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Abstract

Fishing activity detection is important for fishery management to maintain abundant

oceans. The rising demand for fish and advanced fishing technologies has led to over-

fishing, species endangerment and marine habitat destruction. Illegal, unreported

and unregulated (IUU) is one example of an important ecological and economic issue

that requires the understanding of fishing behavior of ships. Our proposed approach

to detecting fishing activities uses Conditional Random Fields (CRF) on Automatic

Identification System (AIS) data. We generate features from selected attributes and

combine different features based on their relationships and dependencies. We present

three experiments on trawlers and longliners respectively as well as comparisons be-

tween CRFs and methods such as Autoencoder and Hidden Markov Model (HMM)

to demonstrate the stability and effectiveness of the CRF models. Furthermore, we

develop a geo-visualization with interaction and animation of these AIS data and our

experimental results.
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Chapter 1

Introduction

Substantial global population expansion and fast-growing economics drive an increas-

ing demand for fish products. In addition, global climate change that tends to have an

impact on agricultural production pushes people to depend more on fish for nutrient

needs. Modern fishing technologies and advanced fishing equipment bring about an

excessive and continuous increase in fishing effort. More and more fish are caught than

can be reproduced naturally in the oceans. The oceans now are under great pressure

from global overfishing which causes a dramatic decline in the fish population. Several

major commercial fish species are endangered which disturbs the balance of the food

chain and threatens the ocean ecosystem. This also affects millions of people who

depend on fish products as their main source of protein and income. According to a

report in 2014, the State of World Fisheries and Aquaculture (SOFIA) by The United

Nations Food and Agriculture Organization (FAO), fish accounts for 20 percent of

animal protein intake for more than 2.9 billion people, and 15 percent of animal pro-

tein intake for 4.3 billion people [18]. FAO estimated that fisheries and aquaculture

support the livelihoods of 10 to 12 percent of the world’s population. According to

the 2014 report, more than 90 percent of global fisheries are overexploited. A study

published in 2006 in the journal Science [62] extrapolated fisheries catch data into the

future and predicted that if the current volume of fishing activities remain unchanged

or even increasing, all the world’s fish stocks would collapse by the year 2048.

Unfortunately, in many cases these fishing activities are Illegal, Unreported and

Unregulated which are referred to as IUU fishing. IUU fishing takes place when

fishing takes place in a restricted area without permission, violating conservation and

management measures such as ignoring quotas or by-catch limits, catching protected

species, fishing certain species without a license, and failing to report or misreporting

catches. It is estimated that over 11-26 million tons of fish are caught by IUU fishing

each year resulting in a $10-23 billion economic cost [10]. Governments and fishery
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management organizations are taking actions to instill long-term sustainable fisheries.

Nations work collaboratively on placing restrictions on their territorial waters together

with fishery management organizations which take a series of measures to better

manage and conserve endangered international fish species [6]. However, IUU fishing

could be any size or type of fishery and could happen anywhere, which makes tracing

it a challenge. Tracking and monitoring vessels aim to obtain reliable information

about activities of vessels from vessel movement data. Thus, in order to make fishing

activities more transparent, better fishing activity detection is urgently needed.

There are primarily two types of broadcasting systems for vessel tracking: Vessel

Monitoring Systems (VMS) and Automatic Identification Systems (AIS). VMS are

satellite based communication systems which are designed for commercial fishing. As

an important part of Monitoring Control and Surveillance (MCS) program, VMS

provide information on vessels at regular intervals to track and monitor the fishing

activities. VMS use bidirectional communications which guarantees the transmission

and reception of every signal. However, VMS has some limitations to deal with the

task of fishing activity detection. First of all, the time intervals between VMS signals

are typically from one hour to several hours which might result in missing important

information during the intervals. Also, VMS is not open for anyone to access its

signal and the cost of the equipment as well as the satellite connection are expensive.

In addition, VMS is run by individual countries and is not global which make it hard

to be a global solution for tracking fishing activities.

In 2000, International Maritime Organization (IMO) first introduced the Auto-

matic Identification System (AIS) to enhance the security and safety of maritime

navigation. IMO made a mandate that requires AIS to be fitted on board all ships

over 300 gross tonnage or passenger ships [2]. AIS is standardized by the International

Telecommunication Union (ITU). Ships equipped with AIS can automatically broad-

cast information, including unique identification (Maritime Mobile Service Identity,

MMSI), position (Longitude and Latitude), speed over ground (SOG), course over

ground (COG), time and further details of the vessel to nearby ships and coastal

authorities [11]. AIS data are openly accessible and not encrypted. In 2008, satel-

lite AIS technology was implemented, enabling the collection of massive and reliable

information about vessels in global areas within seconds. It is estimated that over
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400,000 ships worldwide are equipped with AIS devices [8]. AIS system produces at

least 100 million records per day [7]. Currently there are approximately 40 satellites

in orbit equipped with AIS receivers. In 2015, exactEarth Ltd. and Harris Corp.

formed an alliance to place maritime ship payloads on 58 low-orbiting satellites and

expected to have over 50 satellites with maritime payloads by the end of 2017 [5].

Through an increasing number of AIS equipped satellites, AIS will be able to provide

continuous and real-time signals. Consequently, satellite AIS data could be used as

an ideal source to monitor vessel movements and detect fishing activities around the

world.

Fishing trawlers and longliners are two common types of commercial fishing ves-

sels. Trawlers, also known as draggers, are fishing by operating one or more fishing

trawl nets and pulling and trailing them under the surface of the water at a specified

depth behind the trawler in order to haul and trap the fish. Today, trawling has

become one major powerful and productive fishing technique in global areas and has

been employed to capture a variety of fish around the world. The sizes of trawlers

vary widely from small open boats to large factory vessels such as freezer trawlers.

With sufficient power supply from engines, trawlers are able to fish in a majority of

the distant waters. It is also possible for them to fish from shallow waters to deep

water at a depth of 2km.

Longliners use a different fishing technique from trawlers. Longliners essentially

employ one long fishing cord, known as the main line, with snoods which are short

length of branch lines set at regular intervals attached with baited hooks. Different

target fish determine the number of lures, the distance of the intervals at which the

snoods are set as well as the length of snoods. A single longline can have hundreds

or thousands of baited hooks attached. Longlines could be placed at the bottom

by an anchor or float at the surface of the water. The length of longlines can vary

from hundreds of meters to tens of kilometers depending on whether they are used in

coastal fishing or large scale mechanized and specialized fishing.

Since the two types of vessels apply different techniques to catch fish, their be-

haviors and patterns in fishing activities are also different from each other.



4

1.1 Aim and Objectives

The overall research aim of this thesis is to detect fishing activities from historical

sequential AIS data. To deal with this task, we use a Conditional Random Fields

(CRF) model [29] that, to the best of our knowledge, is the first use of CRF on AIS

data. To fit the model, we preprocess AIS data and do feature engineering to obtain

a representation conducive for the use of CRF. To prove the stability of our model,

we make evaluation experiments on AIS data from two different types of vessels and

compare it with other models. To better perceive the patterns of fishing activities, we

develop an interactive visualization. To meet the research aim, we set the following

objectives:

1). Survey existing fishing activities detection methods and methods for similar

tasks.

2). Investigate fishing behaviors and the nature of AIS data.

3). Propose a new CRF-based approach for the task of fishing activities detection.

4). Demonstrate the stability and effectiveness of the resulting models.

5). Visualize trajectories and fishing activities.

1.2 Research Methodology

To address our main goals in this thesis as mentioned above, we propose a fishing

activity detection framework as shown in Fig. 1.1. The proposed approach includes

four procedures: feature engineering, building CRF models as well as comparative

models, model evaluation, and trajectory visualization. First, we select features from

preprocessed data and generate features from combinations of different features to fit

the CRF model. Then with the created features, we train the CRF model. We also

build other models such as Autoencoder, HMM model and a data mining method as

comparative models. Then we design three different experiments to evaluate our CRF

models and compare the results of different models. Finally, we design an interactive

visualization to explore the AIS data as well as our model prediction results.
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Figure 1.1: The framework of Fishing Activity Detection.
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Feature construction creates features based on our analysis of the AIS data and

the task. The AIS data we use in this thesis is labeled by an expert. The expert labels

some points in a trajectory as representing fishing and some points as representing

non-fishing. In general, the nature of AIS data gives us two challenges. One is the

irregular granularity of the data with uneven time intervals from seconds to days.

The other is the imbalance of the data with domination of one class over the other,

where in our case the class ratio of fishing to non-fishing is 1:6 for trawlers and 3:1 for

longliners. Among all the attributes including unique identification (MMSI), longi-

tude and latitude, speed (SOG), course (COG), rate of turn (ROT) and so on, we find

the speed attribute in AIS data has the closest relationship with fishing activities,

especially in trawlers, but they are less correlated in longliners. We consider using

longitude and latitude because they could provide information about shapes of tra-

jectories. And we could not use absolute values of longitude and latitude because we

want our model to work on global areas. As a result, we use differential longitudes and

latitudes which provide approximate information about how direction and distance

change from point to point. We then discretize the values of these features. Then we

put together such features that their pairs of values have a spatial-temporal mean-

ing, to account for their possible relations. We pair features together into grouped

features which generates tuples. For instance, the selected feature A and feature B

are paired, a and b are possible values of A and B, which are a ∈ A and b ∈ B, then

the generated tuple F is defined in the formulae:

F = A× B = {(a, b)|a ∈ A and b ∈ B} (1.1)

We pair longitude and latitude in such a way that they together provide infor-

mation about how location changes. We pair speed of consecutive points together

because the variations of their speed depend on each other. Similarly for longitude

and latitude, we pair them between neighboring points. We also make other pairs

based on the relative position to a point. More detailed information is presented in

Chapter 4.

We use the tool CRF++ to build the CRF model with our features. The features

are converted to nominal values. This is because we regard our task of fishing activity

detection similar to Part Of Speech (POS) tagging where speed of a point can be
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regarded as a word and the corresponding label can be regarded as a respective tag

of the word. Detailed information is presented in Chapter 3.

As for trawlers and longliners, we build different CRF models with different se-

lected features based on their characteristics during fishing activities. From our explo-

ration of AIS data from these two types of vessels, we regard that both geoinformation

and speed are useful features in longliner fishing activities while geoinformation seems

irrelevant to trawler fishing activity. Thus, we use both location features and speed to

build models for longliners but only speed for trawlers. More information is presented

in Chapter 4.

As for the comparative experiments, we reproduce and refer to other work as com-

parisons with our CRF models for trawlers and longliners respectively. We compare

CRF models with HMM for trawlers and with autoencoder and data mining approach

for longliners. In each comparison, we use the same data source to build CRF models

and comparison models but with different selected features based on the methods.

In the data mining approach and the autoencoder, only location features are used

because these two methods detect fishing activities by making use of the shape of

trajectories. In HMM experiments, we use only speed as a single observation corre-

sponding to one state. More details are presented in Chapter 4.

As for visualization, we aim to visualize in a way to better display information

of fishing and non-fishing patterns of vessels. We develop interactive designs such

as zoom in and out, tool tips, filters as well as animation of trajectories. More

information can be found in Chapter 5.

1.3 Scientific Contribution

This thesis is an extension of previous work done by the author. We update the pre-

vious work with more grounded evaluation experiments, and apply the same methods

on trawler data. We compare the results of our methods with a few popular meth-

ods and display the trajectories with an interactive visualization. Here are the main

contributions of the thesis:

1. Develop features for the model which incorporate spatial and temporal infor-

mation.
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2. Improve the performance of fishing activity detection as a corresponding prob-

lem from text mining.

3. Create an interactive geo-visualization tool for displaying vessel trajectories and

fishing activities intuitively.

1.4 Thesis Outline

In this paper, we present a novel approach for identifying fishing activities using

Conditional Random Fields and demonstrate its stability of performance using three

different evaluation experiments and by comparing CRF models with autoencoder,

data mining approach and HMM. The remainder of the thesis is organized as follows:

In Chapter 2, we review relevant literature; in Chapter 3, we explain conditional

random fields (CRFs) and then elaborate on how to apply them to identify fishing

activities; in Chapter 4, we present three evaluation experiments on CRFs and com-

parative experiments to demonstrate the stability and effectiveness of our models; in

Chapter 5, we present an interactive visualization and its designs as well as its func-

tions; finally, in Chapter 6, we make conclusions and discuss practices and provide

direction for future work.



Chapter 2

Background and Related Work

In this Chapter, we first describe the background of CRFs, from the perspectives of

undirected model and directed model, generative model and discriminative model,

related models in the task of sequential labeling and different CRF models and their

applications. Then we present some related research and applications involving AIS

data. Finally, we describe some related work dealing with the task of fishing activity

detection, which we cite as comparisons for our models.

2.1 Background of CRF

Graphical model, also known as probabilistic graphical model (PGM), is a unifying

framework that combines graph theory with probability theory for capturing com-

plex dependencies among random variables, and for representation and inference of

multivariate probability distributions [58]. The expression of distributions over many

variables can be expensive. For instance, if we have n variables and each variable has

r possible values, than the naive representation of the distribution over n variables

contains rn elements. The main idea of the graphical model is factorization which

represents the probability cost-effectively. Based on conditional independence within

graph structure, graphical models factorize the underlying probabilities into a prod-

uct of a set of local functions (local probability distributions) [28]. Graphical model

comprises a collection of vertices and edges, where vertices represent attributes in-

volved in tasks, edges represent the dependency relationship among those attributes.

Based on whether the edges have direction or not, the graph model can be categorised

as directed graph or undirected graph.

2.1.1 Directed and Undirected Graphical Models

In the Directed Graphical Models (DGM), all the edges are directed from one vertex

to another, which interprets how a probability distribution factorizes into products

9
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of local conditional distributions. Let an ordered pair G = (V,E) be a directed

acyclic graph (DAG), where V = {V1, V2, ..., Vn} is the set of vertices in the graph

and E = {(Vi, Vj) : i, j = 1, 2, ..., n; i �= j} is the set of directed edges (ordered pair of

vertices) between two vertices in V . Each vertex Vi has a set of parent vertices Vπi
,

where πi are the indices of the parent vertices of the vertex Vi. The value of each

vertex Vi depend on the value of the parent vertices Vπi
. According to the concept of

conditional independence, given the parent vertices Vπi
, the vertex Vi is conditionally

independent of VVi
, where VVi

is the set of vertices that appear before Vi excluding

the parent vertices Vπi
. Then the joint distribution over vertices V can be factorized

using the probability chain rule into a set of local conditional distributions which

depend only on a subset of vertices in G as follows:

p(v1, v2, ..., vn) =
n∏

i=1

p(vi|vπi
), (2.1)

where p(vi|vπi
) is local conditional distributions. Directed graphical model is often

used in a generative model. In the task of sequence labeling, popular models such as

Bayesian Networks [24], Hidden Markov models [46] and maximum entropy Markov

models [36] can be regarded as directed graphical model.

In the Undirected Graphical Models (UGM), also known Markov Random Fields

(MRFs), Markov networks or Gibbs distributions, as its name implies, all the edges

are bidirectional. Let G = (V,E) be an undirected acyclic graph, where E is the set of

undirected edges between two interdependent vertices. Unlike a directed graph where

a causal relationship lies in between a vertex and its parent vertices, an undirected

graph expresses a correlation relationship between two vertices instead of a causal

relationship. Thus, a set of conditional probability distributions multiplied together

will not guarantee a consistent joint distribution over all vertices V . However, the

probability distribution of an undirected graph can be factorized using local functions

(also known as factors, potential functions or compatibility functions) that are defined

on the cliques in the graph. A clique c is a subset of the vertices V where all the

vertices vc in c are fully connected. The collection of cliques C is often chosen to

be all maximal cliques, where each clique c ∈ C is not included within any other

clique. This can reduce a number of factors and enable a general representation of

the probability distribution of the undirected graph which is factorized as follow:
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p(v1, v2, ..., vn) =
1

Z

∏
c∈C

Ψvc(vc), (2.2)

where Ψvc(vc) is a local function of the clique c, and Z is a partition function which

normalizes the distribution that takes the form:

Z =
∑

v1,v2,...,vn

∏
c∈C

Ψvc(vc). (2.3)

Unlike a directed graph where the sum of all probabilities equals to 1, the sum

of all probabilities in undirected graph that are factorised by compatibility functions

based on cliques does not obey the probability theory (equals to 1), so normalization

is needed to ensure that the sum of probabilities equals to 1. In an undirected

graph, the compatibility functions are not directly related to marginal or conditional

distributions over the cliques [58]. CRFs are undirected graph models.

2.1.2 Generative model and discriminative model

Let X be a set of input observed variables and Y be a set of corresponding output

labels that need to be predicted. Distributions are built over the combined set of

input and output variables X ∪ Y .

A generative model learns the joint probability distributions for individual classes

p(x,y) where y is a set of class labels and x is a set of features that can be factorized

as p(y,x) = p(y)p(x|y), which interprets how to generate the set of features x given

the set of labels y [13]. For classification, a generative model first infers the class-

conditional densities p(x|y) and priors p(y), then uses Bayesian rules to determine the

posterior probabilities p(y|x) = p(x|y)p(y)/p(x). Directed graph models are often

generative models. Models such as the Naive Bayes classifier and the Hidden Markov

Model are generative models.

A discriminative model works oppositely, learning the conditional probability dis-

tribution which is the probability of y given x p(y|x) [27]. A discriminative model

does not involve how the data is generated and does not care about the distribution of

Y , it only focuses on the differences among categories, from which it learns the bound-

aries among classes and directly describes how to assign a set of labels y given the

input variables x. Undirected graph models are often discriminative models. Models
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such as Supported Vector Machine (SVM) and Logistic Regression are discriminative

models. CRFs are discriminative models.

2.1.3 Related models for sequential labeling

Sequence labeling is the task to assign a label to each member of a sequence of

observed variables, and thus output a sequence of labels for a sequence of observa-

tions. There are three closely related models for sequential labeling, Hidden Markov

Model (HMM), Maximum Entropy Markov models (MEMM) and Conditional Ran-

dom fields.

Hidden Markov Model is a statistical Markov model, also known as probabilistic

finite state automata. It defines the joint probability P (y, x) over a sequence of

observations x and a sequence of states y [46]. It is a generative model built on

transition probability distributions and emission probability distributions which aims

to generate data. However, in a sequential labeling task, it is more useful to use

conditional distribution p(y|x) over the sequence of labels given observations. To

define the joint probability distribution, Hidden Markov Model needs to make two

independent assumptions: first, it applies the Markov assumption that the probability

of each state depends only on its previous state; second, it assumes that each observed

variable depends only on its corresponding state. However, in reality, in many cases

elements in an observation sequence have long distance dependencies. In addition,

the features of HMM are limited to observations and cannot be easily incorporated

with other knowledge in the domain.

To address the above drawbacks, McCallum et al. proposed Maximum Entropy

Markov model (MEMM), also known as Log-linear tagging models [36]. MEMMs is

a conditional model which directly models the conditional probability distribution

p(y|x). It defines one set of probability distributions that represent the probability of

moving from the current state to the next given current state and observation. Since

the observations are not generated from the model, by using the theory of Maximum

Entropy, non-independent and arbitrary features can be applied. MEMMs train the

probability distribution of each state separately which means the normalization is

performed locally per state instead of globally. When the state has only a few outgoing

transitions, it will ignore the observation. This is known as the Label bias problem,
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which is the transitions leaving a given state compete only against each other, rather

than against all other transitions in the model [29]. Moreover, the performance of the

model will drop if there is an unknown tag in the testing case which does not appear

in training set.

Conditional Random Field (CRF) was originally proposed in 2001 by Lafferty

et al [29]. It is a discriminative model that combine the advantages of HMM and

MEMM and overcome their shortcomings. It directly models the conditional proba-

bility distribution p(y|x) without wasting effort on modeling p(x) which is in need for

the prediction task. It relaxes the strict independence assumption of HMM, allows

complex and highly correlated features that can incorporate contextual information.

It uses a global normalizer that sums over all possible states instead of per state nor-

malizer which solves the label bias problem of MEMM. More details about definition,

training and inference of CRF will be presented in Chapter 3.

2.1.4 Different CRF models and applications

CRFs are prevalent in solving structured prediction problems [54]. CRFs have many

types with different structures, the most commonly used type is Linear-chain CRF

with linear chain structure. More generally, CRFs have general versions such as

skipped-chain CRF, tree CRF, factorial CRF, and so on.

CRFs has been successfully applied to many areas such as Natural Language Pro-

cessing (NLP), computer vision, and bio-informatics. In natural language processing,

CRFs have been applied to part-of-speech (POS) tagging [45], shallow parsing [52],

name-entity recognition (NER) [37,51], speech modeling [22,25], information extrac-

tion [43, 49], semantic annotation [55], Chinese word segmentation and new word

detection [42]. CRFs are also popular in solving problems in computer vision such

as image labeling [23], gesture recognition [60], human activity extraction [32], image

segmentation [44]. In bio-informatics, CRFs have been applied to gene and protein

identification [38], gene prediction [15], RNA secondary structural alignment [50].

2.2 Research and applications using AIS data

AIS has plenty of advantages including open accessibility, being unencrypted, massive

data volume, high data transmitting frequency, etc., as we introduced in Chapter
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1. AIS data contain detailed information that can be divided into three categories,

static, semi-static and dynamic data [9], where static data includes MMSI, vessel

length and width, semi-static data includes destination and vessel hazard level and

dynamic data includes time, location, speed, course, and turning rate. Thus AIS

has become an important, inexpensive and abundant source of valuable information.

Consequently, AIS data are applied to various research studies and applications, such

as marine traffic anomaly detection, route estimation, collision prediction and path

planning [56].

Ristic et al use kernel density estimation for anomaly detection and route predic-

tion [47]. AIS data has also been used in maritime surveillance and vessels tracking

and monitoring for maritime safety and security [21], ship patterns mining [63], and

estimation of navigation patterns [9]. Research has been done to study the risk of

ship collision off the coast of Portugal based on AIS data [53], extract traffic pattern

for vessel movement prediction and anomaly behavior detection [33,40], discover fish-

ing areas based on historical AIS data broadcasts by fishing vessels [35, 39], model

ship engine exhaust emissions in ports and extensive coastal waters [20], trajectory

clustering [34] and mapping underwater sound noise [14].

2.3 Fishing activity detection

Several methods have been used to deal with fishing activity detection.

Many studies of fishing activity detection focus on Trawlers. For example, Maz-

zarella et al. identified fishing events using a clustering method [35]. Russo et al.

applied an artificial neural network to assign fishing effort based on VMS data [48].

Wang et al. use a Generalized Additive Model to estimate catches [61]. Several

works have been done using the Hidden Markov model to recognize vessel fishing

activities [16,41,57]. It is found that trawler fishing activities are highly related with

speed [30], meaning speed can provide useful information to aid the classification of

fishing activities.

However, for longliners, there is no obvious pattern to distinguish fishing activities

using speed information alone. Jiang et al. applied a deep learning approach using

autoencoders (AE) that are pretrained with restricted Boltzmann Machines on long-

liners [26]. These methods make use of the geo-location information of the data to
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Figure 2.1: The similarity of the task of noun phrase chunking and fishing activity
detection.

interpolate the trajectory and turn it into a matrix representation which takes a grid

form. Then the task can be regarded as image recognition which segments a sequence

of images into fishing and non-fishing parts. The model is developed using restricted

Boltzmann Machines where the neural network is tuned by back-propagation. To the

best of our knowledge, [26] was the first paper that applied Deep Learning to the task

of fishing and non-fishing detecton. Souza et al. applied a Date Mining method –

Lavielle’s unsupervised trajectory segmentation algorithm, inspired by animal move-

ments, to identify the longliner fishing behavior [16]. Lavielles’s algorithm searches

for the best segmentation of a time series, then determines the straight or curved

segmentation by calculating the relative angles. Afterwards a First-Passage Time

algorithm and a Utilization Distribution algorithm are used to reduce false alarms.

To the best of our knowledge, [16] was the first paper that we can find that applied

Machine Learning to the task of fishing and non-fishing detection. Jiang et al. also

applied Recurrent Neural Network (RNN), the Gated Recurrent Unit (GRU) to the

task of fishing activity detection. This method integrates gated recurrent units with

a proposed partition-wise activation function that can model distinct regions of the

feature space.

We find similarity between sequential labeling tasks in natural language processing



16

and fishing activity detection from the following perspective. In POS tagging, the

goal is to label words in sentences using word-category tags. The labels depend on

both the word’s meaning and context. This task involves two random variables, X

and Y , where X is a sequence of words, and Y is a sequence of POS tags. Linear-

chain conditional random fields can model the conditional probability distribution

p(y|x) to predict POS tags. Similarly, the task of fishing activity detection involves

two random variables, X and Y , where X is the observed random variable (which

represents sequences of coordinates and speeds), and Y is the hidden random variable

to be predicted (Y is a sequence of fishing and non-fishing labels). This similarity

is shown in Fig. 2.1. Consequently, it is reasonable to test whether the linear-chain

conditional random fields can model the conditional probability distribution p(y|x)
of fishing–non-fishing to detect fishing activities.

In this thesis, we apply a supervised machine learning method (CRFs) to detect

both longliner and trawler fishing activities. We will compare our longliner results

with the autoencoder and the data mining method mentioned above and compare

our trawler results with HMM.



Chapter 3

Linear-Chain Conditional Random Fields

In this chapter, we present the theory of the linear-chain CRF models. First, we

provide basic principles of linear-chain CRFs; then, we present our feature functions;

next, we explain the training process in CRFs; further, we present the inference

procedure; finally, we introduce our discretization procedure on the features.

3.1 Basic Principles of Linear-Chain Conditional Random Fields

Conditional Random Fields (CRFs) are discriminative undirected graphical models

that are designed for sequence labeling [29]. Linear-chain conditional random fields

are CRFs with a chain structure, which model the relationship between input and

output sequences. Output sequences are modelled in the form of a linear chain, with

a link connecting each adjacent output element. Each output element is linked to its

corresponding input. Linear-chain CRFs are defined as follows: Let X be a sequence

of random variables that we assume are observed, Y be a sequence of random variables

that we need to predict. x denotes a set of observed variables, where x ∈ X. y denotes

a set of labels, where y ∈ Y . The length of X and Y are equal. Then, Linear-chain

conditional random fields represent conditional probability distributions p(y|x) for a
label sequence y that take the form

p(y|x) = 1

Z(x)

T∏
t=1

Ψt(yt, yt−1,xt), (3.1)

where Z(x) is a normalization or partition function

Z(x) =
∑
y

T∏
t=1

Ψt(yt, yt−1,xt), (3.2)

where Ψt(yt, yt−1,xt) are compatibility functions (also known as local functions) over

a subset of random variables A ⊂ V that factorize the probability distribution, and T

17
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Figure 3.1: Factor graph of linear-chain conditional random fields. x denotes a se-
quence of input data, y denotes a sequence of labels and Ψst and Ψio denote two kinds
of compatibility functions.

is the length of the label sequence y. Given compatibility functions in the log-linear

form

Ψt(yt, yt−1,xt;λ) = exp(
K∑
k=1

λkfk(yt−1, yt,xt, t)), (3.3)

the conditional probability distribution can be written as

p(y|x;λ) = 1

Z(x)
exp(

T∑
t=1

K∑
k=1

λkfk(yt−1, yt,xt, t)), (3.4)

where fk(yt−1, yt,xt, t) is a feature function, K is the number of feature functions,

and λ is a set of weight parameters that help provide weighted average over these

feature functions.

In (3.3), the parameter λk of compatibility functions Ψt(yt, yt−1,xt;λ) does not

depend on the index t, which means the parameters are shared along the linear chain.

Fig. 3.1 visualizes the factor graph of linear-chain conditional random fields with two

kinds of compatibility functions. In (3.4), the first sum runs over each position of

the linear chain and the second sum runs over each feature function. The conditional

probability p(y|x;λ) can be represented as a mapping function from features to labels.

Thus, the selection of feature functions is of great significance for the performance of

a model.
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3.2 Feature Functions

We use two sets of compatibility functions Ψ<i,j> and Ψ<j,b> to factorize p(y|x):

p(y|x) = 1

Z(x)

T∏
t=1

(Ψ<i,j>(yt, yt−1,xt) ·Ψ<j,b>(yt, yt−1,xt)). (3.5)

The first compatibility function Ψ<i,j> is transition compatibility function, which

models the transition probability of the labels from one state to another and takes

the form

Ψ<i,j>(yt, yt−1,xt;λ) = exp(λijf<i,j>(yt−1, yt,xt, t)), (3.6)

where f<i,j>(yt−1, yt,xt, t) is transition feature function that takes the form

f<i,j>(yt−1, yt,xt, t) = 1{yt−1=i}1{yt=j}, (3.7)

where the functions such as 1{yt−1=i} take the form 1{A=B} which is defined as

1{A=B} =

⎧⎨
⎩
1 ifA = B

0 otherwise
(3.8)

and < i, j > are all possible combinations of labels, yt−1 and yt are the labels of the

(t − 1)-th and t-th position of the linear chain and xt is the input sequence. The

transition feature functions are parameterized by a set of λij. More concretely, if the

labels can only take two values: 0 and 1, which is the case in our thesis, the feature

functions can be rewritten as

f<0,0>(yt−1, yt,xt, t) = 1{yt−1=0}1{yt=0}, (3.9)

f<0,1>(yt−1, yt,xt, t) = 1{yt−1=0}1{yt=1}, (3.10)

f<1,0>(yt−1, yt,xt, t) = 1{yt−1=1}1{yt=0}, (3.11)

f<1,1>(yt−1, yt,xt, t) = 1{yt−1=1}1{yt=1}, (3.12)

which are parameterized by λ00, λ01, λ10, λ11 respectively.

The second compatibility function Ψ<j,b> is state-observation compatibility func-

tion, which models the probability distribution of the labels given a set of observa-

tions. b is a set of input features including selected observations as well as their
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combinations. The details of features selection and their combinations are presented

in Section 4.2.5. The state-observation compatibility function can be written as

Ψ<j,b>(yt, yt−1,xt;λ) = exp(λjbf<j,b>(yt−1, yt,xt, t)), (3.13)

where f<j,b>(yt−1, yt,xt, t) is state-observation feature function that takes the form

f<j,b>(yt−1, yt,xt, t) = 1{yt=j}1{x=b}, (3.14)

where < j,b > are all possible combinations of input features and its correspond-

ing labels. The state-observation feature functions are parameterized by a set of

parameters λjb.

3.3 Model training

The training process comprises the procedure of parameter estimation for feature

functions of the model. The parameters can be estimated using maximum-likelihood.

Since the probability distribution of CRFs is represented by a product of factors, we

use the log-likelihood in the form:

l(λ) = log p(y|x;λ) (3.15)

To avoid overfitting, we use L2 regularizer, which penalizes the weight with a

large norm. After substituting the probability distribution of the CRF (3.4) into the

log-likelihood (3.15), we get the expression of regularized log likelihood:

l(λ) =
T∑
t=1

K∑
k=1

λkfk(yt−1, yt,xt, t)− logZ(x)−
K∑
k=1

λ2
k

2σ2
, (3.16)

where σ is a regularization parameter.

To maximize the log likelihood, gradient-based methods are usually chosen for the

task. We get the partial derivatives of the log-likelihood (3.15) with respect to λk

takes the form

∂l

∂λk

=
T∑
t=1

fk(yt−1, yt,xt, t)−
T∑
t=1

fk(yt−1, yt,xt, t)p(yt, yt−1|x)− λk

σ2
, (3.17)
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where the first term is the expectation of fk under the empirical distribution p̃, which

takes the form

p̃(y,x) =
T∑
t=1

1{y=yt}1{x=xt}, (3.18)

and the second term can be regarded as the expectation of fk over the model distri-

bution p(y|x;λ)p̃(x) [32].
To calculate the log-likelihood (3.15) and the partial derivatives (3.17), we need

to compute the normalization Z(X) and the marginal distributions p(yt, yj=t−1|x) for
t from 1 to T . Lafferty et al use a dynamic programming approach, a forward and

backward algorithm, to calculate the model probability p(y|x) that are presented in

terms of matrices.

First, a start label y0 and a stop label yT+1 are added for the sequence of labels y.

A set of matrices {Mt(x)|t = 1, 2, ..., T + 1} is defined, where each matrix Mt(x) =

[Mt(yt, yt−1|x)] is a |y| × |y| matrix with random variables and |y| is the number of

possible states of y for each position t. Here in our case, we have two possible states

S = {S1, S2}. Each element Mt(yt, yt−1|x) is defined as follow:

Mt(yt, yt−1|x) = exp(
K∑
k=1

λkfk(yt−1, yt,xt, t))

= Ψ<i,j> ·Ψ<j,b>,

(3.19)

where Mt(yt, yt−1|x) factorizes the probability from position t − 1 to t. As shown

in Fig. 3.2, the conditional probability p(y|x) is a product of these matrix elements

from the start label to the stop label, which takes the form:

p(y|x) = 1

Z(x)

T+1∏
t=1

Mt(yt, yt−1|x), (3.20)

where Z(x) is written as:

Z(x) =
T+1∏
t=1

Mt(x), (3.21)

We define the forward vectors as αt(x) and the backward vectors as βt(x). The

base cases take the form:
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Figure 3.2: Matrix calculation from y0 to yT+1

α0(y|x) =
⎧⎨
⎩
1 if y = start

0 otherwise
, (3.22)

and

βT+1(y|x) =
⎧⎨
⎩
1 if y = stop

0 otherwise
, (3.23)

and the recurrent relations take the form:

αt(x)
T = αt−1(x)

TMt(x), (3.24)

and

βt(x) = Mt+1(x)βt+1(x), (3.25)

From above equations, given the observation sequence x, the probability p(yt, yt−1|x)
can be written as:
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p(yt, yt−1|x) = 1

Z(x)
Ψt(yt, yt−1,xt)

× (
∑

y<1...t−2>

t−1∏
t′=1

Ψt′(yt′ , yt′−1,xt′))

× (
∑

y<t+1...T>

T∏
t′=t+1

Ψt′(yt′ , yt′−1,xt′))

=
αt−1(yt−1|x)Mt(yt−1, yt|x)βt(yt|x)

Z(x)

(3.26)

In general, the parameters λ can not be found using a closed form solution such as

setting the gradient (3.17) to zero. Thus, some iterative techniques are chosen to solve

this problem [59]. After we calculate the value of the log-likelihood (3.15) and the par-

tial derivatives (3.17) for λk, a quasi-newton numerical optimization method, which

is called Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), is used to

get the optimal parameters λ in the form:

λ∗ = argmax
λ

l(λ). (3.27)

3.4 Inference

For testing, the goal is to find the most likely label sequence y∗ given observations x,

that maximize the conditional model:

y∗ = argmax
y

p(y|x;λ∗)

= argmax
y

1

Z(x)

T∏
t=1

Ψt(yt, yt−1,xt;λ
∗)

∝ argmax
y

T∏
t=1

Ψt(yt, yt−1,xt;λ
∗),

(3.28)

where λ∗ are the parameters learned from the model training procedure presented in

the above section. Since we are only interested in the most likely output sequence,

we don’t need to calculate the normalization Z(x). Inference is performed using the

Viterbi Algorithm [54], a dynamic programming algorithm, as shown in the following
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steps:

Define

δt(j) = max
y<1...t−1>

Ψt(j, yt−1,xt)
t−1∏
t′=1

Ψt′(yt′ , yt′−1,xt) (3.29)

Initialization

δ1(j) = Ψ1(x1, y1 = j) (3.30)

Recursion

δt(j) = max
i∈S

δt−1(i)Ψt(j, i,xt) (3.31)

Ψt(j) = argmax
i∈S

δt−1(i)Ψt(j, i,xt) (3.32)

Termination

p∗ ∝ max
i∈S

δT (i) (3.33)

y∗T ∝ argmax
i∈S

δT (i) (3.34)

Path backtracking

y∗t = Ψt+1(y
∗
t+1) (3.35)

3.5 Discretization

Compared with POS tagging where the input is a sequence of discrete words, an

AIS trajectory consists of real-valued features that are continuous by nature, such as

longitudes and latitudes. Conditional random fields can model real-valued continuous

features, but the integration of continuous features is not straightforward [17]. They

typically require proper normalization so that the value of the feature function is a

linear function of the conditional probability p(y|x). This means a single weight is

assigned for all values of the feature function. Since ranges of the value may vary

from different feature functions, the value of a single weighted feature function does
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not indicate the importance of the feature. The continuous features will be treated

linearly, however, the relationships between AIS features and fishing activity labels

are non-linear.

Discretization of the continuous features help relax the normalization constraints

and allow the conditional random fields to learn p(y|x) with a more flexible repre-

sentation. Replacing the continuous features with a set of binary features will have

a non-linear effect on features. A discrete CRF will give a distinct weight for each

distinct feature function, thus can provide more specification to features, which sub-

sequently increases the discrimination of classes [12]. In this way CRF can capture

more complex relationship between AIS features and fishing activity labels. Also, this

helps generate a faster and simpler model. It has been shown that discretizing the

feature set could increase the performance of CRF [12,17].

To discretize the continuous features, we use a variant of equal interval size binning

discretization in our work. The sizes of bins are determined based on the density of

features. Each bin is associated with a set of parameters to fit the model. More

detailed information about discretization is presented in Chapter 4.



Chapter 4

Experiments

In this Chapter, we present our experiments on both longliner and trawler data to

prove the stability and effectiveness of our model. Firstly, we undertake exploratory

analysis on the data in terms of trajectory visualization and speed distribution. Next,

we preprocess our data to fit the CRF model. Then, we present our experimental

results and comparisons with other models for longliners and trawlers respectively,

followed by discussions about the models.

4.1 Data Analysis

AIS data contain main attributes including MMSI, time, longitude, latitude, speed

over ground (SOG) and course over ground (COG). In the experiments, we use his-

torical AIS data from 14 longliners around the world collected from June 1st 2012 to

Dec 31st 2013 and 84 trawlers in the North Pacific ocean area collected from Jul 1st

2013 to Jul 31st 2013.

Longliners and trawlers have different fishing patterns. We recovered a part of

the tracks for both vessel types from discrete AIS signals. Fig. 4.1 (a) shows the

differences between fishing and non-fishing tracks for longliners. The fishing tracks

are in the form of a zigzag while the non-fishing tracks tend to follow smooth lines.

Fig. 4.1 (b) shows fishing and non-fishing tracks for trawlers. There are no obvious

differences between fishing and non-fishing status from the forms of tracks. When

fishing, trawlers throw a net into the water, and head in one direction within a

certain range of speed to drag the nets.

Besides the distinct fishing patterns of trajectories between longliners and trawlers,

the speed distributions of both vessels for fishing and non-fishing are also different.

Fig. 4.2 shows the speed density of longliners and trawlers for fishing and non-fishing.

Both vessels are not fishing when their speeds are either too high or too low. For

longliners, fishing speeds fluctuate, ranging approximately from 1 to 12 knots per

26
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Figure 4.1: Differences of fishing and non-fishing tracks. (a) Longliners, (b) Trawlers.
Tracks in the orange circle are fishing tracks and the rest are non-fishing tracks.



28

hour. For trawlers, fishing speed is steady and slow, ranging from about 2 to 5 knots

per hour. The overlapping area of speed distribution between fishing class and non-

fishing class in the longliners’ figure is larger than that of trawlers. Less overlapping

area means speed could better indicate fishing and non-fishing status. Consequently,

the speed of a trawler can be a good feature in the task of fishing activity detection,

while speed of a longliner as a feature cannot reach the same performance.

4.2 Data Preprocessing

To preprocess the data, we perform data cleansing to remove uninformative data, two

types of data conversion (one from absolute values to differential values, the other from

GPS coordinates to distances and angles), data discretization to transform continuous

value into nominal counterparts, and feature selection to fit the model with the most

relevant features.

4.2.1 Data Cleansing

For both longliners and trawlers, we sort the data points of each vessel in chronological

order. We take four steps to clean our data: First, we remove repetitive data points

including points which contain entirely identical information as well as points that

have the same longitudes and latitudes, and in this step we removed around 60,000

longliner data points and 20,000 trawler data points; then, we discard data points

with incomplete features, such as null values or NAs, and in this step we removed 13

longliner data points and 1 trawler data point; next, we convert the units of speed

into a uniform measure which is knots per hour; finally, we calculate the speed by

using the calculated great circle distance between two neighboring points divided by

the time interval, and we set the threshold of speed to 30 knots per hour, detect and

remove outliers if the original speed of the vessel point or the calculated speed exceed

the threshold, and in this step we removed around 30,000 longliner data points and

6,000 trawler data points 1.

1Note that there are a few data points with the speed exceeding the threshold, but most of the
data points with the calculated speed exceeding the threshold. This might because something is
wrong with the time stamp or the location of the data points. For instance, two neighboring points
have a zero or a very small time interval, the calculated speed might be very large.
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Figure 4.2: Speed distributions for fishing and non-fishing. Color red represents non-
fishing and color blue represents fishing. (a) Longliners, (b) Trawlers
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Table 4.1: Summary of the 14 longliners data

Track ID Track Size # of Fish Points % of Fish Activity

1 21222 17148 79.6

2 8793 6326 71.7

3 29731 24422 81.0

4 6058 4226 69.4

5 27816 22153 78.6

6 37710 32977 87.4

7 24715 16857 68.2

8 2032 1755 86.4

9 12111 8470 69.9

10 17161 14277 83.2

11 2670 1761 66.0

12 90429 78765 87.1

13 108826 73005 67.1

14 115418 86256 74.7

Total 471892 362026 76.7

Mean 36135 27742 76.5

Before cleansing we have 565,326 longliner data points and 217,860 trawler data

points in total. After data cleansing, we have 471,892 longliners data points and

191,840 trawler data points in total. These data points are labeled as fishing and

non-fishing tags by a marine biology expert. For longliners, on average, 76.5% of the

data points are labeled as fishing. Table 4.1 shows a summary of the 14 longliners

after cleansing. For trawlers, 15.7% of all trawler data points are labeled as fishing.

Table 4.2 shows a summary of the 84 trawlers after cleansing.

4.2.2 Differential longitude and latitude

In our early experiments, we trained our predictive models using absolute value of

longitudes and latitudes. However, we found that the resulting models were overfit-

ting on the training data and cannot generalize to different locations. In order to

incorporate the model with geo-information and generalize the model into other ar-

eas, we use differential longitude and latitude. Differential longitude is the difference
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Table 4.2: Summary of the 84 trawlers data

Measures Track Size # of Fish Points % of Fish Activity

Min 27 0 0

1st Qu 149 0 0

Median 1394 0 0

Mean 2284 360 10.7

3rd Qu 2776 435 18.0

Max 12023 4387 84.4

Figure 4.3: Representation of differential longitudes and latitudes from part of a
trajectory.

of absolute longitudes between the current and previous data points. Thus the abso-

lute longitudes LON = [lon1, lon2, ..., lonn] are transformed to differential longitudes

that takes the form LONd = [lon2 − lon1, lon3 − lon2, ..., lonn − lonn−1]. Similarly,

we transform absolute latitudes LAT = [lat1, lat2, ..., latn] to its differential form

LATd = [lat2 − lat1, lat3 − lat2, ..., latn − latn−1]. Fig. 4.3 shows the representation of

differential longitudes and latitudes.

For differential longitude and differential latitude, their values could represent the

geographic relationship between two neighboring points. Differential longitude lond ∈
LONd denotes a location change in horizontal direction while differential latitude latd

∈ LATd denotes a change in position in vertical direction. The numeric values of lond

and latd of a point indicate the distance of the point moves from its previous point

in horizontal direction and vertical direction respectively. The positive and negative

properties of lond and latd indicate whether the subsequent point move upwards,

downwards, forwards and backwards. lond and latd together suggests how far and in

what direction the current point moves from its previous point. Fig. 4.4 describes the
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Figure 4.4: Geographic relationship between current point and previous point. Pre-
vious point is regarded as origin point P0 in black. Current point P1 in orange with
coordinates (lond, latd) gives its position relative to the previous point.

meaning of differential longitude and differential latitude.

4.2.3 Distance and Angle

Besides using differential longitude and latitude, we find a representation of trajecto-

ries using distance and angle. As shown in Fig. 4.5, for each point Pi ∈ [P1, P2, ..., Pn],

the next point Pi+1 can be determined by the distance di and the counterclockwise

angle αi from trajectory Pi−1Pi to trajectory PiPi+1.

Considering the spherical surface of the earth, we use great-circle distance instead

of euclidean distance. We calculate the great-circle distance between two consecutive

points based on their longitudes, latitudes and the radius of earth using the fields

package in R [19]. Then we calculate the angle from the longitudes and latitudes of

three consecutive points using the maptools package in R [31]. The calculated angle

is the angle inside the triangle of three coordinates which is less than 180 degrees. It

is not enough to represent the trajectory accurately since it could be either clockwise

or counterclockwise. Consequently, we need to convert all the angles to either a

counterclockwise angle or a clockwise angle. We obtain the counterclockwise angle

for each point using formulae of transformations on the Cartesian Plane.
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Figure 4.5: A representation of an example of trajectories using points, distances and
angles.

4.2.4 Discretization

As mentioned in Section 3, we discretize the values of attributes of data using a

variant of equal size interval binning. First, for each attribute, we divide the data

into a number of ranges based on the density distribution; Second, we choose different

interval sizes for values among different ranges, and choose one interval size for values

within the same range.

For each attribute, in order to separate data with high density and low density we

divide the data into different ranges. Within a certain range, interval size is inversely

proportional to the number of values of that attribute. For instance, we discretize

the values range in [a, b] with the equal interval size m, then we will have (b− a)/m

discrete values as our feature values after discretization. If the m is too small, we

will have lots of feature values and preserve more information from original data but

this might cause over-fitting problems. On the contrary, if the m is too large, we will

have a small number of feature values but we might lose a lot of information.

For differential longitudes and latitudes, the value of over 95 percent of different

longitudes and latitudes falls into [-1, 1]. Thus, we set the interval size m to be

m =

⎧⎨
⎩
0.05 l ∈ [−1, 1]

20 l > 1, l < −1
(4.1)

where fine intervals are selected in the range [−1, 1]. Fine intervals provide a larger

number of parameters to fit the model compared to coarse intervals, when l is greater
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than 1 or less than -1.

Similarly, for distance which is a heavily tailed distribution, we separate the data

with three groups, then we set m that takes the form:

m =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.1 l ∈ [0, 5]

5 l > 5, l <= 100

Inf l > 100

(4.2)

Other attributes such as SOG, COG and angle are more evenly distributed com-

pare to differential longitudes and latitudes and distance. Thus for each of them,

instead of separating the data into several parts, we only set one binning size for all

values. For SOG, we set m to 0.5. For COG, we set m to 30. For angle, we set m to

30.

Note that we did a number of experiments choosing different sets of parameters

m for different attributes, so the value of our parameters presented above are decided

based on the best results from our limited experiments. It is not guaranteed to be

the best set of parameters for this dataset. But from our experiments, the value of

m which are close to the above values have similar results with a variance of no more

than 3%, thus we conclude that under our scheme of discretization, the above set of

parameters are suitable choices of parameters.

4.2.5 Feature selection and combination

For longliners, we generate two sets of features from differential longitudes and lat-

itudes as well as speed and angle respectively and use them to build our models

(CRF1 and CRF2) in the following experiments. First, we perform feature selection

to choose useful features from attributes of the AIS data. Then we design our feature

functions to create features by making different combinations of features.

In early experiments, we built the model using different combinations of features,

such as differential longitude, differential latitude, SOG and COG. We find the models

built with differential longitude, differential latitude, and SOG performed the best.

We design our feature functions that incorporate contextual information. In natu-

ral language processing, for example, the task of noun phrase chunking, the beginning,
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inside and outside tags (BIO) of noun phrases depend highly on the relationship be-

tween the word and its contextual information. Analogous to Part Of Speech tagging,

in fishing activity detection, vessel behaviors of each time stamp within a certain time

period are closely associated with each other. We select neighboring vessel points in

the previous two and susequent two time stamps to provide the contextual informa-

tion of the current point. Then we combine features that had a close relationship

with each other, such as longitude and latitude, neighboring longitudes, and latitude,

neighboring speeds. After combination, the generated features could provide more

information than single original features. More precisely, we use the following feature

functions in our experiments, as shown in Fig. 4.6:

1. pairs of differential longitudes and latitudes are selected to represent the posi-

tions of data points (colored in orange);

2. pairs of neighbouring differential longitudes are selected to represent the changes

of longitudes over time (colored in red);

3. pairs of neighbouring differential latitudes are selected to represent the changes

of latitudes over time (colored in green);

4. speed and pairs of neighbouring speed are selected to represent speed informa-

tion (colored in blue);

5. label of the previous state is selected to help model the transition probability

between states (colored in yellow).

The first four feature functions are state-observation feature functions while the

last one is state transition feature functions. These feature functions employ spatial

and temporal information to aid the classification task. Features are extracted by

following the feature functions and moving the sliding window through the time line

of data. And we use these features as our first set of features.

Then having distance and angle of each point, we use the distance and the angle

as a substitution for differential longitude and latitude to represent geo-information.

The feature functions stay the same except we change pairs of longitudes and latitudes

into pairs of distances and angles as shown inside brackets in Fig. 4.6. Because we
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Figure 4.6: Feature functions. When predicting the label of index j, the values of
colored dots as well as the paired values connected by solid lines are selected as feature
functions.

consider distance and angle to have a close relationship between each other, they

together can provide the accurate information of trajectories. We use these features

as the second set of features in our three experiments for longliners.

For trawlers, we do not use geoinformation to generate our features. The reason

is provided in section 4.4. Trawlers use the last two sets of feature functions from the

longliners, namely, speed and state transitions.

4.3 Longliner Results

We train CRF models using CRF++ [4]. For longliners, we design three experiments

to evaluate the model: Modified Monte Carlo methods, Iterative Leave One Batch Out

(ILOBO) and Stratified LOBO. In each experiment, we use both sets of features as

mentioned above in Section 4.2.5. We first build CRF models with features including

pairs of differential longitudes and latitudes. Then we build models with features

including pairs of distance and angles.
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Figure 4.7: Modified Monte Carlo. Choose 10 points as split point, obtain 10 pairs
of training and testing sets.

4.3.1 Modified Monte Carlo

Here, we concatenate all the data and apply Monte Carlo methods to get 10 pairs

of training and testing data sets. The size of the training and testing set is 1
5
of

the total number of data points. To find the dividing points of the ten Monte Carlo

experiments, we first set aside 1
5
of the whole data set in the front and back of the

dataset respectively, then select 10 dividing points with identical intervals that can

cover the entire dataset. For each selected point, the 1
5
portion of the data set to the

left of the point and the 1
5
portion to the right constitute one pair of training and

testing set. Fig. 4.7 shows the way we obtain our 10 pairs of training and testing sets.

In the thesis, our models are evaluated using accuracy, sensitivity (4.3), specificity

(4.4), positive predictive value (PPV) (4.5) and negative predictive value (NPV)(4.6),

as shown in Table 4.3, where the positive class is non-fishing. These measurements

provide us with information about the overall performance of the model. They are

calculated using following formulas:

Sensitivity =
True Positive

True Positive + False Negative
(4.3)

Specificity =
True Negative

True Negative + False Positive
(4.4)
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Positive Predicted Value (Precision) =
True Positive

True Positive + False Positive
(4.5)

Negative Predicted Value =
True Negative

True Negative + False Negative
(4.6)

From each experiment and each measure in Table 4.3, we bold the results of the

model that has better performance under. We can see that the results of CRF1 which

uses differential longitudes and latitudes as features are slightly better that the results

of CRF2 which uses distances and angles as features in terms of accuracy, sensitivity,

PPV and NPV. We have applied a paired-sample t-test to compare the classification

accuracies of CRF1 and CRF2, the resulting p-value is 0.805 which is greater than

the significance level 0.05. So we claim that the results of CRF1 and CRF2 are not

statistically significantly different. Since there is not much difference between the two

results, we take the example of CRF1 to analyse details of its results. According to the

formulas above, on average 72.8% of sensitivity (also known as recall) means 72.8%

of all non-fishing activities are predicted correctly by the model where 94% of mean

specificity indicates 94% of all fishing activities are predicted correctly. 81.3% of mean

positive predicted value (also known as precision) indicates 81.3% of all non-fishing

predictions are correct predictions where 92.4% of mean negative predicted value

indicates 92.4% of all fishing predictions are correct predictions. Also the standard

deviations of sensitivity and PPV are higher than specificity and NPV. Predictions of

fishing activities (specificity and NPV) are better than non-fishing activity (sensitivity

and PPV). This is because the majority (about 77%) of longliners data are labeled

as fishing activity, thus less information about non-fishing activity is provided to the

model to help predict non-fishing activities. Overall, the model with 89.8% for mean

accuracy provides good results for fishing activities detection.

4.3.2 Iterative Leave One Batch Out

Here, we first split the 14 vessels into 2 groups, group one with 10 vessels for iterative

LOBO, and group two with four vessels for stratified LOBO.
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Table 4.3: Evaluation of CRF1 and CRF2 for longliners using Modified Monte Carlo
methods.

ID Accuracy Sensitivity Specificity PPV NPV

CRF1 CRF2 CRF1 CRF2 CRF1 CRF2 CRF1 CRF2 CRF1 CRF2

1 0.868 0.857 0.481 0.492 0.959 0.951 0.730 0.721 0.888 0.879

2 0.872 0.949 0.460 0.859 0.947 0.980 0.610 0.938 0.906 0.953

3 0.959 0.865 0.826 0.366 0.985 0.965 0.916 0.680 0.966 0.883

4 0.973 0.933 0.876 0.564 0.991 0.979 0.953 0.768 0.976 0.948

5 0.860 0.970 0.622 0.870 0.941 0.983 0.785 0.870 0.879 0.983

6 0.765 0.879 0.821 0.841 0.739 0.889 0.598 0.674 0.897 0.953

7 0.851 0.811 0.743 0.900 0.908 0.774 0.809 0.628 0.871 0.948

8 0.944 0.778 0.885 0.441 0.965 0.973 0.900 0.905 0.960 0.750

9 0.939 0.914 0.735 0.822 0.981 0.951 0.892 0.869 0.947 0.931

10 0.946 0.943 0.835 0.854 0.983 0.972 0.940 0.909 0.947 0.953

Mean 0.898 0.890 0.728 0.701 0.940 0.942 0.813 0.796 0.924 0.918

SD 0.065 0.063 0.157 0.209 0.075 0.065 0.131 0.115 0.040 0.067

To split the vessels into two groups, we first take four vessels from the 14 longliners

as group two and then take the rest 10 vessels as group one. To get an accurate

evaluation of the model, we need the four selected vessels to be representative of the

entire data set. Therefore, we use trajectory size as a criterion to help select these

vessels. Since the trajectory sizes of the 14 vessels vary from thousands to over a

hundred thousand, as shown in Table 4.1, we categorize the 14 trajectories into three

sets based on their sizes. For the three sets, the sizes of trajectories are in the range

of thousands, ten thousands and hundred thousands respectively. We then randomly

select the number of vessels that are proportional to the cardinality of each set: one

vessel in set one, two vessels in set two, and one vessel in group set as the four testing

vessels.

For the set of 10 vessels, in each iteration, we consider one vessel as one batch to

be the test vessel and build one model on the rest of 9 vessels, and repeat this 10

times. Fig. 4.8 shows the way we divide the 14 vessels into two groups and perform

Leave One Batch Out experiments. Table 4.4 shows the results of Iterative Leave
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Figure 4.8: How we use 14 vessels for Iterative LOBO and Stratified LOBO experi-
ments.

One Batch Out for the 10 test vessels with CRF1 and CRF2.

From each measures in Table 4.4, the results of CRF2 are slightly better than the

results of CRF1 in terms of accuracy, sensitivity and NPV while CRF1 has better

results in specificity and PPV. We have applied a paired-sample t-test to compare

the classification accuracies of CRF1 and CRF2, the resulting p-value is 0.863 which

is greater than the significance level 0.05. We claim that the difference between the

results of CRF1 and CRF2 are not statistically significant. Compared to the Modified

Monte Carlo experiments, each measure declines a few percentage. Similarly, because

specificity and NPV with lower standard deviation are better than sensitivity and

PPV with higher standard deviation, predictions of fishing activities are better than

non-fishing activity. Overall, the model with 87.2% of mean accuracy provides good

results for fishing activities detection.

4.3.3 Stratified Leave One Batch Out

In the Stratified Leave One Batch Out (SLOBO) experiment, We use the selected

four vessels from Iterative Leave One Batch Out experiment as independent test

vessels and we train the model using the 10 vessels from ILOBO experiment, and

evaluate on the rest four vessels individually. The performance of the model on the
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Table 4.4: Evaluation of CRF1 and CRF2 for longliners using Iterative Leave One
Batch Out.

ID Accuracy Sensitivity Specificity PPV NPV

CRF1 CRF2 CRF1 CRF2 CRF1 CRF2 CRF1 CRF2 CRF1 CRF2

1 0.855 0.806 0.739 0.784 0.902 0.815 0.748 0.625 0.897 0.905

2 0.852 0.860 0.530 0.538 0.927 0.936 0.631 0.665 0.894 0.895

3 0.825 0.909 0.920 0.840 0.783 0.940 0.652 0.860 0.957 0.931

4 0.858 0.845 0.499 0.561 0.956 0.922 0.754 0.660 0.875 0.886

5 0.955 0.950 0.743 0.676 0.986 0.989 0.883 0.899 0.964 0.955

6 0.822 0.838 0.522 0.509 0.962 0.984 0.865 0.935 0.812 0.818

7 0.919 0.927 0.534 0.635 0.979 0.973 0.804 0.787 0.930 0.944

8 0.896 0.856 0.441 0.355 0.987 0.957 0.876 0.628 0.897 0.880

9 0.831 0.838 0.552 0.585 0.974 0.962 0.918 0.884 0.808 0.826

10 0.910 0.905 0.716 0.888 0.976 0.912 0.909 0.784 0.910 0.957

Mean 0.872 0.873 0.620 0.637 0.943 0.939 0.804 0.773 0.894 0.900

SD 0.045 0.046 0.151 0.164 0.063 0.050 0.104 0.120 0.053 0.049

four testing vessels are shown in Table 4.5. We further visualize the classification

results in Fig. 4.9.

Similar to the above Modified Monte Carlo experiment, the results of CRF1 are

slightly better that the results of CRF2 in terms of accuracy, sensitivity, PPV and

NPV while CRF2 has better results in specificity. And on average, both CRF1 and

CRF2 have performance with 89% of mean accuracy, close to the results of Modified

Monte Carlo experiments.

4.4 Trawler Results

For trawlers, as shown in Fig. 4.1, we observe that there is no obvious difference in

trajectories between fishing and non-fishing. We regard geo-information as an unre-

lated feature in trawlers fishing activity detection. To prove our points of view, we

built models using geo-information for trawlers as we did in longliners and the perfor-

mance of resulting models are not as good as models built without geo-information.
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Table 4.5: Evaluation of CRF1 and CRF2 for longliners using Stratified Leave One
Batch Out.

ID Accuracy Sensitivity Specificity PPV NPV

CRF1 CRF2 CRF1 CRF2 CRF1 CRF2 CRF1 CRF2 CRF1 CRF2

1 0.871 0.877 0.642 0.724 0.929 0.917 0.700 0.695 0.910 0.927

2 0.818 0.821 0.576 0.512 0.922 0.953 0.759 0.822 0.835 0.821

3 0.991 0.960 0.944 0.812 0.998 0.978 0.988 0.817 0.992 0.977

4 0.888 0.905 0.824 0.850 0.919 0.935 0.833 0.876 0.914 0.920

Mean 0.892 0.891 0.747 0.725 0.942 0.946 0.820 0.803 0.913 0.911

SD 0.072 0.058 0.168 0.151 0.038 0.026 0.125 0.076 0.064 0.065

Figure 4.9: The Visualization of four independent testing vessel tracks. Green points
mean both the label and the prediction are fishing. Blue points mean both the
label and the prediction are non-fishing. Red points mean the label is fishing while
the prediction is non-fishing. Yellow points mean the label is non-fishing while the
prediction is fishing. The Zoomed-in region gives details of the classification results
in the Atlantic ocean area.



43

Table 4.6: Evaluation of CRF and HMM for trawlers using Modified Monte Carlo
methods.

ID Accuracy Sensitivity Specificity PPV NPV

CRF HMM CRF HMM CRF HMM CRF HMM CRF HMM

1 0.876 0.887 0.952 0.962 0.465 0.480 0.906 0.909 0.642 0.698

2 0.906 0.920 0.963 0.982 0.289 0.237 0.937 0.934 0.414 0.548

3 0.861 0.775 0.976 1.000 0.468 0.146 0.862 0.774 0.835 1.000

4 0.885 0.734 0.983 0.996 0.665 0.146 0.868 0.724 0.945 0.944

5 0.943 0.937 0.973 0.962 0.856 0.863 0.952 0.954 0.915 0.887

6 0.927 0.924 0.924 0.922 0.938 0.933 0.984 0.982 0.754 0.748

7 0.906 0.913 0.917 0.912 0.828 0.917 0.975 0.988 0.579 0.589

8 0.850 0.842 0.851 0.816 0.844 0.962 0.962 0.990 0.547 0.527

9 0.846 0.851 0.847 0.830 0.842 0.943 0.960 0.985 0.550 0.552

10 0.855 0.862 0.899 0.895 0.601 0.672 0.930 0.941 0.501 0.520

Mean 0.886 0.865 0.929 0.928 0.680 0.616 0.934 0.918 0.670 0.701

SD 0.034 0.067 0.050 0.065 0.217 0.371 0.043 0.094 0.185 0.185

In addition, since we have discussed above that the speed distribution is highly re-

lated with its fishing activities, we use only speed attributes of the data to build the

CRF model for the trawler.

We design three experiments similar to longliners experiments to evaluate the

models: Modified Monte Carlo methods, Iterative Leave One Batch Out (ILOBO)

and Stratified Leave One Batch Out (SLOBO).

4.4.1 Modified Monte Carlo methods

We apply the same Modified Monte Carlo methods for trawlers to obtain training sets

and testing sets as we did for longliners. The results of the experiments on trawlers

are shown in Table 4.6 with a comparison with hidden markov model (HMM) in [16]

that we reproduced on the same set of data.

For trawler experiments, the positive class is also non-fishing. On average, CRF

models have 92.9% sensitivity means 92.9% of all non-fishing activities are predicted

correctly by the model, whereas 68% of mean specificity indicates 68% of all fishing
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activities are predicted correctly. 93.4% mean positive predicted value indicates 93.4%

of all non-fishing predictions are correct predictions where 67% of mean negative

predicted value indicates 67% of all fishing predictions are correct predictions. The

standard deviations of specificity and NPV are higher than sensitivity and PPV.

Predictions of non-fishing activities (sensitivity and PPV) are better than fishing

activity (specificity and NPV). This is because the majority (15.7%) of trawler data

are labeled as non-fishing activity, thus less information about fishing activity is

provided to the model to help predict fishing activities. Overall, the model with 88.6%

of mean accuracy provides good results for fishing activities detection. According

to Table 4.6, the results of CRF are better than the results of HMM in terms of

accuracy, sensitivity, specificity and PPV while HMM has better results in NPV. We

have applied a paired-sample t-test to compare the classification accuracies of CRF

and HMM; the resulting p-value is 0.197 which is greater than the significance level

0.05. So we claim that results of CRF and HMM are not statistically significantly

different.

4.4.2 Iterative Leave One Batch Out (ILOBO)

Of all 84 trawlers, 45 trawlers do not have fishing activity. We decide to use the

remaining 39 trawlers with fishing and non-fishing activities to do our Iterative Leave

One Batch Out experiment. In order to keep a similar fashion of experiments using

longliners data, we had 4 ILOBO experiments on 4 groups of data. First, we randomly

order the 39 trawlers and divide them into 3 groups with 10 vessels per group and 1

group with 9 vessels. We then perform an Iterative Leave One Batch Out experiment

on each group, which is at each time we select one vessel as testing data and the rest

of nine vessels as training data and repeated until every vessel has been chosen as a

testing vessel. Since we have 39 experiments, in order to simplify and better present

the results of the 4 groups, we use a bar graph to show the average performance of

each group instead of a table listing every experiment. The results of each group

using the same five measurements are shown in Fig. 4.10.

The average accuracy for the 4 groups are 89.5%, 84.9%, 86.7% and 81.4% respec-

tively. Compared to the average performance of Modified Monte Carlo experiments,

each measure declines a few percentages, especially specificity and NPV. There exists
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Figure 4.10: The results of ILOBO with CRF on 4 groups of trawler data. X axis
corresponds to each group while Y axis corresponds to percentage. Height of each
bar represent the average performance of experiments per group. Length of the line
on top of each bar shows the standard deviation of the performances per group. Five
evaluation measures are shown with five different colors.
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Table 4.7: Evaluation of CRF and HMM for trawlers using Stratified Leave One
Batch Out.

ID Accuracy Sensitivity Specificity PPV NPV

CRF HMM CRF HMM CRF HMM CRF HMM CRF HMM

1 0.71 0.75 0.97 0.90 0.35 0.71 0.90 0.96 0.67 0.47

2 0.85 0.84 0.84 0.93 0.86 0.69 0.93 0.85 0.72 0.83

3 0.84 0.83 0.94 0.99 0.82 0.40 0.99 0.95 0.40 0.82

4 0.92 0.92 0.98 0.94 0.58 0.69 0.83 0.80 0.93 0.89

5 0.88 0.87 0.78 0.82 0.90 0.93 0.93 0.98 0.71 0.51

6 0.68 0.57 0.87 0.84 0.52 0.51 0.83 0.93 0.60 0.28

7 0.85 0.76 0.99 1.00 0.42 0.76 0.95 1.00 0.84 0.01

Mean 0.82 0.79 0.91 0.92 0.64 0.67 0.91 0.92 0.70 0.54

SD 0.09 0.11 0.08 0.07 0.22 0.17 0.06 0.07 0.17 0.33

variances among each group. For example, group 3 has the lowest performance and

the highest standard deviation in terms of specificity and NPV. This is because there

is a great variance of fishing percentage per vessel among vessels. Since we randomly

divide vessels into four groups, group 3 happens to have vessels with least amount of

data labeled as fishing.

Because sensitivity and PPV with lower standard deviation are better than speci-

ficity and NPV with higher standard deviation, predictions of non-fishing activities

are better than fishing activity. Overall, the model has 85.6% of mean accuracy for

identifying fishing activities.

4.4.3 Stratified Leave One Batch Out (SLOBO)

In our SLOBO experiment, which is different from the SLOBO experiments for long-

liners, we have a second trawler data set including 7 trawlers from Jan 1st, 2011 to

Oct 31st, 2015. We applied the same preprocessing techniques on this brand new

data set and we use this data set as our test data. After cleansing we have 835736

data points.

According to the work in [16], we use 25000 points of our first trawler data set to

build our CRF model, and test on the 7 new trawlers data set respectively. The results



47

of our 4 models are shown in Table 4.7 together with the results using HMM in [16].

According to the Table 4.7, the results of CRF are better than the results of HMM

in terms of accuracy and NPV while HMM has slightly better results in sensitivity,

specificity and PPV. On average, CRF has slightly lower variance in results and

performs better than HMM. We have applied a paired-sample t-test to compare the

classification accuracies of CRF and HMM, the resulting p-value is 0.225 which is

greater than the significance level 0.05. So we claim that the difference between the

results of CRF and HMM are not statistically significant.

Compare to the modified Monte Carlo experiment, the result of SLOBO has a few

percentage declines in each measure and an increase in standard deviation. Again,

predictions of non-fishing activities (sensitivity and PPV) are better than fishing

activity (specificity and NPV). Overall, the model has 82% of mean accuracy for

fishing activities detection.

4.5 Comparison of results

We make comparisons of our CRF models with other models on the task of fishing

activity detection. Because there are significant differences of fishing patterns between

longliners and trawlers, some methods that work well on longliners might not be

applicable on trawlers. Consequently, for longliners and trawlers, we compare CRFs

with different methods.

4.5.1 Longliner comparison

We reproduce the autoencoders (AE) [26] and the data mining approach (DM) [16]

on the same set of data in the previous ILOBO experiment. The difference is that

these two methods only use geo-location information as features. The results of these

two methods are shown in Table 4.8 as comparisons with the performance of CRFs

in Table 4.4.

According to the Table 4.8, CRF performs the best in terms of accuracy, sensi-

tivity, specificity and NPV, while the data mining method performs the best in PPV

and the autoencoder performs the same as CRF in specificity. In addition, on aver-

age CRF has a lower standard deviation than the autoencoder and the data mining
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method. We have performed a paired-samples t-test to compare the classification ac-

curacies of CRFs and autoencoders, the resulting p-value is 0.057. We also performed

paired-samples t-test to compare the classification accuracies of CRFs and the data

mining approach, the resulting p-value is 0.032. Though the p-value is below the

significance level 0.05, it is greater than 0.01 and still close to 0.05 so that we can not

claim that they are systematically different. Despite the fact that both the CRF and

AE as well as CRF and DM are not systematically different, CRFs can perform as

well as and sometimes better than autoencoders and the data mining approach.

4.5.2 Trawler comparison

For trawlers, we compare CRFs with HMM in [16] using the same data set in both

the Modified Monte Carlo experiment shown in Table 4.6 and Stratified Leave One

Batch Out as shown in Table 4.7 which are presented in the above section.

4.6 Analysis and Discussion

For longliners, the results of the three experiments are consistent. The average ac-

curacy of CRF1 using differential longitudes and latitudes in the three experiments

is 88.7% with 6.1% average standard deviation. For CRF2 which uses distance and

angle, the average accuracy is 88.5% with 5.6% average standard deviation. CRF1

and CRF2 have similar results which indicates that differential longitudes and lati-

tudes works similar to distance and angle. Their results also indicates that both sets

of features are suitable for the task of fishing activity detection. Further, since we

use completely different parameters in discretization of the two sets of features, the

results prove that our discretization works well in the experiments and the results

won’t be impacted a lot if we slightly change the setting of parameters in discretiza-

tion. Since we use the same feature functions to create pairs of closely related features

on both the sets of features, the results indicates that the generated features provide

useful contextual information that help the models to predict fishing activities. By

comparing the results of the second and the last experiments, we find that the mod-

els built using Iterative Leave One Batch Out perform as good as the model built in

Stratified Leave One Batch Out. Since ILOBO built models with different vessels and

test on different vessels while SLOBO built one model and test on different vessels,
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this further proves the stability and potential of the model in future fishing activity

detection.

The attribute Course Over Ground is not equal to the angle we calculate from

the trajectory. It gives the information about the actual direction that the vessel

moves at a certain point. Between two neighboring points, COG might change a lot

because of some missing information during the time interval of the two points. Due

to some influence such as ocean currents, course over ground might not be in the same

direction as the vessels are moving forward. Thus, COG could not provide accurate

information about the trajectory. This explains why COG is not a good feature for

our model.

From the comparison of the performance in CRFs, autoencoders [26] and the

data mining methods [16], as shown in Table 4.8, we find CRFs can have better

classification accuracy than the autoencoder and the data mining method, in terms

of mean and standard deviation. We also find CRFs do not suffer from imbalanced

data as do autoencoders: in experiment 7, autoencoders labeled all data points as

positive class with 0% of sensitivity and 0% of PPV, whereas CRFs have 53.4% of

sensitivity and 90% of PPV. In these three models, only CRFs incorporate both geo-

location and speed information into features while the autoencoders and the data

mining approach only use geo-location features. Since CRFs that are built only with

geo-location features do not work well, the results of CRFs presented in this thesis

prove that speed could also provide useful information in identifying fishing activities.

For trawlers, we have 88.6% of accuracy with 3.4% of average standard deviation in

Modified Monte Carlo experiment, 85.6% of accuracy with 3.4% of average standard

deviation in Iterative Leave One Batch Out experiment, and 82% of accuracy with

18% of average standard deviation in Stratified Leave One Batch Out experiment.

We have compared the performance of CRFs with HMM [16] in Modified Monte Carlo

experiment and Stratified Leave One Batch Out experiment, as shown in Table 4.6

and Table 4.7. Since speed has been regarded as the most important feature that is

closely related to fishing activity while geo-location information will generate noise in

determine fishing activity of trawlers, both CRF and HMM use only speed to build

the model. The main difference between CRF and HMM is that CRF incorporates

speed information of neighbors while HMM only uses the corresponding speed and
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assumes the neighboring speed is independent of each other. We find that CRF has

slightly better classification accuracy and lower standard deviation than HMM in most

cases. This means CRF has the potential to behave more stable than HMM. Though

the advantages of CRF in trawler experiments are not so evident, it might because

the value of speed already has close relationship to the fishing activity as shown in

Fig. 4.2 (b) and consequently the influence of dependency among neighboring speeds

can be ignored.

There exists a higher variance in results (especially specificity and NPV which

is related to fishing activity) of ILOBO and SLOBO than in Modified Monte Carlo

method, for both longliners and trawlers, especially trawlers. This is because each

vessel varies a lot in trajectory sizes as well as the percentages of fishing activities

per vessel. Since ILOBO and SLOBO randomly divide the data set into training and

testing sets by vessels, it is possible that some vessels provide less useful information

or more noise than others that are chosen to built the model or test the model, and

thus have an impact on the results.



Chapter 5

Geovisualization

This chapter presents an interactive geovisualization of the vessel trajectories using

the AIS data of trawlers and longliners in this thesis. This visualization enables users

to explore detailed information and fishing patterns of the longliners and trawlers and

provides them with powerful data selection and inspection. In addition, the results of

experiments are also displayed in this visualization to assist with error analysis. This

chapter is organized as follows: Section 5.1 describes the design of this visualization

based on several motivations; Section 5.2 presents the tools and techniques which are

used to build this visualization; Section 5.3 displays each part of the visualizations

corresponding to the designs; Section 5.4 presents the analysis of the results from the

visualization.

5.1 Motivation and design

The original data set and experimental results are presented as tables. With large

amount of data points laid out in rows and columns, it is hard to discover patterns

behind these numbers. Similarly, from those percentages presented in the results

of experiments, it is difficult to analyse the model with great insight such as where

and why the model made errors in classification. To gain insights into the data

set and the results, we first used QGIS software to visualize the data points on the

map. From QGIS we could see the trajectories with different colors for fishing and

non-fishing status, but still it is not smooth enough to visualize the target area as

well as detailed information. For instance, if we want to see more information on the

trajectory, the layout would be a somewhat messy. And once we create the trajectories

by connecting discrete data points, the trajectories could not be changed and we can

only build a new one if we want to add some other data points. Thus we made

this visualization to better reveal the fishing patterns of longlingers and trawlers,

easily view the trajectories, quickly find the target, get deep insights into the results,

52
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create a convenient and interactive way to explore the data and show the animated

trajectory based on time lines. Our work is also inspired by Aaron Koblin, who

implements a series of aesthetic visualizations of flight patterns in United States [1].

By using altitudes, identity, regions of airplanes and airline hubs as indications of

colors in flight trajectories, his visualization shows interesting flight patterns during

flying, landing and taking off procedures.

This visualization is designed in three parts: The first part is a static visualization

of trajectories which shows the geo-location of each vessel trajectory, their fishing and

non-fishing status as well as their speed variations among the whole trajectories. The

second part is an animated visualization which shows the moving trajectories as well

as the different patterns between fishing and non-fishing status based on the time

lines. The third part includes the comparisons of experimental results of this thesis

with the labels of the original data set displayed on the visualization of trajectories

for result analysis.

5.2 Interactive Techniques

We use the Tableau Software to build this visualization. Tableau Software is a graph-

ical system for performing exploration and analysis of customer data sets. It is a

commercial system based on the Polaris research project which is powerful tool for

building different kinds of interactions [3]. Tableau offers plenty of functions and

operations related to maps which makes it an ideal tool for our tasks. Based on our

designs, we applied zoom and pan, tool tip, filter, and animation in our interactive

visualization. Fig. 5.1 shows the interactive techniques we used in our visualizations.

Zoom and pan enables users to find the targeted area fast, have a clear sight into a

high density region and see the details of trajectories. The user can select a particular

region to zoom in on and return to the initial view by one click.

Tool tip provides a convenient way to display detailed information for each point.

When a mouse hovers over a data point on the map, the respective information

including longitude, latitude, speed, time, and fishing and non-fishing status will

appear in a box. When the mouse moves away, the box will disappear.

Filter enables users to display the trajectory by their selection. We use three types

of filters: time filter, vessel identification (MMSI) filter, fishing and non-fishing status
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Figure 5.1: Four Interactive Techniques. (a) Zoom and pan. (b) Tool tip. (c) Filters.
(d) Animation.
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filter. Time filter allows users to choose to display trajectories in a contain period of

time. Vessel identification filter allows users to select one or more particular vessels

to focus on. Fishing status filter allow users to select to view fishing or non-fishing

data individually or both parts.

Animation provides a way to see the dynamic trajectories based on the time lines.

The time is divided by day so that each tick represents one day. During each tick,

the trajectory of that day will appear. By clicking the play button, the trajectory

of each day will appear in an automatic way. Users could stop anytime by clicking

anywhere on the map. Users could also choose the speed of tick as well as an amount

of history ticks to show.

5.3 Visualizations

We first connect Mysql database to Tableau, extract data points from the database

and apply them on to an online map. We design each view of our visualization

through a Tableau sheet, and then place them together in a Tableau dashboard.

Here we design three kinds of maps both for trawlers and longliners: static maps,

animated map and experimental results map. Static maps show the overall vessels,

fishing and non-fishing status as well as their speed distributions. Animated maps

show above static maps with animation. The experimental results map shows the

comparisons between experimental results and the true labels of the data. Users

could use the techniques above to obtain information based on their needs in all these

maps.

5.3.1 Static Map

In a static map, users could acquire comprehensive information on vessel trajectories

from details of points, to selected regions or vessels, to overall trajectories. We made

three maps to convey three different categories of information: distributions of differ-

ent vessels, distributions of fishing and non-fishing trajectories and speed distributions

among vessels. To do so, we assign different maps with a different color palette based

on three attributes of the AIS data, MMSI, fishing and non-fishing labels, and SOG.

In the map to show distributions of different vessels, we differentiate vessels with

20 colors. Fig. 5.2 shows the distributions of all the longliners. Fig. 5.3 shows the
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Figure 5.2: Distributions of longliners

distributions of all the trawlers. As mentioned earlier, trawler data has 84 vessels

but we could not assign 84 unique colors for each vessels because of the natural

limitations of our eyes. We could still use 20 colors to differentiate them as long as

two neighboring vessels have different colors.

In the map to show distributions of fishing and non-fishing trajectories, we use

two colors to differentiate fishing and non-fishing activities. Fig. 5.4 shows the fishing

and non-fishing status among longliner trajectories. Fig. 5.5 shows the fishing and

non-fishing status among trawler trajectories.

In the map to show speed distributions over trajectories, we use stepped blue colors

to show variations of speed. Dark blue means high speed while light blue means low

speed. In order to make light colors more readable, we choose a dark map as the

background. Fig. 5.6 shows the speed distributions among longliner trajectories in a

selected area.
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Figure 5.3: Distributions of Trawlers

Figure 5.4: Distributions of fishing and non-fishing trajectories of Longliners
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Figure 5.5: Distributions of fishing and non-fishing trajectories of trawlers

Figure 5.6: Speed distributions of longliners in selected area
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Figure 5.7: Animation of fishing and non-fishing status
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5.3.2 Animated Map

We made all three kinds of maps above with animations for both trawlers and longlin-

ers. We made the historical points using a little transparency in order to highlight the

newest appearing trajectories among trajectories of history. Users can specify a time

period and different vessels for the animation. Fig. 5.7 shows an example of fishing

and non-fishing animation of longliners with a selected time period and vessels.

5.3.3 Experimental results map

We put the results of the longliner experiments in this thesis into experimental results

map. This enables users to explore the details of the results, such as in which part

the model gives wrong predictions, with wrong predictions what would the trajectory

then look like and in which speed of each point in the trajectory, etc. With such

information, we could better analyse the model.

The classification results contains 4 parts including true positive, true negative,

false positive and false negative are displayed in 4 colors. The positive class is also non-

fishing the same as above experiments. True positive in blue where both predictions

and labels are non-fishing, true negative in green where both predictions and labels are

fishing, false positive in red where predictions are non-fishing while labels are fishing,

false negative in yellow where predictions are fishing while labels is non-fishing. Users

can select one or more parts to highlight and hover over the points to obtain detailed

information.

Fig. 5.8 gives an example of an experimental results map in a selected area and

how we analyse the results using this map. First, we are interested in where the model

made incorrect classification, thus we can highlight both the false positive and false

negative parts. Then we can hover the mouse over the highlighted points to explore

the details of each point.

5.4 Analysis and Discussion

From exploring the experimental results maps, we have the following discoveries: the

model tends to predict a sequence of fishing trajectory as a non-fishing trajectory in

many cases if a number of consecutive points have speed over around 9 knots; the
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Figure 5.8: Experimental result map in a selected area. (a) is the original experi-
mental result map, (b) is the map after highlighting false positive and false negative
parts with detailed information of a point by hovering over the point.

Figure 5.9: Example of non-fishing track predicted by the model as fishing track

model is not good at differentiating fishing and non-fishing parts when lots of short

fishing tracks gather in a densely populated area as shown in Fig. 5.8 (a) in the left

parts of the trajectories; the model could easily make wrong classification around the

area where fishing tracks and non-fishing tracks have a common boundary; the model

is good at differentiating non-fishing tracks with long length as shown in Fig. 5.8 (b)

in the right parts of the trajectories; in some parts of the non-fishing tracks where

the model gives prediction as fishing which on visual inspection clearly seems to be

fishing, shown in Fig. 5.9, the yellow trajectory represents a track where the prediction

is fishing while the label is non-fishing, which has a similar pattern to fishing tracks.
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As shown above, this visualization could provide exploration of AIS data, however

it also has some limitations. The display speed is not fast as it might take seconds

to update the screen. And the animation is divided by day instead of a smaller

unit because smaller units require the system to render the data more times which

takes more time. Finally, the on-line version is not accessible so that it could not be

published on-line without sharing the data.



Chapter 6

Conclusions and Future Work

In this thesis, we described how to detect fishing activities from historical AIS data.

The proposed approach successfully applies Conditional Random Fields to the task

of fishing activity detection, as a corresponding task of Part-Of-Speech tagging in

natural language processing. The main contribution of our approach is that it in-

corporated the contextual information of both geo-location and vessel speed into

features to build our model. We used differential longitude and latitude to represent

geo-location. We further used distance and angle as an alternative representation of

geo-location. We performed feature engineering to generate features by incorporat-

ing the spatial-temporal domain knowledge about fishing activities and developing

features that can be easily classified by CRFs. This included features of the current

point as well as its relationships to the neighboring points. By making use of such con-

textual information, our model could help provide better classification results. Since

Conditional Random Fields are capable of developing robust features, our models are

applicable to both trawlers and longliners.

To preprocess the data, we performed data cleansing, discretization and transfor-

mation, followed by feature selection. We then combined features that are closely

related to each other by specifying proper state-observation functions. For longliners,

we used feature functions that incorporated contextual information of both geoinfor-

mation and speed. For trawlers, we only used feature functions for speed. We then

generated features from both state-observation and transition functions to train CRF

models for longliners and trawlers, respectively.

We used three methods to evaluate the proposed model. The first evaluation

metric is Modified Monte Carlo experiment which aims at obtaining an evaluation

of the model on future trajectories based on historical data. This can prevent over-

fitting introduced by random permutation in cross-validation methods. The second

evaluation metric is Iterative Leave One Batch Out which regards every vessel as a
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different batch, each time the model is trained and tested with different vessels. The

third evaluation metric is Stratified Leave One Batch Out which builds one model

and tests it on a set of different vessels. Based on the experimental results, we made

the following comparisons: first, we compared CRF models built with different sets

of features; second, we compared CRF models with autoencoder and a data min-

ing method using a segmentation algorithm for longliners; third, we compared CRF

models with Hidden Markov Models for trawlers. From the experimental results,

we conclude that CRFs could provide more stable and better results than autoen-

coder, the data mining method and HMM; our two different sets of features with

different discretization strategies work identically, which prove the robustness of our

discretization and feature generation methods; in terms of efficiency, we find CRFs

can be trained more efficiently than complex models such as deep learning; in terms

of effectiveness, the three evaluation experiments suggest the model can generalize

well in future fishing activity detection problems.

To better explore the data and results, we developed an interactive visualization

to help better understand the nature of fishing and non-fishing patterns and analyse

the experimental results.

As for future work, we will investigate better ways of developing additional fea-

tures, such as acute angle density within a certain distance. We will also consider

systematic approaches to incorporate additional density information into feature func-

tions to aid the development of the model. We will try different discretization meth-

ods. Further, we are going to apply our model to different types of fishing vessels.
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