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Abstract

Several self-referential impartial combinatorial games have been studied and some

have been solved. However, by making small changes to the rules we can get vastly

different outcomes. We look at many new games, solving some, and coming up short in

others, but in particular, we look at minnie and wynnie. With minnie representing

a small tweak to the rules of nim and wynnie representing a small tweak to the rules

of wythoff, one might expect rather uninteresting, repetitive results. However, that

is far from the case.

We solve wynnie and misère wynnie, and we nearly solve minnie up to three stacks.

In addition, we solve other new games nimb and nimtb, and we look at wynnie on

graphs.

vi



List of Abbreviations and Symbols Used

Sn Star graph on n+ 1 vertices

Pn Path on n vertices

Cn Cycle on n vertices

Kn Complete graph on n vertices

Wn Wheel graph on n vertices

[a1, a2, . . . , an] A game played on n stacks containing a1, a2, . . . , an and chips.

→ A move that can be made to an option in a game.

vii



Acknowledgements

Richard and Margaret-Ellen

viii



Chapter 1

Introduction

In this thesis, we will focus on self-referential, impartial, combinatorial games, all of

which are variants of the game nim. We define a self-referential game as a game in

which the moves available to a player are dependent on some parameter from the

board state. So, a self-referential version of nim places restrictions on the players

depending on the stack sizes. In particular, we look at three new games in increasing

order of complexity: nimb (Chapter 3), wynnie (Chapter 4), and minnie (Chapter

5).

nimb is a variant of nim (see Section 1.1). In nimb, the board is composed of

some number of stacks each containing some number of chips. Let the stacks be of

sizes a1, a2, . . . , an. We denote this game nimb[a1, a2, . . . , an]. On a player’s turn, the

player chooses a stack and removes some number of chips from it. However, every

move must cause the game to have a new minimum stack value. Stacks of size 0 are

eliminated. The game ends when every stack is empty. With Theorem 3.1, we solve

nimb. We also solve nimtb, a variant of nimb in which both the maximum stack

value and the minimum stack value must change with every move, with Theorem 3.2.

wynnie is a variant of Wythoff’s game (see Section 1.3). In wynnie, the board

is composed of two stacks each containing some number of chips. Let the stacks be

of sizes m and n with n ≥ m. We denote this game W [m,n]. On a player’s turn, the

player chooses an integer k > 0 and less than or equal to the smallest stack size (in this

case m). That player then either removes k chips from one stack or removes k chips

from both stacks. The game ends when every stack is empty. With Theorem 4.5, we

solve wynnie. We also solve misère wynnie with Theorem 4.10.

minnie is a variant of nim (see Section 1.1). In minnie, the board is composed

of some number of stacks each containing some number of chips. Let the stacks be

of sizes a1, a2, . . . , an. We denote this game M [a1, a2, . . . , an]. On a player’s turn,

the player chooses an integer greater than 0 and less than or equal to the smallest

stack size (in this case a1) and removes that number of chips from a single stack. The

game ends when every stack is empty. With Theorem 5.2 and Theorem 5.3, we solve

minnie for 2 stacks and nearly solve it for 3 stacks. We also solve mine, a variant of

1
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minnie in which no two stacks can ever have the same number of chips, for 2 and 3

stacks. In both games, four or more stacks remains unsolved.

All unreferenced work is the author’s.

1.1 Combinatorial Game Theory Background

In this section, we give the background necessary for this thesis. For more detail, see

[2], [3].

nim is a two player game played on a board consisting of some number of stacks

of chips. Players take turns choosing a stack and removing some number of chips

from it. The winner is the player who removes the last chips from the board, or

equivalently, the loser is the player who has no legal move on his turn. In Figure 1.1,

we see an example of nim played with three stacks containing 3, 4, and 7 chips. We

denote this game nim[3, 4, 7]. In this example, we see that Player Two has won; in

his last move the removal of two chips from the center stack left Player One with no

legal action on his turn.

Player 1 moves to

3 4 7

Player 2 moves to

1 4 7

Player 1 moves to

1 4 6

Player 2 moves to

1 4 0

Player 1 moves to

1 2 0

Player 2 moves to

0 2 0

0 0 0

Figure 1.1: A game of nim on stacks of sizes 3, 4, and 7.

All games considered in this thesis are combinatorial games in that there are two

players who move alternately and who have perfect information. Also, there are no
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chance devices and the game must end within a finite number of moves. Note how

popular games like Chess and Checkers fit this definition but other popular games

like Battleship and Yahtzee fail due to lack of perfect information and use of chance

devices, respectively.

We define a board-state as a set of stack values in a variant of nim.

Let G be a game. We will call the two players Left and Right. The set of all

positions that Left can move to in one move is called the set of left options and is

represented by GL . Similarly, Right can move to any position in GR . Thus, we can

identify G with its options and write G = {GL | GR}. A follower of G is any position

that can be reached in a finite number of moves.

Note that in nim, GL = GR . This is because nim is an impartial game, or a game

in which the two players’ sets of options are always equal and the same is true for

every follower. So, from every possible board-state, the active player will have the

same set of options, regardless of whether it is Left or Right. On the other hand,

Checkers is not an impartial game. This is because Left and Right will be assigned

their own colour and their own pieces. So, from a given board-state Left may be

allowed to move his king, but Right would not be allowed to move Left’s king. For

this reason, we call Checkers a partizan game. All of these games are games of pure

strategy in that one player can force a result, as seen in the next theorem.

Theorem 1.1. (Fundamental Theorem of Combinatorial Games [2]) Fix a game G

played between Albert and Bertha, with Albert moving first. Either Albert can force a

win moving first, or Bertha can force a win moving second, but not both.

Proof. Each of Albert’s moves is to a position which, by induction, is either a win for

Bertha playing first or a win for Albert playing second. If any of his moves belong

to the latter category, then by choosing one of them, Albert can force a win. On

the other hand, if all of his moves belong to the first category, then Bertha can force

a win by using her winning strategy in the position resulting from any of Albert’s

moves.

In partizan games, like Chess, Checkers, and Tic-tac-toe, the possible outcomes

are L, R, N , and P , respectively, these stand for Left player win, Right player win,

Next player win, and Previous player win. If a game is Left or Right player win, that

means that that player is capable of forcing a win no matter what the other player

does, regardless of who goes first. If a game is Next player win, then the next player

to move is capable of forcing a win no matter what the other player does. If a game
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is Previous player win, then the player that moved previously is capable of forcing a

win no matter what the other player does. nim, and all other impartial games, are

different in that there is no concept of Left or Right player win games. Every game

must be Next player win or Previous player win since every possible board state has

the same move set for both players.

In this thesis, we will focus only on impartial games. From now on, all the theorems

are applicable to only impartial games. So, the only outcomes we will be mentioning

are N and P . A terminal position is a game in which there are no legal moves. So,

in nim, a game with every stack containing 0 chips is a terminal position and it has

outcome P . We define a misère game as a game in which the winner is the player

who has no options on his turn. So, in a misère game, terminal positions are in N .

Suppose we are playing an impartial game G = {GL |GR}. How do we discover if

it is N or P? Since we know GL = GR , we will use {GI } for impartial game sets.

So, G = {GI }. There is a recursive method for finding the outcome class.

Theorem 1.2. Let G = {GI } be an impartial game. If the outcome of any G′ ∈ GI

is in P, then the outcome of G is N , otherwise the outcome of G is P.

Proof. If the next player has a move to a P position, then the next player can force

a win, that is, G ∈ N . If the next player cannot move to a P position, all options

are in N then the previous player in G can force a win.

We will use the following theorem often in our proofs and therefore, refer to

Theorem 1.3 as the Partition Theorem for Impartial Games (PT).

Theorem 1.3. (Theorem 2.13 from [2]): Suppose the positions of a finite impartial

game can be partitioned into mutually exclusive sets A and B with the properties: (i)

every option of a position in A is in B; and (ii) every position in B has at least one

option in A. Then A is the set of P-positions and B is the set of N -positions.

We include the proof to give the reader an idea how impartial game proofs are

often conducted.

Proof. We begin with the terminal positions which are in P . There are no options

from the terminal positions, so they must be in set A. Next, we note that every game

with a terminal position as an option is in B and is in N . We now induct on the

options, taking turns placing every game with all of its options in B into set A noting

that these games must also be in P , and then placing every game with at least one

option in A into set B noting that these games must also be in N . Since the two sets
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are defined to be mutually exhaustive, no game will be excluded from both sets. So,

we get that A is the entire set of P positions and B is the entire set of N positions.

Note how this theorem changes in misère play. The terminal positions are in N .

So, (ii) becomes every non-terminal position in B has at least one option in A, for

misère play.

A disjunctive sum of games is a single game composed of a number of disjoint

games. During a player’s turn, he may act on any of the disjoint games. A player

wins not when his opponent cannot play on a single game, but when his opponent

cannot play on any game. Formally, for impartial games G = {GI } and H = {HI },
then G + H = {GI + H,G + HI }. Intuitively, this operation is commutative and

associative (it doesn’t matter how you orient the boards, you still must complete both

and can always act on either).

1.2 Sprague-Grundy Theory and NIM

Discovered independently by R.P. Sprague and P.M. Grundy, the Sprague-Grundy

Theorem states that every impartial game is equivalent to an instance of nim played

on a single stack of some size (see [2] for more on Sprague-Grundy Theory). The size

of this stack is called that game’s equivalent nimber. The Sprague-Grundy Theorem

also gives an algorithm for finding this number even in the case of a disjunctive sum.

Note that Player One has the obvious winning strategy in any game of nim consisting

of only one stack of removing the entire stack. So, any game with nimber n > 0 is in

N . However, conversely, any game with nimber n = 0 is in P .

As defined in [2], the nim-sum of numbers a, b, . . . , k written a ⊕ b ⊕ · · · ⊕ k is

obtained by adding the numbers in binary without carrying. For example, to compute

the nim-sum of 3⊕ 31⊕ 21:

3 = 00011

⊕31 = 11111

⊕21 = 10101

= 01001

= 9.

(1.1)

Theorem 1.4. [2] Let G = nim(a, b, . . . , k). Then G is a P-position if and only if

a⊕ b⊕ · · · ⊕ k = 0.
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The minimum excluded value or mex of a set of non-negative integers is the least

non-negative integer which does not occur in the set (Definition 7.6 from [2]). This

is denoted by mex{a, b, c, . . . , k}. We use the minimum excluded value to determine

the equivalent nimber of a combinatorial game, denoted G (G), by examining the set

of nimbers of possible moves from a given board-state. For example, if an impartial

game G has options with nimbers 0, 0, 2, and 5, then G cannot be equivalent to any

nim stack with size greater than 1, because Player One does not have the option to

move to a game with nimber 1. So, the equivalent nimber of G, or the mex{GI }, or
G (G), is 1. Note that G (Ø) = mex{Ø} = 0.

Theorem 1.5. [2] Let G and H be impartial games.

1. G (G) = mex{G (G′) : G′is an option of G}.

2. G (G+H) = G (G)⊕ G (H).

3. G (G) = 0 ⇔ G ∈ P.

1.3 Wythoff’s Game

In the nim variant, Wythoff’s game, the board-state is equivalent to that of nim

played on two stacks, but the list of legal moves now includes the removal of the same

number of chips from both stacks. So, in Wythoff’s game played on stacks of sizes

m,n with m ≤ n, the active player may remove up to m chips from one or both stacks

or remove up to n chips from the stack of size n. In Figure 1.2, we see an example

of Wythoff’s game played with stacks of sizes 6 and 12. In this example, we see that

Player One has won since his removal of one chip from both stacks left Player Two

with no legal action on his turn.
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Player 1 moves to

6 12

Player 2 moves to

2 8

Player 1 moves to

2 5

Player 2 moves to

1 5

Player 1 moves to

1 1

0 0

Figure 1.2: Wythoff’s game on stacks of sizes 6 and 12.

The P-positions of Wythoff’s game are known [9]. Firstly, [0, 0] is a terminal

position and in P . With this knowledge, we can determine that all games of the form

[0, n], [n, 0], and [n, n] are in N since [0, 0] is an option. So, any game G with a stack

size of 0 is in N since G is a nim move away from [0, 0]. Also, any game G in which

the two stacks have a difference of 0 is in N since G is a wythoff diagonal move

away from [0, 0]. These relations between games can be equated to rows, columns,

and diagonals in a table. In Table 1.1, we can start to see how much easier it can

be determine the outcome of a game with a graphic representation. In our tables, we

will denote Next Player win games with ◦ and Previous Player win games with P .

8 ◦ ◦
7 ◦ ◦
6 ◦ ◦
5 ◦ ◦
4 ◦ ◦
3 ◦ ◦
2 ◦ ◦
1 ◦ ◦
0 P ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

0 1 2 3 4 5 6 7 8

Table 1.1: Partial Table of WYTHOFF outcomes.
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Since, [1, 2] (and equivalently, [2, 1]) does not share a row, column or diagonal with

a P , it must be in P . Thus, any other game G with a stack of size 1 or 2 must be in

N , since G is a nim move from [1, 2]. Also, any game G in which the stack sizes have

difference 1 must be in N , since G is a wythoff diagonal move away from [1, 2].

Continuing in this way, if we let [an, bn] be the nth P position, then an is the mex

of all ai and bi, for i < n (because [an, bn] cannot have a nim move to a previous P
position), and bn is equal to an+n (because [an, bn] cannot have a wythoff diagonal

move to a previous P position). It is known that an = 
nτ� and bn = 
nτ 2� where τ

is the golden ratio. It is conjectured that the nim-values, i.e. G ([a, b]), are eventually

periodic for fixed a, but in general little is known. In Table 1.2, we see the P positions

up to stacks of size 8.

8 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
7 ◦ ◦ ◦ ◦ P ◦ ◦ ◦ ◦
6 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
5 ◦ ◦ ◦ P ◦ ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ◦ ◦ ◦ ◦ P ◦
3 ◦ ◦ ◦ ◦ ◦ P ◦ ◦ ◦
2 ◦ P ◦ ◦ ◦ ◦ ◦ ◦ ◦
1 ◦ ◦ P ◦ ◦ ◦ ◦ ◦ ◦
0 P ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

0 1 2 3 4 5 6 7 8

Table 1.2: Complete table of Wythoff outcomes up to stack size 8.



Chapter 2

Other Self-Referential Games

There have been some well-studied self-referential games. Some have complete solu-

tions, others have partial solutions at best. Here we present a number of them. Of

the games we mention in this chapter, only euclid has a simple solution. This shows

that even making the tiniest alteration to nim can create a difficult problem.

2.1 Euclid

euclid is a game played on two stacks. Suppose the stacks have sizes a and b with

0 ≤ b ≤ a. Then the only legal moves are those of the form [a, b] → [a − kb, b] for

some positive integer k.

Theorem 2.1. [4] The P-positions in euclid are known; [a, b] ∈ P ⇔ a
b
< τ where

τ is the golden ratio.

In fact, any position in which the next player has two or more options is in N .

For an example, we look at euclid played on stacks of sizes 51 and 14. We can see

that [51, 14] has options [37, 14], [23, 14], and [14, 9]. So, we either find [14, 9] ∈ P
(and thus, [51, 14] ∈ N ) or we find [14, 9] ∈ N (and thus, [23, 14] ∈ P since [14, 9] is

its only option). So, in either case, [51, 14] ∈ N .

There also exists a partizan version of euclid in which each player’s distinct

moves are based on the Euclidean algorithm [8]. Since it is partizan, we mention

it for completeness. Partizan euclid is played on two stacks, say p and q, with

p ≥ q. So, p = kq + t where 0 ≤ t < q. Left’s option is (q, t) and Right’s option is

(q, q − t). The game ends when t = 0. For example, let p = 31 and q = 12. Then,

31 = (2)12 + 7. Suppose Left moves first. Then the game would play out as follows:

(31, 12) → (12, 7) → (7, 2) → (2, 1) and then the game ends since 2 = (2)1 + 0. So,

since Right has no legal moves, Left wins.

2.2 Restricted NIM

Fractal has many definitions, but for our purposes we are referring to an infinite

sequence that, upon the removal of the first instance of each integer in order, generates

9
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itself.

Restricted nim is a variant of nim in which the number of chips a player may

remove on his turn is restricted by an upper or lower bound (Maximum nim and

Minimum nim). Results from Levine in 2006 [7] show that some restrictions result

in a fractal structure in the sequence of nimbers as the size of the stack increases.

One interesting result in particular shows that if players are restricted to removing

strictly less than half of the stack size, then the only games on a single stack that are

in P are those of size 2n for some n. Using this ruleset, we now look at the sequence

of nim values starting with a stack size of n = 1:

0, 0,1, 0,2, 1,3, 0,4, 2,5, 1,6, 3,7, 0,8, 4,9, 2,10, . . . .

Note how the sequence remains when the boldface sequence of increasing integers

is removed.

0, 0, 1, 0, 2, 1, 3, 0, 4, 2, . . .

A weakly increasing sequence is a sequence (an) with an+1 ≥ an for all n.

A rule is a maximum number of chips that are allowed to be removed from a stack

in Maximum nim (often a function of the stack size).

A weakly increasing rule sequence is a sequence (an) of rule values for the game

of Maximum nim with stack size n as n increases, with an+1 ≥ an for all n.

A Grundy sequence of a game played on a single stack is the sequence (an) of

equivalent nimbers of the game as the size of the stack, n, increases.

Theorem 2.2. [7] Let (gn)n≥0 be an infinitive sequence. The following are equivalent:

(i) g is a fractal sequence;

(ii) g is the Grundy sequence for Maximum Nim for some weakly increasing rule

sequence f.

2.3 Greedy NIM

Greedy nim is a variant of nim in which players can only remove chips from the

largest stack on their respective turns.

Theorem 2.3. [1] The P-positions of Greedy nim occur precisely in those games

where there are an even number of stacks with an equal largest amount of chips.

While Greedy nim is solved for P-positions, there are no solutions for the G values.
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2.4 SUSEN

Define a subtraction set as the set of values that can legally be removed from a stack

in a variant of nim. So, in nim, the subtraction set for a given stack is {1, 2, 3, ..., k}
where k is the size of that stack.

susen is a variant of nim in which the stack sizes of a board-state are the sub-

traction set for that board-state. It is important to note in susen that once a stack

reaches 0, it ceases to exist rather than allowing future turns to be “passed” by re-

moving 0 chips. In Figure 2.1, we see an example of susen played with stacks of

sizes 7, 21, and 39. We refer to this game as S[7, 21, 39]. In this example, we see that

Player Two has won since his removal of all 18 remaining chips from the right stack

left Player One with no legal action on his turn.

Player 1 moves to

7 21 39

Player 2 moves to

7 21 32

Player 1 moves to

7 0 32

Player 2 moves to

7 0 25

Player 1 moves to

7 0 18

Player 2 moves to

0 0 18

0 0 0

Figure 2.1: susen on stacks of sizes 7, 21, and 39.

We now take a brief detour to define the Length function which will be useful

in proving results for susen. We define L(0, 0) = 0, L(a, 0) = 1, L(0, b) = 1,

L(a, b) = L(b, a) for all a, b > 0, and L(a, b) = 1 + L(a − b, b) where a ≥ b > 0.

With this definition, we are able to generate a table of Length values.
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8 1 9 5 6 3 6 5 9 2
7 1 8 6 6 6 6 8 2 9
6 1 7 4 3 4 7 2 8 5
5 1 6 5 5 6 2 7 6 6
4 1 5 3 5 2 6 4 6 3
3 1 4 4 2 5 5 3 6 6
2 1 3 2 4 3 5 4 6 5
1 1 2 3 4 5 6 7 8 9
0 0 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8

Table 2.1: Complete table of Length outcomes up to stack size 8.

The P-positions for susen are known for 3 or less stacks. All games of susen

with 1 stack are in N since the only legal move is for Player One to remove the entire

stack and win.

Theorem 2.4. [5] Suppose a ≥ b. Then, S[a, b] ∈ P ⇔ L(a, b) is even.

Proof. We know S[0, 0] ∈ P and L(0, 0) = 0. Now, S[a, b] has 3 options: S[0, b] ∈ N ,

S[a, 0] ∈ N , and S[a − b, b]. So, from every position with a, b > 0, any option other

than S[a− b, b] will cause the active player to lose. Thus, the outcome of S[a, b] can

be determined entirely by the parity of the number of these moves from S[a, b] to

S[0, 0]. The length function, L(a, b), measures the number of these moves from S[a, b]

to S[0, 0]. So, S[a, b] ∈ P ⇔ L(a, b) is even.

Theorem 2.5. [5] For a, b, c > 0, the susen position [a,b,c] is in P iff [a,b] and [a,c]

and [b,c] are all in N .

Proof. From such an [a, b, c], removing any stack is answered by subtracting the

smaller of the remaining two from the larger, and vice versa. From all other three-

stack positions, removing one of the stacks wins.

2.5 JENNIFER

jennifer is a variant of susen in which the subtraction set is every value except for

a stack size. Obviously, jennifer differs from our other impartial games in that the

game will not end when all the stacks are empty because a player will be unable to

make a legal action before this occurs. The P-positions for jennifer are only known

up to 2 stacks. jennifer on one stack is easy. The winning strategy is to always
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remove all but one chip. Several participants from Games @ Dal 2014 claim to have

solved the 2 stack game but no one has written it down. In Figure 2.2, we see an

example of jennifer played with stacks of sizes 7, 21, and 39. We refer to this game

as J [7, 21, 39]. In this example, we see that Player Two has won since his removal of

2 chips from the right stack left Player One with no legal action on his turn.

Player 1 moves to

7 21 39

Player 2 moves to

7 21 15

Player 1 moves to

7 1 15

Player 2 moves to

7 1 7

Player 1 moves to

1 1 7

Player 2 moves to

1 1 4

1 1 2

Figure 2.2: jennifer on stacks of sizes 7, 21, and 39.



Chapter 3

NIMB

In this chapter, we solve two simple variants of nim. We call them nimb (short for

nim bottom) and nimtb (short for nim top bottom). In these games, the maximum

and minimum heap sizes dictate what moves can and cannot be made. We show that

the nim-values of these two games are equal.

In nimb, the rules are identical to those of nim except that when comparing

a board state to an option, that option is only a legal move if the minimum non-

zero stack size of the option is not equal to the minimum non-zero stack size of the

board-state. So, for example, if nimb were being played on stacks of sizes 3, 4, and

6, the only legal moves would be those that leave the board in such a state that

the smallest stack value is not 3. So, the legal options in this instance would be

[2, 4, 6], [1, 4, 6], [0, 4, 6], [3, 2, 6], [3, 1, 6], [3, 4, 2], and [3, 4, 1]. Thus, the legal moves of

nimb can be broken into two groups: those that remove some number of chips from

the smallest stack and those that remove enough chips from another stack such that

it becomes the new smallest stack.

Theorem 3.1. Suppose nimb is being played on n stacks of sizes a1, a2, a3, ...an, with

a1 ≤ a2 ≤ a3 ≤ ... ≤ an, n ≥ 2, and a1 ≥ 1. Then, G ([a1, a2, a3, ..., an]) = a1 − 1.

Proof. We begin by noting that G ([1, 1]) = 0 since there are no legal moves. Then,

G ([1, 1+i]) = 0 for all i > 0 since the only legal move is to remove the stack with only

1 chip and lose next turn. Also, G ([2, 2 + i]) = 1 for all i since the only legal moves

are to reduce either stack to 1 chip and in that case, we know G ([1, 1 + j]) = 0 for

all j > 0. Now, suppose that k > 2 and that for all 0 < n < k, G ([n, n+ i]) = n− 1

for all i. So, now consider nimb played on two stacks of sizes k and k +m for some

m ≥ 0. Player One must begin the game by reducing a stack to a size less than k (or

remove a stack completely). We know that for all 0 < n < k that G ([n, n+ i]) = n−1

for all i. So, G ([k, k +m]) = mex(0, 1, ..., k − 2, k +m− 1) = k − 1.

We now induct on the number of stacks and the size of the smallest stack. Suppose

that for some k > 2, that for all 1 < n < k, G (a1, a2, a3, ..., an) = a1 − 1 for all

a1 ≤ a2 ≤ a3 ≤ ... ≤ an. So, now suppose nimb is being played on k stacks of sizes

a1 ≤ a2 ≤ a3 ≤ ... ≤ ak. We first suppose a1 = 1 as a base case. Player One has a

14
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maximum of one legal move: remove the stack with a1 chips (this move is only legal if

a1 < a2). By our induction, we know that G (a2, a3, ..., ak) = a2 − 1. So, either Player

One has no legal option and loses, or Player One has one legal option, but that option

is in N , so he loses. In both cases, G (a1, a2, a3, . . . , ak) = 0. When we induct on the

size of a1, we get a game with up to two legal moves: remove the stack with a1 chips

(this move is only legal if a1 < a2), or reduce a stack to 0 < i < a1 chips. If Player

One removes the stack with a1 chips, then we are left with G (a2, a3, ...ak) = a2 − 1.

Otherwise, we are left with stacks of sizes i ≤ x2 ≤ x3 ≤ ... ≤ xk. However, by our

induction on the size of the smallest stack, we know G (i, x2, x3, . . . , xk) = i − 1. So,

G (a1, a2, a3, . . . , ak) = mex(0, 1, . . . , a1 − 3, a1 − 2, a2 − 1) = a1 − 1.

In nimtb (TopBottom), the rules are identical to those of nim except that when

comparing a board state to an option, that option is only a legal move if it fulfills

three criteria:

1. The minimum non-zero stack size of the option is not equal to the minimum

non-zero stack size of the board-state.

2. The maximum stack size of the option is not equal to the maximum stack size

of the board-state.

3. No two stacks in the option can have the same number of chips and no two

stacks in the board-state can have the same number of chips. (We include this

third criterion because of how it simplifies the proof and gives results similar

to those of nimb. The game that excludes this third criterion remains an open

problem.)

So, for example, if nimtb were being played on stacks of sizes 3, 4, and 6, the

only legal moves would be those that leave the board in such a state that the smallest

stack value is not 3 and the largest stack value is not 6. So, the legal options in this

instance would be [2, 3, 4] and [1, 3, 4].

Theorem 3.2. Suppose nimtb is being played on n stacks of sizes a1, a2, a3, ...an,

with a1 < a2 < a3 < ... < an, n ≥ 2, and a1 ≥ 1. Then, G (a1, a2, a3, ...an) = a1 − 1.

Proof. We start by looking at games with n = 2. If a1 = 1, then there are no legal

moves. So, G (1, 1 + i) = 0 for all i. If a1 = 2, then the only legal move is to reduce

the game to G (1, 2) = 0. So, G (2, 2 + i) = 1. Now, suppose that for some k > 2

that for all 0 < n < k,G (n, n + i) = n − 1 for all i. So, now suppose nimtb is
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being played on two stacks of sizes k and k +m for some m ≥ 1. Player One’s only

option is to create a game of the form G (k − i, k) = k − i − 1. So, we get that

G (k, k +m) = mex(0, 1, ..., k − i− 1, ..., k − 2) = k − 1.

We now induct on the number of stacks and the size of the smallest stack. Suppose

that for some k > 2, that for all 1 < n < k, G (a1, a2, a3, ...an) = a1 − 1 for all

a1 < a2 < a3 < ... < an. So, now suppose nimtb is being played on k stacks of sizes

a1 < a2 < a3 < ... < ak. We first suppose a1 = 2 as a base case (a1 = 1 is trivial).

Player One’s only option is to reduce the largest stack to 1. This option is in P since

it has no legal moves. Since this is Player One’s only option, G (a1, a2, a3, . . . , ak) =

mex{0} = 1. When we increase the size of the smallest stack, we get a game where

all legal options are of the form [i, a1, a2, a3, . . . , ak−1] where i < a1. By our induction

on the size of the smallest stack, we know that G (i, a1, a2, a3, . . . , ak−1) = i − 1. So,

G (a1, a2, a3, . . . , ak) = mex{0, 1, 2, . . . , a1 − 2} = a1 − 1.



Chapter 4

WYNNIE and Variants

In this chapter, we look at a new self-referential, impartial game: wynnie. We

completely solve the P positions of wynnie and misère wynnie in Theorem 4.5 and

Theorem 4.10, respectively. Then, we look into some ways to play wynnie on graphs.

Due to the complexity of the problem, we will break it into several cases.

4.1 WYNNIE

wynnie is a variant of Wythoff’s game in which the subtraction set contains all

natural numbers up to and including the smallest stack size. So, in a game of wynnie

played on stacks of sizes m,n with m ≤ n, denoted W [m,n] or equivalently W [n,m],

the active player can remove up to m chips from one or both stacks. It is important

to note that once a stack is reduced to 0 chips, it ceases to exist. So, the game may

continue with the remaining stacks rather than forcing players to somehow remove up

to 0 on their turn. In Figure 5, we see an example of wynnie played with stacks of

sizes 17, and 23. In this example, we see that Player Two has won since his removal

of all 4 remaining chips from the left stack left Player One with no legal action on his

turn.

17
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Player 1 moves to

17 23

Player 2 moves to

17 21

Player 1 moves to
6 10

Player 2 moves to
6 4

Player 1 moves to
4 2

Player 2 moves to
4 0

0 0

Figure 4.1: wynnie on stacks of sizes 17 and 23.

Before diving into winnie, first we prove a lemma about integers that we will use

later.

Lemma 4.1. For all k ∈ N, k = 2na+2n−1−1 for some n ∈ N and some a ∈ N∪{0}.

Proof. Proof by induction. Observe k = 1 = 22(0) + 22−1 − 1 and k = 2 = 21(1) +

21−1 − 1. Now we suppose for some m ≥ 2, that m = 2na+ 2n−1 − 1 for some n ∈ N

and some a ∈ N ∪ {0}. We seek to show that m+ 1 = 2kb+ 2k−1 − 1 for some k ∈ N

and some b ∈ N ∪ {0}.
Case 1: m is odd. Then m + 1 is even and thus, equal to 2a for some a ∈ N.

Then the result holds as m+ 1 = 2a = 21(a) + 21−1 − 1 for some a ∈ N.

Case 2: m is even. So, m = 2� and m + 2 = 2(l + 1) for some � ∈ N. Let 2r be

the greatest power of 2 that divides �+ 1. Then, m+ 2 = 2(l+ 1) = 2r+1(2q + 1) for

some q ∈ Z ∪ 0. So, m + 1 = 2(l + 1) − 1 = 2r+2(q) + 2r+1 − 1. If we let b = r + 2,

then we get m+ 1 = 2b(q) + 2b−1 − 1.

Lemma 4.2. Suppose k > 0. Then, W [1, k] ∈ P iff k is even.
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Proof. Proof by induction. For base cases, note that W [1, 1] is Next Player win

and W [1, 2] is Previous Player win. Now suppose that W [1, k] is Next Player win

(case 1). Then, in the game W [1, k + 1], Player One has two options: make a move

involving the removal of the lone chip in the first stack (and lose next turn when

Player Two removes the remaining stack), or remove a chip from only the stack with

k + 1 chips (leaving the game W [1, k] which he will lose by the earlier assumption).

So, W [1, k + 1] is Previous Player win. Alternatively, we could suppose that W [1, k]

is Previous Player win (case 2). Then W [1, k + 1] is obviously Next Player win since

Player One, on his first turn, can create the Previous Player win game W [1, k].

Lemma 4.3. W [r, c] ∈ N if c > r and r is even.

Proof. Suppose r is even and c > r.

Case 1: r = 0. Then, W [r, c] is Next Player win (player one can remove all c chips).

So, W [r, c] ∈ N .

Case 2: c is even and r 
= 0. Then W [r, c] yields W [1, c] which is in P by Lemma 4.2.

So, W [r, c] ∈ N .

Case 3: c is odd and r 
= 0. Then W [r, c] yields W [r − (r − 1), c − (r − 1)] =

W [1, c− r + 1] ∈ P by Lemma 4.2. So, W [r, c] ∈ N .

Lemma 4.4. W [r, c] ∈ N if c > r > 1 and c is even.

Proof. Suppose c is even and c > r > 1.

Case 1: r is even. Then W [r, c] ∈ N by Lemma 4.3.

Case 2: r is odd. Then, W [r, c] yields W [r−(r−1), c−(r−1)] = W [1, c−r+1] ∈ P .

So, W [r, c] ∈ N .

Theorem 4.5. If c > r, then W [r, c] ∈ P if and only if r = 2n − 1 and c =

2na+ 2n−1 − 1 for some n, a ∈ N.

Proof. We proceed by inducting on n. For n = 1, W [2n − 1, 2na + 2n−1 − 1] =

W [1, 2a] ∈ P by Lemma 4.2. Also, by Lemma 4.2, we know that for any odd value of

a, that W [1, a] ∈ N . Next, we note that, by Lemma 4.3, W [2, a] ∈ N for all a > 2.

For all values of r from 1 to 2n, we suppose that for c > r, W [r, c] ∈ P if and only

if r = 2m − 1 and c = 2md+ 2m−1 − 1 for some m, d ∈ N. (Note that m ≤ n.)

We seek to show that for all values of r from 2n + 1 to 2n+1 that if c > r, then

W [r, c] ∈ P if and only if r = 2m − 1 and c = 2md + 2m−1 − 1 for some m, d ∈ N.

To prove this, we examine all r values of the form 2n + b for 0 < b < 2n (b is odd by

Lemma 4.3). By our induction, we know which values of c produce Previous Player
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win games for r < 2n + 1. Those are c values of the form 2md+ 2m−1 − 1 for m ≤ n,

and m, d ∈ N. If we exclude those values, we are left only with c values of the form

2nd − 1, d ∈ N, by Lemma 4.1. So, these become our only choices when searching

for a Previous Player win game with r value 2n + b. Since c must be greater than r,

we further restrict to only c = 2nd − 1 with d > 1. We now rewrite b in the form

2kj + 2k−1 − 1 for some k ∈ N and j ∈ 0 ∪ N (which is possible by Lemma 4.1). We

now break into cases depending on how k is related to n. Note that k ≤ n + 1 and

j < 2n−k since b < 2n.

Case 1: k < n

Then,

W [2n + b, 2nd− 1] = W [2n + 2kj + 2k−1 − 1, 2nd− 1]

→ W [2k − 1, 2n(d− 1)− 2k(j − 1)− 2k−1 − 1]

= W [2k − 1, 2k(2n−kd− 2n−k − j + 1)− 2k−1 − 1]

= W [2k − 1, 2k(2n−kd− 2n−k − j) + 2k−1 − 1]

= W [2k − 1, 2k(a) + 2k−1 − 1] ∈ P .

(4.1)

So, since W [2n + b, 2nd− 1] can be moved to a Previous Player win game,

W [2n + b, 2nd− 1] ∈ N .

Case 2: k = n

Then, W [2n + b, 2nd− 1] = W [2n + 2nj + 2n−1 − 1, 2nd− 1]

But j = 0 since b < 2n.

Then,

W [2n + b, 2nd− 1] = W [2n + 2n−1 − 1, 2nd− 1]

→ W [2n − 1, 2nd− 2n−1 − 1]

= W [2n − 1, 2n(d− 1) + 2n−1 − 1] ∈ P .

(4.2)

Since W [2n+b, 2nd−1] can be moved to a Previous Player win game, W [2n+b, 2nd−
1] ∈ N .

Case 3: k = n+ 1

Then, W [2n + b, 2nd− 1] = W [2n + 2kj + 2k−1 − 1, 2nd− 1].

Now, j = 0 since b < 2n. So, W [2n + b, 2nd− 1] = W [2n + 2k−1 − 1, 2nd− 1].

Also note that 2k−1 = 2n because k = n+ 1.
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Observe,

W [2n + b, 2nd− 1] = W [2n + 2n − 1, 2nd− 1]

= W [2n+1 − 1, 2nd− 1].
(4.3)

We begin by proving our statement for the smallest possible value of d. Thus, we

seek to show that W [2n+1−1, 2n(3)−1] = W [2n+1−1, 2n+1+2n−1] ∈ P . To do this,

we must show that every option is in N . We know every move involving the removal

of chips from just the smaller stack will yield a Next player win game by our induction.

By our induction, every game with a largest stack of the form 2a − 1 is in N . So, we

also know that the removal of chips from just the larger stack will yield a Next player

win game. The only remaining options to consider are W [2n+1 − 1− j, 2n(3)− 1− j]

for all j ≤ 2n+1− 1. By our induction, we must have 2n+1− 1− j = 2n−i− 1 for some

i < n. These games take on the form W [2n−i − 1, 2n−i(2i(3)− 2i+1 + 1)− 1].

When we put this larger stack in the appropriate form to be a P position, we get

2n−i(2i(3)− 2i+1 + 1)− 1 = 2n−i(2i(3)− 2i+1 − 2−1 + 1) + 2n−i−1 − 1

= 2n−i(a) + 2n−i−1 − 1
(4.4)

Note that the number multiplying 2n−i is not an integer. We conclude these games

are not of the correct form to be in P by our induction. Thus, W [2n+1−1, 2n(3)−1] ∈
P . However, not all games of the form W [2n+1 − 1, 2n(d) − 1] are in P . Consider

W [2n+1 − 1, 2n(4)− 1] which has W [2n+1 − 1, 2n(3)− 1] as an option. So, W [2n+1 −
1, 2n(4) − 1] ∈ N . Thus, we get that W [2n+1 − 1, 2nd − 1] ∈ P iff d > 2 is odd.

So, W [2n+1 − 1, 2n+1(d−1
2
) + 2n − 1] ∈ P for all odd integers d such that d > 2. So,

W [2n+1 − 1, 2n+1(f) + 2n − 1] ∈ P for all f > 0.

So, we conclude that for all values of r from 2n + 1 to 2n+1 that if c > r, then

W [r, c] ∈ P if and only if r = 2m − 1 and c = 2md+ 2m−1 − 1 for some m, d ∈ N. So,

if c > r, then W [r, c] ∈ P if and only if r = 2n − 1 and c = 2na + 2n−1 − 1 for some

r, a ∈ N.

4.2 Misère WYNNIE

We define misère wynnie to be the same as the game of wynnie except that the

winner is the player who does not act last. That is to say that a player will lose if
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his is the last move. We use W−[m,n] to denote misère wynnie played on stacks of

sizes m and n. We begin by proving several lemmas before getting to our main result

about the location of P-positions.

Lemma 4.6. W−[0, 1] ∈ P and W−[0, n] ∈ N if n > 1.

Proof. If the board only contains one chip, Player One has no choice but to remove it

and lose. Otherwise, Player One will opt to remove n−1 chips on the first turn. Player

Two must then remove that last remaining chip on his turn losing the game.

Lemma 4.7. W−[1, n] ∈ P if and only if n is odd.

Proof. Suppose misère wynnie is being played with two stacks of chips of sizes 1

and n. Note that any player who reduces a stack that contains only one chip will

lose unless they have left the other stack with only one chip. So, the optimal play

is always to remove from only the larger stack. However, since the smaller stack

contains only one chip, a maximum of one chip can be removed per stack per turn.

So, each turn, the active player will reduce the larger stack by one chip. This pattern

will only be stopped when a player gets the opportunity to play on the game W−[1, 2].

Then, the active player will reduce the game to W−[0, 1] and win on the next turn.

So, if n is even, then Player One will act on W−[1, 2k] while Player Two will act on

W−[1, (2k + 1)]. Thus, Player One will play on W−[1, 2]. Conversely, if n is odd,

Player Two will play on W−[1, 2]. So, Player One has a winning strategy if and only

if n is even.

Lemma 4.8. Suppose 1 < m ≤ n and either m is even or n is odd. Then, W−[m,n] ∈
N .

Proof. Suppose misère wynnie is being played with two stacks of chips of sizes m

and n with 1 < m ≤ n.

Case 1: m and n are either both even or both odd. By removing m − 1 chips

from both stacks on turn one, Player One can move the game to W−[1, 2k+1] (since

n−m+ 1 is odd). Player One will win this game since he gets to play second and it

is a Previous Player win game.

Case 2: m is even and n is odd. By removing m − 1 chips from the stack with

m chips on turn one, Player One can move the game to W−[1, (2k + 1)] (since n is

odd). Player One will win this game since he gets to play second and it is a Previous

Player win game.

Lemma 4.9. Suppose m > 0, then W−[m,m+ 1] ∈ N .
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Proof. Suppose misère wynnie is being played with two stacks of chips of sizes m

and m+1. On turn one, Player One will remove m chips from both stacks. This will

leave the [0,1] game which Player One will win next turn.

Theorem 4.10. Suppose m ≤ n. Then, W−[m,n] ∈ P if and only if m = 2j − 1 and

n = 2jk + 2j−1, j, k ∈ N.

Proof. (The proof proceeds in a structure similar to that of Theorem 4.5.) Suppose

misère wynnie is being played with two stacks of chips of sizes m and n with m ≤ n.

We know from Lemma 4.8 that if Player Two has a winning strategy, then m is odd

and n is even. So, we suppose m is odd and n is even. (We now look at base cases

with m = 1, 2, and 3.)

Games with m = 1 are characterized by Lemma 4.7 (and satisfy the form we seek

with j = 1). Suppose m = 2. Then, m 
= 2j − 1 and, by Lemma 4.8, W−[m,n] ∈ N .

Now, suppose m = 3. Then, m = 22− 1. By Lemma 4.8, W−[3, n] ∈ N for all odd n.

By Lemma 4.9, W−[3, 4] ∈ N . Next we inspect W−[3, 6]. In searching for a winning

strategy, Player One need only look for ways to reduce this game to one of the form

W−[1, k] for some odd k on his first turn. This, however, is impossible since it is not

a legal move to remove an even number from 3 in the same turn that you remove

an odd number from 6. So, W−[3, 6] ∈ P . Next, we note that W−[3, 8] ∈ N since

W−[3, 6] on his first turn. So, we get that W−[3, a] = 0 if and only if a = 4k+ 2. So,

W−[22 − 1, a] = 0 if and only if a = 22k + 22−1.

Now, let us suppose that for all values of m from 1 to 2�, W−[m,n] is in P if and

only if m = 2j − 1 and n = 2jk + 2j−1, for some j, k ∈ N. We now examine all m

values of the form 2� + b for some b < 2� (b is odd by Lemma 4.8). We know which

values of n produce Previous Player win games for m < 2� + 1. Those are n values

of the form 2id + 2i−1 for i ≤ �, and i, d ∈ N. If we exclude those values, we are

left only with n values of the form 2�d, d ∈ N. So, these become our only choices

when searching for a Previous Player win game with m value 2�+ b. We now put b in

2st+2s−1− 1 form for some s ∈ N and t ∈ 0∪N. We now break into cases depending

on how s is related to �. Note that s ≤ �+ 1 and t < 2�−s since b < 2�.

Case 1: s < �
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Then,

W−[2� + b, 2�d] = W−[2� + 2st+ 2s−1 − 1, 2�d]

→ W−[2s − 1, 2�(d− 1)− 2s(t− 1)− 2s−1]

= W−[2s − 1, 2s(2�−sd− 2�−s − t+ 1)− 2s−1]

= W−[2s − 1, 2s(2�−sd− 2�−s − t) + 2s−1] ∈ P

(4.5)

So, since W−[2�+b, 2�d] can be moved to a Previous Player win game, W [2�+b, 2�d] ∈
N .

Case 2: s = �

Then, W−[2� + b, 2�d] = W−[2� + 2�t+ 2�−1 − 1, 2�d]

But, t = 0 since b < 2�.

So,

W−[2� + b, 2�d] = W−[2� + 2�−1 − 1, 2�d]

→ W−[2� − 1, 2�d− 2�−1]

= W−[2� − 1, 2�(d− 1) + 2�−1] ∈ P

(4.6)

SinceW−[2�+b, 2�d] can be moved to a Previous Player win game,W−[2�+b, 2�d] ∈ N .

Case 3: s = �+ 1

Then, W−[2� + b, 2�d] = W−[2� + 2st+ 2s−1 − 1, 2�d].

Now, t = 0 since b < 2n. So, W−[2� + b, 2�d] = W−[2� + 2s−1 − 1, 2�d].

Also, 2s−1 = 2� since s = �+ 1.

So,

W−[2� + b, 2�d] = W−[2� + 2� − 1, 2�d].

= W−[2�+1 − 1, 2�d]
(4.7)

We begin by proving our statement for the smallest possible value of d. So, we

seek to show that W [2�+1 − 1, 2�(3)] = W [2�+1 − 1, 2�+1 + 2�] ∈ P . So, we must show

that every option is in N . We know every move involving the removal of chips from

just the smaller stack will yield a Next player win game by our induction. By our

induction, every game with an odd largest stack is in N . So, we also know that the

removal of chips from just the larger stack will yield a Next player win game. The

only remaining options to consider are W [2�+1 − 1− j, 2�(3)− j] for all j ≤ 2�+1 − 1.

By our induction, we must have 2�+1 − 1− j = 2�−i − 1 for some i < �. These games
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take on the form W [2�−i − 1, 2�−i(2i(3)− 2i+1 + 1)].

When we put this larger stack in the appropriate form to be a P position, we get

2�−i(2i(3)− 2i+1 + 1) = 2�−i(2i(3)− 2i+1 − 2−1 + 1) + 2�−i−1

= 2�−i(a) + 2�−i−1
(4.8)

for some a /∈ N.

So, these games are not of the correct form to be in P by our induction. So,

W [2�+1 − 1, 2�(3)] ∈ P . However, not all games of the form W [2�+1 − 1, 2�(d)] are

in P . For example, we look at W [2�+1 − 1, 2�(4)] which has W [2�+1 − 1, 2�(3)] as an

option. So, W [2�+1 − 1, 2�(4)] ∈ N . So, we get that W [2�+1 − 1, 2�d] ∈ P iff d > 2 is

odd. So, W [2�+1 − 1, 2�+1(d−1
2
) + 2�] ∈ P for all odd integers d such that d > 2. So,

W [2�+1 − 1, 2�+1(f) + 2�] ∈ P for all f > 0.

So, we conclude that for all values of m from 2� + 1 to 2l+1 that if n ≥ m, then

W−[m,n] ∈ P if and only if m = 2j − 1 and n = 2jk + 2j−1 for some j, k ∈ N. So, if

m ≤ n, then W−[m,n] ∈ P if and only if m = 2j−1 and n = 2jk+2j−1, j, k ∈ N.

4.3 WYG

We will also explore using a graph as the board for wynnie.

Rules of WYG (wynnie on graphs):

Let G be a graph with a nonnegative integral number of chips initially on each

vertex (i.e. each vertex contains a nim stack). Player 1 chooses an edge of G and

then beginning with Player 1, the players alternate moves on the endpoints of that

edge until the edge is deleted (i.e. until one of the endpoints has nim stack size 0). A

move for a player is to remove up to k chips from one or both endpoints of the edge,

where k is the smallest nonnegative nim stack of the two endpoints. Once a vertex

has nim stack size 0, it cannot be used and so is effectively deleted from the graph. If

a player’s move results in a vertex being deleted from the graph (and hence the edge

that had been played upon), then the other player now chooses the next edge to play

upon and moves first. See Figure 4.5 for a sample game.
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3 2

Player Two removes 2 chips from a single stack.

5

3

3

2

Player One removes both vertices from the dotted edge.

2

Player Two has no edge to play on and loses.

1

2

Player One opts to remove both vertices.
5

3

1

Figure 4.2: wyg on K5 with various stack sizes.

Let W1(G) be an instance of wyg on graph G in which each vertex initially

contains 1 chip. Let Wdg(G) be an instance of wyg on graph G in which each vertex

initially contains degree-many chips. Let Wn(G) be an instance of wyg on graph G

in which each vertex initially contains n chips (so, each vertex has the same number

of chips). As an example, consider the game W1(P3). Player One’s first choice of edge

does not matter due to the symmetry of the graph (see the top of Figure 4.3). He

will choose one of them and opt to remove the chip from the center vertex leaving no

edges remaining in the graph, winning the game.

1 1 1

1 1

Player One removes the center vertex

Player Two has no legal moves and loses

Figure 4.3: The game W1(P3).

Next, we consider the game Wdg(P3) as illustrated in Figure 4.4. Player One’s first

choice of edge again does not matter due to the symmetry of the graph. Player One

should not choose to remove a chip from just the center vertex for fear of yielding
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the Next Player win game W1(P3). Alternatively, Player One may choose to remove

a chip from the center vertex and from a leaf yielding W1(P2). However, W1(P2)

is obviously Next Player win since every possible play on Turn 1 will win the game.

Player One’s final option is to remove just a leaf from the graph. Player Two will then

remove the other leaf, leaving a single vertex with two chips and no edges, winning

the game. So, Wdg(P3) is Previous Player win.

1 2 1 Player One has 3 options

111 1 1 1 2
Player Two can end
the game from each position

11 1 2

Player One has no
possible move in any
of these positions

Figure 4.4: Degree wyg on P3

Note that in this version of wynnie on graphs, once an edge has been chosen,

players move on that edge until it is deleted (i.e. until an endpoint is deleted). An

alternate version would be where on a player’s turn, he may choose to play on any

edge and then moves on that edge (i.e. the subsequent player may choose to play on

the same edge if it still exists, or may choose to play on a different edge). Certainly

in the case where each vertex of G initially contains 1 chip, the two versions are

equivalent.

Let e = uv be an edge in graph G. If V (G) \ {u, v} is disconnected, then e is

called a cut-edge neighbourhood of G.

Theorem 4.11. Let G be a graph that contains a cut vertex or cut edge neighbourhood

that, upon its removal, yields two isomorphic components. Then Wn(G) ∈ N .

Proof. Suppose wyg is being played on a graph G that contains a cut vertex or cut

edge neighbourhood that, upon its removal, yields two isomorphic components, and

each vertex of G has n chips.

Case 1: Suppose G contains a cut vertex v whose removal yields two isomorphic

components. Then Player One will opt to play wynnie on an edge incident with v
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and remove only the chips on v. This will break G into two isomorphic components.

Then by mirroring Player 2’s moves, Player 1 will win.

Case 2: Suppose G contains a cut edge neighbourhood e whose removal yields

two isomorphic components. Then Player One will opt to play wynnie on e and

remove all chips from both incident vertices. This will break G into two isomorphic

components. Then by mirroring Player 2’s moves, Player 1 will win.

In fact, this strategy will prove successful for Player One for any distribution of

chips on the graph as long as he is able to break the game into two isomorphic disjoint

games on his first turn. However, the converse to this theorem is not true. Not all

games of the form W1(G) that are in N have a cut vertex or cut edge-neighbourhood

as evidenced by the example on K5 in Figure 4.5.

1 1 Player Two may remove one or two vertices

11

11

1

1 Player One can win the game either way1

1 1 Player Two has no moves and loses

1

1 Player One removes a single vertex

1

1

1

Figure 4.5: The game W1(K5).

wyg with a single chip on each vertex closely resembles the “edge-delete game”

proposed by Gallant et al. [6]. In the edge-delete game, players take turns removing

edges from a graph without creating isolated vertices. The winner is the last player

to make a legal move.

Theorem 4.12. [6] Suppose G = (V,E) has an automorphism f : V → V with the

properties: (1) f has no fixed points; (2) f(f(x)) = x for every vertex x in V ; and (3)
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x is not adjacent to f(x) for any x in V . Then Player Two has a winning strategy

on G.

This theorem is proven using a mirroring strategy that calls for Player Two to

respond to the removal of edge xy by removing edge f(x)f(y). It is as yet unclear

how and if this theorem can be adapted for wyg.

Theorem 4.13. W1(Kn) ∈ P if and only if n ≡ 1 (mod 3).

Proof. (By induction) Suppose wyg is played on a complete graph Kn and each

vertex has 1 chip. Observe that K1 is Previous Player win and K2,K3 are Next

Player win.

We now assume that W1(Kn) ∈ P if and only if n ≡ 1 (mod 3) for all values of n

from 1 to k for some k ∈ N. Note that Player One’s first move on a complete graph,

Kk+1, must simplify the game to a smaller complete graph, namely, Kk or Kk−1.

Case 1: Kk and Kk−1 are Next Player win (So, k ≡ 0 (mod 3)). We are playing

on Kk+1. Then, Player One’s only option on Turn one is to create a Next Player win

game. Thus, Kk+1 is Previous Player win.

Case 2: Kk is Next Player win and Kk−1 is Previous Player win (So, k ≡
2 (mod 3)). We are playing on Kk+1. Then, Player One can create a Previous

Player win game on Turn One, namely, Kk−1. So, Kk+1 is Next Player win.

Case 3: Kk is Previous Player win (So, Kk−1 is Next Player win and k ≡
1 (mod 3)). Then, Player One can create a Previous Player win game on Turn

One, namely, Kk. So, Kk+1 is Next Player win.

So, for n ≥ 1, W1(Kn) ∈ P if and only if n ≡ 1 (mod 3).

Corollary 4.14. W1(Kn) has nimber value

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if and only if n ≡ 1 (mod 3)

1 if and only if n ≡ 2 (mod 3)

2 if and only if n ≡ 0 (mod 3).

Proof. We know G (W1(K3k+1)) = 0 since W1(K3k+1) ∈ P . Since G (W1(K1)) = 0, we

know G (W1(K2)) = 1, and consequently, G (W1(K3)) = 2. This pattern holds by the

same induction used in the previous theorem.
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Theorem 4.15. For n > 3, W1(Cn) ∈ P.

Proof. Suppose wyg is being played on a cycle Cn, n > 3, and each vertex has 1

chip. Player One’s initial move will remove one or two vertices from the graph. So,

the result will be a path, which is Next Player win by Theorem 4.11. So, Player Two

has a winning strategy on Cn, n > 3, when each vertex has 1 chip.

Theorem 4.16. W1(Wn) ∈ N for all n > 4.

Proof. Suppose wyg is being played on a wheel Wn, n > 4, and each vertex has 1

chip. Player One can remove the hub vertex, leaving Cn−1 which is Previous Player

win by Theorem 4.15. Thus, Player One has a winning strategy on the wheel Wn,

n > 4, when each vertex has 1 chip.

The following lemma is used to prove the main result for complete bipartite graphs,

Theorem 4.18.

Lemma 4.17. (a) W1(Km,1) ∈ N for all m ∈ Z
+ and

(b) W1(Km,2) ∈ P for all even positive integers m.

Proof. In Km,1 where each vertex initially has one chip, Player One can win by

removing the chip from the vertex with degree m, leaving no legal moves for Player

Two.

In Km,2 where m is even and every vertex initially has one chip, observe that

Player One’s options on his first turn are to remove a single vertex from either part

or remove a vertex from both. If Player One finishes his turn with only a single vertex

in either part, then he will lose by (a). So, Player One must remove a single vertex

from the part containing m vertices. Player Two’s winning strategy will repeat Player

One’s move, removing a single vertex from the part that now contains m−1 vertices.

So, we now have a game where Player One is acting on K2k,2 and Player Two is acting

on K2k+1,2 as the order of the larger part is decreasing. Since Player One will lose if

he ends his turn with only a single vertex in either part, his action on K2,2 will lead

to a Player Two win.

Theorem 4.18. For m,n ∈ Z
+, W1(Km,n) ∈ P if and only if both m,n are even.

Proof. We fix m0 and seek to inductively prove that W1(Km0,n) ∈ P if and only if

m0, n even for all n ∈ Z
+. To do so, we assume our result is true for m0 − 1 for all n

(inductive hypothesis 1). By Lemma 4.17, our result holds for n = 1, n = 2. Suppose

the result holds for n = n0 − 1 (inductive hypothesis 2). On Player One’s first turn,
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he moves from W1(Km0,n0) to either W1(Km0−1,n0), W1(Km0,n0−1), or W1(Km0−1,n0−1).

By inductive hypothesis 1, we know W1(Km0−1,n0) and W1(Km0−1,n0−1) are in P if

and only if both parts contain an even number of vertices. By inductive hypothesis

2, we know W1(Km0,n0−1) is in P if and only if both parts contain an even number of

vertices. If W1(Km0,n0) ∈ P , then every one of Player One’s first turn options must

yield a game that is in N . This implies that both m and n are even since no pair of

m0 − 1 and n0, m0 − 1 and n0 − 1, nor m0 and n0 − 1 can both be even. So, for all

m,n ∈ Z
+, W1(Km,n) ∈ P if and only if m,n even.

The following lemma will be used to prove Wdg(Cn) ∈ N in Theorem 4.20.

Lemma 4.19. Suppose wyg is being played on a path Pn, and each vertex has 2

chips except for one of the endpoints which has 1 chip (see Figure 4.6). Then Player

One has a winning strategy.

2 2 2 2 1

Figure 4.6: wyg on Pn.

Proof. On Player One’s first turn, he will choose to play wynnie on the edge incident

with the vertex with only one chip. He will remove one chip from the vertex adjacent

to the endpoint with only 1 chip.

2 2 2 1 1

Figure 4.7: Player Two must respond on the same edge.

Player Two must respond by continuing the game on the same edge (see Fig-

ure 4.7). Player Two must either create a path of length n − 2 with each vertex

containing 2 chips (Player One would be able to break this path into two isomorphic

pieces as in Theorem 4.11 to win the game) or create a path of length n − 1 with

each vertex containing 2 chips except for one endpoint with only 1 chip. We now

seek to show that if Player One repeats this same move on each of his turns that the

continued use of this second strategy by Player Two will be ineffective.

2 2 2 1

Figure 4.8: Player One has a winning strategy in this game
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Player One can finish this game in Figure 4.8 by removing both vertices incident

with the center edge. Thus, this game is in N . Thus, Player One has a winning

strategy of forcing Player Two to either shorten the path each turn or remove the

vertex with only 1 chip.

Theorem 4.20. Suppose wyg is being played on a cycle Cn, and each vertex has 2

chips. Then Player One has a winning strategy.

Proof. Initially, Player One will remove one chip from two adjacent vertices. Player

Two must then continue the game of wynnie on the same edge. After Player Two’s

move, the resulting game will either be the one given in the previous lemma and

Player One will win or W2(Pn−2) which is Next Player win by Theorem 4.11.

Theorem 4.21. Let G be the graph composed of two stars Sm and Sn connected by a

single central vertex as shown in Figure 4.9. Then, W1(G) ∈ N if and only if n+m

is even.

Proof. Suppose wyg is being played on a graph G composed of two stars Sm and Sn

connected by a single central vertex and each vertex initially has one chip.

m v1 v2 v3 n

Figure 4.9: The graph G described in Theorem 4.21.

If at any point, a player removes the chip from either v1 or v3, then the other

player will remove the chip from the other next turn and win. So, neither player

should ever remove two vertices during his turn. Therefore, the optimal strategy for

each player is to remove chips one at a time leading to a parity-based result. So,

Player One will win if there is an odd number of total vertices and Player Two will

win if there is an even number of total vertices.

Theorem 4.22. Let G be the graph composed of two stars Sm and Sn connected by

a path of length 3 as shown in Figure 4.10. Then, Player One has a winning strategy

for W1(G).
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Proof. Let G be the graph composed of two stars Sm and Sn connected by a path of

length 3 and initially place one chip at each vertex of G.

m v1 v2 v3 v4 n

Figure 4.10: The graph described in Theorem 4.22.

Case 1: n + m is even. Then, Player One will remove chips from both v2 and

v3 leaving Sm disconnected from Sn. What remains is a game where removing two

chips at a time is obviously not the optimal move for either player. So, the chips

will be removed one at a time leading to a parity-based result (Lemma 4.17. Since

this game is Previous Player win (even number of total vertices), Player One has a

winning strategy.

Case 2: n+m is odd. Then, Player One will remove v2 leaving Sm disconnected

from Sn+1. What remains is a game where removing two chips at a time is obviously

not the optimal move for either player. So, the chips will be removed one at a time

leading to a parity-based result. Since this game is Previous Player win (even number

of total vertices), Player One has a winning strategy.

Theorem 4.23. Let G be the graph composed of two stars Sm and Sn connected by

a path of length 4 as shown in Figure 4.11. Then, Player One has a winning strategy

for W1(G).

Proof. Let G be the graph composed of two stars Sm and Sn connected by a path of

length 4 and initially place one chip at each vertex of G.
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m v1 v2 v3 v4 v5 n

Figure 4.11: The graph described in Theorem 4.23.

Case 1: n +m is even. Then, Player One will remove the chip from v3 leaving

disjoint stars Sm+1 and Sn+1. Since this game is Previous Player win, Player One has

a winning strategy.

Case 2: n + m is odd. Then, Player One will remove the chips from v2 and v3

leaving disjoint stars Sm and Sn+1. Since this game is Previous Player win, Player

One has a winning strategy.

Theorem 4.24. Let G be the graph composed of two stars Sm and Sn connected by

a path of length 5 as shown in Figure 4.12. Then, Player One has a winning strategy

for W1(G).

Proof. Let G be the graph composed of two stars Sm and Sn connected by a path of

length 5 and initially place one chip at each vertex of G.

m v1 v2 v3 v4 v5 v6 n

Figure 4.12: The graph described in Theorem 4.24.

Case 1: n+m is even. Then, Player One will remove chips from v3 and v4 leaving

disjoint stars Sm+1 and Sn+1. Since this game is Previous Player win, Player One has

a winning strategy.
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Case 2: n+m is odd. Suppose, without loss of generality, that n is even and m

is odd. Then, Player One will remove chips from v1 and v2 leaving S1 connected to

Sn which is Previous Player win by Theorem 4.21. Since this game is Previous Player

win, Player One has a winning strategy.

As the paths get longer, the proof method changes because referencing previous

theorems becomes less useful. So, there seems to be no reason to assume that every

game of this form is Next Player Win. Solving this problem for a path of length n

remains an open question, but we conjecture that this pattern of always being Next

Player Win does not continue as the path grows longer.



Chapter 5

MINNIE

minnie is a variant of nim in which the subtraction set contains all natural numbers

up to and including the smallest stack size. It is important to note that once a stack is

reduced to 0 chips, it ceases to exist. So, the game may continue with the remaining

stacks rather than forcing players to somehow make 0 not the smallest stack size on

their turn. In Figure 5.1, we see an example of minnie played with stacks of sizes 7,

9, and 20. In this example, we see that Player One has won since his removal of all

6 remaining chips from the center stack left Player Two with no legal action on his

turn.

In this chapter we solve minnie for 2 stacks and nearly solve it for 3 stacks. We

also solve a similar game mine for 2 and 3 stacks. mine is equivalent to minnie

except that no legal move leaves multiple stacks with the same number of chips.

With Theorem 5.2, we show that all the P-positions of minnie on two stacks occur

when the smaller stack has at most 4 chips. With Theorem 5.4, we are able to locate

most P-positions of minnie on three stacks.

36



37

Player 1 moves to

7 9 20

Player 2 moves to

7 9 14

Player 1 moves to

5 9 14

Player 2 moves to

0 9 14

Player 1 moves to

0 9 5

Player 2 moves to

0 6 5

Player 1 moves to

0 6 0

0 0 0

Figure 5.1: minnie on stacks of sizes 7, 9, and 20.

5.1 MINNIE on 1 and 2 stacks

Since the case of Minnie on 3 stacks is complicated one, we will consider the problem

on 1 and 2 stacks first. However, the problem on 1 stack is quite simple.

Lemma 5.1. Let a be a positive integer then G (M [a]) = a.

Proof. This game is the same as 1 stack nim.

Theorem 5.2. Let a ≤ b be positive integers: M [a, b] ∈ P iff

M [a, b] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M [1, 2i+ 1], i ≥ 0

M [2, 4i+ 2], i ≥ 0

M [3, 4i], i ≥ 2

M [4, 4]

Proof. Case 1: a = 1
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Then, M [1, 1] ∈ P , and M [1, 2] ∈ N since M [1, 1] is an option. Inducting on the

options, we get M [1, 2k] ∈ N since M [1, 2k − 1] is an option; M [1, 2k + 1] ∈ P since

the only two options are M [0, 2k + 1] and M [1, 2k], both of which are in N .

Case 2: a = 2

We know M [2, 1] ∈ N since M [1, 1] is an option; M [2, 2] ∈ P since the only

options are M [1, 2] and M [0, 2], both of which are in N ; M [2, 3] ∈ N since M [2, 2] is

an option; M [2, 4] ∈ N since M [2, 2] is an option. We have the base cases. We now

consider the general case.

• Both M [2, 4k+1] ∈ N and M [2, 4k+3] ∈ N since M [1, 4k+1] and M [1, 4k+3]

are options, respectively.

• M [2, 4k] ∈ N since M [2, 4k − 2] = M [2, 4(k − 1) + 2] is an option and is in P
by the inductive hypothesis.

• M [2, 4k+2] ∈ P since the only options are M [0, 4k+2], M [1, 4k+2], M [2, 4k],

and M [2, 4k + 1], all of which are in N .

Case 3: a = 3

We know M [3, 1] and M [3, 2] are in P and N , respectively by cases 1 and 2.

• M [3, 3] ∈ N since M [1, 3] is an option.

• M [3, 4] ∈ N since M [1, 3] is an option.

• M [3, 5] ∈ N since M [1, 5] is an option.

• M [3, 6] ∈ N since M [2, 6] is an option.

• M [3, 7] ∈ N since M [1, 7] is an option.

• M [3, 8] ∈ P since the only options are M [0, 8] ∈ N (Lemma 5.1), M [1, 8] ∈ N
(case 1) , M [2, 8] ∈ N (case 2), M [3, 7] ∈ N , M [3, 6] ∈ N and M [3, 5] ∈ N .

We have the base cases. We now consider the general case.

• Both M [3, 4k + 1] and M [3, 4k + 3] are in N since M [1, 4k + 1] ∈ P (case 1),

and M [1, 4k + 3] ∈ P (case 1) are options, respectively.

• M [3, 4k + 2] ∈ N since M [2, 4k + 2] ∈ P (case 2) is an option.



39

• M [3, 4k] ∈ P since the only options are M [0, 4k] ∈ N (Lemma 5.1),

M [1, 4k] ∈ N (case 1), M [2, 4k] ∈ N (case 2), M [3, 4k − 1] ∈ N (induction),

M [3, 4k − 2] ∈ N (induction) and M [3, 4k − 3] ∈ N (induction).

Now suppose minnie is being played on two stacks of sizes m and n for some

n ≥ m ≥ 4.

• M [4, 4] ∈ P since the only options are M [0, 4] ∈ N (Lemma 5.1), M [1, 4] ∈ N
(case 1), M [2, 4] ∈ N (case 2), and M [3, 4] ∈ N (case 3).

Aside from the case of M [4, 4] (which is an exception since M [3, 4k] ∈ P for all

k > 1 instead of being for all k ≥ 1), we have that of the following three options:

M [1, n],M [2, n], orM [3, n], one of them must be Previous Player win since n = 0, 1, 2,

or 3 (mod 4). So, M [m,n] ∈ N .

5.2 MINNIE on 3 stacks

We have a nearly complete solution for Minnie on 3 stacks, but the proof is long. As

usual, our strategy involves inducting on the options.

Theorem 5.3. Suppose minnie is being played on three stacks of sizes �, m, and n

with n ≥ m ≥ � and 1 ≤ � ≤ 3. Then, Player Two has a winning strategy if and only

if one of the following conditions is met:

M [�,m, n] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M [1,m, n],m+ n ≡ 1 (mod 2),m 
= 3

M [1, 3, 4]

M [1, 3, n], n ≡ 2 (mod 4)

M [2,m, n],m 
= 3, m+ n ≡ 2 (mod 4)

M [3, 3, n], n ≡ 3 (mod 4)

M [3,m, n],m > 3, m 
= 5, n > 4, and m+ n ≡ 0 (mod 4).

Proof. We consider the cases in order.

Case 1: � = 1

Case 1.1: � = 1 and m = 1

• M [1, 1, 2k + 1] ∈ N since M [0, 1, 2k + 1] ∈ P (Theorem 5.2) is an option.
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• M [1, 1, 2k] ∈ P since the only options are M [0, 1, 2k] ∈ N (Theorem 5.2) and

M [1, 1, 2k − 1] ∈ N (induction).

Case 1.2: � = 1 and m = 2

• M [1, 2, 2k] ∈ N since M [1, 1, 2k] ∈ P (case 1.1) is an option.

• M [1, 2, 2k+1] ∈ P since the only options areM [0, 2, 2k+1] ∈ N (Theorem 5.2),

M [1, 1, 2k + 1] ∈ N (case 1.1), and M [1, 2, 2k] ∈ N .

Case 1.3: � = 1 and m = 3

• M [1, 3, 3] ∈ N since M [1, 2, 3] ∈ P (case 1.2) is an option.

• M [1, 3, 4] ∈ P since the only options areM [0, 3, 4] ∈ N (Theorem 5.2),M [1, 2, 4] ∈
N (case 1.2), and M [1, 3, 3].

• M [1, 3, 5] ∈ N since M [1, 3, 4] ∈ P is an option.

• M [1, 3, 6] ∈ P since the only options areM [0, 3, 6] ∈ N (Theorem 5.2),M [1, 2, 6] ∈
N (case 1.2), and M [1, 3, 5] ∈ N .

We have the base cases. We now consider the general case on larger stacks.

• M [1, 3, 4k + 3] ∈ N since M [1, 3, 4k + 2] ∈ P (induction) is an option.

• M [1, 3, 4k] ∈ N since M [0, 3, 4k] ∈ P (Theorem 5.2) is an option.

• M [1, 3, 4k + 1] ∈ N since M [1, 2, 4k + 1] ∈ P (case 1.2) is an option.

• M [1, 3, 4k+2] ∈ P since the only options areM [0, 3, 4k+2] ∈ N (Theorem 5.2),

M [1, 2, 4k + 2] ∈ N (case 1.2), and M [1, 3, 4k + 1] ∈ N (induction).

Case 1.4: � = 1 and m = 4

• M [1, 4, 4] ∈ N since M [1, 3, 4] ∈ P (case 1.3) is an option.

• M [1, 4, 5] ∈ P since the only options areM [0, 4, 5] ∈ N (Theorem 5.2),M [1, 3, 5] ∈
N (case 1.3), and M [1, 4, 4] ∈ N .

We have the base cases. We now consider the general case on larger stacks.

• M [1, 4, 2k] ∈ N since M [1, 4, 2k − 1] ∈ P (induction) is an option.
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• M [1, 4, 2k+1] ∈ P since the only options areM [0, 4, 2k+1] ∈ N (Theorem 5.2),

M [1, 3, 2k + 1] ∈ N (case 1.3), and M [1, 4, 2k] ∈ N .

We have the base cases. We now consider the general case on larger stacks.

Case 1.5: � = 1 and m > 4

• M [1, 2j + 1, 2k + 1] ∈ N since M [1, 2j + 1, 2k] ∈ P (induction) is an option.

• M [1, 2j + 1, 2k] ∈ P since the only options are M [0, 2j + 1, 2k] ∈ N (Theo-

rem 5.2), M [1, 2j, 2k] ∈ N (induction), andM [1, 2j+1, 2k−1] ∈ N (induction).

• M [1, 2j, 2k + 1] ∈ P since the only options are M [0, 2j, 2k + 1] ∈ N (Theo-

rem 5.2), M [1, 2j−1, 2k+1] ∈ N (induction), andM [1, 2j, 2k] ∈ N (induction).

• M [1, 2j, 2k] ∈ N since M [1, 2j, 2k − 1] ∈ P (induction) is an option.

So, we can conclude that for m 
= 3, M [1,m, n] ∈ P iff m+ n is odd.

Case 2: � = 2

Case 2.1: � = 2 and m = 2

• M [2, 2, 4k+1] and M [2, 2, 4k+3] are in N since M [1, 2, 4k+1] ∈ P (case 1.2),

and M [1, 2, 4k + 3] ∈ P (case 1.2) are options, respectively.

• M [2, 2, 4k + 2] ∈ N since M [0, 2, 4k + 2] ∈ P (Theorem 5.2) is an option.

• M [2, 2, 4k] ∈ P since the only options are M [0, 2, 4k] ∈ N (Theorem 5.2),

M [1, 2, 4k] ∈ N (case 1.2), M [2, 2, 4k−2] ∈ N (induction), andM [2, 2, 4k−1] ∈
N (induction).

Case 2.2: � = 2 and m = 3

• M [2, 3, 4k] ∈ N since M [2, 2, 4k] ∈ P (case 2.2) is an option.

• M [2, 3, 4k + 1] and M [2, 3, 4k+ 3] are in N since M [1, 2, 4k+ 1] ∈ P (case 1.2)

and M [1, 2, 4k + 3] ∈ P (case 1.2) are options, respectively.

• M [2, 3, 4k + 2] ∈ N since M [1, 3, 4k + 2] ∈ P (case 1.3) is an option.

Case 2.3: � = 2 and m = 4

• M [2, 4, 4k+1] and M [2, 4, 4k+3] are in N since M [1, 4, 4k+1] ∈ P (case 1.4),

and M [1, 4, 4k + 3] ∈ P (case 1.4) are options, respectively.
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• M [2, 4, 4k] ∈ N since M [2, 2, 4k] ∈ P (case 2.2) is an option.

• M [2, 4, 4k+2] ∈ P since the only options areM [0, 4, 4k+2] ∈ N (Theorem 5.2),

M [1, 4, 4k+2] ∈ N (case 1.4), M [2, 3, 4k+2] ∈ N (case 2.3), M [2, 2, 4k+2] ∈ N
(case 2.2), M [2, 4, 4k + 1] ∈ N (induction),

and M [2, 4, 4k] ∈ N (induction).

Case 2.4: � = 2 and m > 4

• If m+ n = 4k, then M [2,m, n] ∈ N since M [2,m, n− 2] ∈ P (induction) is an

option.

• If m+n = 4k+1 or m+n = 4k+3, then M [2,m, n] ∈ N since M [1,m, n] ∈ P
(case 1.5) is an option.

• Ifm+n = 4k+2, thenM [2,m, n] ∈ P since the only options areM [0,m, n] ∈ N
(Theorem 5.2), M [1,m, n] ∈ N (case 1.5), M [2,m − 2, n] ∈ N (induction),

M [2,m−1, n] ∈ N (induction), M [2,m, n−2] ∈ N (induction), andM [2,m, n−
1] ∈ N (induction).

So, we conclude that for m 
= 3, M [2,m, n] ∈ P iff m+ n ≡ 2 (mod 4).

Case 3: � = 3

Case 3.1: � = 3 and m = 3

• M [3, 3, 3] ∈ P since the only options are M [0, 3, 3], M [1, 3, 3], or M [2, 3, 3],

all of which are in N (next player win by Theorem 5.2, Case 1, and Case 2,

respectively).

• M [3, 3, 4],M [3, 3, 5] and M [3, 3, 6] are in N since M [3, 3, 3] ∈ P is an option

(previous player win by earlier statement).

We have the base cases. We now consider the general case on larger stacks.

• M [3, 3, 4k], M [3, 3, 4k+1], and M [3, 3, 4k+2] are in N since M [3, 3, 4k−1] ∈ P
(induction) is an option.

• M [3, 3, 4k+3] ∈ P since the only options areM [0, 3, 4k+3] ∈ N (Theorem 5.2),

M [1, 3, 4k + 3] ∈ N (case 1.3), M [2, 3, 4k + 3] ∈ N (case 2.3), M [3, 3, 4k] ∈ N
(induction), M [3, 3, 4k + 1] ∈ N (induction), and M [3, 3, 4k + 2] ∈ N (induc-

tion).
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Case 3.2: � = 3 and m = 4

• M [3, 4, 4k+1] and M [3, 4, 4k+3] are both in N since M [1, 4, 4k+1] ∈ P (case

1.4), and M [1, 4, 4k + 3] ∈ P (case 1.4) are options, respectively.

• M [3, 4, 4] ∈ N since M [1, 3, 4] ∈ P (case 1.3) is an option.

• M [3, 4, 6] ∈ N since M [2, 4, 6] ∈ P (case 2.4) is an option.

• M [3, 4, 8] ∈ P since M [0, 4, 8] ∈ N (Theorem 5.2), M [1, 4, 8] ∈ N (case 1.4),

M [2, 4, 8] ∈ N (case 2.4), M [1, 3, 8] ∈ N (case 1.3), M [2, 3, 8] ∈ N (case 2.3),

M [3, 3, 8] ∈ N (case 3.3), M [3, 4, 5] ∈ N , M [3, 4, 6] ∈ N , and M [3, 4, 7] ∈ N
(induction).

We have the base cases. We now consider the general case on larger stacks.

• M [3, 4, 4k+1] andM [3, 4, 4k+2] andM [3, 4, 4k+3] are all inN sinceM [3, 4, 4k] ∈
P (induction) is an option.

• M [3, 4, 4k] is in P since the only options are M [0, 4, 4k] ∈ N (Theorem 5.2),

M [1, 4, 4k] ∈ N (case 1.4), M [2, 4, 4k] ∈ N (case 2.4), M [1, 3, 4k] ∈ N (case

1.3), M [2, 3, 4k] ∈ N (case 2.3), M [3, 3, 4k] ∈ N (case 3.3), M [3, 4, 4k−3] ∈ N ,

M [3, 4, 4k − 2] ∈ N , and M [3, 4, 4k − 1] ∈ N (induction).

Case 3.3: � = 3 and m = 5

• M [3, 5, 4k] and M [3, 5, 4k + 2] are in N since M [1, 5, 4k] ∈ P (case 1.5), and

M [1, 5, 4k + 2] ∈ P (case 1.5) are options, respectively.

• M [3, 5, 4k + 1] ∈ N since M [2, 5, 4k + 1] ∈ P (case 2.5) is an option.

• M [3, 5, 4k + 3] ∈ N since M [3, 3, 4k + 3] ∈ P (case 3.3) is an option.

Case 3.4: � = 3 and m = 6

• M [3, 6, 4k+1] and M [3, 6, 4k+3] are in N since M [1, 6, 4k+1] ∈ P (case 1.5),

and M [1, 6, 4k + 3] ∈ P (case 1.5) are options, respectively.

• M [3, 6, 4k] ∈ N since M [2, 6, 4k] ∈ P (case 2.5) is an option.
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• M [3, 6, 4k+2] ∈ P since the only options areM [0, 6, 4k+2] ∈ N (Theorem 5.2),

M [1, 6, 4k+2] ∈ N (case 1.5), M [2, 6, 4k+2] ∈ N (case 2.5), M [3, 3, 4k+2] ∈ N
(case 3.3), M [3, 4, 4k + 2] ∈ N (case 3.4), M [3, 5, 4k + 2] ∈ N (case 3.5),

M [3, 6, 4k − 1] ∈ N (induction), M [3, 6, 4k] ∈ N (induction), and M [3, 6, 4k +

1] ∈ N (induction).

Case 3.5: � = 3 and m = 7

• M [3, 7, 4k] and M [3, 7, 4k + 2] are in N since M [1, 7, 4k] ∈ P (case 1.5), and

M [1, 7, 4k + 2] ∈ P (case 1.5) are options, respectively.

• M [3, 7, 4k + 3] ∈ N since M [2, 7, 4k + 3] ∈ P (case 2.5) is an option.

• M [3, 7, 4k+1] ∈ P since the only options areM [0, 7, 4k+1] ∈ N (Theorem 5.2),

M [1, 7, 4k + 1] ∈ N (case 1.5), M [2, 7, 4k + 1] ∈ N (case 2.5), M [3, 4, 4k +

1] ∈ N (case 3.4), M [3, 5, 4k + 1] ∈ N (case 3.5), M [3, 6, 4k + 1] ∈ N (case

3.6), M [3, 7, 4k − 2] ∈ N (induction), M [3, 7, 4k − 1] ∈ N (induction), and

M [3, 7, 4k] ∈ N (induction).

Case 3.6: � = 3 and m > 7

• If m+n = 4k+3 or m+n = 4k+1, then M [3,m, n] ∈ N since M [1,m, n] ∈ P
(case 1.5) is an option.

• If m + n = 4k + 2, then M [3,m, n] ∈ N since M [2,m, n] ∈ P (case 2.5) is an

option.

• If m + n = 4k, then M [3,m, n] ∈ P since the only options are M [0,m, n] ∈ N
(Theorem 5.2), M [1,m, n] ∈ N (case 1.5), M [2,m, n] ∈ N (case 2.5), M [3,m−
3, n] ∈ N (induction), M [3,m − 2, n] ∈ N (induction), M [3,m − 1, n] ∈ N
(induction), M [3,m, n − 3] ∈ N (induction), M [3,m, n − 2] ∈ N (induction),

and M [3,m, n− 1] ∈ N (induction).

So, we conclude that if m > 5, M [3,m, n] ∈ P iff m + n ≡ 0 (mod 4). We have now

covered all cases, and the proof is complete.

Theorem 5.4. Suppose minnie is being played on three stacks of sizes 4, m, and n

with 6 ≤ m ≤ n. Then, this game is in N .
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Proof. In Theorem 5.3, we showed that for m and n greater than 5, M [1,m, n] ∈ P
if and only if m + n is odd, M [2,m, n] ∈ P if and only if m + n = 4k + 2, and

M [3,m, n] ∈ P if and only if m + n = 4k. So, M [4,m, n] ∈ N for m and n greater

than 5.

Question 5.5. Few board-states are not covered by one of the previous two theorems.

In particular, we ask: What are the P positions when 4 ≤ � ≤ 5?

Conjecture 5.6. Suppose minnie is being played on k stacks, the smallest of which

having greater than 3 chips and the second smallest having greater than 5 chips. Then,

Player One has a winning strategy.

5.3 MINE

Let the rules of mine be the same as minnie except that at no point can any two

stacks have the same number of chips. We denote a game of mine on n stacks by

Mn[a1, a2, . . . , an]. We solve mine for up to 3 stacks and conclude with a strategy for

Player One on any game on 3 stacks with every stack containing at least 5 chips.

5.4 MINE on 1 and 2 stacks

We break our results into separate sections due to the game on 3 stacks requiring a

lengthy proof. Note that mine on one stack is identical to minnie on 1 stack.

Lemma 5.7. Let a be a positive integer then G (Mn[a]) = a.

Proof. This game is the same as 1 stack nim.

Theorem 5.8. Suppose Mine is being played on two stacks of sizes a, b, a < b. Then

the P-positions are Mn[1, 2k],Mn[2, 4j + 1],Mn[3, 4i+ 3] for all k, j, i > 0.

Proof. We consider the cases in order.

Case 1: a = 1

• Mn[1, 2] ∈ P since the only option is Mn[0, 2] ∈ N by Theorem 5.7.

We have the base cases. We now consider the general case on larger stacks.

• Mn[1, 2k + 1] ∈ N since Mn[1, 2k] ∈ P (induction), is an option.
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• Mn[1, 2k] ∈ P since the only options are Mn[0, 2k] ∈ N (Theorem 5.7) and

Mn[1, 2k − 1] ∈ N (induction).

Case 2: a = 2

• Mn[2, 3] ∈ N since Mn[1, 2] ∈ P (Case 1), is an option.

We have the base case. We now consider the general case on larger stacks.

• Mn[2, 4k] andMn[2, 4k+2] are inN sinceMn[1, 4k] ∈ P (Case 1), andMn[1, 4k+

2] ∈ P (Case 1), are options, respectively.

• Mn[2, 4k + 1] ∈ P since the only options are Mn[0, 4k + 1] ∈ N (Theorem 5.7),

Mn[1, 4k+ 1] ∈ N (Case 1), Mn[2, 4k− 1] ∈ N (induction), and Mn[2, 4k] ∈ N
(induction).

• Mn[2, 4k + 3] ∈ N since Mn[2, 4k + 1] ∈ P (induction) is an option.

Case 3: a = 3

• Mn[3, 4k] andMn[3, 4k+2] are inN sinceMn[1, 4k] ∈ P (Case 1), andMn[1, 4k+

2] ∈ P (Case 1) are options, respectively.

• Mn[3, 4k + 1] ∈ N since Mn[2, 4k + 1] ∈ P (Case 2) is an option.

• Mn[3, 4k + 3] ∈ P since the only options are Mn[0, 4k + 3] ∈ N (Theorem 5.7),

Mn[1, 4k + 3] ∈ N (Case 1), Mn[2, 4k + 3] ∈ N (Case 2), Mn[3, 4k] ∈ N
(induction), Mn[3, 4k+1] ∈ N (induction), and Mn[3, 4k+2] ∈ N (induction),

all of which are in N .

Case 4: a > 3

We now inspect Mine played on two stacks of sizes m and n with n ≥ m ≥ 4.

So, Mn[1, n], Mn[2, n], and Mn[3, n] are all options. If n = 4k or n = 4k + 2, then

[1, n] ∈ P (Case 1). If n = 4k + 1, then [2, n] ∈ P (Case 2). If n = 4k + 3, then

[3, n] ∈ P (Case 3). So, no matter what n is, there exists an option in P . Thus,

Mn[m,n] ∈ N for all 4 ≤ m ≤ n.
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5.5 MINE on 3 stacks

We now look at mine on 3 stacks. Since this problem is solved through such a lengthy

process, we do not solve this problem in a single theorem. We instead break it into

smaller theorems and cases and reference them throughout. We conclude this section

with a strategy for Player One when playing on 3 stacks of sizes greater than 4.

Theorem 5.9. Suppose Mine is being played on three stacks of sizes 1, 2, c with c > 4.

Then, Mn[1, 2, c] ∈ P if and only if c ≡ 0 (mod 2).

Proof. We consider the cases in order.

• Mn[1, 2, 3] ∈ P since Mn[0, 2, 3] ∈ N (Theorem 5.8) is the only option.

• Mn[1, 2, 4] ∈ N since Mn[1, 2, 3] ∈ P is an option.

• Mn[1, 2, 5] ∈ N since Mn[0, 2, 5] ∈ P (Theorem 5.8) is an option.

• Mn[1, 2, 2k] ∈ P since the only options are Mn[0, 2, 2k] ∈ N (Theorem 5.8) and

Mn[1, 2, 2k − 1] ∈ N (induction).

• Mn[1, 2, 2k + 1] ∈ N since Mn[1, 2, 2k] ∈ P (induction) is an option.

Theorem 5.10. Suppose Mine is being played on three stacks of sizes 1, 3, c with

c > 5. Then, Mn[1, 3, c] ∈ P if and only if c ≡ 1 (mod 4).

Proof. We consider the cases in order.

• Mn[1, 3, 4] ∈ P since the only options are Mn[0, 3, 4] ∈ N (Theorem 5.8) and

Mn[1, 2, 4] ∈ N (by the proof of Theorem 5.9).

• Mn[1, 3, 5] ∈ N since Mn[1, 3, 4] ∈ P is an option.

• Mn[1, 3, 4k + 2] ∈ N since Mn[1, 2, 4k + 2] ∈ P (Theorem 5.9) is an option.

• Mn[1, 3, 4k + 3] ∈ N since Mn[0, 3, 4k + 3] ∈ P (Theorem 5.8) is an option.

• Mn[1, 3, 4k] ∈ N since Mn[1, 2, 4k] ∈ P (Theorem 5.9) is an option.

• Mn[1, 3, 4k + 1] ∈ P since the only options are Mn[0, 3, 4k + 1] ∈ N (Theo-

rem 5.8), Mn[1, 2, 4k+1] ∈ N (Theorem 5.9), and Mn[1, 3, 4k] ∈ N (induction).



48

Theorem 5.11. Suppose Mine is being played on three stacks of sizes 1, b, c with

3 < b < c. Then, Mn[1, b, c] ∈ P if and only if

Mn[1, b, c] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c = b+ 1

c = b+ 3

c > b+ 4 and b+ c ≡ 0 (mod 2)

Proof. We consider the cases in order.

• Mn[1, 4, 5] ∈ P since the only options are Mn[0, 4, 5] ∈ N (Theorem 5.8), and

Mn[1, 3, 5] ∈ N (by the proof of Theorem 5.10).

• Mn[1, 4, 6] ∈ N since Mn[1, 4, 5] ∈ P is an option.

• Mn[1, 4, 7] ∈ P since the only options are Mn[0, 4, 7] ∈ N (Theorem 5.8),

Mn[1, 3, 7] ∈ N (Theorem 5.10), and Mn[1, 4, 6] ∈ N .

• Mn[1, 4, 8] ∈ N since Mn[1, 4, 7] ∈ P is an option.

• Mn[1, 4, 4k + 1] ∈ N since Mn[1, 3, 4k + 1] ∈ P (Theorem 5.10) is an option.

• Mn[1, 4, 4k + 2] ∈ P since the only options are Mn[0, 4, 4k + 2] ∈ N (The-

orem 5.8), Mn[1, 3, 4k + 2] ∈ N (Theorem 5.10), and Mn[1, 4, 4k + 1] ∈ N
(induction).

• Mn[1, 4, 4k + 3] ∈ N since Mn[1, 4, 4k + 2] ∈ P (induction) is an option.

• Mn[1, 4, 4k] ∈ P since the only options are Mn[0, 4, 4k] ∈ N (Theorem 5.8),

Mn[1, 3, 4k] ∈ N (Theorem 5.10), and Mn[1, 4, 4k − 1] ∈ N (induction).

• Mn[1, j, j +1] ∈ P since the only options are Mn[0, j, j +1] ∈ N (Theorem 5.8)

and Mn[1, j − 1, j + 1] ∈ N (induction).

• Mn[1, j, j + 2] ∈ N since Mn[1, j, j + 1] ∈ P (induction) is an option.

• Mn[1, j, j+3] ∈ P since the only options are Mn[0, j, j+3] ∈ N (Theorem 5.8),

Mn[1, j − 1, j + 3] ∈ N (induction), or Mn[1, j, j + 2] ∈ N (induction).

• Mn[1, j, j + 4] ∈ N since Mn[1, j, j + 3] ∈ P (induction) is an option.

• Mn[1, j, j + 5] ∈ N since Mn[1, j − 1, j + 5] ∈ P (induction) is an option.
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• If j + i = 2k, then Mn[1, j, i] ∈ P since the only options are Mn[0, j, i] ∈ N
(Theorem 5.8), Mn[1, j − 1, i] ∈ N (induction), Mn[1, j, i− 1] ∈ N (induction).

• If j + i = 2k+1, then Mn[1, j, i] ∈ N since Mn[1, j, i− 1] ∈ P (induction) is an

option.

Theorem 5.12. Suppose Mine is being played on three stacks of sizes 2, 3, c with

c > 3. Then, Mn[2, 3, c] ∈ P if and only if c = 5.

Proof. We consider the cases in order.

• Mn[2, 3, 4] ∈ N since Mn[1, 3, 4] ∈ P (by the proof of Theorem 5.10) is an

option.

• Mn[2, 3, 5] ∈ P since the only options are Mn[0, 3, 5] ∈ N (Theorem 5.8),

Mn[1, 3, 5] ∈ N (by the proof of Theorem 5.10), Mn[1, 2, 5] ∈ N (Theorem 5.9),

and Mn[2, 3, 4] ∈ N .

• Mn[2, 3, 4k + 2] ∈ N since Mn[1, 2, 4k + 2] ∈ P (Theorem 5.9) is an option.

• Mn[2, 3, 4k + 3] ∈ N since Mn[0, 3, 4k + 3] ∈ P (Theorem 5.8) is an option.

• Mn[2, 3, 4k] ∈ N since Mn[1, 2, 4k] ∈ P (Theorem 5.9) is an option.

• Mn[2, 3, 4k + 1] ∈ N since Mn[1, 3, 4k + 1] ∈ P (Theorem 5.10) is an option.

Theorem 5.13. Suppose Mine is being played on three stacks of sizes 2, b, c with

3 < b < c. Then, Mn[2, b, c] ∈ P if and only if

M(2, b, c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c = b+ 2

c > b+ 2 and b ≡ 0 (mod 2) and b+ c ≡ 1 (mod 4)

c > b+ 2 and b ≡ 1 (mod 2) and b+ c ≡ 3 (mod 4).

Proof. We consider the cases in order.

• Mn[2, 4, 5] ∈ N since Mn[1, 4, 5] ∈ P (Theorem 5.11) is an option.
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• Mn[2, 4, 6] ∈ P since the only options are Mn[0, 4, 6] ∈ N (Theorem 5.8),

Mn[1, 4, 6] ∈ N (Theorem 5.11),Mn[2, 3, 6] ∈ N (Theorem 5.12), andMn[2, 4, 5] ∈
N .

• Mn[2, 4, 7] ∈ N since Mn[1, 4, 7] ∈ P (Theorem 5.11) is an option.

We have the base cases. We now consider the general case on larger stacks.

• Mn[2, 4, 4k] ∈ N since Mn[1, 4, 4k] ∈ P (Theorem 5.11) is an option.

• Mn[2, 4, 4k + 1] ∈ P since the only options are Mn[0, 4, 4k + 1] ∈ N (Theo-

rem 5.8), Mn[1, 4, 4k + 1] ∈ N (Theorem 5.11), Mn[2, 3, 4k + 1] ∈ N (Theo-

rem 5.12), Mn[2, 4, 4k − 1] ∈ N (induction), and Mn[2, 4, 4k] ∈ N (induction).

• Mn[2, 4, 4k + 2] ∈ N since Mn[1, 4, 4k + 2] ∈ P (Theorem 5.11) is an option.

• Mn[2, 4, 4k + 3] ∈ N since Mn[2, 4, 4k + 1] ∈ P (induction) is an option.

We have the base case. We now consider the general case on larger stacks.

• Mn[2, j, j + 1] ∈ N since Mn[1, j, j + 1] ∈ P (Theorem 5.11) is an option.

• Mn[2, j, j+2] ∈ P since the only options are Mn[0, j, j+2] ∈ N (Theorem 5.8),

Mn[1, j, j + 2] ∈ N (Theorem 5.11), Mn[2, j − 2, j + 2] ∈ N (This is true since

Mn[2, j − 2, j] ∈ P by induction and Theorem 5.12), Mn[2, j − 1, j + 2] ∈ N
(This is true since Mn[2, j− 1, j+1] ∈ P by induction), and Mn[2, j, j+1] ∈ N
(induction).

• Mn[2, j, j + 3] ∈ N since Mn[2, j, j + 2] ∈ P (induction) is an option.

• Mn[2, j, j + 4] ∈ N since Mn[2, j, j + 2] ∈ P (induction) is an option.

• If j = 2k + 1 and i + j = 4� + 1, then Mn[2, j, i] ∈ N since Mn[2, j, i − 2] ∈ P
(induction) is an option.

• If j = 2k + 1 and i + j = 4� + 2, then Mn[2, j, i] ∈ N since Mn[1, j, i] ∈ P
(Theorem 5.11) is an option.

• If j = 2k + 1 and i+ j = 4�+ 3, then Mn[2, j, i] ∈ P since the only options are

Mn[0, j, i] ∈ N (Theorem 5.8), Mn[1, j, i] ∈ N (Theorem 5.11), Mn[2, j− 2, i] ∈
N (induction), Mn[2, j − 1, i] ∈ N (induction), Mn[2, j, i− 2] ∈ N (induction),

and Mn[2, j, i− 2] ∈ N (induction).
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• If j = 2k + 1 and i + j = 4�, then Mn[2, j, i] ∈ N since Mn[1, j, i] ∈ P (Theo-

rem 5.11) is an option.

• If j = 2k and i + j = 4� + 1, then Mn[2, j, i] ∈ P since the only options are

Mn[0, j, i] ∈ N (Theorem 5.8), Mn[1, j, i] ∈ N (Theorem 5.11), Mn[2, j− 2, i] ∈
N (induction), Mn[2, j − 1, i] ∈ N (induction), Mn[2, j, i− 2] ∈ N (induction),

and Mn[2, j, i− 1] ∈ N (induction).

• If j = 2k and i + j = 4� + 2, then Mn[2, j, i] ∈ N since Mn[1, j, i] ∈ P (Theo-

rem 5.11) is an option.

• If j = 2k and i + j = 4� + 3, then Mn[2, j, i] ∈ N since Mn[2, j, i − 2] ∈ P
(induction) is an option.

• If j = 2k and i+j = 4�, thenMn[2, j, i] ∈ N sinceMn[1, j, i] ∈ P (Theorem 5.11)

is an option.

Theorem 5.14. Suppose Mine is being played on three stacks of sizes 3, b, c with

3 < b < c. Then, Mn[3, b, c] ∈ P if and only if

M(3, b, c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c = b+ 4

c 
= b+ 3 and c 
= b+ 7 and b ≡ 1 (mod 2) and b+ c ≡ 1 (mod 4)

c 
= b+ 3 and c 
= b+ 7 and b ≡ 0 (mod 2) and b+ c ≡ 3 (mod 4)

Proof. We consider the cases in order.

• Mn[3, 4, 5] ∈ N since Mn[1, 4, 5] ∈ P (Theorem 5.11) is an option.

• Mn[3, 4, 6] ∈ N since Mn[2, 4, 6] ∈ P (Theorem 5.13) is an option.

• Mn[3, 4, 7] ∈ N since Mn[1, 4, 7] ∈ P (Theorem 5.11) is an option.

• Mn[3, 4, 8] ∈ P since the only options are

Mn[0, 4, 8] ∈ N (Theorem 5.8), Mn[1, 4, 8] ∈ N (Theorem 5.11),

Mn[2, 4, 8] ∈ N (Theorem 5.13), Mn[1, 3, 8] ∈ N (Theorem 5.10),

Mn[2, 3, 8] ∈ N (Theorem 5.12), Mn[3, 4, 5] ∈ N ,

Mn[3, 4, 6] ∈ N , and Mn[3, 4, 7] ∈ N .
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• Mn[3, 4, 9] ∈ N since Mn[3, 4, 8] ∈ P is an option.

• Mn[3, 4, 10] ∈ N since Mn[3, 4, 8] ∈ P is an option.

• Mn[3, 4, 11] ∈ N since Mn[3, 4, 8] ∈ P is an option.

We have the base cases. We now consider the general case on larger stacks.

• Mn[3, 4, 4k] ∈ N since Mn[1, 4, 4k] ∈ P (Theorem 5.11) is an option.

• Mn[3, 4, 4k + 1] ∈ N since Mn[1, 3, 4k + 1] ∈ P (Theorem 5.10) is an option.

• Mn[3, 4, 4k + 2] ∈ N since Mn[1, 4, 4k + 2] ∈ P (Theorem 5.11) is an option.

• Mn[3, 4, 4k + 3] ∈ P since the only options are Mn[0, 4, 4k + 3] ∈ N (Theo-

rem 5.8), Mn[1, 4, 4k + 3] ∈ N (Theorem 5.11), Mn[2, 4, 4k + 3] ∈ N (Theo-

rem 5.13), Mn[1, 3, 4k + 3] ∈ N (Theorem 5.10), Mn[2, 3, 4k + 3] ∈ N (Theo-

rem 5.12), Mn[3, 4, 4k] ∈ N (induction), Mn[3, 4, 4k + 1] ∈ N (induction), and

Mn[3, 4, 4k + 2] ∈ N (induction).

• Mn[3, j, j + 1] ∈ N since Mn[1, j, j + 1] ∈ P (Theorem 5.11) is an option.

• Mn[3, j, j + 2] ∈ N since Mn[2, j, j + 2] ∈ P (Theorem 5.13) is an option.

• Mn[3, j, j + 3] ∈ N since Mn[1, j, j + 3] ∈ P (Theorem 5.11) is an option.

• Mn[3, j, j+4] ∈ P since the only options are Mn[0, j, j+4] ∈ N (Theorem 5.8),

Mn[1, j, j+4] ∈ N (Theorem 5.11),Mn[2, j, j+4] ∈ N (Theorem 5.13),Mn[3, j−
3, j + 4] ∈ N (induction), Mn[3, j − 2, j + 4] ∈ N (induction), Mn[3, j − 1, j +

4] ∈ N (This is true since Mn[2, j − 1, j + 4] ∈ P by Theorem 5.13 and by

induction), Mn[3, j, j+1] ∈ N (induction), Mn[3, j, j+2] ∈ N (induction), and

Mn[3, j, j + 3] ∈ N (induction).

• Mn[3, j, j + 5] ∈ N since Mn[3, j, j + 4] ∈ P (induction) is an option.

• Mn[3, j, j + 6] ∈ N since Mn[3, j, j + 4] ∈ P (induction) is an option.

• Mn[3, j, j + 7] ∈ N since Mn[3, j, j + 4] ∈ P (induction) is an option.

We have the base cases. We now consider the general case on larger stacks.

• If j = 2k and i+j = 4�, thenMn[3, j, i] ∈ N sinceMn[1, j, i] ∈ P (Theorem 5.11)

is an option.
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• If j = 2k and i + j = 4� + 1, then Mn[3, j, i] ∈ N since Mn[2, j, i] ∈ P (Theo-

rem 5.13) is an option.

• If j = 2k and i + j = 4� + 2, then Mn[3, j, i] ∈ N since Mn[1, j, i] ∈ P (Theo-

rem 5.11) is an option.

• If j = 2k and i + j = 4� + 3, then Mn[3, j, i] ∈ P since the only options are

Mn[0, j, i] ∈ N (Theorem 5.8), Mn[1, j, i] ∈ N (Theorem 5.11), Mn[2, j, i] ∈ N
(Theorem 5.13), Mn[3, j−3, i] ∈ N (induction), Mn[3, j−2, i] ∈ N (induction),

Mn[3, j−1, i] ∈ N (induction),Mn[3, j, i−3] ∈ N (induction),Mn[3, j, i−2] ∈ N
(induction), and Mn[3, j, i− 1] ∈ N (induction).

• If j = 2k + 1 and i+ j = 4�+ 1, then Mn[3, j, i] ∈ P since the only options are

Mn[0, j, i] ∈ N (Theorem 5.8), Mn[1, j, i] ∈ N (Theorem 5.11), Mn[2, j, i] ∈ N
(Theorem 5.13), Mn[3, j−3, i] ∈ N (induction), Mn[3, j−2, i] ∈ N (induction),

Mn[3, j−1, i] ∈ N (induction),Mn[3, j, i−3] ∈ N (induction),Mn[3, j, i−2] ∈ N
(induction), and Mn[3, j, i− 1] ∈ N (induction).

• If j = 2k + 1 and i + j = 4� + 2, then Mn[3, j, i] ∈ N since Mn[1, j, i] ∈ P
(Theorem 5.11) is an option.

• If j = 2k + 1 and i + j = 4� + 3, then Mn[3, j, i] ∈ N since Mn[2, j, i] ∈ P
(Theorem 5.13) is an option.

• If j = 2k + 1 and i + j = 4�, then Mn[3, j, i] ∈ N since Mn[1, j, i] ∈ P (Theo-

rem 5.11) is an option.

Theorem 5.15. Suppose Mine is being played on three stacks of sizes 4, b, c with

4 < b < c. Then, Mn[4, b, c] ∈ P if and only if c = b+ 7 and b 
= 5 and b 
= 6.

Proof. We consider the cases in order.

• Mn[4, 5, 6] ∈ N since Mn[2, 4, 6] ∈ P (Theorem 5.13) is an option.

• Mn[4, 5, 7] ∈ N since Mn[1, 4, 7] ∈ P (Theorem 5.11) is an option.

• Mn[4, 5, 8] ∈ N since Mn[1, 5, 8] ∈ P (Theorem 5.11) is an option.

We have the base cases. We now consider the general case on larger stacks.
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• Mn[4, 5, 2k + 1] ∈ N since Mn[1, 5, 2k + 1] ∈ P (Theorem 5.11) is an option.

• Mn[4, 5, 2k] ∈ N since Mn[1, 4, 2k] ∈ P (Theorem 5.11) is an option.

• Mn[4, 6, 7] ∈ N since Mn[1, 6, 7] ∈ P (Theorem 5.11) is an option.

• Mn[4, 6, 8] ∈ N since Mn[3, 4, 8] ∈ P (Theorem 5.14 is an option.

We have the base cases. We now ocnsider the general case on larger stacks.

• Mn[4, 6, 4k + 1] ∈ N since Mn[2, 4, 4k + 1] ∈ P (Theorem 5.13) is an option.

• Mn[4, 6, 4k + 2] ∈ N since Mn[1, 6, 4k + 2] ∈ P (Theorem 5.11) is an option.

• Mn[4, 6, 4k + 3] ∈ N since Mn[2, 6, 4k + 3] ∈ P (Theorem 5.13) is an option.

• Mn[4, 6, 4k] ∈ N since Mn[1, 6, 4k] ∈ P (Theorem 5.11) is an option.

We have the base cases. We now consider the general case on larger stacks.

• Mn[4, j, j + 1] ∈ N since Mn[1, j, j + 1] ∈ P (Theorem 5.11) is an option.

• Mn[4, j, j + 2] ∈ N since Mn[2, j, j + 2] ∈ P (Theorem 5.13) is an option.

• Mn[4, j, j + 3] ∈ N since Mn[1, j, j + 3] ∈ P (Theorem 5.11) is an option.

• Mn[4, j, j + 4] ∈ N since Mn[3, j, j + 4] ∈ P (Theorem 5.14) is an option.

• Mn[4, j, j + 5] ∈ N since Mn[2, j, j + 5] ∈ P (Theorem 5.13) is an option.

• Mn[4, j, j + 6] ∈ N since Mn[1, j, j + 6] ∈ P (Theorem 5.11) is an option.

• Mn[4, j, j + 7] ∈ P since the only options are Mn[0, j, j + 7] ∈ N (Theo-

rem 5.8), Mn[1, j, j + 7] ∈ N (Theorem 5.11), Mn[2, j, j + 7] ∈ N (This

true since Mn[2, j, j + 5] ∈ P by Theorem 5.13), Mn[3, j, j + 7] ∈ N (The-

orem 5.14), Mn[4, j − 4, j + 7] ∈ N (induction), Mn[4, j − 3, j + 7] ∈ N
(induction), Mn[4, j − 2, j + 7] ∈ N (induction),Mn[4, j − 1, j + 7] ∈ N (in-

duction), Mn[4, j, j + 3] ∈ N (induction), Mn[4, j, j + 4] ∈ N (induction),

Mn[4, j, j + 5] ∈ N (induction), and Mn[4, j, j + 6] ∈ N (induction).

• If i = j + 4k, then Mn[4, j, i] ∈ N since Mn[1, j, i] ∈ P (Theorem 5.11) is an

option.
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• If i = j + 4k + 1, then Mn[4, j, i] ∈ N since Mn[2, j, i] ∈ P (Theorem 5.13) is

an option.

• If i = j + 4k + 2, then Mn[4, j, i] ∈ N since Mn[1, j, i] ∈ P (Theorem 5.11) is

an option.

• If i = j + 4k + 3, then Mn[4, j, i] ∈ N since Mn[3, j, i] ∈ P (Theorem 5.14) is

an option.

So, we get the following winning strategy for Player One in Mn[a, b, c] with 4 <

a < b < c:

If c = b+ 1 → Mn[1, b, c]

If c = b+ 2 → Mn[2, b, c]

If c = b+ 3 → Mn[1, b, c]

If c = b+ 4 → Mn[3, b, c]

If c = b+ 5 → Mn[2, b, c]

If c = b+ 6 → Mn[1, b, c]

If c = b+ 7 → Mn[4, b, c]

else if b ≡ 1 (mod 2) and c ≡ 1 (mod 2) → Mn[1, b, c]

else if b ≡ 0 (mod 2) and c ≡ 0 (mod 2) → Mn[1, b, c]

else if c = b+m,m ≡ 1 (mod 4) → Mn[2, b, c]

else if c = b+m,m ≡ 3 (mod 4) → Mn[3, b, c].



Chapter 6

Conclusion and Open Questions

We have mostly solved the outcomes of minnie for up to 3 stacks. Beyond completely

solving the game for 3 stacks, the most obvious next step is to expand that result to

n stacks. This seems difficult. We have conjectured that any game with a minimum

stack value of at least 4 and a second least stack value of at least 6 is in N . So,

we have an amount of confidence that any game of that form has an option in P .

However, we do not yet know where all of those options are. What we have noticed

is that the P-positions often follow a simple pattern (similar to the one used to solve

minnie on 3 stacks) except for games with multiple stacks of value 5. Games of this

form seem to follow a pattern all their own and have evaded our grasp to this point.

Also, we did not look into misère minnie or minnie on graphs. We have no reason to

believe those results are significantly more difficult that those of minnie and wyg,

so these may be some of the more reasonable open problems that arise from this

thesis. The best way to define minnie on graphs may be as a game in which each

turn the active player chooses a vertex and removes up to the minimum stack size in

that vertex’s closed neighbourhood from that vertex. We call this game mig and we

note that any game played with every vertex starting with 1 chip is trivial, with the

winner being decided through parity.

Question 6.1. What are the P positions for minnie on n stacks for n ≥ 4?

Conjecture 6.2. Suppose minnie is played on n stacks of sizes a1, a2, . . . , an with

a1 ≤ a2 ≤ · · · ≤ an, a1 ≥ 4, a2 ≥ 6. Then M [a1, a2, . . . , an] ∈ N .

Question 6.3. What graphs and board states are P positions in mig?

We have solved nimb, nimtb, winnie, and misère winnie for outcomes. So,

there are not any obvious open questions. However, it seems a reasonable next step

would be to find some results for these games when played on graphs, or, in the case

of winnie and misère winnie, one could look into developing a rule set that can

accommodate more than 2 stacks. winnie’s expansion into n stacks is not as obvious

as many other games. While it seems obvious to maintain the option of removing

some number of chips from a single stack, the option of removing chips from both
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stacks may have different interpretations on n stacks. Perhaps this rule becomes that

the active player may remove chips from exactly two stacks, or that the active player

may remove chips from up to n stacks, or that the active player may remove chips

form exactly n stacks. We have not looked into any of the variants and thus, do not

know which, if any, will yield simple or intuitive results.

To say a little more about wyg in particular, there is still much work to be

done. We looked at many obvious graph classes and we have some solutions, but

some seemingly simple problems still linger. In particular, Wdg(Kn) and the general

statement from Theorem 4.21, Theorem 4.22, Theorem 4.23, and Theorem 4.24. If

Gn represents a graph of two stars connected by a path of length n, we conjecture

that W1(G) does not continue the pattern that we showed of always being in N .

Question 6.4. What are the P positions of Wdg(Kn)?

Here, we quickly introduce another way of playing wynnie on graphs. We call

this game wygthoff due to its resemblance to the game wythoff on stacks. The

rules are equivalent to those of wyg with the exception that after the edge is chosen,

it is legal to remove up to all of the chips from the vertex with the larger stack. So, if

wygthoff were being played and an edge was chosen with vertices a and b having

stacks of sizes 2 and 3, respectively, the legal moves are to remove up to 2 chips from

a, up to 3 chips from b, or up to 2 chips from both.

Also, although we did not cover them in this thesis, susen, jennifer, and

wygthoff are still unsolved for most values.

Question 6.5. What are the P positions for susen on n stacks, n ≥ 4?

Question 6.6. What are the P positions for jennifer on n stacks, n ≥ 3?

Question 6.7. What are the P positions for wygthoff played on K3? What are

the P positions for wygthoff played on a disjunctive sum of K3’s? What are the

P positions for wygthoff played on Kn?
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