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13  
Objectives: To determine whether differences exist between younger (20-50 years) and  

13 
14  

older adults (>65 years) in abdominal muscle amplitudes, temporal patterns, and three-  
14 

15  
dimensional (3D) pelvic motion, while performing an asymmetric leg-loading task. 

15 
16  

Design:  Cross-sectional. 
16 

17  
Setting:  Neuromuscular function laboratory. 

17 
18  

Participants: Ten healthy younger (33.3 :: 7.7 years) and 10 healthy sex- and body mass 
18 

19  
index–matched older adults (69.0 :: 6.6 years). 

19
 

20  
Intervention: Surface electromyograms from 6 abdominal muscle sites bilaterally and  

20 
21  

pelvic motions were simultaneously recorded.  
21 

22  
Main Outcome Measure(s): Root mean square (RMS) amplitude during the  leg 

22 
23  

extension phase was calculated for each muscle. Ensemble average waveforms for the total 
23 

24  
exercise were analyzed using principal component (PC) analysis. Total angular displacement 

24 
25  

of the pelvis was calculated. Student’s t tests were performed on demographic and  
25 

26  
angular displacement data. Three-factor mixed model analysis of variances (group, muscle, 

26 
27  

side) tested main effects and interactions (P < .05) for the RMS amplitude and PC scores 
27 

28  
from the temporal waveforms. Bonferroni post-hoc analyses tested pair-wise differences. 

28 
29  

Results: There were no between-group differences for the pelvic motions. Three PC 
30  

patterns captured 85% of the variance in the waveforms. The external oblique (EO) RMS 
31  

amplitudes were significantly (P < .05) higher than those of the other three muscle sites similar 
32  

for the PC1 scores which captured overall amplitude. The PC2 score for the internal oblique 
33  

(IO) was significantly higher (P < .05) than that of all other muscles, illustrating a higher 
34  

initial amplitude compared with later in the movement. There was a significant group by 
35  

muscle interaction for PC3 scores, demonstrating group differences in temporal patterns. 
36  

Conclusions: Both groups were able to minimize lumbopelvic motion and recruited 
37  

their abdominal muscles to similar overall amplitudes, with the IO muscle activated to 
38  

higher amplitudes early in the movement task. The older adult group demonstrated a 
39  

distinctive drop in abdominal activity during the leg-lowering phase of the exercise and less 
40  

symmetry among muscle sites. 
41 
42 

43  INTRODUCTION 
44  

Low back pain (LBP) affects up to 50% of adults older than 65 years [1] and is the most 
45  

common musculoskeletal complaint in adults older than 75 years [1]. Neuromuscular 
46  

impairment of the trunk musculature has been reported in older adults and linked to 
47  

functional deficits, including impaired mobility [2-5]. LBP has been associated with spinal 
48  

instability, and the importance of the trunk muscles to maintain spinal stability has been 
49  

previously established [6,7]. In particular, the abdominal muscles have been shown to play 
50  

a significant role in the treatment of LBP, prompting the development of exercise protocols 
51  

to improve the stabilizing roles of these muscles [2,6,8-10]. These protocols aim to actively 
52  

train trunk stabilizers using leg-loading tasks in supine-lying [8], kneeling [6], or by using 
53  

stability balls [9]. 
54  

Although abdominal muscle activation amplitudes [11-13] and temporal patterns [14] 
55  

are reported for younger adults, there is a paucity of data with respect to abdominal muscle 
56 
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Responses of older adults to these dynamic stabilizing exer- 

cises. Older  adults  may have more difficulty performing 

stabilizing exercises because of impaired abdominal muscle 

function and decreased strength that can result from greater 

fat infiltration in abdominal muscle composition and a de- 

crease in abdominal muscle thickness reported [15] for older 

adults. With the enormous potential impact of LBP on the 

daily function of older adults, an understanding of how the 

abdominal muscles respond to exercise progressions will be 

valuable for developing a treatment plan involving exercises 

for older adults. 

One dynamic stability protocol is performed in supine- 

lying and uses an abdominal hollowing maneuver before 

performing alternate leg-loading tasks [8,10]. The leg-load- 

ing tasks provide a dynamic stability challenge to the abdom- 

inal musculature by altering the loading of the lumbopelvic 

region throughout the exercise. The goal of this exercise 

protocol is for the individual to minimize pelvic and lumbar 

motion while performing the exercises by engaging the ab- 

dominal musculature in an appropriate sequence. This exer- 

cise progression has been examined with respect to muscle 

activation responses for working-aged adults [11], illustrat- 

ing a low amplitude (less than 40% of maximum, even for the 

highest progressive level). Differences were found in muscle 

activation amplitudes [12,16] and temporal patterns  [14] 

between those with and without LBP. Therefore, both ampli- 

tude and temporal characteristics of the electromyographic 

(EMG) waveforms have provided important information on 

neuromuscular responses to dynamic challenges. Whether 

older adults have similar responses is unknown, but it is 

imperative that this be studied to develop appropriate exer- 

cise protocols for older adults with LBP. A feasibility study 

provided descriptive data on amplitude measures for both 

abdominal and back extensor muscles for a group of older 

adults, performing the first three levels of this protocol [17]. 

However, no temporal data or no comparison to a younger 

control group was provided. 

Therefore, the purpose of this study was to determine 

whether there are differences in the amplitude and temporal 

recruitment patterns of the abdominal muscles and three- 

dimensional  (triplanar)  pelvic  motion  between  younger 

and older adults performing an exercise protocol that uses an 

asymmetric  leg-loading task  [11].  We  hypothesize  that 

(1) the older adults would have higher amplitudes because of 

lower abdominal muscle strength, (2) the older adults would 

have decreased coordination of muscle activation over time, 

and (3) the maximum motion of the pelvis would be greater 

for the older adults, indicating that they had more difficulty 

controlling pelvic motion. 
 

 
 
METHODS 
 

This study protocol was approved by the Dalhousie Univer- 

sity Research Ethics Board (REB) and Capital District Health 

Authority REB. Healthy adults were recruited through local 

the study. Before participation, all individuals were required 

to read and sign an institutional-approved informed consent. 
 

 
Participants 
 

Two groups of healthy cohorts consisted of (1) adults 20 to 

50 years and (2) sex- and body mass index–matched partic- 

ipants older than 65 years. Participants were excluded if they 

had  (1)  a history of LBP in  the  past  year, (2)  previous 

abdominal or back surgery, (3) previous spinal fracture, or 

(4) any other major musculoskeletal, cardiorespiratory, or 

neurologic condition. 
 

 
Screening and  Questionnaires 
 

All participants were interviewed with a general health 

screening questionnaire to determine any medical conditions 

that may exclude them from participation. If they were still 

eligible for the study, individuals were asked to attend two 

testing sessions: the first session was an introductory session 

and the second was the testing session. 

During the first session, a postural and neurologic assess- 

ment was completed by a physiotherapist (S.G.) to screen for 

any obvious fixed abnormal spinal postures (kyphosis, lor- 

dosis, or scoliosis) and lower extremity neuromuscular defi- 

cits (myotomal strength, dermatomal sensation, and re- 

flexes). The older adult group was required to complete a 

mental status examination to ensure adequate cognitive abil- 

ity to participate in the research study (score > 23) [18]. 

Standard demographic data were collected from each partic- 

ipant, including age, sex, occupation, number of abdominal 

training sessions per week, number of aerobic exercise bouts 

of at least 30 minutes per week [11], and anthropometric 

data including mass (kg), height (m), and waist circumfer- 

ence (cm). Body mass index (BMI) was calculated from the 

height and mass measures. The Kendall test was used to 

grade minimal abdominal muscle function [19]. 

Participants were introduced to the asymmetric leg-load- 

ing task through instruction and demonstration provided by 

a physiotherapist (S.G.). Individuals then practiced the exer- 

cises. Once the participants were able to demonstrate that 

they were able to perform the exercises correctly, they were 

given an instruction sheet and asked to practice the exercise 

on three separate occasions before returning for the second 

session. Each participant was asked to record the number of 

practice sessions they completed on their own. 
 

 
Electromyography (EMG) 
 

During the second session, surface EMG (3-AMT-8, Bortec, 

Canada) was collected during the exercise trials using stan- 

dard procedures [11], including standard skin preparation 

with shaving and light abrasion with an alcohol water solu- 

tion. Twelve (12) pairs of Meditrace Ag/Ag Cl surface elec- 

trodes (10 mm diameter, bipolar configuration 30 mm cen- 

ter-to-center) were placed over  6  bilateral  muscle  sites 
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113 e-mail advertisements and word of mouth to participate in (Figure 1). These included the left and right sides of the F1 113 
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Figure 1.  Surface  electromyography electrode placement: lower  and  upper rectus  abdominus (LRA and  URA); anterior (EO1), 

lateral  (EO2), and  posterior  external oblique (EO3); and  internal  oblique (IO). Reference electrodes were  placed on the  left iliac 

crest. See text for details  of placement. 
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(1) lower rectus abdominis (LRA), centered on the muscle 

belly midway between the umbilicus and the pubis [16]; 

(2) upper rectus abdominis (URA), centered on the muscle 

belly midway between the sternum and the umbilicus 

[16,20]; (3) external oblique anterior fibers (EO1), over the 

8th  rib adjacent to the  costal cartilage [21]; (4) external 

oblique lateral fibers (EO2), 15 cm lateral to the umbilicus 

oriented at 45° [22]; (5) external oblique posterior fibers 

(EO3), midpoint between the lowest part of the ribcage and 

the iliac crest [23]; and (6) internal oblique (IO), centered in 

the triangle formed by the inguinal ligament and lateral 

border of the rectus abdominis sheath and the line between 
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169 Figure 2.  Flock of Birds sensor placement on the iliac crest. Yaw describes  motion about the z axis, pitch describes  motion about 

the y axis, and  roll describes  motion about the x axis. 
16
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Figure 3.  Asymmetric single leg-loading task. Electronic switches are located on the right foot  (RF), which  contacts with the metal 

plate located on the table, and  the right thigh (RT), which  contacts with the wooden frame,  to identify temporal event markers so 

that  the motion may be divided into distinct  phases. Phase 1 consists of the RF off the table to the RT off the wooden frame.  Phase 

2 consists of the single leg loading in which  the leg is fully extended. Phase 3 consists of the RT on the wooden frame  followed by 

a return to starting  position. 
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the anterior superior iliac spine [21]. Reference electrodes 

were placed on the iliac crest. 
 

 
Motion Capture 

 

An electromagnetic Flock of Birds Motion Capture system 

(Ascension Technology Corporation, Burlington, VT) re- 

corded the angular motion of the pelvis throughout the 

exercise task in three-dimensional (3D) space with respect to 

a global coordinate system. The sensor was placed on the 

F2   anterosuperior portion of the left lateral iliac crest (Figure 2). 

Therefore the measurements were not related directly to 

anatomic references. The motion data were used to confirm 

that the participants were able to maintain their lumbar 

pelvic position throughout  the exercise task and whether 

both groups were similar. 
 

 
Leg-Loading Task 

 

Participants were asked to perform the asymmetric leg- 

loading task as shown to them in the first session [11]. The 

start and end position of each exercise level was standard- 

ized, with participants lying supine with knees flexed to 

F3  90° (Figure 3). Participants were asked to produce an 

abdominal hollow maneuver in preparation for the exer- 

cise. Then participants were asked to lift their right leg 

until the hip was flexed to 90° and the thigh was in contact 

with a wooden frame; the left leg was then lifted to the 

same position. The right leg was then fully extended (knee 

and hip extension). The right hip and knee were then 

flexed back to position and the thigh was in contact with 

the wooden frame. The left leg and then the right leg were 

subsequently lowered to the starting position [10,11]. The 

task was broken into phases of leg lift, leg extension, and 

leg lower using external event markers as indicated in 

Figure 3. 
 

 
 
Normalization Exercises 
 

After the exercise task, a series of standardized maximal 

voluntary  isometric contractions  (MVIC) aimed  at  the 

different abdominal muscles were performed [24]. The 

MVICs consisted of resisted sit-up [22], resisted v-sit-up 

[8], resisted axial rotation both left and right [22], and 

resisted lateral bend both left and right [22]. The older 

adults did not perform the v-sit-up. The other normaliza- 

tion exercises were shown to be feasible and were com- 

pleted  without  discomfort  by  older  adult  participants 

[25], although 2 older adult participants were asked not to 

perform maximal efforts because of a preexisting heart 

condition. 
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229 

230 
 

Group 

Age 

(y) 

Height 

(m) 

Mass 

(kg) 

 
BMI 

Waist Girth 

(cm) 

Abdominal 

Training 

Aerobic 

Training 

TST 

Sessions 

229 

230 

231  Younger  adults  33.3 (:':7.6)*  1.7 (:':0.9)  76.1 (:':9.3)  25.9 (:':2.4)  81.2 (:':9.4)  1.9 (:':2.0)  6.2 (:':4.5)  3.3 (:':0.8)  231 
232 (n � 10)         232 
233 Males 32.6 (:':6.2) 1.8 (:':0.6) 86.3 (:':12.2) 27.1 (:':2.4) 88.2 (:':6.9) 1.1 (:':1.1) 7.2 (:':6.4) 3.4 (:':1.4) 233 

234 (n � 5)         234 

235 Females 34.0 (:':9.6) 1.6 (:':0.3) 66.0 (:':7.1) 24.9 (:':2.1) 74.2 (:':5.2) 2.4 (:':2.5) 5.2 (:':1.1) 3.2 (:':0.45) 
235 

 (n � 5)          236 
237 

Older  adults 

(n � 10) 

69.0 (:':3.6)* 1.7 (:':0.9) 75.7 (:':13.7) 26.1 (:':2.5) 88.9 (:':13.1)* 1.7 (:':2.1) 3.2 (:':2.9) 4.3 (:':1.6) 236 
237 

238 Males 66.4 (:':0.5) 1.8 (:':0.5) 85.5 (:':10.3) 27.4 (:':2.5) 96.6 (:':14.4) 2.2 (:':2.2) 3.6 (:':3.3) 3.4 (:':1.5) 238 

239 (n � 5)         239 

240 Females 71.6 (:':3.4) 1.6 (:':0.7) 65.9 (:':8.8) 24.8 (:':1.9) 81.1 (:':5.3) 1.2 (:':2.2) 2.8 (:':2.8) 5.2 (:':1.3) 
240 

 (n � 5)          241     241 
242  Results are presented as mean (:':SD). 242 

 

 
 
 
228 Table 1.  Demographic characteristics of younger adult and  older  adult groups 228 
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244 

245 

Abdominal training � number of abdominal training sessions each week; TST sessions � number of practice sessions between first and second test sessions. 

*Indicates a significant difference of P < .05 between groups. 
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Data  Analysis 
 

The EMG signals were amplified (AMT-8, Bortec, Canada, 

bandpass 10-1000 Hz, CMRR 115 dB, input impedance �10 

GO) and  digitized at  1000  Hz using Labview (National 

Instruments, Austin, TX, version 7), and the angular motions 

were recorded at 100 Hz using a custom built Labview 

program. Data were processed using Matlab software (The 

Mathworks Inc, version R2007a). The EMG signals were 

filtered with a high-pass 30-Hz filter to remove the electro- 

cardiogram [26]. Data were synchronized using an event 

marker that identified foot off, knee on, knee off, and foot on 

(Figure 3). The total exercise was defined from right foot off 

to right foot on the bed. The leg extension phase was defined 

from right knee off to right knee on the wooden cross-frame. 

The root mean square (RMS) amplitude for the EMG signal 

during the leg extension phase was calculated and normal- 

ized to the highest amplitude recorded during a 500-ms 

window from the MVIC trials for each muscle individually 

[12].  The raw EMG signals for the  total time were also 

full-wave rectified and  low-pass filtered at 6 Hz using a 

second-order Butterworth recursive filter. These waveforms 

were then time normalized to 101 data points for the total 

movement time (foot off to foot on) and amplitude normal- 

ized to MVIC. The waveforms for three trials were averaged to 

produce an ensemble average waveform for each muscle for 

each participant. 

The EMG ensemble average waveforms were entered into 

a principal component (PC) analysis model [14]. In this case 

a covariance matrix was calculated and an eigenvector de- 

composition was performed on the covariance matrix. This 

resulted in a set of PCs that explained the principal patterns 

of variation in  the  measured EMG waveforms. For each 

waveform, a PC score was calculated providing a weighting of 

how much that PC contributed to the original measured 

waveform. Essentially, ensemble average waveforms that are 

similar in amplitude and shape will have similar PC scores 

[14]. Thus statistical testing of PC scores allows for quantita- 

tive comparisons of waveforms rather than simple qualitative 

 

descriptions. Those PCs that explained more than 85% of the 

variability in the measured waveforms [14,27] were included 

in the statistical analysis. 

The angular displacement data were filtered at 1 Hz using 

a recursive second-order Butterworth filter [28]. The maxi- 

mum  difference in angular displacement in three dimen- 

sions—yaw (rotation about the z axis), pitch (rotation about 

the y axis), and roll (rotation about the x axis)—from the 

Flock of Birds sensor was calculated for the leg extension 

phase of the exercise. The motion data were synchronized to 

the EMG data via the external sensors with each motion 

profile normalized to 100% time. 

Independent Student’s t tests were performed on the demo- 

graphic data and the angular displacements between groups. 

Three-factor (group, side, muscle) mixed model analysis of 

variances tested for significant differences (P < .05) in the RMS 

amplitude and for the PC scores. Bonferroni post-hoc tests were 

used to determine significant pair-wise differences when appro- 

priate [29].  Statistical analyses were performed by Minitab 

(Minitab Inc, State College, PA, version 15) statistical software. 

 
RESULTS 
 

A total of 33 healthy younger and  16 older adults were 

recruited. Of these, 10 participants in each group were sex- 

matched (5 males and 5 females) and BMI-matched (BMI 

younger adults, 26 :': 2.4 and the older adults, 26 :': 2.5; 

Table 1). The two groups were statistically different for age  T1 

(P < .05) as expected; however, aerobic training was the only 

other variable that was different (P < .05) between the two 

groups as shown in Table 1. Eight of 10 participants in the 

younger adult group scored 2 for the Kendall test whereas in 

the older adult group there were only 2 participants who 

scored 2. Thus the younger adults had better Kendall scores 

than the older adult group. 

The mean maximum 3D motions are found in Table 2.  T2 

There were no significant differences (P > .05) for any of the 

3D angular displacement measures between groups, and all 

mean displacements were less than 5° (Table 2). 
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Table  2.  Maximum motion (in degrees) about the sensor for 

the  leg  extension   phase   for  the  older   and   younger adult 

groups 
 

Group  Yaw  Pitch  Roll 

Young  adults            3.1 (:':1.6)            2.9 (:':1.2)            4.6 (:':2.3) 

Older  adults              3.0 (:':1.1)            3.6 (:':2.7)            3.6 (:':2.8) 
 

Mean (::SD). 

Yaw describes motion about the z axis, pitch describes motion about the y 

axis, and roll describes motion about the x axis. 

 

 
There were no significant differences (P < .05) between 

groups for the time needed to complete the total exercise 

(younger adults, 7.6 :: 4.4 s; older adults, 7.5 :: 4.3 s) or for 

each phase of the exercise. There was a statistically significant 

muscle main effect (P < .05) based on the analysis of variance 

for the normalized RMS amplitude during the leg extension 

phase, with the two RA and IO sites lower than the three EO 

sites. There were no other significant main effects or interac- 

F4   tions for the RMS amplitude (Figure 4). 

The ensemble average waveforms for the total exercise are 

F5   found in Figure 5. The principal component  analysis re- 

vealed 3 patterns that captured 85% of the variance in the 

EMG waveforms. PC1 captured the general shape and mag- 

F6   nitude of the EMG waveforms (Figure 6A). This shape in- 

cluded a burst  of activity as the second foot lifted off, a 

gradual increase and gradual decrease during leg extension 

phase, and a smaller burst coinciding with lowering the first 

foot back to the table. Waveforms for high and low PC1 

scores are depicted in Figure 6B. There was a significant 

muscle main effect for PC1 scores that captured the ampli- 

tude of the waveform. Consistent with the RMS amplitude 

results, the two RA and IO sites were lower than the EO sites 

(Figure 6C). There were no other significant differences. 

PC2 (Figure 6D) captured  the difference in amplitude 

during the initial 20% of the exercise compared with the 

amplitude during the leg extension phase. A high score 

indicated a high initial activation (see high and low scores in 

Figure 6E). There was a significant (P < .05) muscle effect for 

the PC2 scores. Post-hoc tests revealed that the IO was higher 

than all other muscle sites. This is illustrated in the lower 

right panel of Figure 5 where the IO muscle is higher at time 

0 and for the initial 10% of the total time than the three EO 

muscle patterns in Figure 5. There were no other significant 

results for PC2 scores. 

PC3 captured the drop in activity around 50% and a burst 

before 80% of the movement time with a continual drop in 

activation during the final 25% of the exercise (see Figure 6G 

for the patterns and Figure 6H for the high and low scores). 

There was a significant group by muscle interaction and a 

significant muscle by side interaction (P < .05). The group by 

muscle interaction is depicted in Figure 6I, illustrating that 

the PC3 scores for the younger adults were close to 0 and 

were not different among muscles whereas the older adult 

group were all positive and there were significant differences 

among muscles (P < .003). The higher PC3 score for the EO2 

was more prominent in these muscles. The drop in activation 

for both muscles was from approximately 30% to less than 

10% MVIC. Overall the group had a greater drop in activa- 

tion amplitude from 75% to 100% time, which was not 

evident in the younger adult group (ie, the younger adult 

pattern was more similar to PC1). The muscle by side inter- 

action did not detect differences between sides within  a 

muscle or among muscles within a side. 
 

 
DISCUSSION 
 

These results illustrate that older and younger adults per- 

formed this single leg-loading exercise while minimizing 

lumbar pelvic motion to less than 5° in all directions. Elia et 

al [30] showed that those who were experts at performing 

similar exercises were able to minimize pelvic motion, in 

contrast to novices who had larger ranges of motion exceed- 

ing 9°. As both groups were able to minimize pelvic motion 

well below 9°, we inferred that the training sessions (similar 

number for both groups) were effective at training our par- 

ticipants to perform this exercise with minimal pelvic mo- 

tion. 

The demands on the abdominal muscle as percent MVIC 

were similar between groups, although the older adults had 

slightly higher amplitudes for all muscle sites except EO2. 

Although the small sample size and reduced power may 

explain why this amplitude difference was not significant, 

two methodological issues may also have led to this differ- 

ence. First, 2 older adults were cautioned against doing 

maximal activations, and second, the older adults did not 

perform the v-sit-up for safety reasons. Although no sig- 

nificant differences were found in amplitude between the 

v-sit-up and the regular sit-up [24], this exercise may pro- 

duce maximal activity in the two RA and IO muscles for some 
 

 

 
 

 
Figure  4.  Root  mean  square   amplitudes  normalized to  a 

percent MVIC for both  younger and older adults groups during 

the  leg extension  phase  of the  asymmetric single leg-loading 

task. Values  indicate mean and  standard error. A significant 

muscle  effect (P < .05) demonstrated that  the LRA, URA, and 

IO sites are activated to a lower level than the three EO sites for 

both  groups  combined. No significant group effect (P < .05). 
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Figure 5.  Ensemble average waveforms normalized to percent MVIC. Ensemble average waveforms for all 6 abdominal muscles, 

for both  right (RT) and  left (LT) sides, for the total  exercise  time  for the younger adult (YA) and  older  adult (OA)  groups. 
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participants. Both factors would result in an overestimation 

of the percent MVIC for the older adults, and subsequently, 

the differences between the two groups would be even 

smaller than what was found. This finding is contrary to our 

hypothesis that was based on reports of greater fat infiltra- 

tion, less muscle tissue in the abdominal area, and lower 

abdominal muscle strength in older adults [15]. 

The general amplitude pattern was also not different be- 

tween the two groups. The differential recruitment of the EO 

sites to higher amplitudes than the RA sites for both groups is 

consistent with findings from younger healthy adults [11]. 

The amplitude in the present study for the younger adults for 

EO2 and EO3 is comparable to the previously published 

study, but the two RA are higher and the EO2 lower in the 

present study. The difference in results could partly be ex- 

plained by the younger age and lighter mass of the partici- 

pants in the earlier study compared with the participants in 

the present study. Furthermore, the average abdominal train- 

ing performed by the younger adults was less than twice 

weekly, which may explain the higher percent MVIC. In 

summary,  the  RMS amplitudes  during  the  leg extension 

phase do not illustrate differences that were expected be- 

tween groups. Consequently, these results support that this 

exercise is not a high-intensity exercise even for older adults, 

which is important to consider when prescribing supine- 

lying leg-loading stability exercises for this group. 

The analysis of the waveform data provided additional 

information regarding the neuromuscular responses associ- 

ated with this exercise task. PC1 captures the mean pattern 

and the magnitude of the waveform; thus the general statis- 

tical findings are consistent with the RMS results above. The 

general temporal pattern was consistent with the pattern 

presented for abdominal muscles of younger adults perform- 

ing a similar task using a bilateral leg extension [27]. In- 

creased activity was demonstrated  at several times in the 

exercise: (1) just before 20% time, when the second leg was 

lifted off the table, (2) when the first leg was lowered around 

80% time, and (3) from 25% to 50% time, when the leg was 

extended, with a gradual decrease from 50% to 75% time, as 

the leg was flexed. These activation amplitude changes are in 

response to the changing external moments of force and the 

changes in the counterbalancing force requirements of the 

abdominal muscles to minimize pelvic motion. 

The other two patterns provide more information on the 

shape of the waveforms and the subtle differences in tempo- 

ral responses produced by the muscles to the exercise chal- 

lenge. Higher PC2 scores for the IO muscle indicate higher 

activity and an initial abdominal hollowing from time 0 until 
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Figure 6.  PCA: (A, D, G) PC patterns for PCs 1, 2, and  3. (B, E, H) High and  low scores for each of the patterns. (C,  F, I) Significant 

effects and  interactions for each of the 3 PCs. The RA and  IO sites were  significantly lower than  the 3 EO sites (C). The IO muscle  is 

higher  at time  0 than  the EO muscle  sites (F), and  the group by muscle  interaction for EO2 and  3 is shown (I). 
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the second foot was lifted off the table in both age groups. The 

IO has been shown to be correlated to transverse abdominus 

muscle activity [31], and this muscle has been shown to be 

activated before postural perturbations in standing postures 

[32,33]. From a stabilization exercise training perspective, 

being able to activate this muscle is an initial step in an 

abdominal training progression [13], followed by training 

the muscles to respond to external moments in an appropri- 

ate manner. 

The most compelling difference between the groups was 

the difference in the PC3 scores, which captured the variabil- 

ity in amplitude throughout  the exercise. The PC3 score 

indicated that the older adults maintained consistent ampli- 

tude of activation throughout the initial 50% of the exercise, 

whereas the younger adults responded to the changes in task 

demand with distinct bursts and dips in activity throughout 

the exercise in response to leg-loading (ie, PC1). These re- 

sults suggest an altered neuromuscular control for the older 

adult group. Older adults did not decrease activation when 

the force requirement was lower (ie, before leg extension), 

whereas younger adults  did  respond  to the  lower forces 

with reduced abdominal activity. Two possible explanations 

for the older adults’ decrease in responsiveness could be 

(1) decreased proprioception, which has been shown at other 

joints [34,35], or (2) altered passive stability of the older 

adult spine [36,37],  requiring older adults to engage the 

active stabilizing system throughout the exercise. In contrast, 

younger adults could rely on proprioception and a combina- 

tion of passive and active stiffness. Older adults also had a 

distinct drop in activation amplitudes at around 50% time, 

which was consistent with a previous report  for younger 

adults who had difficulty performing the task correctly [38]. 

The other  notable difference between groups  was the 

decrease in abdominal activity in the older adult group from 

75% to 100% time, during the leg-lowering phase. This drop 

was most evident in the EO2 and EO3 sites, and this differ- 

ence from the other muscle sites illustrates asynchrony in 

firing pattern in the older adult group, which is consistent 
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with a previous finding for those with LBP [14]. Given that 

the exercise count was 8 seconds, there could have been an 

endurance  issue related to maintaining this activity level, 

although this is questionable given the peak amplitudes 

ranged from 30% to 50% MVIC. The lack of significant 

differences among muscles for the younger adults suggests 

that  a dynamic bracing strategy was being used  with all 

muscles activated with a similar pattern, whereas the older 

adults were unable to maintain this bracing strategy because 

the two EO sites were different. 

In summary, the differences between the groups were 

most apparent in the temporal patterns and coordination of 

activity, not simply the amplitude of activation. The decrease 

in activity noted in the older adult group, and the need for a 

controlled leg lowering during this task has therapeutic im- 

plications. This information has clinical value for establishing 

treatment goals and monitoring treatment outcomes of dy- 

namic stability exercises for older adults. For example, a 

therapeutic exercise regimen for LBP in older adults may 

include low-level lumbar stabilization exercises such as the 

alternating leg-lowering task examined in the present study. 

This study demonstrates that older adults use slightly differ- 

ent activation patterns and strategies to reduce abdominal 

muscle relaxation during mid exercise, and the rapid de- 

creases in activity during the leg-lowering provides specific 

training goals. If older adults have rapid, uncontrolled leg- 

lowering action during the terminal phase of this task, focus- 

ing on activating all muscles including the lateral and poste- 

rior EO fibers would be warranted. This task may provide a 

method to monitor progress of older adults during rehabili- 

tation of lumbar-level spine pain, by providing insight on 

altered neuromuscular strategies. 

The data in the current study provide a baseline for 

comparison of the neuromuscular strategies to correctly per- 

form this asymmetric single leg-loading task between 

younger and older healthy adults. At the present time there is 

no other study that compares trunk muscle responses during 

stabilizing tasks between younger and older adults. A limita- 

tion of the study is the small sample size, and future studies 

could focus on a larger, more heterogeneous group that 

would allow for examining differences between men and 

women as well as among age groups. The next step for further 

studies should also include older adults with LBP. This will 

provide information on what neuromuscular strategies are 

altered with disease versus aging. 
 

 
Conclusions 
 

There were no differences in the ability of the older and 

younger adult groups to minimize lumbopelvic motion dur- 

ing this task, with both groups completing the task correctly. 

Both groups recruited their abdominal muscles to similar 

amplitudes based on the statistical analysis of both the RMS 

amplitudes and the PC1 scores. Furthermore, both groups 

activated the IO to higher amplitudes before the leg loading. 

The younger adults had patterns that were more responsive 

to  the  changes  in  demands  from  the  leg  perturbation, 

whereas the older adults used a strategy that required more 

constant amplitude  or coactivation throughout  the initial 

exercise. The drops in activity during mid and late exercise 

and the differences among muscles illustrate an altered neu- 

romuscular control strategy for this healthy older adult group 

compared with young adults. These differences provide a 

focus for neuromuscular alterations that should be moni- 

tored during stability exercise protocols. 
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