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Abstract. In this paper, the cumulative energy absorption of sandwich panels constructed of 
foam cores and flax fiber-reinforced bio-based polymer (FFRP) faces is studied. Nine sandwich 
panels were constructed and tested under varying amounts of impact energy using a drop 
weight test. The parameters of the study were facing thickness and foam core density. Three 
different facing thicknesses (one, two, and three layers of a bidirectional flax fabric with a 
nominal unit weight of 400 kg/m2) and three different core densities (32 kg/m3, 64 kg/m3, and 
96 kg/m3) were used. An accelerometer was placed on the bottom face of each specimen and 
on the drop weight. The data from the accelerometers is used to determine each specimen’s 
fundamental frequency after each impact to determine the amount of damage in the specimen. 
To calculate curvature, strain gauges were placed at the center of the top and bottom face at 
mid-span. The information obtained is used to determine the ability of these panels to absorb 
the energy from multiple impact events. It also helps to establish a fundamental understanding 
of the behavior of the panels under impact for future research. To date all specimens have been 
fabricated and one of the specimens has been tested. Based on the results, the specimen was 
not visibly damaged after impact events of up to 122 N-m, but it failed at an impact energy of 
153 N-m. The specimen deflection and facing strains increased with impact energy. 

Introduction 
Where lightweight and insulation efficiencies are required, sandwich panels are a popular 
choice of building material. Sandwich panels are typically constructed of two structural faces 
separated by a lightweight core with high insulative properties. The separation of the faces 
provides a large moment of inertia to resist bending [1]. A common choice for facing materials 
are fiber-reinforced polymers (FRPs) because of their high specific strength. Because failure 
of sandwich panels is often initiated in the weaker core material [2,3], there is an option to use 
lower strength, yet environmentally friendly facing materials, such as FRPs made with 
renewable constituents, such as flax fibers and bio-based resins.  
 

Sandwich panels constructed with synthetic faces and foam cores have been studied under 
impact loading [4–6]. Panels constructed with FFRP faces have been studied in flexural 
applications [2,3,7,8] and axial loading applications [9]. However, there is a gap in the available 
research which is the behavior of sandwich panels with FFRP faces under impact loading. In 
this study, the cumulative energy absorption of sandwich panels with FFRP faces and foam 
cores is examined. The research in this paper will serve as a starting point to further 
investigations on this topic. 

 



Experimental Program 
Test Matrix 
Nine sandwich beam specimens were fabricated for testing under a drop weight impact with 
increasing energy until failure. The parameters of the tests were facing thickness (1, 2 and 3 
layers of bidirectional flax fabric) and core density (32, 64 and 96 kg/m3). The test matrix is 
shown in Table 1. In this paper, the behavior of specimen 2FL-P400 is examined. 

Table 1: Test matrix 
No. Specimen 

I.D. 
Number of 

Layers 
Core Density 

[kg/m3] 
1 1FL-P200 1 32 
2 2FL-P200 2 32 
3 3FL-P200 3 32 
4 1FL-P400 1 64 
5 2FL-P400 2 64 
6 3FL-P400 3 64 
7 1FL-P600 1 96 
8 2FL-P600 2 96 
9 3FL-P600 3 96 

Note:  FL = Flax Layers, PYYY = Core Type (P200 = 32kg/m3, 
P400 = 64 kg/m3, P600 = 96 kg/m3) 

 
Materials and Fabrication 
The specimens used in this study were fabricated as a part of a larger study including specimens 
used in a study on the static flexural behavior of the panels [8]. The facings were made of a 
bidirectional flax fabric with a nominal areal weight of 400 g/m2 (manufacturer: Composites 
Evolution, Chesterfield, UK) and a bio-based epoxy resin (manufacturer: Entropy Resins, 
Hayward, CA, USA). 

 

 
Fig. 1: Specimen fabrication: (a) plain foam section, (b) application of flax layer,                  

(c) application of bio-based epoxy, (d) application of parchment paper, (e) curing, (f) removal 
of parchment paper, (g) finished samples 

(A) (B) 

(C) (D) 

(E) (G) (F) 



 
The cores used were closed cell polyisocyanurate foams (manufacturer: Elliott Company, 

Indianapolis, IN, USA). Fig. 1 shows the typical procedure for manufacturing each sandwich 
panel. The panels were made in 610 mm (weft fabric direction) by 1220 mm (warp fabric 
direction) sections and were cut down to the specimen size of 150 mm by 1200 mm after curing.  
A more detailed description of the materials and fabrication is available in the former study by 
Betts et al. [8], where similar specimens were tested under monotonic loading. 
 
Test Setup and Instrumentation  
Each specimen was tested using a drop weight with a mass of 10.413 kg at increasing heights 
until failure. The test set-up is shown in Fig. 2. The span length of each test specimen was 1117 
mm. Strain gauges were installed at mid-width of the specimen, at mid-span, on both the top 
and bottom faces. Two string-type displacement sensors were located beneath the specimen at 
mid-span, 20 mm in from each edge of the specimen. The average result from the two 
displacement sensors was taken as the total displacement of the specimen throughout the 
impact event. An accelerometer was placed on the bottom of each specimen at mid-span and 
an additional accelerometer was placed on the drop weight. 
 
 

 
Fig. 2: Test Set-up 

 

Results and Discussions 
The specimen 2FL-P400 was subjected to impacts from heights of 300 mm, 600 mm, 900 mm, 
1200 mm and 1500 mm by a drop weight with a total mass of 10.413 kg. Fig. 3 shows the 
impact event captured by a high-speed camera in three stages: before impact, maximum 
deflection and after impact. 
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Fig. 3: Impact event from a drop height of 1200 mm: (a) before impact, (b) maximum 

deflection, (c) after impact 

Fig. 4 shows the measured deflection after a moving average filter was applied to the data.  
The moving average filter was used to eliminate signal noise. After completing the moving 
average, the filtered data was plotted alongside the raw data to verify that the average did not 
affect the actual deflection data. The filtered deflection data was used to determine the 
specimen stiffness, damped period and damping coefficient. 
 

 
Fig. 4: Deflection vs. time: (a) 300 mm drop, (b) 600 mm drop, (c) 900 mm drop, (d) 1200 

mm drop 
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The damped period of the specimen was determined by finding the average time elapsed 
between the crests and troughs of the deflection curve while the specimen was experiencing 
free vibration (i.e. while the weight and specimen were not touching). The damping ratio, ξ, 
was also calculated using the deflection data assuming that it was less than 10%, using Eq. 1. 
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where p is the number of full periods between the peak deflections, un and un+p, as shown in 
Fig. 5. 

 
Fig. 5: Damping of sandwich panel under free vibration 

The natural angular frequency, ωn, could then be calculated by Eq. 2 assuming the damped 
and undamped periods are the same (i.e. Tn = TD), which is valid if ξ < 10%. 
 

n
n T

2
 . (2) 

 
The specimen stiffness, K, could then be calculated using Eq. 3 as follows: 

 

2
mLK

2
 . (3) 

 
where m = specimen mass / length and L = span length. Each peak deflection after the first is 
a rebound impact. The Fig. shows that after the drop from 300 mm, the drop weight rebounded 
three times. After the 600 mm drop initial impact, the drop weight rebounded four times. When 
dropped from the heights of 900 mm and 1200 mm, the drop weight rebounded five times. 
 

Fig. 6 shows the strain-time plot for each impact drop height other than the 1500 mm.  By 
comparing the maximum strains from each drop height and comparing to the load-strain 
diagrams from the static tests [8] of the previous study, we can determine the equivalent static 
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load to cause the strains in this specimen. Looking at the maximum strain in the tensile (bottom) 
face from the plots in Fig. 6 and comparing to the previous study, the 300 mm drop is 
approximately equivalent to a static load of 2 kN, a 600 mm drop is equivalent to 2.5 kN, a 900 
mm drop is equivalent to 3 kN, and a 1200 mm drop is equivalent to 3.2 kN. This same 
procedure can be completed by comparing the maximum deflections from Fig. 5 to obtain 
similar results. The maximum facing strain in the previous study [8] was approximately 0.009 
mm/mm, which is similar to the maximum strain of 0.0091 mm/mm in the current study, as 
shown in Fig. 6d and Table 2. Therefore, future tests can be tailored to reach failure energy by 
predicting approximate specimen behavior based on the static test data. However, it should be 
noted that due to the different strain rates in static and impact tests, the material properties can 
vary. In future tests, the effect of strain rate on the material properties will be determined. 
 

 
Fig. 6: Strain vs. time: (a) 300 mm drop, (b) 600 mm drop, (c) 900 mm drop, (d) 1200 mm 

drop 

Table 2: Test results 
Drop 

Height 
[mm] 

Vtest 
[m/s

] 

Vcalc 
[m/s] 

PE 
[N-m] 

K 
[N/mm] 

TD  

[s] 
ξ 

[%] 
Δ 

[mm] 
aDW 

[m/s2] 
εmax 

[mm/mm] 
εmin 

[mm/mm] 

300 2.31 3.06 30.65 129.3 0.0175 7.1 20.1 55.6 0.0046 -0.0026 
600 3.26 4.64 61.29 136.9 0.0170 3.5 28.9 64.3 0.0065 -0.0038 
900 4.00 5.62 91.94 133.0 0.0173 4.2 35.8 91.4 0.0079 -0.0049 
1200 4.62 6.25 122.58 140.1 0.0168 3.0 41.3 117.5 0.0091 -0.0077 
1500 5.16 9.00 153.23 N/A N/A N/A N/A 204.0 N/A N/A 

Note: V = velocity, PE = potential energy, K = stiffness, TD = damped period, ξ = damping coefficient, Δ = 
maximum deflection, aDW = acceleration of the drop weight on impact, ε = facing strain 

(a) (b) 

(c) (d) 

Bottom Face 
Bottom Face 

Bottom Face Bottom Face 

Top Face Top Face 

Top Face 
Top Face 



Table 2 shows the test results of the specimen at each drop height. At a drop height of 1200 
mm, the energy is 122.58 N-m. Upon examining the load-deflection curve of the static test 
performed by Betts et al. [8], the energy absorption of the static test specimen was found to be 
approximately 75 N-m . This shows that the energy absorption of the impact test was higher 
than that of the static test. The specimen experienced ultimate failure at an impact energy of 
153 N-m (drop height of 1500 mm). This indicates that the failure energy is between 123 N-m 
and 153 N-m. The failure is shown in Fig. 7. The specimen failed simultaneously in tensile 
rupture and shear failure. The shear-type failure symmetrically about the drop weight impact 
as shown in Fig. 7a. 
 

 
Fig. 7: Specimen failure at drop height of 1500 mm: (a) during impact, (b) after impact, (c) 

detail, (d) detail 

Fig. 8a shows the effect of impact energy on the calculated stiffness of the specimen. It 
shows that the stiffness is relatively constant until the 1500 mm drop which caused failure. 
This is indicative that there was no damage in the specimen before the final loading. This agrees 
with the test observations as no visible damaged was seen during the testing before failure. If 
damage were present in the specimen after an impact event, it would be expected that the 
stiffness of the member would decrease. Fig. 8b shows the damping ratio as calculated from 
the free vibration of the first impact from each energy level.  It shows that after the first hit 
there is a reduction in the damping ratio of approximately 50%, after which the damping ratio 
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(C) (D) 



stays within 3 to 4 %.  As the damping ratio is always under 10%, it verifies the earlier 
assumption that the natural period can be approximated as the damped period, TD. 

 
As expected, Fig. 8c, shows that as the impact energy increases, the maximum deflection 

also increases. Fig. 8d similarly shows the increase in the strain on the top and bottom faces. 
Fig. 8d also shows that the bottom face strain is approximately 0.002 mm/mm larger than the 
top face strain. However, as shown by Betts et al. (2017), the neutral axis of the specimens is 
located close to the midplane [8] and the strains should be opposite but approximately equal in 
magnitude. It is hypothesized that this difference is caused by the HSS impact surface shown 
in Fig. 2. As there is a strain gauge in the center of the top face, a 25 mm diameter hole was 
placed in the middle of the HSS impact surface, to avoid damage to the strain gauge. This could 
have potentially caused local tension in this area of the face, thereby reducing the strain gauge 
reading of the bending strain in the face. 
 

 
Fig. 8: Effect of input energy on specimen: (a) stiffness, (b) damping coefficient, (c) 

maximum displacement, (d) maximum facing strain 

Conclusions 
In this study, a sandwich specimen constructed of two-ply FFRP facings and a 64 kg/m3 foam 
core was tested under varying impact energies. The specimen was not visibly damaged after 
impact events of up to 122 N-m, but it failed at an impact energy of 153 N-m. As expected, the 
specimen deflection and facing strains increased with impact energy. However, the stiffness 
was relatively constant until failure. Based on the results of the tests in this study, the following 
conclusions were made: 
 

• the maximum cumulative energy absorption on of specimen 2FL-P400 is between 123 
and 155 joules and failed simultaneously by tensile face rupture and shear.  



• both maximum deflection and facing strain increased with impact energy; 
• there was no obvious damage present before failure; 
• and the sandwich panels can absorb more energy from an impact event than they can 

under quasi-static loading. 
 

These tests are a part of an ongoing research and helped to provide insight into the general 
behavior of these structures as well as to provide an understanding of future testing 
requirements, such as: 
 

• the use of smaller energy increments to capture the damage initiation energy and actual 
failure energy; 

• testing of all specimen types to determine effect of the facing thickness and core density 
on energy absorption and failure mode 

• development of a numerical model to predict impact behavior of sandwich specimens 
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