in which we repeat the aggregate analysis nsites = 7 times, each

run leaving data from one of the sites out. The predict-one-site-out analysis evaluates the

degree to which a given site’s “signal” is present in the remainder of the data, whereas the

leave-one-site-out analysis evaluates the degree to which a given site’s data contributes to

the aggregate performance.

After pruning for variables with missingness > 40%, 138 predictors remained in the

dataset, all of which would be available to clinicians prior to lithium prescription. Lithium

response was defined as the dichotomized Alda score.

The random forest classifier (RFC) [208] pools classification and regression trees in

order to reduce their variance. We used the RFC model included in SciKit-Learn v.0.20.2,

[209] with the number of estimators set to 100 a priori. Sensitivity analysis (Appendix B.2)

showed that our results were not improved by hyperparameter optimization or alternative

architectures.
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Data D

Stratified Fold k ∈ {1, 2, ..., 10}

Partition
Train/Test Independent Model for j ∈ {1, 2, ..., 10}

D
(k)
T

D
(k)
V

Imputation, then
SMOTE Tomek
Rebalancing

Imputation

D̃
(k,j)
T

D̃
(k,j)
V

Train Model

Untrained Mj

Trained M∗
j

Test Model T (D̃
(k)
V ,M∗

j )

Performance
Statistics

Average over
Imputations

T (k)

Performance
Statistics
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Figure 5.1: Graphical illustration of classification protocol. For each fold k of the stratified
K-fold cross-validation procedure, we began by partitioning the data D into training D(k)

T

and validation D(k)
V subsets. Within each fold, for j ∈ {1, 2, . . . , 10} imputations of the

training partition, denoted D̃(k)
T , we learned an independent instance of the classifier—where

M∗
j denotes the trained model—and tested it on the imputed validation partition of fold

k, returning performance statistics T (D̃
(k)
V ,M∗

j). Note that imputation was done within
training and testing sets, respectively. Averaging over the independent imputation runs
results in the final performance statistics for fold k, denoted as T (k). In the site-level
analysis, the data D simply consisted of the data for a specific site in our dataset. For the
predict-one-site-out analysis, there were nsites = 7 folds, where each site was designated as
the validation set in one (and only one) fold.

Figure 5.1 summarizes the analysis. For the aggregate and site-level analyses, model

criticism was done under stratified cross-validation (10 folds in the aggregate analysis).

Given significant missingness in these data, within each fold we sampled missing values

tenfold and uniformly over the respective variables’ domains. The sampling distribution on

missing values was uninformative and independent of observed data, which was the most

conservative approach to marginalization of the missing values. Appendix B.3 reports a

mixed-effects meta-regression showing that prediction errors in the aggregate analysis were

unrelated to missingness.

To minimize the risk of simply predicting the prevalent class, training partitions were

rebalanced using the Synthetic Minority Oversampling Technique (SMOTE) with a Tomek

link function in the imbalanced-learn Python package (v.0.4.3) [210, 211]. To provide

a multifaceted view of model capacity, classification performance was measured using

area under the receiver operating characteristic curve (ROC-AUC), accuracy, sensitivity,
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specificity, positive predictive value (PPV), negative predictive value (NPV), and Cohen’s

Kappa. We also evaluated the Brier score loss, which is the mean squared error between

models’ probabilistic predictions and observed classes. Lower Brier scores are indications of

improvements in both predictive power and confidence. A Brier score close to 0.25 suggests

that the model’s predictions tend to rely on a hard threshold close to 50%, rather than being

informative about the broader range of response probabilities.

The site-level analysis was identical to the aggregate analysis, with the exception that

the number of folds was computed site-wise, such that each validation partition would have

2 cases. Similarly, in the predict-one-site-out analysis, there were nsites = 7 folds, such that

each site’s data served as the validation set in one (and only one) fold.

Feature importance values were extracted for the RFC model and their expectations

computed over folds. Unfortunately, feature importance values from RFC models cannot

describe whether a variable is associated with increases or decreases of the probability of LR.

However, to evaluate the consistency of features’ informativeness, we repeated the entire

analysis above with the target variable now defined as lithium non-response (Alda score

< 4); these results are shown in Appendix B.4. We also repeated the entire analysis using

classifiers trained only on two of the more salient variables emerging from our analysis

(Appendix B.5).

5.2.3 Role of Funding Source

Funding agencies had role in neither design, analysis, nor interpretation of results, nor

composition or review of the manuscript.

5.3 Results

5.3.1 Demographic Statistics

Table 5.2 presents demographic statistics. A total of 439/1266 patients (34.7%) were full

lithium responders and 827 (65.3%) were non-responders. Cagliari (Centro Bini), Montreal,

and the Maritimes each had approximately 80% non-responders. The Cagliari (University)

sample had 29% responders, the IGSLi sample consisted entirely of lithium responders, and

the Ottawa/Hamilton sample contained 84% responders. The Poznan sample was roughly

balanced (53% responders). There were statistically significant univariate differences
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between responders and non-responders across many variables, which for parsimony we will

not list here, since our central analysis is primarily concerned with multivariate prediction

(the reader is referred to Table 5.2).

Table 5.2: Demographic descriptive statistics stratified by lithium response. Abbreviations:

N (number or count), “with” (w/) Li(+) (lithium responder), Li(-) (lithium non-responder),

BD (bipolar disorder), BD-I (bipolar I disorder), BD-II (bipolar II disorder), NOS (not

otherwise specified), MDD (major depressive disorder), SZA (schizoaffective disorder),

FDR (first degree relative), SDR (second degree relative) GAF (global assessment of

functioning scale), SA (suicide attempt) SI (suicidal ideation), SES (socioeconomic status),

UI (unemployment insurance). Normally distributed variables are represented as mean

(standard deviation), while non-normally distributed variables are represented as median

[interquartile range, IQR]. Categorical variables are represented as count (percentage), with

all unique categories listed; where a categorical variable has no subheadings identifying

the categories, it is implicitly a binary variable where the count (percentage) refers to the

affirmative response of the variable.

Variable Li(-) Li(+) p

N 827 439

Male (%) 313 (37.8) 176 (40.1) 0.465

Age (y) 43.50 [32.42, 54.96] 50.45 [39.20, 63.34] 0.002

Diagnosis (%) 0.029

BD-I 540 (65.4) 290 (66.1)

BD-II 218 (26.4) 124 (28.2)

BD NOS 1 ( 0.1) 0 ( 0.0)

MDD Recurrent 4 ( 0.5) 8 ( 1.8)

MDD Single 2 ( 0.2) 1 ( 0.2)

Not 1◦ mood disorder 1 ( 0.1) 0 ( 0.0)

SZA 60 ( 7.3) 16 ( 3.6)

Age of onset (y) 21.00 [17.00, 28.00] 25.00 [19.00, 33.00] 0.002

Onset of depression (y) 24.00 [18.15, 33.00] 28.00 [20.00, 36.00] 0.004

Onset of mania (y) 27.00 [21.00, 37.00] 30.00 [22.00, 38.75] 0.026

Onset of hypomania (y) 30.00 [22.00, 42.00] 35.74 [25.00, 44.50] 0.01

Continued on next page...
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Variable Li(-) Li(+) p

Polarity at first episode (%) 0.005

Biphasic DM 7 ( 1.9) 11 ( 4.7)

Biphasic MD 23 ( 6.3) 12 ( 5.1)

Hypomania 43 (11.7) 20 ( 8.5)

Major depression 220 (60.1) 116 (49.4)

Mania 54 (14.8) 52 (22.1)

Minor depression 13 ( 3.6) 22 ( 9.4)

Mixed 3 ( 0.8) 1 ( 0.4)

Periodic rapid cycling 3 ( 0.8) 1 ( 0.4)

Clinical course (%) <0.001

Chronic 62 ( 7.8) 37 (13.5)

Chronic deteriorating 16 ( 2.0) 2 ( 0.7)

Chronic fluctuating 215 (26.9) 54 (19.6)

Completely episodic 269 (33.6) 138 (50.2)

Continuous cycling 32 ( 4.0) 8 ( 2.9)

Episodic + residual 193 (24.1) 35 (12.7)

Single episode 13 ( 1.6) 1 ( 0.4)

N Lifetime manias 3.00 [1.00, 7.00] 2.00 [1.00, 4.00] 0.002

N Lifetime depressions 4.00 [2.00, 9.00] 3.00 [2.00, 6.00] 0.002

N Lifetime mixed 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.002

N Lifetime multiphasic 0.00 [0.00, 0.00] 0.00 [0.00, 1.00] 0.002

Total lifetime episodes 8.00 [5.00, 16.00] 6.00 [5.00, 11.00] 0.002

Rapid cycling (%) <0.001

Never 273 (68.2) 222 (96.1)

Only on Antidepressants 17 ( 4.2) 1 ( 0.4)

Spontaneous 110 (27.5) 8 ( 3.5)

Rapid mood switching (%) 64 (34.8) 8 ( 8.5) <0.001

Lifetime psychosis (%) <0.001

In episodes congruent 219 (40.6) 73 (32.3)

In episodes incongruent 72 (13.3) 15 ( 6.6)

Never 240 (44.4) 137 (60.6)

Outside mood episodes 9 ( 1.7) 1 ( 0.4)

Continued on next page...
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Variable Li(-) Li(+) p

GAF at last assessment 70.00 [60.00, 80.00] 90.00 [80.00, 95.00] 0.002

Total ALDA score 3.00 [0.00, 5.00] 8.00 [7.00, 9.00] 0.002

N episodes on Li 3.00 [1.00, 6.00] 0.00 [0.00, 1.00] 0.002

N episodes pre Li 4.00 [2.00, 7.00] 5.00 [3.00, 8.00] 0.052

N SA 0.00 [0.00, 1.00] 0.00 [0.00, 0.00] 0.026

N Potentially lethal SA 0.00 [0.00, 1.00] 0.00 [0.00, 0.00] 0.006

Age at first SA (y) 30.30 [20.00, 40.00] 36.00 [22.00, 41.55] 0.288

Mood disorder in FDR 321 (59.1) 153 (51.7) 0.047

Any FDR w/ BD 215 (33.4) 128 (34.8) 0.676

N FDR w/ BD-I 0.00 [0.00, 0.00] 0.00 [0.00, 1.00] 0.282

N FDR w/ BD-II 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.372

N FDR w/ MDD 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.3

N FDR w/ SZA 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 1

N FDR w/ SCZ 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.018

N FDR w/ Anxiety disorder 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.214

N FDR unaffected 1.00 [0.00, 3.00] 0.00 [0.00, 1.00] 0.004

N FDR completed suicide 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.272

N FDR SA 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.682

N SDR completed suicide 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.274

N SDR attempted suicide 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.34

Mood polarity at SA (%) 0.273

Biphasic MD 0 ( 0.0) 1 ( 4.8)

Major depression 112 (87.5) 19 (90.5)

Mania 10 ( 7.8) 1 ( 4.8)

Minor depression 1 ( 0.8) 0 ( 0.0)

Mixed 4 ( 3.1) 0 ( 0.0)

Rapid cycling 1 ( 0.8) 0 ( 0.0)

Lifetime Hx SI 266 (51.8) 87 (42.9) 0.047

Mood episode related SI (%) 0.21

No 1 ( 0.7) 1 ( 3.1)

Sometimes not always 6 ( 4.3) 0 ( 0.0)

Continued on next page...



92

Variable Li(-) Li(+) p

Yes 134 (95.0) 31 (96.9)

Social anxiety disorder (%) 103 (16.3) 37 (15.5) 0.831

Panic disorder (%) 170 (26.7) 73 (22.1) 0.115

Generalized anxiety disorder (%) 159 (25.2) 54 (22.3) 0.376

OCD (%) 54 ( 8.4) 15 ( 4.5) 0.04

Substance use disorder (%) 226 (27.9) 76 (20.5) 0.008

ADHD (%) 69 (14.3) 51 (28.8) <0.001

Learning disability (%) 71 (14.7) 45 (25.4) 0.001

Primary insomnia (%) 79 (16.4) 17 ( 9.5) 0.026

Personality disorder (%) 77 (17.5) 31 (19.4) 0.619

Diabetes mellitus (%) 43 (10.1) 10 ( 6.9) 0.322

Hypertension (%) 90 (21.4) 51 (35.9) 0.001

Menstrual abnormality (%) 59 (26.9) 10 (13.9) 0.028

Thyroid disease (%) 113 (29.3) 28 (21.1) 0.074

Head injury (%) 125 (36.1) 39 (33.6) 0.662

Migraine (%) 97 (26.0) 16 (11.9) 0.001

SES (%) <0.001

Disabled 89 (14.7) 11 ( 4.7)

Other 59 ( 9.7) 25 (10.7)

Retired 71 (11.7) 48 (20.5)

Social assistance 51 ( 8.4) 11 ( 4.7)

Student 22 ( 3.6) 3 ( 1.3)

UI 38 ( 6.3) 10 ( 4.3)

Unknown 9 ( 1.5) 7 ( 3.0)

Work full-time 220 (36.3) 89 (38.0)

Work part-time 47 ( 7.8) 30 (12.8)

Marital status (%) 0.001

Divorced 101 (12.9) 24 ( 8.9)

Married 382 (48.7) 148 (54.6)

Single 261 (33.2) 71 (26.2)

Widowed 41 (5.2) 28 (10.3)
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5.3.2 Classification Between and Within Sites

Table 5.3 reports classification performance across the four analysis strategies. Classification

was best in the aggregate analysis, with an accuracy of 0.77 (95% CI [0.75-0.79]), ROC-

AUC of 0.8 (0.78-0.82), sensitivity of 0.53 (0.48-0.57), specificity of 0.9 (0.88-0.92), PPV

of 0.74 (0.69-0.79), and NPV of 0.78 (0.77-0.80). Cohen’s kappa for agreement of predicted

and ground truth classes was 0.46 (0.4-0.51).

Site-level ROC-AUC performance was similar to the aggregate analysis. The Maritime

group achieved 0.79 (0.74-0.84), Montreal 0.73 (0.56-0.91), Poznan 0.66 (0.6-0.72), and

Cagliari (University) achieved 0.66 (0.6-0.72). However, under Cohen’s kappa, which is

more conservative under class imbalance, site-level results were inferior to those in the

aggregated data. Kappa in the Poznan site was 0.24 (0.16-0.33), 0.22 (0.13-0.31) in the

Maritimes, and 0.1 (0.03-0.16) for Cagliari (University). Under the Brier score, performance

in the Maritimes sample (0.15 [0.13,0.16]) was superior to that observed in Poznan (0.24

[0.23, 0.25]).

The Maritimes data were most robust to the predict-one-site-out analysis, with a reduc-

tion in Kappa (to 0.16 [0.12, 0.19]) that was within the margin of error in the site-level

protocol (0.22 [0.13, 0.31]).

Exclusion of IGSLi data (which consisted only of lithium responders) under leave-one-

site-out reduced the PPV from the full aggregate performance of 0.74 (95% CI 0.69, 0.79)

to 0.65 (0.6, 0.7), in addition to reducing the sensitivity from 0.53 (0.48, 0.57) to 0.47

(0.42, 0.52), and the Kappa score from 0.46 (0.4, 0.5) to 0.38 (0.32, 0.44). Exclusion of the

Ontario sample (84% responders) reduced the sensitivity to 0.42 (0.35, 0.49), the PPV to

0.66 (0.61, 0.71), and the Kappa to 0.36 (0.3, 0.41). Sensitivity improved slightly to 0.61

(0.58, 0.64) with exclusion of Cagliari (Centro Bini), albeit without substantial improvement

in the overall Kappa (mean 0.51 [0.47, 0.55]). Exclusion of the other datasets had negligible

effect on classification performance.

5.3.3 Variable Importance

Variable importance results are plotted in Figure 5.2 for the RFC trained on the aggregated

data sample, as well as the sites with the most robust Cohen’s kappa results in the site-level

analyses. Completely episodic clinical course was the most important predictor of LR in both

the aggregated and Maritime samples. When the aggregate analysis was repeated excluding
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the Maritimes data, the absence of chronic clinical course was the most important predictor.

However, in both cases, four out of the six most informative features were related to clinical

course. Clinical course variables were also disproportionately represented among the most

informative when we attempted to predict lithium non-response (Appendix B.4). In the

Poznan sample, the proportion of life affected with primary insomnia was the most important

predictor, while clinical course was not among the most contributory features. Within all

of the aforementioned analyses, the absence of rapid cycling was always within the 10

most informative features. Appendix B.5 shows that excluding all variables except clinical

course and rapid cycling from the model preserves much of the classification performance

in the aggregate analysis (kappa 0.35 [0.28,0.38]), while improving performance within the

Maritime (kappa 0.40 [0.15,0.61]) and Montreal site-level analyses (kappa 0.27 [0.23,0.32]),

and leaving the Poznan site-level results relatively unchanged (kappa 0.27 [0.05,0.50]).

5.4 Discussion

We have demonstrated that LR in BD can be predicted using only clinically available

information. Variables characterizing the pre-treatment clinical course were among the

most relevant predictors, but there was substantial between-sample heterogeneity. Our

study motivates further work toward clarifying the phenotypic picture of canonical “lithium

responders” and “non-responders,” respectively.

Analysis on the pooled sample yielded the best classification performance (Kappa 0.46

[0.4-0.51]), with relatively balanced PPV (0.74 [0.69-0.79]) and NPV (0.78 [0.77, 0.8]). This

was not likely the result of any single site’s data, since classification performance remained

relatively stable in a leave-one-site-out analysis (Kappa range 0.36-0.51). In contrast, site

level classification retained moderate performance for the Maritime and Poznan samples

(with Kappa values of 0.22 [0.13, 0.31] and 0.24 [0.16, 0.33], respectively), and to a lesser

extent the Cagliari (University; Kappa 0.1 [0.03, 0.16]) sample.

There was likely substantial between-site heterogeneity in our data. At the site-level,

performance was best within the Maritime (Cohen’s Kappa 0.22 [0.13, 0.31]) and Poznan

(Cohen’s Kappa 0.24 [0.16, 0.33]) sites’ data. Yet, their most informative features were,

respectively, completely episodic clinical course and proportion of life affected with primary

insomnia. Completely episodic clinical course was the most informative feature in the

aggregate analysis, but when the Maritimes sample was removed—which did not diminish
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A B

C D

Figure 5.2: Variable importance across (A) Aggregate dataset, (B) Aggregate dataset
excluding the Maritimes data, (C) Maritimes site-level data, and (D) Poznan site level data.
Due to space constraints, only those variables with coefficients above the overall mean were
included in these plots. Notwithstanding, only bars that strongly deviate from the height
of others should be considered “important.” Bars are variable importance means over the
stratified cross-validation folds, and error bars are standard errors. Variable importance in
random forest classifiers do not indicate the direction of a variable’s influence (i.e. whether
a feature is associated with response or non-response). Abbreviations: lifetime (LT), clinical
course (CC), global assessment of functioning (GAF), marital status (MS), proportion of
life affected (PLA), schizophrenia (SCZ).
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classifier performance (Cohen’s Kappa 0.5 [0.47, 0.54])—the completely episodic clinical

course was no longer the most salient feature. Notwithstanding, 4 of the top 6 important

features were still clinical course related, and clinical course alone was shown to have

non-trivial predictive validity (Appendix B.5). Classification within the Maritimes sample

also showed a lower Brier score than Poznan (0.15 [0.13, 0.16] vs. 0.24 [0.23, 0.24]),

potentially underscoring that the Maritimes’ feature importance results may confer stronger

predictive ability. Moreover, when repeating the analysis for the purpose of predicting

non-response (Alda score ≤ 3; Appendix B.4), features concerning clinical course and rapid

cycling were also the most salient, suggesting consistency across the phenotypic continuum.

Thus, the features characteristic of LR differed between sites, although no one site was

predominantly responsible for the overall strength in classification performance. This

between-site heterogeneity may limit the benefits of increased sample size [33], although

some conflicting evidence exists [34]. Further work should focus on development of methods

for better understanding the between-site heterogeneity in these data, potentially facilitating

characterization of clinical features most reliably associated with lithium response and

non-response.

Within the most robustly performing site, completely episodic clinical course was the

most informative predictor of LR. This supports Grof’s [36] highlighting of inter-episode

remission quality as a central phenotypic element associated with LR. Other features of the

classical phenotype, such as family history [198, 212], did not arise as important predictors.

It is possible that the family history variables included in our dataset did not sufficiently

capture this feature of the LR phenotype. This may also be due to relationships between

episodicity and family history variables. For example, in our sample, those patients with a

completely episodic course may have disproportionately more relatives with BD-I (Table

B.15). Clarifying these relationships in a principled fashion will require further studies.

That the absence of rapid cycling was consistently observed within the 10 most informa-

tive variables across analyses would also agree with previous meta-analytically supported

findings [196, 213, 214]. The relatively consistent importance of absence of rapid cycling

in our study is interesting in light of the more variable importance of completely episodic

clinical course, since these two variables were highly correlated. Indeed, 93% of those

with a completely episodic course also had no rapid cycling, and the majority of those

without rapid cycling (33.9%) had a completely episodic course (see Tables B.16 and B.17).
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Disentangling these relationships in light of the potentially nonlinear feature combinations

in ML models is an important future line of work.

The clinical implications of our results are of foremost interest. When engaging in

a medication trial, it is critical to plan the trial duration. Too short of a period of time

may preclude what could ultimately be a clinical response; too long of a trial would offer

unnecessary exposure to side effects and slowing of a search for the right medication. On

the aggregated data, our study suggests that LR can be predicted with a low rate of false

positives (specificity 0.9, 95% CI 0.88-0.92). If such a model were to classify a patient

as a lithium responder, one might foreseeably consider a longer treatment trial with the

expectation of eventual response. Unfortunately, our model’s sensitivity was comparatively

less strong (0.53 [0.48-0.57]), and so the prediction of non-response would be a more difficult

scenario for clinical decision-making. Improving the true positive rate of LR prediction is

thus an important subsequent goal for our work. That being said, when we attempted to

predict the most unequivocal non-responders (i.e. those with the lowest Alda scores, ≤ 3),

we attained a Cohen’s kappa of 0.63 (0.55-0.7), with an ROC-AUC of 0.88 (0.86-0.91),

PPV of 0.82 (0.79-0.85), and NPV of 0.86 (0.81-0.91). In totality, these results together

suggest two things. First, they support the notion that clinical data indeed are useful for

prediction of LR and non-response, since the prediction strength is relatively symmetrical

with respect to the extremes of the Alda score distribution. Second, these results suggest

that work toward improving our model’s detection of lithium responders should largely

focus on better discriminating those individuals whose Alda scores range from 4 to 6. Such

individuals could represent an intermediate phenotype (partial responders), or their response

classification may have been less certain due to other factors (compliance related issues, use

of other drugs, etc.), or simply inaccuracy. The systematic evaluation of these possibilities

will be an important set of future experiments. Such experiments will be important for

better understanding the predictive relationships captured by our model, thereby improving

interpretability and facilitating transfer to clinical practice. At this stage, however, our model

is not ready for clinical translation, pending better explication of the underlying predictive

relationships and between-site heterogeneity.

Our study has several limitations. First, data are not sourced from a randomized clinical

trial. However, it would be difficult to gather a sample of sufficient size and with the duration

of clinical follow up as in our study. Second, since data were sourced from specialist clinics,
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our results may not translate into the general psychiatric practice; that being said, randomized

clinical trial populations are usually even more narrowly selected, and our overall balance

of responders and non-responders (≈ 1/3 responders) is likely reflective of real-world

practice, although registry studies using non-hospitalization as a response definition estimate

lower response rates [192, 215, 216]. Moreover, the features comprising these data are all

obtainable by careful assessment in general psychiatric practice at no additional cost to

assessment as usual. Third, our results evaluate prediction of complete response to lithium

monotherapy, and so future work should evaluate the prediction of whether individuals may

respond to lithium in combination with other agents. Fourth, while complex patterns of

missingness in the data did not bias our results, they may have reduced predictive capacity

through information loss. Fifth, interpretation of the exact feature combinations relevant

to prediction in our model is difficult. However, several other models examined post

hoc showed inferior performance compared to the RFC, and so their feature importance

coefficients would not be relevant. Finally, the data herein included neither biological nor

behavioural data, which remains an important line of future research.

Despite these limitations, our study has several important strengths that advance the state

of knowledge concerning LR in BD. In terms of raw sample size, our study is exceeded

only by the Scandinavian registry analyses (n=3762 [215] and n=4714 [216]), whose

LR definition was time to treatment failure. As discussed by Hui et al. [196], such a

definition may bias studies toward false negatives, since those who experience a relapse

may otherwise have a reduction in symptom frequency over the long term. In contrast, the

Alda score captures the potential reduction in symptom frequency/severity (A score), as

well as incorporating a “causality factor” (B score) which penalizes the overall score where

confounding information is present. These scores were collected from patients followed

prospectively at mood disorders clinics, by clinicians who underwent reliability training.

This, in conjunction with the sheer breadth of predictors available (180 in total), renders the

present analysis the largest of its kind. Moreover, given that our data were collected from 7

sites internationally, including 4 from ethnically diverse Canadian cities, our study likely

includes one of the most heterogeneous samples yet reported in the LR literature. Finally,

the most important strength of our study is its direct evaluation of variables’ classification

power out of sample, which provides more robust evidence of the degree to which LR can

be predicted in real-world settings.



Chapter 6

Asymmetrical Reliability of the Alda Score Favours a Dichotomous

Representation of Lithium Responsiveness1

Abstract. The Alda score is commonly used to quantify lithium responsiveness in bipolar disorder.

Most often, this score is dichotomized into “responder” and “non-responder” categories, respectively.

This practice is often criticized as inappropriate, since continuous variables are thought to invariably be

“more informative” than their dichotomizations. We therefore investigated the degree of informativeness

across raw and dichotomized versions of the Alda score, using data from a published study of the scale’s

inter-rater reliability (n=59 raters of 12 standardized vignettes each). After learning a generative model

for the relationship between observed and ground truth scores (the latter defined by a consensus rating of

the 12 vignettes), we show that the dichotomized scale is more robust to inter-rater disagreement than

the raw 0-10 scale. Further theoretical analysis shows that when a measure’s reliability is stronger at

one extreme of the continuum—a scenario which has received little-to-no statistical attention, but which

likely occurs for the Alda score ≥ 7—dichotomization of a continuous variable may be more informative

concerning its ground truth value, particularly in the presence of noise. Our study suggests that research

employing the Alda score of lithium responsiveness should continue using the dichotomous definition,

particularly when data are sampled across multiple raters.

6.1 Introduction

The Alda score is a validated index of lithium responsiveness commonly used in bipolar

disorder (BD) research [202]. This scale has two components. The first is the “A” subscale

that provides an ordinal score (from 0 to 10, inclusive) of the overall “response” in a

therapeutic trial of lithium. The second component is the “B” subscale that attempts to

qualify the degree to which any improvement was causally related to lithium. The total Alda

score is computed based on these two subscale scores, and takes integer values between 0

and 10. Many studies that employ the Alda score as a target variable dichotomize it, such

that individuals with scores ≥ 7 are classified as “responders,” and those with scores < 7

are “non-responders.”
1Nunes A, Trappenberg T, and Alda M. Asymmetrical reliability of the Alda Score favours a dichotomous

representation of lithium responsiveness. PLOS ONE 15(1): e0225353.
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A common criticism that arises from this practice is that continuous variables should not

be discretized by virtue of “information loss.” Indeed, discretizing continuous variables is

widely viewed as an inappropriate practice [217–227]. However, the practice remains com-

mon across many areas of research, including our group’s work on lithium responsiveness

in BD [35]. The primary justification for using the dichotomized Alda score as the lithium

responsiveness definition has been based on the inter-rater reliability study by Manchia et al.

[202], who showed that a cut-off of 7 had strong inter-rater agreement (weighted kappa 0.66).

Furthermore, using mixture modeling, they also found that the empirical distribution of

Alda scores supports the discretized definition. Therefore, there exist competing arguments

regarding the appropriateness of dichotomizing lithium response. Resolving this dispute is

critical, since the operational definition of lithium responsiveness is a concept upon which a

large body of research will depend.

Although the Manchia et al. [202] analysis provides some justification for using a

dichotomous lithium response definition, it does not dispel the argument of discretization-

induced information loss entirely. However, there is some intuitive reason to believe that

discretization is, at least pragmatically, the best approach to defining lithium response using

the Alda score. First, the Alda score remains inherently subjective to some degree and is

not based on precise biological measurements; an individual whose “true” Alda score is

6, for example, could have observed scores that vary widely across raters. Second, it is

possible that responders may be more reliably identified than non-responders. For example,

unambiguously “excellent” lithium response is a phenomenon that undoubtedly exists in

naturalistic settings [36, 37], and for which the space of possible Alda scores is substantially

smaller than for non-responders; that is, an Alda score of 8 can be obtained in far fewer

ways than an Alda score of 5. As such, we hypothesize that agreement on the Alda score is

higher at the upper end of the score range, and that this asymmetric agreement is a scenario

in which dichotomization of the score is more informative than the raw measure. To evaluate

this, we present both empirical re-analysis of the ConLiGen study by Manchia et al. [202],

and analyses of simulated data with varying levels of asymmetrical inter-rater reliability.
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6.2 Materials and Methods

6.2.1 Data

Detailed description of data and collection procedures is found in Manchia et al. [202].

Samples included in our analysis are detailed in Table 6.1, including the number of raters

included across sites, and the average ratings obtained at each of those sites across the 12

assessment vignettes. As a gold standard, we used ratings that were assigned to each case

vignette using a consensus process at the Halifax site (scores are noted in the first row of

Table 6.1). The lithium responsiveness inter-rater reliability data are available in the online

supplemental material.

Table 6.1: Number of raters and mean scores across sites. The total number of raters (nr)
was 59.

Case Vignette
Site nr 1 2 3 4 5 6 7 8 9 10 11 12
Gold standard 8 9 6 7 9 3 5 9 3 9 5 1
Halifax 9 8.4 8.6 6.6 6.9 9.2 3 3.9 8.8 3.1 9.1 4.7 1.2
NIMH 4 7.8 8.2 6.2 7 8.8 3.2 4 8.5 2.2 8.5 3.2 1.8
Poznan 2 9 8.5 6.5 5.5 9 4 7.5 9 5 8 4.5 4.5
Dresden 2 8.5 7.5 6 5 8.5 1.5 6 9 3.5 8.5 4 1.5
Japan 4 8 8.2 4.8 6.5 8.5 2 3 8.5 1 8.2 4.5 1.5
Wuerzburg 2 7.5 7.5 4 6.5 8 1.5 3 9 0 7 3 0.5
Cagliari 3 7.7 9 4.3 7 5.7 4 1.3 9 0.7 7.3 4 2
San Diego 2 7.5 8.5 7.5 7 9 5 7.5 8.5 3.5 8.5 6 3.5
Boston 2 8.5 8.5 6 7 9 3 3.5 8.5 1.5 9 4 1
Gottingen 2 9.5 9 4 6 9 1 1 9 1.5 9 4 3
Berlin 1 7 9 4 6 9 2 3 8 0 7 0 2
Taipeh 1 8 8 5 8 9 5 6 9 4 9 8 1
Prague 1 7 9 4 8 9 3 6 9 3 9 6 1
Johns Hopkins 7 8 8.7 5.3 5.9 8.3 2.7 2.4 9.1 2 8.3 4.4 1.1
Mayo 6 8 8.2 6 8 9 4.2 3 9 4.2 8.8 3.7 0.3
Brasil 3 8 8.3 5.3 6.3 8.7 2 4 9 4.3 8 4.7 0.7
Medellin 4 7.5 9 5.5 6.5 5 2.5 4 7.2 4.8 8.8 1.2 2
Geneve 3 7.7 8.7 6.7 5.3 9.7 5 6 8.7 1.3 9 3.7 0.3
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6.2.2 Empirical Analysis of the Alda Score

In this analysis, we seek to evaluate whether discretization of the Alda score under the

existing inter-rater reliability values preserves more mutual information (MI) between the

observed and ground truth labels than does the raw scale representation. To accomplish

this, we first develop a probabilistic formulation of raters’ score assignments based on a

Multinomial-Dirichlet model, which we describe here.

Let n(k)
i ∈ N+ denote the number of raters who assigned an Alda score i ∈ A, with

A = {0, 1, ..., 10} to an individual whose gold standard Alda score is k ∈ A. The vector

of rating counts for the gold standard score k is is n(k) =
(
n

(k)
i

)
i∈A

. The probability of n(k)

is multinomial with parameter vector θ(k) =
(
θ

(k)
i

)
i∈A

, which is itself Dirichlet distributed

θ(k) ∼ Dir(θ|α), where α is a pseudocount denoting the prior expectation of the number of

ratings received for each score i ∈ A. In the present analysis, we assume that α is equal

across all scores in A, and thus we denote it simply as a scalar α = α; this has the effect of

increasing the uncertainty of θ(k) (i.e. the ratings become more “noisy”).

The posterior of θ(k) given n(k) and α is Dirichlet with parameters α′ =
{
α + n

(k)
i

}10

i=0
,

and its maximum a posteriori (MAP) estimate is

θ̂α
(
n(k)

)
=

{
α + n

(k)
i − 1

∑10
j=0 α + n

(k)
j − 1

}10

i=0

, (6.1)

which can be viewed as the conditional distribution over scores A for any given rater when

the gold standard is k. In cases where no assessment vignette had a gold standard rating of

k, we assumed that

n(k) =





1
2

(
n(k−1) + n(k+1)

)
0 < k < 10

n(k+1) k = 0

n(k−1) k = 10

(6.2)

The dichotomized Alda scores are defined as T = {δ[i ≥ τ ] : ∀i ∈ A}, where τ is the

dichotomization threshold (set at τ = 7 for the Alda score), and where δ[·] is an indicator

function that evaluates to 1 if the argument is true, and 0 otherwise. Given threshold τ

(Responders ≥ τ and Non-responders < τ ), the dichotomous counts are represented as

follows
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c
(0)
0 =

∑τ−1
k=0

∑τ−1
i=0 n

(k)
i Observed < τ , Gold Standard < τ

c
(1)
0 =

∑10
k=τ

∑τ−1
i=0 n

(k)
i Observed < τ , Gold Standard ≥ τ

c
(0)
1 =

∑τ−1
k=0

∑10
i=τ n

(k)
i Observed ≥ τ , Gold Standard < τ

c
(1)
1 =

∑10
k=τ

∑10
i=τ n

(k)
i Observed ≥ τ , Gold Standard ≥ τ

(6.3)

with c(k) ∼ Multinomial(φk), and φk ∼ Dir(φ|ξ), where ξ is a pseudocount for the

number of dichotomized ratings assigned to each of non-responders and responders. We can

thus estimate the conditional distribution over observed dichotomized response ratings as

φ̂ξ

(
c(k)
)

=

{
ξ + c

(k)
0 − 1

2ξ − 2 + c
(k)
0 + c

(k)
1

,
ξ + c

(k)
1 − 1

2ξ − 2 + c
(k)
0 + c

(k)
1

}
(6.4)

Mutual Information of Raw and Dichotomized Alda Score Representations

Let

xo ∼ p(xo|x∗) = Categorical
(
θ̂α
(
n(x∗)

))
(6.5)

denote a given observed raw Alda score assigned to a case with ground truth score of x∗ ∈ A.

Given uniform priors on the true classes, the joint distribution is

p(xo, x∗) = p(xo|x∗)p(x∗) =

{
1

11
θ̂α
(
n(x∗=k)

)}

k=0,1,...,10

. (6.6)

For the binarized classes, we have a prior of p(y∗ = 1) = 4
11

, and the joint distribution is

thus

p(yo, y∗) = p(yo|y∗)p(y∗) =
{
p(y∗ = k) φ̂ξ

(
c(y∗=k)

)}
k∈{0,1}

. (6.7)

The MI for these distributions can be computed as functions of the prior pseudocounts α

and ξ:

Iα[xo||x∗] =
∑

xo

∑

x∗

p(xo, x∗) log
p(xo, x∗)

p(xo)p(x∗)
(6.8)

Iξ[yo||y∗] =
∑

yo

∑

y∗

p(yo, y∗) log
p(yo, y∗)

p(yo)p(y∗)
(6.9)
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for the raw and dichotomized Alda scores, respectively. We can express the MI of the raw

and dichotomized Alda score distributions both in terms of α, such that both distributions

have an equivalent total “concentration” when ξ = 11α/2. This is equivalent to saying

that our prior assumption about the uncertainty of the raw and dichotomized distributions

assumes the same number of a priori ratings.

Our primary hypothesis—that the dichotomized Alda score is more informative with

greater observation uncertainty—is evaluated by determining whether Iξ[yo||y∗] exceeds

Iα[xo||x∗] as we increase the a priori observation noise (α and ξ).

6.2.3 Theoretical Modeling of Dichotomization under Asymmetrical Reliability

The previous experiment regarding dichotomization of the raw Alda score did not fully

capture the effect of dichotomization of a continuous variable, since the raw Alda score is

still discrete (albeit with a larger domain of support). Thus, we sought to investigate whether

dichotomization of a truly continuous, though asymmetrically reliable, variable would show

a similar pattern of preserving MI and statistical power under higher levels of observation

noise and agreement asymmetry.

Synthetic Datasets

The simplest synthetic dataset generated was merely a sample of regularly spaced points

across the [0,10] interval in both the x and y directions. This dataset was merely used to

conduct a “sanity check” that our methods for computing MI correctly identified a value

of 0. This was necessary since data with uniform random noise over the same interval will

only yield MI of 0 in the limit of large sample sizes.

The main synthetic dataset accepted “ground truth” values x ∈ [0, 10] and yielded

“observed” values y ∈ [0, 10] based on the following formula for the ith sample:

yi = ω f(xi) + (1− ω) Uniform(0, 10), (6.10)

where 0 ≤ ω ≤ 1 is a parameter governing the degree to which observed values are coupled

to the ground truth based on f(xi) (data are entirely uniform random noise when ω = 0,

and come entirely from f(xi) when ω = 1). The function f(xi) governing the agreement

between ground truth and observed is essentially a 1:1 correspondence between x and y to
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which we add noise along the diagonal based on a uniform random variate Ũ(−σ, σ) with

width σ.

We simulated two forms of diagonal spread. The first is constant across all values

x ∈ [0, 10], which we call the symmetrical case, and which is represented by a parameter

β = 1. The other is an asymmetrical case (represented as β = 0), in which the agreement

between x and y is not constant across the [0, 10] range. Overall, the function f(xi) is

defined as

f(xi) = β R(0, 10)

(
xi +

Ũ(−σ, σ)

1 + e−0.75 xi+5

)
+ (1−β) R(0, 10)

(
xi + Ũ(−σ, σ)

)
, (6.11)

where R(l, u)(·) is a function to ensure that all points remain within the [l, u] interval in

both axes. In the asymmetrical case, R(l, u)(·) reflects points at the [0, 10] bounds. In the

symmetrical case, the data are all simply rescaled to lie in the [0, 10] interval.

Demonstration of the simulated synthetic data are shown in Figure 1. Every synthetically

generated dataset included 750 samples, and for notational simplicity, we denote the kth

synthetic dataset (given parameters β, ω, σ) as D(k)
β,ω,σ =

(
x

(k)
j , y

(k)
j

)
j=1,2,...,750

.

Computation of Mutual Information for Continuous and Discrete Distributions

Mutual information was computed for both continuous and dichotomized probability distri-

butions on the data. Mutual information for the continuous distribution was computed by

first performing Gaussian kernel density estimation (using Scott’s method for bandwidth

selection) on the simulated dataset, and then approximating the following integral using

Markov chain Monte-Carlo sampling:

IKDE[y||x] =

∫ ∫
p(x, y) log

p(x, y)

p(x) p(y)
dx dy (6.12)

Conversely, discrete MI was computed by first creating a 2-dimensional histogram by

binning data based on a dichotomization threshold τ . Data that lie below the dichotomization

threshold are denoted 1, and those that lie above the threshold are represented as 0. Based

on this joint distribution, the dichotomized MI is

Iτ [y||x] =
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)
. (6.13)
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Figure 6.1: Demonstration of the synthetic agreement data across differences in the parame-
ter ranges and presence of asymmetry. The x-axes all represent the ground truth value of the
variable, and the y-axes represent the “observed” values. Data are depicted based on different
values of a uniform noise parameter (0 ≤ ω ≤ 1) that governs what proportion of the data
is merely uniform noise over the interval [0, 10], and a disagreement parameter (σ ≥ 0),
which governs the variance around the diagonal line. Panel A (upper three rows, shown in
blue) depicts the synthetic data in which there was asymmetrical levels of agreement across
the score domain. Panel B (lower three rows, shown in red) depict synthetic data in which
there was symmetrical agreement over the score domain.
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Note that continuous MI will remain constant across τ .

Statistical Power of Classical Tests of Association

Association between the observed (y) and ground truth (x) data can be measured using

Pearson’s correlation coefficient (ρ) when data are left as continuous, or using Fisher’s

exact test when data are dichotomized. The statistical power of the hypothesis that ρ 6= 0

given dataset D(k)
β,ω,σ with N (k) observations and two-tailed statistical significance threshold

α—which here is not the same α used as a Dirichlet concentration in Section 6.3.1—can be

easily shown to equal

powerρ(D
(k)
β,ω,σ; α = 0.05) = Φ

(
|ζ(ρ)|

√
N (k) − 3− Φ−1

(
1− α

2

))
, (6.14)

where Φ(·) and Φ−1 (·) are the cumulative distribution function and quantile functions for a

standard normal distribution, and ζ(·) is Fisher’s Z-transformation

ζ(ρ) =
1

2
log

1 + ρ

1− ρ. (6.15)

Under a dichotomization of D(k)
β,ω,σ with threshold τ association between the ground

truth and observed data can be evaluated using a (two-tailed) Fisher’s exact test, whose

alternative hypothesis is that the odds ratio (η) of the dichotomized data does not equal 1.

The null-hypothesis has a Fisher’s noncentral hypergeometric distribution,

Λo = FisherHypergeometricDistribution
(
N

(k)
δ[y<τ ], N

(k)
δ[x<τ ], N

(k), η = 1
)

(6.16)

where N (k) is the total number of observations in sample k, and N (k)
δ[x<τ ] and N (k)

δ[y<τ ] are the

number of ground truth and observed data, respectively, that fall below the dichotomization

threshold τ . Under the alternative hypothesis, this distribution has an odds ratio parameter

estimated from the data:

Λa = FisherHypergeometricDistribution
(
N

(k)
δ[y<τ ], N

(k)
δ[x<τ ], N

(k), η̂
)
. (6.17)

The statistical power of Fisher’s exact test under this setup and a two-tailed significance

threshold of α is
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fp
(
D

(k)
β,ω,σ, τ ;α

)
= δ [η̂ < 1]

[
1− SΛa

(
S−1

Λo

(
1− α

2

))]
+ δ [η̂ ≥ 1]SΛa

(
S−1

Λo

(α
2

))

(6.18)

where SΛa(·) and S−1
Λo

(·) are the survival functions of the alternative hypothesis and the

inverse survival function of the null hypothesis, respectively.

Evaluation of Mutual Information

The central aspect of this analysis is comparison of the dichotomized and continuous MI

across values of the dichotomization threshold τ , global noise ω, asymmetry parameter

β, and diagonal spread σ. Under all cases, we expect that increases in the global noise

parameter ω will reduce the MI. We also expect that with symmetrical reliability (i.e. β = 0),

the dichotomized MI will be lower than the continuous MI across all thresholds. However,

as the degree of asymmetry in the reliability increases, we expect the dichotomized MI to

exceed the continuous MI (i.e. as σ increases when β = 1). Finally, as a sanity check, we

expect that both continuous and dichotomized MI will be approximately 0 when applied to

a grid of points regularly spaced over the [0,10] interval.

Evaluation of Effects on Statistical Power of Classical Tests of Association

Statistical power of the Pearson correlation coefficient and Fisher’s exact test were com-

puted across symmetrical (β = 0) and asymmetrical (β = 1) conditions of the synthetic

dataset described above. Owing to the greater computational efficiency of these calcu-

lations (compared to the MI), the diagonal spread parameter was varied more densely

(σ ∈ {1, 2, ..., 20}). The power of Fisher’s exact test was evaluated at two dichotomization

thresholds: a median split at τ = 5 and a “tail split” at τ = 3. We evaluated three global

noise settings (ω ∈ {0.3, 0.5, 0.7}). At each experimental setting, we computed the afore-

mentioned power levels for 100 independent synthetic datasets. Results are presented using

the mean and 95% confidence intervals of the power estimates over the 100 runs under each

condition. We expect that the Fisher’s exact test under a “tail split” dichotomization (not a

median split) will yield greater statistical power in the presence of asymmetrical reliability,

greater diagonal spread, and higher global noise. However, under the symmetrically reliable

condition, we expect that the statistical power will be greater for the continuous test of
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association.

6.2.4 Materials

Mutual information experiments were conducted in Mathematica v. 12.0.0 (Wolfram

Research, Inc.; Champaign, IL). Experiments evaluating the statistical power under classical

tests of continuous and dichotomous association were conducted in the Python programming

language. Data and code for analyses are also provided as online supplementary materials.

6.3 Results

6.3.1 Empirical Evaluation of the Alda Score of Lithium Response

Histograms of the observed Alda scores for each of the gold standard vignette values are

depicted in Figure 6.2. Resulting joint distributions of the gold standard vs. observed Alda

scores (in both the raw or dichotomized representations) are shown in Figure 6.3 (Panels

A-C) across varying levels of observation noise. Figure 6.3D plots the MI for the raw and

dichotomized Alda scores across increasing levels of the observation noise parameter α

(recalling that ξ = 11α/2). Beyond an observation noise of approximately α > 3.52, one

can see that the dichotomized lithium response definition retains greater MI between the

true and observed labels, compared to the raw representation.

6.3.2 Discrete vs. Continuous Mutual Information in Asymmetrically Reliable Data

Figure 6.4 shows the results of the experiment on synthetic data. Under agreement levels

that are constant across the (x, y) domains, one can observe that MI of dichotomized

representations of the variables are generally lower than their continuous counterparts.

However, under asymmetrical reliability (i.e. where agreement between x and y decreases

as x increases), we see that MI is higher for the dichotomized, rather than the continuous,

representations. In particular, as the level of agreement asymmetry increased (i.e. for higher

values of σ), the best dichotomization thresholds decreased.

6.3.3 Statistical Power of Classical Associative Tests

Figure 6.5 plots the statistical power of null-hypothesis tests using continuous and di-

chotomized representations of the synthetic dataset. As expected, under conditions of
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Figure 6.2: Histograms of ratings for each value of the ground truth Alda score available in
the first wave dataset from Manchia et al. [202]. Each histogram represents the distribution
of ratings (nr = 59) for a single one of twelve assessment vignettes. The gold standard
(“ground truth”) Alda score, obtained by the Halifax consensus sample, is depicted as
the title for each histogram. Plots in blue are those for vignettes with gold standard Alda
scores less than 7, which would be classified as “non-responders” under the dichotomized
setting. Vignettes with gold standard Alda scores ≥ 7 are shown in red, and represent the
dichotomized group of lithium responders.
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Figure 6.3: Mutual information between gold standard and observed Alda scores in relation
to the observation noise (α) and whether the scale is in its raw or dichotomized form (lithium
responder [Li(+)] is Alda score ≥ 7; non-responder [Li(-)] is Alda score <7). Panels
A-C show the inferred joint distributions of the observed (xo for raw, yo for discrete) and
gold standard (x∗ for raw, y∗ for discrete) values at different levels of observation noise
(α ∈ {0, 10, 100}). Panel D plots the mutual information for the raw (red) and discrete
(blue) settings of the Alda score across increasing values of α. Recall that here we set
ξ = 11α/2.
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Figure 6.4: Mutual information (MI) for dichotomized (solid lines) and continuous (dashed
lines) distributions on synthetic data with asymmetrical (upper row, Panel A) and sym-
metrical (lower row, Panel B) properties with respect to agreement. X-axes represent the
dichotomization thresholds at which we recalculate the dichotomized MI. Mutual informa-
tion is depicted on the y-axes. Plot titles indicate the different diagonal spread (σ) parameters
used to synthesize the synthetic datasets. Solid lines (for dichotomized MI) are surrounded
by ribbons depicting the 95% confidence intervals over 10 runs at each combination of
parameters (τ, ω, β, σ).
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Figure 6.5: Statistical power achieved with the Pearson coefficient (a continuous mea-
sure of association; blue lines) and Fisher’s exact test (a measure of association between
dichotomized variables; red lines) for synthetic data with symmetrical (upper row) and
asymmetrical (lower row) properties with respect to agreement. Columns correspond to
the level of uniform “overall” noise (ω) added to the data, representing prior uncertainty.
X-axes represent the diagonal spread (σ), and the y-axes represent the test’s statistical power
for the given sample size and estimated effect sizes. Data subjected to Fisher’s exact test
were dichotomized at either a threshold of 5 (the “Median Split,” denoted by ‘+’ markers
in red) or 3 (the “Tail Split,” denoted by the dot markers in red). For all series, dark lines
denote means and the ribbons are 95% confidence intervals over 100 runs.

symmetrical reliability, the continuous test of association (Pearson correlation) retains

greater statistical power as the degree of diagonal spread increases, although this difference

lessens at very high levels of diagonal spread or overall (uniform) noise. However, under

conditions of asymmetrical reliability, dichotomizing data according to a “tail split” (here

a threshold of τ = 3) preserves greater statistical power than either a median split (τ = 5)

or continuous representation; this relationship was present even at high levels of diagonal

spread and overall uniform noise.

6.4 Discussion

The present study makes two important contributions. First, using a sample of 59 ratings

obtained using standardized vignettes compared to a consensus-defined gold standard [202],

we showed that the dichotomized Alda score has a higher MI between the observed and gold
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standard ratings than does the raw scale (which ranges from 0-10). Those data suggested that

the Alda score’s reliability is asymmetrical, with greater inter-rater agreement at the upper

extreme. Secondly, therefore, using synthetic experiments we showed that asymmetrical

inter-rater reliability in a score’s range is the likely cause of this relationship. Our results do

not argue that lithium response is itself a categorical natural phenomenon. Rather, using the

dichotomous definition as a target variable in supervised learning problems likely confers

greater robustness to noise in the observed ratings.

Some have argued that the existence of categorical structure in one’s data [224], or

evidence of improved reliability under a dichotomized structure [228], are potentially justi-

fiable rationales for dichotomization of continuous variables. These claims are generally

stated only briefly, and with less quantitative support than the more numerous mathematical

treatments of the problems with dichotomization [224, 225, 228, 229]. However, these more

rigorous quantitative analyses typically involve assumptions of symmetrical or Gaussian dis-

tributions of the underlying variables in the context of generalized linear modeling (although

Irwin & McClelland [225] demonstrated that median splits of asymmetric and bimodal

beta distributions is also deleterious). These analyses have led to vigorous generalized

denunciation of variable dichotomization across several disciplines, but our current work

offers important counterexamples to this narrative [225, 226].

The Alda score is more broadly used as a target variable in both predictive and associative

analyses, and not as a predictor variable, which is an important departure from most analyses

against dichotomization. Since there is no valid and reliable biomarker of lithium response,

these cases must rely on the Alda score-based definition of lithium response as a “ground

truth” target variable. In the case of predicting lithium response, where these ground

truth labels are collected from multiple raters across different international sites, variation

in lithium response scoring patterns across centres might further accentuate the extant

between-site heterogeneity.

To this end, inter-individual differences in subjective rating scales may be more informa-

tive about the raters than the subjects, and one may wish to use dichotomization to discard

this nuisance variance [223, 224, 228]. Doing so means that one turns regression supervised

by a dubious target into classification with a more reliable (although coarser) target. Appro-

priately balancing these considerations may require more thought than adopting a blanket

prohibition on dichotomization or some other form of preprocessing.
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An important criticism of continuous variable dichotomization is that it may impede

comparability of results across studies, both in terms of diminishing power and inflating

heterogeneity [229]. However, this is more likely a problem when dichotomization thresh-

olds are established on a study-by-study basis, without considering generalizability from

the outset. These arguments do not necessarily apply to the Alda score, since the threshold

of 7 has been established across a large consortium with support from both reliability and

discrete mixture analysis [202], and is the effective standard split point for this scale [30].

Our study thus provides a unique point of support for the dichotomized Alda score

insofar as we show that the retention of MI and frequentist statistical power is likely due to

asymmetrical reliability across the range of scores. Our analyses show that there is a range

of Alda scores (those identifying good lithium responders; scores ≥ 7) for which scores

correspond more tightly to a consensus-defined gold standard in a large scale international

consortium. In particular, we showed that this dichotomization will be more robust to

increases in the prior uncertainty (i.e. the overall level of background “noise” in the

relationship between true/observed scores). This feature is important since the sample

of raters included in the Alda score’s calibration study [202] was relatively small and

consisted of individuals involved in ConLiGen centres. It is reasonable to suspect that

assessment of Alda score reliability in broader research and clinical settings would add

further disagreement-based noise to the inter-rater reliability data. At present, use of the

dichotomized scale could confer some robustness to that uncertainty.

More generally our study showed that if reliability of a measure is particularly high at

one tail of its range, then a “tail split” dichotomization can outperform even the continuous

representation of the variable. This presents an important counterexample to previous

authors, such as Cohen [220], Irwin & McClelland [225], and MacCallum et al. [224] who

argued that “tail splits” are still worse than median splits. While our study reaffirms these

claims in the case of measures whose reliability is constant over the domain (see Figure 4B

and the upper row of Figure 5), our analysis of the asymmetrically reliable scenario yields

opposite conclusions, favouring a “tail split” dichotomization over both median splits and

continuous representations. Tail split dichotomization was particularly robust when data

were affected by both asymmetrical reliability and high degrees of uniform noise over the

variable’s range. Together, these results suggest that dichotomization/categorization of a

continuous measurement may be justifiable when its relationship to the underlying ground
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truth variable is noisy everywhere except at an extreme.

Our study has several limitations. First, our sample size for the re-analysis of the Alda

score reliability was relatively small, and sourced from highly specialized raters involved in

lithium-specific research. However, one may consider this sample as representative of the

“best case scenario” for the Alda score’s reliability. It is likely that further expansion of the

subject population would introduce more noise into the relationship between ground truth

and observed Alda scores. It is likely that most of this additional disagreement would be

observed for lower Alda scores, since (A) there are simply more potential item combinations

that can yield an Alda score of 5 than an Alda score of 9, for example, and (B) unambiguously

excellent lithium response is a phenomenon so distinct that some question whether lithium

responsive BD may constitute a unique diagnostic entity [38, 40]. Thus, we believe that

our sample size for the reliability analysis is likely sufficient to yield the present study’s

conclusions.

Our study is also limited by the fact that theoretical analysis was largely simulation-based,

and thus cannot offer the degree of generalizability obtained through rigorous mathematical

proof. Nonetheless, our study offers sufficient evidence—in the form of a counterexample—

to show that there exist scenarios in which dichotomization is statistically superior to

preserving a variable’s continuous representation. Furthermore, we used well controlled

experiments to isolate asymmetrical reliability as the cause of dichotomization’s superiority

across simulated conditions.

6.5 Conclusion

In conclusion, we have shown that a dichotomous representation of the Alda score for

lithium responsiveness is more robust to noise arising from inter-rater disagreement. The

dichotomous Alda score is therefore likely a better representation of lithium responsiveness

for multi-site studies in which lithium response is a target or dependent variable. Through

both re-analysis of the Alda score’s real-world inter-rater reliability data and careful theo-

retical simulations, we were able to show that asymmetrical reliability across the score’s

domain was the likely cause for superiority of the dichotomous definition. Our study is not

only important for future research on lithium response, but other studies using subjective

and potentially unreliable measures as dependent variables. Practically speaking, our results

suggest that it might be better to classify something we can all agree upon than to regress
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something upon which we can not.



Chapter 7

Exemplar Scoring Identifies Genetically Separable Phenotypes of

Lithium Responsive Bipolar Disorder1

Abstract. Predicting lithium response (LiR) in bipolar disorder (BD) could expedite effective phar-

macotherapy, but phenotypic heterogeneity of bipolar disorder has complicated the search for genomic

markers. We thus sought to determine whether patients with “exemplary phenotypes”—those whose

clinical features are reliably predictive of LiR and non-response (LiNR)—are more genetically separable

than those with less exemplary phenotypes. We applied machine learning methods to clinical data

collected from people with BD (n=1266 across 7 international centres; 34.7% responders) to compute

an “exemplar score,” which identified a subset of subjects whose clinical phenotypes were most robustly

predictive of LiR/LiNR. For subjects whose genotypes were available (n=321), we evaluated whether

responders/non-responders with exemplary phenotypes could be more accurately classified based on

genetic data than those with non-exemplary phenotypes. We showed that the best LiR exemplars had

later illness onset, completely episodic clinical course, absence of rapid cycling and psychosis, and few

psychiatric comorbidities. The best exemplars of LiR and LiNR were genetically separable with an area

under the receiver operating characteristic curve of 0.88 (IQR [0.83, 0.98]), compared to 0.66 [0.61, 0.80]

(p=0.0032) among the poor exemplars. Variants in the Alzheimer’s amyloid secretase pathway, along

with G-protein coupled receptor, muscarinic acetylcholine, and histamine H1R signaling pathways were

particularly informative predictors. In sum, the most reliably predictive clinical features of LiR and LiNR

patients correspond to previously well-characterized phenotypic spectra whose genomic profiles are

relatively distinct. Future work must enlarge the sample for genomic classification and include prediction

of response to other mood stabilizers.

1Nunes A, Stone W, Ardau R, Berghöfer A, Bocchetta A, Chillotti C, Deiana V, Degenhardt F, Forstner AJ,

Menzies JS, Grof E, Hajek T, Manchia M, McMahon FJ, Müller-Oerlinghausen B, Nöthen MM, Pinna M,

Pisanu C, O’Donovan C, Rietschel MDC, Rouleau G, Schulze T, Severino G, Slaney CM, Squassina A,

Suwalska A, Turecki G, Zvolsky P, Cervantes P, del Zompo M, Grof P, Rybakowski J, Tondo L, Trappenberg

T, and Alda M. Exemplar Scoring Identifies Genetically Separable Phenotypes of Lithium Responsive Bipolar

Disorder. Submitted manuscript.
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7.1 Introduction

Bipolar disorder (BD) is a severe lifelong illness characterized by recurrent manias, de-

pressions, and a relatively high suicide risk [230, 231]. Mood stabilizer initiation occurs

approximately a decade after symptom onset, on average [193], and the trial-and-error

process of pharmacological optimization for BD may lengthen this time. However, by

predicting individuals’ mood-stabilizer response, this burden of untreated illness may be

reduced.

Clinical data are currently the best lithium response predictors. Responders often have

a completely episodic course with full inter-episode remissions, absence of rapid cycling,

and family history of fully remitting BD (particularly the lithium responsive type) in a first

degree relative [36, 198]. This has motivated the search for strong genomic predictors of

lithium response, but they remain elusive [30].

In large multi-site studies, lithium responder and non-responder groups may be too

heterogeneous to classify robustly. However, it is possible that within this pooled group

of heterogeneous subjects there exist more distinct “exemplars” of each phenotype, whose

clinical profiles are consistent across sites, and who may be genomically more distinct. Our

paper is thus motivated by two questions. First, can clinical presentation identify exemplars

of lithium response and non-response? Second, are clinical exemplars of lithium response

and non-response more genetically separable than their less exemplary counterparts?

Using the largest clinical database on lithium treatment in BD, we developed a method

for rating the degree to which a subject is an exemplar of lithium response or non-response,

respectively (an exemplar score). We hypothesized that the clinical differences between the

best exemplars of lithium response and non-response would be reflective of factors previously

associated with the “classical” bipolar phenotype. Finally, on a subset of subjects who were

genotyped, we hypothesized that clinically exemplary responders and non-responders would

be more accurately separable by application of a machine learning (ML) classifier to their

genomic data (compared to their counterparts with low exemplar scores).

7.2 Methods

Our analysis is split into two parts. In Part 1, we use a multi-centre database of clinical

variables in order to derive a score that identifies subjects whose clinical phenotypes reliably
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predict lithium response/non-response. Part 2 uses a separate set of genomic data collected

from a subset of subjects included in the clinical data from Part 1. In Part 2, we compare

the ability to classify lithium response using those genetic data when they are stratified

according to subjects’ clinical exemplar scores.

7.2.1 Part 1: Scoring and Characterization of Clinical Exemplars

Data Collection

Clinical data collection procedures were described in Nunes et al. [35]. Data consisted of

180 variables recorded prior to instituting lithium maintenance therapy in 1266 people with

BD across 7 sites internationally (Table 5.1). Response was evaluated after a minimum

treatment duration of 1 year. Lithium response was defined as a score of ≥ 7 on the

previously validated Alda scale [202].

Exemplar Scoring Based on Clinical Predictors

Subjects who are most exemplary of their clinical phenotype should be classified accurately

by models trained on data from any given site. Our overall exemplar scoring protocol thus

involves (1) obtaining out-of-sample predictions of every subject’s class based on models

trained on each individual site’s data, then (2) summarizing accuracy and level of agreement

with which each subject was classified into a single value known as the exemplar score

(Figure 7.1).

The Clinical Exemplar Score

Let (xij, yij) ∈ X denote phenotypic data from subject i ∈ {1, 2, . . . , nj}, where xij is a

vector of clinical features, yij ∈ {0, 1} denotes whether the patient is a lithium responder,

and nj is the number of patients in the sample from site j ∈ {1, 2, . . . , S}. A pair (x, y)

can thus be viewed as a set of coordinates on the (observable) phenotypic space X . Data

are sampled from S sites, each of which can be considered to sample a subdomain of

the phenotypic space X (j) ⊆ X . These site-wise subdomains are not necessarily disjoint.

Indeed, if they were disjoint, the sites’ data would share nothing in common.

Now letMj denote a classifier learned on training data from site j. Given a new set of

clinical features, x′, the classifier predicts the probability that the corresponding patient is a
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A

CB

Part 1: Analysis using only clinical variables

Figure 7.1: Hypothetical illustration of the clinical exemplar scoring analysis. Note that
this part of the analysis is performed using the clinical feature dataset alone. Panel A:
Demonstration of heterogeneity in the relationship between lithium responsiveness (depicted
as “Li(+)” for responders and “Li(-)” for non-responders) and clinical features across four
hypothetical sites. A classifier trained on data from each individual site may yield different
discriminative functions. Panel B: Points demonstrate the aggregated dataset (“+” and “-”
are responders and non-responders, respectively). Contours demonstrate regions of clinical
feature space in which site-level classifiers (from Panel A) agree with high accuracy on the
predicted class. An exemplar score can be computed for each subject in the clinical dataset
by (1) holding his data out of the training set, (2) predicting his lithium responsiveness
using site-level classifiers trained on the remaining subjects, then (3) using the site-wise
prediction results to compute the exemplar score. Panel C: Stratification of the clinical
dataset according to lithium responsiveness and exemplar score quartile. The “LRBest”
and “NRBest” exemplars are those responders and non-responders with exemplar scores
above the 75th percentile, respectively. The “LRPoor” and “NRPoor” exemplars are those
responders and non-responders with exemplar scores below the 25th percentile, respectively.
This stratification can be used to evaluate the clinical features that differentiate good from
poor exemplars of lithium response and non-response, respectively.
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lithium responder: that is, p̂′j =Mj (x′). We denote the accuracy score of this prediction as

f̃j (x′, y′) = 1− |y′ −Mj (x′)| . (7.1)

Recall from Chapter 4 that representational Rényi heterogeneity consists of measuring

heterogeneity on a latent or transformed space onto which observable data are mapped. To

apply this in the present case, where we have defined our observable space, X , we must

now devise an appropriate transformed space upon which the Rényi heterogeneity will be

both meaningful and tractable. Hence, we recall from Chapter 5 that the heterogeneity

deemed relevant presented in terms of differences in classification models across sites.

Most starkly, we noted that the informative features for lithium response prediction varied

between the best performing sites. In other words, depending on which site’s data are used

for training, one might learn quite different (and perhaps even contradictory) relationships

between clinical features and lithium responsiveness. In the limit where data from each site

encodes completely different relationships between clinical features and lithium response,

then each classifier Mj will behave distinctly (they will tend to disagree). In terms of

numbers equivalent, we would say that in such a case there is an effective number of S

distinct classifiers. Conversely, if the phenotypic domains of all sites overlap completely,

then all classifiersMj will tend to make similar predictions, which would correspond to an

effective number of one classifier.

Let the accuracy of classifierMj in predicting the relationship x → y be a measure

of that model’s informativeness at point (x, y). We can thus define T as a categorical

space representing an index on “the most informative classifier.” We illustrate the mapping

f : X → T in Figure 7.2. A probability distribution over T can be computed using a

normalization of Equation 7.1:

f (x, y) =

{
1− |y −Mj (x)|∑S

k=1 (1− |y −Mk (x)|)

}S

j=1

. (7.2)

The quantity fj (x, y) can be taken to represent the probability that a classifier trained on

data from site j is the most informative about the x→ y mapping in that particular region of

X . With this, we can compute the representational Rényi heterogeneity at (x, y) as follows:
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(Phenotypic Space)



(Most Informative Site)

(xi, yi)

Site1

Siten

f(xi,yi)

⋮

Figure 7.2: Representation of the mapping from phenotypic space X onto the representation
of “most informative site-level model” (T ). The transformation function is the normalized
accuracy score for a classification model trained on each site’s data individually (Equation
7.2).

Πq (x, y) =

(
S∑

j=1

f qj (x, y)

) 1
1−q

. (7.3)

If the modelsMj=1,2,...,S differ only in their training data (i.e. they have the same archi-

tecture, optimization routine, and hyperparameters) then the units of Equation 7.3 are “the

effective number of informative sites.”

Recall that we defined a “clinical exemplar” as a subject whose phenotype (x, y) is

reliably predicted accurately across all sites. In other words, regardless of the differences

between sites’ data, all sites would agree in their predictions of the exemplars’ phenotypes.

More formally, clinical exemplars must have high values of Πq (x, y) (all sites are similarly

informative). However, to identify more specifically the exemplars of lithium response and

non-response, we cannot solely rely on Πq (x, y), since that value may be high, despite sites’

prediction accuracies being low.

Let t∗ = maxj f̃j (x, y) denote the maximal accuracy score obtained in classification at

(x, y). We take this value to represent the degree to which a subject with that phenotype can

be clearly associated with one class or another. An interesting case occurs where both t∗
and Πq (x, y) are high, suggesting the point (x, y) is an exemplar of the regions of X that

are reliably well classified across sites. Conversely, if t∗ ≈ 0.5 and Πq (x, y) is high, then

that point is exemplary of a region of X of which all sites are uncertain. When t∗ is low and

Πq (x, y) is high, then (x, y) is exemplary of a region of X that reliably misleads all sites’

classifiers.

In the present study, we are concerned with identifying only those subjects with high
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values of both t∗ and Πq (x, y), since they exemplify the most canonical “phenotypes” of

lithium response and non-response, respectively. We accomplish this by combining t∗

and Πq (x, y) into a single index we call the exemplar score. The exemplar score for the

phenotypic point (x, y) is defined as

φi =

√√√√Π̃
2

q (x, y) + (t∗)2

2
, (7.4)

where Π̃q (x, y) is a standardization of the Rényi heterogeneity to the [0,1] interval (the

same scale as t∗):

Π̃q (x, y) =
Πq (x, y)− 1

S − 1
(7.5)

In the present study, we define the “best exemplars” as subjects whose exemplar scores

(within their lithium response classes) were in the top 25%. Poor exemplars were those

subjects whose phenotypes were in the lower quartile of exemplar scores within their

response classes.

The Predict Every Subject Out (PESO) Protocol

The predict every subject out (PESO) protocol is a method by which we can compute

exemplar scores for each subject in the dataset while (A) ensuring that subject is not

included in the training data and (B) having each model train on only that site’s data. All

classifiers in our data were random forests, (RFC) [208] under the same specifications as

in Nunes et al. [35] (100 estimators; SciKit Learn implementation; [209]). Similar to that

study, missing data were marginalized by sampling from uninformative priors on respective

variables’ domains [35]. A schematic of the protocol is shown in Figure 7.3.

For each site in the clinical predictors dataset, the PESO analysis protocol begins with

a Leave-One-Out cross-validation run to obtain out-of-sample predictions for each of that

site’s constituent subjects. We then train an RFC on that site’s data and predict lithium

response in all other sites’ subjects. Each subject is thus mapped onto our categorical space

T , upon which we can measure their exemplar scores.
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Figure 7.3: Illustration of the algorithm for the predict every subject out protocol.
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Comparison of Clinical Characteristics of the Best and Worst Exemplars

Univariate clinical feature differences were compared between the best exemplars of lithium

response and non-response (“LRBest” and “NRBest,” respectively; the upper exemplar

score quartile per class), and the corresponding poor exemplars (“LRPoor” and “NRPoor,”

respectively; the lower exemplar score quartile per class). Continuous variables were

compared using the two-sample permutation test of independence and categorical variables

were compared using the randomization chi-square test (with 10,000 replications owing

to multiple comparison corrections). The significance threshold was adjusted for 116

comparisons: αC = 0.05/116 = 0.0004.

7.2.2 Part 2: Biological Validation hrough Genomic Classification

Figure 7.4 illustrates Part 2 of the present study, wherein we compare the genetic pre-

diction of lithium response between subjects whose clinical profiles are exemplary and

non-exemplary, respectively. After comparing genomic classification performance between

the “Best” and “Poor” exemplar strata, respectively, we submit the genomic classifiers’

coefficients to gene enrichment analysis. This part of our study uses genomic data from

subjects in the Consortium on Lithium Genetics GWAS cohort [30] who also had detailed

clinical information collected for Part 1 of the present study.

Data Collection

Genomic data, obtained as part of the ConLiGen GWAS [30], were available for 321 of the

subjects whose clinical data were analyzed in Part 1 of our study. In the Supplementary

Materials, we show that there was no population stratification in this subsample, particularly

in comparison to the broader ConLiGen sample. We restricted the data to only the 47,465

SNPs for which complete data were available across all ConLiGen sites. Preprocessing and

quality control were done according to the Hou et al. [30] protocol.

Genomic Classification Analysis

For genotyped subjects, we compared the performance of a classifier applied to (A) all 321

subject’s genomic data, (B) the worst exemplars’ genomic data, and (C) the best exemplars’
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Part 2: Analysis using genomic data stratified by clinical exemplar score

Stratify 
genotyped 
subjects by 

their clinical 
exemplar 

scores

Classifier Classifier Classifier

A1

A2

A B1

B2

B

Figure 7.4: Hypothetical illustration of Part 2 of this study’s analysis, which evaluates the
degree to which stratification of genomic data by corresponding subjects’ clinical exemplar
scores can improve genomic classification performance. Panel A: Subjects’ genotypes lie on
a genotypic feature space (shown in Panel A1 as a simplified 2 dimensional plane). Panel A2

shows a hypothetical ROC curve for these aggregated data. Panel B: Each genotyped subject
has an exemplar score computed from Part 1 of the present study. Recall that the exemplar
score merely identifies the degree to which a subject’s clinical profile (i.e. symptoms,
family history, comorbidities, etc.) is reliably predictive of lithium responsiveness. Panel B1

shows that the aggregated genotyped sample can then be stratified into the “Best” clinical
exemplars (subjects with top 25% of clinical exemplar scores within each of the responder
and non-responder groups, respectively), and the “Poor” clinical exemplars (those with
the lowest 25% of clinical exemplar scores in each responsiveness class). We then apply
classifiers to the genomic data in each of these “Best Exemplar” and “Poor Exemplar” strata,
respectively, and compare classification performance (Panel B2). The hypothetical receiver
operating characteristic curve in Panel B2 reflects our hypothesis, that genetic classification
of lithium response will be superior among the subgroup of Best clinical exemplars.



129

genomic data. We employed L2-penalized logistic regression (C=1 set a priori). Model

criticism was performed under stratified-10-fold cross-validation.

Our primary outcome was the average cross-validated Matthews correlation coefficient

(MCC), which is conservative under class imbalance. Classification performance differences

were compared between conditions using the Kruskal-Wallis test. Where a statistically

significant difference was observed (at α = 0.05), pairwise comparisons were done with

the Mann-Whitney U tests (at threshold αC = 0.05/3 = 0.017). We secondarily report

accuracy, area under the receiver operating characteristic curve (ROC-AUC), Cohen’s kappa,

sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

In the model trained on the best exemplars, we indexed variants whose logistic regres-

sion coefficients agreed in sign across all cross-validation folds, then applied a statistical

enrichment test to the nearest associated genes using the PANTHER classification system v.

14.1 [232]. To evaluate the relationship between exemplar strata and enriched pathways, we

repeated this analysis using logistic regression coefficients from the poor exemplar group.

The threshold for statistical significance was set at αFDR = 0.05, where FDR indicates

correction for false discovery rate. Further gene set analysis details are provided in Appendix

C.1.

7.3 Results

7.3.1 Part 1: Scoring and Characterization of Clinical Exemplars

Accuracy Distributions in the Predict Every Subject Out Analysis

A classifier trained on data from the Maritimes site achieved the highest mean overall

accuracy (0.59, 95% confidence interval, CI, [0.58, 0.6]; Figure 7.5), which appeared largely

driven by that site’s ability to accurately classify its own subjects (0.69 [0.66, 0.71]), and

those from Montreal (0.71 [0.67, 0.75]). However, Figure 7.5 shows that site-level models’

accuracy distributions were highly variable in shape and modality, suggesting heterogeneous

classification behaviour between sites.

Characteristics of the Best and Poor Exemplars

Within the clinical dataset of Part 1, there were 110 individuals in LRBest and LRPoor

groups, and 207 individuals in the NRBest and NRPoor groups (Table 2). The LRBest group
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Figure 7.5: Accuracy distributions for models evaluated under the predict every subject out
(PESO) regime. The violin plot at the upper leftmost corner shows the accuracy distributions
for each site model evaluated over all subjects in the dataset, with the densities colored
according to the proportion of lithium responders in the training site’s data. The remaining
subplots show accuracy histograms for training site models (specified in the titles) stratified
across out-of-sample sites. For the site-wise histograms, color indicates the responder/non-
responder balance in the respective validation site. Abbreviations: Lithium responder (LR+),
Cagliari (Centro Bini; CB), Cagliari (University; CU), International Group for the Study of
Lithium (IGSLi), Maritimes (MAR), Ontario (ON), Poznan (POZ).
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came predominantly from IGSLi (53.6%) and Ontario (21.8%), and most NRBest subjects

were from Maritimes (72.5%) and Montreal (25.1%).

Table 7.1: Clinical characteristics of exemplars, by lithium responsiveness. Characteristics

of the best (upper 25% of exemplar scores) and poor (lower 25% of exemplar scores) exem-

plars of lithium response (LiR) and non-response (LiNR), respectively. Categorical data are

presented as count (%), whereas normally distributed continuous variables are presented as

mean (standard deviation), and non-normal continuous variables are presented as median

[interquartile range]. Abbreviations: Calgiari (University; CU), Cagliari (Centro Bini; CB),

International Group for the Study of Lithium (IGSLi), Maritimes (MAR), Montreal (MTL),

Ontario (ON), Poznan (POZ), bipolar disorder (BD), major depressive disorder (MDD),

antidepressants (AD), schizoaffective disorder (SZA), global assessment of functioning

(GAF), lithium (Li), suicide attempts (SA), first degree relatives (FDR), second degree

relatives (SDR), schizophrenia (SCZ), suicidal ideation (SI), history (Hx), generalized anxi-

ety disorder (GAD), obsessive compulsive disorder (OCD), attention deficit hyperactivity

disorder (ADHD), hypertension (HTN), socioeconomic status (SES).

Best Exemplars Poor Exemplars

LiNR LiR p LiNR LiR p

n 207 110 207 110

Male (%) 76 (36.7) 46 (41.8) 0.398 79 (38.2) 34 (30.9) 0.215

Age (y) 42.4 [32.1, 51.8] 54.2 [42.4, 65.5] <1e-3 45.9 [36.4, 57.8] 59.7 [44.4, 66.1] <1e-3

Centre (%) - 1e-3

CU 4 (1.9) 21 (19.1) 74 (35.7) 1 (0.9)

CB 1 (0.5) 0 (0.0) 70 (33.8) 11 (10.0)

IGSLi 0 (0.0) 59 (53.6) 0 (0.0) 8 (7.3)

MAR 150 (72.5) 6 (5.5) 38 (18.4) 16 (14.5)

MTL 52 (25.1) 0 (0.0) 11 (5.3) 2 (1.8)

ON 0 (0.0) 24 (21.8) 6 (2.9) 21 (19.1)

POZ 0 (0.0) 0 (0.0) 8 (3.9) 51 (46.4)

Diagnosis (%) 0.124 0.047

BD I 139 (67.1) 71 (64.5) 136 (65.7) 66 (60.0)

BD II 62 (30.0) 33 (30.0) 51 (24.6) 36 (32.7)

MDD Recurrent 0 (0.0) 3 ( 2.7) 3 (1.4) 4 (3.6)

MDD Single 0 (0.0) 1 (0.9)

SZA 6 ( 2.9) 3 (2.7) 17 (8.2) 3 (2.7)

Age of onset (y) 19. [16., 24.] 28 [21., 36.] <1e-3 22.5 [18., 32.25] 27.5 [18.25, 35.] 0.166

Onset D (y) 20. [16., 25.] 30 [23., 37.] <1e-3 28 [20., 38.] 30 [20.50, 37.50] 0.775

Onset M (y) 25. [21., 32.] 30 [26., 40.] 1e-3 29.3 [22., 36.5] 32 [28., 39.7] 0.009

Onset m (y) 26.5 [21., 38.5] 38 [25.5, 45.5] 0.003 32.49 (14.59) 38.13 (12.16) 0.060

Polarity episode 1 (%) 0.0002 0.011

Continued on next page...
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Best Exemplars Poor Exemplars

LiNR LiR p LiNR LiR p

Biphasic (D-M) 4 (2.0) 5 (5.8) 3 (5.8) 1 (2.4)

Biphasic (M-D) 13 (6.6) 4 (4.7) 2 (3.8) 2 (4.8)

Hypomania 19 (9.7) 8 (9.3) 10 (19.2) 3 (7.1)

Major depression 142 (72.4) 42 (48.8) 20 ( 38.5) 30 (71.4)

Mania 13 (6.6) 16 (18.6) 16 (30.8) 4 (9.5)

Minor depression 5 (2.6) 11 (12.8) 1 (1.9) 2 (4.8)

Clinical course (%) 1e-3 1e-3

Chronic 14 (6.8) 0 (0.0) 8 (4.1) 21 ( 25.3)

Chronic deteriorating 2 (1.0) 0 (0.0) 3 (1.5) 2 (2.4)

Chronic fluctuating 90 (43.5) 0 (0.0) 11 (5.6) 34 (41.0)

Completely episodic 7 ( 3.4) 27 (100.0) 146 ( 74.1) 15 (18.1)

Continuous cycling 1 (0.5) 0 (0.0) 7 (3.6) 2 (2.4)

Episodic + residual 93 (44.9) 0 (0.0) 22 (11.2) 9 (10.8)

N LT manias 3. [1., 7.] 2. [0., 3.] 1e-3 3. [1., 6.] 2. [1., 3.] 0.021

N LT depressions 5. [3., 15.] 3. [2., 6.] <1e-3 4. [2., 8.] 4. [2., 6.] 0.030

N LT mixed 0. [0., 1.] 0. [0., 0.] <1e-3 0. [0., 0.] 0. [0., 0.] 0.403

N LT multiphasic 0. [0., 1.] 0. [0., 2.] 1e-3 0. [0., 0.] 0. [0., 0.] 0.184

Total N LT episodes 9. [5., 24.50] 6. [5., 10.] <1e-3 8. [5., 15.] 5. [4., 9.] 0.005

Rapid cycling (%) 1e-3 0.701

Never 92 (47.2) 59 (98.3) 56 ( 93.3) 80 (96.4)

Only on AD 7 (3.6) 0 (0.0) 2 (3.3) 1 (1.2)

Spontaneous 96 (49.2) 1 (1.7) 2 (3.3) 2 (2.4)

Rapid mood switch (%) 47 (63.5) 0 (0.0) 0.061 6 ( 21.4) 1 (1.8) 0.005

LT psychosis (%) 1e-3 0.002

Episodic congruent 83 (42.8) 5 ( 16.7) 51 (38.9) 15 (20.0)

Episodic incong. 36 (18.6) 0 (0.0) 8 (6.1) 1 (1.3)

Never 72 (37.1) 25 (83.3) 70 ( 53.4) 59 (78.7)

Outside of episodes 3 (1.5) 0 (0.0) 2 (1.5) 0 (0.0)

GAF last assessment 70. [55., 75.] 90 [90., 95.] <1e-3 75 [60., 86.25] 87.5 [80., 90.] 0.013

Li total score 2. [0., 4.] 8. [8., 10.] <1e-3 3. [1., 5.] 8. [7., 9.] <1e-3

N episodes on Li 4. [1.25, 10.] 0. [0., 1.75] 0.012 2. [1., 4.] 1. [0., 1.50] 1e-3

N episodes pre Li 4. [3., 12.] 5. [4., 15.75] 0.144 4. [3., 7.] 4. [3., 6.] 0.775

N SA 0. [0., 1.] 0. [0., 0.] 0.003 0. [0., 0.] 0. [0., 0.] 0.155

N significant SA 1. [0., 1.] 0. [0., 0.] 0.0003 0. [0., 0.] 0. [0., 1.] 0.005

Age at SA1 (%) 26. [17., 35.] 20 [18., 36.] 0.752 36.16 (13.87) 33.79 (12.08) 0.670

FDR mood d/o (%) 99 (55.3) 31 (35.2) 0.003 76 (73.8) 22 ( 40.0) 0.0002

FDR BD (%) 44 (21.7) 9 (10.1) 0.021 62 (51.2) 42 (39.3) 0.080

N FDR BD-I 0. [0., 0.] 0. [0., 0.] 0.003 0. [0., 1.] 0. [0., 1.] 0.055

N FDR BD-II 0. [0., 0.] 0. [0., 0.] 0.716 0. [0., 0.] 0. [0., 0.] 0.899

N FDR Unipolar D 1. [0., 1.] 0. [0., 1.] 0.005 0. [0., 1.] 0. [0., 1.] 0.550

N FDR SZA 0. [0., 0.] 0. [0., 0.] 0.721 0. [0., 0.] 0. [0., 0.] 0.767

N FDR SCZ 0. [0., 0.] 0. [0., 0.] 0.051 0. [0., 0.] 0. [0., 0.] 0.212

N FDR Anxiety 0. [0., 0.] 0. [0., 0.] 0.001 0. [0., 0.] 0. [0., 0.] 0.323

N FDR Unaffected 0. [0., 1.] 0. [0., 0.] 0.0004 3.50 [0., 7.] 0. [0., 0.] <1e-3

N FDR Suicide 0. [0., 0.] 0. [0., 0.] 0.681 0. [0., 0.] 0. [0., 0.] 0.865

Continued on next page...
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Best Exemplars Poor Exemplars

LiNR LiR p LiNR LiR p

N FDR SA 0. [0., 0.] 0. [0., 0.] 0.222 0. [0., 0.] 0. [0., 0.] 0.073

N SDR Suicide 0. [0., 0.] 0. [0., 0.] 0.366 0. [0., 0.] 0. [0., 0.] 0.668

N SDR SA 0. [0., 0.] 0. [0., 0.] 0.266 0. [0., 0.] 0. [0., 0.] 0.686

Mood at SA (%) 0.338 1

Major depression 74 (91.4) 3 ( 75.0) 0 (0.0) 0 (0.0)

Mania 3 ( 3.7) 1 ( 25.0) 3 (16.7) 0 (0.0)

Minor depression 1 (1.2) 0 (0.0) 0 (0.0) 0 (0.0)

Mixed 2 ( 2.5) 0 (0.0) 0 (0.0) 0 (0.0)

Rapid cycling 1 ( 1.2) 0 (0.0) 0 (0.0) 0 (0.0)

LT Hx SI (%) 114 (61.3) 18 ( 34.0) 0.001 61 ( 44.2) 11 ( 40.7) 0.826

SI episodic (%) 1 -

No 1 ( 0.9) 0 (0.0) 0 (0.0) 0 (0.0)

Sometimes 6 ( 5.7) 0 (0.0) 0 (0.0) 0 (0.0)

Yes 99 (93.4) 2 (100.0) 9 (100.0) 8 (100.0)

Social anxiety d/o (%) 54 (26.6) 0 ( 0.0) 0.001 8 ( 4.5) 26 ( 35.6) 1e-3

Panic d/o (%) 57 (27.9) 2 ( 2.1) 1e-3 28 ( 15.5) 43 ( 48.9) 1e-3

GAD (%) 84 (41.2) 1 (3.6) 1e-3 13 ( 7.3) 39 ( 52.0) 1e-3

OCD (%) 29 (14.1) 2 (2.1) 0.003 1 ( 0.6) 8 ( 9.2) 0.0004

Substance abuse (%) 78 (37.9) 2 (2.0) 1e-3 43 ( 21.0) 39 ( 41.5) 0.001

ADHD (%) 11 ( 5.5) 0 (0.0) 1 11 (10.6) 45 ( 60.8) 1e-3

Learning d/o (%) 9 ( 4.5) 0 (0.0) 1 11 (10.6) 38 ( 51.4) 1e-3

Primary Insomnia (%) 35 (17.5) 0 (0.0) 0.380 7 (6.7) 9 ( 11.8) 0.287

Personality d/o (%) 38 (19.1) 0 (0.0) 0.375 3 (3.4) 23 ( 31.9) 1e-3

Diabetes mellitus (%) 20 (10.3) 0 (0.0) 0.600 6 (8.3) 5 ( 7.5) 1

HTN (%) 22 (11.4) 2 (20.0) 0.610 17 ( 23.6) 35 ( 53.0) 0.001

Menstrual d/o (%) 39 (34.2) 3 ( 60.0) 0.348 8 ( 26.7) 2 (4.7) 0.014

Thyroid disease (%) 55 (29.3) 2 ( 33.3) 1 18 ( 32.1) 8 ( 11.9) 0.008

Head injury (%) 48 (27.0) 1 ( 20.0) 1 17 ( 34.0) 24 ( 39.3) 0.698

Migraine (%) 44 (23.5) 2 ( 33.3) 0.622 11 ( 19.3) 9 ( 13.8) 0.474

SES (%) 1e-3 1e-3

Disabled 65 (36.3) 1 (3.4) 6 ( 3.4) 3 ( 4.0)

Other 12 ( 6.7) 8 ( 27.6) 23 ( 13.2) 0 ( 0.0)

Retired 8 ( 4.5) 7 ( 24.1) 25 ( 14.4) 22 ( 29.3)

Social assistance 32 (17.9) 2 ( 6.9) 4 ( 2.3) 3 (4.0)

Unemployment ins. 18 (10.1) 0 ( 0.0) 7 ( 4.0) 3 (4.0)

Unknown 2 ( 1.1) 1 ( 3.4) 1 ( 0.6) 0 (0.0)

Work full-time 30 (16.8) 10 ( 34.5) 96 ( 55.2) 29 (38.7)

Work part-time 12 ( 6.7) 0 ( 0.0) 12 ( 6.9) 15 ( 20.0)

Marital status (%) 1e-3 0.049

Divorced 47 (23.3) 2 ( 6.7) 16 ( 8.1) 9 ( 11.0)

Married 84 (41.6) 19 ( 63.3) 118 ( 59.6) 51 ( 62.2)

Single 67 (33.2) 2 ( 6.7) 51 ( 25.8) 11 ( 13.4)

Widowed 4 ( 2.0) 7 ( 23.3) 13 ( 6.6) 11 ( 13.4)

The LRBest group showed a later age of onset (median 28y, interquartile range, IQR
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[21, 36]) compared to NRBest (median 19, IQR [16, 24]; p<0.00001).

The LRBest subjects for whom clinical course information was available all showed

a completely episodic course, whereas NRBest courses were mainly chronic fluctuating

(43.5%) and episodic with residual symptoms (44.9%). These differences were statistically

significant at the omnibus level (p=0.0001). Interestingly, differences in clinical course

between LRPoor and NRPoor were opposite in direction to those observed among best ex-

emplars. NRPoor subjects had predominantly completely episodic clinical courses (74.1%),

whereas LRPoor subjects exhibited predominantly chronic fluctuating (41%) and chronic

(25.3%) courses, with only 18.1% being completely episodic (omnibus p=0.0001).

The complete absence of rapid cycling was reported in 98.3% of LRBest, and in only

47.2% of NRBest (p=0.0001). The remaining majority of the NRBest subjects (49.2%)

reported having experienced spontaneous rapid cycling. The occurrence of rapid cycling

was no different between LRPoor and NRPoor groups.

The occurrence of lifetime psychosis differed between LRBest and NRBest, with a total

of 42.8% of the non-responders reporting episodic and mood congruent psychosis (compared

to only 16.7% of responders; p=0.0001). Non-responders also reported incongruent episodic

psychosis in 18.6% of cases, with only 37.1% of non-responders reporting an absence of

psychosis altogether. In contrast, 83.3% of the best exemplars of lithium response reported

a complete absence of lifetime psychosis.

The LRBest group had a lower rate of panic disorder (2.1% vs. 27.9%; p=0.0001),

generalized anxiety disorder (3.6% vs 41.2%; p=0.00025), and substance abuse (2% vs.

37.9%; p=0.0001) than NRBest. There was also a general trend toward lower rates of

psychiatric comorbidity in LRBest compared to the NRBest group. Social anxiety disorder

was present in 0% of lithium responders but 27.9% of non-responders (p=0.0007). Respon-

ders also had relatively lower rates of obsessive-compulsive disorder (2.1%) compared to

non-responders (14.1%; p=0.0025). These findings were largely reversed when looking at

the poor exemplars. LRPoor subjects had higher rates of social anxiety disorder (35.6% vs

4.5%; p=0.0001), panic disorder (48.9% vs 15.5%; p=0.0001), generalized anxiety disorder

(52% vs 7.3%; p=0.0001), substance abuse (41.5% vs 21.0%; p=0.0005), attention deficit

hyperactivity disorder (60.8% vs. 10.6%; p=0.0001), learning disability (51.4% vs 10.6%;

p=0.0001), and personality disorder (31.9% vs 3.4%; p=0.0001) compared to the NRPoor

subjects.
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7.3.2 Part 2: Biological Validation through Genomic Classification

Recall that the genomic data for this element of the analysis are derived from a single site in

the ConLiGen data. In Appendix C.2, we demonstrate relative lack of genomic population

stratification in this subset, with a comparison to the broader ConLiGen sample.

Genomic Classification among the Best and Poor Exemplars

Genotyped subjects overlapped with clinical data from the Maritimes (n=129; 40%), Mon-

treal (n=74; 23%), Ontario (n=62; 19%), and IGSLi (n=56; 17%), although in the ConLiGen

GWAS [30], they were all classified as from the Maritimes (Dalhousie University). Most

clinical differences reflect those reported in Section 7.3.1 and thus are reported in Table C.1.

Genomic classification results are presented in Figure 7.6 and in tabular fashion in

Table C.2. The median MCC for classification of the Best exemplars was 0.58 (IQR [0.41,

0.77]), which was greater than classification analyses with either the poor exemplars (0.29

[0.06, 0.5]; p=0.0043), or the entire dataset (0.32 [0.2, 0.44]; p=0.002). The ROC-AUC for

classification of lithium response in the Best exemplars was 0.88 [0.83, 0.98], which was

greater than that of the model trained only on poor exemplars (0.66 [0.61, 0.80]; p=0.0032)

or the whole dataset (0.7 [0.62, 0.75]; p=0.001).

Figure 7.7 shows pathway analysis results for the best exemplars. Enriched pathways

involved (A) muscarinic acetylcholine receptor types 1 and 3 signaling (mAChR1/3; 27

genes, false discovery rate FDR=0.017), (B) Alzheimer disease-amyloid secretase (30 genes,

FDR=0.034), (C) heterotrimeric G-protein coupled receptor Gq/Go α signaling (GPCRq/o-

α; 53 genes, FDR=0.04), and (D) histamine H1R mediated signaling (H1R; 27 genes,

FDR=0.039). Complete gene set analysis results are shown in Table C.3. Enrichment studies

in the gene ontology “cellular component” and “biological function” categories are shown

in Tables C.4 and C.5.

7.4 Discussion

Individuals who are most phenotypically representative of lithium response and non-response

may be more genetically distinct than their less exemplary counterparts, particularly in genes

related to GPCRq/o-α, mAChR1/3 or H1R signaling, and the Alzheimer’s amyloid-secretase

pathway. Exemplars also showed distinct clinical profiles that are consistent with past
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Figure 7.6: Genomic classification results. Results of classifying lithium response based

on the genomic data of all subjects (“ALL”; n=321), the poor exemplars (<25th percentile

of exemplar score; n=81), and the best exemplars (>75th percentile of exemplar score;

n=79). Boxes are defined by the interquartile range (IQR), with the median shown as

the black centered line. Whiskers are 1.5 times the IQR. Each panel shows the results

for a different classification performance metric. Abbreviations: Matthews’ correlation

coefficient (MCC), area under the receiver operating characteristic curve (AUC), Cohen’s

kappa (Kappa), positive predictive value (PPV), negative predictive value (NPV).
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Pathway Ngenes ± p FDR

 Muscarinic AChR1,3  signaling pathway 27 + 0.0001 0.017

 Alzheimer disease-amyloid secretase pathway 30 + 0.0005 0.034

 Heterotrimeric GPCRq/o α signaling pathway 53 + 0.0008 0.041

 Histamine H1 R  signaling pathway 27 + 0.001 0.039
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Figure 7.7: Gene enrichment in the best exemplars. Results of the statistical enrichment test
using the logistic regression coefficients from the classifier trained on the best exemplar.
Individual genes are shown in gray, with pathway nodes (and edges) colored according
to the pathway identity. Pathway names are shown in bold along the perimeter of the
graph. Abbreviations: acetylcholine receptor (AChR), G-protein coupled receptor (GPCR),
histamine H1 receptor (H1R), false discovery rate (FDR).
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phenotypic research on lithium responders. Since clinical exemplars are more genetically

separable, our study confers a measure of biological validity upon the practice of detailed

clinical evaluation, whose predictive utility we have previously demonstrated [35].

One of our most important findings was characterization of the LRBest group as indi-

viduals with (A) a predominantly completely episodic clinical course, (B) low levels of

psychiatric comorbidity, (C) later age of onset, (D) a general absence of rapid cycling, and

(E) either absence of psychosis or limitation to mood congruent intra-episodic form. The

first two findings are likely the strongest since we observe the opposite pattern among the

LRPoor and NRPoor groups. Notwithstanding, all of these elements support past evidence

on the clinical phenotype of lithium responsive bipolar disorder. For instance, Passmore

et al. [233] found that lithium responders generally had a more episodic course of illness,

whereas lamotrigine responders were more likely to have experienced rapid cycling, a higher

rate of psychiatric comorbidity, and an earlier age of onset. A later age of onset in lithium

responders has been demonstrated in meta-analysis [196, 234]. Absence of rapid cycling

has also been associated with good lithium response by Backlund et al [213] and Tondo et al.

[214]. Finally, Kleindienst & Greil [235] found that carbamazepine responders were more

likely to have had mood incongruent psychosis than lithium responders, while the updated

meta-analysis by Hui et al. found an association between absence of psychotic symptoms

and lithium responsiveness [196]. Aside from not including family history related variables

(potentially an artifact of related variable definitions), the clinical picture of the exemplary

lithium responder that emerges from our study largely aligns with that noted by several

authors, such as Grof [36], Gershon & Malhi [37], and Alda [236].

Recently, Kendler [237] reminded us that the utility of biological tests, such as the

electrocardiograms and troponin assays used to detect myocardial infarction, is generally

contingent upon the clinician’s identification of candidate patients whose presentations are

clinically consistent with the illness being targeted. The present study, which shows that

refinement of a clinical sample into those whose phenotypes are clinically most exemplary

of the target syndrome, provides strong data-driven support for Kendler’s statement. Further

still, we have noted that the clinical picture of the exemplary lithium responders (and non-

responders) has been hypothesized for some time, and our study now provides biological

support for the predictive validity of these phenotypic hypotheses. Specifically, we were able

to genomically classify the best clinical exemplars of lithium response and non-response



139

with a ROC-AUC of 0.88 (IQR [0.83,0.98]), whereas poor exemplars of these classes could

only be discriminated with a ROC-AUC of 0.66 (IQR [0.61,0.80]; p=0.0032). If there was

no biologically mediated information in the exemplary phenotype of lithium response (and

non-response), then this difference would not have been observed.

Variants most informative in discrimination of the best exemplars showed enrichment

of genes involved in the heterotrimeric GPCRq/o-α, mAChR1/3 or H1R signaling, and

the Alzheimer’s amyloid-secretase pathway. Lithium response and BD have long been

associated with GPCR signaling [238]. In particular, lithium may affect signaling in both

the Go-alpha pathway (at least via adenylate cyclase) and the Gq-alpha pathway (via effects

on 1,4,5-triphosphate and protein kinase C, PKC) [39, 41, 194, 239, 240]. Interestingly, our

results imply that differences in GPCR signaling may be segregated according to medication

responsiveness. Enrichment in the Alzheimer’s amyloid-secretase pathway is interesting

given the growing interest in the effects of lithium on Alzheimer’s pathology. Alterations

in cholinergic and histaminergic systems have figured less prominently in the biological

literature on BD and lithium response. However, note that Figure 7.7 shows that many

genes enriched in the cholinergic and histaminergic systems were also enriched in the GPCR

and Alzheimer’s amyloid pathways (which comparatively have more individual genetic

associations). It is possible that alterations in the cholinergic and histaminergic systems

may be subcomponents of the broader differences in the GPCR and Alzheimer’s amyloid

systems. In future work, it would be of interest to characterize a more fine-grained “gradient”

of genetic differences across the spectrum of exemplar scores, and to further evaluate the

significance of cholinergic and histaminergic system enrichment in our study.

One limitation of our study includes the relatively low sample size for the genomic

analysis. Future work could endeavor to obtain further genotypic information for individuals

in our clinical database, or detailed clinical information for individuals in our genomic

database. As features, our study also only used those SNPs that overlapped across genotyping

platforms in the ConLiGen dataset. Unfortunately, however, the number of fully imputed

variants was on the order of millions, which would be analytically intractable in the present

context. Filtering-based feature selection approaches in our present study would be (A)

too computationally expensive across these millions of variants and (B) require much

larger sample sizes since they must be repeated within each training partition. We also

had no dominant a priori biological rationale for limiting the data to a restricted subset,
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since, as our results later confirmed, these biological systems may differ between exemplar

strata. Ultimately, we chose the set of completely genotyped SNPs that overlapped across

ConLiGen sites in order to facilitate the potential conceptual generalizability of our pathway

analysis results, in particular. That is, since the pathways detected were based on variants

that are broadly genotyped, these results could potentially be extended to other ConLiGen

sites, should the corresponding clinical variables become available.

Our study is also limited by its focus on lithium response, at the exclusion of other mood

stabilizers. It is therefore possible our lithium responders are simply those with a more

generally responsive form of BD. The only way to prove specificity would be to obtain data

showing a single subject’s non-response to other mood stabilizers and response to lithium.

That being said, there is evidence that excellent response to lithium may be exclusive to

that medication [194]. After further validity checks on larger samples of genomic data in

lithium responders and non-responders, it will be of great interest to examine exemplar-

based genomic classification of mood stabilizer response more broadly. Such work could

potentially advance the development of joint clinical-biological prediction models for mood

stabilizer response.



Chapter 8

Discussion

Abstract. We have developed a method for heterogeneity measurement, representational Rényi het-

erogeneity (RRH), that is interpretable, flexible, and useful, particularly for computational psychiatric

research. In addition to, and as a result of our primary contribution, we have also made significant

advancements toward improving the understanding and management of bipolar disorder (BD). This argu-

ment is synthesized in light of the evidence presented in Chapters 2-7. This thesis’ main contributions are

reviewed, including (A) our outlining the desiderata for a heterogeneity measure suitable for psychiatric

research, (B) introduction of the representational Rényi heterogeneity framework, and (C) our demon-

stration of its utility in deriving an exemplar score, which allowed us to (D) identify canonical clinical

phenotypes of lithium responsiveness in BD upon whom (E) strong results were obtained in treatment

response prediction with genomic markers. We also comment on the ancillary statistical contribution

made in Chapter 6, wherein we demonstrate that asymmetrical reliability across the domain of a noisy

measurement creates a situation in which dichotomization of a continuous variable is appropriate. This

latter finding is also significant for the large body of studies on lithium responsiveness in humans with

BD. Throughout our discussion, we touch upon the importance of our findings, their limitations and

immediate opportunities, and open questions for longer term research.

8.1 One Measure for Many Systems

Heterogeneity is the degree to which a system diverges from a state of perfect internal

conformity. It is important across many scientific fields, whose perspectives on it differ

primarily with respect to their systems of interest. In the present work, our focus has

been the development of a heterogeneity measure that can be applicable to psychiatric

research. This introduces a number of challenges, most significantly that the concept

of heterogeneity has not been operationalized. For instance, consider that ecologists are

interested in biodiversity, which is merely the heterogeneity of the distribution of species

or biological functions in an ecosystem. Here, the system of interest is a community of

organisms whose event space includes a set of categorical labels (species classifications) with

or without associated data on functional traits. As another example, economists are interested

in wealth inequality, which is analogous to the heterogeneity of wealth ownership. Here,
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one’s system is the set of individual wealth-owning entities, and the abundance function

is a count of all resources in each entity’s possession. Thus, in ecology and economics,

operational definitions of heterogeneity follow quite naturally from the definition of their

systems of interest (see Chapter 4, Example 3 and Table 4.2). Such clarity of system

definition does not exist in psychiatric research at present, which may be an important factor

in delaying our discovery of appropriate heterogeneity measurement methods. Another

reason why heterogeneity in psychiatric research has not been viewed as a unified concept

with heterogeneity measurement in ecology and economics is that heterogeneity’s impact

may differ between fields. In ecology, biodiversity may impact ecosystem function [2]. In

economics, heterogeneity of wealth ownership may impact sociopolitical functions [3, 4].

In psychiatry, the heterogeneity of clinical conditions may compromise diagnostic and

treatment effect estimation, among other things [10]. Notwithstanding, heterogeneity is in

all cases a single statistical phenomenon: the degree to which a system diverges from a state

of perfect conformity.

8.2 Desiderata for a Heterogeneity Measure Suitable for Psychiatric Research

Our first task was thus to develop a better, more precise definition of what it means to

measure heterogeneity in computational psychiatry. To this end, we conducted a broad

survey of more than a century of research on heterogeneity measures, with further specific

focus on how they have been applied in psychiatry. We hypothesized that heterogeneity is

not uniquely defined across fields, but rather that it is a statistical concept that can be broadly

applied to systems that may themselves be defined differently. Indeed, the ecological and

economic definitions of heterogeneity merely swap organism sample counts for wealth

amounts, and species labels for proofs of ownership. Ultimately, we found that psychiatric

research studies tend to view heterogeneity as comprising either deviance (the degree to

which a system’s configurations differ from each other) or multimodality (the number and

degree to which a system’s configurations cluster together or form categories).

The common property to both deviance and multimodality is that adding them to any

given system will tend to increase the number of unique observations that system will yield.

Consider that the evolution of a diffusion process from a single point in a chamber of finite

volume results in a greater number of unique configurations of particles as time progresses

(i.e. entropy generates deviance over time). If one considers the relevant state space as
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categorical, even though those categories may be inferred by the clustering of continuous

data, then adding clusters corresponds to increasing the number of distinct categorical

system configurations. Thus, both deviance and multimodality are forms in which a system’s

number of configurations (the size of its event space) may increase.

Our review found that a single family of measures, the Rényi heterogeneity [17, 18, 91],

precisely measures the effective number of configurations a system may occupy. This

measure furthermore has useful properties, which most importantly include satisfaction

of the principle of transfers (Axiom 6; [85, 86]), the replication principle (Axiom 7; [21–

23, 90]) and decomposability [59, 93]. The principle of transfers must be satisfied since

the diversity of system configurations must increase as the system’s sampling probability

diffuses further over the space of configurations (i.e. an “equality increasing” transfer),

with heterogeneity maximized when all configurations are equally likely. The replication

principle is critical to ensure that the physical analogy of sizes and volumes are being used

in the formulation of heterogeneity [22]. Finally, decomposability is important because any

system with multiple configurations can be broken down into subsets of those configurations,

which are heterogeneous in themselves; thus, the operation of splitting and recombining of

these subsets must result in a conservation of heterogeneity.

Rényi heterogeneity also accounts for the ways in which other fields have viewed

heterogeneity as comprised of inequality and set size (adding more equally probable events

increases heterogeneity). The Rényi heterogeneity fails, however, when we are trying

to measure heterogeneity as a combination of both deviance and multimodality, such as

when our data are drawn from non-categorical spaces. Ecologists have developed several

approaches for this problem but they unfortunately all rely on (A) being able to group data

on the observable space into categories, and (B) assuming that pairwise distances between

these categories with respect to their observable non-categorical features is relevant and can

be calculated using a closed form expression.

What happens if we do not have the knowledge or ability to group data on the observable

space a priori? This is in fact the typical scenario encountered in psychiatric research. While

we have a basic system for categorization known as the Diagnostic and Statistical Manual

of Mental Disorders [69], these are merely symptom checklists that have dubious validity

and poor reliability across diagnosticians [178]. Furthermore, what happens when distances

on the observable space are misleading? This, too, is a common scenario in psychiatry.
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For instance, consider that small imperceptible translations or noise corruption of an image

can cause its self-distance on the observable space to deviate from 0 despite the intrinsic

semantic content of that image remaining intact. For instance, using the dataset from Haxby

et al. [241] in the nilearn package for the Python programming language, the reader can

verify for him or herself that variation in neural activation to semantically equivalent stimuli

occur between testing sessions for the same subjects.

Thus, our review (Chapters 2 and 3) suggested that a suitable measure of heterogeneity

for computational psychiatric research must capture both deviance and multimodality,

without requiring a priori knowledge of a grouping structure or pairwise distance measure

on the observable space.

8.3 Representational Rényi Heterogeneity

Representational Rényi heterogeneity (RRH) was introduced in Chapter 4 is an approach by

which heterogeneity can be measured such that (A) deviance and multimodality are both

captured, and (B) the requirements of categorization and pairwise distance measurement

on the observable space are avoided. To be clear, RRH is not itself a novel measure of

heterogeneity per sé, but rather a conceptual framework within which one may reorganize

the assumptions involved in heterogeneity measurement such that the statistical measure’s

assumptions remain relatively constant across applications. Rather, the primary differences

in assumptions between studies will be related to definition of the event space whose size is

being measured.

Representational Rényi heterogeneity involves transforming the space of observable data

into one upon which Rényi heterogeneity (Equation 4.3) is both tractable and semantically

relevant. In doing so, we can inherit the properties of interpretability associated with Rényi

heterogeneity discussed above (with further details in Chapter 2, 3, and 4). It will satisfy the

replication principle, allowing us to exploit the fact that most people can reason intuitively

about sizes. It will consequently scale linearly with growth in the event space. We showed

that this property also holds for continuous distributions in Chapter 4 and Appendix A.1.

Furthermore, the units of RRH will remain as numbers equivalent [20], which allows

us to make the domain-specific assumptions more clear. Specifically, when we report the

“effective number of X ,” we must be clear about what X is, and it must be relevant to the

domain of study at hand. This benefit could be made no clearer than when our example of
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measuring mood state heterogeneity (see Chapter 2) was criticized in peer-review because

our assumption of only three mood states (i.e. mania, depression, and euthymia) was

overly simplistic and could not truly capture the heterogeneity of a mood disorder. We

agreed wholeheartedly with this criticism, and in fact view it as a strong endorsement of our

approach: for the reviewer was able to provide such detailed and relevant criticism precisely

because Rényi heterogeneity requires assumptions about the system’s event space to be made

clear. We believe a great strength of the RRH approach is that the necessary assumptions are

shifted further toward the scientifically relevant aspects (such as how one defines the event

space of mood states), rather than toward statistical aspects (such as whether observable

space distances were defined using an optimal metric). Applied scientists are likely to find

greater utility in discussions regarding the former, rather than the latter set of assumptions.

There are other numbers equivalent measures of heterogeneity for non-categorical spaces,

namely the numbers equivalent Rao’s quadratic entropy (Q̂e), the functional Hill numbers

(Fq), and the Leinster-Cobbold index (Lq). In Chapter 4, we showed that RRH yielded better

interpretability and flexibility than these approaches. In the case where some continuous data

are mapped onto a categorical space (we used a beta mixture distribution in our example;

Section 4.3.1), we found that Q̂e required even further restrictions on the distance matrix:

namely that it must be ultrametric. The functional Hill numbers unfortunately showed

conditions under which it increased while the distribution over mixture components became

more uneven. This violated the principle of transfers (Axiom 6). Furthermore, Fq places

particular importance on the class distributions, since when class probabilities are equal, Fq
loses all sensitivity to dissimilarities (Appendix A.1). The Lq avoided these particular pitfalls

by neither violating the principle of transfers, nor relying on ultrametric distances. In fact,

RRH and Lq were similar in one respect, insofar as when data in a mixture distribution had

effectively one mode (i.e. when components overlapped), these measures were insensitive to

the mixture component weights (Figure 4.5). However, we note that RRH required neither

pre-specification of a categorical grouping structure nor a pairwise distance matrix on the

input space, unlike the existing measures. Chapters 2 and 3 suggested these properties were

important for a heterogeneity measure’s applicability in psychiatric research.

Despite not requiring a pairwise distance metric specified on the observable space, we

showed that the RRH could be applied to measure the heterogeneity of semantic content of

natural images (Section 4.4.2). Note that it is trivial to show that a distance metric on the
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space of observable images would be sensitive to imperceptible and semantically relevant

perturbations such as translations or subtle changes in pixel intensity. However, in Section

4.4.2 we learned a hierarchical abstraction of the semantic features of handwritten digit

images using a convolutional variational autoencoder (cVAE; [182]) which is translation

invariant and relatively more robust than raw pairwise distance measurement. Hence, much

potentially irrelevant variation on the observable space can be abstracted away by the model

such that one can focus on measuring the heterogeneity of the semantically relevant features.

For many of the same reasons that RRH is interpretable, it is also flexible. One needs

only a map from the observable space onto a transformed representation that can be tractably

submitted to Equation 4.3, and has scientifically relevant interpretation in terms of numbers

equivalent (or effective hypervolume of the event space in the continuous setting). Indeed,

many existing heterogeneity indices are special cases of RRH (Figure 8.1). Moreover, we

showed in Chapter 4 (Example 3, Table 4.2) that existing approaches to the measurement of

biodiversity and economic equality are special cases of RRH. In each of these cases, the

core interpretation of heterogeneity as the effective size of the system’s event space does

not change. The core differences in assumption relate primarily to how the event space is

defined. In so doing, we have maintained a consistent interpretability of heterogeneity as a

measurement while enabling its application across various domains. An associated benefit

of this approach is that the assumptions around definition of the event space must be made

clear, and are therefore more easily submitted to critical appraisal.

We note that differences between RRH, Q̂e, Fq, and Lq largely result from their different

concepts of the idealized reference system (Section 4.2). Thus, given the unification of cate-

gorical Rényi heterogeneity across disciplines under the RRH framework, and the absence

of counterintuitive behaviours under various experimental tests, we would not recommend

use of the other indices unless (A) their specific notions of idealized reference systems

are appropriate for the investigator’s domain-specific problem, or (B) there already exists

significant experience with the particular index for a given dataset, such that comparisons

can be easily made to existing measurements as references. That being said, one must apply

RRH carefully. We recommend the following steps:

1. Define the observable space X clearly

2. Define the latent/unobservable space Z clearly and justify the chosen topological
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properties. For instance, if a categorical latent space is chosen, the implicit assumption

is that observable states cluster into categories.

3. Define a mapping f : X → P(Z) that is relevant to the domain-specific problem,

and demonstrate its statistical validity using approaches such as maximization of

model evidence (an explanatory measure) or cross-validated accuracy (a measure of

predictive or generalization power)

4. Provide justification for the weighting across samples w = (wi)i=1,2,...,N

5. Unless there are specific contraindications, set the elasticity parameter to unity (q = 1)

6. Wherever possible, use bootstrapping to estimate confidence intervals on the Rényi

heterogeneity

8.4 The Utility of Representational Rényi Heterogeneity in Psychiatric Research

and Contributions to the Applied Research Domain

A heterogeneity measure is useful for psychiatry if it (A) captures multimodality and de-

viance, (B) does not require a priori categorical partitioning or specification of a distance

function on the observable space, (C) is interpretable and flexible across scientific questions,

and (D) demonstrably contributes to solution of a meaningful problem related to heterogene-

ity and psychiatric research. Points A-C have already been discussed, and so we now focus

on element (D), concerning the ecological validity of RRH.

Representational Rényi heterogeneity has contributed to solution of a meaningful prob-

lem in psychiatric research. Specifically, while data sampled from different clinical sources

is necessary to obtain sufficient sample sizes in large-scale projects, it introduces heterogene-

ity caused by factors unrelated to the clinical phenotype: that is, heterogeneity unrelated to

natural variation in a clinical condition’s intrinsic features. This may impact the general-

izability of any model learned on pooled data. Such a case was demonstrated in Chapter

5. Using clinical-interview based information from 1266 people with BD, we showed

that lithium response could be predicted in the pooled data based primarily on variables

related to patients’ long-term pattern of relapse and remission of mood episodes (mean

cross-validated ROC-AUC 0.8 95% CI [0.78, 0.82]; Kappa 0.46 [0.4, 0.51]). Patients with a
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Table 8.1: Conceptual partitioning of causes of heterogeneity in medical datasets pooled
across multiple sources.

Intrinsic Extrinsic
Shared Variation related to the underlying

biology of the condition itself.
Variation related to data collection
practices, instrument reliability, or
other factors that are (A) indepen-
dent of biological differences be-
tween subjects and (B) affect all data
sources to roughly the same degree.

Unique Source-wise variation in the under-
lying biology of the condition. For
instance, this may relate to differ-
ences in geographic expression of a
disease.

Variation unrelated to the condition
that varies by site. For instance, site-
specific diagnostic biases or measure-
ment error.

completely episodic course—whose manias and depressions are distinct episodes with full

recovery in between—and those with fewer than four episodes per year (i.e. without rapid

cycling), were more likely to be lithium responders. These variables were also the most

important features in the classifier trained only on data from Halifax, Nova Scotia, wherein

classification was relatively accurate (ROC-AUC 0.79 [0.74, 0.84]; Kappa 0.22 [0.13, 0.31])

and well calibrated (Brier score loss 0.15 [0.13, 0.16]). Conversely, the only other classifier

with substantial above chance accuracy at the site level (Poznan, Kappa 0.24 [0.16,0.33];

ROC-AUC 0.66 [0.60, 0.72]) prioritized completely different variables (such as whether

subjects had a diagnosis of primary insomnia). However, the classifier trained on Poznan

was poorly calibrated (Brier score loss 0.24 [0.23, 0.24]; also see Figure 7.5). Although

these results reinforced the utility of clinical interviews for prediction of lithium response in

BD, there remain significant generalizability concerns since different classification functions

are learned from different sites’ data.

Heterogeneity of clinical disorders and multisite research can be broken down along

intrinsic-extrinsic and shared-unique dimensions. Intrinsic heterogeneity is that natural

variation in the condition itself, whereas extrinsic heterogeneity is related to factors outside

of the disorder, such as data collection methods, the reliability of scales, and so forth.

Shared heterogeneity sources are those that affect all data sources equally while unique

heterogeneity sources are those that will affect one site more than the others (Table 8.1).

The heterogeneity sources most relevant for the primary medical research question are
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concentrated in the shared-intrinsic domain. In the classification problem at hand, we are

specifically interested in the heterogeneity of the phenotypic space X indexed by clinical

features and lithium response targets (x, y) respectively.

To isolate the subspace of X whose size is primarily reflective of shared-intrinsic

heterogeneity, we begin with the assumption that the ground truth presentation of BD is

geographically invariant. That is, BD should be the same biological disease regardless of

where the patient comes from. Thus, we assume that exclusion of heterogeneity caused by

all source-wise variations (intrinsic or extrinsic) is resulting in minimal loss of information

concerning the core variation in BD.

The intrinsic components of shared heterogeneity must also be isolated. This is difficult

primarily because one must be able to clearly identify all extrinsic sources of heterogeneity

for which control is desired. While procedures for this step are an important aim for future

developments, our work focused on two aspects. First, we ensured that heterogeneity due

to unreliability of the target variable was minimized (this was done Chapter 6). Second,

if shared intrinsic heterogeneity is reflective of true underlying biological variation, then

subjects whose phenotypes are reflective of shared-intrinsic heterogeneity should be separa-

ble based on biological markers. This validation was established using our classification

experiment and subsequent genetic enrichment studies in Chapter 7.

To the first point, Chapter 6 demonstrated that the target variable (lithium response

defined by a dichotomization of the Alda score) is more robust to uncertainty in raters’

judgements than the raw score (on the 0-10 scale) or symmetrical dichotomization of the

score (that is, the Alda score split at 5). Recall that a classifierM maps clinical variables

x onto an observable label, y. However, this label is only an estimate of subject’s “true”

lithium responsiveness, y∗. That is, y = g(y∗). Any uncertainty in the function g(·) will

result in heterogeneity of the classification function M(x) 7→ y. By isolating shared

heterogeneity we can eliminate that component of noise in g(·) related to variations in the

data source. However, to minimize the heterogeneity related to shared variation in g(·),
we argued in favour of dichotomization of the Alda score (the existing de facto standard

definition of lithium response in the literature). Chapter 6 supported this controversial

assertion with experiments that showed a more robust mutual information and statistical

power when “tail split” (dichotomization away from the median) is done on a variable

that is highly reliable at one extreme (that is, “asymmetrical reliability”). Our findings
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are controversial because most statistical literature on this matter argues strongly against

dichotomization [217–227, 229]. Yet we provide data from controlled simulations showing

that this asymmetrical reliability (a condition to our knowledge which is not been examined

in the statistical body of evidence) is the reason why dichotomization is favourable in our

case. Ultimately, the use of the dichotomized Alda score maximized the probability that

variation in the target variable was due to core variation in the BD phenotype proper, rather

than due to inter-rater differences. In our data, there were no other clear means by which to

minimize shared extrinsic heterogeneity.

The exemplar scoring method introduced in Chapter 7 is the first approach, to our

knowledge, of isolating areas of the phenotypic domain that are representative of data from

the maximum number of sources. Existing approaches to deal with between site hetero-

geneity and medical ML have focused primarily on various cross-validation approaches

[34, 35, 242]. However, none of these approaches can identify phenotypic subspaces that are

robust to heterogeneity caused by pooling multi-source data. The exemplar score approach

did just this, by mapping the phenotypic space onto a categorical domain representing the

most informative data source for each phenotypic configuration in our clinical dataset. The

Rényi heterogeneity computed on this transformed space gives the degree to which the

mapping x→ y at a given point on the phenotypic space is captured by all sites’ data. By

restricting the data set to only those points whose x→ y relationships are agreed upon by

most sites’ classifiers, then one essentially isolates the phenotypic subspace most reflective

of shared intrinsic heterogeneity. If this subspace is further restricted to only those (x, y)

points that could be accurately classified, then one can isolate the best exemplars of the

intrinsic relationship between clinical features and lithium responsiveness. Two validation

steps taken in Chapter 7 suggested that we accomplished the isolation of shared-intrinsic

heterogeneity.

First, we examined the clinical profiles of those identified as the “best” exemplars (top

25% of exemplar scores) and “poor” exemplars (bottom 25% of exemplar scores) of lithium

responsiveness for agreement with symptom profiles that have been consistently identified

over decades of research [36–38, 236]. Indeed, we found that factors related to age of onset

[196], clinical course [36, 233], rapid cycling [213, 214], history of lifetime psychosis [235],

and the degree of psychiatric comorbidity [233], were the most salient differences between

the best exemplars of lithium response and nonresponse. The primary departure from the
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existing literature relates to the absence of family history variables amongst this salient

set [198]. This may have been related to representation of family history variables, but

it is also possible that geographic variations in family size could obscure the salience of

this variable. For example, it is possible that an individual with BD may have a significant

genetic etiology, but that cultural norms are associated with a small family size, thereby

precluding the observation of strong evidence of heritability. Notwithstanding, the ultimate

point is that the shared intrinsic heterogeneity in clinical features is primarily along variables

for which there are already consistent associations with lithium response.

Second, and most importantly, since shared intrinsic heterogeneity should be primarily

driven by underlying biological variation in BD, the best exemplars of lithium response and

nonresponse should be separable using some biomarker(s). Chapter 7 validated this claim,

since a logistic regression classifier trained on genomic data could separate lithium response

among the best exemplars with an ROC-AUC 0.88 (interquartile range, IQR, 0.83-0.98), and

the Matthews correlation coefficient (MCC) of 0.58 (IQR 0.41-0.77). Conversely, among

the poor exemplars, response could be classified with only in AUC of 0.66 (IQR 0.61-0.80).

To further evaluate the construct validity of the exemplar set, we examine whether the most

informative variants in the genetic classification were involved in pathways associated with

BD and lithium response.

Among variants used to separate the poor exemplars of lithium responsiveness, there

were no enriched biological pathways. Conversely, features identified as salient by a classifier

trained on the best exemplars’ data clustered into pathways previously implicated in BD and

lithium physiology. These pathways involved G-protein coupled receptor, histamine H1R,

and cholinergic signalling pathways [39, 41, 238–240]. We also noted enrichment of the

Alzheimer’s amyloid precursor protein signalling pathway, which is particularly interesting

since there is a growing body of evidence that lithium may slow progression of Alzheimer’s

dementia [243–250] (but also see Dunn, Holmes, & Mullee [251]).

Together, the above results show that using an approach that rested centrally on the

RRH formulation solved a demonstrable problem in psychiatric ML research, concerning

the impact of between-source heterogeneity on development of clinical prediction models.

Combined with the fact that RRH in general is capable of capturing both deviance and

multimodality, and requires neither a priori categorization nor imposition of a distance

function on the input space, we conclude that RRH demonstrates theoretical and empirical



153

utility for applications in psychiatric research.

8.5 Limitations and Future Directions

To recap, we have shown that our heterogeneity measurement framework, RRH, is inter-

pretable, flexible, and demonstrably useful, particularly for psychiatric research applications.

In this section, we discuss several limitations of the research herein, some immediate oppor-

tunities for advancement, and longer-term open questions. More specific limitations and

future directions corresponding to each study have already been presented in Chapters 2-7,

so our focus here is on the most salient points and broader themes.

Despite having conducted a broad review of work on heterogeneity measures, our

synthesis presented in Chapter 3 is relatively streamlined in the presentation of technical

measures. This was necessary by virtue of constraints on the publication length since there

are, by our count thus far, more than 200 potential candidates for heterogeneity indices

in the published literature (many of which are special cases or re-discoveries of indices

from other disciplines). Furthermore, an extensive body of work by Jost [22, 23, 59, 92]

and both his colleagues [90, 111–114, 149, 252] and predecessors in [17, 20] ecology have

converged on the Rényi heterogeneity family (Hill numbers [17]) as the “true” measure of

diversity. The moniker “true diversity” owes to these indices’ satisfaction of the replication

principle (Axiom 7; [21–23]) in addition to other axioms (Chapter 3). In the same vein

we have found that many of the most prominent heterogeneity indices may also be derived

from the Rényi family (Figure 8.1). For these reasons, we believe that the focused approach

taken in Chapter 3 was sufficient to illustrate the necessary points primarily as they related

to identifying desiderata for a heterogeneity measure useful for psychiatric research. At

present, we are working on a book length compendium of heterogeneity measures from

which Figure 8.1 is an excerpt.

Our initial presentation of RRH was designed to highlight limitations of existing noncat-

egorical heterogeneity measures and their relationships to RRH in some canonical problems.

The first example was a simplistic and analytically tractable beta mixture distribution which,

although elementary, offered us the certainty in comparisons by virtue of analyses in closed

form. The second was a hierarchical generative model learned on MNIST images. This is

arguably the simplest data set used in modern ML research. We also used only one model (a

convolutional VAE) as our transformation of observable data on to a latent space. However,
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the simplicity and familiarity of MNIST was important for the demonstrations in Chapter

4, since there are only a few and well defined image classes in that dataset. Furthermore,

the relative levels of internal heterogeneity and between-class differences are reasonably

appreciable to the naked eye (this contention was further supported empirically in Chapter 4).

Notwithstanding, future work should investigate RRH in deep models of data such as music

(as an investigation of stylistic heterogeneity) and language, using various architectures.

Although we believe that the RRH approach captures properties of heterogeneity that

are intuitive to most researchers, and is therefore broadly interpretable, this assertion can

be tested empirically. That is, it would be of interest to identify whether humans rank

collections of objects by their heterogeneity in a fashion predicted by RRH. For instance,

consider ranking the following sequences of strings based on subjective perception of their

heterogeneity:

AAABBB︸ ︷︷ ︸
1

,AAAAAA︸ ︷︷ ︸
2

,AABBCC︸ ︷︷ ︸
3

We would predict that most individuals, like RRH, would rank these as follows: 2 < 1 < 3.

Indeed, the Rényi heterogeneity of these sequences would equal 2,1, and 3, respectively.

Perhaps more interestingly, though, one might consider the relationship between human

ranking of image set heterogeneity and the associated samples’ RRH under a generative

model (for example, ranking the heterogeneity in batches of MNIST samples). Such an

experiment could evaluate whether, and with what fidelity, RRH captures heterogeneity in

the same ordinal fashion as human intuition.

Another limitation of the study in Chapter 4 is that the parametric form for Rényi

heterogeneity on the non-categorical space was merely a Gaussian mixture. However, the

benefit of this model is its simplicity and ubiquity. In fact, the Gaussian mixture formulation

of Rényi heterogeneity facilitated application of RRH to a deep generative model (Section

4.4.2), and is the de facto standard model in statistical meta-analysis (Section 3.3.3). Indeed,

we are interested in further developing numbers equivalent meta-analytic heterogeneity

(which would be reflected in units of “the effective range of distinct study effects”), which

under the mixed-effects model uses the Gaussian RRH (Section 3.3.3). Development of

such a statistic would require abstraction of data from existing meta-analyses, along with

identification of a gold standard with which to compare the numbers equivalent method.

However, future work must also develop parametric forms for the Rényi heterogeneity of
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other noncategorical distributions, since they could capture some properties not detected by

the Gaussian implementation.

Limitations and future directions specific to our applied work on lithium response

prediction are detailed further in Chapters 5-7, but here we discuss broader limitations

and future directions that our research program will undertake, particularly in relation to

application of the exemplar scoring method. Foremost is the fact that our database on lithium

genomics overlaps with only 321 subjects in our clinical features data set. This leaves more

than 2000 genomic samples untested using the exemplar scoring method. We thus seek

some way to attribute exemplar scores to each of the remaining subjects in the genomic data

set. There are two possible approaches to this problem.

One approach is to use the genomic data from the initial 321 subjects (those whose

genomic data overlapped with the clinical dataset) to learn a genetic prediction model for

the exemplar score. This genetic prediction model for the exemplar score could then be

applied to the remaining subjects in our genomic dataset. Genomic prediction of lithium

response could then be applied on subsamples stratified by the predicted exemplar scores.

It is also possible that the best exemplars of lithium response and non-response are simply

more likely to have a biologically robust diagnosis of BD. It is possible that many individuals

diagnosed with BD and included in these datasets may not truly have that condition, and

this may complicate the associations with lithium responsiveness and non-responsiveness.

For instance, if someone diagnosed as having BD due to a manic episode was actually

manic secondary to undetected drug use, they may have been labeled as a lithium responder

due to resolution of symptoms that would have happened after drug abstinence, regardless

of lithium treatment. As another example, patients who simply have volatile moods and

impulsivity (for other reasons) might be mistakenly diagnosed as having BD and show

lack of lithium response. These subjects could potentially share features with both lithium

responders and non-responders, despite not truly having BD in the first place. Our group is

developing an experiment to address this question using genomic data (W. Stone, personal

communication).

We seek to obtain multi-source genomic data for people with BD, schizophrenia, major

depression, and healthy controls, upon which we could repeat the exemplar scoring proce-

dure (these genomic data will be requested through the Psychiatric Genomics Consortium

[31]). This would identify the “best genetic exemplars” of each condition. A diagnostic
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classification model would then be trained on this subset of best genetic exemplars, then used

to predict the diagnoses of each subject in our dataset on lithium response genetics (from

the Consortium on Lithium Genetics; [30, 202]). We hypothesize that genetic classification

accuracy of lithium response would be highest among subjects whose genomes are also

more predictive of BD, rather than of the other conditions. Such a result would provide

evidence that response to lithium may be a biologically relevant dimension of BD in general.

8.6 Conclusions

This thesis has introduced a framework for the measurement of heterogeneity, RRH, that

is interpretable, flexible, and useful, particularly for applications in psychiatric research.

Future directions include compilation of a more comprehensive volume on heterogeneity

measurement, extension of RRH to additional models and applications (such as meta-

analytic RRH and heterogeneity of computational cognitive models), and the validation of

RRH against human heterogeneity ranking. This novel approach has enabled resolution of

an important problem concerning the effects of between-site heterogeneity in large-scale

medical ML research, and enabled us to obtain strong results in genomic classification of

treatment response in psychiatry. Further applications of the exemplar scoring method to

larger and multi-domain data (i.e. mixed clinical, neuroimaging, and genomic data) could

improve the efficiency of large scale multi-site medical ML studies, and further advance our

understanding of the biological causes of psychiatric disorders.
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Appendix A

Supplementary Material for Representational Rényi Heterogeneity

A.1 Mathematical Appendix

Proposition 5. Rényi heterogeneity (Equation 4.3) obeys the replication principle.

Proof. The Rényi heterogeneity for a single distribution pi = (pij)j=1,2,...,ni , where ni ∈ N+

is the size of the state space in system i, is

Πq(pi) =

(
ni∑

j=1

pqij

) 1
1−q

(A.1)

and for the aggregation of N subsystems is

Πq(p̄i) =

(
N∑

i=1

ni∑

j=1

(pij
N

)q
) 1

1−q

. (A.2)

The replication principle asserts that

Πq(p̄) = NΠq(pi). (A.3)

Let λi =
∑ni

j=1 p
q
ij and recall that λi = λk for all (i, k) ∈ {1, 2, . . . , N}. Then,

(
N−q

N∑

i=1

ni∑

j=1

pqij

) 1
1−q

= N

(
ni∑

j=1

pqij

) 1
1−q

(
N−q

N∑

i=1

λi

) 1
1−q

= Nλ
1

1−q
i

(
N1−qλi

) 1
1−q = Nλ

1
1−q
i

Nλ
1

1−q
i = Nλ

1
1−q
i .

(A.4)

Since limq→1 λ
1

1−q
i exists (it is the perplexity index), the result also holds at q = 1.
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Proposition 6. For a system X with probability mass function represented by the vector

p = (pi)i=1,2,...,n on event spaceX = {1, 2, . . . , n}, with distance function dX : X×X → R≥0

represented by the n× n matrix D = [dX(i, j)]j=1,2,...,n
i=1,2,...,n , the functional Hill numbers family of

indices

Fq (D,p) =

(
Qq (D,p)

Q1 (D,p)

) 1
2(1−q)

(A.5)

is insensitive to dX(i, j) for all (i, j) ∈ X when p is uniform.

Proof. The proof is direct given substitution of p = (n−1)i=1,2,...,n into Equation A.5.

Fq (D,p) =

(
Qq (D,p)

Q1 (D,p)

) 1
2(1−q)

=

(
n−2q

∑n
i=1

∑n
j=1 dX(i, j)

n−2
∑n

i=1

∑n
j=1 dX(i, j)

) 1
2(1−q)

= n (A.6)

Proposition 7 (Rényi Heterogeneity of a Continuous System). The Rényi heterogeneity of a

system X with event space X ⊆ Rn and pdf f ∈ P(X ) is equal to the magnitude of the volume

of an n-cube over which there is a uniform probability density with the same Rényi heterogeneity

as that given by f .

Proof. Let the basic integral of X be defined as
∫
X f

q(x) dx. Furthermore, let X∗ be an

idealized reference system with a uniform probability density f∗ on X with lower bounds

0 = (0)i=1,...,n and upper bounds u = (u∗)i=1,...,n where u∗ ≥ 0 is the side length of an

n-cube. We assume that X∗ has basic integral
∫
X f

q
∗ (x) dx such that

∫

X
f q(x) dx =

∫

X
f q∗ (x) dx

=
n∏

i=1

u1−q
∗

= un(1−q)
∗ .

(A.7)

Solving Equation A.7 for un∗ gives the Rényi heterogeneity of order q. At q 6= 1,

un∗ =

(∫

X
f q(x) dx

) 1
1−q

(A.8)
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and in the limit of q → 1, Equation A.8 becomes the exponential of the Shannon (differential)

entropy. Thus, Πq is interpreted as the volume of an n-cube of side length u∗, over which

there is a uniform distribution giving the same heterogeneity as X .

Proposition 8 (Rényi heterogeneity of a multivariate Gaussian). The Rényi heterogeneity of an

n-dimensional multivariate Gaussian with probability density function (pdf)

f(x|µ,Σ) = (2π)−
n
2 |Σ|− 1

2 e−
1
2

(x−µ)>Σ−1(x−µ), (A.9)

with mean µ = (µi)i=1,2,...,n and covariance matrix Σ = (Σij)
j=1,2,...,n
i=1,2,...,n is

Πq (Σ) =





Undefined q = 0

(2πe)
n
2
√
|Σ| q = 1

(2π)
n
2
√
|Σ| q =∞

(2π)
n
2 q

n
2(q−1)

√
|Σ| Otherwise

. (A.10)

Proof. Let Σ−1 = UΛU−1 be the eigendecomposition of the inverse covariance matrix

into an orthonormal matrix of eigenvectors U and n×n diagonal matrix Λ with eigenvalues

(λi)i=1,2,...,n down the leading diagonal. Furthermore, let dxi
dyj

= Uij and use the substitution

y = U−1 (x− µ) to proceed as follows:

Πq (Σ) =

[
(2π)−

qn
2 |Σ|−

q
2

∫
e−

q
2

(x−µ)>Σ−1(x−µ) dx

] 1
1−q

=

(
(2π)−

qn
2 |Σ|−

q
2
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q
2
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) 1
1−q

=

(
(2π)−

qn
2 |Σ|−

q
2

(
(2π)n

qn
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i=1 λi

) 1
2

) 1
1−q

=

(
(2π)−

qn
2 |Σ|−

q
2

(
(2π)n

qn |Λ|

) 1
2

) 1
1−q

= q
n

2(q−1) (2π)
n
2

√
|Σ|

(A.11)

which holds only at q /∈ {0, 1,∞}. At q = 1, we have

lim
q→1

log Πq (Σ) = lim
q→1

(
n

2(q − 1)
log q

)
+
n

2
log(2π) +

1

2
log |Σ|

=
n

2
+
n

2
log(2π) +

1

2
log |Σ| ,

(A.12)
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and therefore,

Π1 (Σ) = (2πe)
n
2

√
|Σ|. (A.13)

One can then easily show that Π0(Σ) is undefined and that as q →∞,

Π∞ (Σ) = (2π)
n
2

√
|Σ|. (A.14)

A.2 Expected Distance Between two Beta-Distributed Random Variables

To compute the numbers equivalent RQE Q̂e, the functional Hill numbers Fq, and the

Leinster-Cobbold index Lq under the beta mixture model, we must derive an analytical

expression for the distance matrix. This involves the following integral:

d(x, y) =

∫ 1

0

∫ 1

0

|x− y|f(x)g(y) dx dy, (A.15)

where f(x) = Betaα1,β1(x) and g(y) = Betaα2,β2(y). By exploiting the identity

|x− y| = x+ y − 2 min{x, y}, (A.16)

and expanding, the integral is greatly simplified and gives the following closed-form solution:

d(x, y) = 〈x〉 − 〈y〉+ η (Φa − α1Φb) , (A.17)

where

η =
2Γ(α1)Γ(β2)Γ(α1 + α2 + 1)

B(α1, β1)B(α2, β2)
, (A.18)

and where 〈y〉 = α2

α2+β2
, 〈x〉 = α1

α1+β1
, and the Φ’s are regularized hypergeometric functions:

Φa = 3F̃2

[
α1, α1 + α2 + 1, 1− β1

α1 + 1, α1 + α2 + β2 + 1
, 1

]
(A.19)

Φb = 3F̃2

[
α1 + 1, α1 + α2 + 1, 1− β1

α1 + 2, α1 + α2 + β2 + 1
, 1

]
(A.20)
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Figure A.1: Numerical verification of the analytical expression for the expected absolute
distance between two Beta-distributed random variables. Solid lines are the theoretical
predictions. Ribbons show the bounds between 25th-75th percentiles (the interquartile range,
IQR) of the simulated values.

Figure A.1 provides numerical verification of this result. One simply uses Equation A.17

to compute the analytic distance matrix

D(α1, β1, α2, β2) =

(
d(x, x) d(x, y)

d(y, x) d(y, y)

)
, (A.21)

which, with the component probabilities (Equation 4.46), can be used to compute Q̂e, Fq,

and Lq using the formulas shown in the main body.

A.3 Evidence Supporting Relative Homogeneity of MNIST “Ones”

In our evaluation of non-categorical RRH using the MNIST data, we asserted that the class of

handwritten Ones were relatively more homogeneous than other digits. Our initial statement

was based simply on visual inspection of samples from the dataset, wherein the Ones

ostensibly demonstrate fewer relevant feature variations than other classes. However, to

test this hypothesis more objectively, we conducted an empirical evaluation using similarity

metric learning.

We implemented a deep neural network architecture known as a “siamese network” [189]

to learn a latent distance metric on the MNIST classes. Our siamese network architecture is

depicted in Figure A.2a. Training is conducted by sampling batches of 10,000 image pairs

from the MNIST test set, where 5000 pairs are drawn from the same class (i.e., a pair of
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(a) Depiction of a siamese network archi-
tecture. At iteration k, each of two sam-
ples, X(k)

A and X(k)
B , are passed through

a convolutional neural network to yield
embeddings zA and zB , respectively.
The class label for samples A and B are
denoted yA and yB , respectively. The
L2-norm of these embeddings is com-
puted as DAB . The network is opti-
mized on the contrastive loss [190] L.
Here I[·] is an indicator function.
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(b) Empirical cumulative distribution functions (CDF)
for pairwise distances between images of the listed
classes under the siamese network model. The x-axis
plots the L2-norm between embedding vectors pro-
duced by the siamese network. The y-axis shows the
proportion of samples in the respective group (by line
color) whose embedded L2 norms were less than the
specified threshold on the x-axis. Class groups are de-
noted by different line colors. For instance, “0-0” refers
to pairs where each image is a “zero.” We combine all
disjoint class pairs, for example “0–8” or “3–4,” into a
single empirical CDF denoted as “A6=B.”

Figure A.2: Depiction of the siamese network architecture and the empirical cumulative
distribution function for pairwise distances between digit classes.

Fives or a pair of Threes), and 5000 pairs are drawn from different classes (i.e., the pairs

[2,3] or [1,7]). The siamese network is then optimized using gradient-based methods over

100 epochs using the contrastive loss function [190] (Figure A.2a). This analysis may be

reproduced in the Supplementary Materials.

After training, we sampled same-class pairs (n=25,000) and different-class pairs (n =

25,000) from the MNIST training set (which contains 60,000 images). Pairwise distances

for each sample were computed using the trained siamese network. If the “ones” are indeed

the most homogeneous class, they should demonstrate a generally smaller pairwise distance

than other digit class pairs. We evaluated this hypothesis by comparing empirical cumulative

distribution functions (CDF) on the class-pair distances (Figure A.2b). Our results show

that the empirical CDF for “1–1” image pairs dominate that of all other class pairs (where

the distance between pairs of “ones” is lower).



Appendix B

Supplementary Material for Prediction of Lithium Response Using

Clinical Data

B.1 Feature Comparisons Between Responders and Non-responders Across Sites

B.1.1 Cagliari (University)

Table B.1: Demographic descriptive statistics stratified by lithium response for Cagliari

(University). Abbreviations: N (number or count), “with” (w/) Li(+) (lithium responder),

Li(-) (lithium non-responder), BD (bipolar disorder), BD-I (bipolar I disorder), BD-II

(bipolar II disorder), NOS (not otherwise specified), MDD (major depressive disorder),

SZA (schizoaffective disorder), FDR (first degree relative), SDR (second degree relative)

GAF (global assessment of functioning scale), SA (suicide attempt) SI (suicidal ideation),

SES (socioeconomic status), UI (unemployment insurance). Normally distributed variables

are represented as mean (standard deviation), while non-normally distributed variables are

represented as median [interquartile range, IQR]. Categorical variables are represented as

count (percentage), with all unique categories listed; where a categorical variable has no

subheadings identifying the categories, it is implicitly a binary variable where the count

(percentage) refers to the affirmative response of the variable.

Variable Li(-) Li(+) p

n 146 60

Male (%) 46 ( 31.5) 19 ( 31.7) 1

Age 45.48 [19.22, 83.02] 45.20 [18.67, 79.60] 0.04

Diagnosis (%) 0.033

BD I 70 ( 47.9) 25 ( 41.7)

BD II 29 ( 19.9) 22 ( 36.7)

SZA 47 ( 32.2) 13 ( 21.7)

Onset D 26.00 [12.00, 69.00] 26.50 [16.00, 67.00] 0.65

Continued on next page...
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Variable Li(-) Li(+) p

Onset M 25.00 [13.00, 66.00] 27.00 [15.00, 70.00] 0.241

Onset m 42.00 [2.00, 66.00] 39.00 [21.00, 67.00] 0.957

Clinical course (%) 0.103

Chronic 6 ( 4.2) 1 ( 1.7)

Chronic deteriorating 7 ( 4.9) 0 ( 0.0)

Completely episodic 62 ( 43.1) 36 ( 60.0)

Episodic + residual 67 ( 46.5) 23 ( 38.3)

Single episode 2 ( 1.4) 0 ( 0.0)

N LT Manias 4.00 [0.00, 28.00] 2.00 [0.00, 26.00] 0.03

N LT Depressions 4.50 [0.00, 41.00] 4.00 [0.00, 36.00] 0.46

N LT Mixed 0.00 [0.00, 5.00] 0.00 [0.00, 1.00] 0.123

N LT Episodes 10.00 [1.00, 66.00] 8.00 [2.00, 72.00] 0.573

LT Psychosis (%) 0.057

Episodic congruent 68 ( 46.9) 20 ( 33.3)

Episodic incongruent 19 ( 13.1) 6 ( 10.0)

Never 54 ( 37.2) 34 ( 56.7)

Outside mood episodes 4 ( 2.8) 0 ( 0.0)

Total ALDA score 3.00 [0.00, 6.00] 7.00 [7.00, 10.00] <0.001

N Episodes on Li 3.00 [0.00, 25.00] 0.00 [0.00, 5.00] <0.001

N Episodes pre-Li 3.00 [1.00, 60.00] 6.00 [1.00, 71.00] <0.001

N SA 0.00 [0.00, 7.00] 0.00 [0.00, 3.00] 0.19

N serious SA 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.977

Age first SA 31.00 [16.00, 57.00] 29.00 [17.00, 47.00] 0.645

N FDR BD1 0.00 [0.00, 2.00] 0.00 [0.00, 1.00] 0.142

N FDR BD2 0.00 [0.00, 3.00] 0.00 [0.00, 2.00] 0.444

N FDR MDD 0.00 [0.00, 5.00] 0.00 [0.00, 2.00] 0.097

N FDR SZA 0.00 [0.00, 2.00] 0.00 [0.00, 2.00] 0.154

N FDR SCZ 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.15

N FDR Anx 0.00 [0.00, 7.00] 0.00 [0.00, 9.00] 0.815

N FDR Unaffected 5.00 [1.00, 14.00] 6.00 [2.00, 13.00] 0.117

N FDR Suicide 0.00 [0.00, 2.00] 0.00 [0.00, 1.00] 0.06

Continued on next page...
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Variable Li(-) Li(+) p

N FDR SA 0.00 [0.00, 2.00] 0.00 [0.00, 1.00] 0.934

N SDR Suicide 0.00 [0.00, 2.00] 0.00 [0.00, 1.00] 0.346

N SDR SA 0.00 [0.00, 1.00] 0.00 [0.00, 0.00] 0.265

LT SI 58 ( 40.6) 16 ( 27.1) 0.101

No SAD 146 (100.0) 60 (100.0) NA

No Panic d/o 145 ( 99.3) 60 (100.0) 1

No GAD 146 (100.0) 60 (100.0) NA

No OCD 146 (100.0) 60 (100.0) NA

No addiction 120 ( 82.2) 56 ( 93.3) 0.065

Diabetes 4 ( 11.8) 0 ( 0.0) 0.609

HTN 12 ( 34.3) 4 ( 40.0) 1

SES (%) 0.341

Other 37 ( 27.6) 17 ( 28.8)

Retired 18 ( 13.4) 11 ( 18.6)

Social assist 8 ( 6.0) 2 ( 3.4)

Student 5 ( 3.7) 2 ( 3.4)

Unemployment ins 8 ( 6.0) 3 ( 5.1)

Unknown 5 ( 3.7) 6 ( 10.2)

Work full-time 53 ( 39.6) 17 ( 28.8)

Work part-time 0 ( 0.0) 1 ( 1.7)

Marital status (%) 0.373

Divorced 1 ( 0.7) 0 ( 0.0)

Married 78 ( 53.4) 27 ( 45.0)

Single 57 ( 39.0) 25 ( 41.7)

Widowed 10 ( 6.8) 8 ( 13.3)

B.1.2 Cagliari (Centro Bini)
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Table B.2: Demographic descriptive statistics stratified by lithium response for Cagliari

(Centro Bini). Abbreviations: N (number or count), “with” (w/) Li(+) (lithium responder),

Li(-) (lithium non-responder), BD (bipolar disorder), BD-I (bipolar I disorder), BD-II

(bipolar II disorder), NOS (not otherwise specified), MDD (major depressive disorder),

SZA (schizoaffective disorder), FDR (first degree relative), SDR (second degree relative)

GAF (global assessment of functioning scale), SA (suicide attempt) SI (suicidal ideation),

SES (socioeconomic status), UI (unemployment insurance). Normally distributed variables

are represented as mean (standard deviation), while non-normally distributed variables are

represented as median [interquartile range, IQR]. Categorical variables are represented as

count (percentage), with all unique categories listed; where a categorical variable has no

subheadings identifying the categories, it is implicitly a binary variable where the count

(percentage) refers to the affirmative response of the variable.

Variable Li(-) Li(+) p

n 256 68

Male (%) 104 ( 40.6) 31 ( 45.6) 0.549

Age 35.48 [10.65, 75.81] 36.92 [17.39, 71.48] 0.979

Diagnosis (%) 0.893

BD I 173 ( 67.6) 48 ( 70.6)

BD II 79 ( 30.9) 19 ( 27.9)

SZA 4 ( 1.6) 1 ( 1.5)

Onset D 22.71 [4.30, 67.64] 21.16 [6.56, 65.25] 0.512

Onset M 24.39 [8.87, 55.15] 20.23 [13.09, 43.54] 0.113

Onset m 24.34 [12.38, 40.34] 35.74 [31.52, 37.59] 0.051

Clinical course (%) 0.672

Chronic 13 ( 5.2) 6 ( 8.8)

Chronic fluctuating 81 ( 32.4) 20 ( 29.4)

Completely episodic 125 ( 50.0) 35 ( 51.5)

Continuous cycling 31 ( 12.4) 7 ( 10.3)

LT Manias 4.50 [0.00, 120.00] 5.00 [1.00, 50.00] 0.962

LT Depressions 6.00 [0.00, 120.00] 7.00 [0.00, 68.00] 0.7

LT Episodes 12.00 [0.00, 240.00] 12.00 [1.00, 101.00] 0.866

Total ALDA score 2.00 [0.00, 6.00] 8.00 [7.00, 10.00] <0.001

Continued on next page...
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Variable Li(-) Li(+) p

N SA 0.00 [0.00, 9.00] 0.00 [0.00, 3.00] 0.744

N serious SA 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.273

Age first SA 36.20 [16.20, 77.20] 38.75 [18.40, 61.10] 0.844

FDR Mood d/o 137 ( 63.1) 43 ( 74.1) 0.158

FDR BD 74 ( 33.8) 24 ( 41.4) 0.357

N FDR Suicide 0.00 [0.00, 2.00] 0.00 [0.00, 2.00] 0.331

N FDR SA 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.546

N SDR Suicide 0.00 [0.00, 1.00] 0.00 [0.00, 0.00] 0.201

LT SI 63 (100.0) 23 (100.0) NA

No SAD 84 ( 98.8) 37 (100.0) 1

No Panic d/o 45 ( 53.6) 20 ( 54.1) 1

No GAD 84 ( 96.6) 37 ( 97.4) 1

No OCD 80 ( 89.9) 37 (100.0) 0.104

No addiction 201 ( 79.1) 56 ( 82.4) 0.676

No ADHD 84 (100.0) 37 (100.0) NA

No Learning d/o 84 ( 98.8) 37 (100.0) 1

No primary insomnia 84 (100.0) 37 (100.0) NA

No personality d/o 42 (100.0) 20 (100.0) NA

Works part-time (%) 19 ( 18.6) 4 ( 10.5) 0.371

Marital status (%) 0.896

Divorced 16 ( 6.2) 4 ( 5.9)

Married 107 ( 41.8) 31 ( 45.6)

Single 116 ( 45.3) 29 ( 42.6)

Unknown 3 ( 1.2) 0 ( 0.0)

Widowed 14 ( 5.5) 4 ( 5.9)

B.1.3 IGSLi
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Table B.3: Demographic descriptive statistics stratified by lithium response for IGSLi.

Abbreviations: N (number or count), “with” (w/) Li(+) (lithium responder), Li(-) (lithium

non-responder), BD (bipolar disorder), BD-I (bipolar I disorder), BD-II (bipolar II disorder),

NOS (not otherwise specified), MDD (major depressive disorder), SZA (schizoaffective

disorder), FDR (first degree relative), SDR (second degree relative) GAF (global assessment

of functioning scale), SA (suicide attempt) SI (suicidal ideation), SES (socioeconomic sta-

tus), UI (unemployment insurance). Normally distributed variables are represented as mean

(standard deviation), while non-normally distributed variables are represented as median

[interquartile range, IQR]. Categorical variables are represented as count (percentage), with

all unique categories listed; where a categorical variable has no subheadings identifying

the categories, it is implicitly a binary variable where the count (percentage) refers to the

affirmative response of the variable.

Variable Li(+)

n 70

Male (%) 28 ( 40.0)

Age 55.09 [21.66, 77.64]

Diagnosis (%)

BD I 47 ( 67.1)

BD II 18 ( 25.7)

MDD Recurrent 3 ( 4.3)

MDD Single 1 ( 1.4)

SZA 1 ( 1.4)

Age of onset (y) 28.00 [16.00, 63.00]

Onset D 30.00 [16.00, 63.00]

Onset M 32.00 [16.00, 58.00]

Onset m 38.00 [16.00, 63.00]

Polarity first episode (%)

Biphasic (D-M) 6 ( 8.7)

Biphasic (M-D) 5 ( 7.2)

Hypomania 1 ( 1.4)

Major depression 41 ( 59.4)

Mania 8 ( 11.6)

Continued on next page...
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Variable Li(+)

Minor depression 8 ( 11.6)

Continuous cycling course (%) 1 (100.0)

LT Manias 1.00 [0.00, 8.00]

LT Depressions 3.00 [0.00, 15.00]

LT Multiphasic 0.50 [0.00, 13.00]

LT Episodes 6.00 [0.00, 27.00]

No rapid cycling 53 (100.0)

No rapid mood switching 1 (100.0)

GAF Last Ax 95.00 [90.00, 95.00]

Total ALDA score 9.00 [8.00, 10.00]

N SA 0.00 [0.00, 1.00]

FDR Mood d/o 20 ( 29.4)

FDR BD 2 ( 2.9)

N FDR BD1 0.00 [0.00, 1.00]

N FDR MDD 0.00 [0.00, 5.00]

N FDR SZA 0.00 [0.00, 1.00]

N FDR SCZ 0.00 [0.00, 1.00]

N FDR Unaffected 0.00 [0.00, 2.00]

Mania at SA 1 (100.0)

LT SI 9 ( 45.0)

SI related to mood episode 1 (100.0)

No Panic d/o 68 (100.0)

No OCD 68 (100.0)

No addiction 68 ( 98.6)

Works full-time (%) 1 (100.0)

Single marital (%) 1 ( 25.0)

B.1.4 Maritimes
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Table B.4: Demographic descriptive statistics stratified by lithium response for Maritimes.

Abbreviations: N (number or count), “with” (w/) Li(+) (lithium responder), Li(-) (lithium

non-responder), BD (bipolar disorder), BD-I (bipolar I disorder), BD-II (bipolar II disorder),

NOS (not otherwise specified), MDD (major depressive disorder), SZA (schizoaffective

disorder), FDR (first degree relative), SDR (second degree relative) GAF (global assessment

of functioning scale), SA (suicide attempt) SI (suicidal ideation), SES (socioeconomic sta-

tus), UI (unemployment insurance). Normally distributed variables are represented as mean

(standard deviation), while non-normally distributed variables are represented as median

[interquartile range, IQR]. Categorical variables are represented as count (percentage), with

all unique categories listed; where a categorical variable has no subheadings identifying

the categories, it is implicitly a binary variable where the count (percentage) refers to the

affirmative response of the variable.

Variable Li(-) Li(+) p

n 274 69

Male (%) 98 (35.8) 29 ( 42.0) 0.41

Age 43.22 [17.00, 82.51] 48.38 [18.73, 78.42] 0.007

Diagnosis (%) 0.905

BD I 193 (70.7) 52 ( 75.4)

BD II 69 (25.3) 16 ( 23.2)

BD NOS 1 ( 0.4) 0 ( 0.0)

MDD Recurrent 2 ( 0.7) 0 ( 0.0)

MDD Single 1 ( 0.4) 0 ( 0.0)

SZA 7 ( 2.6) 1 ( 1.4)

Age of onset (y) 21.00 [12.00, 60.00] 25.00 [9.00, 56.00] 0.014

Onset D 22.00 [12.00, 60.00] 26.00 [9.00, 60.00] 0.017

Onset M 27.50 [15.00, 61.00] 30.00 [14.00, 66.00] 0.226

Onset m 26.00 [0.00, 60.00] 31.50 [15.00, 56.00] 0.189

Polarity first episode (%) 0.034

Biphasic (D-M) 4 ( 1.5) 1 ( 1.5)

Biphasic (M-D) 10 ( 3.7) 0 ( 0.0)

Hypomania 34 (12.5) 10 ( 14.9)

Major depression 167 (61.6) 29 ( 43.3)

Continued on next page...
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Variable Li(-) Li(+) p

Mania 43 (15.9) 21 ( 31.3)

Minor depression 9 ( 3.3) 5 ( 7.5)

Mixed 3 ( 1.1) 1 ( 1.5)

Periodic rapid cycling 1 ( 0.4) 0 ( 0.0)

Clinical course (%) <0.001

Chronic 24 ( 8.9) 1 ( 1.5)

Chronic deteriorating 4 ( 1.5) 0 ( 0.0)

Chronic fluctuating 97 (35.8) 8 ( 12.3)

Completely episodic 56 (20.7) 47 ( 72.3)

Continuous cycling 1 ( 0.4) 0 ( 0.0)

Episodic + residual 80 (29.5) 8 ( 12.3)

Single episode 9 ( 3.3) 1 ( 1.5)

LT Manias 2.00 [0.00, 99.00] 2.00 [0.00, 34.00] 0.239

LT Depressions 3.00 [0.00, 99.00] 3.00 [0.00, 35.00] 0.051

LT Mixed 0.00 [0.00, 99.00] 0.00 [0.00, 3.00] 0.073

LT Multiphasic 0.00 [0.00, 99.00] 0.00 [0.00, 3.00] 0.001

LT Episodes 6.00 [1.00, 99.00] 5.00 [1.00, 99.00] 0.119

Rapid cycling (%) 0.001

Never 177 (68.1) 58 ( 90.6)

Only on Antidepressants 5 ( 1.9) 0 ( 0.0)

Spontaneous 78 (30.0) 6 ( 9.4)

Rapid mood switching 15 (28.8) 2 ( 10.0) 0.169

LT Psychosis (%) 0.089

Episodic congruent 106 (41.6) 36 ( 56.2)

Episodic incongruent 41 (16.1) 6 ( 9.4)

Never 108 (42.4) 22 ( 34.4)

GAF Last Ax 70.00 [35.00, 95.00] 80.00 [40.00, 100.00] <0.001

Total ALDA score 2.00 [0.00, 6.00] 8.00 [7.00, 10.00] <0.001

N Episodes on Li 3.00 [0.00, 99.00] 0.00 [0.00, 4.00] <0.001

N Episodes pre-Li 4.00 [1.00, 99.00] 5.00 [1.00, 70.00] 0.025

N SA 0.00 [0.00, 7.00] 0.00 [0.00, 2.00] 0.071

N serious SA 1.00 [0.00, 7.00] 1.00 [0.00, 1.00] 0.273

Continued on next page...
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Variable Li(-) Li(+) p

Age first SA 26.00 [12.00, 64.00] 23.00 [15.00, 55.00] 0.645

FDR Mood d/o 154 (56.8) 38 ( 57.6) 1

FDR BD 89 (32.5) 28 ( 40.6) 0.26

N FDR BD1 0.00 [0.00, 6.00] 0.00 [0.00, 4.00] 0.137

N FDR BD2 1.00 [1.00, 1.00] 0.50 [0.00, 1.00] 0.317

N FDR MDD 0.00 [0.00, 7.00] 1.00 [0.00, 3.00] 0.696

N FDR SZA 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.215

N FDR SCZ 0.00 [0.00, 2.00] 0.00 [0.00, 0.00] 0.031

N FDR Anx 0.00 [0.00, 3.00] 0.00 [0.00, 1.00] 0.443

N FDR Unaffected 0.00 [0.00, 5.00] 0.00 [0.00, 2.00] 0.03

N FDR Suicide 0.00 [0.00, 2.00] 0.00 [0.00, 2.00] 0.51

N FDR SA 0.00 [0.00, 3.00] 0.00 [0.00, 1.00] 0.055

N SDR Suicide 0.00 [0.00, 2.00] 0.00 [0.00, 2.00] 0.066

N SDR SA 0.00 [0.00, 2.00] 0.00 [0.00, 1.00] 0.511

Mood at SA (%) 0.089

Biphasic MD 0 ( 0.0) 1 ( 10.0)

Major depression 61 (88.4) 9 ( 90.0)

Mania 4 ( 5.8) 0 ( 0.0)

Mixed 3 ( 4.3) 0 ( 0.0)

Rapid cycling 1 ( 1.4) 0 ( 0.0)

LT SI 98 (44.1) 16 ( 31.4) 0.131

SI related to mood episode 94 (98.9) 13 ( 92.9) 0.604

No SAD 208 (77.6) 61 ( 93.8) 0.005

No Panic d/o 207 (76.7) 55 ( 83.3) 0.314

No GAD 162 (60.4) 55 ( 83.3) 0.001

No OCD 238 (87.8) 61 ( 93.8) 0.241

No addiction 185 (68.5) 52 ( 78.8) 0.136

No ADHD 258 (97.0) 64 (100.0) 0.341

No Learning d/o 252 (94.7) 64 (100.0) 0.126

No primary insomnia 227 (85.7) 59 ( 93.7) 0.135

No personality d/o 258 (97.4) 63 ( 98.4) 0.959

Diabetes 31 (12.0) 3 ( 5.0) 0.176
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Variable Li(-) Li(+) p

HTN 36 (14.1) 11 ( 19.0) 0.466

Menstrual d/o 43 (30.3) 6 ( 25.0) 0.777

Thyroid d/o 80 (31.6) 17 ( 28.8) 0.792

TBI 52 (24.2) 10 ( 23.8) 1

Migraine 40 (16.5) 3 ( 5.1) 0.041

SES (%) 0.079

Disabled 81 (34.2) 10 ( 16.9)

Other 18 ( 7.6) 7 ( 11.9)

Retired 14 ( 5.9) 7 ( 11.9)

Social assist 31 (13.1) 8 ( 13.6)

Student 11 ( 4.6) 1 ( 1.7)

Unemployment ins 21 ( 8.9) 6 ( 10.2)

Unknown 4 ( 1.7) 1 ( 1.7)

Work full-time 45 (19.0) 11 ( 18.6)

Work part-time 12 ( 5.1) 8 ( 13.6)

Marital status (%) 0.567

Divorced 54 (21.1) 12 ( 19.4)

Married 131 (51.2) 38 ( 61.3)

Single 60 (23.4) 9 ( 14.5)

Unknown 3 ( 1.2) 1 ( 1.6)

Widowed 8 ( 3.1) 2 ( 3.2)

B.1.5 Montreal
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Table B.5: Demographic descriptive statistics stratified by lithium response for Montreal.

Abbreviations: N (number or count), “with” (w/) Li(+) (lithium responder), Li(-) (lithium

non-responder), BD (bipolar disorder), BD-I (bipolar I disorder), BD-II (bipolar II disorder),

NOS (not otherwise specified), MDD (major depressive disorder), SZA (schizoaffective

disorder), FDR (first degree relative), SDR (second degree relative) GAF (global assessment

of functioning scale), SA (suicide attempt) SI (suicidal ideation), SES (socioeconomic sta-

tus), UI (unemployment insurance). Normally distributed variables are represented as mean

(standard deviation), while non-normally distributed variables are represented as median

[interquartile range, IQR]. Categorical variables are represented as count (percentage), with

all unique categories listed; where a categorical variable has no subheadings identifying

the categories, it is implicitly a binary variable where the count (percentage) refers to the

affirmative response of the variable.

Variable Li(-) Li(+) p

n 80 15

Male (%) 37 (46.2) 9 ( 60.0) 0.486

Age 50.09 [22.50, 76.19] 53.06 [41.06, 77.50] 0.069

Diagnosis (%) 0.776

BD I 54 (67.5) 12 ( 80.0)

BD II 24 (30.0) 3 ( 20.0)

Not primary mood disorder 1 ( 1.2) 0 ( 0.0)

SZA 1 ( 1.2) 0 ( 0.0)

Age of onset (y) 22.50 [7.00, 64.00] 29.00 [16.00, 47.00] 0.212

Onset D 25.00 [10.00, 67.00] 31.00 [16.00, 48.00] 0.419

Onset M 27.00 [16.00, 59.00] 31.00 [18.00, 46.00] 0.581

Onset m 36.50 [13.00, 67.00] 34.00 [16.00, 56.00] 0.81

Polarity first episode (%) 0.065

Biphasic (D-M) 2 ( 2.5) 0 ( 0.0)

Biphasic (M-D) 12 (15.0) 3 ( 20.0)

Hypomania 8 (10.0) 6 ( 40.0)

Major depression 42 (52.5) 4 ( 26.7)

Mania 10 (12.5) 1 ( 6.7)

Minor depression 4 ( 5.0) 0 ( 0.0)
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Variable Li(-) Li(+) p

Periodic rapid cycling 2 ( 2.5) 1 ( 6.7)

Clinical course (%) 0.003

Chronic fluctuating 15 (18.8) 1 ( 6.7)

Completely episodic 23 (28.7) 12 ( 80.0)

Episodic + residual 40 (50.0) 2 ( 13.3)

Single episode 2 ( 2.5) 0 ( 0.0)

LT Manias 2.00 [0.00, 15.00] 2.00 [0.00, 6.00] 0.926

LT Depressions 5.00 [0.00, 99.00] 5.00 [0.00, 20.00] 0.3

LT Episodes 11.00 [1.00, 80.00] 9.50 [3.00, 99.00] 0.374

Rapid cycling (%) 0.05

Never 48 (60.8) 14 ( 93.3)

Only on Antidepressants 4 ( 5.1) 0 ( 0.0)

Spontaneous 27 (34.2) 1 ( 6.7)

Rapid mood switching 49 (62.0) 5 ( 41.7) 0.307

LT Psychosis (%) 0.929

Episodic congruent 36 (45.0) 8 ( 53.3)

Episodic incongruent 11 (13.8) 2 ( 13.3)

Never 28 (35.0) 4 ( 26.7)

Outside of mood episodes 5 ( 6.2) 1 ( 6.7)

GAF Last Ax 75.00 [52.00, 95.00] 90.00 [0.00, 99.00] 0.001

Total ALDA score 3.00 [0.00, 6.00] 7.00 [7.00, 8.00] <0.001

N Episodes on Li 3.00 [0.00, 99.00] 1.00 [0.00, 5.00] <0.001

N Episodes pre-Li 5.00 [1.00, 99.00] 6.50 [3.00, 99.00] 0.539

N SA 0.00 [0.00, 6.00] 0.00 [0.00, 2.00] 0.168

N serious SA 1.00 [0.00, 6.00] 1.00 [0.00, 1.00] 0.291

Age first SA 31.00 [10.00, 56.00] 32.00 [29.00, 40.00] 0.628

FDR Mood d/o 22 (59.5) 5 ( 83.3) 0.505

FDR BD 15 (18.8) 6 ( 40.0) 0.139

N FDR BD1 0.00 [0.00, 2.00] 0.00 [0.00, 1.00] 0.085

N FDR MDD 1.00 [0.00, 3.00] 1.00 [0.00, 5.00] 0.234

N FDR SCZ 0.00 [0.00, 2.00] 0.00 [0.00, 0.00] 0.514

N FDR Anx 0.00 [0.00, 2.00] 0.00 [0.00, 3.00] 0.068
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Variable Li(-) Li(+) p

N FDR Unaffected 1.00 [0.00, 4.00] 1.00 [0.00, 2.00] 0.388

N FDR Suicide 0.00 [0.00, 1.00] 0.00 [0.00, 0.00] 0.292

N FDR SA 0.00 [0.00, 2.00] 0.00 [0.00, 2.00] 0.084

N SDR Suicide 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.971

N SDR SA 0.00 [0.00, 1.00] 0.00 [0.00, 0.00] 0.674

Mood at SA (%) 0.926

Major depression 26 (92.9) 2 (100.0)

Mania 1 ( 3.6) 0 ( 0.0)

Minor depression 1 ( 3.6) 0 ( 0.0)

LT SI 44 (55.7) 8 ( 53.3) 1

SI related to mood episode 37 (86.0) 7 (100.0) 0.67

No SAD 64 (81.0) 10 ( 71.4) 0.645

No Panic d/o 63 (78.8) 13 ( 86.7) 0.725

No GAD 66 (84.6) 14 (100.0) 0.253

No OCD 74 (93.7) 14 ( 93.3) 1

No addiction 50 (62.5) 8 ( 53.3) 0.704

No ADHD 68 (85.0) 14 ( 93.3) 0.651

No Learning d/o 73 (92.4) 14 ( 93.3) 1

No primary insomnia 74 (92.5) 14 ( 93.3) 1

No personality d/o 39 (48.8) 11 ( 73.3) 0.142

Diabetes 5 ( 6.3) 3 ( 20.0) 0.217

HTN 12 (15.2) 2 ( 13.3) 1

Menstrual d/o 15 (34.9) 3 ( 50.0) 0.789

Thyroid d/o 26 (32.5) 6 ( 40.0) 0.79

TBI 24 (30.8) 4 ( 26.7) 0.992

Migraine 29 (37.2) 2 ( 13.3) 0.135

SES (%) 0.847

Disabled 8 (10.0) 1 ( 6.7)

Other 4 ( 5.0) 1 ( 6.7)

Retired 15 (18.8) 5 ( 33.3)

Social assist 10 (12.5) 1 ( 6.7)

Student 6 ( 7.5) 0 ( 0.0)
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Variable Li(-) Li(+) p

Unemployment ins 9 (11.2) 1 ( 6.7)

Work full-time 20 (25.0) 4 ( 26.7)

Work part-time 8 (10.0) 2 ( 13.3)

Marital status (%) 0.547

Divorced 24 (30.4) 2 ( 13.3)

Married 28 (35.4) 7 ( 46.7)

Single 26 (32.9) 6 ( 40.0)

Widowed 1 ( 1.3) 0 ( 0.0)

B.1.6 Ontario

Table B.6: Demographic descriptive statistics stratified by lithium response for Ontario.

Abbreviations: N (number or count), “with” (w/) Li(+) (lithium responder), Li(-) (lithium

non-responder), BD (bipolar disorder), BD-I (bipolar I disorder), BD-II (bipolar II disorder),

NOS (not otherwise specified), MDD (major depressive disorder), SZA (schizoaffective

disorder), FDR (first degree relative), SDR (second degree relative) GAF (global assessment

of functioning scale), SA (suicide attempt) SI (suicidal ideation), SES (socioeconomic sta-

tus), UI (unemployment insurance). Normally distributed variables are represented as mean

(standard deviation), while non-normally distributed variables are represented as median

[interquartile range, IQR]. Categorical variables are represented as count (percentage), with

all unique categories listed; where a categorical variable has no subheadings identifying

the categories, it is implicitly a binary variable where the count (percentage) refers to the

affirmative response of the variable.

Variable Li(-) Li(+) p

n 19 98

Male (%) 8 ( 42.1) 47 ( 48.0) 0.828

Age 42.53 [28.11, 66.66] 47.74 [21.85, 80.16] 0.275

Diagnosis (%) 0.018

BD I 9 ( 47.4) 64 ( 65.3)

BD II 6 ( 31.6) 29 ( 29.6)

MDD Recurrent 2 ( 10.5) 5 ( 5.1)

Continued on next page...
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Variable Li(-) Li(+) p

MDD Single 1 ( 5.3) 0 ( 0.0)

SZA 1 ( 5.3) 0 ( 0.0)

Age of onset (y) 26.00 [16.00, 53.00] 24.00 [12.00, 64.00] 0.902

Onset D 26.50 [18.00, 53.00] 25.00 [12.00, 46.00] 0.775

Onset M 27.50 [18.00, 38.00] 27.00 [13.00, 60.00] 1

Onset m 24.00 [18.00, 46.00] 32.00 [19.00, 57.00] 0.364

Polarity first episode (%) 0.361

Biphasic (D-M) 1 ( 6.7) 4 ( 4.8)

Biphasic (M-D) 1 ( 6.7) 4 ( 4.8)

Hypomania 1 ( 6.7) 3 ( 3.6)

Major depression 11 ( 73.3) 42 ( 50.0)

Mania 1 ( 6.7) 22 ( 26.2)

Minor depression 0 ( 0.0) 9 ( 10.7)

Completely episodic course

(%)

3 (100.0) 8 (100.0) NA

LT Manias 1.00 [0.00, 2.00] 2.00 [0.00, 11.00] 0.059

LT Depressions 2.00 [1.00, 8.00] 2.50 [0.00, 15.00] 0.935

LT Multiphasic 0.00 [0.00, 2.00] 0.00 [0.00, 13.00] 0.93

LT Episodes 4.50 [1.00, 8.00] 6.00 [1.00, 26.00] 0.027

Spontaneous rapid cyc. (%) 0 ( 0.0) 1 ( 2.4) 1

Rapid mood switching 0 ( 0.0) 1 ( 25.0) 1

LT Psychosis (%) 0.605

Episodic congruent 1 ( 12.5) 4 ( 13.8)

Episodic incongruent 1 ( 12.5) 1 ( 3.4)

Never 6 ( 75.0) 24 ( 82.8)

GAF Last Ax NA [Inf, -Inf] 90.00 [90.00, 95.00] NA

Total ALDA score 4.00 [0.00, 6.00] 8.50 [7.00, 10.00] <0.001

N SA 0.00 [0.00, 0.00] 0.00 [0.00, 3.00] 0.167

FDR Mood d/o 8 ( 44.4) 47 ( 48.0) 0.986

FDR BD 8 ( 44.4) 43 ( 43.9) 1

N FDR BD1 0.00 [0.00, 5.00] 0.00 [0.00, 5.00] 0.415

N FDR MDD 0.00 [0.00, 1.00] 0.00 [0.00, 4.00] 0.382
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Variable Li(-) Li(+) p

N FDR SZA 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.124

N FDR Anx 0.00 [0.00, 2.00] 0.00 [0.00, 1.00] 0.745

N FDR Unaffected 0.00 [0.00, 0.00] 0.00 [0.00, 2.00] 0.543

N FDR Suicide 2.00 [0.00, 2.00] 0.00 [0.00, 2.00] 0.192

N FDR SA 2.00 [0.00, 2.00] 0.00 [0.00, 2.00] 0.378

N SDR Suicide 0.00 [0.00, 0.00] 0.00 [0.00, 1.00] 0.513

LT SI 3 ( 42.9) 15 ( 42.9) 1

SI related to mood episode 3 (100.0) 10 (100.0) NA

No SAD 0 ( NaN) 3 (100.0) NA

No Panic d/o 3 ( 75.0) 26 (100.0) 0.273

No GAD 1 (100.0) 3 ( 60.0) 1

No OCD 3 (100.0) 26 (100.0) NA

No addiction 6 ( 85.7) 26 ( 78.8) 1

No ADHD 1 (100.0) 2 (100.0) NA

No Learning d/o 1 (100.0) 2 (100.0) NA

No primary insomnia 1 (100.0) 2 ( 40.0) 1

No personality d/o 1 (100.0) 2 (100.0) NA

No Diabetes 1 (100.0) 0 ( NaN) NA

No HTN 1 (100.0) 0 ( NaN) NA

Menstrual d/o 0 ( 0.0) 1 (100.0) 1

No Thyroid d/o 1 (100.0) 0 ( NaN) NA

No TBI 1 (100.0) 0 ( NaN) NA

Migraine 0 ( 0.0) 1 (100.0) 1

Works full-time (%) 1 (100.0) 3 (100.0) NA

Single marital status (%) 1 ( 50.0) 0 ( 0.0) 0.699

B.1.7 Poznan
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Table B.7: Demographic descriptive statistics stratified by lithium response for Poznan.

Abbreviations: N (number or count), “with” (w/) Li(+) (lithium responder), Li(-) (lithium

non-responder), BD (bipolar disorder), BD-I (bipolar I disorder), BD-II (bipolar II disorder),

NOS (not otherwise specified), MDD (major depressive disorder), SZA (schizoaffective

disorder), FDR (first degree relative), SDR (second degree relative) GAF (global assessment

of functioning scale), SA (suicide attempt) SI (suicidal ideation), SES (socioeconomic sta-

tus), UI (unemployment insurance). Normally distributed variables are represented as mean

(standard deviation), while non-normally distributed variables are represented as median

[interquartile range, IQR]. Categorical variables are represented as count (percentage), with

all unique categories listed; where a categorical variable has no subheadings identifying

the categories, it is implicitly a binary variable where the count (percentage) refers to the

affirmative response of the variable.

Variable Li(-) Li(+) p

n 52 59

Male (%) 20 ( 38.5) 13 ( 22.0) 0.093

Age 64.08 [38.72, 86.22] 65.59 [37.81, 108.69] 0.091

Dx = BD II (%) 11 ( 21.2) 17 ( 28.8) 0.479

Onset D 31.00 [19.00, 59.00] 32.00 [18.00, 57.00] 0.976

Onset M 32.00 [20.00, 58.00] 33.00 [16.00, 52.00] 0.827

Onset m 36.00 [20.00, 53.00] 44.00 [19.00, 57.00] 0.785

Clinical course (%) 0.154

Chronic 19 ( 36.5) 29 ( 50.0)

Chronic deteriorating 5 ( 9.6) 2 ( 3.4)

Chronic fluctuating 22 ( 42.3) 25 ( 43.1)

Episodic + residual 6 ( 11.5) 2 ( 3.4)

LT Manias 2.00 [0.00, 16.00] 2.00 [0.00, 6.00] 0.172

LT Depressions 3.00 [1.00, 18.00] 2.00 [1.00, 13.00] 0.044

LT Mixed 0.00 [0.00, 4.00] 0.00 [0.00, 2.00] 0.017

LT Multiphasic 0.00 [0.00, 6.00] 0.00 [0.00, 0.00] 0.164

LT Episodes 7.00 [0.00, 30.00] 5.00 [0.00, 16.00] 0.004

Rapid cycling (%) 0.001

Never 39 ( 75.0) 57 ( 98.3)
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Variable Li(-) Li(+) p

Only on Antidepressants 8 ( 15.4) 1 ( 1.7)

Spontaneous 5 ( 9.6) 0 ( 0.0)

No rapid mood switching 51 (100.0) 57 (100.0) NA

No LT Psychosis (%) 44 ( 84.6) 53 ( 91.4) 0.423

Total ALDA score 5.00 [0.00, 6.00] 9.00 [7.00, 10.00] <0.001

N Episodes on Li 2.00 [0.00, 12.00] 1.00 [0.00, 6.00] <0.001

N Episodes pre-Li 4.50 [2.00, 18.00] 4.00 [1.00, 12.00] 0.11

N SA 0.00 [0.00, 7.00] 0.00 [0.00, 9.00] 0.329

FDR BD 29 ( 55.8) 25 ( 42.4) 0.223

N FDR BD1 1.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.161

No SAD 25 ( 48.1) 30 ( 50.8) 0.919

No Panic d/o 3 ( 5.8) 16 ( 27.1) 0.006

No GAD 13 ( 25.5) 19 ( 32.2) 0.574

No OCD 45 ( 86.5) 49 ( 83.1) 0.806

No addiction 21 ( 40.4) 28 ( 47.5) 0.577

No ADHD 3 ( 5.8) 9 ( 15.3) 0.194

No Learning d/o 2 ( 3.8) 15 ( 25.4) 0.004

No primary insomnia 17 ( 32.7) 50 ( 84.7) <0.001

No personality d/o 23 ( 44.2) 33 ( 55.9) 0.298

Diabetes 3 ( 5.8) 4 ( 6.8) 1

HTN 30 ( 58.8) 34 ( 57.6) 1

Menstrual d/o 1 ( 3.0) 0 ( 0.0) 0.913

Thyroid d/o 7 ( 13.5) 5 ( 8.5) 0.591

TBI 49 ( 94.2) 25 ( 42.4) <0.001

Migraine 28 ( 53.8) 10 ( 16.9) <0.001

SES (%) 0.29

Retired 24 ( 46.2) 25 ( 42.4)

Social assist 2 ( 3.8) 0 ( 0.0)

Work full-time 18 ( 34.6) 19 ( 32.2)

Work part-time 8 ( 15.4) 15 ( 25.4)

Marital status (%) 0.75

Divorced 6 ( 11.5) 6 ( 10.2)

Continued on next page...
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Variable Li(-) Li(+) p

Married 37 ( 71.2) 38 ( 64.4)

Single 1 ( 1.9) 1 ( 1.7)

Widowed 8 ( 15.4) 14 ( 23.7)

B.2 Sensitivity Analyses with Hyperparameter Optimization and Different Model

Architectures

The aggregate analysis was repeated using hyperparameter optimization. However, here

a nesting procedure must be used in order to prevent “information leak” from validation

to training data. The procedure is outlined in Algorithm 1. Here, we used 10 fold cross

validation, and 100 samples from the uniform distribution over missing data. Results are

shown in Table B.8 in comparison to the unoptimized run, demonstrating that both analyses

are virtually the same with respect to performance.

Results of tests across different model architectures are shown in Figure B.1.

B.3 Were Prediction Errors Related to Missingness?

We investigated the relationship between proportion of missing data and model prediction

error for the random forest classifier using the following linear mixed effects model (in the

syntax of the lme4 package for the R statistical programming language):

Error ∼ P Missing + (P Missing + 1|Centre)

This model assumes that error is a function of the proportion of missing data for each

subject, but that the effect of missingness on prediction error (i.e. random slope), and

prediction error itself (i.e. random intercept), varies across sites. Error was first converted

from the [0, 1] interval to the [-1, 1] interval using the (bijective) transform 2x− 1. Results

are shown in Table B.9, showing that the proportion of data missing were not related to

prediction error of the random forest classifier to a statistically significant degree.

B.4 Analysis of Predicting Lithium Non-response

The entire analysis was repeated exactly as described in the Methods section of the main

paper, with only one difference. Here, the “positive” class was defined as an Alda score <4.
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Algorithm 1: Pseudocode for procedure outlining hyperparameter optimization

on aggregate data.
Input:

• Data D

• Number of outer (K) and inner (L) cross-validation folds (outer) K

• nsamples perfold: Number of uniform samples over missing values (outer loop)

• nsamples hpopt: Number of uniform samples over missing values (inner loop)

results = {}
foldwise indices = StratifiedKFoldPartitionFunction(D,K)

for k ∈ {1, 2, . . . ,K} do
train indices, test indices = foldwise indices[k]

Xtrain, ytrain = D[train indices]

Xtest, ytest = D[test indices]

M = RandomForestClassifier

param bounds = {“NEstimators”: (10, 1000)}
target metric = MatthewsCorrelationCoefficient

nfolds = L

W = OptimizeHyperparameters(D[train indices],M, param bounds, target metric, nfolds,

nsamples hpopt)

result samples = {}
for i ∈ {1, 2, . . . , nsamples per fold } do

Xtrain = SampleUniformlyOverMissingData(Xtrain)

Xtest = SampleUniformlyOverMissingData(Xtest)

Xtrain, ytrain = SmoteTomekRebalancing(Xtrain, ytrain)

M = RandomForestClassifier(NEstimators=W)

M∗ = TrainModel(M, Xtrain, ytrain)

ŷ = PredictClasses(M∗, Xtest)

p̂ = PredictClassProbabilities(M∗, Xtest)

test statistics = Performance(ytest, ŷ, p̂)

result samples = AppendToList(result samples, test statistics)
end

results = AppendToList(results, Expectation(result samples))
end
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Table B.8: Comparison of aggregate analysis results with and without hyperparameter
optimization. The run without hyperparameter optimization was done with a random forest
classifier with 100 trees set a priori. Abbreviations: positive and negative predictive values
(PPV, NPV), area under the receiver operating characteristic curve (AUC), Cohen’s kappa
(Kappa).

Optimized
Statistic Yes No
Accuracy 0.78 (0.77-0.8) 0.78 (0.76, 0.80)
Sensitivity 0.54 (0.49, 0.59) 0.54 (0.50, 0.57)
Specificity 0.91 (0.9, 0.92) 0.91 (0.89, 0.93)
PPV 0.77 (0.75, 0.79) 0.76 (0.72, 0.80)
NPV 0.79 (0.77, 0.8) 0.79 (0.77, 0.80)
AUC 0.81 (0.8, 0.83) 0.81 (0.79, 0.83)
Kappa 0.48 (0.45, 0.52) 0.48 (0.44, 0.52)

Figure B.1: Post-hoc comparison of Random Forest, Logistic Regression, and Linear SVM
models. The models were trained on the exact same data, under the exact same conditions
as shown in Figure 1. The plots on the bottom right hand side show the prediction error
for each subject in the dataset (across samples under the missing data marginalization),
where subjects are grouped according to their sites of origin. Abbreviations: International
Group for the study of Lithium (IGSLi), Montreal (MTL), maritimes (MAR), Ontario (ON),
Poznan (POZ), Cagliari (Centro Bini; CT), Cagliari (University; CdZ).
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Table B.9: Results of linear mixed effects regression model of random forest prediction
error against proportion of missing variables, where both the intercept and slope were taken
to be random effects across centres.

Dependent Variable (2 ∗ Error − 1)
PMissing 0.223 (0.230)
Intercept -0.448 (0.151)∗∗∗

Observations 1266
Log-Likelihood -537.914
Akaike Inf. Criteria 1087.828
Bayesian Inf. Criteria 1118.690
∗ p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01;

In this section we present the results of the aggregate and site-level analyses, and the feature

importances for the Aggregate, Aggregate (without Maritimes), Maritimes, and Poznan data

in order to compare the informative features between analyses.

B.5 Predictive Capacity of a Model Including only Clinical Course and Rapid

Cycling Variables

We have repeated the aggregate analysis with the same model architecture (random forest

classifier [RFC] with 100 estimators) in an identical fashion to that reported in the main

text, albeit with restrictions to the included features. Specifically, we tested classification

performance under three conditions:

1. Including clinical course and rapid cycling variables (CC+RC)

2. Including clinical course only (CC)

3. Including rapid cycling only (RC)

We note that this cannot substitute for a more complete study of variable importance.

Rather, we intend this analysis primarily as a supplement to further qualify our statements

in the discussion regarding the potential importance of clinical course and rapid cycling.

Results are shown in Table B.12, with comparison to the original aggregate analysis (labeled

ALL). Clinical course achieved a better classification performance than RC alone (kappa

0.31, 95% CI [0.26, 0.36] vs. 0.14 [0.11, 0.17]), although both were inferior to the aggregate

model with all variables (kappa 0.46 [0.4, 0.51]). Combining both CC and RC together
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improves only slightly (kappa 0.35 [0.28, 0.38]; and with questionable significance) over

the CC model alone. Using CC alone appears to have a better specificity (0.89 [0.62, 0.94])

than RC alone (0.50 [0.48, 0.52]), albeit with a potentially lower sensitivity (0.42 [0.37,

0.67] vs. 0.65 [0.64, 0.68]). Using only CC and RC (whether alone or combined) results in

a lower positive predictive value than the complete model (PPV for all variables was 0.74

[0.69, 0.79]), although the 95% CI for the PPV using only CC is wide (0.63 [0.51, 0.76]).

We then applied the same procedure to the site-level analysis (Table B.13), the leave-

one-site-out (LOSO) analysis (Table B.14), and the predict-one-site-out (POSO) analysis

(Table B.13). The CC+RC variables together were most informative within the Maritimes

(kappa 0.40 [0.15, 0.61]) and Montreal (0.27 [0.23, 0.32]) sites. Clinical course alone was

also most informative in those sites (MAR kappa 0.47 [0.32, 0.57]; MTL 0.35 [0.31, 0.36]),

with rapid cycling showing a similar, but attenuated pattern (MAR kappa 0.12 [0.05, 0.15];

MTL 0.14 [0.11, 0.17]). These results would suggest that the performance of the aggregate

models reported in Table B.12 were driven entirely by the Maritime and Montreal samples.

However, the LOSO analysis results contribute some nuance to the interpretation.

If the Maritimes and Montreal sites were the only samples in which CC and RC were

important for classification, then leaving those sites out from the aggregate analysis should

be the only scenarios in which overall classification performance declines. However, Table

B.14 shows that in the CC+RC condition, exclusion of any site (with the exception of Centro

Bini) impairs out of sample classification performance. Under the CC condition, exclusion

of any site reduced the aggregate classification performance substantially, while under the

RC condition, performance improves with exclusion of the Centro Bini sample (kappa

improves from 0.14 [0.11, 0.17] to 0.34 [0.30, 0.43]). These results suggest that each site

contributed important information about the relationship between clinical course and lithium

response, but that information about rapid cycling was contributed in a more heterogeneous

pattern.

Finally, the most important result from the POSO analysis (reported in Table B.13

alongside the site-level results) is the inability of a classifier to predict the Maritimes’

sample given information from all other samples. Recall that in the main analysis (with all

variables), only the Maritimes sample was classifiable to a non-trivial extent (kappa 0.16

[0.12, 0.19]). However, using CC+RC only, the ability to predict the Maritimes data was

substantially lower (kappa 0.02 [0.02, 0.02]), and this was also reflected in the sole use of
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CC or RC variables.
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A B

C D

Figure B.3: Variable importance across (A) Aggregate dataset, (B) Aggregate dataset
excluding the Maritimes data, (C) Maritimes site-level data, and (D) Poznan site level data.
These were obtained from the analyses of predicting lithium non-response (Alda score <4).
Due to space constraints, only those variables with coefficients above the overall mean were
included in these plots. Notwithstanding, only bars that strongly deviate from the height of
others should be considered “important.” Bars are variable importance means over the 10
folds, and error bars are standard errors. Abbreviations: lifetime (LT), clinical course (CC),
global assessment of functioning (GAF), marital status (MS), proportion of life affected
(PLA), schizophrenia (SCZ).
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In sum, the results of this supplementary analysis further highlight the between-site

heterogeneity in feature importance. More specifically, while the performance of this

restricted variable set (CC+RC, mainly) was relatively comparable to the aggregate analysis

with all variables, the LOSO performance using only CC+RC (or one of them) was less

robust and showed greater relative variability across sites (mean kappa range of 0.03-0.37).

Conversely, in the main analysis with all variables the LOSO performance was more robust

to leaving any one site out (mean kappa range 0.36-0.51). The POSO analyses are slightly

less contributory, since only one site in the main analysis could be predicted to a non-trivial

degree when left out (Maritimes); using CC/RC, however, the classification of the held out

Maritimes data was trivial. This suggests that information about variables other than CC and

RC are important for classification of the Maritimes data when it is held out of the aggregate

sample.

B.6 Co-occurrence Tables

Tables B.15, B.16, and B.17 highlight the co-occurrence of clinical course, rapid cycling,

and family history variables.



217

Ta
bl

e
B

.1
5:

C
o-

oc
cu

rr
en

ce
of

cl
in

ic
al

co
ur

se
an

d
fa

m
ily

hi
st

or
y

va
ri

ab
le

s.
V

al
ue

s
ar

e
pr

es
en

te
d

as
ei

th
er

co
un

t(
pe

rc
en

ta
ge

)o
rm

ed
ia

n

[m
in

,m
ax

].
A

bb
re

vi
at

io
ns

:
C

hr
on

ic
(C

),
ch

ro
ni

c
de

te
ri

or
at

in
g

(C
D

),
ch

ro
ni

c
flu

ct
ua

tin
g

(C
F)

,c
om

pl
et

el
y

ep
is

od
ic

(E
),

co
nt

in
uo

us

cy
cl

in
g

(C
C

),
ep

is
od

ic
w

ith
re

si
du

al
sy

m
pt

om
s

(E
R

),
si

ng
le

ep
is

od
e

(S
),

fir
st

de
gr

ee
re

la
tiv

e
(1

D
R

),
se

co
nd

de
gr

ee
re

la
tiv

e
(2

D
R

),

bi
po

la
rd

is
or

de
r(

B
D

),
un

ip
ol

ar
de

pr
es

si
on

(M
D

D
),

sc
hi

zo
af

fe
ct

iv
e

di
so

rd
er

(S
ZA

),
sc

hi
zo

ph
re

ni
a

(S
C

Z)
.H

yp
ot

he
si

s
te

st
do

ne
w

ith
th

e

K
ru

sk
al

-W
al

lis
te

st
.

C
C

D
C

F
E

C
C

E
R

S
p

n
99

18
26

9
40

7
40

22
8

14

1D
R

M
oo

d
D

/O
(%

)
28

(6
6.

7)
2

(5
0.

0)
11

7
(5

8.
8)

16
4

(6
2.

8)
19

(5
9.

4)
64

(5
9.

3)
4

(4
0.

0)
0.

74

1D
R

B
ip

ol
ar

(%
)

42
(4

6.
7)

4
(3

6.
4)

82
(3

2.
2)

10
8

(3
7.

9)
11

(3
3.

3)
39

(2
8.

3)
4

(3
3.

3)
0.

12

N
1D

R
B

D
1

0
[0

,3
]

0
[0

,1
]

0
[0

,3
]

0
[0

,6
]

0
[0

,1
]

0
[0

,4
]

0
[0

,3
]

0.
00

2

N
1D

R
B

D
2

0
[0

,1
]

0
[0

,0
]

0
[0

,0
]

0
[0

,2
]

0
[0

,0
]

0
[0

,3
]

0.
50

[0
,1

]
<

0.
00

1

N
1D

R
M

D
D

0
[0

,5
]

0
[0

,1
]

0
[0

,5
]

0
[0

,7
]

0
[0

,0
]

0
[0

,6
]

0
[0

,4
]

0.
03

3

N
1D

R
SZ

A
0

[0
,0

]
0

[0
,0

]
0

[0
,1

]
0

[0
,1

]
0

[0
,0

]
0

[0
,2

]
0

[0
,0

]
0.

07
2

N
1D

R
SC

Z
0

[0
,1

]
0

[0
,1

]
0

[0
,2

]
0

[0
,1

]
0

[0
,0

]
0

[0
,2

]
0

[0
,1

]
0.

68
1

N
1D

R
A

nx
ie

ty
0

[0
,1

]
0

[0
,0

]
0

[0
,3

]
0

[0
,7

]
0

[0
,0

]
0

[0
,9

]
0

[0
,0

]
0.

55
2

N
1D

R
U

na
ff

ec
te

d
0

[0
,1

1]
3

[0
,1

1]
0

[0
,4

]
1

[0
,1

3]
0

[0
,0

]
1.

50
[0

,1
4]

0
[0

,5
]

<
0.

00
1

N
1D

R
C

om
pl

et
ed

su
ic

id
e

0
[0

,1
]

0
[0

,0
]

0
[0

,1
]

0
[0

,2
]

0
[0

,2
]

0
[0

,2
]

0
[0

,1
]

0.
53

9

N
1D

R
A

tte
m

pt
ed

su
ic

id
e

0
[0

,3
]

0
[0

,0
]

0
[0

,3
]

0
[0

,2
]

0
[0

,1
]

0
[0

,2
]

0
[0

,1
]

0.
00

1

N
2D

R
C

om
pl

et
ed

su
ic

id
e

0
[0

,1
]

0
[0

,1
]

0
[0

,1
]

0
[0

,2
]

0
[0

,0
]

0
[0

,2
]

0
[0

,2
]

0.
04

5

N
2D

R
A

tte
m

pt
ed

su
ic

id
e

0
[0

,1
]

0
[0

,2
]

0
[0

,1
]

0
[0

,1
]

0
[0

,0
]

0
[0

,2
]

0
[0

,0
]

0.
51

7

To
ta

lN
1D

R
0

[0
,2

0]
3

[0
,6

]
0

[0
,1

7]
1

[0
,2

0]
0

[0
,4

]
5

[0
,1

4]
5

[0
,1

5]
<

0.
00

1



218

Table B.16: Co-occurrence of rapid cycling variable and clinical course. Only complete
cases of the co-occurrences were analyzed here. Chi2 test used for hypothesis testing.
Abbreviations: antidepressants (AD), chronic (C), chronic deteriorating (CD), chronic
fluctuating (CF), completely episodic (E), continuous cycling (CC), episodic with residual
symptoms (ER), single episode (S)

Rapid Cycling
Never Only on AD Spontaneous p

N 495 18 118
Clinical Course (%) <0.001
C 62 (15.6) 4 (22.2) 6 ( 5.1)
CD 10 ( 2.5) 0 ( 0.0) 1 ( 0.9)
CF 80 (20.1) 8 (44.4) 71 (60.7)
E 135 (33.9) 0 ( 0.0) 9 ( 7.7)
CC 1 ( 0.3) 0 ( 0.0) 1 ( 0.9)
ER 98 (24.6) 6 (33.3) 29 (24.8)
S 12 ( 3.0) 0 ( 0.0) 0 ( 0.0)
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Appendix C

Supplementary Material for Exemplar Scoring Identifies Genetically

Separable Phenotypes of Lithium Responsive Bipolar Disorder

C.1 Gene Set Analysis

At each fold of cross-validation (under all settings of q), the logistic regression coefficients

were saved. The SNPs whose logistic regression coefficients were of the same sign (i.e.

positive or negative) across all folds were ranked in terms of their absolute median coefficient

values and linked to gene identifiers using the NCBI gene database. Each gene was assigned

the maximal absolute value of the logistic regression coefficients for all SNPs tagged by that

gene; the remainder (duplicates) were deleted, such that each included gene had only one

numerical value associated with it. We then applied the statistical enrichment test in the

PANTHER classification system v. 14.1 [232]. We repeated the statistical enrichment test for

the following annotation sets: PANTHER pathways, GO molecular function (complete), GO

biological processes (complete), GO cellular components (complete). To further evaluate

the degree to which the enrichment analyses speak specifically to findings among the best

exemplars, we repeated the same procedures outlined here using the logistic regression

coefficients for the poor exemplars.

C.2 Population Stratification

To evaluate for the presence of population stratification in our genomic sample, we plot the

first several principal components of the subjects’ genotypes in Figure C.1. For comparison,

Figure C.2 demonstrates the first several principal components from 14 sites of the full

Consortium on Lithium Genetics (ConLiGen) genomic sample.
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Figure C.1: Principal components analysis of the genomic dataset from Halifax (as coded in
the ConLiGen studies [30]). The left column is coloured by the site of origin, whereas the
right column of plots is coloured by lithium responsiveness. Abbreviations: International
Group for the Study of Lithium (IGSLi), Maritimes (MAR), Montreal (MTL), Ontario (ON;
also known as Ottawa/Hamilton).
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C.3 Supplementary Tables

Clinical demographic comparisons between the best exemplars, poor exemplars, and the

aggregated sample of genotyped patients is presented in Table C.1, with stratification by

lithium response. The results of gene enrichment analysis are presented in Table C.3, with

specific genes enriched in the best exemplar group (related to glutamate receptors and

signalling processes) shown in Tables C.4 and C.5.
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Table C.4: Genes enriched in the best exemplars group related to glutamatergic synapses

(gene ontology “cellular component” category).

Gene Gene Symbol Protein Class

ABR Active breakpoint cluster

region-related protein

guanyl-nucleotide exchange factor

(PC00113)

ACAN Aggrecan core protein extracellular matrix glycoprotein

(PC00100)

ACTN1,

ACTN2

Alpha-actinin-1 & 2

ADAM22,

ADAM23

Disintegrin and metallopro-

teinase domain-containing

protein 22 & 23

metalloprotease (PC00153)

ADCY1,

ADCY8

Adenylate cyclase type 1 &

8

ADGRL3 Adhesion G protein-

coupled receptor L3

G-protein coupled receptor (PC00021),

antibacterial response protein (PC00051),

protease (PC00190)

ADORA2B Adenosine receptor A2b G-protein coupled receptor (PC00021)

ADRA1A Alpha-1A adrenergic recep-

tor

G-protein coupled receptor (PC00021)

APBA1 Amyloid-beta A4 precursor

protein-binding family A

member 1

membrane trafficking regulatory protein

(PC00151)

ARHGAP22,

ARHGAP39,

ARHGAP44

Rho GTPase-activating pro-

tein 22

ATP2B2,

ATP2B4

Plasma membrane calcium-

transporting ATPase 2 & 4

cation transporter (PC00068), hydrolase

(PC00121), ion channel (PC00133)

Continued on next page...
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Gene Gene Symbol Protein Class

BAIAP2 Brain-specific angiogenesis

inhibitor 1-associated pro-

tein 2

receptor (PC00197)

BCR Breakpoint cluster region

protein

guanyl-nucleotide exchange factor

(PC00113)

CACNA1A Voltage-dependent P/Q-

type calcium channel

subunit alpha-1A

CACNG2,

CACNG3,

CACNG4

Voltage-dependent calcium

channel gamma-2 subunit

voltage-gated calcium channel

(PC00240)

CADPS,

CADPS2

Calcium-dependent secre-

tion activator 1 & 2

calcium-binding protein (PC00060)

CAMK4 Calcium/calmodulin-

dependent protein kinase

type IV

non-motor microtubule binding protein

(PC00166), non-receptor serine/threonine

protein kinase (PC00167)

CDH8,

CDH10,

CDH11

Cadherin-8,10,11

CHMP2B Charged multivesicular

body protein 2b

CHRM2,

CHRM3

Muscarinic acetylcholine

receptor M2 & M3

G-protein coupled receptor (PC00021)

CLSTN1,

CLSTN2

Calsyntenin-1 & 2 calcium-binding protein (PC00060), cell

adhesion molecule (PC00069)

CNR1 Cannabinoid receptor 1 G-protein coupled receptor (PC00021)

CPLX2 Complexin-2

CTBP2 C-terminal-binding protein

2

transcription cofactor (PC00217)

Continued on next page...
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Gene Gene Symbol Protein Class

CTTNBP2 Cortactin-binding protein 2

DGKB Diacylglycerol kinase beta kinase (PC00137)

DGKI Diacylglycerol kinase iota kinase (PC00137)

DLG2 Disks large homolog 2 transmembrane receptor regula-

tory/adaptor protein (PC00226)

DLGAP4 Disks large-associated pro-

tein 4

transmembrane receptor regula-

tory/adaptor protein (PC00226)

DNM2,

DNM3

Dynamin-2 & 3 hydrolase (PC00121), microtubule fam-

ily cytoskeletal protein (PC00157), small

GTPase (PC00208)

DRD2,

DRD3

D(2) & D(3) dopamine re-

ceptors

G-protein coupled receptor (PC00021)

EFNB2 Ephrin-B2 membrane-bound signaling molecule

(PC00152)

EPHA4,

EPHA7

Ephrin type-A receptors 4

& 7

EPHB1,

EPHB2

Ephrin type-B receptors 1

& 2

ERBB4 Receptor tyrosine-protein

kinase erbB-4

ERC2 ERC protein 2 G-protein modulator (PC00022), mem-

brane traffic protein (PC00150)

FARP1 FERM, ARHGEF and

pleckstrin domain-

containing protein 1

FYN Tyrosine-protein kinase

Fyn

Continued on next page...
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Gene Gene Symbol Protein Class

FZD3 Frizzled-9 G-protein coupled receptor (PC00021),

protease inhibitor (PC00191), signaling

molecule (PC00207)

GABRR1 Gamma-aminobutyric acid

receptor subunit rho-1

GABA receptor (PC00023), acetyl-

choline receptor (PC00037)

GPC6 Glypican-6

GPM6A Neuronal membrane glyco-

protein M6-a

myelin protein (PC00161)

GRIA1 Glutamate receptor 1

GRID1,

GRID2

Glutamate receptor

ionotropic, delta-1 & 2

GRIK2,

GRIK5

Glutamate receptor

ionotropic, kainate 2 & 5

GRIN2A,

GRIN3A

Glutamate receptor

ionotropic, NMDA 2A &

3A

GRIP1,

GRIP2

Glutamate receptor-

interacting protein 1 &

2

GRM1,

GRM3

Metabotropic glutamate re-

ceptor 1 & 3

G-protein coupled receptor (PC00021)

GSG1L Germ cell-specific gene 1-

like protein

cytoskeletal protein (PC00085)

GSK3B Glycogen synthase kinase-

3 beta

non-receptor serine/threonine protein ki-

nase (PC00167)

HIP1 Huntingtin-interacting pro-

tein 1

non-motor actin binding protein

(PC00165)

HOMER1,

HOMER2

Homer protein homolog 1

& 2

Continued on next page...
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Gene Gene Symbol Protein Class

HTR2A 5-hydroxytryptamine recep-

tor 2A

G-protein coupled receptor (PC00021)

IL1RAP Interleukin-1 receptor ac-

cessory protein

type I cytokine receptor (PC00231)

ITGB1,

ITGB3

Integrin beta-1 & 3 cell adhesion molecule (PC00069), recep-

tor (PC00197)

ITSN1 Intersectin-1 G-protein modulator (PC00022);

calcium-binding protein (PC00060);

membrane traffic protein (PC00150)

KCND2 Potassium voltage-gated

channel subfamily D

member 2

LGI1 Leucine-rich glioma-

inactivated protein 1

LRFN5 Leucine-rich repeat and fi-

bronectin type-III domain-

containing protein 5

LRRC4C Leucine-rich repeat-

containing protein 4C

LRRK2 Leucine-rich repeat

serine/threonine-protein

kinase 2

LRRN2 Leucine-rich repeat trans-

membrane neuronal protein

2

LRRTM4 Leucine-rich repeat trans-

membrane neuronal protein

4

extracellular matrix protein (PC00102),

receptor (PC00197)

Continued on next page...
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Gene Gene Symbol Protein Class

LYN Tyrosine-protein kinase

Lyn

MAPK10,

MAPK14

Mitogen-activated protein

kinase 10 & 14

non-receptor serine/threonine protein ki-

nase (PC00167)

MTOR Serine/threonine-protein ki-

nase mTOR

non-receptor serine/threonine protein ki-

nase (PC00167); nucleic acid binding

(PC00171); nucleotide kinase (PC00172)

NAPB Beta-soluble NSF attach-

ment protein

membrane traffic protein (PC00150)

NDRG1 Protein NDRG1 serine protease (PC00203)

NETO1 Neuropilin and tolloid-like

protein 1

NLGN1 Neuroligin-1

NOS1AP Carboxyl-terminal PDZ lig-

and of neuronal nitric oxide

synthase protein

signaling molecule (PC00207)

NRCAM Neuronal cell adhesion

molecule

NRG1,

NRG3

Pro-neuregulin-1 & 3,

membrane-bound isoform

growth factor (PC00112)

NRP1, NRP2 Neuropilin-1 & 2

NRXN1 Neurexin-1

NTNG1,

NTNG2

Netrin-G1 & G2 extracellular matrix linker protein

(PC00101), protease inhibitor (PC00191),

receptor (PC00197)

NTRK3 NT-3 growth factor receptor

OLFM2 Noelin-2 receptor (PC00197); structural protein

(PC00211)

P2RY1 P2Y purinoceptor 1

Continued on next page...
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Gene Gene Symbol Protein Class

PAK2 Serine/threonine-protein ki-

nase PAK 2

PLCB1,

PLCB4

1-phosphatidylinositol

4,5-bisphosphate phos-

phodiesterase beta-1 &

4

calcium-binding protein (PC00060),

guanyl-nucleotide exchange factor

(PC00113), phospholipase (PC00186),

signaling molecule (PC00207)

PLEKHA5 Pleckstrin homology

domain-containing family

A member 5

PLPPR4 Phospholipid phosphatase-

related protein type 4

phosphatase (PC00181); pyrophos-

phatase (PC00196)

PPFIA2 Liprin-alpha-2 & 3

PPFIA3

PPM1H Protein phosphatase 1H kinase inhibitor (PC00139), protein phos-

phatase (PC00195)

PPP1R9A Neurabin-1

PPP3CA Serine/threonine-protein

phosphatase 2B catalytic

subunit alpha isoform

PRKAR1A cAMP-dependent protein

kinase type I-alpha regula-

tory subunit

PSD2 PH and SEC7 domain-

containing protein 2

PTK2B Protein-tyrosine kinase 2-

beta

PTPRD Receptor-type tyrosine-

protein phosphatase delta

protein phosphatase (PC00195); receptor

(PC00197)

Continued on next page...



239

Gene Gene Symbol Protein Class

PTPRO, PT-

PRS, PTPRT

Receptor-type tyrosine-

protein phosphatase O, S,

& T

protein phosphatase (PC00195)

RAC1 Ras-related C3 botulinum

toxin substrate 1

small GTPase (PC00208)

RAP1A Ras-related protein Rap-1A small GTPase (PC00208)

RGS7BP Regulator of G-protein sig-

naling 7-binding protein

RNF216 E3 ubiquitin-protein ligase

RNF216

SCN2A Sodium channel protein

types 2 & 10 10 subunit al-

pha

voltage-gated calcium channel

(PC00240)

SCN10A voltage-gated sodium channel (PC00243)

SH3GL1,

SHGL2,

SHGL3

Endophilin-A2,A1, & A3

SHANK2 SH3 and multiple ankyrin

repeat domains protein 2

SHISA6,

SHISA9

Protein shisa-6 & 9

SLC1A2,

SLC1A6

Excitatory amino acid trans-

porter 2

cation transporter (PC00068)

SLC6A17 Sodium-dependent neutral

amino acid transporter

SLC6A17

cation transporter (PC00068)

SNAP25 Synaptosomal-associated

protein 25

SNARE protein (PC00034)

Continued on next page...
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Gene Gene Symbol Protein Class

SORCS3 VPS10 domain-containing

receptor SorCS3

receptor (PC00197), transporter

(PC00227)

SPARC,

SPARCL1

SPARC & SPARC-like pro-

tein 1

cell adhesion molecule (PC00069), extra-

cellular matrix glycoprotein (PC00100),

growth factor (PC00112)

SPTBN1 Spectrin beta chain, non-

erythrocytic 1

SRC Proto-oncogene tyrosine-

protein kinase Src

STX3 Syntaxin-3 SNARE protein (PC00034)

SV2A Synaptic vesicle glycopro-

tein 2A

SYN3 Synapsin-3 membrane trafficking regulatory protein

(PC00151); non-motor actin binding pro-

tein (PC00165)

SYNPO Synaptopodin non-motor actin binding protein

(PC00165)

SYT1, SYT6 Synaptotagmin-1 & 6 membrane trafficking regulatory protein

(PC00151)

TANC2 Protein TANC2

TIAM1 T-lymphoma invasion and

metastasis-inducing protein

1

TNIK TRAF2 and NCK-

interacting protein kinase

TNR Tenascin-R signaling molecule (PC00207)

UNC13A Protein unc-13 homolog A

WASF3 Wiskott-Aldrich syndrome

protein family member 3

non-motor actin binding protein

(PC00165)

Continued on next page...
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Gene Gene Symbol Protein Class

WNT7A Protein Wnt-7a signaling molecule (PC00207)

YWHAZ 14-3-3 protein zeta/delta chaperone (PC00072)
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Table C.5: Genes enriched among the best exemplars in the gene ontology “biological

process” category of the glutamate receptor signaling pathway.

Gene Gene Symbol Protein Class

APP Amyloid-beta A4 protein protease inhibitor (PC00191)

GNAQ Guanine nucleotide-

binding protein G(q)

subunit alpha

heterotrimeric G-protein (PC00117)

GRIA1,

GRIA4

Glutamate receptor 1 & 4

GRID1,

GRID2

Glutamate receptor

ionotropic, delta-1, 2

GRIK1,

GRIK2,

GRIK4,

GRIK5

Glutamate receptor

ionotropic, kainate 1,2,4,5

GRIN2A,

GRIN2B,

GRIN2D,

GRIN3A

Glutamate receptor

ionotropic, NMDA 2A, 2B,

2D, 3A

GRM1,

GRM3,

GRM4,

GRM5,

GRM6,

GRM7,

GRM8

Metabotropic glutamate re-

ceptor 1,3,4,5,6,7,8

G-protein coupled receptor (PC00021)

HOMER1,

HOMER2

Homer protein homolog 1

& 2

Continued on next page...
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Gene Gene Symbol Protein Class

KCNB1 Potassium voltage-gated

channel subfamily B

member 1

PLCB1 1-phosphatidylinositol

4,5-bisphosphate phospho-

diesterase beta-1

calcium-binding protein (PC00060),

guanyl-nucleotide exchange factor

(PC00113), phospholipase (PC00186),

signaling molecule (PC00207)

PTK2B Protein-tyrosine kinase 2-

beta

SSR1 Somatostatin receptor type

1

G-protein coupled receptor (PC00021)

TIAM1 T-lymphoma invasion and

metastasis-inducing protein

1

TRPM1,

TRPM3

Transient receptor potential

cation channel subfamily M

member 1 & 3

ion channel (PC00133), receptor

(PC00197)
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Description of Supplementary Files

Supplementary files are available at Dalspace and in repositories for the respective Chapters’

publications (see each Chapter for a link).

D.1 Supplementary Files for Chapter 3

MMH Supplementary Code 1.nb Main analyses. Mathematica notebook contain-

ing the primary analyses accompanying The Meaning and Measure of Heterogeneity.

D.2 Supplementary Files for Chapter 4

RRH Supplementary Code 1.ipynb Main analyses of existing heterogeneity in-

dices. Jupyter notebook containing the primary analyses of the existing non-categorical

heterogeneity indices including evaluation under the beta mixture model and representational

Rényi heterogeneity in the convolutional variational autoencoder (CVAE) model.

RRH Supplementary Code 2.ipynb Evaluation of MNIST homogeneity using

siamese networks. Jupyter notebook evaluating the hypothesis that the MNIST “Ones” are

the most homogeneous class.

D.3 Supplementary Files for Chapter 6

ASYM Supplementary Data 1.csv Total Alda score ratings. Inter-rater reliabil-

ity data for the total Alda score.

ASYM Supplementary Data 2.csv Alda A-score ratings. Inter-rater reliability

data for the Alda A-score.
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ASYM Supplementary Code 1.nb Alda score analysis code. Mathematica note-

book containing the empirical evaluation of the Alda Score of Lithium response. This

notebook also contains additional analysis of the A-score alone.

ASYM Supplementary Code 2.nb Theoretical analysis code. Mathematica note-

book containing the theoretical analyses of discrete vs. continuous mutual information in

asymmetrically reliable data.

ASYM Supplementary Code 3.ipynb Code for statistical power tests. Jupyter

notebook containing the theoretical analyses of the statistical power of classical associative

tests under asymmetrically reliable data.
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