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Abstract

A total colouring of a graph is an assignment of colours to the edges and vertices such

that adjacent objects receive different colours. In this thesis, we prove partial results

towards the Total Colouring Conjecture which states that the total chromatic number

of a graph is at most degree plus two. In the first part of this thesis there is an almost

complete categorization of which total graphs are perfect. Upper bounds on the total

chromatic number are found for Cartesian, strong, and tensor graph products. We

determine that the total chromatic number of the Cartesian graph product depends

strongly on the total chromatic number of the component graphs. Lastly, we explore

how vertex multiplication affects the total chromatic number. We establish that for

the star graph and cycle graph, no matter how many times a vertex is multiplied, the

resulting graph satisfies the Total Colouring Conjecture.
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Chapter 1

Introduction

1.1 Definitions and Notations

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and a

relation that assigns each edge two vertices, which are called its endpoints. If u and

v are vertices, we say that u is adjacent to v if they are connected by an edge. We

denote this edge uv. If e1 and e2 are edges, we say that e1 is adjacent to e2 if these

edges share an endpoint. If u is an endpoint on an edge e, then we say that u is

incident on e and vice versa.

The degree of a vertex v, denoted deg(v), is the number of edges incident on

v. The maximum degree of a graph G, denoted ∆G, is the maximum degree of its

vertices. The neighbourhood of a vertex v, denoted N(v), is the set of vertices that are

adjacent to v. A loop is an edge that has the same vertex for both of its endpoints.

Multi-edges are edges that share the same endpoints.

A simple graph is an undirected graph, having no loops or multi-edges. A finite

graph is a graph on a finite number of vertices. Unless stated otherwise, the graphs

to be considered in this thesis are finite and simple. A planar graph is a graph that

can be drawn such that no two edges intersect anywhere except on a vertex. We now

proceed to introduce a variety of different graph colourings.

A k-vertex-colouring of a graph G is a labeling f : V (G) → S, where |S| = k.

The labels are called colours. The set of all the vertices that receive the same colour

are called a colour class. A k-vertex-colouring is proper if adjacent vertices receive

different colours. A graph is called k-vertex-colourable if it has a proper k-colouring.

The chromatic number, denoted χ(G), is the least k such thatG is k-vertex-colourable.

A k-edge-colouring of a graph G is a labeling f : V (G)→ S, where |S| = k. The

set of all the edges that receive the same colour are called an edge colour class. A k-

edge-colouring is proper if adjacent edges receive different colours. A graph is called

k-edge-colourable if it has a proper k-edge-colouring. The edge chromatic number

1



2

(sometimes referred to as the chromatic index ), denoted χ′(G), is the least k such

that G is k-edge-colourable.

A k-total-colouring of a graph G is a labeling f : V (G) → S and f : E(G) → S,

where |S| = k. The set of all the vertices and edges that receive the same colour

are called a total colour class. A k-total-colouring is proper if no adjacent or incident

elements receive the same colour. A graph is called k-total-colourable if it has a proper

k-total-colouring. The total chromatic number, denoted χ′′(G), is the least k such that

G is k-total-colourable.

Unless otherwise stated, all types of colourings are assumed to be proper. We now

proceed to introduce independent sets and matchings.

An independent set is a set of vertices that includes no two vertices that are

adjacent. A maximum independent set is an independent set of largest possible size.

A maximal independent set is an independent set such that every other vertex in the

graph is adjacent to a vertex of the set. For a graph G, the independence number of

G, α(G), is the cardinality of a maximum independent set. With regards to vertex

colouring, a colour class is an independent set.

A matching is a set of edges that includes no two edges that are adjacent. A

maximum matching is a matching of largest possible size. A maximal matching is

a matching such that every other edge in the graph is adjacent to an edge in the

matching. For a graph G, the matching number of G, α′(G), is the cardinality of

a maximum matching. With regards to edge colouring, an edge colour class is a

matching set. A perfect matching of a graph is a matching such that every vertex

in the graph is incident on an edge in the matching. A near-perfect matching is a

matching in which a single vertex is left unmatched. We now proceed to introduce a

variety of different graph structures.

The path graph Pn, is a graph with n vertices that can be enumerated such that

two vertices are adjacent if and only if they are consecutive in the enumeration.

The cycle graph Cn, is a graph with n vertices that can be enumerated such that

two vertices are adjacent if and only if they are consecutive in the enumeration or

are the first and last vertex in the enumeration. A tree graph is a graph containing

no cycles. A chord is an edge that is not part of a cycle but connects two vertices of

the cycle. A chordal graph is one in which all cycles of four or more vertices have a

chord.
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The complete graph Kn, is a graph with n vertices and each pair of vertices is

connected by an edge. A bipartite graph is a graph that can have its vertex set

divided into two disjoint independent sets, U and V , which is called a bipartition.

The complete bipartite graph Kn,m, is a bipartite graph with disjoint independent

sets of size n and m, such that every vertex in U is adjacent to every vertex in V .

We now proceed to introduce a variety of different graph products.

The Cartesian graph product of two graphs G and H, denoted G�H, is a graph

with vertex set V (G) × V (H), where two vertices, (u, v) and (u′, v′) in G�H are

adjacent if and only if u = u′ and vv′ ∈ E(H), or v = v′ and uu′ ∈ E(G).

The tensor graph product of two graphs G and H, denoted G × H, has vertex

set V (G) × V (H) and two vertices, (u1, v1) and (u2, v2) in G × H are adjacent if

u1u2 ∈ E(G) and v1v2 ∈ E(H).

The strong graph product of two graphs G and H, denoted G�H, has vertex set

V (G)× V (H) and two vertices, (u, v) and (u′, v′) in G�H are adjacent if and only

if u = u′ and vv′ ∈ E(H), or v = v′ and uu′ ∈ E(G), or uu′ ∈ E(G) and vv′ ∈ E(H).

1.2 History of Colourings

Graph colouring originated from the Four Colour Theorem, which was conjectured in

1852 by Francis Guthrie. The Four Colour Theorem states that, given any separation

of a map into contiguous regions, no more than four colours are required to colour the

regions of the map so that no two adjacent regions have the same colour. While the

Four Colour Theorem seems simple in principle, it was not until 1976 that the theorem

was proved by Kenneth Appel and Wolfgang Haken with a proof that depended

heavily on a computer search to rule out a number of possibilities [1, 2].

This idea of colouring maps was then generalized to create the field of graph

colouring. For example, a proper vertex colouring is an assignment of colours to the

vertices, such that no two adjacent vertices receive the same colour. The chromatic

number of a graph G, denoted χ(G), is the minimum number of colours required for

a proper vertex colouring. An edge colouring is an assignment of colours to the edges

so that no two adjacent edges receive the same colour. Similarly, the chromatic index

of a graph G, denoted χ′(G), is the minimum number of colours required for a proper

edge colouring.
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One reason why mathematicians study graph colouring is because it has applica-

tions to scheduling problems. Therefore minimizing the number of colours required

for a proper vertex colouring is important. Determining the chromatic number of a

graph can be difficult. In fact, determining the chromatic number of a graph is an

NP-hard problem [11].

An important research area in graph colourings is finding upper and lower bounds

for colouring parameters. A clique is a subset of vertices such that every two distinct

vertices in the clique are adjacent. Let ω(G) denote the number of vertices in a

maximum clique in G. Then a simple lower bound on the chromatic number is that

χ(G) ≥ ω(G). This lower bound can be far from tight however as Jan Mycielski

proved that there exists a graph with clique number 2 and any chromatic number

[25]. These graphs are called Mycielskian graphs.

Let α(G) denote the number of vertices in a maximum independent set. Then

another lower bound on the chromatic number is χ(G) ≥ |V (G)|
α(G)

. This bound results

from the fact that a colour class, which is a set of vertices that all receive the same

colour, must be an independent set. Similarly, let α′(G) denote the number of vertices

in a maximum matching. Then a lower bound on the chromatic index is χ(G) ≥ |E(G)|
α′(G)

.

This bound results from the fact that an edge colour class, which is a set of edges

that all receive the same colour, must be a matching.

An example of an upper bound on the chromatic number is Brooks’ Theorem.

This theorem states that for any connected undirected graph G with maximum degree

∆(G), the chromatic number of G is at most ∆G unless G is a complete graph or an

odd cycle, in which case the chromatic number is ∆G + 1. The proof of this theorem

relied on a greedy colouring algorithm and spanning trees [7].

We have seen that the chromatic number of a graph is related to the maximum

degree, clique number, and independence number of a graph. Now we will review

some of the main results from edge colourings. The first, most notable result, is

Vizing’s Theorem, which was published in 1964 by Vadim Vizing [29]. This theorem

states that if G is a simple graph, then χ′(G) = ∆G or χ′(G) = ∆G + 1. Graphs

having chromatic index ∆G are called tier 1 graphs whereas graphs having chromatic

index ∆G + 1 are called tier 2 graphs. Vizing’s Theorem, while much stronger, has

similarities to Brooks’ Theorem by relating the chromatic parameters of a graph to

the maximum degree of the graph.
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An interesting property of edge colouring problems is that they can be translated

into vertex colouring problems by using the line graph operation. The line graph,

denoted L(G), is a graph where each vertex represents an edge in G, and two vertices

are adjacent if the edges they represent are adjacent in G. A proper vertex colouring of

L(G) using m colours is equivalent to a proper edge colouring of G using m colours.

For example, König used this method to show that all bipartite graphs are tier 1

graphs by showing that the line graph of a bipartite graph is perfect [16] (a graph G

is perfect, if G and each of the induced subgraphs of G, has chromatic number ω(G)).

We have seen some connections between the chromatic number and the chromatic

index. Total colouring, introduced by Vizing [29] and independently by Bezhad [4]

in 1964 is another way of relating the chromatic number and the chromatic index.

A total colouring of a graph is an assignment of colours to the edges and vertices

such that no two adjacent nor incident elements receive the same colour. Vizing

and Bezhad both conjectured [29, 4], what is now known as the Total Colouring

Conjecture, that for a simple graph G,

∆G + 1 ≤ χ′′(G) ≤ ∆G + 2

The vertex with maximum degree needs a colour and a unique colour for every

one of its incident edges, thus the lower bound is always satisfied. The Total Colour-

ing Conjecture has immediate resemblance to Vizing’s Theorem on edge colourings.

Graphs with total chromatic number ∆G + 1 are called type 1 graphs whereas graphs

with total chromatic number ∆G + 2 are called type 2 graphs. For example, C3 is a

type 1 graph and K4 is a type 2 graph [5].

The motivation for this thesis is to prove partial results towards the Total Colour-

ing Conjecture. This conjecture has been confirmed for different graph structures.

For graphs with ∆ = 3, the conjecture was proven by Rosenfeld [26], and for graphs

with ∆ = 4 or ∆ = 5, it was proved by Kostochka [17, 18].

There is a graph that will be useful in determining the total chromatic number.

This graph is the total graph, which was defined by Vizing [29]. The total graph,

denoted T (G), is analogous to the line graph. Each vertex of T (G) represents an edge

of G or a vertex of G and two vertices in T (G) are adjacent if and only if the elements

they represent in G are adjacent or incident in G. Similar to edge colourings, a proper

vertex colouring of T (G) using m colours is equivalent to a proper total colouring of



6

G using m colours.

In this thesis, we define a new set related to total colourings, which we call a

total set. A total set is a set of vertices and edges such that no two elements are

adjacent nor incident to one another. We define the total number of a graph to be

the maximum possible size of a total set. Note that this is equal to the independence

number of the total graph. We will now summarize the main results found in this

thesis. All unreferenced work is the author’s.

1.3 Main Results

In Chapter 2, we determine that the crown graph, wheel graph, and n-fan graph, all

satisfy the Total Colouring Conjecture. In particular, we prove that under certain

conditions they are type 1 graphs. We then prove an upper bound on the total

number and show that it can be far from tight. The total number is then used to get

a lower bound on the total chromatic number. Lastly, we give sufficient conditions

for a graph to have a perfect total graph. In particular, we show that trees have a

perfect total graph.

In Chapter 3, we determine that the total chromatic number of the Cartesian

graph product depends on the total chromatic number of the component graphs.

Interestingly, if both of the components are type 1 or type 2 graphs, then the Cartesian

graph product will satisfy the Total Colouring Conjecture. We also give conditions

on which Cartesian products are type 1. These results are then applied to show that

the hypercube graph and rook graph satisfy the Total Colouring Conjecture.

An upper bound is then found for the strong graph product by applying the results

found on Cartesian graph products. We give sufficient conditions for which strong

graph products are type 1. This result is applied to show that the kings graph satisfies

the Total Colouring Conjecture. Lastly, we briefly explore tensor graph products. We

show that the tensor graph product of two paths is a type 1 graph if the paths are

sufficiently large. We also determine that a bipartite double of a type 1 or type 2

graph will satisfy the Total Colouring Conjecture.

Lastly, in Chapter 4 we prove that if any vertex of a star graph or cycle graph is

multiplied m times that the resulting graph satisfies the Total Colouring Conjecture.

We give conditions for which resulting graphs are type 1 and type 2. In most cases
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the proofs involve the parity of m and the size of the graph. These results are then

applied to vertex multiplication in arbitrary graphs. We show that if the vertex being

multiplied satisfies certain conditions, then the resulting graph is type 1.

1.4 Research in This Field

In this section, we give an overview of work that has been done on total colourings,

or are otherwise relevant to this thesis.

1.4.1 Total Colouring of Chordless Graphs

A chord is an edge that is not part of a cycle, but that still connects two vertices of

that cycle. A chordless graph is a graph that does not contain any chords. In the

paper by Machado in 2013, he proved that if G is a chordless graph with ∆G ≥ 3,

then G is a type 1 graph [20]. He also determined that under the same conditions

that G is a tier 1 graph.

A graph is 2-sparse if every edge is incident to at least one vertex of degree at

most 2. In the proof of Machado’s main result, he proved an interesting lemma. He

proved that if a graph G is 2-sparse and ∆G ≥ 3, then G is a type 1 and tier 1 graph.

This helped confirm the main result because 2-sparse graphs are chordless.

1.4.2 Total Colouring of Planar Graphs

A planar graph is a graph that can be drawn embedded in the plane. In other words, a

planar graph is a graph that can be drawn such that no two edges intersect anywhere

except at a vertex. For example, the Four Colour Theorem says that the chromatic

number of a planar graph is at most 4.

Recall that by the combined results from Rosenfeld and Kostochka, if ∆G ≤ 5,

then χ′′(G) ≤ ∆G + 2. Borodin showed that for planar graphs with ∆G ≥ 8 that

χ′′(G) ≤ ∆G + 2 [6]. Sanders and Zhao proved the same result for graphs with

maximum degree 7 [27]. Thus for total colourings, if G is a planar graph such that

∆G 6= 6, it is known that χ′′(G) ≤ ∆G + 2. Therefore current research on the total

colouring of planar graphs is focused on the case ∆G = 6 or classifying which planar

graphs are type 1.
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Recall that a graph is chordal if all cycles of four or more vertices have a chord.

Two cycles are adjacent if they share at least one common edge. In the paper by X.

Wang in 2016, he proved that if G is a planar graph with ∆G = 7 and G does not

have adjacent chordal cycles of length 6, then χ′′(G) = ∆G + 1 [30]. The proof of

this theorem involves a discharging technique. This technique does not seem to help

prove that a planar graph with maximum degree 6 will satisfy the total colouring

conjecture.

1.4.3 Total Colouring of Toroidal Graphs

While there are many interesting applications from planar graphs, sometimes drawing

graphs on a different surface can be beneficial. Consider the three utilities problem,

which asks if you can draw a line from three houses to three utilities without the lines

ever crossing. This problem is not solvable on a plane, but is solvable on a torus.

A 1-toroidal graph is a graph that can be drawn on a torus, such that every

edge intersects at most 1 other edge. In a paper by T. Wang, he proved that if

G is a 1-toroidal graph where ∆G ≥ 11 and if G has no adjacent triangles, then

χ′′(G) ≤ ∆G + 2 [31]. The proof of this result, similar to the proof of X. Wang’s

result, involves a discharging technique.

1.4.4 Total Colouring of Random Graphs

A graph can be generated by starting with n isolated vertices and adding an edge

between them randomly and independently. If the probability p of adding an edge at

each step is the same, then the resulting graph is called the random graph which is

denoted G(n,p). For example, if p = 1 then G(n,1) = Kn.

Results on vertex colourings of the random graph are generally asymptotic, as

are results for total colourings of the random graph. McDiarmid proved that the

probability that a graph G formed according to this probabilistic process does not

satisfy the Total Colouring Conjecture is small [21]. An interesting corollary followed

from this result for G(n,1/2), the random graph where each edge exists with probability

1/2. This corollary is, that the proportion of all graphs on n vertices that does not

satisfy the Total Colouring Conjecture is small and decreases as n increases.
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1.4.5 Total Colouring of Corona Products

The corona product G ◦H of two graphs G and H is obtained by taking one copy of

G and |V (G)| copies of H; and by joining each vertex of the i-th copy of H to the

i-th vertex of G, where 1 ≤ i ≤ |V (G)|. Mohan, Geetha, and Somasundaram proved

that the corona product of two graphs that satisfy the Total Colouring Conjecture

will satisfy the Total Colouring Conjecture [23]. In particular, they proved that if

one of the components is a cycle graph, complete graph, or bipartite graph, then the

corona product will be type 1.

1.4.6 Total Colouring of Thorny Graphs

The thorny graph can be constructed by taking a graph and adding new vertices of

degree 1 to each vertex in the original graph. These graphs are interesting, as they

can be used to represent the structure of molecules and to design communication

networks. Dundar proved that for any graph, its thorny graph satisfies the Total

Colouring Conjecture [10]. In particular, he proved that the thorny graph of path

graphs, cycle graphs, and complete graphs are type 1. The proof of this result is via

an explicit total colouring algorithm.

1.4.7 Equitable Total Colouring of Graphs

Some research in the field of total colouring is on variations of total colouring. The

equitable total chromatic number of a graph G is the smallest integer k for which

G has a k-total colouring such that the number of vertices and edges coloured with

each colour differs by at most one. Equitable total colouring is useful, as it gives an

upper bound on the total chromatic number. Chunling proved that Cn�Cm has an

equitable 5-total colouring for all n and m [9].

The graph join of G and H, which we denote G∨H, is a graph with all the edges

that connect the vertices of G with the vertices of H. In the paper by Ming, he found

the equitable total chromatic number of Pn ∨ Sn, Pm ∨ Fn, and Pm ∨Wn [22].

1.4.8 Edge Colouring of Tensor Graph Products

The tensor graph product of two graphs G and H, denoted G × H, has vertex set

V (G)× V (H) and two vertices, (u1, v1) and (u2, v2) in G×H are adjacent if u1u2 ∈
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E(G) and v1v2 ∈ E(H). Jaradat proved the following lemma that we will use in this

thesis [14].

Lemma 1.4.1. If G or H is a tier 1 graph, then G×H is a tier 1 graph

The proof of Lemma 1.4.1 relied on showing that the tensor product of G and H

will be comprised of bipartite graphs, which are tier 1 graphs. We will use Lemma

1.4.1 to get an upper bound on the total chromatic number of strong graph products,

which we define later.



Chapter 2

Total Colouring of Some Classes of Graphs

In this chapter, we determine the total chromatic number of the crown graph and

wheel graph. A new subset in a graph is introduced, which is concurrently an in-

dependent set and a matching, which we call a total set. Lastly, we give an almost

complete categorization of which total graphs are perfect.

2.1 Total Colouring of the Crown Graph

In this section, we show that the crown graph satisfies the Total Colouring Conjecture.

The crown graph on 2n vertices, denoted J2n, is a graph with vertex set V (J2n) = {ui :

0 ≤ i < n} ∪ {vj : 0 ≤ j < n} and edge set E(J2n) = {uivj : i 6= j}. Equivalently, J2n

can be viewed as Kn,n with a perfect matching removed. For illustration, the graph

J6 (left) and J8 (right) are shown in Figure 2.1.

u2 v0

v1

u0 v2

u1

v1 u2

u3

v2

u0 v3

u1

v0

Figure 2.1: Graph J6 and J8

The reason why we explore the crown graph is because it will serve as an example

of a tensor product, which we explore in Chapter 3. The following lemma will establish

the total chromatic number of J2n if n is odd. The case when n is even will follow.

11
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Lemma 2.1.1. If n is odd, then J2n is a type 1 graph.

Proof: Suppose n is odd and note that ∆J2n = n − 1. Therefore we will prove

that J2n is a type 1 graph by giving an explicit total colouring using the colours

{0, 1, 2, . . . , n− 1}. For all i, where 0 ≤ i < n, colour the vertices ui and vi with the

colour i. This will not result in any conflict because ui is not adjacent to vi. Now all

that remains is to extend this colouring to the edges.

For each edge uivj, where i 6= 0 and j 6= 0, assign the colour (i + j)(mod n) to

that edge. Note that this assignment of colours will not conflict with the colours of

vertices ui and vj. Also note that all the coloured edges incident to the same vertex

receive different colours. Now for each i, where 1 ≤ i ≤ n−1, since the edge uivi does

not exist, the colour 2i(mod n) is not used on any edge incident to ui (likewise vi).

Thus we will assign the colour 2i(mod n) to the edges uiv0 and u0vi. For illustration,

we apply this total colouring to J10 as shown in Figure 2.2.

0

1

2 0

3

4

1

2

3

4

4

1

0

1

4

1

4

0

1
4

2 3

3 2

2

2

3 0

30

Figure 2.2: Total Colouring of J10

Note that {2(mod n), 4(mod n), . . . , (n − 1)(mod n), (n + 1)(mod n), . . . , (2n −
2)(mod n)} and {1, 2, . . . , n−1} are the same set. This is because (n+1)(mod n) ≡ 1,

(n+3)(mod n) ≡ 3, . . . , (2n−2)(mod n) ≡ n−2. Thus all the coloured edges incident

to u0 (and v0) receive different colours and do not conflict with the colours of vertices

u0 and v0. We thus have a total colouring J2n using n colours. Therefore if n is odd,

then J2n is a type 1 graph. �

Now all that remains is to establish the total chromatic number of J2n when n

is even. Note that we cannot use the same colouring argument that was used in the
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proof of Lemma 2.1.1. This is because if n is even, then n and 2 are not relatively

prime, thus the sets {2j(mod n) : j 6= 0} and {1, 2, . . . , n− 1} are not the same sets.

In the following lemma, we determine an upper bound on the total chromatic number

of J2n if n is even.

Lemma 2.1.2. If n is even, then χ′′(J2n) ≤ ∆J2n + 2.

Proof: A trivial upper bound on the total chromatic number is that χ′′(G) ≤
χ(G) + χ′(G). This is because we can colour the vertices with χ(G) colours and

the edges with a different χ′(G) colours. J2n is a bipartite graph, thus α(J2n) = 2

and α′(J2n) = ∆J2n . By substituting these values into the upper bound we get that

χ′′(J2n) ≤ χ(J2n) + χ′(J2n) = ∆J2n + 2 as wanted. �

The question remains whether or not J2n is a type 1 graph for even n. We

conjecture that the following is true:

Conjecture 2.1.3. If n is even, then J2n is a type 1 graph.

In Chapter 3, we will see that J8 is a type 1 graph. We have also not found a type

2 crown graph, which is why we expect this conjecture to hold.

2.2 Total Colouring of the Wheel Graph

In this section, we show that the wheel graph satisfies the Total Colouring Conjecture.

In fact, we show that all wheel graphs except one are type 1 graphs. The wheel graph

on n vertices, denoted Wn, is obtained by taking the graph join of Cn−1 and a distinct

vertex v. The graph W4 (right) and W5 (left) are shown in Figure 2.3.

Figure 2.3: Graph W5 and W4

The reason why we explore the wheel graph is because it will prove partial results

towards which planar graphs are type 1. The following theorem will establish the

total chromatic number of Wn for all n.
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Theorem 2.2.1. χ′′(Wn) =

∆Wn + 2 if n = 4

∆Wn + 1 if n > 4

Proof: W4 is the planar representation of K4 as can be seen in Figure 2.3. Bezhad

proved that K4 is a type 2 graph [5], therefore W4 is a type 2 graph.

Suppose that n > 4 and note that ∆Wn = n−1. Therefore we will prove that Wn is

a type 1 graph by giving an explicit total colouring using the colours {0, 1, . . . , n−1}.
We label the vertices of Cn−1 by {v0, v1, . . . , vn−2} and label the central vertex vn−1.

Colour the vertices vi, where 0 ≤ i < n − 1, with colour i. Then colour the edges

viv(i+1)(mod n−1) with the colour (i+2)(mod n−1). Note that this assignment of colours

will not conflict with the colours of vertices vi and v(i+1)(mod n−1). Also note that this

will result in two of the edges incident to vi receiving the colours (i+ 1)(mod n− 1)

and (i+ 2)(mod n− 1).

Therefore the colour (i+ 3)(mod n− 1) is available to give the edge vivn because

(i + 3) 6≡ (i + 2) 6≡ (i + 1)(mod n − 1) if n > 4. Note that all the coloured edges

incident to vn receive different colours and there are n− 1 of these colours. Therefore

we need a fresh colour to assign the vertex vn. We will assign vn the colour n − 1.

Therefore we have a total colouring of Wn using the colours {0, 1, . . . , n− 1}. �

2.2.1 Total Colouring of the n-Fan Graph

We will now apply the results on wheel graphs to find the total chromatic number of

a different graph structure. The n-fan graph, denoted Fn, is the graph obtained by

identifying a common vertex in n disjoint copies of C3. For example, the graph F3

(left) and F4 (right) are shown in Figure 2.4.

Figure 2.4: Graph F3 and F4
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The reason why we explore the n-fan, is it will help in the categorization of which

chordal graphs are type 1. Also, later in this chapter, the n-fan will serve as an

example of a graph that only contains cycles of length 3. The following corollary will

establish the total chromatic number of the n-fan for all n.

Corollary 2.2.2. Fn is a type 1 graph for all n.

Proof: If n = 1, then F1 = K3. Bezhad proved that K3 is a type 1 graph [5], thus F1

is a type 1 graph. Suppose that n > 1 and note that the n-fan is a subgraph of W2n+1

having the same maximum degree. Hence we can use the total colouring of W2n+1

restricted to Fn, which by Theorem 2.2.1, will use ∆W2n+1 + 1 colours. Therefore we

have a total colouring of Fn using ∆W2n+1 + 1 = ∆Fn + 1 colours as wanted. �

This concludes our exploration of the total chromatic number of certain graphs.

The remaining portion of this chapter is on the total set, total number, and total

graph. We start by finding bounds on the total number and applying them to the

total chromatic number.

2.3 Total Sets and Total Numbers

We want to generalize the notion of an independent set and matching to total colour-

ings. Therefore we define a new set with accompanying terminology that is analogous

to these notions.

Definition 2.3.1. A total set T is a set of vertices and edges such that no two

elements in the set are adjacent or incident to one another. A maximal total set

is a total set such that every other element is either adjacent or incident to some

element in T . A maximum total set is a total set with the largest possible number

of elements. This size will be called the total number of G, and will be denoted

α′′(G).

A total set of a graph G corresponds to an independent set of T (G) and the total

number of G corresponds to the independence number of T (G). Also, finding the

total chromatic number of a graph is equivalent to finding the minimum number of

disjoint total sets that cover all the vertices and edges. We will see later that total

sets are useful in showing that a graph cannot be totally coloured with ∆G+1 colours.
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The general argument involves the total number, the number of disjoint total sets,

and the number of elements in the graph. In order to talk about the size of a total

set however, we will need some upper and lower bounds for α′′(G). The following

lemma will give an upper and lower bound for the total number that will allow us to

directly apply results found for the independence and matching number.

Lemma 2.3.2. Let G be a graph. Then max{α(G), α′(G)} ≤ α′′(G) ≤ α(G) +α′(G)

Proof: A total set could consist of entirely edges or entirely of vertices. Thus letting

a total set being either a maximum independent set or maximum matching will satisfy

the lower bound. Note that at most α(G) vertices can be in a total set, because if

more vertices could be in a total set, then this would contradict that α(G) was the

maximum size of an independent set. The same argument tells us that at most α′(G)

edges can exist in a total set. Therefore we have that a total set cannot have more

than α(G) + α′(G) elements. �

It is important to note that the upper bound of Lemma 2.3.2 is sharp. For example,

consider the graph K2n+1. Label the vertices of K2n+1 by v0, v1, . . . , v2n. Then K2n+1

has a near-perfect matching by taking the edges {v0v1, v2v3 . . . , v2n−2v2n−1}. Thus

α′(K2n+1) = n. Every vertex in K2n+1 is adjacent to one another, thus α(K2n+1) = 1.

Therefore the total set {v0v1, v2v3 . . . , v2n−2v2n−1, v2n−1}, has size n+ 1 = α(K2n+1) +

α′(K2n+1).

Now that we have a general upper and lower bound for the total number, we want

to improve upon it. This is because the upper bound of Lemma 2.3.2 can be far from

the total number, as we will see in the following proposition. This is similar to how

there are graphs with clique number 2, but arbitrarily high chromatic number.

Proposition 2.3.3. Let G be a graph. Then α(G) +α′(G)−α′′(G) can be arbitrarily

large.

Proof: Let G be a graph with vertex set V (G) = {x1, x2, . . . , xk, y1, y2, . . . , yk} and

edge set E(G) = {xiyi : 1 ≤ i ≤ k} ∪ {yiyj : 1 ≤ i, j ≤ k and i 6= j} where k is

even. Then G has a perfect matching by choosing the edges {x1y1, x2y2, . . . , xkyk}.
Thus α′(G) = k. Now consider the following independent set: {x1, x2, . . . , xk}. Thus

α(G) ≥ k.
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Suppose that there is an independent set with k + 1 or more vertices. Then at

least one of the vertices of the form yi must be in the independent set. This is because

there are only k vertices of the form xi. Without loss of generality, assume that y1 is

in the independent set. Then yi, where 2 ≤ i ≤ k, cannot be in the independent set

because yi is adjacent to y1. Similarly, x1 cannot be in the independent set. Thus the

only elements that could be in the independent set are {y1, x2, x3, . . . , xk}, which is

only k vertices, a contradiction that the independent set had k + 1 or more vertices.

Therefore we have that α(G) = k.

Now consider the following total set: {x1, x2, . . . , xk, y1y2, y3y4, . . . , yk−1yk}. Thus

α′′(G) ≥ 3k
2

. This total set has k vertices and k
2

edges. Suppose that a total set with

more elements existed. Then it would have to have more than k
2

edges, because at

most α(G) = k vertices can be in a total set. Suppose that there are k
2

+ n edges in

some total set, where n > 0. Then at most 2k − 2(k
2

+ n) = k − 2n vertices could be

in the total set. This is because G has a total of 2k vertices and the endpoints of each

edge in this total set are distinct. Thus a maximum of (k
2

+ n) + (k − 2n) = 3k
2
− n

elements could exist in a total set with k
2

+ n edges, which is less than 3k
2

. This is a

contradiction that a total set with more elements existed.

Therefore we have that α′′(G) = 3k
2

. The upper bound of Lemma 2.3.2 tells us

that α′′(G) ≤ α(G) + α′(G) = k + k = 2k, which is a difference of k/2 from α′′(G).

Therefore as k increases, α(G) + α′(G)− α′′(G) gets arbitrarily large. �

Since the difference between the total number and the upper bound of Lemma

2.3.2 can be large, there is a need for an improved bound. In the next section, we

apply total sets and the total number to get a lower bound on the total chromatic

number.

2.3.1 Applying Total Sets to the Total Chromatic Number

Now that we have found an upper and lower bound for the total number, we would

like to find a relation between the total number of a graph and its total chromatic

number. The following lemma will give that relationship.

Lemma 2.3.4. Let G be a graph. Then we have that |V (G)|+|E(G)|
α′′(G)

≤ χ′′(G)

Proof: Note that each total colour class is a total set. Thus each total colour class

cannot have more than α′′(G) elements. Also note that χ′′(G) denotes the minimum
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number of disjoint total sets required to totally colour all elements. Let Tc denote

the total colour class receiving the colour c and suppose that χ′′(G) = k. Then we

get the following chain of inequalities:

|V (G)|+ |E(G)| = Σk
i=1|Ti| since the colour classes cover all elements of G

≤ kmax{|Ti|}

≤ kα′′(G) because |Ti| ≤ α′′(G)

Therefore we have that |V (G)|+ |E(G)| ≤ α′′(G)χ′′(G). Rearranging this inequality

gives us the desired result. �

2.4 Total Graphs and Perfect Graphs

In this section, we give an almost complete categorization of which graphs have perfect

total graphs. This is interesting as it will give a means to tell if a graph is type 1.

Recall that for a graph G, each vertex of T (G) represents an edge of G or a vertex

of G and two vertices in T (G) are adjacent if and only if the elements they represent

in G are adjacent or incident in G. For example, consider the graph C3. Label the

vertices v1, v2 and v3 and label the edges e1, e2, and e3. Then the total graph of C3

is shown in Figure 2.5.

v1

v2

v3

e1 e2

e3

Figure 2.5: Graph T (C3)
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Recall from the introduction, that a graph G is perfect if G and each of the induced

subgraphs of G, have chromatic number equal to the size of its largest clique. For

example, it has been shown that bipartite graphs, chordal graphs, and the line graph

of bipartite graphs are perfect [15].

This definition of perfect graphs is sometimes not the most convenient however. A

graph G is a Berge graph if neither G nor its complement has an odd-length induced

cycle of length 5 or more. The Strong Perfect Graph Theorem, conjectured by Claude

Berge in 1961 [3], tells us that a perfect graph is equivalently a Berge graph. It was not

until 2002 that Chudnovsky, Robertson, Seymour, and Thomas proved this conjecture

[8]. Showing that a graph or its complement has an induced odd cycle of length 5 or

more is a quick way to show that a graph is not perfect.

Similar to edge colourings and the line graph, a proper vertex colouring of T (G)

can be translated into a proper total colouring of G. Note that the largest clique in

T (G) is of size ∆G + 1. This is because the vertex v with maximum degree and all

of the edges incident on v create a clique of size ∆G + 1 in T (G). Therefore if the

total graph of G is perfect, then χ(T (G)) = ω(T (G)) = ∆G + 1 and G is thus a type

1 graph.

Note however that a graph being type 1 does not imply that it has a perfect total

graph. The total graph will have chromatic number equal to the size of its largest

clique, but this does not imply that each induced subgraph does. Therefore we want

to determine for what graphs G is T (G) a perfect graph. We start this classification

by showing that T (Cn) is not perfect when n > 3.

Lemma 2.4.1. If n > 3, then T (Cn) is not a perfect graph. If n = 3, then T (C3) is

a perfect graph.

Proof: If n = 3, then T (C3), shown in Figure 2.5, does not contain an induced odd

cycle of length 5. Also T (C3) does not contain an induced complement of an odd

cycle of length 5. Therefore T (C3) is a Berge graph and thus a perfect graph.

Suppose that n > 3 and label the vertices of Cn by v0, v1, . . . , vn−1 such that vi is

adjacent to v(i+1)(mod n) where 0 ≤ i < n. We will prove this lemma by case distinction

on n being even or odd.

Case 1: Suppose that n is odd. The induced subgraph on the vertices v0, v1, . . . , vn−1

is isomorphic to Cn, which is an odd cycle of length 5 or more. Therefore T (Cn) is



20

not a Berge graph, so by the Strong Perfect Graph Theorem, T (Cn) is not a perfect

graph.

Case 2: Suppose that n is even. Let ei be the vertex in T (Cn) representing the edge

viv(i+1)(mod n). Then the induced subgraph on the vertices v0, v1, . . . , vn−2, en−2, en−1

is isomorphic to Cn, which is an odd cycle of length 5 or more. Therefore T (Cn) is

not a Berge graph, so by the Strong Perfect Theorem, is not a perfect graph. For

example, the total graph T (C4) is shown in Figure 2.6. It can be seen that the induced

subgraph on v0, v1, v2, e2 and e3 is isomorphic to C5. �

v0 v1

v2v3

e0

e1

e2

e3

Figure 2.6: Graph T (C4)

Now we have shown that if n > 3, then T (Cn) is not a perfect graph. Therefore

if G contains a cycle of length 4 or more, then T (G) is not a perfect graph. We will

now restrict ourselves to trees. The following lemma establishes that all trees have

perfect total graphs.

Lemma 2.4.2. If G is a tree, then T (G) is perfect.

Proof: Let G be a tree. If we can prove that any cycle of length 4 or more in T (G)

contains a chord, then we have shown that T (G) is chordal, and hence perfect. Let C

be a cycle in T (G). We say that C contains an edge e of G, if C contains the vertex

that represents e. Since G is a tree and thus contains no cycles, C must contain at

least one edge. If C only contains edges, then we have that C is a subset of L(G).
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Harary proved that the line graphs of trees are exactly claw-free block graphs, which

are chordal [13]. In this case C will have a chord.

Consider then the case that C contains both vertices and edges. Thus, there must

be a vertex v and an edge e such that v and e are neighbours in C. Suppose that the

other neighbour of v in C is an edge e′. In this case, e,e′ and v will all be adjacent in

T (G), so C will contain the chord ee′.

Suppose now that the other neighbour of v in C is a vertex u. If u is the other

endpoint of e, then C will contain the chord uv. This is the only option for a vertex

neighbour of v in C. Consider a different vertex neighbour of v, label this vertex x,

as shown in Figure 2.7.

v
e

x u

Figure 2.7: Example Tree

Note that there is no path comprised of edges and vertices in T (G) from x to e

except through the edge xv. This edge is adjacent to e and v however, so C will

contain a chord. Therefore the only option for a vertex neighbour of v in C is the

other endpoint of e. In all cases, C contains a chord. Therefore T (G) is chordal and

thus perfect. �

We have now determined for all graphs, except those that only contain cycles of

length 3, if their total graph is perfect or not. Note that we cannot use the same

argument that we used in the proof of Lemma 2.4.2. This is because taking the

induced subgraph on the vertices e1, e3, v3, v2 in Figure 2.5 gives a cycle of length 4

with no chord. We conjecture that the following is true:

Conjecture 2.4.3. T (G) is perfect if and only if G does not contain a cycle of length

4 or more.

This concludes our exploration on the total graph and perfect graphs. In the next

chapter, we determine the total chromatic number for various graph products.



Chapter 3

Total Chromatic Number of Graph Products

In this chapter, we explore how various graph products affect the total chromatic

number. In particular, we start with the Cartesian graph product.

Definition 3.0.4. The Cartesian graph product of two graphs G and H, denoted

G�H, is a graph with vertex set V (G)× V (H), where two vertices, (u, v) and (u′, v′)

in G�H are adjacent if and only if:

(1) u = u′ and vv′ ∈ E(H), or

(2) v = v′ and uu′ ∈ E(G).

Note that ∆G�H = ∆G + ∆H

because at most ∆H edges can satisfy condition (1) and at most ∆G edges can

satisfy condition (2). For the purpose of this thesis, unless otherwise stated, all graph

products are Cartesian products. To explore this definition, and see how it interacts

with the total chromatic number, it would be best to see an example of a graph

product. The graph product of P3 with itself is shown in Figure 3.1 below.

Figure 3.1: Graph P3�P3

3.1 Graph Products with P2

In this section, we determine how the total chromatic number of a graph is affected

after taking its graph product with P2. First we will need the following total colouring

algorithm to prove some of the theorems in this section.

Lemma 3.1.1 (Total Colouring Algorithm for G�P2). Let f be a proper total

colouring assignment for G using the colours {0, 1, . . . , k − 1}. The following total

22
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colouring algorithm produces a proper total colouring of G�P2 using k + 1 colours.

Denote the two vertices of P2 by 0 and 1. First, colour the vertices of the form (u, i),

where 0 ≤ i < 2, with the colour (f(u) + i)(mod k). Then, colour the edges of the

form (u1, i)(u2, i) with the colour (f(u1u2)+ i)(mod k). Lastly, colour the edges of the

form (u, x)(u, y) with a new colour k.

Proof: We will show that this is a proper total colouring. We start by showing

that there is no colour conflict with the vertices. If (u, i) is adjacent to (v, i), then u

is adjacent to v in G. Note that f(u) 6= f(v), because f is a proper total colouring

assignment for G. Thus f((u, i)) = (f(u)+i)(mod k) 6= (f(v)+i)(mod k) = f((v, i)).

Next, the vertices (u, 0) and (u, 1) do not receive the same colour because f((u, 0)) =

f(u) 6= (f(u) + 1)(mod k) = f((u, 1)).

Let e be an edge incident to (u, i). If e is an edge to (u, (i+ 1)(mod 2)), then e is

coloured with the colour k. Note that f((u, i)) = (f(u) + i)(mod k) 6= k, so there is

no conflict between e and (u, i). If e is an edge from (u, i) to (v, i), then e receives the

colour f(uv) + i. Note that f((u, i)) = (f(u) + i) 6= (f(uv) + i), because otherwise

f(u) = f(uv), but f is a proper total colouring. Thus there are no colour conflicts

with the vertices.

All that remains is to check that the edges do not conflict with one another.

Let e1 and e2 be adjacent edges in G�P2. Suppose e1 = (u1, i)(u2, i) and e2 =

(u1, i)(u3, i). Then f(e1) = (f(u1u2) + i)(mod k) 6= (f(u1u3) + i)(mod k) = f(e2),

because otherwise f(u1u2) = f(u1u3), but f is a proper total colouring assignment

for G. Lastly, suppose that e1 = (u, i)(v, i) and e2 = (u, i)(u, i + 1(mod 2)). Then

f(e1) = (f(uv) + i)(mod k) 6= k, which is the colour assigned to e2. Thus there are

no colour conflicts arising with the edges. Hence we have a proper total colouring of

G�P2 using the colours {0, 1, . . . , k}. �

Now we apply Lemma 3.1.1 to determine the total chromatic number of G�P2, if

G is a type 1 graph.

Theorem 3.1.2. If G is a type 1 graph, then G�P2 is a type 1 graph.

Proof: Let G be a type 1 graph and suppose that ∆G = k− 1. By Lemma 3.1.1 we

know that G�P2 can be totally coloured with k + 1 = ∆G + 2 = ∆G�P2 + 1 colours.

Therefore G�P2 is a type 1 graph. �
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Lemma 3.1.1 will be generalized in the next section, so it will be good to see an

example of the algorithm applied to a graph. C3 is a type 1 graph [5], thus satisfying

the criterion of Theorem 3.1.2. In the following example, we apply Lemma 3.1.1 to

C3�P2.

Example 3.1.3. The first step of Lemma 3.1.1 is to colour the vertices of the first

copy of C3 with its original total colouring assignment using the colours {0, 1, 2}.
Then colour the vertices in the second copy of C3 with the same total colouring as-

signment except we add 1 to each vertex modulo 3 as shown in Figure 3.2

1

2

0

2

0

1

Figure 3.2: Step 1 of the Total Colouring of C3�P2

The next step of Lemma 3.1.1 is to colour the edges of the first copy of C3 with

their original total colouring assignment. Then colour the edges in the second copy

of C3 with the same assignment, except we add 1 to each edge modulo 3, as shown in

Figure 3.3

1
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1

2

0 2
1

0 1

Figure 3.3: Step 2 of the Total Colouring of C3�P2

The last step of Lemma 3.1.1 is to colour the edges connecting the two copies of
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C3. This is where we introduce the new colour. We will use the colour 3 for these

edges. This will complete the algorithm and give a proper total colouring of C3�P2

as shown in Figure 3.4
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Figure 3.4: Last step of Total Colouring of C3�P2

Theorem 3.1.4. Let G be a type 2 graph, then χ′′(G�P2) ≤ ∆G�P2 + 2.

Proof: Let G be a type 2 graph and suppose that ∆G = k. Then it requires

k + 2 colours for a proper total colouring of G. Then by Lemma 3.1.1, G�P2 can be

totally coloured with k + 3 = ∆G + 3 = ∆G�P2 + 2 colours. Therefore we have that

χ′′(G�P2) ≤ ∆G�P2 + 2. �

Example 3.1.5. Consider K4; this graph is a type 2 graph [5]. However, K4�P2 is

a type 1 graph as shown in Figure 3.5.
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Figure 3.5: Total Colouring of K4�P2

It is unknown whether or not K2n�P2 is a type 1 graph for all n. However, it is

known that C2n�P2 is a type 1 graph for all n [28]. Thus in particular, C4�P2 is a

type 1 graph as shown in Figure 3.6
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Figure 3.6: Total Colouring of C4�P2

A result that follows from Figure 3.6, is the total chromatic number of the hy-

percube graph. The hypercube graph, which is denoted Qn, is the graph formed from

the vertices and edges of a n-dimensional cube. Alternatively, the hypercube can be

viewed inductively as Qn = Qn−1�P2. The following corollary will establish the total

chromatic number of Qn.

Corollary 3.1.6. If n ≥ 3, then Qn is a type 1 graph. If n = 1 or n = 2, then Qn is

a type 2 graph.
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Proof: If n = 1, then Q1 = P2, which is a type 2 graph. If n = 2, then Q2 = C4,

which is a type 2 graph. Thus all that remains is if n ≥ 3. We will prove this by

induction on the size of n.

Base Case: If n = 3, then Q3 is the graph from Figure 3.6, which is a type 1 graph.

Induction Step: Let k ∈ Z+ and suppose that Qk is a type 1 graph for k ≥ 3.

We need to show that Qk+1 is a type 1 graph. Recall that Qk+1 = Qk�P2. By the

induction hypothesis, Qk is a type 1 graph. Therefore by Theorem 3.1.2, Qk�P2 =

Qk+1 is a type 1 graph. Therefore by the induction principle, Qn is a type 1 graph

for all n ≥ 3. �

We will now show that Cn�P2 is a type 1 graph if n ≡ 1(mod3), but first we need

the following lemma.

Lemma 3.1.7. Let G be a graph with χ′′(G) = k. Fix an edge e ∈ E(G). Let G∗ be

the graph that results from an edge e in G being subdivided 3 times. Then χ′′(G∗) ≤ k.

Proof: Let e be an edge of G with endpoints v0, v1. Form G∗ by replacing e by a

path P of length 5, whose internal vertices are labeled u0, u1, u2. Let P be the induced

path on the vertices v0, u0, u1, u2, v1. Lastly, let f be a total colouring assignment of

G.

Colour the elements of G∗ \ {u0, u1, u2} using the assignment f . All that remains

is to colour the elements of P . Without loss of generality, suppose that f(v0) =

0, f(v1) = 1 and f(v0v1) = 2. Then we can colour P as shown in Figure 3.7.

v0 v1u0 u1 u2

0 2 1 0 2 1 0 2 1

Figure 3.7: Total Colouring of P

Since the colour 2 was assigned the edge v0v1 in G, none of the edges in G∗ \ {P},
incident to v0 or v1, are assigned the colour 2. Also the elements u0, u1, u2, u0u1, and

u1u2 are not adjacent or incident to any element in G∗\{P}. Therefore this colouring

of P does not conflict with the colouring of G∗ \ {P}. Thus we have a proper total

colouring of G∗ with k colours. �

Proposition 3.1.8. If n is odd and n ≡ 1(mod 3), then Cn�P2 is a type 1 graph.
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Proof: Consider the total colouring of C7�P2 shown in Figure 3.8 using 4 colours.

We will extend this to a total colouring of C7+6n where n > 0. First, subdivide the

edges labelled e0 and e1 a total of 6n times each and let G∗ be this resulting graph.

Let ui and vi, where 0 ≤ i < n, denote the vertices added by the subdivision of e0 and

e1 respectively. Note that G∗ ∪ {uivi : 0 ≤ i < n} = C7+6n. By repeated application

of Lemma 3.1.7, we can totally colour G∗ with 4 colours. All that remains is to colour

the edges uivi.

Note that the colours assigned by Lemma 3.1.7 to ui (vi) and the edges incident

on ui (vi) are only the colours 1,2, and 3. Therefore the colour 4 is available to give

the edge uivi. We now have a total colouring of C7+6n using 4 colours. Therefore if n

is odd and n ≡ 1(mod 3), then Cn�P2 is a type 1 graph. �
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Figure 3.8: Total Colouring of C7�P2

3.2 Graph Products with Tier 1 Graphs

In this section, we determine an upper bound on the total chromatic number of G�H

when G is a type 1 graph. To start, we create a total colouring algorithm that is a

generalization of Lemma 3.1.1.

Lemma 3.2.1 (Total Colouring Algorithm for G�H). Let G and H be graphs.

Let f1 be a total colouring assignment for G and f2 be a vertex colouring assignment

for H both using the colours {0, 1, . . . , k− 1}. Let f3 be an edge colouring assignment
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for H using the colours {k, k+1, . . . , k+l−1}. The following total colouring algorithm

produces a proper total colouring using k + l colours. First, colour the vertex (u, v)

in G�H with the colour (f1(u) + f2(v))(mod k). Then, colour the edge (ui, v)(uj, v)

with the colour (f1(uiuj) + f2(v))(mod k). Lastly, colour the edge (u, v1)(u, v2) with

the colour f3(v1v2).

Proof: First we prove that this algorithm gives a proper total colouring of the

vertices by supposing otherwise. Recall that two vertices (u1, v1) and (u2, v2) of

G�H are connected by an edge if and only if u1 = u2 and v1 ∼ v2 or v1 = v2 and

u1 ∼ u2. Suppose that there is a colour conflict between a vertex (u1, v1) and a vertex

(u2, v2) where u1 = u2 and v1 ∼ v2. Then we have that (f1(u1) + f2(v1))(mod k) =

(f1(u2) + f2(v2))(mod k). Thus we have that f2(v1)(mod k) = f2(v2)(mod k) because

u1 = u2. Then f2(v1) = f2(v2), but this contradicts the fact that f2 is a proper vertex

colouring of H. Therefore this algorithm is a proper vertex colouring of G�H. The

case when v1 = v2 and u1 ∼ u2 is a similar argument.

Next we show that this algorithm gives a proper total colouring of the edges by

supposing otherwise. Suppose that an edge has a conflict with its endpoints. The

endpoint (ui, v) receives the colour (f1(ui)+f2(v))(mod k). Thus we have (f1(uiuj)+

f2(v))(mod k) = (f1(ui) + f2(v))(mod k). Then we have that f1(ui) = f1(uiv), which

contradicts the fact that f1 is a proper total colouring.

Suppose that an edge has a conflict with another edge. If (ui, v)(uj, v) conflicts

with (ui, v)(uk, v) then (f1(uiuj) + f2(v))(mod k) = (f1(uiuk) + f2(v))(mod k). Thus

we have that f1(uiuj) = f1(uiuk), which contradicts that f1 is a proper total colour-

ing assignment. Suppose that (u, v1)(u, v2) conflicts with (u, v2)(u, v3). Then we

have f3(v1v2) = f3(v2v3), which contradicts that f3 is a proper edge colouring of H.

Therefore we have a proper total colouring of G�H using k+ l colours as wanted. �

In the following theorem, we apply Lemma 3.2.1 to determine the total chromatic

number of G�H if G is a type 1 graph and H is a tier 1 graph.

Theorem 3.2.2. Let G be a type 1 graph and H be a tier 1 graph such that χ(H) ≤
χ′′(G). Then χ′′(G�H) = ∆G�H + 1.

Proof: Suppose that χ′′(G) = k = ∆G + 1 and suppose that χ′(H) = l = ∆H .

Then by Lemma 3.2.1, we know that G�H can be totally coloured with k+ l colours.
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Therefore, since ∆G�H = ∆G + ∆H = k + l − 1, we have totally coloured G�H with

∆G�H + 1 colours. Therefore G�H is a type 1 graph as wanted. �

The next case to consider is if G is a type 1 graph and H is a tier 2 graph. The

following theorem establishes the total chromatic number for this case.

Theorem 3.2.3. Let G and H be simple graphs. Suppose that χ′′(G) = ∆G + 1 = k.

Also suppose that χ(H) ≤ k and χ′(H) = ∆H + 1 = l. Then χ′′(G�H) = ∆G�H + 1.

Proof: Let f1 be a total colouring assignment for G and f2 be a vertex colouring

assignment for H, both using the colours {0, 1, . . . , k−1}. Let f3 be an edge colouring

assignment for H, using the colours {k, k + 1, . . . , k + l − 1}. Apply Lemma 3.2.1 to

G�H. This is a total colouring of G�H using k + l = ∆G�H + 2 colours. We will

recolour all instances of the colour 0 from this total colouring, so that we have a total

colouring of G�H using only ∆G�H + 1 colours.

Fix a vertex (u, v). There are at most ∆H = l − 1 edges of the form (u, v)(u, vi)

incident to (u, v). Edges of this form receive the colour f3(vvi). Thus there is at least

one colour from the list of colours that f3 uses, namely {k, k + 1, . . . , k + l− 1}, that

is not used on any edge incident to (u, v). Let this colour be denoted cv. The colour

assigned to the edges of the form (u, v)(u, vi), namely f3(vvi), does not depend on u.

Therefore cv does not depend on u; this is why it was defined with the subscript v.

For each vertex (u, v), if (u, v) is assigned the colour 0, replace 0 by the colour

cv. This colour is not used on any vertices. Also this colour is not used on any of

the edges incident to (u, v) by definition. Thus this recolouring will not result in any

conflicts.

For each edge of the form (u, v)(u′, v) that is assigned the colour 0, replace 0 by

the colour cv. As mentioned earlier, cv does not depend on u; thus the endpoints of

(u, v)(u′, v) are both missing the colour cv from their incident edges. Therefore this

recolouring will not result in any conflicts.

We now have a proper total colouring of G�H using ∆G�H + 1 colours as desired.

Therefore we have that χ′′(G�H) = ∆G�H + 1. �

Interestingly, the algorithms used in Theorem 3.2.2 and Theorem 3.2.3 imply that

the graph product of G�H does not depend on the edge colourability of G or H.

The main factor in determining the total chromatic number of G�H is the total
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colourability of G and H. The difficulty in classifying the total chromatic number of

a graph product, as we will see in the next section, is if one or more of the factors

are type 2 graphs. If both of the factors are type 1 graphs however, then the graph

product is a type 1 graph.

Corollary 3.2.4. If both G and H are type 1 graphs, then G�H is a type 1 graph.

Proof: First it is important to note that the graph product is symmetric. Suppose

that χ′′(G) = k and χ(H) = l. If k ≤ l, then we can apply Theorem 3.2.2 or Theorem

3.2.3 depending on if H is a tier 1 or tier 2 graph respectively. If k > l, then we can

apply Theorem 3.2.2 or Theorem 3.2.3 to H�G depending on if G is a tier 1 or tier

2 graph respectively. �

Now we have determined the total chromatic number of a graph product if both

of the factors are type 1 graphs.

3.3 Graph Products with Tier 2 Graphs

In this section we determine an upper bound on the total chromatic number of graph

products when G is a type 2 graph. Similar to the previous section, we will consider

two cases, one when H is a tier 1 graph and one when H is a tier 2 graph. We will

start with the former case.

Theorem 3.3.1. Let G be a type 2 graph and H be a tier 1 graph such that χ(H) ≤
χ′′(G). Then χ′′(G�H) ≤ ∆G�H + 2.

Proof: Suppose that χ′′(G) = ∆G + 2 = k and that χ′(H) = ∆H = l. Apply

Lemma 3.2.1 to G�H. This will totally colour G�H with k + l colours. Since

∆G�H = ∆G + ∆H , we have that k + l = ∆G + 2 + ∆H = ∆G�H + 2. Therefore we

have that χ′′(G�H) ≤ ∆G�H + 2. �

Theorem 3.3.2. Let G be a type 2 graph and H a tier 2 graph such that χ(H) ≤
χ′′(G). Then χ′′(G�H) ≤ ∆G�H + 2.

Proof: Suppose that χ′′(G) = ∆G + 2 and that χ′(H) = ∆H + 1 = l. Apply

the algorithm used in Theorem 3.2.3 to G�H. This will totally colour G�H with
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∆G + ∆H + 2 = ∆G�H + 2 colours. Therefore, since ∆G�H = ∆G + ∆H , we have that

χ′′(G�H) ≤ ∆G�H + 2. �

The following corollary will combine Theorem 3.3.1 and Theorem 3.3.2 to establish

the total chromatic number of G�H when both G and H are type 2.

Corollary 3.3.3. If G and H are both type 2 graphs, then χ′′(G�H) ≤ ∆G�H + 2.

Proof: Suppose that χ′′(G) = k and χ(H) = l. If k ≤ l, then we can apply Theorem

3.3.1 or Theorem 3.3.2 depending on if H is a tier 1 or tier 2 graph respectively. If

k > l, then we can apply Theorem 3.3.1 or Theorem 3.3.2 to H�G depending on if

G is a tier 1 or tier 2 graph respectively. �

The following theorem summarizes the results found on graph products.

Theorem 3.3.4. If χ′′(G) ≤ ∆G + 2 and χ′′(H) ≤ ∆H + 2, then χ′′(G�H) ≤
∆G�H + 2.

Proof: Follows immediately from Theorem 3.2.2, Theorem 3.2.3, Theorem 3.3.1,

and Theorem 3.3.2. �

3.3.1 Total Chromatic Number of the Rook Graph

We will now use the results found for graph products and apply them to the rook

graph. The rook graph, Kn�Km, represents all the legal moves of a rook chess piece.

In the following theorem, we show that the total chromatic number of the rook graph

satisfies the Total Colouring Conjecture.

Corollary 3.3.5. χ′′(Kn�Km) ≤ ∆Kn�Km + 2. If n is odd and n ≥ m, or n and m

are both odd, then Kn�Km is a type 1 graph.

Proof: Since χ′′(Kn) ≤ ∆Kn + 2 and χ′′(Km) ≤ ∆Km + 2 [5], by Theorem 3.3.4 we

have that χ′′(Kn�Km) ≤ ∆Kn�Km +2. Therefore all that remains is to show Kn�Km

is a type 1 graph under certain conditions. Suppose that n is odd. Then Kn is a type

1 graph [5]. We will prove the second part of this theorem by case distinction on m

being even or odd.

Case 1: If m is odd then Km is a type 1 graph [4]. Therefore since Kn and Km are

type 1 graphs, by Corollary 3.2.4, we have that Kn�Km is a type 1 graph.
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Case 2: Suppose that m is even and that n ≥ m. Since χ(Km) = m, we have that

χ′′(Kn) = n ≥ m = χ(Km). Thus Kn is a type 1 graph and χ(Km) ≤ χ′′(Kn).

Therefore Kn�Km is a type 1 graph by Theorem 3.2.2. �

We have now proved that the rook graph satisfies the Total Colouring Conjecture.

However, we conjecture that the following, stronger statement is true.

Conjecture 3.3.6. Kn�Km is a type 1 graph if n,m ≥ 3.

The reason why we suspect that Conjecture 3.3.6 holds is that we have seen earlier

an example of the total colouring of K4�K2, which can be extended to K4�Kn

because K4�Kn is n/2 copies of K4�K2. Therefore if we can show that K2n�P2 is

a type 1 graph for all n, we could extend this colouring to K2n�Km to prove the

conjecture. The difficulty in proving that K2n�P2 is a type 1 graph is knowing the

structure of the colouring of K2n.

This concludes the section of Cartesian graph products. We have determined what

the total chromatic number of a graph product is when the factors are type 1 and

type 2 graphs. In all cases, G�H satisfies the Total Colouring Conjecture.

3.4 Total Chromatic Number of Tensor Graph Products

In this section, we determine the total chromatic number of some tensor graph prod-

ucts involving Pn and some tensor graph products involving Cn.

Definition 3.4.1. The tensor graph product of two graphs G and H, denoted G×H,

has vertex set V (G) × V (H) and two vertices, (u1, v1) and (u2, v2) in G × H are

adjacent if u1u2 ∈ E(G) and v1v2 ∈ E(H).

Theorem 3.4.2. Pn × Pm is a type 1 graph if n > 2 or m > 2. P2 × P2 is a type 2

graph.

Proof: Label the vertices of Pn by u0, u1, . . . , un−1 and label the vertices of Pm

by v0, v1, . . . , vm−1 in the natural way. Then (ui, vj), where 1 ≤ i < n − 1 and

1 ≤ i < m− 1, are only adjacent to the vertices (ui−1, vj−1), (ui−1, vj+1), (ui+1, vj−1),

and (ui−1, vj+1). Thus if n = 2, then P2 × Pm is comprised of two disjoint Pm graphs

which can be seen in Figure 3.9. We use thick edges to distinguish the two paths.
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Figure 3.9: Graph P2 × P5

If m > 2, then Pm is a type 1 graph, thus P2 × Pm is a type 1 graph. If m = 2,

then P2 is a type 2 graph, thus P2 × P2 is a type 2 graph.

Suppose that n > 2. Then Pn × Pm is comprised of two disjoint lattices as is

shown in Figure 3.10. We use thick edges to distinguish the two lattices.

Figure 3.10: Graph P5 × P5

These lattices are subgraphs of Pn�Pm, having the same maximum degree as

Pn�Pm. Pn is a type 1 graph and χ(Pm) = 2 < 3 = χ′′(Pn). Thus by Theorem 3.2.2,

we have that Pn�Pm is a type 1 graph. Therefore Pn × Pm is a type 1 graph when

n > 2 or m > 2. �

3.4.1 Total Chromatic Number of Bipartite Doubles

The bipartite double of a graph G is a bipartite graph with bipartition (U, V ) and has

two vertices u′ and u′′ for each u ∈ V (G) such that u′ ∈ U and u′′ ∈ W . Two vertices

u′ and v′′ are connected by an edge in the bipartite double if and only if u and v

are connected by an edge in G. The bipartite double of a graph G is isomorphic to

G× P2.

Theorem 3.4.3. Let G be a graph, then χ′′(G× P2) ≤ ∆G×P2 + 2

Proof: G × P2 is a bipartite graph by construction. As mentioned in the section

on crown graphs, all bipartite graphs are type 1 or type 2. Therefore we have that

χ′′(G× P2) ≤ ∆G×P2 + 2. �
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We want to determine for what graphs G is G×P2 a type 1 graph. To determine

this, we will need the following lemma.

Lemma 3.4.4. If G is a bipartite graph, then G× P2 consists of two disjoint copies

of G.

Proof: Suppose that G is a bipartite graph and that X and Y are a bipartition

of the vertices of G. Label the vertices of P2 by 0 and 1. Then we will prove that

(X × {0}) ∪ (Y × {1}) and (X × {1}) ∪ (Y × {0}) are the two disjoint copies of G.

Since 0 is adjacent to 1 in P2, the edges in (X × {0}) ∪ (Y × {1}) are the same

edge dependencies from X to Y in G. Therefore (X × {0}) ∪ (Y × {1}) ∼= G and

(X × {1}) ∪ (Y × {0}) ∼= G. Thus all that is left to prove is that there are no edges

between them.

Vertices in X × {0} are not adjacent to vertices in X × {1} because vertices in

X are not adjacent. Also vertices in X × {0} are not adjacent to vertices in Y × {0}
because the vertex 0 in P2 is not adjacent to itself. Therefore no vertex in X ×{0} is

adjacent to a vertex in (X×{1})∪(Y ×{0}). The same argument shows that no vertex

in Y ×{1} is adjacent to a vertex in (X×{1})∪(Y ×{0}). Thus (X×{0})∪(Y ×{1})
and (X × {1}) ∪ (Y × {0}) are disjoint and G× P2 is two disjoint copies of G. �

Theorem 3.4.5. Let G be a bipartite graph. If G is a type 1 or type 2 graph, then

G× P2 is a type 1 or type 2 graph respectively.

Proof: Let G be a bipartite graph. Then G × P2 is two disjoint copies of G by

Lemma 3.4.4. If G is a type 1 graph, we can totally colour each copy of G with ∆G+1

colours.

If G is a type 2 graph, we cannot totally colour each copy of G with ∆G+1 colours.

We can however totally colour each copy of G with ∆G + 2 colours. Therefore, if G

is a type 1 or type 2 graph, then G× P2 is a type 1 or type 2 graph respectively. �

Theorem 3.4.6. Cn × P2 is a type 1 graph if n is divisible by 3. Otherwise Cn × P2

is a type 2 graph.

Proof: Cn is type 1 if n is divisible by 3 and is type 2 otherwise [4]. Suppose that n

is even and not divisible by 3. Then Cn is a bipartite graph because n is even. Thus

by Lemma 3.4.4, Cn × P2 is two disjoint copies of Cn. Since n is not divisible by 3,
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Cn is a type 2 graph. Thus we have that Cn × P2 is a type 2 graph. If n is even and

divisible by 3, then the same argument gives us that Cn × P2 is a type 1 graph.

Suppose that n is odd. Then note that Cn×P2 = C2n. If n is divisible by 3, then

2n is divisible by 3 and C2n = Cn × P2 is a type 1 graph. If n is not divisible by 3,

then C2n is not divisible by 3, and C2n = Cn × P2 is a type 2 graph. Therefore we

have that Cn × P2 is a type 1 graph if n is divisible by 3 and Cn × P2 is a type 2

graph otherwise. �

3.5 Total Chromatic Number of Strong Graph Products

Now that we have determined the total chromatic number for Cartesian graph prod-

ucts, we want to apply these results to determine the total chromatic number for

strong graph products.

Definition 3.5.1. The strong graph product of two graphs G and H, denoted G�H,

has vertex set V (G)×V (H) and two vertices, (u, v) and (u′, v′) in G�H are adjacent

if and only if:

(1) u = u′ and vv′ ∈ E(H), or

(2) v = v′ and uu′ ∈ E(G), or

(3) uu′ ∈ E(G) and vv′ ∈ E(H).

Note that E(G � H) = E(G�H)
⋃
E(G × H), which implies that ∆G�H =

∆G�H + ∆G×H . This is because Conditions (1) and (2) of Definition 3.4.1 are the

edge conditions for Cartesian products, whereas condition (3) is the edge condition

for tensor graph products. We will use the following result from Jaradat for this

section.

Theorem 3.5.2 (Jaradat [14]). Let G and H be two graphs such that at least one of

them is tier 1. Then G×H is a tier 1 graph.

If one of the terms in a strong graph product is a type 1 graph and one of the

terms is a tier 1 graph, then the total chromatic number can be classified as follows:

Theorem 3.5.3. Let G be a type 1 graph such that χ(H) ≤ χ′′(G). If either G or H

is a tier 1 graph, then G�H is a type 1 graph.
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Proof: Without loss of generality, assume that G is a tier 1 graph. Then from

Theorem 3.5.2, we have that G×H can be edge coloured with ∆G×H colours. From

Theorem 3.2.2, we have that G�H can be totally coloured with ∆G�H + 1 colours.

Therefore, by combining these colourings, we totally colour G � H with ∆G×H +

∆G�H + 1 = ∆G�H + 1 colours. Therefore, G�H is a type 1 graph as wanted. �

A corollary that follows from this theorem is that the kings graph, Pn � Pm, is a

type 1 graph for sufficiently large n or m. The kings graph represents all legal moves

of a king chess piece on an n by m chessboard.

Corollary 3.5.4. For all positive integers n and m,

χ′′(Pn � Pm) =

∆Pn�Pm + 2, if m = 2 and n = 2

∆Pn�Pm + 1, if m > 2 or n > 2

Proof: If m = 2 and n = 2 then P2 � P2 = K4 which is a type 2 graph. Suppose

that n > 2 or m > 2. Then Pn (or Pm) is a type 1 graph and a tier 1 graph. Therefore

by Theorem 3.5.3, we have that Pn � Pm is a type 1 graph. �

Example 3.5.5. Here we show an explicit colouring of P3 � P3. The first step is

to colour P3�P3 using the algorithms from the previous section. Then edge colour

P3×P3, as shown in Figure 3.11. The last step is to combine these colourings as seen

in Figure 3.12.

6

76

68 8

9 8

Figure 3.11: Edge Colouring of P3 × P3
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Figure 3.12: Total Colouring of P3 � P3

The following theorem will determine an upper bound on the total chromatic

number of G�H when neither G nor H are tier 1 graphs.

Theorem 3.5.6. Let G be type 1 graph such that χ(H) ≤ χ′′(G). If neither G nor

H is a tier 1 graph, then χ′′(G�H) ≤ ∆G�H + 2.

Proof: We apply the same argument used in the proof of Theorem 3.5.3. By Vizing’s

Theorem, we have that χ′(G × H) ≤ ∆G×H + 1. Then by Theorem 3.2.2, we have

that G�H is a type 1 graph. Therefore by combining these colourings, we can totally

colour G �H with ∆G×H + 1 + ∆G�H + 1 = ∆G�H + 2 colours. Therefore we have

that χ′′(G�H) ≤ ∆G�H + 2 as wanted. �

Now we have classified an upper bound on the total chromatic number of a strong

graph product if one of the factors is a type 1 graph. Next, we will explore the case

when one of the factors is a type 2 graph. The following theorem establishes an upper

bound on the total chromatic number if one of the factors is a type 2 graph.

Theorem 3.5.7. Let G be a type 2 graph such that χ(H) ≤ χ′′(G). If either G or H

is a tier 1 graph, then χ′′(G�H) ≤ ∆G�H + 2.

Proof: Without loss of generality, assume that G is a tier 1 graph. Then by

Theorem 3.3.1, we have that χ′′(G�H) ≤ ∆(G�H) + 2. Since G is a tier 1 graph, we

have that G ×H is a tier 1 graph by Theorem 3.5.2. Therefore by combining these



39

colourings, we can totally colour G�H with ∆G×H + ∆G�H + 2 = ∆G�H + 2 colours,

so χ′′(G�H) ≤ ∆G�H + 2. �

Example 3.5.8. Theorem 3.5.7 does not give an explicit total colouring algorithm.

Here we show an explicit total colouring of K4�P2 First, totally colour K4�P2 as was

previously shown in Figure 3.5. Now we edge colour K4×P2. We know from Theorem

3.5.2 that we can edge colour K4 × P2 with 4 colours. An explicit edge colouring of

K4 × P2 is shown in Figure 3.13. Then we want to combine the edge colouring of

K4 × P2 onto K4�P2 as shown in Figure 3.14.

6 6

7 7

7 7

6 6

Figure 3.13: Edge Colouring of K4 × P2
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Figure 3.14: Total Colouring of K4 � P2
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The last case to consider to is if both graphs are type 2 and tier 2 graphs. In

this case we get an upper bound that is outside the Total Colouring Conjecture. The

following theorem will determine an upper bound for this case.

Theorem 3.5.9. Let G be a type 2 graph such that χ(H) ≤ χ′′(G). If neither G nor

H is a tier 1 graph, then χ′′(G�H) ≤ ∆G�H + 3.

Proof: From Theorem 3.3.1, we have that χ′′(G�H) ≤ ∆(G�H) + 2. Then by

Vizing’s Theorem, we have that χ′(G × H) = ∆G×H + 1. Therefore by combining

these colourings, we can totally colour G�H with ∆G∧H +1+∆G�H +2 = ∆G�H +3

colours, so χ′′(G�H) ≤ ∆G�H + 3. �

We are now done our exploration of graph products. In the next chapter, we

explore how vertex multiplication affects the total chromatic number of a graph.



Chapter 4

Vertex Multiplication

In this chapter, we are going to investigate what happens to the total chromatic

number of a graph when we replace a component of the graph. In particular, we will

explore vertex multiplication, and how it affects the total chromatic number.

Definition 4.0.10 (Vertex Multiplication). Given a graph G = (V,E) and a

vertex v ∈ V , define the graph G(v ·m) as follows. G(v ·m) has vertex set V ′=V \
{v} ∪ Av, where Av is a set of m new vertices. The edge set of G(v ·m) consists of

all edges in E that do not have v as an endpoint, edges between all pairs of vertices

in Av, and edges between any two vertices u ∈ NG(v) and a ∈ Av.

Vertex multiplication is abstract and seldomly researched. Thus a few examples

will be beneficial. Figure 4.1 and Figure 4.2 illustrate the process of vertex multipli-

cation on the house graph.

v v

Figure 4.1: Graph G and G(v · 2)

v v

Figure 4.2: Graph G and G(v · 3)

41
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To start this chapter, we will establish what happens to the total chromatic num-

ber of Sn when a vertex in Sn is multiplied m times. Then we will do the same for Cn.

The motivation for these cases is to get an understanding of how vertex multiplication

affects general graphs.

4.1 Vertex Multiplication in Star Graphs

In this section, we determine what happens to the total chromatic number of the

star graph when any vertex is multiplied m times. The star graph on n vertices,

denoted Sn, is graph K1,n. For convenience, in Sn we will label the central vertex v

and the leaves {v0, v1, . . . , vn−1}. In Av, we will label the vertices {r0, . . . , rm−1}. By

combining these two labelings, we get a labeling of Sn(v ·m). Figure 4.3 illustrates

the labeling of S4 and S4(v · 3).

v0

v1 v2

v3

v

v0

v1 v2

v3

r0

r1

r2

Figure 4.3: Labeling of S4 and S4(v · 3)

The following lemma will determine what happens to the total chromatic number

of S2 = P3, when v is multiplied m times.

Lemma 4.1.1. Let v be the central vertex of S2. Then we have that:

χ′′(S2(v ·m)) =

∆S2(v·m) + 1, if m is odd or m=2

∆S2(v·m) + 2, if m 6= 2 and m is even

Proof: S2 has 3 vertices, so S2(v · m) will have 3 + (m − 1) = m + 2 vertices.

Since the vertex with maximum degree is being multiplied, we have that ∆S2(v·m) =

∆S2 + (m− 1) = 2 + (m− 1) = m+ 1. We will prove this lemma by case distinction

on m being even or odd.
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Case 1: Suppose that m is odd. Note that S2(v ·m) is a subgraph of Km+2 having

the same maximum degree. Thus we can use the total colouring of Km+2 restricted

to S2(v · m). This is a total colouring using ∆Km+2 + 1 colours since m + 2 is odd

[5]. Therefore we have a total colouring of S2(v ·m) using ∆Km+2 + 1 = ∆S2(v·m) + 1

colours as wanted.

Case 2: Suppose that m is even. For this case, we could use the same argument

used in the previous case. This is a total colouring using ∆Km+2 + 2 colours since m

is even. Thus we can totally colour S2(v ·m) with ∆Km+2 + 2 = ∆S2(v·m) + 2 colours.

Therefore all that remains is to show that S2(v ·m) cannot be totally coloured with

∆S2(v·m) + 1 colours.

To show that this cannot be done, we will give a proof by contradiction. To find

the contradiction, we first need to find α(S2(v ·m)) and α′(S2(v ·m)). Note that the

vertices rj, where 0 ≤ j < m, are adjacent to all the vertices in S2(v ·m). Whereas

the vertices v0 and v1, are only adjacent to the vertices rj. Therefore the largest

independent set is {v0, v1}, so α(S2(v ·m)) = 2.

Next, S2(v·m) has a perfect matching with the edges {v0r0,v1r1,r2r3, . . . ,rm−2rm−1},
so α′(S2(v ·m)) = m+2

2
. Therefore by Lemma 2.3.2, we know that α′′(S2(v ·m)) ≤

m+2
2

+ 2 = m+6
2

. This graph has a perfect matching however, so if a total set had

α′(S2(v ·m)) = m+2
2

edges in it, then it could not contain any vertices. Thus a total

set with m+6
2

elements is not possible. We can get the total set with m+4
2

elements

however, by taking the elements {v0, v1, r0r1, . . . , rm−2rm−1}.
Note however, that a total colour class of this size can only be picked once because

the vertices v0 and v1 are now picked. Thus the remaining total sets can have at most

m+2
2

elements. Suppose that χ′′(S2(v ·m) = ∆S2(v·m) + 1 = m + 2. Then assuming

that there are (m + 1) disjoint total sets of size m+2
2

and 1 total set of size m+4
2

, we

get that the following number of elements could be maximally coloured:

m+ 4

2
+ (m+ 1)

m+ 2

2
=
m2 + 4m+ 6

2

However |V (S2(v ·m))| = m+2 and |E(S2(v ·m))| = (m+2)(m+1)−2
2

. Thus S2(v ·m)

has the following number of elements.

m+ 2 +
(m+ 2)(m+ 1)− 2

2
=
m2 + 5m+ 4

2

If m > 2, then 5m + 4 > 4m + 6, thus m2+5m+4
2

> m2+4m+6
2

. Therefore there
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are more elements in S2(v · m) than can be maximally coloured by m + 2 colours.

This contradicts our assumption that S2(v ·m) could be totally coloured with m+ 2

colours. Therefore if m > 2, χ′′(S2(v ·m) = ∆S2(v·m) + 2. All that remains is to see

if S2(v · 2) is a type 1 or type 2 graph. It turns out that S2(v · 2) is a type 1 graph

which is illustrated in Figure 4.4. �

1 1

2

2

3

3

1

4

4

Figure 4.4: Total Colouring of S2(v · 2)

Now we have determined the total chromatic number of S2(v ·m) for all m. Next

we will establish an upper bound on the total chromatic number of Sn(v ·m) for all n.

The following lemma will determine an upper bound on the total chromatic number

when n is even. The case when n is odd will follow.

Lemma 4.1.2. Let v be the central vertex of S2n. Then χ′′(S2n(v ·m)) ≤ ∆S2n(v·m)+2.

If m is odd or m ≤ 2n, then χ′′(S2n(v ·m)) = ∆S2n(v·m) + 1

Proof: S2n has 2n+ 1 vertices, so S2n(v ·m) will have 2n+ 1 + (m− 1) = 2n+m

vertices. Since the vertex with maximum degree is being multiplied, we have that

∆S2n(v·m) = ∆S2n + (m− 1) = 2n+ (m− 1) = 2n+m− 1. We will prove this theorem

by case distinction on m being even or odd.

Case 1: Suppose that m is odd. Note that S2n(v ·m) is a subgraph of K2n+m having

the same maximum degree. Thus we can use the total colouring of K2n+m restricted

to S2n(v ·m). This is a total colouring using ∆K2n+m + 1 colours since 2n+m is odd

[5]. Therefore we have a total colouring of S2n(v ·m) using ∆K2n+m +1 = ∆S2n(v·m) +1

colours.

Case 2: Suppose that m is even. For this case, we could use the same argument used

in the previous case. This is a total colouring using ∆K2n+m +2 colours since 2n+m is
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even. Thus we can totally colour S2n(v ·m) with ∆K2n+m + 2 = ∆S2n(v·m) + 2 colours.

Therefore all that remains is to show that S2n(v ·m) is a type 1 graph if m ≤ 2n.

In a total colouring of Km, each total colour class leaves one vertex and all its

incident edges uncoloured, except the single total colour class is a perfect matching.

This is because one colour is assigned to a vertex, then there an odd number of

vertices remaining, so a perfect matching with those vertices does not exist.

Take the total colouring of Km, using the colours {2n − 1, 2n, . . . , 2n + m − 1},
and apply it to the induced subgraph Av. Without loss of generality, assume that the

colour 2n + m − 1 was the colour used on the perfect matching in Av. Then colour

the vertices vi where 0 ≤ i < 2n with the colour 2n + m − 1. This will not conflict

with the total colouring of Av since this colour was only used on edges in Av. Now

we need two different colouring extensions: one if 2n = m and one if 2n 6= m.

Subcase 1: Suppose that 2n 6= m. Then colour the edges v2n−1ri with the single

colour that is not on ri or any of the edges incident with ri in the total colouring of

Av. Note that these missing colours will not conflict with the colours of vertices v2n−1

and ri. These missing colours are distinct, so there is also no colour conflict with

the edges incident on v2n−1. Now all that remains is to colour the edges virj where

0 ≤ j < m and i 6= 2n− 1.

Colour virj with the colour (i + j)(mod 2n − 1). The edges incident on vi will

receive the colours {i, i + 1((mod 2n − 1), . . . , i + m − 1((mod 2n − 1)}. If m = 2n,

then the edge vir0 and virm−1 would receive the same colour. Since m ≤ 2n and

m 6= n, we have that m < 2n, thus this set of colours is distinct. Similarily, the edges

incident on ri will receive distinct colours from {0, 1, . . . , 2n− 2}. These colours are

not used in the total colouring of Av, so there is no conflict with that prior colouring.

Therefore we have a total colouring of S2n(v ·m) using 2n+m = ∆S2n(v·m) +1 colours.

An example of this colouring applied to S6(v · 2) is shown in Figure 4.5.

Subcase 2: Suppose that 2n = m. Then colour the edge viri with the colour that is

not on ri or any of the edges incident with ri in the total colouring of Av. All that

remains is to colour the edges viri+j(mod m) where 1 ≤ j < 2n. We will colour the

edges viri+j(mod m) with the colour j − 1.

The edges incident on vi (and ri) will receive the colours {0, 1, . . . , 2n− 2}. Since

these colours were not used in the total colouring of Av, they will not conflict with that

colouring. Therefore we have a total colouring of S2n(v ·m) using 2n+m = ∆S2n + 1
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Figure 4.5: Total Colouring of S6(v · 2)

colours as wanted. We have already seen an example of this total colouring in Figure

4.4. Another example of this total colouring is shown in Figure 4.6.
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Figure 4.6: Total Colouring of S4(v · 4)

�

Note that if m > 2n and m is even, then we cannot use either of the colouring

arguments used in subcase 1 or 2. To prove that S2n(v · m) is type 2 graph when

m > 2n, we could use an argument on the total number, similar to that used in Lemma

4.1.1. The following lemma will establish an upper bound on the total chromatic

number of Sn(v ·m) if n is odd.
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Lemma 4.1.3. Let n be odd and let v be the central vertex of Sn. Then χ′′(Sn(v·m)) ≤
∆Sn(v·m) + 2 for all m. If m is even or m < n, then χ′′(Sn(v ·m)) = ∆Sn(v·m) + 1

Proof: Sn has n + 1 vertices, so Sn(v · m) will have n + 1 + (m − 1) = n + m

vertices. Since the vertex with maximum degree is being multiplied, we have that

∆Sn(v·m) = ∆Sn + (m− 1) = n+ (m− 1) = n+m− 1. We will prove this lemma by

case distinction on m being even or odd.

Case 1: Suppose that m is even. Note that Sn(v ·m) is a subgraph of Kn+m having

the same maximum degree. Thus we can use the total colouring of Kn+m restricted

to Sn(v ·m). This is a total colouring using ∆Kn+m + 1 colours since n + m is odd.

Therefore we have a total colouring of Sn(v · m) using ∆Kn+m + 1 = ∆Sn(v·m) + 1

colours as wanted.

Case 2: Suppose that m is odd. For this case, we could use the same argument used

in the previous case. This is a total colouring using, ∆Kn+m + 2 colours since n + m

is even. Thus we can totally colour Sn(v ·m) with ∆Kn+m + 2 = ∆Sn(v·m) + 2 colours.

We will show that Sn(v ·m) is a type 1 graph when m < n.

Consider the graph Sn−1(v · (m + 1)). If we remove all the edges vir0, where

0 ≤ i < n− 1, from Sn−1(v · (m+ 1)), then the resulting graph is Sn(v ·m). Therefore

Sn(v ·m) is a subgraph of Sn−1(v · (m + 1)) having the same maximum degree. For

example, S5(v · 3) can be seen as a subgraph of S4(v · 4) in Figure 4.7.

Figure 4.7: Redrawing S5(v · 3) as a Subgraph of S4(v · 4)

Thus we can use the total colouring of Sn−1(v · (m + 1)) restricted to Sn(v ·m).

Since n and m are both odd with m < n, we have that m + 1 ≤ n − 1. Thus by

Lemma 4.1.2, χ′′(Sn−1(v · (m+ 1))) = ∆Sn−1(v·(m+1)) + 1. Therefore we have a proper

total colouring of Sn(v ·m) using ∆Sn−1(v·(m+1)) + 1 = ∆Sn(v·m) + 1 colours. �
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Now we have determined χ′′(Sn(v ·m) for all n and m when the central vertex is

multiplied. The following lemma will establish what happens to the total chromatic

number of Sn when one of the leaves is multiplied m times.

Lemma 4.1.4. Let vi be a leaf in Sn. Then Sn(vi ·m) is a type 1 graph.

Proof: We adopt the labeling of the vertices as given at the beginning of this section.

Without loss of generality, assume that v0 is the vertex being multiplied. Note that

∆Sn(v0·m) = n + m − 1, so we will prove this lemma by showing that Sn(v0 ·m) can

be totally coloured with n + m colours. We will show this by case distinction on m

being even or odd.

Case 1: Suppose that m is even. Then m+1 is odd, so χ′′(Km+1) = m+1. Note that

v0 is only adjacent to v in Sn. Therefore all the vertices in Av will only be adjacent to

v in Sn. Take the total colouring of Km+1 using the colours {0, 1, . . . ,m} and apply it

to the induced subgraph on the vertices Av ∪ {v}, which is isomorphic to Km+1. All

that remains is to colour the vertices vi and the edges vvi, where 1 ≤ i < n. Colour

the edge vvi with the colour m + i. These n − 1 colours are fresh, so they will not

conflict with the colouring of Av ∪ {v}. Suppose that c is the colour assigned to the

edge r0v. Then assign the colour c to vi. None of the vi are adjacent to one another,

so this is a valid assignment. Thus we have a proper total colouring of Sn(v0 · m)

using m + n colours as wanted. An illustration of this colouring is shown in Figure

4.8.
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1r1
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4

5

Figure 4.8: Total Colouring of S4(vo · 2)

Case 2: Suppose that m is odd. Then m + 1 is even, so χ′′(Km+1) = m + 2. If we

repeat the same argument used in case 1, then we will get a proper total colouring
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of Sn(v0 ·m) using (m + 2) + (n− 1) = m + n + 1 colours. In the total colouring of

Av ∪ {v} however, there is a colour not used on v or any edges incident on v. This

is because Av ∪ {v} is isomorphic to Km+1. Thus replace the colour m+ 2, that was

assigned to the edge vv1, with the colour not used on v or any edges incident on v.

This was the only instance of the colour m + 2, thus we now have a proper total

colouring of Sn(v0 · m) using m + n colours as wanted. Therefore in both cases we

have that Sn(v0 ·m) is a type 1 graph. �

Now we have classified what happens to the total chromatic number of Sn, when

any vertex is multiplied m times. In the next section we determine the total chromatic

number of Cn(v ·m).

4.2 Vertex Multiplication in Cycle Graphs

In this section, we determine what happens to the total chromatic number of Cn when

a vertex is multiplied m times. Similar to the previous section, label the vertices in

Cn by {v0, v1, . . . , vn−1} such that vi is adjacent to vi±1(mod n) where 0 ≤ i < n. Then

label the vertices in Av by {r0, r1, . . . rm−1}. If a vertex in C3 is multiplied m times,

then C3(v ·m) = Km+2, for which we know the total chromatic number. Therefore

we will restrict ourselves to cycles of length 4 or more. The following lemma will

determine the total chromatic number of Cn(v · 2).

Lemma 4.2.1. If n > 3, then Cn(v · 2) is a type 1 graph.

Proof: Without loss of generality, assume that v0 is the vertex that is multiplied.

Note that if we subdivide the edge v1v2 3 times, then the resulting graph is Cn+3(v0·2).

Recall from Chapter 3, that if an edge is subdivided 3 times, the total chromatic

number does not increase. Thus if we show that C4(v · 2), C5(v · 2), and C6(v · 2) are

type 1 graphs, then by applying Lemma 3.1.7, we get that Cn(v · 2) is a type 1 graph

for all n > 3. The total colourings of C4(v · 2), C5(v · 2), and C6(v · 2) are shown in

Figure 4.9, Figure 4.2, and Figure 4.11.

�

The following theorem will determine χ′′(Cn(v ·m)) for all n and m.
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Figure 4.9: Total Colouring of C4(v · 2)
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Figure 4.10: Total Colouring of C5(v · 2)
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Figure 4.11: Total Colouring of C6(v · 2)

Theorem 4.2.2. Suppose that n > 4. Then Cn(v ·m) is a type 1 graph if m is odd

and a type 2 graph if m is even.

Proof: Without loss of generality, assume that v0 is the vertex being multiplied

m times. Consider the induced subgraph on the vertices {vn−1, v1, r0, r1, . . . , rm−1}.
This induced subgraph is isomorphic to Sm+2(v · 2) where v is the central vertex of

Sm+2.

Case 1: Suppose that m is odd, then Sm+2(v · 2) is a type 1 graph by Lemma 4.1.3.

Colour this induced subgraph in Cn(v0 · m) with m + 2 colours according to the

algorithm used in Lemma 4.1.3. In this colouring, vn−1 and v1 are both missing the
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same colour. Without loss of generality, suppose that this colour was the colour 0.

Assign this colour to the edges vn−1vn−2 and v1v2. Now all that remains is to colour

the elements of the induced path {v2, v3, . . . , vn−2}. Recall that if we subdivide the

edge v1v2 in Cn(v0 ·m) 3 times, then the resulting graph is Cn+3(v0 ·m).

If we show that in the case n = 5 that the current colouring can be extended to

the induced path on {v2, v3}, then by applying Lemma 3.1.7, we get that C5+3x(v0 ·m)

is a type 1 graph for all x. We can do the same argument if n = 6 or n = 7 to get that

C6+3x(v0 ·m) and C7+3x(v0 ·m) are type 1 graphs for all x. These extended colourings

are shown in Figure 4.12, Figure 4.13, and Figure 4.14.

v1 v4v2 v3

r0

r1 r2

1 20 03 12

Figure 4.12: Extended Colouring if n = 5

v1 v4v2 v3 v5

r0

r1 r2

1 200 12 0 12

Figure 4.13: Extended Colouring if n = 6

Thus in all 3 cases we can extend the total colouring of the induced subgraph

{vn−1, v1, r0, r1, . . . , rm−1} to the induced path {v2, v3, . . . , vn−2}. Therefore by re-

peated application of Lemma 3.1.7, we have that Cn(v0 ·m) can be totally coloured

with m+ 2 colours. Thus Cn(v0 ·m) is a type 1 graph.

Case 2: If m > 2 is even, then Sm+2(v · 2) is a type 2 graph by Lemma 4.1.2. Colour

the induced subgraph {vn−1, v1, r0, r1, . . . , rm−1}, which is isomorphic to Sm+2(v · 2),

with m + 3 colours. All that remains is to colour the elements in the induced
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r0

r1 r2

v1 v4v2 v3 v5 v6

1 200 21 02 13 3

Figure 4.14: Extended Colouring if n = 7

path {v2, v3, . . . , vn−2}. We have already proved in case 1, that the colouring of

the induced subgraph {vn−1, v1, r0, r1, . . . , rm−1} can be extended to the induced path

{v2, v3, . . . , vn−2}. Therefore by repeated application of Lemma 3.1.7, we have that

Cn(v0 ·m) can be totally coloured with m + 3 colours. Since the induced subgraph

{vn−1, v1, r0, r1, . . . , rm−1} requires m+3 colours, there does not exist a total colouring

of Cn(v0 ·m) with m+ 2 colours. Therefore Cn(v0 ·m) is a type 2 graph. �

The only remaining case for vertex multiplication in cycles is the case C4(v ·m).

We have seen that C4(v · 2) is a type 1 graph in Figure 4.9. We conjecture that for

all other values of m, C4(v ·m) is a type 2 graph based on calculations.

4.3 Vertex Multiplication in Arbitrary Graphs

In the previous two sections, we determined what vertex multiplication does to the

total chromatic number of the star graph and cycles. The goal of this section is

to generalize these results to determine how vertex multiplication affects graphs in

general. For the remainder of this section, all graphs to be considered have maximum

degree greater than 2.

Theorem 4.3.1. Let G be a type 1 graph. If deg(v) = 2 and v is a vertex that is

adjacent to a vertex with maximum degree, then G(v · 2) is a type 1 graph.

Proof: Let f be a minimal total colouring assignment of G using the colours

{1, 2, . . . k}. Let v1 and v2 be the neighbours of the vertex v that is being multiplied

and let x and y be the vertices in Av. First, colour V (G(v · 2)) \ {v1, v2, x, y} with

the same colours that f assigned those vertices in G. Next, colour E(G(v · 2)) \
{v1x, v2x, v1y, v2y, xy} with the same colours f assigned those edges in G. Then colour
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the vertices v1, v2 and the edge xy with a new colour, k+ 1. Thus all that remains to

be coloured in G(v · 2) are the vertices {x, y} and the edges {v1x, v2x, v1y, v2y}.
Since v is adjacent to a vertex with maximum degree, either deg(v1) = k − 1 or

deg(v2) = k− 1. Without loss of generality, assume that v1 has maximum degree and

that the colours {1, 2, . . . , k − 2} were the colours used on the edges incident to v1.

We say that a colour is absent at a vertex, if none of its incident edges have received

that colour. In particular, k− 1 and k are both absent at v1. We will break the proof

into what elements are absent at v2.

Case 1: Suppose both k − 1 and k are absent at v2. Then we can colour v1x and

v2x with colour k− 1 and k respectively. Then colour v1y and v2y with colour k and

k − 1 respectievely. This is valid because k and k − 1 are absent at v1 and v2. All

that remains is to colour x and y. The only vertices adjacent to these are v1 and v2,

which received the colour k + 1. Thus we can assign x and y the colours 1 and 2

respectively.

1

2

3

1

2

3

1

2

3

1

2

3

1

2

4

4

5

5

66 6

x

y

v1 v2

Figure 4.15: Case 1 of Theorem 4.3.1

Case 2: If just k − 1 is absent at v2, then colour v1x and v2y with colour k − 1 and

colour v1y and x with colour k. Since k was not absent at v2, some other colour c

must be absent. Thus colour v2x with colour c and y with colour 1 if c 6= 1 and colour

2 otherwise. The same argument is used if just k is absent at v2.
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1

2

3

1

2

4

1

2

3

1

2

4

1

2

4

3

5

5

66 6

x

y

v1 v2

Figure 4.16: Case 2 of Theorem 4.3.1

Case 3: Suppose neither k − 1 nore k are absent at v2. Then colour v1x and y with

the colour k − 1. Then colour v1y and x with colour k. Lastly colour v2y and v2x

with the colours c1 and c2 respectively, where c1 and c2 are the colours absent at v2.

1

2

3

1

4

5

1

2

3

1

4

5

1

2

4

3

2

5

66 6

x

y

v1 v2

Figure 4.17: Case 3 of Theorem 4.3.1

Therefore in all 3 cases we can extend the total colouring of G to a total colouring

of G(v · 2) using ∆G(v·2) + 1 colours. �

Now we will impose restrictions on the neighbours of a vertex v and deg(v) to

determine the total chromatic number of G(v ·m).

Theorem 4.3.2. Let G be a type 1 graph with χ′′(G) = ∆G + 1 = k. Suppose that

a vertex v with maximum degree or a vertex adjacent to one with maximum degree

is being replaced and that none of the neighbours of v are adjacent to one another.

Then G(v ·m) is a type 1 graph if deg(v) ≤ m ≤ deg(v) + 1.

Proof: Let f be a total colouring of G using the colours {m,m+1, . . .m+k−1} and

let w0, w1, . . . wm−1 denote the neighbours of v. First, colour the induced subgraph



55

on the vertices V (G) \ {v} in G(v ·m) using the assignment f . Let r0, r1, . . . rm−1 be

the vertices in Av. For all of the edges nirj, assign the colour i + j(mod m). This

assignment gives all of the edges incident to rj will receive different colours. Now

note that Av requires m colours if m is odd and m+ 1 colours if m is even.

Case 1: Suppose that m is even. Then using the colours {m,m+ 1, . . . ,m+ k− 1},
colour the induced subgraph Av. The colours of wi and rj may conflict now however.

Thus we introduce a fresh colour, m + k, to colour the vertices wi. By assumption,

the wi are not adjacent to one another, so this is a valid assignment. Therefore we

have a proper total colouring using m+ k colours.

Case 2: Suppose that m is even. Then we need k + 1 colours to totally colour Av if

m = k. Thus totally colour Av with the colours {m,m+ 1, . . . ,m+ k}. The colours

of wi and rj may conflict with one another. Since m is even, there is a total colour

class of Av that is a perfect matching. Without loss of generality, assume that colour

m+k was used for that perfect matching. Then assign the vertices wi with the colour

m+ k. These will not conflict with the ri since this colour was only used on edges in

Km.

Therefore in both cases, we have that we can totally colour G(v ·m) with k + m

colours. Since ∆G(v·m) = ∆ +m = k+m− 1, we have that G(v ·m) is a type 1 graph

as wanted. �

This concludes our exploration of the total chromatic number of vertex multipli-

cation. The complexity in generalizing vertex multiplication to an arbitrary graph,

is knowing the structure of the neighbourhood of the vertex being multiplied.



Chapter 5

Conclusions and Future Work

In this thesis, we proved partial results towards the Total Colouring Conjecture. We

determined the total chromatic number of the wheel graph and crown graph. We

also proved if a graph G contains a cycle of length 4 or more, then T (G) will not be

perfect. At the end of Chapter 2, we were left with the following open conjectures.

Conjecture 5.0.3. J2n is a type 1 graph for all n

Conjecture 5.0.4. Let G be a graph, then T (G) is perfect if and only if G does not

contain a cycle of length 4 or more.

In Chapter 3, we gave upper bounds on the total chromatic number for Cartesian,

strong, and tensor graph products. We showed that the hypercube, rook, and kings

graphs all satisfy the total colouring conjecture. At the end of Chapter 3, we were

left with the following open conjectures.

Conjecture 5.0.5. Kn�Km is a type 1 graph if n > 2 and m > 2.

Conjecture 5.0.6. If G and H satisfy the Total Colouring Conjecture then G �H

will satisfy the Total Colouring Conjecture.

Lastly, we explored how vertex multiplication affected the total chromatic number.

We established that for the star graph and cycle graph, no matter which vertex

was multiplied and how many times it was multiplied, the resulting graph satisfies

the Total Colouring Conjecture. We then briefly explored how vertex multiplication

affects the total chromatic number of an arbitrary graph. At the end of Chapter 4,

we were left with the following open conjecture.

Conjecture 5.0.7. C4(v ·m) is a type 2 graph if m 6= 2.

Researchers interested in total colouring could determine which graphs products

result in type 1 or type 2 graphs. If I continued total colouring, I would like to look

more into arbitrary vertex multiplication, as it is an interesting way of generating

graphs.
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