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STRENGTHENING OF SLENDER REINFORCED CONCRETE 

COLUMNS BY BUCKLING CONTROL USING HIGH-MODULUS 

BONDED LONGITUDINAL REINFORCEMENT  
 

Pedram Sadeghian, M.ASCE 1 and Amir Fam, M.ASCE 2 

 

ABSTRACT 

This paper introduces a model for strengthening slender reinforced concrete columns. The 

proposed technique aims at controlling second order lateral deflections using longitudinal high-

modulus bonded reinforcement, thereby altering the loading path to intercept the axial load-

moment (P-M) interaction curve at a higher axial capacity. With the availability of high- and 

ultra-high-modulus carbon fiber reinforced polymer (CFRP) plates, this approach should be quite 

efficient according to Euler’s buckling rule, in which, column strength is stiffness-controlled. 

This approach is different from the classical transverse wrapping method for confinement; a 

technique that achieves strengthening by enlarging the (P-M) diagram in the compression-

controlled region. The proposed model accounts for concrete nonlinearity in compression, 

cracking in tension, steel rebar plasticity, and certainly geometric nonlinearity, in addition to the 

possibility of premature CFRP debonding failure in tension and the lower CFRP strength in 

compression than tension. The model is validated against experimental results and used in a 

parametric study to assess the effects of slenderness ratio λ, axial load initial eccentricity ratio 

e₀/h, and CFRP reinforcement ratio ρf, and modulus Ef. It was shown that strength gain increases 

from 17 to 30% as λ increases from 20 to 120, when a very small ρf of 0.5% is used. A range of 

0.1 to 1% for ρf results in a 4 to 41% strength gain, while a range of 100 to 500 GPa for Ef results 

in a 5 to 26% gain. As e₀/h increases from 0.05 to 0.6, the gain increases from 17 to 90%.   
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INTRODUCTION 

In the past two decades fiber reinforced polymer (FRP) composites have emerged in structural 

engineering as a retrofitting material with superior characteristics for existing reinforced concrete 

(RC) structures.  One of the most common and effective applications, and perhaps the most 

widely researched area to date, is RC column confinement using FRP wraps.  It is now widely 

accepted that applying transverse unidirectional FRP thin sheets to short columns effectively 

provides significant lateral confinement of the concrete core, leading to considerable increase in 

the unconfined concrete compressive strength and ductility of the columns under concentric axial 

compressive loadings (Shahawy et al. 2000; Pessiki et al. 2001; Lam and Teng 2003; and 

Mandal et al. 2005). This system is much more effective for RC columns with circular cross 

section than rectangular sections. Also, transverse FRPs have been successfully examined for 

strengthening RC short columns under eccentric compressive loadings (Parvin and Wang 2001; 

Li and Hadi 2003; and Hadi 2007). It is well established that transverse FRP wraps can enlarge 

the axial load-bending moment (P-M) interaction resistance curves of RC sections in the 

compression-control region (i.e. under combined large axial loads and low bending moments), as 

shown in Fig. 1(a), by shifting the column strength from point A to A’ (Saadatmanesh et al. 1995 

and Bisby and Ranger 2010). 

The effects of a combination of transverse and longitudinal FRP systems on RC columns 

have been studied by some researchers (Chaallal and Shahawy 2000; Fam et al. 2003; Sadeghian 

et al. 2010; and Quiertant and Clement 2011), but their main focus has been on short columns 

and the effect of FRPs on the P-M interaction resistance curves, not on the effects of slenderness 

and load path. Moreover, in some design guidelines such as ACI 440.2R (2008) there is a gap 

regarding slender RC columns strengthened with FRPs. Recently, some studies (Fitzwilliam and 
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Bisby 2010 and Jiang and Teng 2011) have been conducted on FRP strengthening of slender RC 

columns, but their target has been primarily enlarging the P-M interaction resistance curves and 

upgrading the columns through applying transverse FRPs to enhance confinement.   

 

Hypothesis of the Proposed Model 

It has been well established that longitudinal FRP strengthening systems such as longitudinal 

fabrics, bonded laminates, and near surface mounted (NSM) systems can only enhance the 

strength of RC columns under large bending moment and small axial load (i.e. by enlarging the 

P-M interaction curve in the tension-controlled region), as shown in Fig. 1(b). It has also been 

recognized that this longitudinal FRP system may have insignificant strengthening effect for 

columns under large axial load and small moment. This is due to the belief that longitudinal FRP 

may not be reliable in compression especially when its stiffness is low, as in the case of Glass-

FRP (GFRP). This is true for a short column with a low-stiffness FRP reinforcement, where the 

shift of point A to A’ in Fig. 1(b) is small, however, for slender RC columns the behavior is quite 

different and this problem has not been addressed before.   

This paper presents a new model for slender RC columns strengthened by a longitudinal 

FRP system and subjected to large axial loads and small initial moments.  The fundamental 

aspect of this model, and perhaps a key difference from other strengthening approaches, is that it 

seeks the desired strength gain of the column primarily by altering the loading path (from OB to 

OB’ in Fig. 1(b)), such that it intercepts the P-M interaction curve at a higher point. The 

approach then - to a lesser extent - relies on enlarging the P-M resistance curve as in the 

traditional FRP-strengthening philosophy. The axial strength of slender columns in many cases is 

governed by stability failure in the form of global buckling before reaching material failure, 

according to Euler’s rule, where the strength is directly a function of the cross-sectional stiffness 
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(EI). With the emergence of new generations of ultra-high modulus CFRP reinforcement (well in 

excess of 200 GPa), these materials are ideal for strengthening slender members against stability 

failure. The light weight, thin profile and ease of adhesive-bond installation of CFRP plates to 

concrete surface makes this concept much easier to apply and likely more cost effective 

compared to traditional concrete jacketing methods of columns, which also increase column size 

considerably.  In fact, this concept was successfully demonstrated by Shaat and Fam (2009) for 

strengthening slender steel hollow rectangular section columns.  

 The proposed model accounts for material nonlinearity of concrete in compression, 

concrete cracking in tension, steel reinforcement plasticity, and of course geometric nonlinearity 

of the slender column in the form of second order deformations. The model also considers the 

possibility of premature CFRP debonding failure in tension as well as the lower CFRP crushing 

strength compared to tensile rupture. The model is validated against experimental results and 

used in a comprehensive parametric study to assess the effects of slenderness ratio, initial 

eccentricity of load, CFRP reinforcement ratio, and CFRP modulus.  

 

ANALYTICAL MODELING 

The objective of the model is to predict the loading path and ultimate load of slender RC 

columns strengthened with longitudinal high modulus CFRPs. As shown in Fig. 1(b), the loading 

paths (OB or OB’) are nonlinear and their nonlinearity is function of slenderness ratio and 

flexural stiffness of the column. In general, the loading path could have ascending and 

descending branches, with a peak load which corresponds to buckling load (i.e. stability failure). 

For ordinary RC columns with moderate slenderness, the ascending branch intercepts the P-M 

interaction curve (i.e. material failure) before reaching the peak and descending.  The intercept of 

P-M interaction curve may occur in the tension- or compression-control regions.  For RC 
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columns with high slenderness ratio, the load path reaches the peak bucking load and the 

descending branch intercepts the P-M interaction curve at a lower load.  It should be mentioned 

that the P-M interaction curve is only function of cross-section geometry and material properties 

but not a function of length or end conditions (i.e. slenderness).  The latter, however, directly 

affects the loading path and its nonlinear shape due to second order deformations. 

  In order to plot the load path of a column, axially loaded at a given initial eccentricity eo 

(Fig. 1(b)), an iterative analysis is required at any given load/displacement level to capture the 

second order deformation of the column. The initial bending moment Peo produces a lateral 

deformation δo, which increases the eccentricity at mid-height to (eo+δo). The new eccentricity 

creates an additional bending moment Pδo, which in turn generates an additional deflection, and 

this procedure continues until convergence is reached at a final lateral deflection δ and a final 

moment P(eo+δ). This iterative procedure is then performed at different load/displacement levels 

to establish enough points for the entire load path to failure. The first step in this procedure is a 

‘moment-thrust-curvature’ analysis carried out for the FRP-strengthened RC cross-section.  

 

Section Analysis 

Figure 2(a) shows a RC column with rectangular cross-section (width b × height h) and 

longitudinal steel reinforcements at the tension side with a total area As at an effective depth d, 

measured from the extreme concrete fiber in compression.  Also, the steel reinforcement at mid-

section has a total area Asm at an effective depth dm (can be 0.5h), and at the compression side the 

total steel area is A′s at an effective depth d′. The column is strengthened with longitudinal 

bonded FRP plates or NSM FRP bars/strips at the extreme fibers of both sides, including total 

areas of Af  and A′f on the tension and compression sides, at effective depths df and d′f, 

respectively.  d′f is a negative value for externally bonded FRP and positive for NSM FRP. 
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It is assumed that the strain profile is linear and FRP, steel and concrete are perfectly 

bonded without any slip, as shown in Fig. 2(b), until either material failure occurs or FRP 

premature debonding occurs, as discussed in the failure criteria section. Thus, strains at steel 

reinforcements (i.e. εs, εsm, and ε′s) and at FRPs (i.e. εf and ε′f) are proportional with the 

maximum concrete strain εc in compression and curvature ψ. The column is under compressive 

axial load P at eccentricity e (with respect to mid height h/2 of the concrete section) as shown in 

Fig. 2(c). Tensile concrete is neglected and neutral axis depth c is measured from the extreme 

concrete compression fiber. As there is no transverse FRP for confinement, compressive 

behavior of unconfined concrete can be adequately described by the Popovics model (Popovics 

1973).  As shown in Fig. 2, the compressive stress fc at distance y from the neutral axis, 

corresponding to a strain εc, is given by:
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where f′c is unconfined concrete strength, ε′c is corresponding strain, and r=Ec/(Ec-Esec). The 

elastic modulus Ec, secant modulus Esec, and ε′c are determined as Ec= cf4700
 
in MPa, 

Esec=f′c/ε′c, and ε′c=1.7f′c/Ec; respectively. In order to develop the P-M interaction curve, the 

maximum useable strain εcu at the extreme compression fiber of unconfined concrete (i.e. at 

crushing) is assumed equal to 0.003 (ACI 318 (2011) and ACI 440-2R (2008)). 

 The behavior of steel reinforcements is assumed linear elastic-perfectly plastic with 

elastic modulus Es, yielding stress fy, and yielding strain εy. The behavior of FRPs is assumed 

linear elastic with elastic modulus Ef up to tensile rupture stress fftu (tensile rupture strain εftu) and 

compressive crushing stress ffcu (compressive crushing strain εfcu), which is likely lower than the 

tensile strength. Based on Fig. 2(b), strain εc at any concrete compression fiber is evaluated as 
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εc=ψ.y and strain εcm at extreme concrete compression fiber (i.e. at y=c) is evaluated as εcm=ψ.c. 

Thus, the resultant force Cc corresponding to compressive concrete and its moment Mc at point A 

(Fig. 2(c)), at extreme concrete compression fiber, can be expressed as the following:
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where a is zero when neutral axis is inside the concrete section and is (c-h) when neutral axis is 

outside. For steel reinforcements, strain εs, εsm, and ε′s are evaluated as εs=ψ(d-c), εsm=ψ(dm-c), 

and ε′s=ψ(c-d′), respectively. Thus, resultant forces Ts, Tsm, and Cs corresponding to tensile, mid-

section, and compressive steel reinforcements can be expressed as the following:
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(6) 

For FRPs, strain εf and ε′f are evaluated as εf=ψ(df-c) and ε′f=ψ(c+d′f), respectively. Thus, 

resultant forces Tf and Cf corresponding to tensile and compressive FRPs can be expressed as the 

following:
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 To this end, the internal forces have been expressed in terms of two main parameters, 

namely; curvature ψ and neutral axis depth c. By applying static equilibrium conditions, 

considering internal and external forces (Fig. 2(c)), the following two equations are derived:

PTTTCCC fsmsfsc 

 

        

(9)
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(10) 

For a given eccentricity e and load P, Equations (9) and (10) are sufficient to obtain the 

two unknown parameters (curvature ψ and neutral axis depth c), using a conventional computer 

program. A characteristic P-M interaction diagram can then be established for the cross-section 

based on the failure criteria discussed in the following section. Also, the calculated curvatures 

will be used for the lateral deflection calculations of slender RC columns through an iterative 

analysis which is discussed later. 

 

Failure Criteria 

Material failure: The model accounts for material failure in the form of (a) concrete crushing at 

a 0.003 compressive strain εcu, (b) steel yielding in tension and/or compression at stress fy, (c) 

FRP tensile rupture at strength fftu, or FRP compressive crushing at strength ffcu. 

FRP debonding failure: Based on ACI 440.2R (2008), a failure controlled by FRP debonding 

may occur away from where externally-bonded FRP terminates. To check for that intermediate 

crack-induced debonding failure, the tensile strain in FRP reinforcement should be checked at 

every step and compared to the effective strain at which debonding may occur, εfd, as follows:

ff

c
fd

tnE
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          (11) 

where Ef and tf are the elastic modulus and thickness of a single ply of the FRP laminate, n is the 

number of plies, and f’c is compressive strength of concrete. If the debonding strain εfd is larger 
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than the ultimate rupture strain of the FRP laminate in tension, εfu, this means that the section is 

not vulnerable to debonding failure and that reaching FRP rupture is possible. The FRP 

debonding failure affects the resistance in the form of the P-M interaction curve in the tension-

controlled region by reducing the capacity. Material failure occurs once the loading path 

intercepts the P-M envelope, while stability failure occurs if the loading path reaches a peak 

inside the P-M curve before it intercepts the envelope. The effect of premature debonding on P-

M curves will be illustrated in detail in the parametric study section. 

 

Analysis of Slender Columns for the Ascending Load Path 

For a deformed slender column under eccentric compressive load P, the eccentricity e varies 

along the length from the initial eccentricity eo. Distribution of eccentricity e is coupled with 

lateral deflection; therefore, an iterative analysis is necessary. Consider a RC column with length 

L under symmetric bending, as shown in Fig. 3 for one half of the column. Lateral deflection 

varies from zero at the end A to maximum at mid-height point M, thus the tangent of deformed 

shape at point M is parallel to the original axis of the column. Consider a general point X at a 

distance x from point A.  The lateral deformation δX at point X is expressed as δX = x.θA - tX/A, 

where θA is the slope at point A and tX/A is the horizontal distance between the extended tangent 

of point A and point X on the deformed column (Fig. 3).   Using the moment-area method, the 

tangent slope at A, θA, and tX/A can be expressed as the following: 
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Where Ψ(z) is the curvature at a section at distance z from the top. Thus, lateral deflection δX at 

position x is expressed as: 
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 Numerical integration is then used to solve Equation (13). The column of length L is 

equally divided to n number of segments with segment length of Δx=L/n, as shown in Fig. 3. 

Thus, lateral deformation δi at position xi (i.e. node number i with curvature ψi) can be expressed 

as the following: 
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(15) 

 For a given cross-section with a known end eccentricity eo, apply a known axial load P 

and the goal is to compute the total lateral deflection at mid-height (eo+δM).  The procedure starts 

as follows: Calculate the curvature due to the load P and moment P.eo using the procedure 

described earlier.  In the first iteration, curvature is constant at all nodes along the length under 

the constant moment P.eo because the column is not laterally deflected yet. Using Equation (15), 

deformation at each node can be calculated. In the second iteration, eccentricity at each node is 

equal to the initial eccentricity eo plus the corresponding deformation δi. Thus at each node a 

new section analysis (as presented in the previous section) with new eccentricity (eo+δi) can be 

performed to calculate a new curvature ψi under known axial load P and moment P(eo+δi). Using 

Equation (15), new deformations can be calculated for the third iteration. This iterative analysis 

is continued until convergence occurs for the maximum deflection at mid-height, δM. 

Convergence has been defined here as a deformation increment equal to or less than 0.01 mm. At 

the end of this iterative analysis, one point on the load path has been established with the 

coordinates [P(eo+δM), P]. The process is then repeated for a higher axial load P+ΔP (i.e. a load 

control approach) and a new point is obtained on the ascending load path, and so on.  The 

process continues until the load path intercepts the (P-M) interaction curve (for moderate 

slenderness) or until it reaches a peak before it intercepts the curve (for large slenderness). 
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 In columns with large slenderness, a typical load path goes through a descending branch 

once the peak load is reached. To capture the peak load, load steps ΔP should be refined to 

obtain adequate number of points and capture the peak load which reflects the maximum column 

capacity and indicates a stability failure, not a material failure. The technique described so far 

can only capture the ascending branch because it is load-controlled. The next section presents a 

method to capture the descending load path, which continues until material failure eventually 

occurs when it intercepts the (P-M) interaction curve at a lower load.  For most conventional 

slender RC columns, material failure usually governs but for certain conditions of slender RC 

columns, buckling failure may govern, where yielding of the tensile steel reinforcements can 

suddenly reduce stiffness of the column and triggers the buckling failure. In these cases, after a 

sharp-shaped peak, a short descending branch appears.  

 

Analysis of Slender Columns for the Descending Load Path 

The descending branch of the load path could be captured using a displacement-control 

approach. The analysis would be similar to that of the ascending branch, except that the load is 

calculated for a given lateral deflection. Given that the primary purpose of the model presented 

in this paper is to capture the peak load of the column, which is already accomplished in the 

previous section, the rigorous and time–consuming incremental displacement-control analysis of 

the post buckling behavior was deemed unnecessary. Instead, a simplified closed-form analysis 

is proposed by assuming a sign-curve deflected shape for the pinned RC column. This 

assumption of a sign-shape was suggested by Lloyd and Rangan (1996) and Claeson and Gylltoft 

(1998) and verified by Sadeghian et al. (2010).  In the proposed simplified analysis, and for a 

given mid-height deflection δM, the unknowns are the load P; the curvature ψM and the neutral 

axis depth cM. Thus, the two equilibrium equations of axial force and moment (Eqs. 9 and 10) at 

the mid-height section are not enough. An additional equation is developed based on the sign-
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shape distribution of deflection. The distribution of curvature ψ(x) along the length of the pinned 

column is assumed analogous to the sign-shape distribution of lateral deflection as follows: 
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where ψo is curvature at the support (at x = 0) and ψM is curvature at mid-height (at x = L/2). 

Using the moment-area method, deflection at mid-height δM is derived as follows:
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Equation 17 is a third equitation but it involves a fourth unknown, ψo. By adding two 

more equilibrium equations (Eqs. 9 and 10) being applied at the support section, a fifth unknown 

is also added, which is the neutral axis depth at the support co.  For a given mid-height deflection 

δM, we now have five equations to solve for the following five unknowns: P, ψM, cM, ψo, and co, 

of which, the primary unknown is P, which is then plotted against δM to establish the descending 

branch of the load path until it intercepts the (P-M) interaction diagram. 

When applying this simplified method at the point of the peak load the load path, it 

results in a peak load that is smaller by 2 to 5% than that established at the end of the ascending 

curve using the rigorous iterative analysis. This is attributed to the simplified sign-shape 

assumption of the deflected column. In order to correct for this small discrepancy, the computed 

descending curve is shifted upward by this small percentage to provide a continuous curve for 

the entire loading path.  

 

VERIFICATION  

The proposed model is verified using experimental results from slender column tests. The first 

study was performed by Kim and Yank (1995) on conventional slender RC columns, where tests 

were carried out on 80×80 mm square tied columns of three slenderness ratios (λ) of 10, 60, and 
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100. Three different concrete strengths of 26, 64, and 86 MPa were used. Also, two different 

longitudinal steel reinforcement ratios of 1.98 and 3.95% were used. Hinged boundary 

conditions were used at both ends and the end loads were applied at 24 mm eccentricities at both 

ends, in the same direction.  Figure 4 shows the predicted interaction diagrams of the 26 MPa 

concrete strength columns with the two different longitudinal steel reinforcement ratios. Also 

shown in Fig. 4 are the experimental and predicted load paths for different slenderness ratios, 

where the continuous line is the analytical load path. The figure shows good agreement between 

the analytical and experimental load paths. It is also shown that the loading path becomes more 

nonlinear, due to the increased second order effects, as slenderness ratio increases. Figure 4(b) 

shows that for λ=100, the load path reaches a peak load, followed by a very small descending 

branch just before intercepting the interaction curve. Figure 4(c) shows the axial load-lateral 

deflection curves, which also show good agreement between the model and experiment data for 

both ascending and descending branches. 

The second study was performed by Shaat and Fam (2009) on slender steel columns 

strengthened with longitudinal CFRPs. The loading was applied concentrically on 44×44×3.2 

mm hollow structural section (HSS) slender columns. Two layers of unidirectional pultruded 

CFRP plates, namely, 25x1.4 mm and 16x1.4 mm were adhesively bonded to the two opposite 

faces of the column, as shown in Fig. 5. The average tensile strength and elastic modulus of 

CFRP were 1475 MPa and 313 GPa, respectively. To be able to apply the RC model for this 

compact steel section, the RC cross-section geometry shown in Fig. 29(a) was manipulated such 

that the two flanges of the HSS section were entered as the extreme tensile and compressive 

reinforcement, while the two HSS webs were lump summed as the mid-section reinforcement. 

The concrete strength and modulus were entered as very low values close to zero. Figure 5 
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shows the axial load-lateral deflection curves of three identical specimens with slenderness ratio 

of 93, along with the predicted curve. The figure shows reasonable agreement between the 

analytical and experimental curves. Both curves show that overall buckling was the primary 

failure mode, followed by CFRP plate crushing at the inner face at about 15 mm lateral 

deflection. After CFRP crushing, the column continues with CFRP at one side only (i.e. the outer 

side), which the model is capable to predict. This behavior is discussed later in detail in the 

parametric study section. 

The third experimental work was performed by Gajdosova and Bilcik (2013) on slender 

RC columns strengthened with longitudinal NSM CFRPs. To the authors’ knowledge, this is the 

only available experimental study on slender RC columns strengthened with longitudinal FRPs. 

Full-scale slender rectangular RC columns were strengthened either with longitudinal NSM 

CFRP strips, transverse CFRP wraps, or a combination of both schemes. As shown in Fig. 6, the 

columns were 4.1 m long with 210×150 mm cross-sections. Longitudinal reinforcement of the 

columns consisted of 8 steel bars of 10 mm diameter and 6 mm stirrups spaced at 150 mm, with 

a 30 mm (reduced spacing) near both ends. For the two similar columns (Test 1 and Test 2) 

longitudinally-reinforced with NSM CFRP, three 3×15 mm longitudinal grooves were cut on 

each long-side of the column, cleaned and filled with epoxy adhesive and then 1.4×10 mm CFRP 

strips were inserted. The columns were hinge-supported at both ends, and axially loaded to 

failure with equal end eccentricities of 40 mm. Figure 6 shows the predicted interaction curve 

along with the experimental and predicted load paths.  Reasonable agreement can be observed 

between the model and experimental load paths. The agreement is better with Test 1. The slight 

difference between Tests 1 and 2 experimental load paths may be attributed to slight friction at 

the hinge supports, but certainly within the expected range of experimental variation. 



 15 

PARAMETRIC ANALYSIS 

In this section, the analytical model is used in a parametric study to investigate the effects of key 

parameters on behavior of slender RC columns strengthened with longitudinal FRP 

reinforcement, including slenderness ratio (λ=kL/r); initial eccentricity ratio (e₀/h); FRP 

reinforcement ratio (ρf); and FRP modulus (Ef). When each parameter is being investigated, other 

parameters are kept constant and the default values are λ=60, e₀/h=0.1, ρf=0.5%, and Ef=400 

GPa. The rest of parameters, namely ffu=1500 MPa, f′c=40 MPa, b=h=400 mm, fy=400 MPa, 

Es=200 GPa, and ρs=2% are kept constant. For some cases FRP debonding failure criterion 

governed. For example, for the default case, the effective debonding strain εfd calculated using 

Equation 11 was 0.00346, which is lower than the rupture strain εfu of 0.00375. This affects the 

tension-controlled region of the P-M curves, as shown in Figs. 7(a), 9, 11 and 13.  In these 

figures, the dotted-parts of P-M diagrams of strengthened columns are based on FRP rupture, 

while the solid parts in tension-controlled regions are based on FRP debonding.  It should be 

noted that FRP longitudinal strength (fftu) in compression is typically lower than in tension. As 

such, the relative strength has been included in the parametric study.  

 

Effect of Slenderness Ratio 

The range of slenderness ratios (λ) studied was 40 to 120. This range was selected to cover a 

wide yet practical range of possible slender columns encountered in practice from short to very 

slender. Figure 7(a) shows the P-M interaction curves of both control and strengthened columns 

using ρf of 0.5%, developed based on section analysis, using Equations 9 and 10. For FRP-

strengthened sections, failure criterion for the compression-controlled region of the interaction 

curve was either concrete or FRP crushing, whichever occurred first, whereas failure criterion for 

the tension-controlled region was FRP rupture in tension, after yielding of steel. The load paths 
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are shown in Fig. 7(a) for each slenderness ratio, for both the control and strengthened 

counterparts.  Figure 7(b) shows the load-lateral deflection responses of all cases. Figure 8 

summarizes the results by showing variation of maximum axial load and percentage increase in 

maximum axial load with λ for both ρf of 0.5% (Fig. 8(a)) and ρf of 1% (Fig. 7(b)).  Figure 8 

clearly shows that as λ increased from 20 to 120, the percentage increase in axial load capacity 

increased from 17 to 30% for a 0.5% ρf and from 33 to 59% for the 1% ρf. The physical meaning 

of this observation is that bonding larger amount of longitudinal FRP to the surface of slender 

RC columns results in larger gains in axial capacity, with this gain becoming even larger as 

slenderness ratio increases. Also, Fig. 7(a) shows that for very slender columns (e.g. λ=80 to 

120), the load paths reach a peak load signifying global buckling, then follows a descending 

branch that intercepts the interaction curve when material failure occurs at lower loads. Also, the 

load-lateral deflection responses of very slender columns have a rather extended post-peak 

plateau (Fig. 7(b)). It is noted that sudden loss of stiffness can occur due to steel yielding, FRP 

rupture, FRP crushing, or FRP debonding, while gradual loss of stiffness occurs as concrete 

strain increases, due to its non-liners stress-strain curve.  

 

Effect of Initial Eccentricity Ratio 

The initial eccentricity ratio (e₀/h) ranged from 0.05 to 0.6. Figure 9 shows the P-M interaction 

curves of the control and strengthened sections. The load paths for a column with λ=60 are 

presented in the figure for both control and strengthened cases. The dotted straight lines 

represent the corresponding short column path for each case. Figure 10 summarizes results by 

showing variation of maximum load and its percentage increase with (e₀/h).  As (e₀/h) increases 

from 0.05 to 0.6, the percentage increase in load increases from 17 to 90%.  As shown in Fig. 9, 

for (e₀/h) of 0.2 to 0.6, CFRP strengthening not only increased axial load but also changed the 
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failure mode from buckling of control column (load path with a peak and descending branch) to 

material failure of strengthened column (ascending load path intercepts P-M diagram). This is 

attributed to a fundamental change in the loading path by reducing second-order effects and not 

just enhancing the P-M resistance curve as typically happens in lateral confinement. 

 

Effect of FRP Reinforcement Ratio 

The FRP reinforcement ratio (ρf) is defined as the ratio of total area of longitudinal FRP 

reinforcements (Af +A′f) to gross area of concrete section (b×h). The range of ρf studied was zero 

to 1%. Figures11 (a) and (b) show the interaction curves and load paths for all cases of ρf, for λ 

equals 60 and 100, respectively. As ρf increases, the interaction diagram increases in size and 

also the load path changes.  Figure 12 summarizes the results by showing the variation of 

percentage increase in axial load with ρf.  As ρf increased from 0.1 to 1%, the percentage increase 

of axial load increased from 4 to 41%, for λ = 60 and from 5 to 55% for λ = 100, respectively.  It 

is also worth noting that for λ = 60, the ρf of 0.7 and 1% changed failure mode from buckling to 

material failure, whereas for λ = 100, buckling failure always occurred (Fig. 11). 

 

Effect of FRP Modulus 

The range of FRP modulus (Ef) studied was 100 to 500 GPa. FRP strength in both tension and 

compression were assumed constant for the whole range of Ef (ffu=1500 MPa). Figure 13 shows 

the interaction diagrams and load paths for different values of Ef. Figure 14 summarizes the 

results by showing the variations of percentage increase in axial load with Ef.  As Ef increases 

from 100 to 500 GPa, the percentage increase in load increased from 5 to 26%. It is also noted 

that the higher the Ef, the less chance of buckling failure. For example, at Ef of 500 GPa, buckling 

failure was prevented and material failure governed the peak load. 
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Effect of FRP Lower Crushing Strength than Tensile Rupture 

FRPs typically have compressive strengths (ffcu) lower than their tensile strengths (fftu). The ratio 

α is introduced to define this ratio and was studied for the range of 0 to 1 (Figure 15(a)). FRP 

strength in tension is assumed constant at the default value for the whole range of α (fftu=1500 

MPa). Figure 15(b) shows the interaction diagrams and load paths for different values of α. The 

FRP crushing was studied for the slenderness ratios 70 and 100. Line OA in Fig. 15(a) represents 

a typical load path of a FRP-strengthened RC column with the assumption of no FRP crushing 

until the loading path intercepts the P-M interaction curve at Point A. If the inner layer of FRP 

crushes, the load path changes at point B and the load drops to point B’ on a new loading path 

OA’ representing a column with FRP on the outer face only, until load path (OBB’A’) intercepts 

the P-M curve at Point A’. Point B may be located before peak load (i.e. FRP crushing before 

overall buckling) or could be after peak load (i.e. overall buckling occurs before FRP crushing). 

In the latter scenario, the load capacity of the columns is not affected by FRP crushing.  

The crushing of the inner FRP (i.e. location of point B) depends on compressive strength 

of the FRP. In Fig. 15(b), for λ=70 and α larger than 0.7, overall buckling occurs before FRP 

crushing. In this case, for α larger than 0.8, FRP crushing occurs beyond the interaction curve 

(i.e. FRP crushing strain is larger than concrete crushing strain of 0.003). For λ=100, α larger 

than 0.4 results in FRP crushing after overall buckling (i.e. past the peak). At λ=100, for α larger 

than 0.8, concrete crushing occurs before FRP crushing as in the case of λ=70.  

 

CONCLUSIONS 

In this paper an analytical model was developed to predict the behavior and strength of slender 

reinforced concrete (RC) columns strengthened with longitudinal high modulus bonded fiber 
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reinforced polymer (FRP) reinforcements. The key feature of the proposed method and the 

model is that it achieves strengthening primarily by altering the load path of the column, through 

controlling second order deflections, such that it intercepts the P-M interaction curve at a higher 

load. This is different from traditional strengthening approaches of RC columns, which aim 

primarily to enlarging the P-M interaction curve, rather than altering the loading path. The model 

accounts for material and geometric nonlinearity as well as concrete cracking. It is capable of 

capturing both the ascending and descending branches of the non-linear load paths when stability 

failure precedes material failure, in addition to cases where material failure precedes stability 

failure.  After verification using experimental results, a comprehensive parametric study was 

conducted to examine several key column parameters. The following conclusions are drawn: 

1. Efficiency of the strengthening technique increases as column slenderness ratio λ increases. 

As λ increased from 20 to 120, the percentage increase in axial load increased from 17 to 30% 

for a 0.5% CFRP reinforcement ratio ρf and from 33 to 59% for a 1% ρf.   

2. As the initial load eccentricity ratio (e₀/h) increases, the efficiency of the strengthening 

technique increases significantly. When (e₀/h) increased from 0.05 to 0.6, the percentage 

increase in axial load increased from 17 to 90%.   

3. Increasing CFRP longitudinal reinforcement ratio ρf increases the size of interaction diagram 

and alters the load path.  As ρf increased from 0.1 to 1%, the percentage increase of axial load 

increased from 4 to 41%, for λ = 60 and from 5 to 55% for λ = 100.   

4. The effectiveness of CFRP strengthening system increases as its modulus Ef increases.  As Ef 

increased from 100 to 500 GPa, the percentage increase in load increased from 5 to 26%. 

5. The longitudinal CFRP strengthening system not only increases axial strength but can also 

change failure mode. For example; for λ = 60, it changed failure mode from buckling of 
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control column to material failure of strengthened column in the following cases: when (e₀/h) 

was in the range of 0.2 to 0.6, when ρf was between 0.7 and 1%, and when Ef was 500 GPa. 
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NOTATION 

Af =  area of typical tension FRP reinforcements; 

A′f =  area of typical compression FRP reinforcements; 

As =  area of typical tension steel reinforcements; 

A′s =  area of typical compression steel reinforcements; 

Asm =  area of mid-section steel reinforcements; 

b =  width of rectangular cross section; 

Cc  = resultant force of compressive concrete; 

Cf  = resultant force of typical compression FRP reinforcements; 

Cs  = resultant force of typical compression steel reinforcements; 

c = neutral axis depth  

d =  depth of typical tension steel reinforcements; 

d′ =  depth of typical compression steel reinforcements; 

dm =  depth of typical tension steel reinforcements; 

df =  depth of typical tension FRP reinforcements; 

d′f =  depth of typical compression FRP reinforcements; 

Ec = concrete elastic modulus; 
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Ef = FRP elastic modulus; 

Es = steel elastic modulus; 

Esec = concrete secant modulus; 

e  = axial load eccentricity; 

eo  = initial axial load eccentricity; 

fc  =  stress of compressive concrete; 

f′c  =  unconfined concrete strength in compression; 

ffu = FRP strength when strength in tension and compression is the same; 

fftu = FRP strength in tension; 

ffcu = FRP strength in compression; 

fsy  = steel yielding strain; 

h =  height of rectangular cross section; 

i = node number; 

l =  length of column; 

M = bending moment; 

Mc  = resultant moment of compressive concrete; 

n = number of column segments; 

P = axial load; 

r = gyration radius; 

Ts  = resultant force of typical tension steel reinforcements; 

Tsm  = resultant force of mid-section steel reinforcements; 

Tf  = resultant force of typical tension FRP reinforcements; 

t = vertical deviation of tangent; 

x = position along length of column; 

y = position along height of cross section; 

α =  ratio of FRP compressive strength over tensile strength; 
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δ =  lateral deformation; 

δo =  lateral deformation at the end of first iteration; 

εc = strain of compression concrete;  

ε′c  = strain of concrete at f′c 

εcm = maximum strain of compression concrete; 

εcu = ultimate strain of compression concrete; 

εf =  strain of typical tension FRP reinforcements; 

ε′f =  strain of typical compression FRP reinforcements; 

εfu = FRP ultimate strain when strength in tension and compression is the same; 

εftu = FRP ultimate strain in tension; 

εfcu = FRP ultimate strain in compression; 

εm =  strain of mid-section steel reinforcements; 

εs =  strain of typical tension steel reinforcements; 

ε′s =  strain of typical compression steel reinforcements; 

εy =  steel yielding strain; 

θ = slop of deformed shape column; 

λ = slenderness ratios; 

ρf = FRP reinforcement ratio; 

ρs = steel reinforcement ratio; and 

ψ = curvature. 
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Fig. 1 Hypothesis of column strengthening using FRP retrofit systems

(a) Short column–by confinement (b) Slender column–by controlling global buckling



Fig.2Crosssectional analysis of alongitudinal-FRP-strengthenedRCcolumn with
externally bonded FRP or NSM FRP
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Fig. 3 Lateral deformation analysis of half-length of column
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Fig.4 Model verification with experimental dataof conventional RCcolumnsof
various slenderness ratios (Kimand Yank,1995, dimensionsin mm)

(a) 1.98% steel reinforcement ratio (b) 3.95% steel reinforcement ratio

(c) Axial load–lateral deflection



Fig.5Model verification with experimental dataofslendersteelcolumns
strengthened with longitudinalCFRPs(reproduced from Shaat and Fam, 2009)



Fig. 6Model verification with experimental dataof slenderRC columns strengthened
with longitudinal NSM CFRPs(GajdosovaandBilcik, 2013, dimensionsin mm)



Fig. 7 Performance of RC columns of various slenderness ratios

(a) Axial load-bending moment paths (b) axial-load lateral deflection responses



Fig. 8 Variation of strength gain due to CFRP retrofitting with slenderness ratio of column

(a) 0.5% CFRP reinforcement ratio (b) 1.0% CFRP reinforcement ratio



Fig. 9 Performance of RC columns of various initial eccentricities



Fig. 10 Variation of strength gain due to CFRP retrofitting with initial eccentricity ratio of
column



Fig. 11 Performance of RC columns of various CFRP reinforcement ratios

(a) Slenderness ratio of 60 (b) Slenderness ratio of 100



Fig. 12 Variation of strength gain due to CFRP retrofitting with CFRP reinforcement ratio



Fig. 13 Performance of RC columns of various CFRP Young’s moduli



Fig. 14 Variation of strength gain due to CFRP retrofitting with CFRP Young’s modulus



Fig. 15 Performance of RC columns of various CFRP crushing strength

(b) Axial load-bending moment paths(a) Concept of  FRP crushing and buckling
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