
 

 

 

 

 

 

 

SENSORY KEYS: SECURE COMMUNICATION & MUTUAL 

AUTHENTICATION USING MODIFIED DIFFIE HELLMAN KEY 

AGREEMENT SCHEME 
 

 

 

by 

 

 

 

 

SRIDHAR MATTA 

 

 

 

Submitted in partial fulfilment of the requirements 

for the degree of Master of Computer Science 

 

 

at 

 

 

Dalhousie University 

Halifax, Nova Scotia 

August 2016 

 

 

 

 

 

 

 

© Copyright by Sridhar Matta, 2016 

 

  



 

 

ii 

 

This work is dedicated to 

My beloved parents, Mr.Kusmeshwar & Mrs. Parvati for their belief in me, 

My lovely sister, Miss Sweta, who has grown up to be my best companion 

and  

To all of my friends, who stood by  my side all along.  



 

 

iii 

 

Table of Contents 

LIST OF FIGURES……………………………………………………………………....vi 

LIST OF TABLES…………………………………………………………………….xviii 

ABSTRACT ..................................................................................................................... xix 

LIST OF ABBREVIATIONS USED ............................................................................... xx 

CHAPTER 1 INTRODUCTION .............................................................................. 1 

1.1  BRIEF INTRODUCTION OF TERMS AND CONCEPTS ................................................... 1 

1.1.1  Sensors & Smartphones ......................................................................1 

1.1.2  RSA .....................................................................................................3 

1.1.3  Diffie Hellman Key Exchange Algorithm ..........................................3 

1.2  BRIEF INTRODUCTION OF THE PROPOSED APPROACH .............................................. 4 

1.2  OUTLINE OF THE THESIS ......................................................................................... 5 

CHAPTER 2 BACKGROUND ................................................................................ 7 

2.1  SENSORS ................................................................................................................ 7 

2.2  PHYSICALLY UNCLONABLE FUNCTIONS (PUF) ..................................................... 8 

2.3  KEY ALGORITHMS FOR CRYPTOGRAPHY ............................................................... 9 

2.4  RSA..................................................................................................................... 11 

2.5  DIFFIE HELLMAN .................................................................................................. 12 

2.5.1  MITM ATTACK ON DIFFIE HELLMAN ......................................15 

2.8  SECURITY ISSUES ................................................................................................. 16 

2.7  SECURITY GOALS ................................................................................................ 17 

CHAPTER 3 RELATED WORK ........................................................................... 19 

3.1  LITERATURE SURVEY ON SMARTPHONE DATA ...................................................... 19 

3.1.1  SMARTPHONE TRAFFIC ANALYSIS .........................................20 

3.1.2  MALWARE DETECTION & PREVENTION ................................21 

3.1.3  USER BEHAVIOR & PATTERNS .................................................22 

3.1.4  USER BEHAVIOR PATTERNS .....................................................23 

3.2  LITERATURE SURVEY ON VARIOUS KEY GENERATION METHODS ........................ 24 

3.3  LITERATURE SURVEY ON SOME OF THE WORKS ON DIFFIE HELLMAN .................. 27 

3.3.1  MITM ATTACK POSSIBILITY in DIFFIE HELLMAN ...............28 

3.3.2  OTHER WORKS ON DIFFIE HELLMAN .....................................28 

3.4  LITERATURE SURVEY ON BIOMETRIC AND OTHER ALGORITHMS .......................... 30 



 

 

iv 

 

3.4.1  BIOMETRICS for AUTHENTICATION & ENCRYPTION ..........31 

3.4.2  OTHER RELATED WORKS ..........................................................32 

3.5  SUMMARY ........................................................................................................... 33 

3.6  MOTIVATION AND RESEARCH OBJECTIVES .......................................................... 34 

CHAPTER 4 METHODOLOGY ........................................................................... 36 

4.1  PROPOSED APPROACH .......................................................................................... 36 

4.2  ARCHITECTURE OF THE PROPOSED APPROACH ..................................................... 37 

4.3  APPLICATION USED FOR DATA COLLECTION TO TEST THE PROPOSED APPROACH . 51 

CHAPTER 5 IMPLEMENTATION ...................................................................... 52 

5.1  DEVELOPMENT ENVIRONMENT AND LIBRARIES USED .......................................... 52 

5.1.1  JAVA Environment ..........................................................................52 

5.1.2  ANDROID Environment ..................................................................55 

5.2  IMPLEMENTATION DETAILS OF THE PHASES IN THE PROPOSED APPROACH ............ 58 

5.2.1  XOR OPERATION. .........................................................................58 

5.2.2  HASH OPERATION ........................................................................59 

5.2.3  KEYED HASH OPERATION .........................................................59 

5.2.4  SOCKET CONNECTION ................................................................60 

5.2.5  RANDOM NUMBER GENERATION ............................................61 

5.2.6  ‘p’, ‘g’, ‘ACKph’, ‘ACKs’ TERMS GENERATION ......................61 

5.2.7  DIFFIE HELLMAN KEY GENERATION .....................................63 

5.2.8  RSA KEY GENERATION, ENCRYPTION & DECRYPTION .....64 

5.2.9  REFERENCE FRAME GENERATION IN ANDROID 

APPLICATION ........................................................................................................65 

5.2.10  PERMISSIONS REQUIRED FOR ANDROID APPLICATION ....67 

CHAPTER 6 EXPERIMENTAL RESULTS AND ANALYSIS ........................... 68 

6.1  EXPERIMENTAL SETUP ......................................................................................... 69 

6.2  EVALUATION USING WIRESHARK ........................................................................ 71 

6.3  EVALUATION USING TEST SCENARIOS .................................................................. 74 

6.3.1  USING THE ‘SIMULATED DATA’ ...............................................75 

6.3.2  WHEN THE DEVICE IS MOVED ‘VERTICALLY’ .....................79 

6.3.3  WHEN THE DEVICE IS IN ‘IDLE’ POSITION ............................82 

6.3.4  WHEN THE USER IS ‘WALKING’ WITH THE DEVICE IN     

HIS TROUSERS’ POCKET ....................................................................................86 



 

 

v 

 

6.3.5  WHEN THE USER IS INSIDE AN ‘ELEVATOR’ WITH          

THE DEVICE IN HIS TROUSERS’ POCKET .......................................................89 

6.3.6  WHEN THE USER IS MOVING ON THE ‘STAIRS’ WITH     

THE DEVICE IN HIS TROUSERS’ POCKET .......................................................92 

6.3.7  WHEN THE USER IS WITHIN A ‘VEHICLE’ WITH THE 

DEVICE IN HIS TROUSERS’ POCKET ...............................................................95 

6.3.8  INFERENCES FROM THE TEST CASES .....................................98 

6.4  EVALUATION USING SCYTHER ........................................................................... 100 

6.5  PERFORMANCE ANALYSIS ................................................................................. 103 

6.6  SECURITY ANALYSIS ......................................................................................... 107 

6.7  SUMMARY OF THE EXPERIMENTAL RESULTS ...................................................... 108 

CHAPTER 7 CONCLUSION .............................................................................. 110 

7.1  LIMITATIONS ..................................................................................................... 113 

7.2  DISCUSSION AND FUTURE WORK ....................................................................... 113 

REFERENCES ............................................................................................................... 115 

APPENDIX A ................................................................................................................. 121 

APPENDIX B ................................................................................................................. 131 

APPENDIX C ................................................................................................................. 141 

APPENDIX D ................................................................................................................. 151 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vi 

 

LIST OF FIGURES 
 

Figure 1 Evolution of mobile phones.................................................................................. 2 

Figure 2 Sensors in a smartphone ....................................................................................... 7 

Figure 3 Key Encryption Techniques ................................................................................. 9 

Figure 4 Digital Signature Process ................................................................................... 11 

Figure 5 Diffie Hellman Algorithm. ................................................................................. 14 

Figure 6 Known and unknown entities of Diffie Hellman amongst parties ..................... 14 

Figure 7 MITM in Diffie Hellman .................................................................................... 16 

Figure 8 Overview of the Related works discussion ........................................................ 19 

Figure 9 Survey on Smartphone Sensors .......................................................................... 20 

Figure 10 Works involving Diffie Hellman Algorithm .................................................... 28 

Figure 11 Other related Works ......................................................................................... 31 

Figure 12 ........................................................................................................................... 40 

Figure 13 ........................................................................................................................... 40 

Figure 14 ........................................................................................................................... 41 

Figure 15 Registration Phase ............................................................................................ 41 

Figure 16 Reference Frame Structure ............................................................................... 41 

Figure 17 ........................................................................................................................... 47 

Figure 18 ........................................................................................................................... 47 

Figure 19 ........................................................................................................................... 48 

Figure 20 ........................................................................................................................... 48 

Figure 21 ........................................................................................................................... 49 

Figure 22 ........................................................................................................................... 49 

Figure 23 ........................................................................................................................... 50 

Figure 24 Data Transfer Phase .......................................................................................... 50 

Figure 25 Android activity life cycle [55] ........................................................................ 56 

Figure 26 Entities stored at each of the parties involved in the communication .............. 68 

Figure 27 Encrypted Data during the Registration phase. ................................................ 72 

Figure 28 Second Message during the Registration phase. .............................................. 72 

Figure 29 Third Message during the Registration phase. ................................................. 72 



 

 

vii 

 

Figure 30 Traffic content during the Data Transfer phase. ............................................... 73 

Figure 31 First packet transferred in the Data Transfer Phase .......................................... 73 

Figure 32 Second packet transferred in the Data Transfer Phase ..................................... 73 

Figure 33 Third packet transferred in the Data Transfer Phase ........................................ 74 

Figure 34 Fourth packet transferred in the Data Transfer Phase ...................................... 74 

Figure 35 Execution Time vs ReferenceFrames count & DataFile count for        

Simulated Data .......................................................................................................... 76 

Figure 36 Key values obtained for each Data file with 5 Reference Frames for     

Simulated Data .......................................................................................................... 76 

Figure 37 Key value obtained for each Data file with 10 Reference Frames for    

Simulated Data .......................................................................................................... 77 

Figure 38 Key value obtained for each Data file with 15 Reference Frames for    

Simulated Data .......................................................................................................... 77 

Figure 39 Key value obtained for each Data file with 20 Reference Frames for   

Simulated Data .......................................................................................................... 78 

Figure 40 Key value obtained for each Data file with 25 Reference Frames for   

Simulated Data .......................................................................................................... 78 

Figure 41 Execution Time vs ReferenceFrames count & DataFile count for            

Vertical movement of the Device ............................................................................. 79 

Figure 42 Key value obtained for each Data file with 5 Reference Frames for        

Vertical movement of the Device ............................................................................. 80 

Figure 43 Key value obtained for each Data file with 10 Reference Frames for       

Vertical movement of the Device ............................................................................. 80 

Figure 44 Key value obtained for each Data file with 15 Reference Frames for      

Vertical movement of the Device ............................................................................. 81 

Figure 45 Key value obtained for each Data file with 20 Reference Frames for      

Vertical movement of the Device ............................................................................. 81 

Figure 46 Key value obtained for each Data file with 25 Reference Frames for       

Vertical movement of the Device ............................................................................. 82 

Figure 47 Execution Time vs ReferenceFrames count & DataFile count when                

the Device is in Idle position .................................................................................... 83 



 

 

viii 

 

Figure 48 Key value obtained for each Data file with 5 Reference Frames when             

the Device is in Idle position .................................................................................... 83 

Figure 49 Key value obtained for each Data file with 10 Reference Frames when           

the Device is in Idle position .................................................................................... 84 

Figure 50 Key value obtained for each Data file with 15 Reference Frames when           

the Device is in Idle position .................................................................................... 84 

Figure 51 Key value obtained for each Data file with 20 Reference Frames when           

the Device is in Idle position .................................................................................... 85 

Figure 52 Key value obtained for each Data file with 25 Reference Frames when          

the Device is in Idle position .................................................................................... 85 

Figure 53 Execution Time vs ReferenceFrames count & DataFile count when                 

the Device is in trouser pocket while walking .......................................................... 86 

Figure 54 Key value obtained for each Data file with 5 Reference Frames when              

the Device is in trouser pocket while walking .......................................................... 87 

Figure 55 Key value obtained for each Data file with 10 Reference Frames when                  

the Device is in trouser pocket while walking .......................................................... 87 

Figure 56 Key value obtained for each Data file with 15 Reference Frames when            

the Device is in trouser pocket while walking .......................................................... 88 

Figure 57 Key value obtained for each Data file with 20 Reference Frames when             

the Device is in trouser pocket while walking .......................................................... 88 

Figure 58 Key value obtained for each Data file with 25 Reference Frames when          

the Device is in trouser pocket while walking .......................................................... 89 

Figure 59 Key value obtained with 5 Reference Frames when the Device is in               

trouser pocket while in elevator ................................................................................ 90 

Figure 60 Key value obtained with 10 Reference Frames when the Device is in            

trouser pocket while in elevator ................................................................................ 90 

Figure 61 Key value obtained with 15 Reference Frames when the Device is in       

trouser pocket while in elevator ................................................................................ 91 

Figure 62 Key value obtained 20 Reference Frames when the Device is in               

trouser pocket while in elevator ................................................................................ 91 

Figure 63 Key value obtained with 25 Reference Frames. ............................................... 92 



 

 

ix 

 

Figure 64 Key value obtained with 5 Reference Frames when the Device is in          

trouser pocket while walking in stairs ...................................................................... 93 

Figure 65 Key value obtained with 10 Reference Frames when the Device is in           

trouser pocket while walking in stairs ...................................................................... 93 

Figure 66 Key value obtained with 15 Reference Frames when the Device is in             

trouser pocket while walking in stairs ...................................................................... 94 

Figure 67 Key value obtained 20 Reference Frames when the Device is in                 

trouser pocket while walking in stairs ...................................................................... 94 

Figure 68 Key value obtained with 25 Reference Frames when the Device is in        

trouser pocket while walking in stairs ...................................................................... 95 

Figure 69 Key value obtained with 5 Reference Frames when the Device is in          

trouser pocket while moving in vehicle .................................................................... 96 

Figure 70 Key value obtained with 10 Reference Frames when the Device is in        

trouser pocket while moving in vehicle .................................................................... 96 

Figure 71 Key value obtained with 15 Reference Frames when the Device is in        

trouser pocket while moving in vehicle .................................................................... 97 

Figure 72 Key value obtained 20 Reference Frames when the Device is in                    

trouser pocket while moving in vehicle .................................................................... 97 

Figure 73 Key value obtained with 25 Reference Frames when the Device is in               

trouser pocket while moving in vehicle .................................................................... 98 

Figure 74 Scyther configuration settings. ....................................................................... 100 

Figure 75 Attacks on Diffie Hellman.............................................................................. 101 

Figure 76 ‘Ta’ compromised .......................................................................................... 101 

Figure 77 ‘Tb’ compromised .......................................................................................... 102 

Figure 78 Scyther output for Registration Phase. ........................................................... 102 

Figure 79 Scyther output for Data Transfer Phase. ......................................................... 103 

Figure 80 CPU up-time (in milliseconds) ....................................................................... 104 

Figure 81 CPU process time (in millisec) ....................................................................... 105 

Figure 82 RAM usage (in bytes) ..................................................................................... 105 

Figure 83 Prevention of MITM using the Proposed Approach ...................................... 109 



 

 

x 

 

Figure 84 Key value obtained with 5 Reference Frames for 5 DataFiles for          

Simulated Data ........................................................................................................ 121 

Figure 85 Key value obtained with 5 Reference Frames for 10 DataFiles for                

Simulated Data ........................................................................................................ 121 

Figure 86 Key value obtained with 5 Reference Frames for 15 DataFiles for              

Simulated Data ........................................................................................................ 121 

Figure 87 Key value obtained with 5 Reference Frames for 20 DataFiles for            

Simulated Data ........................................................................................................ 122 

Figure 88 Key value obtained with 5 Reference Frames for 25 DataFiles for        

Simulated Data ........................................................................................................ 122 

Figure 89 Key value obtained with 5 Reference Frames for 50 DataFiles for             

Simulated Data ........................................................................................................ 122 

Figure 90 Key value obtained with 10 Reference Frames for 5 DataFiles for            

Simulated Data ........................................................................................................ 123 

Figure 91 Key value obtained with 10 Reference Frames for 10 DataFiles for           

Simulated Data ........................................................................................................ 123 

Figure 92 Key value obtained with 10 Reference Frames for 15 DataFiles for        

Simulated Data ........................................................................................................ 123 

Figure 93 Key value obtained with 10 Reference Frames for 20 DataFiles for             

Simulated Data ........................................................................................................ 124 

Figure 94 Key value obtained with 10 Reference Frames for 25 DataFiles for       

Simulated Data ........................................................................................................ 124 

Figure 95 Key value obtained with 10 Reference Frames for 50 DataFiles for          

Simulated Data ........................................................................................................ 124 

Figure 96 Key value obtained with 15 Reference Frames for 5 DataFiles for         

Simulated Data ........................................................................................................ 125 

Figure 97 Key value obtained with 15 Reference Frames for 10 DataFiles for            

Simulated Data ........................................................................................................ 125 

Figure 98 Key value obtained with 15 Reference Frames for 15 DataFiles for        

Simulated Data ........................................................................................................ 125 



 

 

xi 

 

Figure 99 Key value obtained with 15 Reference Frames for 20 DataFiles for      

Simulated Data ........................................................................................................ 126 

Figure 100 Key value obtained with 15 Reference Frames for 25 DataFiles for        

Simulated Data ........................................................................................................ 126 

Figure 101 Key value obtained with 15 Reference Frames for 50 DataFiles for      

Simulated Data ........................................................................................................ 126 

Figure 102 Key value obtained with 20 Reference Frames for 5 DataFiles for          

Simulated Data ........................................................................................................ 127 

Figure 103 Key value obtained with 20 Reference Frames for 10 DataFiles for      

Simulated Data ........................................................................................................ 127 

Figure 104 Key value obtained with 20 Reference Frames for 15 DataFiles for        

Simulated Data ........................................................................................................ 127 

Figure 105 Key value obtained with 20 Reference Frames for 20 DataFiles for      

Simulated Data ........................................................................................................ 128 

Figure 106 Key value obtained with 20 Reference Frames for 25 DataFiles for       

Simulated Data ........................................................................................................ 128 

Figure 107 Key value obtained with 20 Reference Frames for 50 DataFiles for         

Simulated Data ........................................................................................................ 128 

Figure 108 Key value obtained with 25 Reference Frames for 5 DataFiles for      

Simulated Data ........................................................................................................ 129 

Figure 109 Key value obtained with 25 Reference Frames for 10 DataFiles for      

Simulated Data ........................................................................................................ 129 

Figure 110 Key value obtained with 25 Reference Frames for 15 DataFiles for     

Simulated Data ........................................................................................................ 129 

Figure 111 Key value obtained with 25 Reference Frames for 20 DataFiles for       

Simulated Data ........................................................................................................ 130 

Figure 112 Key value obtained with 25 Reference Frames for 25 DataFiles for       

Simulated Data ........................................................................................................ 130 

Figure 113 Key value obtained with 25 Reference Frames for 50 DataFiles for       

Simulated Data ........................................................................................................ 130 



 

 

xii 

 

Figure 114 Key value obtained with 5 Reference Frames for 5 DataFiles for            

Vertical movement of the Device ........................................................................... 131 

Figure 115 Key value obtained with 5 Reference Frames for 10 DataFiles for          

Vertical movement of the Device ........................................................................... 131 

Figure 116 Key value obtained with 5 Reference Frames for 15 DataFiles for          

Vertical movement of the Device. .......................................................................... 131 

Figure 117 Key value obtained with 5 Reference Frames for 20 DataFiles for        

Vertical movement of the Device ........................................................................... 132 

Figure 118 Key value obtained with 5 Reference Frames for 25 DataFiles for         

Vertical movement of the Device ........................................................................... 132 

Figure 119 Key value obtained with 5 Reference Frames for 50 DataFiles for         

Vertical movement of the Device ........................................................................... 132 

Figure 120 Key value obtained with 10 Reference Frames for 5 DataFiles for        

Vertical movement of the Device ........................................................................... 133 

Figure 121 Key value obtained with 10 Reference Frames for 10 DataFiles for       

Vertical movement of the Device ........................................................................... 133 

Figure 122 Key value obtained with 10 Reference Frames for 15 DataFiles for        

Vertical movement of the Device ........................................................................... 133 

Figure 123 Key value obtained with 10 Reference Frames for 20 DataFiles for            

Vertical movement of the Device ........................................................................... 134 

Figure 124 Key value obtained with 10 Reference Frames for 25 DataFiles for            

Vertical movement of the Device ........................................................................... 134 

Figure 125 Key value obtained with 10 Reference Frames for 50 DataFiles for             

Vertical movement of the Device ........................................................................... 134 

Figure 126 Key value obtained with 15 Reference Frames for 5 DataFiles for         

Vertical movement of the Device ........................................................................... 135 

Figure 127 Key value obtained with 15 Reference Frames for 10 DataFiles for           

Vertical movement of the Device ........................................................................... 135 

Figure 128 Key value obtained with 15 Reference Frames for 15 DataFiles for        

Vertical movement of the Device ........................................................................... 135 



 

 

xiii 

 

Figure 129 Key value obtained with 15 Reference Frames for 20 DataFiles for       

Vertical movement of the Device ........................................................................... 136 

Figure 130 Key value obtained with 15 Reference Frames for 25 DataFiles for        

Vertical movement of the Device ........................................................................... 136 

Figure 131 Key value obtained with 15 Reference Frames for 50 DataFiles for      

Vertical movement of the Device ........................................................................... 136 

Figure 132 Key value obtained with 20 Reference Frames for 5 DataFiles for        

Vertical movement of the Device ........................................................................... 137 

Figure 133 Key value obtained with 20 Reference Frames for 10 DataFiles for      

Vertical movement of the Device ........................................................................... 137 

Figure 134 Key value obtained with 20 Reference Frames for 15 DataFiles for       

Vertical movement of the Device ........................................................................... 137 

Figure 135 Key value obtained with 20 Reference Frames for 20 DataFiles for       

Vertical movement of the Device ........................................................................... 138 

Figure 136 Key value obtained with 20 Reference Frames for 25 DataFiles for        

Vertical movement of the Device ........................................................................... 138 

Figure 137 Key value obtained with 20 Reference Frames for 50 DataFiles for       

Vertical movement of the Device ........................................................................... 138 

Figure 138 Key value obtained with 25 Reference Frames for 5 DataFiles for         

Vertical movement of the Device ........................................................................... 139 

Figure 139 Key value obtained with 25 Reference Frames for 10 DataFiles for         

Vertical movement of the Device ........................................................................... 139 

Figure 140 Key value obtained with 25 Reference Frames for 15 DataFiles for           

Vertical movement of the Device ........................................................................... 139 

Figure 141 Key value obtained with 25 Reference Frames for 20 DataFiles for         

Vertical movement of the Device ........................................................................... 140 

Figure 142 Key value obtained with 25 Reference Frames for 25 DataFiles for         

Vertical movement of the Device ........................................................................... 140 

Figure 143 Key value obtained with 25 Reference Frames for 50 DataFiles for        

Vertical movement of the Device ........................................................................... 140 



 

 

xiv 

 

Figure 144 Key value obtained with 5 Reference Frames for 5 DataFiles when               

the Device is in Idle position .................................................................................. 141 

Figure 145 Key value obtained with 5 Reference Frames for 10 DataFiles when              

the Device is in Idle position .................................................................................. 141 

Figure 146 Key value obtained with 5 Reference Frames for 15 DataFiles when            

the Device is in Idle position .................................................................................. 141 

Figure 147 Key value obtained with 5 Reference Frames for 20 DataFiles when                  

the Device is in Idle position .................................................................................. 142 

Figure 148 Key value obtained with 5 Reference Frames for 25 DataFiles when            

the Device is in Idle position .................................................................................. 142 

Figure 149 Key value obtained with 5 Reference Frames for 50 DataFiles when              

the Device is in Idle position .................................................................................. 142 

Figure 150 Key value obtained with 10 Reference Frames for 5 DataFiles when            

the Device is in Idle position .................................................................................. 143 

Figure 151 Key value obtained with 10 Reference Frames for 10 DataFiles when              

the Device is in Idle position .................................................................................. 143 

Figure 152 Key value obtained with 10 Reference Frames for 15 DataFiles when           

the Device is in Idle position .................................................................................. 143 

Figure 153 Key value obtained with 10 Reference Frames for 20 DataFiles when                 

the Device is in Idle position .................................................................................. 144 

Figure 154 Key value obtained with 10 Reference Frames for 25 DataFiles when          

the Device is in Idle position .................................................................................. 144 

Figure 155 Key value obtained with 10 Reference Frames for 50 DataFiles when           

the Device is in Idle position .................................................................................. 144 

Figure 156 Key value obtained with 15 Reference Frames for 5 DataFiles when               

the Device is in Idle position .................................................................................. 145 

Figure 157 Key value obtained with 15 Reference Frames for 10 DataFiles when             

the Device is in Idle position .................................................................................. 145 

Figure 158 Key value obtained with 15 Reference Frames for 15 DataFiles when            

the Device is in Idle position .................................................................................. 145 



 

 

xv 

 

Figure 159 Key value obtained with 15 Reference Frames for 20 DataFiles when           

the Device is in Idle position .................................................................................. 146 

Figure 160 Key value obtained with 15 Reference Frames for 25 DataFiles when            

the Device is in Idle position .................................................................................. 146 

Figure 161 Key value obtained with 15 Reference Frames for 50 DataFiles when           

the Device is in Idle position .................................................................................. 146 

Figure 162 Key value obtained with 20 Reference Frames for 5 DataFiles when             

the Device is in Idle position .................................................................................. 147 

Figure 163 Key value obtained with 20 Reference Frames for 10 DataFiles when              

the Device is in Idle position .................................................................................. 147 

Figure 164 Key value obtained with 20 Reference Frames for 15 DataFiles when               

the Device is in Idle position .................................................................................. 147 

Figure 165 Key value obtained with 20 Reference Frames for 20 DataFiles when              

the Device is in Idle position .................................................................................. 148 

Figure 166 Key value obtained with 20 Reference Frames for 25 DataFiles when                   

the Device is in Idle position .................................................................................. 148 

Figure 167 Key value obtained with 20 Reference Frames for 50 DataFiles when               

the Device is in Idle position .................................................................................. 148 

Figure 168 Key value obtained with 25 Reference Frames for 5 DataFiles when               

the Device is in Idle position .................................................................................. 149 

Figure 169 Key value obtained with 25 Reference Frames for 10 DataFiles when                 

the Device is in Idle position .................................................................................. 149 

Figure 170 Key value obtained with 25 Reference Frames for 15 DataFiles when              

the Device is in Idle position .................................................................................. 149 

Figure 171 Key value obtained with 25 Reference Frames for 20 DataFiles when                  

the Device is in Idle position .................................................................................. 150 

Figure 172 Key value obtained with 25 Reference Frames for 25 DataFiles when                 

the Device is in Idle position .................................................................................. 150 

Figure 173 Key value obtained with 25 Reference Frames for 50 DataFiles when             

the Device is in Idle position .................................................................................. 150 



 

 

xvi 

 

Figure 174 Key value obtained with 5 Reference Frames for 5 DataFiles when                  

the Device is in trouser pocket while walking ........................................................ 151 

Figure 175 Key value obtained with 5 Reference Frames for 10 DataFiles when                     

the Device is in trouser pocket while walking ........................................................ 151 

Figure 176 Key value obtained with 5 Reference Frames for 15 DataFiles when                    

the Device is in trouser pocket while walking ........................................................ 151 

Figure 177 Key value obtained with 5 Reference Frames for 20 DataFiles when                      

the Device is in trouser pocket while walking ........................................................ 152 

Figure 178 Key value obtained with 5 Reference Frames for 25 DataFiles when                     

the Device is in trouser pocket while walking ........................................................ 152 

Figure 179 Key value obtained with 5 Reference Frames for 50 DataFiles when                 

the Device is in trouser pocket while walking ........................................................ 152 

Figure 180 Key value obtained with 10 Reference Frames for 5 DataFiles when                  

the Device is in trouser pocket while walking ........................................................ 153 

Figure 181 Key value obtained with 10 Reference Frames for 10 DataFiles when                   

the Device is in trouser pocket while walking ........................................................ 153 

Figure 182 Key value obtained with 10 Reference Frames for 15 DataFiles when          

the Device is in trouser pocket while walking ........................................................ 153 

Figure 183 Key value obtained with 10 Reference Frames for 20 DataFiles when             

the Device is in trouser pocket while walking ........................................................ 154 

Figure 184 Key value obtained with 10 Reference Frames for 25 DataFiles when           

the Device is in trouser pocket while walking ........................................................ 154 

Figure 185 Key value obtained with 10 Reference Frames for 50 DataFiles when               

the Device is in trouser pocket while walking ........................................................ 154 

Figure 186 Key value obtained with 15 Reference Frames for 5 DataFiles when             

the Device is in trouser pocket while walking ........................................................ 155 

Figure 187 Key value obtained with 15 Reference Frames for 10 DataFiles when            

the Device is in trouser pocket while walking ........................................................ 155 

Figure 188 Key value obtained with 15 Reference Frames for 15 DataFiles when              

the Device is in trouser pocket while walking ........................................................ 155 



 

 

xvii 

 

Figure 189 Key value obtained with 15 Reference Frames for 20 DataFiles when          

the Device is in trouser pocket while walking ........................................................ 156 

Figure 190 Key value obtained with 15 Reference Frames for 25 DataFiles when              

the Device is in trouser pocket while walking ........................................................ 156 

Figure 191 Key value obtained with 15 Reference Frames for 50 DataFiles when          

the Device is in trouser pocket while walking ........................................................ 156 

Figure 192 Key value obtained with 20 Reference Frames for 5 DataFiles when            

the Device is in trouser pocket while walking ........................................................ 157 

Figure 193 Key value obtained with 20 Reference Frames for 10 DataFiles when                

the Device is in trouser pocket while walking ........................................................ 157 

Figure 194 Key value obtained with 20 Reference Frames for 15 DataFiles when                  

the Device is in trouser pocket while walking ........................................................ 157 

Figure 195 Key value obtained with 20 Reference Frames for 20 DataFiles when               

the Device is in trouser pocket while walking ........................................................ 158 

Figure 196 Key value obtained with 20 Reference Frames for 25 DataFiles when              

the Device is in trouser pocket while walking ........................................................ 158 

Figure 197 Key value obtained with 20 Reference Frames for 50 DataFiles when              

the Device is in trouser pocket while walking ........................................................ 158 

Figure 198 Key value obtained with 25 Reference Frames for 5 DataFiles when                

the Device is in trouser pocket while walking ........................................................ 159 

Figure 199 Key value obtained with 25 Reference Frames for 10 DataFiles when                    

the Device is in trouser pocket while walking ........................................................ 159 

Figure 200 Key value obtained with 25 Reference Frames for 15 DataFiles when                

the Device is in trouser pocket while walking ........................................................ 159 

Figure 201 Key value obtained with 25 Reference Frames for 20 DataFiles when             

the Device is in trouser pocket while walking ........................................................ 160 

Figure 202 Key value obtained with 25 Reference Frames for 25 DataFiles when             

the Device is in trouser pocket while walking ........................................................ 160 

Figure 203 Key value obtained with 25 Reference Frames for 50 DataFiles when            

the Device is in trouser pocket while walking ........................................................ 160 

 



 

 

xviii 

 

 

 

 

 

 

 

LIST OF TABLES 
 

Table 1 Time taken to brute force the key ........................................................................ 12 

Table 2 Development environment for the proposed approach ........................................ 52 

Table 3 Platform Specifications ........................................................................................ 53 

Table 4 Application development environment specifications ......................................... 55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 

Smartphones and Tabloids are becoming the digital entity of identification for every 

individual. Their portability and programmability have made them a juncture of endless 

applications. Apart from the numerous gaming apps that are available, applications 

especially in the fields of health and fitness, and finance often require the data to be 

transferred to a remote server. Manipulation of that data by a hacker, such as by man in the 

middle (MITM) attacks can lead to many undesired outcomes. Therefore, secure data 

transfer is critical in many applications. This research work presents a new variant of the 

Diffie-Hellman key agreement scheme that uses dynamically changing sensor data to 

facilitate continuous key updates. Our scheme ensures mutual authentication and mitigates 

MITM attacks with minimal need for public key infrastructure (PKI). We also propose an 

access control mechanism that protects data recorded by our application on the phone in 

case of physical attacks. We have tested the randomness of the keys generated using 

various real time use-cases. There were no noticeable patterns of key generation or key 

sequences. We have also evaluated our scheme using a security protocol analyzer tool, 

‘Scyther’. Our test results have shown that the proposed key agreement scheme is efficient 

in mitigating MITM attacks. 

 

 



 

 

xx 

 

 

 

 

 

 

 

LIST OF ABBREVIATIONS USED 

 

MITM  Man In The Middle 

PKI  Public Key Infrastructure 

DH  Diffie Hellman 

ECDH  Elliptic Curve Diffie Hellman 

NBS  National Bureau of Standards 

PUF  Physically Unclonable Function 

JVM  Java Virtual Machine 

STS  Station to Station Protocol 

RSA  Rivest Shamir Adleman 

DoS  Denial of Service 

 

 



 

 

1 

 

CHAPTER 1 INTRODUCTION 

We begin the journey through our thesis with this chapter wherein we provide a brief 

introduction to the various terms used in this work that follows later on. We then present 

the overview of the proposed approach followed by the gist of the journey that lies ahead. 

1.1  BRIEF INTRODUCTION OF TERMS AND CONCEPTS 

1.1.1  Sensors & Smartphones  

 

Sensors have become an integral part of everyone’s life in today’s world. Apart from the 

body sensors which are widely used in health monitoring needs, there are sensors imbibed 

into various other devices as well [66]. For instance, they are present in vehicles for 

collision detection, in smartphones for activities such as location detection, orientation 

detection etc., in wrist watches for tracking the user activities such as running, jogging, 

pulse etc. The presence of sensors into the devices, which have become an addictive 

necessity, opened up a plethora of scenarios where it can be used. The health care 

applications, for example, make use of the sensors manifested in the smartphone and smart 

watches to constantly monitor the patients’ health conditions remotely and act in advance 

in-case of unanticipated panic attacks. This not only helps in responding at the dire time of 

need but also increases the chance of saving the person’s life. 

 

At the same time, Smartphones are becoming more and more pervasive in everyone’s life. 

The number of smartphone devices sold has drastically increased over the years depicting 

its expanse into every person’s life [1]. This led to the development of applications which 

span its wings into every known corner of our daily routine life. There are tons of 

applications running on the smartphones and tabloids with applications ranging from a 

simple calculator to applications for playing sophisticated games. Programming languages 

such as ‘Salesforce’ allows its user to write and debug the code on their smartphones which 

are later compiled & executed on the cloud server [2].  



 

 

2 

 

 

Figure 1 Evolution of mobile phones [Adapted from 60] 

 

Most of the applications require to transfer sensitive data to and fro the device while 

communicating with the remote server. For instance, Mobile Banking applications 

authenticate the user using a set of username and password. These credentials are verified 

in the server and then the concerned access is provided to the user. Thus there is an 

exchange of the username and the password, though not in raw format, over the 

communication channel. This data if intercepted and decoded, can lead to disastrous results 

such as undesired transactions, change of password etc. Few applications which require the 

use of file transfers are Dropbox and Google Drive which store files in remote servers 

and/or remote computers and use the AES encryption in the tunnel [3]. AES being a 

symmetric key requires for a method to transfer the key to the other party in order for 

successful encryption and decryption to take place. This calls for extra overhead and 

consumption of extra ounce of energy during the communication [4]. Thus these algorithms 

which offer top of the state security are high in computation and complexity. The devices 

such as Smartphones, smart watches etc., being resource constrained, find it challenging to 

employ such secure algorithms.  

 

 

 



 

 

3 

 

1.1.2  RSA  

 

RSA was a replacement for the then lesser secure National Bureau of Standards (NBS) 

algorithm. It had a fine layout for the PKI. In RSA, the keys used for encryption were 

public but the keys needed for the decryption process were private i.e. not publicly 

available. Hence this boils down to the point that only the user who is in possession of the 

decryption could decrypt the contents of the message, ensuring the confidentiality aspect. 

These keys were devised in such a way that they were not easily deduced from the publicly 

available encryption keys. The key pair also helped in generating the Digital Signature 

which in turn provided authentication. Thus RSA found its role in electronic transactions, 

especially the electronic fund transaction where the authenticity and the integrity of the 

message being transferred was required. [7]  

 

1.1.3  Diffie Hellman Key Exchange Algorithm  

 

Diffie Hellman Key Exchange algorithm provided a great solution to the key distribution 

problem in the PKI. It had a technique where the parties can securely exchange the keys 

which can later be used for encryption of the contents. This secure exchange was ensured 

by limiting the exchange of the secret values used for the generation of the keys [5]. Since 

then many variants of the DH algorithm have come into the picture such as ECDH. But 

Menezes et.al [6] showed the possibility of the occurrence of the MITM attack in the DH 

algorithm which proved to be a major setback to the algorithm.  

 

In this thesis, a modified Diffie Hellman approach is proposed which aims at automatic 

key generation to minimize the probability of occurrence of the MITM attack in the DH 

algorithm in the smartphone world during its communication with the server or another 

device. Added to that, it also provides the benefit of avoiding replay attacks with the help 

of sequence numbers, provision of Access Control with the help of fingerprint and also 

provides forward & backward secrecy by deleting the key upon reception of an 

acknowledgement from the recipient. 



 

 

4 

 

1.2  BRIEF INTRODUCTION OF THE PROPOSED APPROACH 

 

This research work mainly aims at reducing the probability of MITM and replay attacks 

with the benefit of access control and forward & backward secrecy using a modified Diffie 

Hellman approach in a client-server architecture where the client is a smartphone device. 

The smartphone device communicates with the server via an application. This application 

performs the required functionalities such as fingerprint detection, sensor data collection 

etc. and contributes towards accomplishing the above mentioned approach. 

 

The proposed approach functions in two phases. The registration phase in which the values 

are passed from the smartphone to the server, the data transfer phase in which the data is 

encrypted and then sent to the server. In the entire lifetime of the mobile application, 

registration phase happens only once i.e. during the time of installation of the application 

in the mobile device. It is here, when the required values are collected and sent to the server 

using the RSA algorithm of PKI. From this point on, in every data transfer phase, all the 

keys which are used to encrypt the data, are generated using the values which are being 

exchanged as a part of the message. Hence in short, the registration phase is one time and 

the data transfer phase is repetitive in the proposed approach. 

 

A combination of the biometric and the PUF of the device is used to provide access control. 

The biometric authentication, for instance, the fingerprint of the user, is used to provide 

access control to that user over the application i.e. if the fingerprint fails to find a match, it 

would not allow the user to access the features of the application, thus preventing him/her 

from using the application. Similarly, the PUF’s of the device are unique in nature. They 

act as the fingerprint of the device [8]. Thus an amalgam of these two features, which are 

unique in their own way, are used in this approach to provide access control mechanism. 

In addition, at the end of each data transfer, two-way acknowledgement is used to ensure 

the complete reception of the message at the recipient end. Upon reception of the 

acknowledgments, the keys which were used for encrypting the data are deleted to ensure 

the forward and backward secrecy along with the assurance that no key can be extracted 

from the device in case of theft. During the data transfer, sequence numbers are used to 



 

 

5 

 

prevent the replay attacks from occurring. Sequence numbers are sent as a part of the 

message which ensures that no data packet is replayed. If the server finds a data packet 

with a sequence number which is not a successor to the one it already received, it simply 

drops that particular packet. 

 

The proposed approach generates the keys it uses for the encryption of the data by selecting 

the sensor values in a random manner. It forms a set of frames each comprising of the 

sensor values as its fields. Then a random field from a random frame is selected and is then 

used for the key generation. Since sensors have the capability to capture even the slightest 

fluctuations, predicting the precise value is relatively hard. This makes it suitable for 

increasing the unpredictability of the keys being generated thus offering the security we 

desire against brute-force and other similar attacks which in turn reduces the probability of 

occurrence of MITM in Diffie Hellman.  

 

The proposed key generation scheme can be applied to any authentication scheme. It need 

not necessarily be restricted to Diffie Hellman. This research work considers Diffie 

Hellman as an instance to validate the proposed approach towards key generation. As long 

as there are sensors or any dynamically fluctuating values such as RSSI values from Access 

Points, power readings from smart meters in a SmartGrid etc. are available, the proposed 

technique can be applied. The keys thus generated can be used to encrypt the data in any 

other algorithm such as RSA, Advanced Encryption Standard (AES). Since the main focus 

of this research work is to prevent MITM in the Diffie Hellman approach, hence we have 

limited the implementation and the testing scenarios of this thesis to Diffie Hellman only.  

1.2  OUTLINE OF THE THESIS 

 

The organization of the rest of the thesis is as follows – an overview of the PKI, Diffie 

Hellman, Symmetric & Asymmetric Keys, Smartphone world, Biometric authentication, 

PUF factors, Sensors in the Smartphones and their functioning is provided in Chapter 2. 

We then provide a detailed discussion in Chapter 3 on the various ways the sensor data 

have been used, different techniques implemented for the purpose of encryption along with 



 

 

6 

 

the existing approaches for resolving and /or mitigating the attacks of Diffie Hellman. 

Chapter 4 discusses the proposed methodology in detail which is followed by a thorough 

explanation of the implementation aspect in Chapter 5. Chapter 5 also discusses about the 

technical specification which influenced the research work. We present the in-depth 

description of the experiments we conducted and present the evaluated results supporting 

our proposed approach in Chapter 6. Chapter 7 marks the conclusion of the thesis where 

we present the limitations and possible enhancements to the proposed approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

7 

 

CHAPTER 2 BACKGROUND 

 In this chapter, a brief overview of the terms and concepts used for the proposed approach 

are enlisted and explained. Then a short discussion of the existing problems is presented. 

In short, this chapter, aims at throwing light on the background of the thesis. 

2.1  SENSORS 

Sensors are the hardware components which detect even the slightest of the variations in 

the environment surrounding it. The detected change is the output of this sensor. A sensor 

detects the change in the form of electrical signals for the environment it is designed for, 

and presents the difference it observes as output, in different forms. For instance, in an 

accelerometer sensor, out of the numerous parts it consists, capacitance sensor and 

piezoelectric effect are the important ones. Microscopic crystal structures are used in the 

piezoelectric effect, which are stressed when the sensor hardware accelerates. This stress 

is converted into Voltage which is interpreted to determine orientation and/or velocity. The 

capacitance sensor observes for changes between the capacitances amongst the 

microstructures which is positioned next to this sensor. The detected change in the 

capacitance due to an accelerative force experienced by the microstructures, is translated 

to voltage for interpretation. [9] 

 

 

Figure 2 Sensors in a smartphone [64] 

 



 

 

8 

 

Sensors are being used in almost every device . For instance, the mobile devices are having 

sensors which make the user experience with the device better. The light sensor adjusts the 

screen brightness automatically, which reduces the need for the user to increase/decrease 

the screen brightness as and when he enters into a relatively dark/bright environment. 

Similarly, the accelerometer sensor available in the laptops turns off the hard drive as soon 

as it detects a sudden free fall. This prevents the reading heads from hitting the hard drive 

platter and damaging it. Fitbits are designed with sensors which help in monitoring the 

health of the user by detecting the fluctuations in its sensors and translating them into the 

number of steps the user has taken, amount of time spent in running etc. [10] 

2.2  PHYSICALLY UNCLONABLE FUNCTIONS (PUF) 

 

The PUF are the minute variations that appear in the device hardware due to the change in 

the temperature of the manufacturing environment, power transmission etc. In short, it acts 

as the fingerprint for the device. No two devices have the same PUF values. The PUF of a 

device is relatively easy to derive by the device at a particular instant of time but hard to 

predict from outside. 

 

At the time of manufacturing of the device, its hardware components such as its Integrated 

Circuits (IC) are subjected to various electrical and/or physical variations such as electrical 

interferences, change in temperature, voltage supply etc. These affect the microstructure of 

the device which makes it virtually Unclonable and unpredictable. Hence for evaluation, a 

stimulus is applied to the microstructure whose unpredictable reaction is taken and stored 

as a value. These stimulus reactions change every time it is applied as for each application 

of the stimulus, the influencing factors such as the voltage, interferences etc. change as 

well. 

 

Several cryptographic and authentication based algorithms have used PUF for obtaining 

the desired security. They implement a challenge-response pair which help them 

authenticate each other. [8] Some have used them for key generation where the delay 

characteristics are used for generating the keys needed for encryption. [11] 



 

 

9 

 

2.3  KEY ALGORITHMS FOR CRYPTOGRAPHY 

 

All the data which is sent over the communication channel has to be encrypted in order to 

prevent a hacker from interpreting the intercepted message. Encryption is a technique 

where the plain message is converted into an un-identifiable format. This encrypted data, 

can only be decrypted with the proper set of key/s. There are two types of Key algorithms. 

Symmetric Key algorithms and Asymmetric Key algorithms. 

 

 

Figure 3 a) 

Symmetric Key 

Encryption 

Technique 

 

Figure 3 b) 

Asymmetric 

Key Encryption 

Technique 

Figure 3 Key Encryption Techniques [61] 

 

Symmetric Key algorithms use the same key/s for encrypting and decrypting the messages. 

These keys, in practice, represent a shared secret between the two communicating entities. 

The two parties, exchange the secret key before commencing the data transfer. The sender 

encrypts the data to be sent using the shared key and sends it into the communication 

channel. The receiver upon reception, decrypts it using the shared key. This shared secret 

key is usually used when the parties want to maintain a private session. The only drawback 

here is the need for both the parties to securely exchange the shared secret and the need to 



 

 

10 

 

access to the shared secret. Figure 3a illustrates the process behind symmetric key 

encryption. Symmetric ciphers can be used as Block ciphers or as Stream ciphers. Block 

ciphers encrypts blocks of bits while Stream ciphers encrypts bit by bit. [12] 

 

Asymmetric Key algorithms, also termed as Public Key Cryptography, uses pairs of keys. 

Public keys, which is known to every entity involved in the network and Private keys, 

which is known only to the entity who owns it. Here, the sender encrypts the data using the 

public key of the receiver and sends it into the communication channel. The receiver, upon 

reception of the encrypted message, decrypts it using its own private key. It is the level of 

difficulty for a private key to be deduced or generated from its public key, that decides the 

strength of the public key cryptography. Thus advertising the public key does not risk the 

security of the algorithm but leak of the private key of an entity, does compromise the 

session. Hence, asymmetric key algorithms, does not have the need to exchange shared 

secrets over a secure channel, like the Symmetric algorithms. But these algorithms are 

computationally complex and hence consume relatively more resource than the counterpart 

symmetric algorithms. It is for this reason that the encryption is performed on small blocks 

of data instead of encrypting the entire chunk of the data which is to be transmitted. Figure 

3b illustrates the process behind asymmetric key encryption. 

 

Asymmetric key algorithms are also used in Digital Signature generation. Digital 

signatures help authenticating the messages. The actual message is hashed initially to 

generate a ‘digest’. This digest is then encrypted with the private key of the sender to 

produce the Digital Signature. The receiver upon reception of the digital signature along 

with the encrypted message, decrypts the digital signature using the public key of the 

sender. It then hashes the message it obtained after decrypting the encrypted message with 

its private key. If the former match with the latter, the sender is authenticated. Since hash 

is a one-way function, although it is possible to decrypt with the sender’s public key, the 

interceptor cannot deduce the actual message from it nor can he alter the signature with 

any other digest. SHA-1, SHA-2, MD5 etc. are some of the hashing algorithms which are 

widely put into use. The process is briefly illustrated in Figure 4. 

 



 

 

11 

 

 

Figure 4 Digital Signature Process [61] 

2.4  RSA 

 

Ron Rivest, Adi Shamir and Leonard Adleman proposed an algorithm in 1978 which 

implemented Public Key cryptosystem along with Digital Signatures, as a substitute to the 

then less secure NBS algorithm. RSA was motivated by Diffie Hellman. RSA possess 

public key cryptosystems i.e. this algorithm does not need a separate courier to transfer the 

secret key and digital signature i.e. receiver ensures that the message originated from the 

sender. Each parties have their own private and public keys using which the formerly 

mentioned public key cryptosystems and digital signature ideas are accomplished. 

 

The sender ‘Alice’ encrypts the message to be sent to the Receiver ‘Bob’, using Bob’s 

public key. Bob upon reception of the encrypted message, decrypts it using his own private 

key. The steps involved in RSA algorithm is as follows; 

 Consider two large prime numbers ‘p’, ‘q’ and calculate their product as ‘n’ i.e. 

 𝑛 = 𝑝 ∗ 𝑞 

 Choose an integer ‘e’ such that it is less than ‘n’ and is relatively prime to                  

 (p – 1)(q – 1) i.e. ‘e’ and (p – 1)(q – 1) must not have a common factor. 

 Find an integer ‘d’ such that 

(𝑒 ∗ 𝑑) 𝑚𝑜𝑑 ((𝑝 − 1)(𝑞 − 1)) = 1 

 Thus, PUBLIC KEY (e, n) & PRIVATE KEY (d, n) is generated. 

 The Encryption formula for message ‘M’ is  

𝐶 =  𝑀𝑒  𝑚𝑜𝑑 𝑛 



 

 

12 

 

 The Decryption formula for encrypted message ‘C’ is  

𝑀 =  𝐶𝑒 𝑚𝑜𝑑 𝑛 

To show how secure the algorithm is, the authors tried to obtain the keys as a cryptanalyst 

would attempt. They haven’t considered the scenario where an intruder might attempt to 

steal the key. The assumption they made was that the time taken by Schroeppel factoring 

algorithm to compute is one microsecond. Based on the assumption they presented the 

following [7]: 

 

DIGITS Number Of Operations TIME 

50 1.4 x 1010 3.9 hours 

75 9.0 x 1012 104 days 

100 2.3 x 1015 74 years 

200 1.2 x 1023 3.8 x 109 years 

300 1.5 x 1029 4.9 x 1015 years 

500 1.3 x 1039 4.2 x 1025 years 

Table 1 Time taken to brute force the key [7] 

 

Thus the authors recommended a key size of ‘n’ as 200 digits long. The key length can be 

varied based on the desired speed of encryption versus desired security. [7] 

2.5  DIFFIE HELLMAN 

Diffie Hellman was first published in 1976 by Whitfield Diffie and Martin E. Hellman but 

was conceptualized by Ralph Merkle [13]. It is used to provide forward secrecy in 

Transport Layer Security. Forward security means that; with the compromise of the long 

term keys does not compromise the keys used in the previous sessions i.e. the encrypted 

messages sent in the past cannot be decrypted. Thus Diffie Hellman algorithm is a method 

for secure exchange of the keys over public channel. 

 

Diffie Hellman helps two parties, who have no prior knowledge of each other, to establish 

the secret key using which the messages are encrypted and decrypted. But here a secure 

physical channel is required for the first exchange of keys. [14] Diffie Hellman is based on 



 

 

13 

 

discrete logarithm problem where the original implementation of the algorithm used the 

cyclic multiplicative groups of integers mod p, where p is a prime number and g is a 

relatively root modulo p. According to Kirchhoff principle, g and p are known by the 

attackers and are believed not to be secret. Thus the idea was to make two parties 

communicate each other without having the parties know each other in advance. On the 

whole, cyclic multiplicative group carries the following property [13] 

(𝑔𝑎)𝑏 𝑚𝑜𝑑 (𝑝) = (𝑔𝑏)𝑎 𝑚𝑜𝑑 (𝑝) 

Let us consider that two parties, ‘Alice’ and ‘Bob’ initiate a session and implement Diffie 

Hellman algorithm for their communication. They securely exchange the values of ‘p’, ‘g’. 

The steps involved in the key generation of Diffie Hellman at each party is as follows: 

 After both the parties agree to use two values ‘p’, ‘g’, Alice randomly selects a 

number ‘Sa’. The ‘Sa’ is not revealed in public and is known only to Alice herself.  

 Then she calculates the value of ‘Ta’ using the following formula  

𝑇𝑎 =  𝑔𝑆𝑎  𝑚𝑜𝑑 𝑝 

 Alice then transmits ‘Ta’ to Bob. 

 Bob, on the other hand, selects a random number ‘Sb’ and calculates ‘Tb’ using 

the following formula  

𝑇𝑏 =  𝑔𝑆𝑏 𝑚𝑜𝑑 𝑝 

 Bob then transmits the calculated ‘Tb’ value to Alice. 

 Upon reception of ‘Ta’ by Bob and ‘Tb’ by Alice, each of the parties generate the 

Secret key using the following formula  

𝐴𝑡 𝐵𝑜𝑏′𝑠 𝐸𝑛𝑑;      𝐾𝑒𝑦 =  𝑇𝑎𝑆𝑏 𝑚𝑜𝑑 𝑝 

𝐴𝑡 𝐴𝑙𝑖𝑐𝑒′𝑠 𝐸𝑛𝑑:    𝐾𝑒𝑦 =  𝑇𝑏𝑆𝑎 𝑚𝑜𝑑 𝑝 

 Using the Secret Key obtained, the data is encrypted and/or decrypted. 

Figure 5 shows Diffie Hellman in action. 

 



 

 

14 

 

 
Figure 5 Diffie Hellman Algorithm [Adapted from 15]. 

 

In the entire method, the values ‘Sa’ and ‘Sb’ are known only to the respective entities. 

The values ‘Ta’ and ‘Tb’ are sent to the communicating parties. Thus, even if the hacker 

lays his hand on these values, he would not be able to generate the ‘Key’ as for the 

generation of the key, the ‘Sa’ or ‘Sb’ value is needed which is known only to the owner. 

If we consider, ‘Rob’ as the eavesdropper, then Figure 6 displays the knowledge of the 

values by each entity. The ‘Red’ colored ones are the known values and the values with 

‘Blue’ color are not known by that particular party.  

 
Figure 6 Known and unknown entities of Diffie Hellman amongst parties  

[Adapted from 15] 

 

This algorithm is secure against Eavesdropping if ‘g’ is chosen properly and also if the 

group amongst whom the communication is going on, is large. Thus Diffie Hellman is used 



 

 

15 

 

in public key encryption schemes such as ElGamal Encryption, Integrated Encryption 

Scheme etc. RSA in itself is motivated by the works of this algorithm.  Protocols that yearn 

for forward secrecy, use Diffie Hellman since the key generation process is quick and these 

keys can be discarded after each session. [15] 

2.5.1  MITM ATTACK ON DIFFIE HELLMAN 

 

In [14] there is no provision of authenticating the parties involved in the communication. 

This leaves the entire algorithm vulnerable and susceptible to MITM attacks. Let us 

assume, ‘Alice’ and ‘Bob’ wants to communicate and there is an intruder ‘Rob’. The steps 

involved in the attack are as follows. Figure 7 is a pictorial representation of the following 

process. 

 All the three are in possession of ‘p’ and ‘g’. 

 On one hand, Alice selects a random number ‘Sa’ and generates ‘Ta’ using the 

formerly discussed formula. She then sends the ‘Ta’ to Bob. On the other hand, 

Bob selects a random number ‘Sb’ and generates ‘Tb’ and prepares himself to send 

it to Alice. 

 ‘Rob’ captures the packet containing ‘Ta’. Rob then selects two random numbers 

‘Sa1’ & ‘Sb1” and generates ‘Ta1’ & ‘Tb1’. He then sends ‘Tb1’ to Alice and ‘Ta1’ 

to Bob. 

 Alice, upon reception of ‘Tb1’ generates the ‘Key1’ and Bob, upon reception of 

‘Ta1’, responds with ‘Tb’. 

 Rob is now in possession of both ‘Ta’, ‘Tb’ from Alice and Bob respectively. Rob 

then generates the ‘Key1’ for Alice’s communication and upon reception of ‘Tb’ 

from Bob, he generates ‘Key2’ for Bob’s communication. 

 In the meanwhile, Bob generates the ‘Key2’ using the received ‘Ta1’ value.  

 When the data transfer starts, Alice encrypts her message with ‘Key1’ and sends it 

out to the channel which is intercepted by Rob, who decrypts it with ‘Key1’ and 

replaces it with another message after encrypting it with ‘Key2’ and forwards it to 

Bob, who decrypts it with ‘Key2’.  

 



 

 

16 

 

 
Figure 7 MITM in Diffie Hellman [Adapted from 15]. 

 

In this way, the entire session is hijacked by the intruder, who constantly reads each and 

every message that is transferred between Alice and Bob. Both Alice and Bob remain in a 

perception that they are communicating with each where in reality they are actually 

communicating with Rob [15]. 

2.8  SECURITY ISSUES 

 

Pawar et. al [61] and Anwar et.al [62] have presented the various security issue that the 

current existing network faces. They categorize the attacks under two broad categories: 

‘Passive’ and ‘Active’. ‘Passive’ attacks are the ones where the adversary intercepts the 

data transferred in the network, while ‘Active’ attacks are the ones where the adversary 

disrupts the normal functioning of the network by issuing some commands [57]. 

 

Under ‘Passive’ attacks, we have Eavesdropping, Traffic Analysis and Monitoring. In 

Eavesdropping, the adversary would aim to obtain the confidential data from the data 

packets that are available in the communication. In Monitoring, the adversary can read the 

secret or confidential information but cannot alter or modify it in any manner. In Traffic 

Analysis, the adversary makes an attempt to analyze the communication between the 

sender and the receiver. Herein the adversary cannot modify the data available in the 



 

 

17 

 

communication channel but he can analyze the total amount of data being transferred and 

also analyze the communication path where he/she can later launch a Denial of Service 

(DoS). DoS implies to the type of attack which is launched at the Datalink layer, Network 

layer and/or Transport layer. This attack issues commands which inject fake or dummy 

packets into the channel thus disrupting the network facilities. Man In The Middle(MITM) 

is an attack wherein the adversary disguises himself as the other authentic party and 

initiates a communication between the two authentic parties [57] [58]. 

 

Under ‘Active’ attacks, we have Spoofing, Modification, Fabrication, Modification, Denial 

of Service, Wormhole, Sinkhole and Sybil attacks. In Spoofing attack, the malicious node 

presents itself as the other entity forcing the sender to alter his topology. In Modification 

attack, the adversary either alters the contents of the packet or modifies the routing route 

making the sender to transfer packets via a longer path causing the communication delay. 

In Wormhole or the Tunneling attack, the adversary obtains the packet and tunnels it to 

another malicious node wherein the sender perceives that he/she has found a shortest path 

in the network to its destination. In Fabrication attack, the attacker inserts counterfeit 

information into the data or generates false routing messages misleading the 

communicating parties. In Denial of Service attack, the network resources are consumed 

or clogged by sending dummy or fake packets into the communication channel. Sinkhole 

prevents the complete information to be obtained by the base station and Sybil is an attack 

wherein the malicious node connects with other malicious nodes via its secret key and thus 

numerous copies or instances of malicious nodes are ready for an attack [57]. 

2.7  SECURITY GOALS 

 

As with any security research work, this work would be incomplete without the Security 

Goals analysis. Following is a short discussion on the Security goals which act as pillars to 

any Network Security Research work. 

 

Confidentiality, Integrity and Authentication are the three major pillars of the network 

security. By Confidentiality, we refer to the scenario wherein if an illegitimate person 



 

 

18 

 

eavesdrops into the traffic, the collected data packets would yield no information using 

which the eavesdropper could gain knowledge on the key or the data contained within the 

packet. By Integrity, we refer to the scenario wherein the message sent by the sender is 

exactly the same as the message received by the receiver. Both and/or either of the parties 

must identify the change made by any illegitimate person, to the received data packet. By 

Authentication, we refer to the scenario wherein the sender is validated & verified by the 

receiver and vice versa. Both the communicating parties must be able to identify that an 

illegitimate person is trying to enact as the other [63] [64].  

 

The other security goals which also play their vital roles are Non-Repudiation, Forward 

Security, Backward Security, Access Control, Certification and Availability. Non-

Repudiation implies to the situation where the sender cannot deny of the transaction it made 

later on. Forward Security implies to the scenario wherein an illegitimate person should 

not be able to deduce the keys which would be utilized for the upcoming communication 

based on the knowledge of the set of the previously used keys. Backward Security implies 

to the scenario wherein an illegitimate person should not be able to derive the keys which 

was utilized for encrypting the previous messages, based on the set of future keys. Access 

Control defines who can access what and when. It restrains the user to access certain 

features if the device finds the user to be illegitimate. Certification refers wherein a trusted 

third party authenticates the source. Finally, Availability is the scenario wherein only the 

legitimate users are allowed to use the system resources. In short, system resources are 

available only to the legitimate users [64] [63]. 

 

 

 

 

 

 

 

 

 



 

 

19 

 

CHAPTER 3 RELATED WORK 

 

Through this chapter, we make an attempt to present the works of various researchers in 

the fields which in some way or the other, has influenced this thesis. We begin with the 

studies and tests performed on the mobile devices and the sensors concerned to them. Then 

we give a glimpse of the studies performed towards key generation approaches, followed 

by the studies on Diffie Hellman algorithm. We also look into some of the techniques used 

to secure the message in the network with the help of biometrics and other related works. 

We finally conclude with the contribution of the studies and their limitations. 

 

 

Figure 8 Overview of the Related works discussion 

 

3.1  LITERATURE SURVEY ON SMARTPHONE DATA 

 

Here we make an effort to survey through the works of various authors who have utilized 

smartphone and /or sensors for obtaining their objectives. This section is divided as 

illustrated in Figure 9. 



 

 

20 

 

 

Figure 9 Survey on Smartphone Sensors 

 

3.1.1  SMARTPHONE TRAFFIC ANALYSIS 

 

The authors of [16] [17] [18] speak about the traffic dynamics generated from the 

smartphones. They collected the data from the network service providers and analyzed 

them. The devices list included smartphones which run on iOS and Android platforms, 

Ipods and personal computers. They distinguished between the devices based on the header 

information retrieved from the packets. The main objective of these studies were to help 

the network provider manage their resources efficiently based on the analyzed increase or 

decrease of the demand of the network.  

 

Shafiq et. al [16] consider the traffic generated from machines such as asset trackers, 

security cameras, healthcare applications, traffic from smartphones etc. and presents the 

characteristics of the traffic in terms of temporal dynamics, device mobility, application 

usage and network performance. Maier et. al [17] analyzed the device usage from the 

network perspective by studying the packet level data of over 20,000 customers. They used 

Bro NIDS to anonymize, classify data and extract header from them. From their 

observation, they concluded that, DSL lines remained same in each trace but the count of 

the devices increased significantly. They also found that multimedia is the mostly found 



 

 

21 

 

content in HTTP, iPhones & iPods are the most commonly used devices with Safari as 

mostly used browser. Li et. al [18] focused on understanding the user behaviors of three 

mobile platforms- Android, iOS and Windows. The data collected from the big cellular 

network company was analyzed from two aspects; Traffic dynamics and User applications.  

They identified the platform of the mobile devices based on the Type Allocation Code 

(TAC) in the HTTP signatures. They finally concluded that iOS generated maximum 

traffics than Android and Windows. 

 

3.1.2  MALWARE DETECTION & PREVENTION 

 

The authors of [19] [20] [21] [22] present their works on detection and containment of the 

malwares in smartphones. They collected the application data from the device and their 

methodology mainly focused on mapping the signatures and behavior of well-known 

malwares. They developed systems for collecting and analyzing the data. Monitoring, 

detecting the flow of data and then notifying the user is the common strategy. All the 

studies relied mostly on training data and proposed solution for detection and prevention 

of malwares in smartphone devices. 

 

Liu et.al [19] used a Static and Dynamic analysis technique to detect malicious code. In 

static analysis, there is a Black list and a White list detection module which has the 

signatures of the malicious code. Regular expression and key-word matching module helps 

in identifying the malicious code. A decompiling module helps in decoding the application 

bytecode and then it is compared with the lists. If a match is found, then it alerts the user 

else it enters into Dynamic analysis mode where the android system output log is used to 

monitor the sensitive behavior. The collected log is filtered based on the sensitivity of 

information and then that particular log is analyzed for malicious activities. They have 

analyzed 400 applications with a detection rate of 78%. Louk et. al [20] developed 

‘MDTN- Monitoring, Detection, Tracking & Notification’ system which monitors the 

application via signature behavior analysis, detects the malwares and reports them to the 

user. Their application constantly monitors the application activity such as access to 



 

 

22 

 

registry, main memory etc. It detects malware using Anomaly based technique and 

Signature based technique. Upon detection, the system tracks for the source, starting with 

the detected taint or behavior and finally notifies the user.  

 

Burguera et. al [21] proposed a framework for malware detection by collecting traces based 

on crowdsourcing. The framework detected malware based on the application behavior and 

matching it with the data collected from the crowd and another dataset which consist of the 

artificial malware. For collecting the behavior related data from the unlimited real users, 

an application called Crowdroid was developed which monitors Linux kernel system calls 

and send it to the centralized server for processing. Finickel et.al [22] presented a 

methodology for the analysis of application behavior based on the logs collected from the 

android logging system. The log entries are then mapped to bit vectors where each 

dimension is requested permission or action. These vectors are then fed to the Self-

Organizing Maps which is a neural network learning system, to generate the pattern of 

requesting permission and performing actions of the app and then compare that with the 

malicious ones. 

 

3.1.3  USER BEHAVIOR & PATTERNS 

 

Authors in [23] [24] speak about the user behavior and patterns associated with it. In these 

studies, data is either given by the user or is collected from the logs. Different interaction 

techniques and the user behavior are analyzed using the sensor logs.  

 

Hirabe et. al [23] gives an idea on logging all the touch operations, analyzing them and 

visualizing them by collecting them from the OS. The author claims that, using the touch 

patterns of the user, the user behavior can be analyzed and utilized for different purposes. 

These patterns include single/multi touch operations, pinch/zoom operations, pressure 

while touches and the average speed of the user while performing those touches. Tian et. 

al [24] proposes a technique which predicts the route without involving the user to feed in 

the input. GPS sensor data is used and Time Clustering Algorithm for classifying the 



 

 

23 

 

destinations based on pre-stored daily destination behaviors and Trajectory Matching 

Algorithm for matching the current location to the stored locations in order to predict the 

destination is used. Turning Estimate Algorithm helps in storing the location at optimum 

times thus reducing the cost of energy required in processing and translating the co-

ordinates. Linear Regression Algorithm is used to detect a turn and then store the location 

where the turn is made, as a straight streak is not required to store, it is usually a straight 

streak between the turns. Google Map Service is used to show the detailed route and co-

ordinate to map location translation i.e. street name, city name etc. 

 

3.1.4  USER BEHAVIOR PATTERNS 

 

The works in [25] [26] [27] discuss about the user behavior patterns based on the data 

collected from various sensors available in the device. The User behavior includes video 

watching patterns, Mood assessment, Ontological user profile, motion type and battery 

consumption patterns. 

 

Datta et. al [25] present four different techniques to preserve smartphone power 

consumption. Substitution, Suppression, Piggybacking and Adaptation are the four 

techniques which re-assess the need and utility of a particular resource of device and 

recalibrate its usage. A context aware application manages the application with the help of 

algorithms which predicts the next charging opportunity and battery lifetime. The 

automated power construction technique called PowerBooter makes use of sensors to 

record the battery discharge behavior and PowerTutor which displays the power 

consumption by each application. The Batterylogger stores the log of real user’s usage 

time, power consumption, network usage and their patterns is the final module. Based on 

this, they state that the battery usage pattern varies from person to person. Ma et. al [26] 

addresses the mood related mental health problems by proposing MoodMiner, a framework 

for assessing and analyzing mood in daily life. This framework extracts human behavior 

by using mobile phone’s sensor, communication data and assess daily mood.  Mood is 

represented with the aid of three dimensions and four features. Displeasure, tiredness and 



 

 

24 

 

tensity are the three dimensions while location, micro motion, communication frequency 

and activity are the four features. The location is collected using GPS and clustered using 

the K-means algorithm. Micormotion such as user picking up the phone for a few seconds 

and doing nothing useful, are extracted from the accelerometer raw data. Communication 

frequency are based on the call and text messages sent/received by the device. Activity 

includes walking, sitting, etc. which are also collected by the accelerometer data. Based on 

the previous mood and the accumulated features, the current mood is determined. Bedogni 

et. al [27] collected the data from the accelerometer and gyroscope sensors to detect the 

user’s motion type. The authors collected the training data to classify the testing data into 

different motion types. Different classification algorithms were used to classify the training 

data into different motion types. Finally, the motion type recognition algorithm is 

integrated into the mobile application to detect the motion type. 

 

Bo et. al [28] developed a mobile application named SilentSense, which authenticates the 

users without disturbing the user’s operations. The application uses the touch behavior and 

other features such as motion, walking etc. features which can differentiate the owner of 

the device from the guest users. It silently senses the touch behavior and uses SVM to store 

the user touch pattern. For instance; if a guest is using an insensitive information bearing 

app such as a game app then security feature is off and if the guest is using a sensitive 

feature bearing app then security feature is turned on. Gait feature is also recorded in order 

to sense the discrepancies invoked when the actual owner is using the mobile. In short, 

SilentSense app uses the touch pattern, pressure for touches and the gait to authenticate the 

owner and thus assign the level of security to the information. 

3.2  LITERATURE SURVEY ON VARIOUS KEY GENERATION METHODS 

 

The authors of [29-35] discuss on the various ways keys have been generated using the 

Diffie Hellman approach in different fields such as VANETS, mixnets, Relay networks 

etc. They present us the techniques they have adopted to encounter MITM in DH algorithm, 

such as use of random number generator, messages, images etc. 

 



 

 

25 

 

Islam et. al [29] uses images as secret keys rather than using the traditional binary secret 

keys. Letters of the message to be transmitted are translated into their respective 8-bit 

codes. These codes are binary in nature. This 8-bit code is then searched in the image pixel 

values. The coordinates of the location on the image where the match is found, is retrieved 

and stored in a column layout rather than in (x, y) layout. This is sent as the cipher text. 

The receiver will scan the image and locate the pixel which match and then translate to the 

original message. They claim that it is highly secure due to the large key size and conclude 

that the performance of the proposed technique is better than AES, 3DES and DES.  

 

Khader et. al [30] presented an overview of the MITM attack in DH protocol and then 

proposed a method to secure the Diffie Hellman. Their method involves the use of Geffe 

generator which generates binary sequences with high level of randomness. They 

conducted a series of tests such as frequency tests, serial test, poker test etc. to check the 

randomness of the generator’s sequences. The generated sequences were used to calculate 

the private keys and the shared keys. Also they stated that ‘p’ should be a prime number 

and g should be primitive root of Modulo p. The private key is not sent into the channel 

and is saved as hashes in the server. Their proposed method also provided non-repudiation 

by identifying the parties from their user information.  

 

Ahmad et. al [31] talks about the mix-servers that are used in a decryption mixnet, which 

continuously receive encrypted messages as input then decrypt and shuffle them to get a 

new output. From this output, the messages are regained. Here the authors present a 

decryption mixnet by comparing the Symmetric key encryption algorithm and the 

Asymmetric key encryption algorithm. All of that is attained via simulation. Both, 

symmetric and asymmetric key encryption algorithms are evaluated based on several 

criteria such as number of messages traversing through the mixnet, number of mix-servers 

involved and the key length. They have concluded stating that Enhanced Symmetric Key 

Encryption Based Mixnet (ESEBM) requires the least time as it uses optimal cryptographic 

technique for encryption and decryption purposes. Also while passing messages, it does 

not need large number of overhead for messages. RSA is slow due to the repeated 

encryption and it requires more time than the rest. ElGamal requires less time than RSA as 



 

 

26 

 

the sender only performs a single encryption for all mix-servers. Thus for mixnets, ESEBM 

is the best followed by ElGamal and RSA.  

 

Wang et. al [32] proposes a signcryption scheme based on the hardness of q-dDffie 

Hellman problems and proved that the semantic security under q-Diffie Hellman Inversion 

problem assumption with its unforgetability under q-Strong Diffie Hellman problem 

assumption. The proof of security is provided in random oracle model. They challenge the 

signcryption proposed by Libert and Quisquater whose operation has the same cost as an 

Elgamal encryption with reverse operation requiring only three exponentiations and one 

pairing to be done. The authors claim that their scheme is the most efficient among the 

existing schemes.  

 

Sha et. al [33] propose a cloud supported protocol to enable secure data reading from the 

isolated smart meters. These were to be deployed to secure the sensitive data existing in 

the Smart grid systems where the smart meters collect the large amounts of energy used by 

the Smart grid systems. Most of the proposed authentication protocols which authenticate 

the smart meters in smart grids ignore to control the readings to the smart meters. In the 

proposed protocol by the authors, an Asymmetric key based authentication is designed for 

the reader-cloud authentication and then a new one-time symmetric key is generated by the 

meter reader which is shared by the smart meter. Then, authentication is done between the 

reader and meter based on the symmetric key. Hence the reader has to authenticate itself 

with each and every smart meter available in the grid. They claim that the proposed 

protocol is lightweight and secure.  

 

Sampangi et.al [56] proposed a security suite for Wireless Body Area Networks where two 

key management schemes are presented. In the proposed schemes, the need for key 

exchanges is removed by enabling the sender and the receiver to generate keys 

independently. The authors make use of the Reference Frames concepts in order to acheive 

their goals. Although their scheme ensures the secrecy of the keys and is less prone to 

attacks, they have some limitations. The initial set of Reference Frames that are used are 

dummy values and are uploaded by a human which might be prone to social engineering 



 

 

27 

 

or human errors. The next limitation is the loss of Acknowledgement frames i.e.  there is 

no tracing to know whether the acknowledgement is lost or data has failed to reach the 

other end. 

 

Khan et.al[34] proposed a symmetric key generation and pre-distribution scheme. The 

authors make use of a Symmetric matrix and generator matrix of maximum rank 

distance(MRD) codes. This scheme is applied on the wireless sensor networks which are 

resource constrained and hence key distribution became very difficult. In the proposed 

approach, sensor nodes are grouped and some information is stored in each node for the 

generation of the keys. The authors claim that their scheme reduces the communication 

overhead to setup a link key as it requires only two messages to establish a link key between 

any two nodes. They also claim that their scheme also provides the highest level of network 

scalability and connectivity. The division of sensors has isolated the node capturing effect 

to one specific group. The proposed scheme provides low memory usage, 100% network 

connectivity, scalability and low communication overhead without sacrificing authenticity, 

integrity and confidentiality aspects.  

 

Fuloria et. al [35] discusses about the key management in electricity transmission and 

distribution for communication within substations and between substations. In electricity 

network, key management is a challenging task because of the expanse of the network and 

the resource constrained environments. The authors have presented a different variant of 

symmetric key and public key protocols which is simple, usable and cost effective. They 

presented a detailed threat model, analyzing a range of scenarios from physical intrusion 

to supply chain attacks. In conclusion, they claim that protecting the communication within 

the substation provides less benefits when compared to the use of cryptography to secure 

wider area communications between substation and network control center. 

3.3  LITERATURE SURVEY ON SOME OF THE WORKS ON DIFFIE HELLMAN 

 

Following are the works which have detected some of the ways through which MITM 

attacks are possible in the Diffie Hellman algorithm and some of the techniques using 



 

 

28 

 

which the attack can be mitigated. We also discuss briefly on some other works which have 

been explored in Diffie Hellman algorithm. 

 

Figure 10 Works involving Diffie Hellman Algorithm 

3.3.1  MITM ATTACK POSSIBILITY in DIFFIE HELLMAN 

 

Kumar et. al [36] speak about the Diffie Hellman and how MITM is possible in Diffie 

Hellman protocol. They show how the key space can be exhausted by brute force. They 

suggest double encryption of the message along with an Identifier as a safety measure from 

the attacks. They also suggest to make use of Digital Signatures concept. They present 

Station to Station Protocol (STS) as example which employ RSA signature for getting 

public and private keys. The authors have neither implemented nor tested their proposed 

suggestions but mentioned it in their future work.  

 

Van Oorschot et. al [37] state that in a Diffie Hellman key exchange, if the key exchange 

takes place in a certain mathematical environment, then the algorithm is vulnerable to 

specific MITM attacks and thus the keys are compromised.  It also talks about Station to 

Station Protocol (STS) which is a three-pass variant of the Diffie Hellman protocol which 

allows the establishment of shared secret key. It also provides mutual entity authentication 

and mutual explicit key authentication between the two parties.  

 

3.3.2  OTHER WORKS ON DIFFIE HELLMAN 

 

Chang et. al [38] talks about the extension of Diffie Hellman to multiple party key 

distribution in a wireless relay networks instead of the traditional two party. Multi-party 



 

 

29 

 

relay network is one where multiple parties communicate with each via a single relay. They 

proposed two efficient key exchange protocols and ran performance comparison with the 

existing ones. In group Diffie Hellman, the product of the individual private keys is a factor 

of obtaining the shared key. They explained the two proposed protocols and compared 

them. They conclude that their Diffie Hellman key distribution protocols for small group 

network setting is highly efficient and for large group network setting is practically 

efficient. The comparison suggested that the proposed protocols are not derivative 

variations of the existing ones. They also conclude stating that Protocol 1 is optimal when 

there are three entities in the network.  

 

Mejri et. al [44] propose a secure variant of Diffie-Hellman algorithm for groups that are 

secured by a pre-shared key, against MITM attacks. Their proposed scheme can be used 

by several types of authentication and encryption VANET applications. They discuss a 

wide variety of problems in VANETs and use their proposed method to solve them. They 

secure the group against MTIM by calculating the group key as XOR bitwise between 

initial group key and pre shared secret.  

 

Zhang et. al [45] implemented six kinds of optimization algorithm for Elliptical Curve 

Diffie Hellman algorithm for key agreement and pairwise key creation between sensors in 

wireless sensor networks comprising of IRIS nodes. The author then tests and compares 

the implemented algorithms w.r.t. RAM/ROM consumptions, initialization time and key 

establishment time. They presented their results and showed which settings and which 

order of execution would yield ECDH more effective.  

 

Stulman et.al [68] proposed an algorithm, named as Spraying Diffie Hellman, to facilitate 

secure key exchange during conversation handshake on the secure channel in which the 

MANETs are built upon. Their algorithm requires no prior knowledge and user intervention as 

the exchange is done by using the fluctuation of the network topology inherited. They use the 

topology and the features such as IP address or IMEI number or phone number as key 

generation material. They also split the message to be transferred into segments and each piece 

is provided with a hash of the entire message. The match confirms the authenticity of the sender 



 

 

30 

 

and also helps in detecting the MITM as the hash cannot be formed without the presence of all 

of the message segments. Also each segment is sent on a different route to the destination. 

They also claim that their algorithm also preserves forward security as they to change the key 

for each communication. 

 

Shen et.al [69] propose a secure key agreement protocol in which two mobile devices can 

establish a shared secret without prior knowledge using Diffie Hellman with less 

communication and computation overhead. They use Random number generation for 

generating the key generation material and their XOR product for mutual authentication. It 

only after the authentication that the keys are generated. After confirming the authenticity of 

each entity, they also have to commit to the values they are going to use for the key generation. 

They claim that the possibility of an adversary to launch a MITM attack is close to 2-k where 

‘k’ is the number of bits present in the authentication value. 

 

Yang et.al [71] propose a group key agreement protocol which reduces the time complexity 

from O(Nlog2N) to O(N) thus reducing the overlapping computation and data packet sending 

time. They make use of Binary trees in each node for generating the keys using the Diffie 

Hellman approach. Their technique functions in two phases, wherein the first phase involves 

the selection of the managing node whose responsibility is to gather and dispatch the 

information of generating group key and in the second phase is deal with the binary tree at each 

node independently. They claim that their technique could detect MITM as the node would not 

be able to decrypt the files as it is not in possession of the proper key as this key is generated 

based on the ingredients accumulated by the managing node from all the nodes available in the 

group. 

3.4  LITERATURE SURVEY ON BIOMETRIC AND OTHER ALGORITHMS 

 

This section discusses on how the biometrics are used for authentication and encryption 

techniques. It also discusses on some other related techniques and methods used for similar 

purposes. 



 

 

31 

 

 

Figure 11 Other related Works 

 

 

 

3.4.1  BIOMETRICS for AUTHENTICATION & ENCRYPTION 

 

The authors of [40-43] speak about how they have utilized biometrics for authenticating 

and/or encrypting the data. Most of them have preferred fingerprint as the biometric. Some 

have explored different ways in which fingerprint can be used while others discuss the 

areas where it can be implemented. 

 

Liang et. al [40] propose a fingerprint encryption scheme which is based on threshold. 

Their proposed technique is, unlike the Fuzzy Vault, which relies on templates or the 

encrypted templates in Fuzzy commitment based scheme while regeneration of the key 

which protects the biometric key in a polynomial. They claim that Fuzzy Vault has the risk 

of information leakage for the stored biometric template. Fuzzy commitment, on the other 

hand, stores an “encrypted” template but it has a short and unstable key. Dynamic biometric 

key generation stores neither the template nor the secrets and also it has a low number of 

effective bits. The proposed biometric cryptosystem, does not require to store the template 

and also the key is relatively long. But it has high time complexity, low Genius Acceptance 

Rate (GAR), a coarse quantitation and a pre-align work. Jain et. al [41] propose a 

multimedia content protection framework which is based on the biometric data of the users 

and a layered encryption/decryption scheme. They use a combination of symmetric and 



 

 

32 

 

asymmetric key systems for the fulfillment of the scheme. The hardware features such as 

the hard drive serial number etc. are also used in the encryption/decryption processes. 

Watermarking and data hiding techniques could be utilized to address the requirements. 

They make use of the intra-class variation which talks about the differences in the extracted 

fingerprint’s minutia etc. due to the sensor or image capture fluctuations. Sharma et. al [42] 

propose a framework that safeguard the sensor data in the cloud from unauthorized access 

and self-protect in case of breach. This data is the healthcare monitoring application data 

which is sent and stored in the cloud. The security is provided using biometrics and other 

related mathematical formulae and algorithms. They have used PKI for transferring the 

biometrics to the cloud before initiating the communication.  

 

Wang et. al [43] proposed fingerprint based Biometric encryption. They have used Gabor 

filter ban to extract the fingerprint features and a binary key is bind with the filter bank. 

The extracted feature has fixed length and comprise of both local, global information. The 

binary key is bind to the filter-bank using traditional cryptographic algorithm such as AES, 

DES etc. The algorithm is evaluated on FVC database and the results show that Reference 

point localization has a great impact and robust reference point is important for this 

framework. Better fingerprint extraction algorithm and an efficient ridge texture 

enhancement algorithm for eliminating the texture noise could be used to improve the 

quality and performance of the algorithm. 

 

3.4.2  OTHER RELATED WORKS 

 

Suh et. al [11] present PUF designs that make use of the delay characteristics of wires and 

transistors that vary from chip to chip. They have discussed various different PUFs such as 

Ring PUF, Oscillator PUF etc. and their functionalities. The authors also explain how PUF 

enable low cost authentication and for volatile secret keys for cryptographic operations. 

These volatile keys can be used for both symmetric and asymmetric algorithms. 

 

Quisquater et. al [39] explain about the Zero-Knowledge proof. In this, only the Prover 

must have the answers and only the Verifier should be able to verify the answers to his 



 

 

33 

 

questions. The answers are not stored in the verifier’s end. In this way, no one else except 

the prover can prove that he is legitimate and also minimizes the chances of replay attacks. 

Thus the chances of someone guessing the answers or the sequence of questions is 

astronomically small. Since none of the answers is stored in the verifier nor the prover, 

hence recording the packets would yield nothing useful. It is entirely based on the 

fact/assumption that the prover possesses some secret information using which it can prove 

itself to the verifier. Neither the secret information is stored in the verifier end nor is 

transmitted over the wire. Hence as mentioned before, recording the packets and observing 

the sequence would do no good at all. 

3.5  SUMMARY 

 

In summary, the authors of [15-17] present us with the amount of traffic being generated 

by the mobile devices for resource allocation. The works of [18-21] detect malwares in 

smartphone devices using various different techniques. [22-27] focus on the User behavior 

among which [22-26] extract the pattern of the user behavior and interactions with the 

device but [27] authenticate the user based on the interaction of the user with the device 

and the gait as well. [28] continuously tracked the user behavior in the background to 

authenticate the owner from the guest. Hence this shows us that the sensors have been put 

into use for various different purposes and added to that there is tremendous amounts of 

traffic originating to and fro the device upon which the proposed algorithm can be applied 

to enhance the security. [11,39] are some new instances for authenticating and key 

generation. [40-43] present with works that have dealt with biometrics for key generation 

and/or authenticating the user and securing the data. [29-38,44,45,68-70] have encountered 

the MITM in DH and also have modified it for key generation. In most of the works, they 

have attempted to make the key as unpredictable as possible in order to prevent the 

possibility of MITM in Diffie Hellman. 

 

 

 



 

 

34 

 

3.6  MOTIVATION AND RESEARCH OBJECTIVES 

 

From what we have explored so far, we noted that researchers are making an attempt to 

prevent and/or detect MITM attacks in Diffie Hellman by making the shared key content 

as random, as unpredictable and as unique as possible with the preservation of forward 

secrecy. The keys are generated either out of the hardware of the device which is unique 

only to that specific device such as IMEI or out of the values that the device generates such 

as its readings. These values tend to be random and unpredictable for an adversary if he 

intends to launch a MITM attack. Apart from that, the researchers have also made an 

attempt to minimize the transfer of key generation material for establishing a shared key. 

As discussed in Section 3.5, researchers have attempted to make the keys unpredictable so 

that an adversary may not be able to initiate an unauthentic communication with either of 

the parties. Added to that, we have also observed how the sensors are put in use for various 

purposes such as malware detection and user behavior analytics proving that the values 

obtained from them are sensitive to movements and variations occurring with the device. 

Some of them have either transferred the key generation material out in the communication 

channel or have not acknowledged the reception of the data. Thus with the motive to 

eliminate the need for a separate transfer of the key generation material such as the ‘p’ and 

‘g’ values out in the public and to render the keys as unpredictable as possible, we have 

developed a new scheme which would make use of the sensor data available at our disposal. 

None of the schemes, to the best of our knowledge have used the dynamically fluctuating 

aspect of the sensors as the key generation material towards securing Diffie Hellman from 

MITM attacks. 

To address the research gap, the objective was to develop a new scheme which; 

i. Avail independent generation of the keys 

ii. Increase the unpredictability and randomness nature of the keys generated 

iii. Facilitate two way acknowledgments to ensure a successful transfer 

iv. Eliminate the need for a separate transfer of the key generation material such as ‘p’ 

and ‘g’ 



 

 

35 

 

v. Satisfy the security goals such as Confidentiality, Integrity and Authentication 

along with additional security goals such as Access Control, Forward security, 

Backward Security and Non Repudiation. 

vi. Provide security from security attacks such as modification, replay attacks, 

fabrication, invasion and most importantly, MITM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

36 

 

CHAPTER 4 METHODOLOGY 

4.1  PROPOSED APPROACH 

 

The proposed approach involves two phases, ‘Registration’ phase and ‘Data Transfer’ 

phase. Although the ‘Registration’ phase occurs only once in the entire lifetime of the 

application, yet it plays a vital role in the entire algorithm. The entire approach is designed 

around the client-server architecture with the client being any device which has sensors & 

internet access and the server is believed to be in a remote location. 

 

In the Registration phase, the application gathers the hashed fingerprint of the user, the 

PUF of the device and a set of Reference Frames containing the values accumulated by the 

sensors. The application then sends them to the remote server using the RSA algorithm for 

encryption over PKI. Once the application sends out its second acknowledgment to the 

server, it deletes the hash of fingerprint it collected earlier and safeguards the application 

along with its data in case of theft or loss of the device. 

 

In the Data Transfer phase, the application and the server utilizes and/or updates the data 

it received during the Registration phase to attain the objective of this research. The 

application uses the combination of the fingerprint and PUF for authenticating the user, 

hence facilitating access control. Also once authenticated, it then generates the terms such 

as p, g, Sa etc. required for Diffie Hellman Key generation. Similarly, the server follows 

the same set of steps to generate its own terms and upon reception of the Ta from the client, 

generates the key. The server then sends the terms it generated to the client using which its 

key is generated. The client then accumulates new sensor values and updates the Reference 

Frames which are in its possession. Then the new set of terms are generated again and with 

the data which is to be sent to the server, is then encrypted using the key and sent to the 

server. The server then decrypts the received message and updates its own reference frames 

and acknowledges with the terms as before for the generation of the key. Upon reception 

of the second acknowledgement from the client, the keys are destroyed by both parties and 



 

 

37 

 

the reference frames along with the key are updated. The values which act as the 

acknowledgment are the values stored in any random field from the Reference frame. 

 

In short, at both the ends of the tunnel, the terms p, g, Acknowledgments, are the values 

contained in the fields of the Reference Frames. These fields are selected at random so that 

the prediction of the values utilized as the terms which are used in key generation, is made 

difficult. 

 

The step by step detailing of the proposed approach is explained in the following 

subsection. 

4.2  ARCHITECTURE OF THE PROPOSED APPROACH 

 

This section discusses the architecture of each phase in the proposed approach as 

mentioned in the Section 4.1. The symbol ‘’ represents the steps which are performed at 

the client application end and the symbol ‘’ represents the steps which are performed at 

the server. 

 

The only assumption made in this thesis work is, during the Registration phase, the server 

and the Third parties involved in the PKI are secure for this one-time phase. 

 

Figure 12 to Figure 15 displays the timing diagram of the proposed algorithm’s 

Registration Phase. 

 The application gets the fingerprint ‘fp’ of the user. Then it generates a hash of the 

obtained fingerprint ‘h(fp)’. Once the hash is generated, the actual fingerprint is 

deleted. 

 The application then obtains the PUF of the device ‘PUF(phone)’ and stores a copy 

of it in the device. 

 Then, it performs a XOR operation between the hashed fingerprint & the PUF 

value. The outcome of XOR operation is then hashed again and is stored (‘z’ in our 

case). When the user accesses the application again, the application requests for his 



 

 

38 

 

fingerprint and performs the above set of operations to generate the ‘z’ value. This 

is then matched with the stored ‘z’ value. Access to the features of the application 

is provided only if a match is found else access is denied. In this way, the ‘z’ 

variable helps in providing access control for the application. 

 After the generation of ‘z’, the application then gathers the required Reference 

Frames (minimum of 5). The Frame structure is presented in Figure 16. The first 5 

fields in the Reference Frame are the values collected by the sensors available in 

the device. This is followed by the Timestamp pertaining to the creation of the 

frame and the sequence number. The Sequence number is placed to prevent the 

replay attacks on either of the parties. 

 The hashed value of the fingerprint ‘h(fp)’, PUF of the device ‘PUF(phone)’ and 

the Reference Frames, constitutes the message ‘m’ which will be sent to the server 

in this phase. 

 Then the Message Digest ‘MD’ is generated which is a simple hashing of the 

message.  

 This Message Digest is then signed with the public key of the device ‘pks’ to form 

the digital signature ‘CMD’. This preserves the Integrity of the message. 

 This digital signature ‘CMD’ along with the actual message ‘m’ is encrypted with 

the public key of the server ‘pkSr’ and transmitted to the server over the 

communication channel. 

 The Server, upon reception of the message, decrypts using its private key ‘skSs’ 

and extracts ‘m’, ‘CMD’ components from it. 

 It then computes the hash of the message portion ‘h(m)’ and encrypts it with the 

public key of the client ‘pks’ to get the message digest ‘MD’ and verifies it with 

the received ‘CMD’.  

 If it fails to match, the packet is dropped else the PUF of the device ‘PUF(phone)’, 

‘z’ value and the Reference Frames are extracted from ‘m’ and stored. 

 Now, the first two digits from the public key value is taken and is used as pointer 

to a particular field amongst one of the reference frames. For instance, if the key 

value is 25689 then the first two digits constitutes of 2 & 5 thus pointing to the 2nd 

Reference Frame and 5th Field. The value stored in the location specified by the 



 

 

39 

 

pointers, is retrieved and used for the generation of the Acknowledgment of the 

server. 

 The retrieved value is taken and a Keyed hash operation is performed on it. The 

key used in the hashing are the first two digits considered in the former step where 

each value is incremented by one i.e. since the first two digits were 2 and 5, hence 

the key is (2+1)(5+1) i.e. 36. 

 The outcome of the previous step acts as the Acknowledgment of the Server 

‘ACKs’, which is encrypted with the public key of the client ‘pks’ and sent out to 

the client. 

 The client receives the encrypted message, decrypts using its private key ‘sks’ and 

extracts the Acknowledgment ‘ACKs’. 

 Retrieves the value from the corresponding field in the reference frame using the 

same technique as mentioned earlier for the generation of server’s 

acknowledgment. 

 Then it hashes the extracted value ad verifies it with the received Acknowledgment 

from the server i.e. ‘ACKs’. If a match is found, then the client uses the public key 

of the server to get the pointer using which it retrieves the value from the respective 

field and reference frame. It follows the same set of steps as described for the 

generation of the Acknowledgment of the server in order to generate an 

Acknowledgment for the client ‘ACKph’. 

 The Acknowledgment for the client ‘ACKph’ is then encrypted with the public key 

of the server and forwarded to the remote server. 

 The server receives the encrypted acknowledgment, decrypts it and verifies it to 

ensure the completion of a successful transfer. 

 

Since the entire timing diagram does not fit in the page, we have split the timing diagram 

into parts and represented in the figures that follow. Figures 12 to 14 are the parts of the 

timing diagram and Figure 15 display the flow of the timing diagram. 

 

 



 

 

40 

 

 
Figure 12 

 

 

 
Figure 13 

 



 

 

41 

 

 
Figure 14 

 

 
Figure 15 Registration Phase 

 

 

Figure 16 Reference Frame Structure 

 



 

 

42 

 

This marks the end of Registration Phase. The following is the description of the Data 

Transfer Phase. The assumption which was made during the Registration Phase is not 

needed here. The Data Transfer Phase is a repetitive one, which repeats itself for every 

required transfer of data. It is here that the objective of the research work is obtained. 

 

Figures 17 until 24 displays the timing diagram of the proposed algorithm’s Data Transfer 

Phase. 

 The application gets the fingerprint ‘fp’ of the user. Then it computes the ‘z’ value 

using the stored PUF and matches it with the actual value of ‘z’ which was stored 

after the Registration Phase. Access is permitted only if a match is found else the 

user is restricted from accessing the application and its features. 

 If the user is found authentic, the application then generates a Nonce ‘Nc’ with the 

help of first two digits from the stored PUF and uses it to point to a random field of 

a random frame. The value stored at that particular location, goes as Nonce ‘Nc’. 

The entire fetching technique is similar to the technique used for getting the value 

for the Acknowledgments during the Registration Phase. 

 Then a XOR operation is performed between the generated Nonce ‘Nc’ and the ‘z’ 

value. The outcome is then fed into the pseudo random number generator as seed. 

The digits of the random number thus generated are then used as pointers i.e. the 

first set of two digits are used to point to the location whose content would be used 

as the value for ‘p’; the next set of two digits for ‘g’; the next set of two digits for 

Acknowledgment of the phone ‘ACKph’ and the next set of two digits go for the 

Acknowledgment of the server ‘ACKs’. Thus if 2365487596849 is the generated 

pseudo random number, then the content of R2F3 goes as ‘p’, R6F5 goes as ‘g’, 

R4F8 goes as ‘ACKph’ and R7F5 goes as ‘ACKs’ where RnFm is the mth Field in 

the nth Reference Frame. 

 A random number is taken as the value of ‘Sa’ and ‘Ta’ is computed using the 

formula;  

𝑇𝑎 =  𝑔𝑆𝑎  𝑚𝑜𝑑 𝑝 

 Then a simple hash of the Nonce ‘Nc’ is performed ‘h(Nc)’. This hashed Nc along 

with the generated ‘Ta’, is encrypted using the first two digits’ value, which was 



 

 

43 

 

used for the generation of Nonce, as Key. This encrypted message ‘Tm’ is sent to 

the server over the channel. 

 The server receives the message ‘Tm’ and decrypts it using the key it obtained after 

the generation of Nonce ‘Nc’ with the help of the PUF it stored after the 

Registration Phase. 

 Once decrypted, it compares whether or not the values of the hashed Nonce it 

generated is same as the one present in the received message. If they are not, then 

the packet is dropped else the server generates the same set of values as the client’s 

application using the same procedure. 

 Then the server considers a random number as ‘Sb’ and computes ‘Tb’ using the 

formula;  

𝑇𝑏 =  𝑔𝑆𝑏 𝑚𝑜𝑑 𝑝 

 Now it uses the ‘Ta’ value it received in the message and ‘Sb’ value it possesses to 

generate the Secret Key with which it shall be decrypting the data it would receive 

in the successive steps. The formula for the Secret Key generation is as follows;  

𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦 = 𝑇𝑎𝑆𝑏 𝑚𝑜𝑑 𝑝 

  Then the server performs XOR operation between the ACKs and Ta. The result of 

the XOR operation is then key hashed. Here, the values which were used as pointers 

to the location whose content was the ACKs is taken and is incremented by a value 

of one. This incremented value acts as the Key which is used for the keyed hashing. 

For instance, in the example we considered earlier, the content of R7F5 is used as 

ACKs. Thus the key in this case would be (7+1)(5+1) i.e. 86. The outcome of the 

keyed hash is stores as ‘c1’. 

 Then another XOR operation is performed between the Acknowledgment of the 

phone and the Secret Key generated earlier. Using a similar technique as discussed 

in the former step, a keyed hash operation is performed on the outcome of the XOR 

operation. The result of the keyed hash is stored as ‘s2’ in the server. This ‘s2’ is 

later on used to authenticate the message which the server receives from the client. 

 Upon completion of the keyed hash operations, the value ‘Tb’ and the value ‘c1’ 

are encrypted using the last two digits of the stored ‘PUF(phone)’ value as key. 

This forms the first Acknowledgment from the server ‘ACKn’. 



 

 

44 

 

 The client receives the ‘ACKn’ and it decrypts it using the last two digits of the 

stored ‘PUF(phone)’ value as key. 

 Then it computes its own ‘c1’ following the exact same set of steps as that of the 

server, and verifies it with the received one. If it fails to match, then the packet is 

discarded else ‘Tb’ value is retrieved and Secret Key is generated using the formula; 

𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦 =  𝑇𝑏𝑆𝑎 𝑚𝑜𝑑 𝑝 

 Then the application performs XOR operation between the ACKph and Tb. The 

result of the XOR operation is then key hashed. Here, the values which were used 

as pointers to the location whose content was the ACKph is taken and is 

incremented by a value of one. This incremented value acts as the Key which is 

used for the keyed hashing. For instance, in the example we considered earlier, the 

content of R4F8 is used as ACKs. Thus the key in this case would be (4+1)(8+1) 

i.e. 59. The outcome of the keyed hash is stored as ‘ACKm’ 

 The ‘ACKm’ is then encrypted using the same set of keys which are used for the 

Keyed hash process and is then forwarded to the server. 

 Since the server is also in possession of the values and pointers which are used to 

create ‘ACKm,’  it generates its own set and verifies them with the ones present in 

the ‘ACKm’ after decrypting the received message. 

 The application then encrypts the data with the Secret Key ‘E(D)’. 

 Then it performs a XOR operation between ‘ACKph’ and the ‘Secret Key’. The 

result yielded is then key hashed using the incremented values of the pointer terms 

used for ‘ACKph’ deduction. The outcome is used for authenticating itself to the 

server and is thus stored as ‘SAt’. 

 Then the random number which was generated during the previous Secret Key 

generation process, is fed as the seed to the random number generator to generate 

another random number. This new random number is then used to accumulate the 

values for ‘p’, ‘g’, ‘ACKs’ and so on which were accumulated in the previous cycle. 

The former set of values for ‘p’, ‘g’, etc. are stored as backup until it verifies the 

‘ACKn’ which it receives later as response from the server. 

 Using the new values of ‘p’, ‘g’ etc., a new ‘Ta’ is generated using the formula. 



 

 

45 

 

 This new ‘Ta’ along with the calculated ‘SAt’, encrypted data ‘E(D)’ and sequence 

number ‘SeqNo’ is composed as a message, encrypted again with the Secret Key 

and is then sent to the server ‘TF’. 

 The server upon reception of the message from the client application, decrypts it 

with the Secret Key and retrieves ‘SAt’ and verifies it with the ‘s2’ value which 

was stored earlier. If a match is found the Data is decrypted else the packet is 

dropped. After decryption, from the data, the reference frames are updated with 

new set of values contained in the actual data or as a part of the actual data. 

 After decryption, the ‘Ta’ value is retrieved. Then it performs the same set of 

actions performed at the client end to generate and accumulate the new set of values 

for terms ‘p’, ‘g’, ‘ACKs’ etc., and new ‘Tb’ is generated using the formula. The 

former set of values for ‘p’, ‘g’, etc. are stored as backup until it verifies the 

‘ACKm’ which it receives later as response from the client application. 

 Now using the retrieved ‘Ta’ and the newly generated ‘Sb’, a new secret key is 

calculated again and stored which will be used for decrypting the data in the next 

cycle. 

 Then the ‘s2’, ‘c1’, ‘ACKn’ are generated using the same approach as in the 

previous cycle. The ‘ACKn’ thus generated, is encrypted using the old secret key 

and is sent to the client. 

 The client, upon reception of the ‘ACKn’, verifies it with the ‘c1’ it generated. If a 

match is found, it generates ‘ACKm’ using the same procedure s followed in the 

previous cycle. The generated ‘ACKm’ is then encrypted using the previous Secret 

Key and sent to the server. After transmission, the previous set of ‘n’, ‘p’, ‘g’, 

‘ACKph’, ‘Secret Key’ etc. are deleted. 

 The server upon reception of the ‘ACKm’, decrypts it and verifies it with the values 

it calculated using the same set of steps. If a match is not found then the packet is 

dropped but if a match is found, then the old set of ‘n’, ‘p’, ‘g’, ‘ACKs’ etc. are 

deleted. 

 The above mentioned steps are continued until all the data has been transferred. 

After the last packet is sent,  



 

 

46 

 

 The client sends the ‘c1’ value it generated for the last data packet along with the 

sequence number to the server as ‘ACKm’. 

 The server upon reception of the ‘ACKm’ verifies it with the ‘c1’ it obtained after 

calculation and the sequence number ‘SeqNo’ it has for the previous data. If a match 

is found, then it performs a hash operation on the Secret Key it used in the previous 

cycle along with the Nonce ‘Nc’ value it has. The outcome of the hash operation is 

the last acknowledgment which is sent from the server ‘ACK’. After the 

transmission of the ‘ACK’, all the terms used such as ‘n’, ‘p’, ‘g’, ‘ACKph’ etc. are 

deleted. 

 The client application upon receiving the ‘ACK’ verifies it with the outcome of the 

hashing of the Secret Key used in the encryption of the last data and the stored 

Nonce ‘Nc’. If a match is found, all the terms used such as ‘n’, ‘p’, ‘g’, etc. are 

deleted and the connection is closed. 

 

This marks the end of DataTransfer phase. By the end of this, only the PUF of the phone 

‘PUF(phone)’, ‘z’ value and the last set of updated Reference Frames are left in both the 

parties i.e. at the Server and in the client application. The rest are deleted i.e. the Secret 

Key used, the value ‘n’ which is used to accumulate ‘p’, ‘g’, ‘ACKph’, ‘ACKs’, ‘ACK’ 

etc. are deleted. This deletion prevents the access to those values and keys in case of theft 

of the device or in case of breach in the server.  

 

Since the entire timing diagram does not fit in the page, we have split the timing diagram 

into parts and represented in the figures that follow. Figures 17 to 23 are the parts of the 

timing diagram and Figure 24 display the flow of the timing diagram. 



 

 

47 

 

 
Figure 17 

 

 

 
 

Figure 18 



 

 

48 

 

 
Figure 19 

 

 

 
Figure 20 

 



 

 

49 

 

 
Figure 21 

 

 

 
Figure 22 



 

 

50 

 

 
Figure 23 

 

 
Figure 24 Data Transfer Phase 



 

 

51 

 

4.3  APPLICATION USED FOR DATA COLLECTION TO TEST THE PROPOSED 

APPROACH 

 

At the client end, the reference frames are formed/updated and then written into the file but 

at the server end, the reference frames are updated after the reception of the file. Figure 16 

represents the layout and the contents of the Reference Frames. The fields in each of the 

frames are updated at both ends. But the fields possessing the sensor values are used as ‘p’, 

‘g’ etc. which are used in the algorithm for key generation, authentication and 

acknowledgements etc. 

 

The application used for the generation of the reference frames makes use of the sensors 

available in the smartphone. All the required methods and classes are implemented for 

retrieving the sensors’ values. These values are then written into a file in the text format 

with ‘.txt’ extension. 

 

The researcher turned on the application developed and performed the test cases discussed 

in detail later in Chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

52 

 

CHAPTER 5 IMPLEMENTATION 

5.1  DEVELOPMENT ENVIRONMENT AND LIBRARIES USED 

 

The entire proposed algorithm is implemented using Java platform on a Windows 

Operating System. The Android application was developed in Android Studio on the same 

Operating System. Table 2 shows the development environment used for implementing the 

proposed approach. 

 

Programming Language Java 1.8.0_25 

Application Android minimum version 4.4 (Kitkat) 

Operating System Windows 8.1 

Table 2 Development environment for the proposed approach 

 

5.1.1  JAVA Environment 

 

Java as a programming language gained popularity due its Write Once, Execute Anywhere 

feature. This made it platform independent and easily executable in any device irrespective 

of the Operating System upon which the device relies on. It is an object oriented 

programming i.e. everything is based on the classes defined in the program. The Java 

Virtual Machine (JVM) which gets installed in the system, is what actually makes Java as 

platform independent. Upon compilation of the java program, it yields a Bytecode whose 

execution is intended to be the JVM rather than the machine itself. Hence as long as the 

JVM is present in the system, the java snippet can be executed or compiled or both, on any 

platform. 

 

Java is now an Oracle product but it was first released by James Gosling in 1995 under the 

roof of Sun Microsystems. It was in year 2009-2010, that Oracle acquired Sun 

microsystems. [45] The Table 3 shows the Java and IDE details which are used for this 

thesis work. 



 

 

53 

 

 

Java version 1.8.0_25 

Netbeans IDE version 8.0.2 

Table 3 Platform Specifications 

 

There are many libraries in java which provide access to many facilities such as multi-

threading, networking, security etc. The following are the packages which have been used 

in the implementation of the proposed approach; 

 Security programming: The java.security package provides the classes, security 

services, name of the providers’ (such as SHA-256, MD5 etc.) needed for 

facilitating the security aspect in java platform. This package contains classes that 

are not involved in securing the transmission content such as Message Digest and 

Signatures, which do not directly deal with encryption. ‘getInstance()’ function is 

used to get a specific provider. For instance, if we want to generate a Message 

Digest using the MD5 then its code snippet would be as follows: 

 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐷𝑖𝑔𝑒𝑠𝑡 𝑚𝑑 = 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐷𝑖𝑔𝑒𝑠𝑡. 𝑔𝑒𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(MD5); [47] 

The java.crypto package, contains classes that are involved in securing the 

transmission content such as Cipher and KeyAgreement, which directly deal with 

encryption. It has built-in providers for cryptographic algorithms such as DES, 

AES, ECDH etc. [47] 

Apart from the above, java.crypto.cert package provides Public Key 

Infrastructure PKI, which contains keys, certificates, public key encryptions, 

certificate authorities etc., needed for a secure exchange of data.[47] 

 Network programming: The java.net package provides the classes and interfaces 

needed when we our program to transfer data from one machine to another machine 

across different platforms. In short, it helps multiple machines to communicate with 

each other. The process using which a TCP connection is established using the 

classes in this package are as follows: 

The ServerSocket class has methods which helps in accepting the incoming 

connection requests from various different sockets and allowing data to be 



 

 

54 

 

transferred. The only argument which ServerSocket takes is the port number over 

which the communication shall take place. 

Then a Socket is opened which shall be listening to all the incoming 

connection requests. It is this class that acts as a bridge for transferring the data 

from one end to the other. There is a Socket instance created at each end of the 

connection. 

Once the Socket object at the one end, for instance; a server, is listening for 

the connection requests, another Socket at the other end, for instance; a client, tries 

to send the connection requests. The Socket at the client end creates an object by 

passing the IP address and the Port number on which the Server’s socket is listening 

for the requests. 

When the server’s Socket instance receives the request, it accepts it and 

responds with a reference which indicates the commencement of the 

communication session. 

During the communication, data is transferred and/or received using various 

classes such as DataOutputStream etc. & methods (from the Socket class) such as 

getInputStream() etc. 

When the data transmission is completed, the close() method of the Socket 

class is used to end the session and the connection is terminated.[48] 

 Collection Framework: The java.util package contains set of interfaces and classes 

which help in overcoming the limitation of the array structure i.e. its fixed size. 

Array sizes cannot be increased dynamically. Once declared, its size remains fixed 

for the entire span of the program. Collection/s, on the other hand, can grow 

dynamically. The object of the collection class stores the references of other objects 

while the collection interface has the abstract methods which represent the 

operations that can be performed on the objects. In short, this framework provides 

pre-packaged data structures and algorithm for its manipulations. 

Collection Interface has the List Interface, Map Interface, Set Interface etc. 

which can be manipulated independently. 

Collection Class has the ArrayList, LinkedList, HashMap, TreeSet etc. 

which are reusable data structure at its core. 



 

 

55 

 

The contents in them are inserted, deleted, altered etc. using the Iterator or 

Enumeration objects [49]. 

5.1.2  ANDROID Environment 

 

The first version of Android was released in the market in the year 2007. Since then it has 

swept into almost every phone available in the market as it Operating System. Android was 

acquired by Google in the year 2005, two years post its foundation at Palo Alto in the year 

2003. Its Open-source feature encouraged developer across the world, to embrace it and 

enrich it. Numerous mobile applications have been developed since its release. The current 

release is the Android 6.0 which is named as ‘Marshmallow’. Basically, Android is Linux 

kernel based programming language for touchscreen devices [65]. 

 

Android Studio Version  1.4 

Android SDK version Android 4.0.3 (Icecream Sandwich) and above 

Programming Language Java 1.8.0_25 

User interface XML 

Device Samsung Galaxy S6 

Device Android OS version Android 5.0.1 (Lollypop)  

Table 4 Application development environment specifications 

 

The following is a brief overview on some of the modules available in the Android 

framework; 

Activity Life cycle: Android uses a stack to handle and manipulate all of its 

foreground and background activities. The activity which is on the top of the stack 

is the activity which is running in the foreground, followed by the activity which 

was most recently sent to the background. 

onCreate()  and onDestroy() are the two ends of the activity lifecycle. The 

required resources ae allocation to the application in the onCreate() function and 

the very same resources are released when the onDestroy() method is called. All 



 

 

56 

 

the functionalities necessary for the successful execution of the application runs 

inbetween these two function calls. 

onStart() and onStop() are the two ends of the user interaction duration 

period. With the onStart() function call, the activity is made visible to the user to 

interact and with onStop() function call, the very same activity is hidden from the 

user. After the onStop() function call, the application may be in the background 

holding its resources but is moved from the top of the stack to the next position. 

onResume() function call bring the activity back to the top of the stack and 

hence to the foreground for the user to interact again. onPause() function call sends 

it back to the background. 

onCreate(), onDestroy() and onResume(), onPause() functions can be 

frequently called by an activity.[55] 

 

 

Figure 25 Android activity life cycle [55] 



 

 

57 

 

Application framework: It handles all the API’s which are imported by the 

developers. It maps the imported API’s directly to the Hardware Abstraction Layer 

(HAL) interfaces. This framework, in short, is the starting point for application 

development. The services which are available in this framework are: 

 Sensor Manager – This manager has the functionalities with which it 

controls the sensors available in the device. The Sensors include 

accelerometer, proximity, light etc. whose provision in the device varies 

from one manufacturer to another. 

 Wi-Fi Manager – This manager has the functionalities which provides the 

information required for network connectivity. It provides details such as 

WI-FI signal strength, MAC address etc.  

 Activity Manager – This manager is one of the most important as it controls 

the Application lifecycle and activity stack involved in the functioning of 

the developed application. 

 Content Providers – This manager provides the functionalities which help 

in sharing the data and resources amongst application by linking them with 

one another. 

 Resource Manager - This manager provides the functionalities required to 

handle the user color settings, interface layouts and strings displayed.  

 View System – This mainly handles the functionalities concerned with the 

display/view of the application. It is primarily used for manipulation of the 

application’s user interface aspects such as textview & editview sizes, 

buttons’ placement or size or image etc.  

 Notifications Manager – All the alerts and notifications are handled by this 

manager. 

 

Hardware Abstraction Layer: This is automatically uploaded by the android 

system. This layer acts as an interface for functions implementation without 

accessing the higher layers.[55] 

 

Linux Kernel: This is the bottommost layer in the architecture of android. 

Its primary responsibilities include system administration, process management, 

memory management and handling device drivers along with the equipment drivers 

such as drivers for camera, screen display etc.[55] 



 

 

58 

 

5.2  IMPLEMENTATION DETAILS OF THE PHASES IN THE PROPOSED APPROACH 

 

The proposed approach constitutes of two phases; Registration Phase and Data Transfer 

Phase. The step by step discussion of each phase between the client application and the 

server, is clearly mentioned in Chapter 4. Here in this section, the implementation details 

of each phase is explained. The succeeding subsections discusses the major implemented 

operations upon which the entire proposed approach rotates around. Those major 

operations are: 

 XOR operation 

 Hash operation 

 Keyed Hash operation 

 Socket connection 

 Random Number Generation 

 ‘p’, ‘g’, ‘ACKph’, ‘ACKs’ etc. generation 

 Diffie Hellman Keys generation 

 RSA Key generation, Encryption & Decryption 

 Reference Frame generation in Android application 

 

5.2.1  XOR OPERATION. 

 

XOR operation is performed numerous times in the proposed approach. For instance, in 

Registration Phase, the ‘z’ value is deduced with hashing of the outcome of the XOR 

operation between PUF of device and hashed fingerprint. Similarly, in Data Transfer phase, 

the seed for the random number generator is the outcome of the XOR operation between 

the ‘z’ value and the Nonce. The following snippet is used to perform the XOR operation 

between the byte array inputs and the outcome is stored in another byte array. 

 

xor_result[pos] = (byte) (field1[pos] ^ field2[spos]); 

 where xor_result is a resulting byte array and field1 and field2 are the array values 

between whom the XOR operation is performed. 



 

 

59 

 

5.2.2  HASH OPERATION 

 

Hash is a one-way operation i.e. if ‘A’ if hashed to get ‘B’ then ‘B’ cannot be decoded to 

get ‘A’. This makes it apt for authenticating the parties as only the legitimate owners’ 

would know the input of the hash. If the hashes do not match, then the sender is not 

authentic. For instance, as discussed in Section 4.2 of Chapter 4, the client application 

requests for fingerprint, generates a hash of it and deletes the original fingerprint. This 

helps in providing Access Control for the application in the proposed approach. Apart from 

this, hashing has been used multiple times in the proposed approach as it does not reveal 

which values are used as inputs. 

 

For getting the Hash, MessageDigest class is used to perform a SHA-256 hashing. The 

outcome of the array of bytes is stored and is used as required by the proposed algorithm. 

The code snippet which performs the hash operation is as follows: 

 

MessageDigest md = MessageDigest.getInstance("SHA-256"); 

md.update(hashed_image_byteArray); 

byte[] hashed_image_bytes = md.digest(); 

5.2.3  KEYED HASH OPERATION 

 

Hashing is secure, but to make it even more secure, Keyed Hash is used in the proposed 

approach. Keyed hash is mainly used for generation of the Acknowledgment packets in the 

proposed algorithm. SecretKeySpec class is used for which the provider ‘HmacSHA256’ 

is given as one of the arguments. The result is a byte array which is returned and stored. 

javax.crypto.spec library is imported to perform the mentioned operation. The following is 

the code snippet used for performing the Keyed Hash operation. 

 

SecretKeySpec signingKey = new SecretKeySpec(hash_key.getBytes(), 

"HmacSHA256"); 

Mac mac = Mac.getInstance("HmacSHA256"); 

mac.init(signingKey); 

return mac.doFinal(message_to_be_hashed.getBytes()); 



 

 

60 

 

5.2.4  SOCKET CONNECTION 

 

Sockets are used for establishing a connection between the client and the server. Data is 

then transferred using the data writer and reader classes. The received data is then verified 

and the succeeding operations are performed accordingly. java.net package is used for 

implementing the entire socket connection. 

At the server end, ServerSocket object is created on port 19 using the following code 

snippet. 

 

ServerSocket server_Socket = new ServerSocket(19);  

 

Then the following snippet is used to instantiate a Socket object which would listen to the 

incoming connection requests with the help of the ServerSocket class’s ‘accept()’ function. 

 

Socket channel_Socket = server_Socket.accept(); 

 

After the establishment of connection between the server and the device, in order to receive 

the incoming message, readLine() function of the BufferedReader class is used. The 

BufferedReader takes InputStreamReader object as its argument. The InputStreamReader 

in return takes the getInputStream() function of the Socket created, as its argument. The 

received message is stored into a String. The following snippet implements the above 

mentioned process. 

 

BufferedReader receiver = new BufferedReader(new 

InputStreamReader(channel_Socket.getInputStream())); 

String incoming_msg = receiver.readLine(); 

 

The data which is to be sent out of the socket, is done by making use of the 

ObjectOutputStream class. It takes getOutputStream() function of the Socket class as its 

argument. 

 



 

 

61 

 

DataOutputStream sender = new 

DataOutputStream(channel_Socket.getOutputStream()); 

sender.writeBytes("text to be sent"); 

 

When the objection of the socket session is completed or whenever there is an urge for the 

session to be terminated, the close() function of the Socket class is used. 

 

smartphone_Socket.close(); 

 

5.2.5  RANDOM NUMBER GENERATION 

 

Usually the Random class of the java.util library can be used for Random Number 

generation. But when we want to generate a Random Number in a secure fashion, then we 

make use of the subclass of the Random class. SecureRandom is a sub-class of the Random 

class which generates a random number which is strong cryptographically as specified in 

RFC-1750: Randomness Recommendations for Security. The random number thus 

generated satisfies the tests specified in FIPS 140-2, Security Requirements for 

Cryptographic Modules[50]. The following code snippet is used to generate a random 

number required for the proposed approach. 

 

SecureRandom prng = new SecureRandom(new_seed); 

int n = prng.nextInt(); 

 

5.2.6  ‘p’, ‘g’, ‘ACKph’, ‘ACKs’ TERMS GENERATION 

 

The value of ‘n’ which is generated using the pseudo random number generator is the crux 

for the generation of the ‘p’, ‘g’ which are used for the Key Generation in the Diffie 

Hellman algorithm and for the generation of ‘ACKph’, ‘ACKs’ which are used as 

acknowledgements in-between the client and the server. 

The generated random number is split and stored into an ArrayList object named ‘pointer’. 

This ArrayList object’s contents are then used to retrieve the values stored in the Reference 



 

 

62 

 

Frames arrays. java.util package is imported to avail the facilities of the ArrayList, Iterator 

classes etc. The following snippet shows how the random number ‘n’ is split and stored 

into the pointer ArrayList. 

 

String n_string = String.valueOf(n); //random number ‘n’ is converted  

to String for splitting 

String[] n_arr = n_string.split("");//split and stored into an array  

format 

int looper=0; 

do { 

pointer.add(Integer.parseInt(n_arr[looper]));//each digit of ‘n’ is  

stored into ArrayList ‘pointer’ 

looper++; 

} while (pointer.size() < n_arr.length); 

 

Once the digits of the random number are stored into the ArrayList, they are then accessed 

and the respective locations’ content from the Reference Frames are retrieved. For instance, 

as discussed in Section 4.2, the first two digits of the random number generated are used 

as pointers to the location whose contents is used as the value for ‘p’. The following code 

snippet illustrates how the mentioned example can be achieved; 

 

p = (get_Reference_Frame_Content(pointer.get(0), pointer.get(1))); 

//where get_Reference_Frame_Content is a method which takes the array indices as 

parameters. The first parameter refers to the Reference Frame number and the second frame 

represents the Field number in the chosen Reference Frame. 

 

//get_Reference_Frame_Content() pseudo code 

get_Reference_Frame_Content(int i, int j) { 

double content; 

if (i > (row_count - 1)) {//loops it around the reference frames used 

i = i % (row_count - 1); 

} 

if (j > 4) {//loops it around the fields used 

j = j % 4; 



 

 

63 

 

} 

content = reference_frames[i][j]; 

return content; 

} 

 

Similarly, the values of ‘g’, ‘ACKph’, ‘ACKs’ are deduced and stored in their respective 

variable and utilized as needed by the proposed approach. 

 

g = (get_Reference_Frame_Content(pointer.get(2), pointer.get(3))); 

ACKph = (get_Reference_Frame_Content(pointer.get(4), pointer.get(5))); 

ACKs = (get_Reference_Frame_Content(pointer.get(6), pointer.get(7))); 

 

5.2.7  DIFFIE HELLMAN KEY GENERATION 

 

Diffie Hellman algorithm requires ‘p’, ‘g’, ‘Sa’, ‘Sb’ and ‘Ta’, ‘Tb’ for the generation of its 

key. The value of ‘Sa’ & ‘Sb’ are Random numbers, ‘Ta’ & ‘Tb’ are calculated using the 

formula (i) & (ii) and the SecretKey is generated using the formula (iii) & (iv) asgiven 

below; 

i. 𝑇𝑎 = 𝑔𝑆𝑎 𝑚𝑜𝑑 𝑝 

ii. 𝑇𝑏 = 𝑔𝑆𝑏 𝑚𝑜𝑑 𝑝 

iii. Secret 𝐾𝑒𝑦 =  𝑇𝑏𝑆𝑎 𝑚𝑜𝑑 𝑝 

iv. Secret 𝐾𝑒𝑦 =  𝑇𝑎𝑆𝑏 𝑚𝑜𝑑 𝑝 

 

For attaining the above mentioned, the ‘Ta’, ‘Tb’ and the Secret Key are initialized as 

BigIntegers which is obtained from the java.math package. The following code snippet 

depicts how the value of ‘Ta’ & ‘Tb’ are calculated; 

 

T = (g).pow(S.intValue()); 

T = T.mod(p); 

Similarly, the following code snippet helps in calculation of the Secret Key; 

 

key = (T).pow(S.intValue()); 

key = key.mod(p); 



 

 

64 

 

5.2.8  RSA KEY GENERATION, ENCRYPTION & DECRYPTION 

 

The message which has to be transmitted, is composed and hashed as discussed in Section 

4.2. This hashed version of the message is the Message Digest. This when encrypted acts 

as the Digital Signature. The whole message along with the digital signature is encrypted 

using the public key of the server. The entire message is secured using the RSA encryption. 

 

Following is the implementation details of the RSA algorithm. 

Two important libraries are used, mainly for handling the BigInteger and for generating a 

secure random number. They are java.math and java.security.SecureRandom respectively. 

 

As discussed in Section 2.1, the keys required for the RSA algorithm are generated after 

following a sequence of calculations. For the proposed approach, the keys are generated 

using the following snippet: 

 

//calculating p*q 

n = p.multiply(q);  

//calculating  (p-1)*(q-1) 

BigInteger m = 

 (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE)); 

e = new BigInteger("3"); 

while (m.gcd(e).intValue() > 1) { 

e = e.add(new BigInteger("2")); 

} 

d = e.modInverse(m); 

//public key ( e, n ) and private key ( d, n ) 

For encryption, the data to be sent is processed as discussed in Section 2.1. In the proposed 

approach, data is encrypted using the following snippet; 

 

public synchronized String encrypt(String plaintext) { 

return (new BigInteger(plaintext.getBytes())).modPow(e, n).toString(); 

} 

 



 

 

65 

 

For decryption, the received data is processed as discussed in Section 2.1. In the proposed 

approach, data is decrypted using the following snippet 

 

public synchronized String decrypt(String ciphertext) { 

return new String((new 

BigInteger(ciphertext)).modPow(d,n).toByteArray()); 

} 

 

5.2.9  REFERENCE FRAME GENERATION IN ANDROID APPLICATION 

 

As discussed in Section 4.2, the Reference Frames are stored in an array format. The Rows 

represent the number of Reference Frames used and the columns store the Sensor values 

which are put into the desired use. The Reference Frames’ contents are accumulated and 

stored in the required format via the mobile application. For gathering the sensor values, 

following are the set of code snippet that were utilized: 

The SensorManager class in the Android system is used to activate and/or manipulate the 

sensors available in the smartphone/device. In the following snippet, SensorManager is the 

class, getSystemService() is the function call whose parameter is the sensor service of the 

current Context. 

 

SensorManager sensor_manager = 

(SensorManager) getSystemService(Context.SENSOR_SERVICE); 

 

Then the sensor is instantiated using the getDefaultSensor() of the sensor manager class.  

 

Following is the snippet for Pressure sensor. 

 

Sensor pressure_sensor =  

sensor_manager.getDefaultSensor(Sensor.TYPE_PRESSURE); 

 



 

 

66 

 

Then the obtained sensor is activated using the registerListener() function call. This 

function takes the context, sensor and the delay as parameters. Following is the snippet 

which registers the Pressure sensor. 

 

sensor_manager.registerListener(MainActivity.this, 

pressure_sensor, SensorManager.SENSOR_DELAY_NORMAL); 

 

Similarly, to stop a sensor from listening to changes within its hardware, the following 

snippet is used where the context and the sensor is used as parameters to 

unregisterListener() function: 

 

sensor_manager.unregisterListener(MainActivity.this, light_sensor); 

 

After registering the sensor, the onSensorChanged() function which takes the 

SensorEvent’s object as it parameter, is over ridden. This method identifies any change 

that occurs in the sensor’s hardware and that change is what represents the sensor value. 

The following code snippet displays the function for Pressure sensor; 

 

@Override 

public void onSensorChanged(SensorEvent event) { 

if (event.sensor.getType() == Sensor.TYPE_PRESSURE) 

{ 

pressure_values = event.values[0]; 

//code to write to file 

}} 

 

The recorded values are then written into a text file using the BufferedWriter and FileWriter 

objects. 

 

BufferedWriter writer = new BufferedWriter((new 

FileWriter(“RFFile.txt”, true)); 

writer.write(pressure_values+ “&”);//& is used as an identifier while 

retrieving the values at server end 

writer.flush(); writer.close(); 



 

 

67 

 

For the generation of the Reference Values at the client end, the following code snippet is 

used from within a nested for loop. This For loop is basically used to handle the Array 

Structure. 

reference_frames[i][j] = pressure_values; 

 

At the Server end, the values are read from the file which is sent from the client and is split 

using the ‘&’ as an identifier. The split values are then stored into a two dimensional array. 

Following code snippet gives a brief overview of the implementation. 

space_split_array = sub.split("&"); 

//for loop 

reference_frames[i][j] = Double.parseDouble(space_split_array[k]); 

5.2.10  PERMISSIONS REQUIRED FOR ANDROID APPLICATION 

 

Permissions are needed in order for the application to function properly, collect the data 

appropriately and send them to the remote server. The following are the permissions which 

are used in the application developed. 

 

<uses-permission android:name= 

"android.permission.WRITE_EXTERNAL_STORAGE"/> 

<uses-permission android:name = "android.permission.BODY_SENSORS" /> 

<uses-permission android:name = "android.permission.READ_PHONE_STATE" 

/> 

<uses-permission android:name= 

"android.permission.WRITE_INTERNAL_STORAGE"/> 

<uses-permission android:name= 

"android.permission.WRITE_EXTERNAL_STORAGE"/> 

<uses-permission android:name= 

"android.permission.INTERNET"/> 

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" 

/> 

<uses-permission android:name= 

"android.permission.ACCESS_COARSE_LOCATION"/> 

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" 

/> 



 

 

68 

 

CHAPTER 6 EXPERIMENTAL RESULTS AND ANALYSIS 

The Sections in this chapter discusses about the Experimental Setup, the Test scenarios 

with their results and finally we compare it with the existing algorithm. The main objective 

of the proposed approach is to make the keys generated by the parties as un-predictable as 

possible to minimize the probability of occurrence of the MITM attack in the Diffie 

Hellman algorithm. Hence different test cases are designed which mimic the real time 

scenarios under which the Reference Frames which are used for key generation, is 

collected. The keys thus generated are analyzed to check if there is any noticeable pattern 

among them. The whole approach is also tested using different Reference Frame count for 

different file counts as well. 

 

Figure 26 shows the content that is stored at each of the client and the server before the 

commencement of the Data Transfer phase, post Registration Phase. 

 

 

Figure 26 Entities stored at each of the parties involved in the communication 

 

The data which is sent over the wire in between the client and the server programs are 

captured using Wireshark tool and the captured traffic is also analyzed. A protocol analysis 

tool named Scyther is used to evaluate the protocol in the proposed approach. This protocol 

analyzer tool displays all of the possible attacks in the proposed approach, if any. This was 

used to ensure that this work was not susceptible to any major known attacks. 

 

This chapter is organized as follows, we begin with the Experimental Setup discussing 

about the devices with the environment under which the data is collected and the tools used 

for evaluation. This section is followed by a set of sections which elaborates on various 



 

 

69 

 

test cases considered and experimented upon. Section 6.2 deals with the evaluations done 

using Wireshark followed by Section 6.3 which deals with the various real time test cases. 

Section 6.4 shows the evaluations performed using Scyther and Sections 6.5 & 6.6 which 

present the performance & security analysis respectively. Finally, we conclude with the 

summary discussing the outcome of the experiments performed and the results thus 

obtained. 

6.1  EXPERIMENTAL SETUP 

 

The data required for testing and evaluating the proposed approach is accumulated via a 

mobile application which was installed in a smartphone mobile device. The device 

specification is as follows[51]: 

o Device Model: Samsung Galaxy S6 

o Android Version: Android 5.0.2 (Lollypop) 

o RAM: 3GB 

o CPU: Quad-core 1.5 GHz Cortex-A53 & Quad-core 2.1 GHz Cortex-A57 

o Chipset: Exynos 7420 Octa 

o Internal Memory: 32GB 

 

The client and the server instances are implemented and executed using Java programming 

language in a personal laptop. The specification of the laptop is as follows: 

o Operating System: Windows OS 8.1 

o RAM: 8GB 

o HardDisk Capacity: 500GB 

o Java Version: Java 1.8.0_25 

o Processor: Intel® Core™ i5-4200U CPU @ 1.60GHz 2.29GHz 

o System Type: 64-bit Operating System, x64-based processor. 

 

The mobile application is installed in the device and the researcher performed the activities 

required for each of the test cases. The data thus generated is then transferred to the laptop 

and the Client-Server socket program is executed. 



 

 

70 

 

 

All the keys generated are stored into a text file for analysis. The time taken for the 

execution to complete is noted down and plotted into a graph to understand the time 

consumption pattern. Also the generated keys are then plotted into a map to observe for 

any possible patterns. 

 

During the execution of the java programs, the encryption of the data packet, which is to 

be transmitted, is avoided to make the contents visible for analysis. Only the Data part is 

encrypted, rest of the packet is left un-encrypted and is sent as plain text. Added to that, 

since sending such huge files using sockets is not feasible,  we have encrypted only the file 

name and transferred the encrypted part as Data. At the same time, we have stored a copy 

of the encrypted file which is decrypted later by the other party after the obtaining the file 

name with the use of proper decryption key. RawCap is used to capture the loopback traffic 

generated by the data exchanged between the socket programs[52]. This captured traffic is 

then analysed using a traffic analyzer tool, ‘Wireshark’[53].  

o Wireshark Version: 1.12.11 

o RawCap Version: 0.1.5.0 

 

The entire proposed protocol is then evaluated using a protocol testing tool ‘Scyther’. This 

tool is run in Linux based system. The Scyther specification is as follows; 

o Scyther Version: 1.1.3 [54][62] 

 

Only the following sensors are chosen for Reference Frame for the study purpose, as these 

are known to have relatively less probability of zero value generation. For instance, the 

proximity sensor value is either numeric Zero or numeric Eight, where numeric Eight 

represents the presence of the device away from the ear and numeric Zero, represents the 

presence of device near the ear. Thus the list of sensors considered for the testing are as 

follows: 

o Pressure Sensor 

o Gravity Sensor 

o GPS Sensor 



 

 

71 

 

o Orientation Sensor 

o Gyroscope Sensor 

 

Each of the test cases are triggered for different count of Reference Frames, to analyze their 

execution times. The following are the number of Reference Frames considered for each 

of the test cases; 

o Five Reference Frames 

o Ten Reference Frames 

o Fifteen Reference Frames 

o Twenty Reference Frames 

o Twenty Five Reference Frames 

6.2  EVALUATION USING WIRESHARK 

 

The actual proposed approach transmits most of the message in an encrypted form. This 

encrypted message is then decrypted at the corresponding other end using the appropriate 

key. To understand what is sent into the communication channel, this message is not 

encrypted. Only the actual data is encrypted and sent into the communication channel. 

 

The packets are captured using ‘RawCap’ as discussed in Section 6.1 and analyzed using 

‘Wireshark’. The following is the snapshot of the traffic captured during Registration 

Phase.  

 



 

 

72 

 

 
Figure 27 Encrypted Data during the Registration phase. 

 

 
Figure 28 Second Message during the Registration phase. 

 

 
Figure 29 Third Message during the Registration phase. 

 

 

 

 

 

 



 

 

73 

 

 

The following is the snapshot of the traffic captured during the Data Transfer Phase.  

 

 
Figure 30 Traffic content during the Data Transfer phase. 

 

 
Figure 31 First packet transferred in the Data Transfer Phase 

 

 
Figure 32 Second packet transferred in the Data Transfer Phase 

 



 

 

74 

 

 
Figure 33 Third packet transferred in the Data Transfer Phase 

 

 
Figure 34 Fourth packet transferred in the Data Transfer Phase 

 

Among all the contents which constituted the messages that were exchanged, only ‘Ta’ and 

‘Tb’ are the factors which are a part of the key generation process. But these values  by 

themselves cannot contribute to the generation of the Secret Key without the support of 

‘p’, ‘g’ and their respective ‘Sa’ and ‘Sb’ values. Added to that, the actual data 

“351559072370265_1406201600062346” is encrypted and the outcome is  shown in the 

Figure 34. It is highly unlikely to revert back to the actual data without the knowledge of 

the actual Secret Key that is used to encrypt the data. Thus it is clear that the prediction of 

keys is relatively difficult even if the hacker intercepts the ongoing communication. 

6.3  EVALUATION USING TEST SCENARIOS 

 

The test scenarios considered for this research work depict the day-to-day activities of the 

users. We placed the smartphone device in different positions which would imitate the 

position of the device if it were to be in  a real time scenario. The testing began with 

Simulated data collection i.e. the contents in the Reference Frames and the data files were 

generated with the help of a Pseudo Random number generator. Then the developed mobile 

application was put into action under various test cases. The following is the list of all the 



 

 

75 

 

test cases under which the mobile application accumulated the data required for testing the 

proposed approach. 

 When the device is moved ‘Vertically’ 

 When the device is in an ‘Idle’ position 

 When the User is ‘Walking’ with the device in his trousers’ pocket 

 When the User is inside an ‘Elevator’ with the device in his trousers’ pocket 

 When the User is walking up/down the ‘Stairs’ with the device in his trousers’ 

pocket. 

 When the User is within a ‘Vehicle’ with the device in his trousers’ pocket 

 

6.3.1  USING THE ‘SIMULATED DATA’ 

 

In this test case, the proposed approach is tested using the data generated by a random 

number generator in a Java program. The upper - lower bounds for each sensor is set and 

the values are generated. Even the sensors are also selected at random. In this test case, no 

real sensor is used. Only a reference of the real sensor is duplicated and tused. The purpose 

of this test case is to check if this approach can be utilized in devices which do not include 

any Sensors’ hardware. 

 

The generated values and the files are then used as input for the proposed approach. The 

communication is initiated and the Keys generated are written into a file. The keys in the 

file are then plotted into a graph and analyzed. 

 

The Keys generated and the Execution times are recorded for the Reference Frames count 

mentioned in Section 6.1 for different file counts i.e. in the first execution, five DataFiles 

were transferred between the client and the server socket using each of the Reference 

Frames count scenario. Then in the second run, ten DataFiles were transferred again 

between the sockets using each of the Reference Frames count scenario and so on until the 

DataFile count was observed to show an exponential spike in the execution time or until it 



 

 

76 

 

shows that the execution times are remaining constant irrespective of the Reference frames 

count used. The count of data files is five, ten, fifteen, twenty, twenty-five and fifty.  

 

The following is the image of the Graph which represents the execution time taken for 

different DataFile count with different Reference Frames. 

 

 

Figure 35 Execution Time vs ReferenceFrames count & DataFile count for Simulated 

Data 

 

Figure 36 shows the graphs with the key values that are obtained for different DataFile 

count but with five Reference Frames. Each graph (in Figures 84-89) representing the keys 

generated for different Data File counts are displayed individually in Appendix A. 

 

 

Figure 36 Key values obtained for each Data file with 5 Reference Frames for Simulated 

Data  

4
5 5

6
7

10

4
5 5

6
7

9

4
5 5

6
7

8

4
5 5

6
7

8

4
5 5

6 6

10

4
5 5

6 6

10

0

2

4

6

8

10

12

EX
EC

U
TI

O
N

 T
IM

E

REFERENCE FRAMES : : DATAFILES

EXECUTION TIMES for DIFFERENT REFERENCE FRAMES 
AND DATAFILE COUNT



 

 

77 

 

Figure 37 shows the graphs with the key values that are obtained for different DataFile 

count but with ten Reference Frames. Each graph (in Figure 90-95) representing the keys 

generated for different Data File counts are displayed individually in Appendix A. 

 

 

Figure 37 Key value obtained for each Data file with 10 Reference Frames for Simulated 

Data 

 

Figure 38 shows the graphs with the key values that are obtained for different DataFile 

count but with fifteen Reference Frames. Each graph (in Figure 96-101) representing the 

keys generated for different Data File counts are displayed individually in Appendix A.  

 

 

Figure 38 Key value obtained for each Data file with 15 Reference Frames for Simulated 

Data 

 

Figure 39 shows the graphs with the key values that are obtained for different DataFile 

count but with twenty Reference Frames. Each graph (in Figure 102-107) representing the 

keys generated for different Data File counts are displayed individually in Appendix A. 

 



 

 

78 

 

 

Figure 39 Key value obtained for each Data file with 20 Reference Frames for Simulated 

Data 

 

Figure 40 shows the graphs with the key values that are obtained for different DataFile 

count but with twenty-five Reference Frames. Each graph (in Figure 108-113) representing 

the keys generated for different Data File counts are displayed individually in Appendix 

A. 

 

 
Figure 40 Key value obtained for each Data file with 25 Reference Frames for Simulated 

Data 

 

As we can see from Figure 35, the execution time remained relatively constant as the 

Reference Frame count increased. Added to that, Figures 36 to 40 show that there is no 

pattern which has repeated itself in any of the scenario. 

 

 

 



 

 

79 

 

6.3.2  WHEN THE DEVICE IS MOVED ‘VERTICALLY’ 

 

In this test case, the proposed approach is tested using the data generated by the movement 

of the mobile device in a vertical direction. This would mimic a situation where the user 

might be jumping or skipping or hopping in a real time situation. The rest of the 

interpretation and analysis approach remains the same, as mentioned earlier in Section 

6.3.1. 

 

Figure 41 is the image of the Graph which represents the execution time taken for different 

DataFile count with different Reference Frames. 

 

 

Figure 41 Execution Time vs ReferenceFrames count & DataFile count for Vertical 

movement of the Device 

 

Figure 42 shows the graphs with the key values that are obtained for different DataFile 

count but with five Reference Frames. Each graph (in Figure 114-119) representing the 

keys generated for different Data File counts are displayed individually in Appendix B. 

 



 

 

80 

 

 

Figure 42 Key value obtained for each Data file with 5 Reference Frames for Vertical 

movement of the Device 

 

Figure 43 shows the graphs with the key values that are obtained for different DataFile 

count but with ten Reference Frames. Each graph (in Figure 120-125) representing the keys 

generated for different Data File counts are displayed individually in Appendix B. 

 

 

Figure 43 Key value obtained for each Data file with 10 Reference Frames for Vertical 

movement of the Device 

 

Figure 44 shows the graphs with the key values that are obtained for different DataFile 

count but with fifteen Reference Frames. Each graph (in Figure 126-131) representing the 

keys generated for different Data File counts are displayed individually in Appendix B. 

 



 

 

81 

 

 

Figure 44 Key value obtained for each Data file with 15 Reference Frames for Vertical 

movement of the Device 

 

Figure 45 shows the graphs with the key values that are obtained for different DataFile 

count but with twenty Reference Frames. Each graph (in Figure 132-137) representing the 

keys generated for different Data File counts are displayed individually in Appendix B.  

 

 
Figure 45 Key value obtained for each Data file with 20 Reference Frames for Vertical 

movement of the Device 

 

Figure 46 shows the graphs with the key values that are obtained for different DataFile 

count but with twenty-five Reference Frames. Each graph (in Figure 138-143) representing 

the keys generated for different Data File counts are displayed individually in Appendix B. 

 



 

 

82 

 

 
Figure 46 Key value obtained for each Data file with 25 Reference Frames for Vertical 

movement of the Device 

 

As we can see from Figure 41 the execution time remained relatively constant as the 

Reference Frame count increased. Added to that, the Figures 42 to 46 show that there is no 

pattern which has repeated itself in any of the scenario. 

 

6.3.3  WHEN THE DEVICE IS IN ‘IDLE’ POSITION 

 

In this test case, the proposed approach is tested using the data generated by placing the 

device in an Idle position i.e. no movement is experienced by the device. This would mimic 

a situation where the user might be sitting or left the device on a table or sleeping in a real 

time situation. The rest of the interpretation and analysis remain the same, as mentioned 

earlier in Section 6.3.1. 

 

Figure 47 is the image of the Graph which represents the execution time taken for different 

DataFile count with different Reference Frames. 

 



 

 

83 

 

 
Figure 47 Execution Time vs ReferenceFrames count & DataFile count when the Device 

is in Idle position 

 

Figure 48 shows the graphs with the key values that are obtained for different DataFile 

count but with five Reference Frames. Each graph (in Figure 144-149) representing the 

keys generated for different Data File counts are displayed individually in Appendix C. 

 

 
Figure 48 Key value obtained for each Data file with 5 Reference Frames when the 

Device is in Idle position 

 

Figure 49 shows the graphs with the key values that are obtained for different DataFile 

count but with ten Reference Frames. Each graph (in Figure 150-155) representing the keys 

generated for different Data File counts are displayed individually in Appendix C. 



 

 

84 

 

 
Figure 49 Key value obtained for each Data file with 10 Reference Frames when the 

Device is in Idle position 

 

Figure 50 shows the graphs with the key values that are obtained for different DataFile 

count but with fifteen Reference Frames. Each graph (in Figure 156-161) representing the 

keys generated for different Data File counts are displayed individually in Appendix C. 

 

Figure 50 Key value obtained for each Data file with 15 Reference Frames when the 

Device is in Idle position 

 

 

Figure 51 shows the graphs with the key values that are obtained for different DataFile 

count but with twenty Reference Frames. Each graph (in Figure 162-167) representing the 

keys generated for different Data File counts are displayed individually in Appendix C. 



 

 

85 

 

 
Figure 51 Key value obtained for each Data file with 20 Reference Frames when the 

Device is in Idle position 

 

Figure 52 shows the graphs with the key values that are obtained for different DataFile 

count but with twenty-five Reference Frames. Each graph (in Figure 168-173) representing 

the keys generated for different Data File counts are displayed individually in Appendix C. 

 

 
Figure 52 Key value obtained for each Data file with 25 Reference Frames when the 

Device is in Idle position 

 

As we can see from Figure 47 the execution time remained relatively constant as the 

Reference Frame count increased. Added to that, the Figures 48 to 52 show that there is no 

pattern which has repeated itself in any of the scenario. 

 

 

 



 

 

86 

 

6.3.4  WHEN THE USER IS ‘WALKING’ WITH THE DEVICE IN HIS 

TROUSERS’ POCKET 

 

In this test case, the proposed approach is tested using the data generated by placing the 

device in one of the pockets of the trousers while the researcher is walking. The researcher 

performed the experiment by walking until all the desired number of files have been 

created. The rest of the interpretation and analysis remains the same, as mentioned earlier 

in Section 6.3.1. 

 

Figure 53 is the image of the Graph which represents the execution time taken for different 

DataFile count with different Reference Frames. 

 

 
Figure 53 Execution Time vs ReferenceFrames count & DataFile count when the Device 

is in trouser pocket while walking 

 

Figure 54 shows the graphs with the key values that are obtained for different DataFile 

count but with five Reference Frames. Each graph (in Figure 174-179) representing the 

keys generated for different Data File counts are displayed individually in Appendix D. 

 



 

 

87 

 

 
Figure 54 Key value obtained for each Data file with 5 Reference Frames when the 

Device is in trouser pocket while walking 

 

Figure 52 shows the graphs with the key values that are obtained for different DataFile 

count but with ten Reference Frames. Each graph (in Figure 180-185) representing the keys 

generated for different Data File counts are displayed individually in Appendix D. 

 

 
Figure 55 Key value obtained for each Data file with 10 Reference Frames when the 

Device is in trouser pocket while walking 

 

Figure 56 shows the graphs with the key values that are obtained for different DataFile 

count but with fifteen Reference Frames. Each graph (in Figure 186-191) representing the 

keys generated for different Data File counts are displayed individually in Appendix D. 

 



 

 

88 

 

 

Figure 56 Key value obtained for each Data file with 15 Reference Frames when the 

Device is in trouser pocket while walking 

 

Figure 57 shows the graphs with the key values that are obtained for different DataFile 

count but with twenty Reference Frames. Each graph (in Figure 192-197) representing the 

keys generated for different Data File counts are displayed individually in Appendix D. 

 
Figure 57 Key value obtained for each Data file with 20 Reference Frames when the 

Device is in trouser pocket while walking 

 

Figure 58 shows the graphs with the key values that are obtained for different DataFile 

count but with twenty-five Reference Frames. Each graph (in Figure 198-203) representing 

the keys generated for different Data File counts are displayed individually in Appendix 

D. 

 



 

 

89 

 

 
Figure 58 Key value obtained for each Data file with 25 Reference Frames when the 

Device is in trouser pocket while walking 

 

As we can see from Figure 53 the execution time remained relatively constant as the 

Reference Frame count increased. Added to that, the Figures 54 to 58 show that there is no 

pattern which has repeated itself in any of the scenario. 

 

6.3.5  WHEN THE USER IS INSIDE AN ‘ELEVATOR’ WITH THE DEVICE 

IN HIS TROUSERS’ POCKET 

 

In this test case, the proposed approach is tested using the data generated by placing the 

device in one of the pockets of the trousers while the researcher is inside an elevator. The 

researcher performed the experiment by remaining inside an elevator and moving up/down 

to different floors at random until all the desired number of files have been created. The 

rest of the interpretation and analysis remains the same, as mentioned earlier in Section 

6.3.1. 

 

Since the Execution time for different DataFile count remained the same in all of the above 

discussed test cases, for the following test cases, the experiment is tested for different 

Reference Frame count, having the DataFile count fixed to five. 

 

Figures 59 shows the graphs with the key values that are obtained for different DataFiles 

with five Reference Frames.  

 



 

 

90 

 

 
Figure 59 Key value obtained with 5 Reference Frames when the Device is in trouser 

pocket while in elevator 

 

Figure 60 shows the graphs with the key values that are obtained for different DataFiles 

with ten Reference Frames.  

 

 
Figure 60 Key value obtained with 10 Reference Frames when the Device is in trouser 

pocket while in elevator 

 

 

Figure 61 shows the graphs with the key values that are obtained for different DataFiles 

with fifteen Reference Frames.  



 

 

91 

 

 

 

Figure 61 Key value obtained with 15 Reference Frames when the Device is in trouser 

pocket while in elevator 

 

Figure 62 shows the graphs with the key values that are obtained for different DataFiles 

with twenty Reference Frames. 

 

 

Figure 62 Key value obtained 20 Reference Frames when the Device is in trouser pocket 

while in elevator 

 

Figure 63 shows the graphs with the key values that are obtained for different DataFiles 

with twenty-five Reference Frames.  



 

 

92 

 

 

 
Figure 63 Key value obtained with 25 Reference Frames. 

 

From the Figures 59 to 63 it is clear that there is no pattern which has repeated itself in any 

of the scenario. 

 

6.3.6  WHEN THE USER IS MOVING ON THE ‘STAIRS’ WITH THE 
DEVICE IN HIS TROUSERS’ POCKET 

 

In this test case, the proposed approach is tested using the data generated by placing the 

device in one of the pockets of the trousers while the researcher is climbing up the stairs 

and then going down the stairs. The researcher performed the experiment by moving up 

and down to different floors at random until all the desired number of files have been 

created. The rest of the interpretation and analysis approach remains the same, as 

mentioned earlier in Section 6.3.1. 

 

This experiment is tested for different Reference Frame count, having the DataFile count 

fixed to five. 

 

Figure shows the graphs with the key values that are obtained for different DataFiles with 

five Reference Frames.  



 

 

93 

 

 

 
Figure 64 Key value obtained with 5 Reference Frames when the Device is in trouser 

pocket while walking in stairs 

 

Figure 65 shows the graphs with the key values that are obtained for different DataFiles 

with ten Reference Frames.  

 

 
 

Figure 65 Key value obtained with 10 Reference Frames when the Device is in trouser 

pocket while walking in stairs 

 



 

 

94 

 

Figure 66 shows the graphs with the key values that are obtained for different DataFiles 

with fifteen Reference Frames.  

 

 

Figure 66 Key value obtained with 15 Reference Frames when the Device is in trouser 

pocket while walking in stairs 

 

Figure 67 shows the graphs with the key values that are obtained for different DataFiles 

with twenty Reference Frames.  

 

 
 

Figure 67 Key value obtained 20 Reference Frames when the Device is in trouser pocket 

while walking in stairs 



 

 

95 

 

 

The following figure shows the graphs with the key values that are obtained for different 

DataFiles with twenty-five Reference Frames.  

 

 
Figure 68 Key value obtained with 25 Reference Frames when the Device is in trouser 

pocket while walking in stairs 

 

From the Figures 64 to 68, it is clear that there is no pattern which has repeated itself in 

any of the scenario. 

 

6.3.7  WHEN THE USER IS WITHIN A ‘VEHICLE’ WITH THE DEVICE IN 

HIS TROUSERS’ POCKET 

 

In this test case, the proposed approach is tested using the data generated by placing the 

device in one of the pockets of the trousers while the researcher is inside a moving vehicle 

such as a bus. The researcher performed the experiment by remaining inside the bus, which 

halted at different stops at random, until all the desired number of files have been created. 

The rest of the interpretation and analysis remains the same, as mentioned earlier in Section 

6.3.1. 

 



 

 

96 

 

The experiment is tested for different Reference Frame count, having the DataFile count 

fixed to five. 

 

Figure 69 shows the graphs with the key values that are obtained for different DataFiles 

with five Reference Frames.  

 

 
Figure 69 Key value obtained with 5 Reference Frames when the Device is in trouser 

pocket while moving in vehicle 

 

Figure 70 shows the graphs with the key values that are obtained for different DataFiles 

with ten Reference Frames.  

 
Figure 70 Key value obtained with 10 Reference Frames when the Device is in trouser 

pocket while moving in vehicle 



 

 

97 

 

Figure 71 shows the graphs with the key values that are obtained for different DataFiles 

with fifteen Reference Frames.  

 

 

Figure 71 Key value obtained with 15 Reference Frames when the Device is in trouser 

pocket while moving in vehicle 

 

 

Figure 72 shows the graphs with the key values that are obtained for different DataFiles 

with twenty Reference Frames.  

 

 
 

Figure 72 Key value obtained 20 Reference Frames when the Device is in trouser pocket 

while moving in vehicle 



 

 

98 

 

Figure 73 shows the graphs with the key values that are obtained for different DataFiles 

with twenty-five Reference Frames.  

 

 
Figure 73 Key value obtained with 25 Reference Frames when the Device is in trouser 

pocket while moving in vehicle 

 

From the Figures 69 until 73, it is clear that there is no pattern which has repeated itself in 

any of the scenario. 

6.3.8  INFERENCES FROM THE TEST CASES 

 

In the experiments performed for test cases described in Section 6.3.1 until 6.3.4, the time 

required for the entire proposed approach to be processed and the communication to be 

completed, is recorded and plotted into a graph. In each test case, each set of Reference 

Frames count was applied to each set of DataFiles count. The keys thus generated are also 

stored and analyzed to check for randomness.  

 

From our observation, the execution time depended on the number of files being encrypted 

and transmitted over the wire. The number of reference frames did not influence the 

execution time. The execution time increased with the increase in DataFiles count. But for 

the same DataFiles count, with the increase in the Reference Frames count, the execution 

time remained almost same. This proves that the number of Reference Frames does not 

affect the execution time but from our algorithm it does increase the choices from which 



 

 

99 

 

the values can be chosen from. In short, if there are 2 Reference Frames with 5 Fields each, 

then a value ‘x’ can be one among the ten {2*5} available values. But if we are working 

with 10 Reference Frames with 5 Fields each, then the value ‘x’ can be one amongst the 

fifty {10*5} available values. The latter scenario has lesser chances of predicting the value 

of ‘x’ in comparison to the former scenario. Hence there is no relation between the number 

of Reference Frames and the number of Data Files. Any number of Reference Frames can 

be considered for transferring any number of Data Files. There might be an increase in the 

execution time due to the increase in the search space while key generation but this would 

have no observable effect on the data files that are being transferred. We started observing 

the Execution time to check if there is any noticeable effect of the increase in the Reference 

Frames w.r.t. the data files count. Apart from that, there is no role what so ever of the 

execution time in this thesis. Based on our observation, we have not noticed any drastic 

hike in the execution time as the number of Reference Frames increased until 25. Further 

testing is required in order to observe or comment on the execution time consumption for 

Reference Frame counts beyond 25. 

 

The set of graphs displaying the Keys’ values in each test case for each ‘Reference Frame 

count’ - ‘DataFile count’ combination, also present interesting results. None of the graph 

pattern is observed to repeat itself in any other graph yielded by any test case. Each graph’s 

pattern is unique and is not redundant. The values of the keys are seen to repeat itself in 

some scenarios. But the file number or the time at which the key is repeated, are also 

observed to be random. The repetition of the keys is due to an implementation limitation. 

The ‘BigInteger’ structure was not able to store the entire size of the generated intermediate 

values i.e. if the length of ‘p’, ‘g’ and ‘Ta’ was 7 digits long, then for the value generated 

after the calculation of key be beyond the bounds of the BigInteger capacity (7 digits to the 

power of 7 digits is observed to go beyond the BigInteger size). Thus in order to handle the 

limitation, the proposed work was implemented by using only 2 digits for each. 

 

Hence in short, the keys generated were observed to be random and un-predictive in nature 

for all of the test cases. 



 

 

100 

 

6.4  EVALUATION USING SCYTHER 

 

Scyther is a protocol analyzer tool which verifies the security aspect of the protocol 

proposed. It displays all the possible attack which can be launched on the protocol. Scyther 

assumes that the adversary has full access to the contents of the communicating channel 

[62][54]. 

 

The Scyther environment for the testing of the proposed approach is set to find all attacks 

that are possible. The maximum number of runs is set to the default value which is five. 

‘Claim’ is used in Scyther to check if the transmitted data/datum is secure or not. In this 

environment, ten pattern counts per claim, which is the default value, is used to validate 

the claim. The following figure shows the configuration of the Scyther settings. 

 
Figure 74 Scyther configuration settings. 

 

We tested the Standard Diffie Hellman in Scyther and figures 75-80 illustrate how MITM 

can occur between two communicating entities. 



 

 

101 

 

 
Figure 75 Attacks on Diffie Hellman 

 

 

 
Figure 76 ‘Ta’ compromised 

 



 

 

102 

 

 
Figure 77 ‘Tb’ compromised 

 

We observed that an intruder can invade into the communication channel and compromise 

the contents (Figure 75). Since there is no default authentication included in the Diffie 

Hellman, hence any adversary can alter the content of the data packet. As seen in Figure 

76 and Figure 76, the ‘Ta’ is compromised. It can be altered and then forwarded to the 

other entity which leads to the MITM as described in Section 2.5.1 

 

 

For the Registration Phase, Scyther states that all the terms which are exchanged over the 

communication channel in the proposed approach, are secure. Figure 78 shows the output 

of Scyther for the Registration Phase. 

 

 
Figure 78 Scyther output for Registration Phase. 



 

 

103 

 

 

For the Data Transfer Phase, Scyther states that all the terms which are exchanged over the 

communication channel in the proposed approach, are secure. Figure 79 shows the obtained 

output of Scyther for the Data Transfer Phase. 

 
Figure 79 Scyther output for Data Transfer Phase. 

 

 

Hence Figure 75-77 present us the possibility of MITM in standard Diffie Hellman and 

Figures 78 & 79 show that no attacks are possible within bounds in our proposed approach. 

As far as Scyther is concerned, no intruder can eavesdrop or modify the contents of the 

data packet in the proposed approach. In essence, our proposed technique is able to preserve 

Confidentiality, Integrity and Authentication factors of the Security Analysis. 

6.5  PERFORMANCE ANALYSIS 

 

We implemented the basic Diffie Hellman algorithm in a java program in a similar client-

server architecture as used for the proposed approach. We then retrieved the RAM memory 

usage, the CPU process time and the CPU up-time for both of the programs under similar 

conditions (by ‘conditions’, we refer to the same set of 5 Reference Frames and same count 



 

 

104 

 

of Data Files). Herein RAM memory usage means the amount of RAM memory used for 

the execution of the program, CPU up-time is the duration for which the CPU was actively 

used for the program and CPU process time is the amount of time CPU was used for 

processing the instructions available in the program. The recorded values are plotted onto 

a graph. Figure 80 is the graph obtained for the CPU up-time, Figure 81 is the graph for 

the CPU process time and Figure 82 is the graph for the RAM usage.  

 

 

Figure 80 CPU up-time (in milliseconds) 

 



 

 

105 

 

 

Figure 81 CPU process time (in millisec) 

 

 

Figure 82 RAM usage (in bytes) 

 

We observe an increase in the RAM usage, CPU up time and the CPU process time due to 

the involvement of the extra acknowledgements transmission, the searching for the values 



 

 

106 

 

in the reference frames and the additional hashing operations performed in the proposed 

approach. The increase observed here is a factor of the complexities involved in the hashing 

and searching operations which are missing in the implementation of the traditional Diffie 

Hellman approach. The extra hashing and searching operations are introduced in the 

proposed approach in order to obtain an improved security without having to use the public 

key infrastructure. The generation of the Sa, Sb, Ta, Tb and Key remain the same in both 

the implemented programs. 

 

As in the works of Venkatasubramanian et.al[67] and Sampangi et.al[56], we have also 

analyzed the distinctiveness, time variance and randomness of the keys generated by the 

proposed approach. 

 

While analyzing for Distinctiveness we looked into the keys to check how unique they are 

from each other. We have observed that there are identical keys but the identical nature is 

mainly due to two factors. First is the limitation we encountered during implementing the 

proposed approach in java wherein we could not store the entire key length into the 

BigInteger slot and had to work around with only two digit keys. Thus if the actual keys 

were to be 278 & 279, our implemented program would be using 27 as its keys. Thus, 

although 278 & 279 are distinct, yet due to the limitation, the end result ‘27’ is not distinct. 

The second factor influencing the Distinctiveness is, at some instant of time there is a 

possibility of the person to repeat the same action (such as walking, running etc.) which 

would yield identical sensor readings and thus identical keys. The likelihood of the second 

factor is minimal as the speed at which the user walks or runs cannot be identical all the 

time. Either ways, if we consider a set of keys, they are distinct from one another, i.e. the 

first key may or may not be the same as that of the second key. In this way, the 

distinctiveness aspect of the keys is satisfied in the implemented approach.  

 

Time variance indicate that at different instances of time, different keys should be 

generated. In the proposed approach, the sensors that are used (pressure, gravity, gps, 

orientation and gyroscope sensors) vary every second. Since there are different sensor 



 

 

107 

 

values being stored at different instants of time, the keys generated using those values 

would also tend to be different, preserving the time variant aspect as well.  

 

Randomness implies to the unpredictable and unforeseeable aspect of the keys being used 

and/or generated. In the proposed algorithm, the randomness of the keys relies on the 

randomness of the content of the field chosen and also on the randomness of the frame-

field chosen. The choice is a function of the outcome of the PRNG which in turn is 

dependent on the seed used. In the proposed approach, the initial seed is the XOR outcome 

of the hashes of fingerprint of the user and PUF of the device. The consecutive seeds are 

the outcome of the PRNG with its seed that was used for the previous iteration. As the 

result of the PRNG being unpredictable, the frame and field index is unpredictable, thus 

resulting in the predictability of the value chosen for key generation. In this way, the 

proposed technique preserves the Randomness nature of the keys.   

6.6  SECURITY ANALYSIS 

 

The proposed approach attains Confidentiality and Integrity with the help of encryption. 

Since the keys are known only to the communicating parties and the adversary is not in 

possession of the frames and other entities required for the generation of the key, hence 

snooping into the contents of the data packets would be unfruitful. Added to that, since 

decryption is technically not possible without the proper set of keys, altering the contents 

of the transmitted packet is also not possible as each and every packet is encrypted before 

transmission. 

 

The ‘SAt’ and ‘c1’, helps the server to authenticate the sender (when the server is the 

receiver) and vice versa. Since the content of the ‘SAt’ and ‘c1’ can be obtained by only 

the legitimate parties, these entities act as signatures for the message containing them. In 

this way, Authentication is achieved by the proposed algorithm as only the legitimate 

parties can be in possession of the values and Non-Repudiation as well. 

 



 

 

108 

 

Access control and Availability are obtained by the use of the fingerprint at the client side 

which checks for a match of the ‘z’ value stored after the Registration Phase. It also acts as 

an authenticating factor at the client side where only the legitimate owner of the device will 

be authenticated and shall be given access to the application and/or device. 

 

The Scyther evaluation, in Section 6.4, shows that attacks such as interception (i.e. 

eavesdropping to collect information), modification (i.e. tamper/insert/modify the contents 

of the data packet), fabrication (i.e. insertion of counterfeit information) are not possible 

on the data packets during communication.  

6.7  SUMMARY OF THE EXPERIMENTAL RESULTS 

 

The results from the Wireshark analysis of the captured traffic shows that, it is difficult for 

a hacker to backtrack the process or predict the keys. Only the ‘Ta’ value is transmitted 

whose contribution is incomplete without the presence of ‘p’, ‘g’ and their respective ‘Sa’ 

and ‘Sb’ values towards the Secret Key generation. Thus interception of the traffic is 

rendered futile for the hacker. 

 

From the test cases considered, the graphs related to the execution time for the experiments 

discussed in Section 6.3.1 to 6.3.4, show that the execution time increased with the increase 

in DataFiles count but remained almost same when the DataFiles count was fixed and, the 

Reference Frames count was increased. Also the graphs displaying the key values used for 

encrypting each DataFiles for all the test cases discussed in Section 6.3, showed that the 

keys generated are random and un-predictable. None of the graph’s pattern is duplicated in 

any other graph for any of the test cases. 

 

Scyther validates and states that our proposed approach is free from all major attacks. All 

the parameters which are transferred over the communication channel are secure and safe 

from the grasp of a hacker. 

 



 

 

109 

 

The performance analysis shows us that the proposed algorithm consumes relatively 

greater system resources when compared to the customary Diffie Hellman due to the 

inclusion of the addition set of steps to secure the algorithm. Also the keys generated are 

distinct, time variant and random. The security analysis shows that confidentiality, 

integrity, authentication, access control and availability are satisfied with the help of the 

entities generated and used in the proposed approach. Figure 83 explains how the proposed 

approach helps in reducing the possibility of MITM in Diffie Hellman approach. The 

values represented in blue color are not known to the adversary and the values in red are 

known to the adversary. Since the adversary is not in possession of p, g, Sa, Sb of the parties 

exchanging the data, hence he cannot generate the Key required to decrypt the data. Also 

each acknowledgement is attached with an authentication factor which would authenticate 

the sender. Hence any attempt to send false acknowledgment or false values would be 

identified and the respective packet will be dropped. 

 

 

Figure 83 Prevention of MITM using the Proposed Approach 

 

 

 

 

 

 



 

 

110 

 

CHAPTER 7 CONCLUSION 

As per the actual description of the Diffie Hellman algorithm, the entire technique for the 

Secret Key generation leaves it susceptible to MITM attacks. Several approaches have been 

proposed by various authors with improvements to the original approach in order to defend 

the attack. The main focus lays in randomization of the values used to calculate the Keys 

by both the parties. 

  

This research work, primarily focuses on reducing the probability of MITM attack using a 

modified Diffie Hellman approach. Lee et.al [71], [72], Stulman et.al [68], Shen et.al [69] 

and Yang et.al [70] throw light on the possibility of the occurrences of MITM. [71] & [72] 

specifically discuss how MITM can be launched in the Smartphone world by exploiting 

the vulnerabilities such as the incapability of the devices to appropriately verify the 

Certificates of the CA’s. Also the CA’s are being compromised as well making the 

reliability on them even more harder [68]. In [72], the author speak about how the users 

can be tricked to install applications which would leave the device vulnerable to MITM 

attacks. The underlying procedure for launching the attack remains the same as discussed 

in Section 2.5.1 but the technique followed to implant the bug which would render the 

verification of the certificates useless, changes from one adversary to another. Thus this 

calls for an approach which would require no prior knowledge of the communicating 

parties along with the need to eliminate the transfer of the key over the communication 

channel. Hence the proposed approach includes the Diffie Hellman approach for 

communication. Added to that, we also intended to secure the data in case of brute force 

attempts. Towards that goal, we strived to keep the key as random and as unpredictable as 

possible. In addition, the key updates itself for each cycle of data being transferred. 

 

The proposed approach makes use of the sensor data that is accumulated using the sensors 

available in the devices. Since it is difficult to predict the behavior of the user, the 

prediction of the values being generated by the sensor hardware becomes equally difficult. 

The proposed approach does not necessarily need a sensor value. The sensors can be 

substituted with any hardware whose value fluctuates frequently. For instance, in devices 



 

 

111 

 

such as Access points, the Received Signal Strength Indicator (RSSI) values, frequency 

etc. values can be used. 

 

The collected values are stored in the Reference Frames in an array format. The contents 

of the array are used as the values for the various terms required for the Key generation 

and for other purposes such as generation of Acknowledgments etc. ‘p’ and ‘g’ are not 

transferred over the communication channel. Only the ‘Ta’ value and the ‘Tb value are 

exchanged. Both the parties generate the required terms at their respective ends. 

 

The Proposed approach involves two phases; a Registration Phase, which occurs only once 

in the entire lifetime of the application and a Data Transfer Phase, which is responsible for 

the key generation and encryption of the data to be transferred. The Registration Phase 

plays its role at the time of installation during when the set of values required for the Key 

generation and other security aspects facilitated by the approach, are transferred and stored. 

Once the data is stored, for each of the data transferred, these are updated to prevent the 

hacker from gaining a pattern of the keys being used. 

 

The user’s fingerprint and the device’s unique characteristic ‘PUF’ are used together to 

provide access control. After the user provides his fingerprint, if a match is not found then 

access to the application is not provided to the accessor. Furthermore, two way 

acknowledgments are used to ensure integrity in both the phases. Forward and Backward 

secrecy are also achieved by the end of the acknowledgment transfer, as all the keys are 

deleted after the reception of the acknowledgment. 

 

The researcher performed a set of test cases which mimic the activities of a user in real 

time scenario and the data is collected. Then the proposed approach is tested and the results 

are analyzed. The execution times for the same DataFiles count and different Reference 

Frames remain pretty much the same. This implies that the Reference Frame count does 

not influence the time taken for completion of the transfer of Data but with the increase in 

Reference Frames count, it does increase the choices from which the values are chosen. 

Moreover, each of the key graph have a unique pattern i.e. no graph’s pattern is similar to 



 

 

112 

 

any other graph’s pattern. Of the keys which are repeating in the test cases, predicting when 

the keys would repeat itself is difficult. The reason the keys are repeating is due to the 

implementation limitation we encountered. If the whole of the content of Reference Frames 

are used, then the randomness can also be increased. 

 

From the traffic analyzed using Wireshark, no element of the message being transferred, 

reveal the key nor do they support in key generation directly. In short it would be of no 

benefit to the hacker even if he intercepts the ongoing communication. 

 

Scyther results demonstrate that there are no possible attacks which could compromise the 

proposed algorithm. Neither the Registration Phase nor the Data Transfer Phase’s contents 

were attacked or leaked as per the tests performed by the Scyther tool. In essence, Scyther 

claims the proposed algorithm to be secure. 

 

The increased number of steps and instructions in the proposed approach when compared 

to that of the traditional Diffie Hellman approach has forced the algorithm to consume 

relatively more system resources. But in return we are facilitated with attainment of various 

security goals such as confidentiality, authentication, integrity, access control and 

availability making the proposed approach more secure. 

 

Summing up the thesis work, the proposed approach greatly reduces the probability the 

occurrence of MITM attack using a modified Diffie Hellman algorithm. The proposed 

algorithm also facilitates Access Control and Forward & Backward Secrecy. Prediction of 

Keys is difficult and two-way acknowledgements ensure a successful data transfer as well. 

Transmission of lesser values needed for Key generation renders interception of the traffic 

futile. Sequence numbers help prevent Replay attacks and the possession of the Reference 

Frames by the end parties only, provide non-repudiation, as the contents are not open to 

the public.  

 

 



 

 

113 

 

7.1  LIMITATIONS 

 

The proposed approach was tested in Scyther which is a Formal Protocol analyzer. It does 

not check for synchronization attack or replay attacks. Thus this thesis work does not check 

for the possibility successfully defending such attacks. Although we have included 

sequence number to prevent replay attacks yet we have no solid evidence to prove that our 

approach is resistant to such attack. This is not exactly a limitation of the approach but a 

limitation encountered due to the limitation of the Scyther tool itself. In addition, the 

current implementation limits the key size to maximum of 2 digits due to the limitation 

encountered during the implementation of the algorithm. This, yet again is a limitation of 

the BigInteger data structure than the limitation of the approach itself. 

7.2  DISCUSSION AND FUTURE WORK 

 

In the proposed algorithm, ‘Sa’ and ‘Sb’ are generated randomly. This can be substituted 

with one of the reference values using the same technique proposed in this thesis. This 

should eliminate the need to transmit ‘Ta’ and ‘Tb’ over the wire. The ‘Ta’ and ‘Tb’ can be 

generated by each of the parties independently and thus the keys. Only the authentic parties 

would be in possession of the keys using which the message can be encrypted or decrypted. 

This avoidance of exchanging the ‘Ta’ and ‘Tb’ values would also reduce the overhead and 

the extra cost thus incurred. Without the presence of ‘Ta’ and ‘Tb’ values, it would be even 

more difficult for the attacker to predict the keys or launch MITM attack. The entire 

algorithm with the mentioned changes can be implemented and tested again to check for 

the possibility of any attacks.  

 

As far as the proposed approach is concerned, we would like to design a scenario where 

the Replay attack can be launched and observed in order to check if the proposed approach 

is defending it or not. We would also like to make use of the entire content of the sensor 

value for the generation of the key i.e. keys of length greater than two and then test for the 

presence of randomness in the generated keys. Based on our observation, we have not 



 

 

114 

 

noticed any drastic hike in the execution time as the number of Reference Frames increased 

until 25. Further testing is required in order to observe or comment on the execution time 

consumption for Reference Frame counts beyond 25. Also the key sizes are restricted to 

two digits due to the implementation limitation we encountered. We would also like to 

analyze the security aspect of different algorithms with various recommended key lengths 

such as 256 bits, 512 bits, 1024 bits and so on. 



 

 

115 

 

REFERENCES 

[1] Statista, "Statista.com," [Online]. Accessed June 6, 2015 from 

http://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-

2007/. 

 

[2] Salesforce.Inc, "Salesforce App Mobile Cloud," Salesforce, [Online]. Accessed 

February 23, 2016 from https://developer.salesforce.com/mobile. 

 

[3] Dropbox, "Dropbox Help Center," [Online]. Accessed March 19, 2016 from 

https://www.dropbox.com/en/help/27.  

 

[4] Hirani, S. A. (2003). Energy consumption of encryption schemes in wireless devices 

(Doctoral dissertation, University of Pittsburgh). 

 

[5] Diffie, W., & Hellman, M. E. (1976, June). Multiuser cryptographic techniques. In 

Proceedings of the June 7-10, 1976, national computer conference and exposition (pp. 109-

112). ACM. 

 

[6] Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of applied 

cryptography. CRC press. 

 

[7] Milanov, E. (2009). The rsa algorithm. RSA Laboratories. 

 

[8] Maes, R. (2013). Physically Unclonable Functions. Springer, Berlin. 

 

[9] R. Goodrich, "liveScience," [Online]. Accessed April 09, 2015 from 

http://www.livescience.com/40102-accelerometers.html. 

 

[10] N. Chandler, "HowStuffWorks," [Online]. Accessed July 25, 2015 from 

http://electronics.howstuffworks.com/gadgets/fitness/fitbit.htm.  

 

[11] Suh, G. E., & Devadas, S. (2007, June). Physical unclonable functions for device 

authentication and secret key generation. In Proceedings of the 44th annual Design 

Automation Conference (pp. 9-14). ACM. 

 

[12] Ayushi, "A Symmetric Key Cryptographoc Algorithm," in International Journal of 

Computer Applications, 2010. 

 

[13] Merkle, R. C. (1978). Secure communications over insecure channels. 

Communications of the ACM, 21(4), 294-299. 

 

[14] Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE transactions 

on Information Theory, 22(6), 644-654. 

 



 

 

116 

 

[15] Wikipedia, "Diffie Hellman Key Exchange," [Online]. Accessed August 15, 2015 

from https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange.  

 

[16] Shafiq, M. Z., Ji, L., Liu, A. X., Pang, J., & Wang, J. (2012). A first look at cellular 

machine-to-machine traffic: large scale measurement and characterization. ACM 

SIGMETRICS Performance Evaluation Review, 40(1), 65-76. 

 

[17] Maier, G., Schneider, F., & Feldmann, A. (2010, April). A first look at mobile hand-

held device traffic. In International Conference on Passive and Active Network 

Measurement (pp. 161-170). Springer Berlin Heidelberg. 

 

[18] Li, Y., Yang, J., & Ansari, N. (2014, June). Cellular smartphone traffic and user 

behavior analysis. In 2014 IEEE International Conference on Communications (ICC) (pp. 

1326-1331). IEEE. 

 

[19] Liu, J., Wu, H., & Wang, H. (2014, September). A detection method for malicious 

codes in Android apps. In Wireless Communications, Networking and Mobile Computing 

(WiCOM 2014), 10th International Conference on (pp. 514-519). IET. 

 

[20] Louk, M., Lim, H., & Lee, H. (2014). An analysis of security system for intrusion in 

smartphone environment. The Scientific World Journal, 2014. 

 

[21] Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011, October). Crowdroid: 

behavior-based malware detection system for android. In Proceedings of the 1st ACM 

workshop on Security and privacy in smartphones and mobile devices (pp. 15-26). ACM. 

 

[22] Finickel, E., Lahmadi, A., Beck, F., & Festor, O. (2014, June). Empirical analysis of 

Android logs using self-organizing maps. In 2014 IEEE International Conference on 

Communications (ICC) (pp. 1802-1807). IEEE. 

 

[23] Hirabe, Y., Arakawa, Y., & Yasumoto, K. (2014, January). Logging all the touch 

operations on Android. In Mobile Computing and Ubiquitous Networking (ICMU), 2014 

Seventh International Conference on (pp. 93-94). IEEE. 

 

[24] Tian, J., Wang, G., Gao, X., & Shi, K. (2014, May). User behavior based automatical 

navigation system on android platform. In 2014 23rd Wireless and Optical Communication 

Conference (WOCC) (pp. 1-6). IEEE. 

 

[25] Datta, S. K., Bonnet, C., & Nikaein, N. (2012, June). Android power management: 

Current and future trends. In Enabling Technologies for Smartphone and Internet of Things 

(ETSIoT), 2012 First IEEE Workshop on (pp. 48-53). IEEE. 

 

[26] Ma, Y., Xu, B., Bai, Y., Sun, G., & Zhu, R. (2012, May). Daily mood assessment 

based on mobile phone sensing. In 2012 ninth international conference on wearable and 

implantable body sensor networks (pp. 142-147). IEEE. 

 



 

 

117 

 

[27] Bedogni, L., Di Felice, M., & Bononi, L. (2012, November). By train or by car? 

Detecting the user's motion type through smartphone sensors data. In Wireless Days (WD), 

2012 IFIP (pp. 1-6). IEEE. 

 

[28] Bo, C., Zhang, L., Jung, T., Han, J., Li, X. Y., & Wang, Y. (2014, December). 

Continuous user identification via touch and movement behavioral biometrics. In 2014 

IEEE 33rd International Performance Computing and Communications Conference 

(IPCCC) (pp. 1-8). IEEE. 

 

[29] Islam, M., Shah, M., Khan, Z., Mahmood, T., & Khan, M. J. (2015, December). A 

New Symmetric Key Encryption Algorithm using Images as Secret Keys. In 2015 13th 

International Conference on Frontiers of Information Technology (FIT) (pp. 1-5). IEEE. 

 

[30] Khader, A. S., & Lai, D. (2015, April). Preventing man-in-the-middle attack in Diffie-

Hellman key exchange protocol. In Telecommunications (ICT), 2015 22nd International 

Conference on (pp. 204-208). IEEE. 

 

[31] Ahmad, S., Alam, K. M. R., Rahman, H., & Tamura, S. (2015, January). A comparison 

between symmetric and asymmetric key encryption algorithm based decryption mixnets. 

In Networking Systems and Security (NSysS), 2015 International Conference on (pp. 1-5). 

IEEE. 

 

[32] Wang, C., Han, Y., & Li, F. (2010, April). New Signcryption from q-Diffie-Hellman 

Problems. In Communications and Mobile Computing (CMC), 2010 International 

Conference on (Vol. 1, pp. 35-40). IEEE. 

 

[33] Sha, K., Xu, C., & Wang, Z. (2014, August). One-time symmetric key based cloud 

supported secure smart meter reading. In 2014 23rd International Conference on Computer 

Communication and Networks (ICCCN) (pp. 1-6). IEEE. 

 

[34] Khan, E., Gabidulin, E., Honary, B., & Ahmed, H. (2012). Matrix-based memory 

efficient symmetric key generation and pre-distribution scheme for wireless sensor 

networks. IET wireless sensor systems, 2(2), 108-114. 

 

[35] Fuloria, S., Anderson, R., Alvarez, F., & McGrath, K. (2011, March). Key 

management for substations: Symmetric keys, public keys or no keys?. In Power Systems 

Conference and Exposition (PSCE), 2011 IEEE/PES (pp. 1-6). IEEE. 

 

[36] Kumar, C. K., Jose, G. J. A., Sajeev, C., & Suyambulingom, C. (2012). Safety 

measures against man-in-the-middle attack in key exchange. ARPN Journal of Engineering 

and Applied Sciences, 7(2). 

 

[37] Van Oorschot, P. C., & Wiener, M. J. (1996, May). On Diffie-Hellman key agreement 

with short exponents. In International Conference on the Theory and Applications of 

Cryptographic Techniques (pp. 332-343). Springer Berlin Heidelberg. 

 



 

 

118 

 

[38] Chang, R. Y., Lin, S. J., & Chung, W. H. (2013, October). Diffie-Hellman key 

distribution in wireless multi-way relay networks. In Signal and Information Processing 

Association Annual Summit and Conference (APSIPA), 2013 Asia-Pacific (pp. 1-4). IEEE. 

 

[39] Quisquater, J. J., Quisquater, M., Quisquater, M., Quisquater, M., Guillou, L., Guillou, 

M. A., ... & Guillou, S. (1989, August). How to explain zero-knowledge protocols to your 

children. In Conference on the Theory and Application of Cryptology (pp. 628-631). 

Springer New York. 

  

[40] Liang, B., & Wu, Z. (2014, November). A Novel Fingerprint-Based Biometric 

Encryption. In P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2014 Ninth 

International Conference on (pp. 146-150). IEEE. 

 

[41] Jain, A. K., & Uludag, U. (2003, July). Multimedia content protection via biometric 

based encryption. In Proc. of IEEE International Conference on Multimedia and Expo, 

ICME. 

 

[42] Sharma, S., & Balasubramanian, V. (2014, November). A biometric based 

authentication and encryption Framework for Sensor Health Data in Cloud. In Information 

Technology and Multimedia (ICIMU), 2014 International Conference on (pp. 49-54). 

IEEE. 

 

[43] Wang, Z., Dou, R., Leng, Y., & Wang, J. (2010, July). A new framework of Biometric 

encryption with filter-bank based fingerprint feature. In Signal Processing Systems 

(ICSPS), 2010 2nd International Conference on (Vol. 3, pp. V3-169). IEEE. 

 

[44] Mejri, M. N., Achir, N., & Hamdi, M. (2016, January). A new group Diffie-Hellman 

key generation proposal for secure VANET communications. In 2016 13th IEEE Annual 

Consumer Communications & Networking Conference (CCNC) (pp. 992-995). IEEE. 

 

[45] Zhang, X., Ma, S., Han, D., & Shi, W. (2015, January). Implementation of elliptic 

curve Diffie-Hellman key agreement scheme on IRIS nodes. In Intelligent Computing and 

Internet of Things (ICIT), 2014 International Conference on (pp. 160-163). IEEE. 

 

[46] Wikipedia, "Wikipedia," [Online]. Accessed April 09, 2016 from 

https://en.wikipedia.org/wiki/Java_(programming_language). 

 

[47] Oracle, "Oracle- Java Security," [Online]. Accessed November 06, 2015 from 

http://docs.oracle.com/javase/7/docs/technotes/guides/security/overview/jsoverview.html.  

 

[48] Oracle, "Oracle-java.net," [Online]. Accessed November 06, 2015 from 

https://docs.oracle.com/javase/7/docs/api/java/net/package-summary.html.  

 

[49] TutorialsPoint, "TutorialsPoint- Collection Framework," [Online]. Accessed October 

02, 2015 from http://www.tutorialspoint.com/java/java_collections.htm.  

 



 

 

119 

 

[50] Oracle, "Oracle- Class Secure Random," [Online]. Accessed November 06, 2016 from 

https://docs.oracle.com/javase/7/docs/api/java/security/SecureRandom.html.  

 

[51] GSMArena, "GSM Arena," [Online]. Accessed June 06, 2015 from 

http://www.gsmarena.com/samsung_galaxy_s6-6849.php.  

 

[52] RawCap, "Netresec," [Online]. Accessed January 15, 2016 from 

http://www.netresec.com/?page=RawCap.  

 

[53] Wireshark, "Wireshark," [Online]. Accessed January 15, 2016 from 

https://www.wireshark.org/.  

 

[54] C. Cremers, Scyther User Manual, Department of Computer Science, University of 

Oxford. [Online]. Available: https://github.com/cascremers/ 

scyther/blob/master/gui/scyther-manual.pdf  

 

[55] "An Overview of the Android Architecture". Accessed December 25, 2016, from 

http://www.techotopia.com/index.php/An_Overview_of_the_Android_Architecture 

 

[56] Sampangi, R. V., Dey, S., Urs, S. R., & Sampalli, S. (2012). A security suite for 

wireless body area networks. arXiv preprint arXiv:1202.2171. 

 

[57] Pawar, M. V., & Anuradha, J. (2015). Network Security and Types of Attacks in 

Network. Procedia Computer Science, 48, 503-506. 

 

[58] Anwar, R. W., Bakhtiari, M., Zainal, A., Abdullah, A. H., & Qureshi, K. N. (2014). 

Security issues and attacks in wireless sensor network. World Applied Sciences Journal, 

30(10), 1224-1227. 

 

[59] "Android Developer," Google, [Online]. Accessed December 25, 2016 from 

https://developer.android.com/about/versions/marshmallow/android-6.0.html.  

 

[60]"Dreamstime.com," [Online]. Accessed April 09, 2016 

https://www.dreamstime.com/stock-illustration-phone-evolution-telephone-

communication-progress-mobile-classic-device-vector-illustration-image53386436.  

 

[61]"Yaldex," [Online]. Accessed March 05, 2016 from 

http://www.yaldex.com/tcp_ip/0672325659_ch20lev1sec1.html.  

 

[62] C. Cremers. The Scyther tool. Department of Computer Science, University of Oxford. 

[Online]. Available: http://users.ox.ac.uk/~coml0529/scyther/ 

 

[63] Mitrokotsa, A., Rieback, M. R., & Tanenbaum, A. S. (2010). Classifying RFID attacks 

and defenses. Information Systems Frontiers, 12(5), 491-505. 

 



 

 

120 

 

[64] Chaudhry, J., Qidwai, U. A., Rittenhouse, R. G., & Lee, M. (2012, October). 

Vulnerabilities and verification of cryptographic protocols and their future in wireless body 

area networks. In Emerging Technologies (ICET), 2012 International Conference on (pp. 

1-5). IEEE. 

 

[64] P. Chatterjee, "DigiKey," Yolo Development, [Online]. Accessed May 05, 2016 from 

http://www.digikey.com/en/articles/techzone/2011/sep/constructing-mobile-multi-sensor-

systems-dominated-by-a-touch-display. 

 

[65] "Android", Operating System,[Online]. Accessed June 10, 2016 from 

https://en.wikipedia.org/wiki/Android_(operating_system) 

 

[66] A. Smith, U.S. Smartphone use in 2015, “PEW Research Center” [Online], Accessed 

June 06, 2016 from http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-

2015/pi_2015-04-01_smartphones_03/ 

 

[67] K. Venkatasubramanian, Venkatasubramanian, A. Banerjee, and S. Gupta,"EKG-

based key agreement in body sensor networks," in IEEE INFOCOM Workshops 2008, 

April 2008, pp. 1-6. 

 

[68] Stulman, A., Lahav, J., & Shmueli, A. (2012, December). Manet secure key exchange 

using spraying diffie-hellman algorithm. In Internet Technology And Secured 

Transactions, 2012 International Conference for (pp. 249-252). IEEE. 

 

[69] Shen, W., Hong, W., Cao, X., Yin, B., Shila, D. M., & Cheng, Y. (2014, December). 

Secure key establishment for device-to-device communications. In 2014 IEEE Global 

Communications Conference (pp. 336-340). IEEE. 

 

[70] Yang, G. M., Chen, J. M., Lu, Y. F., & Ma, D. M. (2010, March). An efficient 

improved group key agreement protocol based on Diffie-Hellman key exchange. In 

Advanced Computer Control (ICACC), 2010 2nd International Conference on (Vol. 2, pp. 

303-306). IEEE. 

 

[71] Lee, J., Tu, C., & Jung, S. (2012). Man-in-the-middle Attacks Detection Scheme on 

Smartphone using 3G network. In The Fourth International Conference on Evolving 

Internet (pp. 65-70). 

 

[72] Cambridge, "Akamia", IOS And Android OS Targeted By Man-In-The-Middle 

Attacks,[Online]. Accessed August 15, 2016 from 

https://www.akamai.com/us/en/about/news/press/2014-press/ios-and-android-os-targeted-

by-man-in-the-middle-attacks.jsp 

 

 

 

 

 



 

 

121 

 

APPENDIX A 

 

 
Figure 84 Key value obtained with 5 Reference Frames for 5 DataFiles for Simulated 

Data 

 

 
Figure 85 Key value obtained with 5 Reference Frames for 10 DataFiles for Simulated 

Data 

 

 
Figure 86 Key value obtained with 5 Reference Frames for 15 DataFiles for Simulated 

Data 

 



 

 

122 

 

 
Figure 87 Key value obtained with 5 Reference Frames for 20 DataFiles for Simulated 

Data 

 

 
Figure 88 Key value obtained with 5 Reference Frames for 25 DataFiles for Simulated 

Data 

 

 
Figure 89 Key value obtained with 5 Reference Frames for 50 DataFiles for Simulated 

Data 

 

 



 

 

123 

 

 
Figure 90 Key value obtained with 10 Reference Frames for 5 DataFiles for Simulated 

Data 

 

 
Figure 91 Key value obtained with 10 Reference Frames for 10 DataFiles for Simulated 

Data 

 

 
Figure 92 Key value obtained with 10 Reference Frames for 15 DataFiles for Simulated 

Data 

 



 

 

124 

 

 
Figure 93 Key value obtained with 10 Reference Frames for 20 DataFiles for Simulated 

Data 

 

 
Figure 94 Key value obtained with 10 Reference Frames for 25 DataFiles for Simulated 

Data 

 

 
Figure 95 Key value obtained with 10 Reference Frames for 50 DataFiles for Simulated 

Data 

 

 



 

 

125 

 

 
Figure 96 Key value obtained with 15 Reference Frames for 5 DataFiles for Simulated 

Data 

 

 
Figure 97 Key value obtained with 15 Reference Frames for 10 DataFiles for Simulated 

Data 

 

 
Figure 98 Key value obtained with 15 Reference Frames for 15 DataFiles for Simulated 

Data 

 



 

 

126 

 

 
Figure 99 Key value obtained with 15 Reference Frames for 20 DataFiles for Simulated 

Data 

 

 
Figure 100 Key value obtained with 15 Reference Frames for 25 DataFiles for Simulated 

Data 

 

 
Figure 101 Key value obtained with 15 Reference Frames for 50 DataFiles for Simulated 

Data 

 

 



 

 

127 

 

 
Figure 102 Key value obtained with 20 Reference Frames for 5 DataFiles for Simulated 

Data 

 

 
Figure 103 Key value obtained with 20 Reference Frames for 10 DataFiles for Simulated 

Data 

 

 
Figure 104 Key value obtained with 20 Reference Frames for 15 DataFiles for Simulated 

Data 

 



 

 

128 

 

 
Figure 105 Key value obtained with 20 Reference Frames for 20 DataFiles for Simulated 

Data 

 

 
Figure 106 Key value obtained with 20 Reference Frames for 25 DataFiles for Simulated 

Data 

 

 
Figure 107 Key value obtained with 20 Reference Frames for 50 DataFiles for Simulated 

Data 

 

 



 

 

129 

 

 
Figure 108 Key value obtained with 25 Reference Frames for 5 DataFiles for Simulated 

Data 

 

 
Figure 109 Key value obtained with 25 Reference Frames for 10 DataFiles for Simulated 

Data 

 

 
Figure 110 Key value obtained with 25 Reference Frames for 15 DataFiles for Simulated 

Data 

 



 

 

130 

 

 
Figure 111 Key value obtained with 25 Reference Frames for 20 DataFiles for Simulated 

Data 

 

 
Figure 112 Key value obtained with 25 Reference Frames for 25 DataFiles for Simulated 

Data 

 

 
Figure 113 Key value obtained with 25 Reference Frames for 50 DataFiles for Simulated 

Data 

 

 

 

 

 

 



 

 

131 

 

APPENDIX B 

 
Figure 114 Key value obtained with 5 Reference Frames for 5 DataFiles for Vertical 

movement of the Device 

 

 
Figure 115 Key value obtained with 5 Reference Frames for 10 DataFiles for Vertical 

movement of the Device 

 

 
Figure 116 Key value obtained with 5 Reference Frames for 15 DataFiles for Vertical 

movement of the Device. 

 



 

 

132 

 

 
Figure 117 Key value obtained with 5 Reference Frames for 20 DataFiles for Vertical 

movement of the Device 

 

 
Figure 118 Key value obtained with 5 Reference Frames for 25 DataFiles for Vertical 

movement of the Device 

 

 
Figure 119 Key value obtained with 5 Reference Frames for 50 DataFiles for Vertical 

movement of the Device 

 

 



 

 

133 

 

 
Figure 120 Key value obtained with 10 Reference Frames for 5 DataFiles for Vertical 

movement of the Device 

 

 
Figure 121 Key value obtained with 10 Reference Frames for 10 DataFiles for Vertical 

movement of the Device 

 

 
Figure 122 Key value obtained with 10 Reference Frames for 15 DataFiles for Vertical 

movement of the Device 

 



 

 

134 

 

 
Figure 123 Key value obtained with 10 Reference Frames for 20 DataFiles for Vertical 

movement of the Device 

 

 
Figure 124 Key value obtained with 10 Reference Frames for 25 DataFiles for Vertical 

movement of the Device 

 

 
Figure 125 Key value obtained with 10 Reference Frames for 50 DataFiles for Vertical 

movement of the Device 

 

 



 

 

135 

 

 
Figure 126 Key value obtained with 15 Reference Frames for 5 DataFiles for Vertical 

movement of the Device 

 

 
Figure 127 Key value obtained with 15 Reference Frames for 10 DataFiles for Vertical 

movement of the Device 

 

 
Figure 128 Key value obtained with 15 Reference Frames for 15 DataFiles for Vertical 

movement of the Device 

 



 

 

136 

 

 
Figure 129 Key value obtained with 15 Reference Frames for 20 DataFiles for Vertical 

movement of the Device 

 

 
Figure 130 Key value obtained with 15 Reference Frames for 25 DataFiles for Vertical 

movement of the Device 

 

 
Figure 131 Key value obtained with 15 Reference Frames for 50 DataFiles for Vertical 

movement of the Device 

 

 



 

 

137 

 

 
Figure 132 Key value obtained with 20 Reference Frames for 5 DataFiles for Vertical 

movement of the Device 

 

 
Figure 133 Key value obtained with 20 Reference Frames for 10 DataFiles for Vertical 

movement of the Device 

 

 
Figure 134 Key value obtained with 20 Reference Frames for 15 DataFiles for Vertical 

movement of the Device 

 



 

 

138 

 

 
Figure 135 Key value obtained with 20 Reference Frames for 20 DataFiles for Vertical 

movement of the Device 

 

 
Figure 136 Key value obtained with 20 Reference Frames for 25 DataFiles for Vertical 

movement of the Device 

 

 
Figure 137 Key value obtained with 20 Reference Frames for 50 DataFiles for Vertical 

movement of the Device 

 

 



 

 

139 

 

 
Figure 138 Key value obtained with 25 Reference Frames for 5 DataFiles for Vertical 

movement of the Device 

 

 
Figure 139 Key value obtained with 25 Reference Frames for 10 DataFiles for Vertical 

movement of the Device 

 

 
Figure 140 Key value obtained with 25 Reference Frames for 15 DataFiles for Vertical 

movement of the Device 

 



 

 

140 

 

 
Figure 141 Key value obtained with 25 Reference Frames for 20 DataFiles for Vertical 

movement of the Device 

 

 
Figure 142 Key value obtained with 25 Reference Frames for 25 DataFiles for Vertical 

movement of the Device 

 

 
Figure 143 Key value obtained with 25 Reference Frames for 50 DataFiles for Vertical 

movement of the Device 

 

 

 

 

 

 



 

 

141 

 

 

APPENDIX C 

 
Figure 144 Key value obtained with 5 Reference Frames for 5 DataFiles when the Device 

is in Idle position 

 

 
Figure 145 Key value obtained with 5 Reference Frames for 10 DataFiles when the 

Device is in Idle position 

 

 
Figure 146 Key value obtained with 5 Reference Frames for 15 DataFiles when the 

Device is in Idle position 

 



 

 

142 

 

 
Figure 147 Key value obtained with 5 Reference Frames for 20 DataFiles when the 

Device is in Idle position 

 

 
Figure 148 Key value obtained with 5 Reference Frames for 25 DataFiles when the 

Device is in Idle position 

 

 
Figure 149 Key value obtained with 5 Reference Frames for 50 DataFiles when the 

Device is in Idle position 

 

 



 

 

143 

 

 
Figure 150 Key value obtained with 10 Reference Frames for 5 DataFiles when the 

Device is in Idle position 

 

 
Figure 151 Key value obtained with 10 Reference Frames for 10 DataFiles when the 

Device is in Idle position 

 

 
Figure 152 Key value obtained with 10 Reference Frames for 15 DataFiles when the 

Device is in Idle position 

 



 

 

144 

 

 
Figure 153 Key value obtained with 10 Reference Frames for 20 DataFiles when the 

Device is in Idle position 

 

 
Figure 154 Key value obtained with 10 Reference Frames for 25 DataFiles when the 

Device is in Idle position 

 

 
Figure 155 Key value obtained with 10 Reference Frames for 50 DataFiles when the 

Device is in Idle position 

 

 



 

 

145 

 

 
Figure 156 Key value obtained with 15 Reference Frames for 5 DataFiles when the 

Device is in Idle position 

 

 
Figure 157 Key value obtained with 15 Reference Frames for 10 DataFiles when the 

Device is in Idle position 

 

 
Figure 158 Key value obtained with 15 Reference Frames for 15 DataFiles when the 

Device is in Idle position 

 



 

 

146 

 

 
Figure 159 Key value obtained with 15 Reference Frames for 20 DataFiles when the 

Device is in Idle position 

 

 
Figure 160 Key value obtained with 15 Reference Frames for 25 DataFiles when the 

Device is in Idle position 

 

 
Figure 161 Key value obtained with 15 Reference Frames for 50 DataFiles when the 

Device is in Idle position 

 

 



 

 

147 

 

 
Figure 162 Key value obtained with 20 Reference Frames for 5 DataFiles when the 

Device is in Idle position 

 

 
Figure 163 Key value obtained with 20 Reference Frames for 10 DataFiles when the 

Device is in Idle position 

 

 
Figure 164 Key value obtained with 20 Reference Frames for 15 DataFiles when the 

Device is in Idle position 

 



 

 

148 

 

 
Figure 165 Key value obtained with 20 Reference Frames for 20 DataFiles when the 

Device is in Idle position 

 

 
Figure 166 Key value obtained with 20 Reference Frames for 25 DataFiles when the 

Device is in Idle position 

 

 
Figure 167 Key value obtained with 20 Reference Frames for 50 DataFiles when the 

Device is in Idle position 

 

 



 

 

149 

 

 
Figure 168 Key value obtained with 25 Reference Frames for 5 DataFiles when the 

Device is in Idle position 

 

 
Figure 169 Key value obtained with 25 Reference Frames for 10 DataFiles when the 

Device is in Idle position 

 

 
Figure 170 Key value obtained with 25 Reference Frames for 15 DataFiles when the 

Device is in Idle position 

 



 

 

150 

 

 
Figure 171 Key value obtained with 25 Reference Frames for 20 DataFiles when the 

Device is in Idle position 

 

 
Figure 172 Key value obtained with 25 Reference Frames for 25 DataFiles when the 

Device is in Idle position 

 

 
Figure 173 Key value obtained with 25 Reference Frames for 50 DataFiles when the 

Device is in Idle position 

 

 

 

 

 

 



 

 

151 

 

APPENDIX D 

 
Figure 174 Key value obtained with 5 Reference Frames for 5 DataFiles when the Device 

is in trouser pocket while walking 

 

 
Figure 175 Key value obtained with 5 Reference Frames for 10 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 176 Key value obtained with 5 Reference Frames for 15 DataFiles when the 

Device is in trouser pocket while walking 

 



 

 

152 

 

 
Figure 177 Key value obtained with 5 Reference Frames for 20 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 178 Key value obtained with 5 Reference Frames for 25 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 179 Key value obtained with 5 Reference Frames for 50 DataFiles when the 

Device is in trouser pocket while walking 

 

 



 

 

153 

 

 
Figure 180 Key value obtained with 10 Reference Frames for 5 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 181 Key value obtained with 10 Reference Frames for 10 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 182 Key value obtained with 10 Reference Frames for 15 DataFiles when the 

Device is in trouser pocket while walking 

 



 

 

154 

 

 
Figure 183 Key value obtained with 10 Reference Frames for 20 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 184 Key value obtained with 10 Reference Frames for 25 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 185 Key value obtained with 10 Reference Frames for 50 DataFiles when the 

Device is in trouser pocket while walking 

 

 



 

 

155 

 

 
Figure 186 Key value obtained with 15 Reference Frames for 5 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 187 Key value obtained with 15 Reference Frames for 10 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 188 Key value obtained with 15 Reference Frames for 15 DataFiles when the 

Device is in trouser pocket while walking 

 



 

 

156 

 

 
Figure 189 Key value obtained with 15 Reference Frames for 20 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 190 Key value obtained with 15 Reference Frames for 25 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 191 Key value obtained with 15 Reference Frames for 50 DataFiles when the 

Device is in trouser pocket while walking 

 

 



 

 

157 

 

 
Figure 192 Key value obtained with 20 Reference Frames for 5 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 193 Key value obtained with 20 Reference Frames for 10 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 194 Key value obtained with 20 Reference Frames for 15 DataFiles when the 

Device is in trouser pocket while walking 

 



 

 

158 

 

 
Figure 195 Key value obtained with 20 Reference Frames for 20 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 196 Key value obtained with 20 Reference Frames for 25 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 197 Key value obtained with 20 Reference Frames for 50 DataFiles when the 

Device is in trouser pocket while walking 

 

 



 

 

159 

 

 
Figure 198 Key value obtained with 25 Reference Frames for 5 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 199 Key value obtained with 25 Reference Frames for 10 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 200 Key value obtained with 25 Reference Frames for 15 DataFiles when the 

Device is in trouser pocket while walking 

 



 

 

160 

 

 
Figure 201 Key value obtained with 25 Reference Frames for 20 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 202 Key value obtained with 25 Reference Frames for 25 DataFiles when the 

Device is in trouser pocket while walking 

 

 
Figure 203 Key value obtained with 25 Reference Frames for 50 DataFiles when the 

Device is in trouser pocket while walking 

 

 


