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Abstract

The human microbiome plays an important role in human health and disease. Identi-

fication of factors that affect the microbiome composition will eventually allow mod-

ulation of the microbiome for therapeutic purposes. The aim of this study is to find

a suitable statistics distribution model for the set of microbial operational taxonomic

units (OTUs), which are used to categorize bacteria based on sequence similarity,

and to use these models to analyze the supra-gingival and sub-gingival plaque micro-

biome. We model the OTU data with a Negative Binomial (NB) distribution and fit

the maximum-likelihood estimates for the NB model parameters. We then develop

a gamma-prior distribution to model the underlying composition of each OTU. We

use the mean of the calculated posterior distribution as an estimator of the underly-

ing composition of each OTU, analyzing oral cavity microbiome communities based

on the posterior means. Likelihood ratio tests identified NB models for some OTUs

that differed significantly between sub-gingival plaques and supra-gingival plaques.

We also developed a Näıve Bayes Discriminant Analysis (NBDA) approach based

on the calculated NB distributions, and performed LASSO regression on the simple

proportions and the estimated underlying compositions. The NBDA and LASSO

approaches identified OTUs that play a critical role in classification. By replacing

simple proportions with distribution models, we explore the underlying composition

of OTUs better without losing too much discriminant information.
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Chapter 1

Introduction

1.1 Background

The human microbiome plays an important role in providing insights into disease

mechanism. Identification of factors that affect the microbiome composition will al-

low us to modulate the microbiome composition for therapeutical purposes. There are

more than 600 prevalent taxa at the species level in human oral cavity [1]. Bacterial

communities have significant differences between healthy and diseased oral cavities.

As they can cause or prevent infections, this may have a significant impact on fully

understanding human general health.The taxonomic composition of a microbial com-

munity can provide clues to better understand its structure and ecology [2].

It has been a major concern in environmental microbiology to assess the microbial

diversity and distribution [3]. But it’s difficult to test the association of microbiome

composition with potential environmental factors using OTU abundances. Directly,

because OTU data are usually of high dimensionality, non-normality and with phylo-

genetic structure among the OTUs. Using simple proportions and rarefying of counts

for normalization became the most common approaches [4], it’s clear that both of

these approaches are inappropriate for detection of differentially abundant species.

The main problem of current practices in the normalization of microbiome count

data is either incorrect or inefficient. Count data arise in numerous biological ap-

plications and can often be modelled by a Poisson distribution. However, Poisson

distribution has the restriction that the mean and variance are the same which is

usually not true in most of the applications. Most often, the observed variation is

significantly greater than the mean and an extension to the Poisson model is more

appropriate [5]. A popular alternative for modelling count data when the variance is

larger than the mean is the Gamma-Poisson model, in which the Poisson rate param-

eter is a Gamma random variable with fixed coefficient of variation, also known as

the Negative Binomial (NB) model [6]. Our research starts from modelling the OTU

1
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count data by NB model.

1.2 OTU Counts Data from Human Oral Cavity

1.2.1 Human Oral Cavity

The human oral cavity plays host to many complex microbial communities. There

are more than 600 prevalent taxa at the species level. Those bacterial taxa pos-

sess relevant quantitative (microbial richness) and qualitative (microbial community

composition) differences between individuals. Bacterial communities have significant

differences between healthy and diseased oral cavities [7].

Plaque is composed of bacteria and a matrix that adheres to the outer tooth surface.

Supra-gingival plaque is bacteria adherent above the gingiva, whereas bacteria below

the gingiva is called sub-gingival plaque. Plaque constantly forms on our teeth when

we eat foods or drink beverages with sugars or starches, the bacteria release acids that

attack the tooth enamel [24]. The plaque is so sticky that it keeps the acids in contact

with our teeth, as a result the acids will break down the enamel and lead to tooth

decay. Plaque buildup can also lead to gum disease, the common one is gingivitis.

If it progresses, severe periodontal (gum) disease can develop. Bacterial plaque that

builds up on teeth and inflamed, allows the bacteria to destroy the underlying bone

supporting the teeth.

Bacteria and inflammation in the mouth do more than just threaten the dental

health, they are also linked to other problems, including heart attack and dementia,

and may well jeopardize our overall health. Scientists have identified several links

between poor oral health and other health problems [8]. As the distributions of

bacterial can cause or prevent infections, thus it may have a significant impact on

fully understanding human general health.

1.2.2 The Operational Taxonomic Units

The original definition of operational taxonomic unit (OTU) is a group of organisms

used to classify groups of closely related individuals based on their character states.

The term was introduced by Robert R. Sokal and Peter H. A. Sneath in the context

of Numerical taxonomy [9]. Nowadays, the term “OTU” generally refers to clusters
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of (uncultivable or unknown) microorganisms, grouped by DNA sequence similarity

of a specific taxonomic marker gene.

An OTU table is a form of the sequencing results that will finally be really useful

to analyze in excel, visualize, etc. It is a table giving the count of the number of

sequences in each OTU, for each sample, and the taxonomy of that OTU. We focus

on the OTU table of gingival plaques. In this thesis, our data includes 301 samples

from sub-gingival plaque which contain 6782 OTUs, and 305 samples from supra-

gingival plaque which contain 5277 OTUs.

Sites Samples OTUs
Sub-gingival plaque 301 6782

Supra-gingival plaque 305 5277

Table 1.1: Details of human oral cavity gingival plaque samples with associated ab-
breviations.

1.3 Challenges and Contributions

Microbiome is important for maintaining human health, and when things go wrong

it will contribute to disease. Researchers show an increasing interest in human mi-

crobiome. But the OTU data from Human Microbiome Project present challenges

to ecological and statistical interpretation. In particular, the sequencing depth often

vary over several ranges of magnitude, and the data contains many 0’s. Also, since

the data always consist of hundreds or even thousands of variables but only a few

observations, which means p >> n (p is the number of variables and n is the number

of observations), therefore we can’t apply classical models to this kind of data because

of high variance and overfitting. Here we explore several statistics methods to address

the OTU data without losing too much important information.

In this thesis, our contributions are: first, model the OTU data with Negative Bino-

mial (NB) model and fit the MLE’s for NB model parameters. Then we perform the

empirical Bayesian inference for the underlying composition of OTUs in a microbiome

sample, try to visualize overall differences in bacterial composition between sample

groups through the PCA plots. After that, we also perform the Likelihood Ratio

(LR) test for differential distributions analysis, which tests the significant differences
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in the distributions of OTUs between sample groups. After the LR test, we find

those OTUs with strong predictive power and develop the Naive Bayes Discriminant

Analysis (NBDA) based on the NB distributions of those OTUs. Finally we apply

LASSO to several transformation of the estimated underlying compositions of OTUs

and compare the NBDA results with the prediction accuracy of LASSO.

1.4 Thesis Outline

The remainder of this thesis is organized into 6 chapters. NB model checking and

parameter estimation is given in Chapter 2, which includes the MLE of NB model

fitting, checking the effects of MLE fitting and empirical distribution for OTU data.

Chapter 3 introduces the empirical Bayesian inference for the underlying composition

of OTUs. Log-likelihood ratio test are used to find those OTUs differently distributed

between sub-gingival plaques and supra-gingival in Chapter 4. Mathematical formu-

lation of the Näıve Bayes Discriminant Analysis Classifiers are given in Chapter 5.

Chapter 6 is the application of LASSO, using LASSO to find the important OTUs

to do classification; a comparison between the variable selection from LASSO with

the significantly differently distributed OTUs by the LR test also given in Chapter

6. The conclusion of this thesis is in Chapter 7, which summarizes the results we

achieved so far and gives ideas for future work.



Chapter 2

Modelling OTU Data with Negative Binomial Distribution

The 16S microbial data are in the format of the counts. Generally for each sample,

thousands of different OTU counts can result from the preprocessing of the sequence

data. However typically these counts are not directly comparable across different

samples. A sample with deeper sequencing effort naturally results in more OTU

species and more counts for the total number of OTUs. The common practice in

this field is to normalize the data by either rarefaction or by taking the proportion

of each OTU count out of the total count of the sample. Rarefaction is an ecological

approach that standardize the data obtained from samples with different sequencing

depth, and compare the OTU richness of the samples using this standardized plat-

form. The approach of rarefaction is to randomly sample the same number of OTUs

from each sample, and use this data to compare the communities at a given level of

sampling effort. The rarefaction is not a recommended practice because it throws

away a lot of data and make the analysis results less accurate [10]. The normalization

using proportion is better than rarefaction, but it is quite typical that the underlying

composition of OTUs can vary by orders of magnitude, which makes the comparisons

between simple proportions not valid, and the resulted proportions are heterogeneous.

Paul J. McMurdie and Susan Holmes [10] suggested that a better way to deal with

such data is by fitting negative binomial model on these data. In this chapter, we

will explore the negative binomial model fitting to the OTU count data.

2.1 MLE for Negative Binomial (NB) Model Parameters

2.1.1 Log-likelihood of NB Model

A counting distribution is a discrete distribution with non-zero probability mass only

on the nonnegative integers. Though playing a prominent role in statistical theory,

Poisson distribution is not appropriate in many situations, since it requires that the

5
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mean and the variance are equal. Thus Negative Binomial distribution is an excellent

alternative to the Poisson distribution, especially in the cases where the observed

variance is greater than the observed mean. NB distribution has been widely used

in modelling overdispersion in ecological count data [11, 12]. NB distribution can be

viewed as a Poisson distribution where the Poisson mean itself is a random variable,

distributed according to a Gamma distribution. In other words, NB distribution

can be viewed as a generalization of the Poisson distribution, it is also termed as

a Gamma-Poisson mixture. Fitting a Gamma-Poisson distribution on OTU counts

means that we assume the OTU count follows a Poisson distribution, with its mean

given by the sequencing depth multiplied by the underlying unobserved composition

of the OTU. The underlying unobserved composition across different individuals for

the same OTU follows a Gamma population distribution.

Our data include supra-gingival plaque samples and sub-gingival plaque samples

from Human Microbiome Project (HMP) [13], which summarizes the count of each

OTU in each sample. It includes 301 samples from sub-gingival plaque which contain

6782 OTUs, and 305 samples from supra-gingival plaque which contain 5277 OTUs.

We will demonstrate the NB fitting on each OTU using the sub-gingival plaque sam-

ples in this chapter.

Taking a hierarchical model approach with the Gamma-Poisson distribution can

provide a satisfactory fit to the underlying composition for many OTUs. Suppose

di is a linear scaling factor for sample i that accounts for its sequence depth, that

is the total read of ith sample, di =
∑p

j=1 xij, hierarchically, xij, the number of jth

OTU in sample i, is Poisson distributed with parameters diλij, denoted as xij ∼
Poisson(diλij). λij is the underlying unobserved parameter of the composition of

OTUj, then λij is independently identically Gamma distributed with shape parameter

kj and scale parameter θj, denoted as λij
i.i.d∼ Γ(kj, θj), then diλij ∼ Γ(kj, θjdi). A

Gamma mixture of Poisson variable gives the Negative Binomial (NB) distribution,

xij ∼ NB(kj,
θjdi
θjdi+1

), the probability density function is

f(xij; di, kj, θj) =
Γ(xij + kj)

xij!Γ(kj)

(θjdi)
xij

(θjdi + 1)xij+kj
. (2.1)

The log-likelihood function for the jth OTU with observed data xij, i = 1, ..., n is
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given by:

`(di, kj, θj;xij) =
n∑
i=1

xij log(θjdi)−
n∑
i=1

(xij + kj) log(θjdi + 1)

+
n∑
i=1

log(Γ(xij + kj))−
n∑
i=1

log(Γ(kj)),

(2.2)

and this model can be fit by a Newton-Raphson algorithm. We use “nlminb” in R to

find the MLEs for parameters kj and θj.

We use the sub-gingival plaque data to estimate kj and θj for the jth OTU. In

Figure 2.1, the graph in the left is the result of maximum likelihood estimates for k’s,

the values of those k̂’s above red dashed line are greater than 112482, corresponding

estimates for θ̂’s are smaller than 1e−09, which are not in the reasonable interval for

the NB parameters. These typically mean that the resulted estimates for both NB

mean (kjθjdi) and variance(kjθjdi + kjθ
2
jd

2
i ) are almost 0. Due to the high sparsity

of the data, the program doesn’t really converge on these OTUs. From the estimate

results, we can see that this fitting procedure doesn’t work perfectly. There are 1266

cases in the program failed to converge, 4435 cases give excessively large estimates

for k’s and correspondingly small estimates for θ’s. This means it’s possible that

NB model is not a good model for some OTUs and even if NB model is the correct

model, there are many cases we can’t get the reasonable MLEs for the parameters.

When looking into those OTUs failing to give reasonable parameter estimations, from

Figure 2.2, we can see that those OTUs are very sparse with mean percentage of zeros

in each OTU as 97.81%, the mean of the total sum count of each OTU is 19.6774 for

301 observations. There is not enough information in these sparse OTUs with only

several small non-zero observations (0,1 or 2) to estimate the distribution. We come

to the conclusion that those are sparse and rare OTUs, as a result, we remove those

5701 cases which can not provide reasonable parameter estimates for k’s and θ’s.

2.1.2 Check the Effects of MLE Fitting based on Parametric Bootstrap

of NB Model

The parameters of NB model are unknown and estimated from the original sub-

gingival plaque count data. In this section, we check the fitting effects of our procedure

supposing that the NB model is correct based on the remaining 1081 OTUs, which are
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Figure 2.1: MLE estimates for k and θ.

able to provide reasonable parameters in last section. We parametrically bootstrap

the NB data based on the MLEs of the parameters estimated from the original data

and the sequencing depths also from the original data.

We generate new count data x′
ij from NB(k̂j,

θ̂jdi

θ̂jdi+1
). In this way, we simulate count

number for each OTU of each sample. The number of each sample for each OTU

is Negative Binomial distributed. We then estimate the Gamma-Poisson parameters

k̂′
j’s, θ̂

′
j’s from the simulated data.

This simulation is illustrated by a flowchart as shown in Figure 2.3.

Figure 2.4 shows the comparison between parameters the simulation is based on

and parameters estimated from simulated data. For most of the simulated OTUs,

the estimated k’s and θ’s are quite close to its true values (those black crosses in the

plot). There is a small portion of OTUs when the true k is close to 0, the estimated

k′ is too large and the corresponding estimated θ′ is too small (the grey crosses in the
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Figure 2.2: Summary of those OTUs which can not provide reasonable parameters
for NB model.

plot). This can be seen from Figure 2.5, that the mean k
1
θ

’s estimated from simulated

data are equal to the true mean the data are simulated from. It is again the sparsity

in the simulated data for these OTUs that has resulted in the bias in the estimated

parameters. In future, with an improved program for estimating NB parameters,

some of these issues might be able to be resolved.

2.2 Evaluation of NB Model Fit to OTU Data

The parametric bootstrap of NB Model shows that some k’s and θ’s are not reliable,

but their corresponding underlying composition means are reliable, these estimated

NB models may or may not fit the OTU data very well. We need to assess the

goodness-of-fit of NB model to the OTU data. The straightforward approach is em-

ploying a simple graphical method in which an overlay of the theoretical distribution
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Figure 2.3: Simulation procedure for the parametric bootstrap of NB Model.

is displayed on a histogram of the data and a visual assessment is made to determine

the quality of the fit.

2.2.1 Empirical Distribution for OTU Data

An intuitional way of evaluating how well the NB model fits the data is to compare the

estimated gamma distribution with the empirical data. As we know, the underlying

composition of jth OTU for the ith sample, λij ∼ Γ(kj, θj). The observed count

is Poisson distributed with mean diλij, thus we can simply compare the observed

proportion
xij
di

with the estimated Gamma distribuiton Γ(k̂j, θ̂j).

From the top graphs of Figure 2.6, we can see that, for the abundant OTUs, the

gamma(k̂, θ̂) can fit the empirical data quite well; but for the rare OTUs, the fitted

gamma distribution doesn’t match the histogram of the OTU proportions at all.

That means for some OTUs the estimated k̂’s and θ̂’s are not reliable, even though

their values are in the reasonable range. From the histograms we know that it is

exactly again the sparsity in these data has prevented the accurate estimates of the

parameters. It is not possible however to visualize all these more than one thousand

fittings to decide which one is reliable, thus we will conduct a goodness-of-fit test to

evaluate the Negative Binomial fitting to these OTUs. This can be done by using

formal χ2 statistical tests.

2.2.2 Check the Model Fit by Likelihood Ratio Tests

In this section, for those 1081 OTUs, we do a likelihood ratio test by comparing

saturated Poisson model log-likelihood with the NB (Gamma-Poisson) model log-

likelihood to check the goodness-of-fit of the NB (Gamma-Poisson) model.
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Figure 2.4: Parameters estimated from original data v.s. parameters estimated from
simulated data.

For jth OTU, the saturate model xij ∼ poisson(diλij),

fpoisson(xij, di;λij) =
(diλij)

xije−diλij

xij!
,

where diλij = xij. For NB (Gamma-Poisson) model,

fNB(xij, di; kj, θj) =
Γ(xij + kj)

xij!Γ(kj)

(θjdi)
xij

(θjdi + 1)xij+kj
.

Their log-likelihood functions are as follows:

�(λij; xij, di) = xijlog(xij)− xij, (2.3)

�(kj, θj; xij, di) =xijlog(θjdi)− (xij + kj)log(θjdi + 1)

+log(Γ(xij + kj))− log(Γ(kj)).
(2.4)
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Figure 2.5: Underlying composition mean estimated from original data v.s. underly-
ing composition mean estimated from simulated data.

The null hypothesis is H0: The NB model is true. The likelihood ratio statistic

follows a χ2 distribution with df = (n − 2), where n = 301 is sample size for each

OTU in the sub-gingival plaque data. The likelihood ratio statistic is:

Tχ2 =2× log

∏n
i=1 fpoisson(xij;λij)∏n

i=1 fNB(xij, di; kj, θj)

=2× (
n∑

i=1

�(λij; xij, di)−
n∑

i=1

�(kj, θj; xij, di))

=2× (
n∑

i=1

xijlog(xij)−
n∑

i=1

xij −
n∑

i=1

xijlog(θjdi) +
n∑

i=1

(xij + kj)log(θjdi + 1)

−
n∑

i=1

log(Γ(xij + kj)) +
n∑

i=1

log(Γ(kj)))

(2.5)

Summaries of both χ2 statistics and p-values are provided in Table 2.1. Larger
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Figure 2.6: Histograms of OTU proportions

values of χ2 statistics lead to small p-values, which provide evidence against the NB

model. Under significant level α = 0.05, 776 OTUs have no evidence against NB

model, that means we can fit NB model to these 776 OTUs’ count data. In the rest

of the thesis we will only focus on these 776 OTUs for sub-gingival plaque data.

Similarly, we perform NB model parameter estimates and χ2 statistics test based

on supra-gingival plaque samples. Parameter estimates from 798 OTUs are in rea-

sonable range and through χ2 statistics test, 492 of them fit well with an NB model.

Among those 776 OTUs resulted from sub-gingival plaques and 492 OTUs resulted

from supra-gingival plaques, there are 361 common OTUs. Our inference of the

comparisons on the underlying composition of OTUs will be focused on these 361

OTUs which are successful in NB model fitting in both sub-gingival plaques and

supra-gingival plaques.
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Sub df = 299

χ2 χ2 > 340 χ2 ≤ 340
P value p ≤ 0.05 p > 0.05

OTU No. 305 776

Supra df = 303

χ2 χ2 > 344 χ2 ≤ 344
P value p ≤ 0.05 p > 0.05

OTU No. 306 492

Table 2.1: Log-likelihood ratio test to check the NB model fitting.



Chapter 3

Empirical Bayesian Inference for the Underlying

Composition of OTUs in a Microbiome Sample

We are interested in understanding the underlying composition of different OTUs in

a microbiome sample and their relationships to the corresponding population. The

observed data are Poisson distributed with the underlying composition multiplied by

a sequencing depth parameter as the mean. In order to better estimate the underlying

composition of OTUs, we explore to use the Bayesian posterior mean instead of the

commonly used simple proportion normalization.

A common method for normalization of OTU count data is using the simple pro-

portion [14], which normalizes count data by dividing OTU read counts by the total

number of reads in each sample. The simple proportion is not a biased estimate,

however they are associated with different variance due to the different sequencing

depths for different samples. We develop a new method to normalize count data

through the posterior distribution means and examine what difference this will make

for the OTU composition estimates.

3.1 Posterior — Mean as a Compromise between Data and Prior

Information

The process of Bayesian inference involves the prior distribution, p(Θ) and a posterior

distribution, p(Θ|x)[15]. For example, in the Poisson example with the Gamma prior

distribution, Bayesian statistics involve the following steps:

• Define the prior distribution that incorporates the subjective beliefs about a

parameter, in this example it is Gamma distribution, with prior mean kθ and

prior variance kθ2.

• Collect OTU count data x and sequencing depth d.

15
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• Update the prior distribution with the data using Bayes’ theorem to obtain a

posterior distribution. The posterior distribution is a probability distribution

that represents the updated beliefs about the parameter after having seen the

data.

• Analyze the posterior distribution and summarize it (mean, i.e., posterior mean

x+k
d+ 1

θ

, median, standard deviation, quantiles,...).

The posterior mean, x+k
d+ 1

θ

, is a compromise between the prior mean and the sample

proportion, x
d
. As the data sample increases, the prior mean plays an increasingly

smaller role. This is a general feature of Bayesian inference: the posterior distribution

is centered at a point that represents a compromise between the prior information

and the data, and the compromise is controlled to a greater extent by the data as the

sample size increases.

3.2 Empirical Bayesian Posterior Mean for OTU Data

We calculate the posterior mean of each OTU in sub-gingival plaque base on k̂’s and

θ̂’s we estimated from our data in Chapter 2. In fact, this is not really a Bayesian

inference, because the priors are from the data as well. Such procedure is commonly

called empirical Bayes estimation. By using such a prior, we are estimating the OTU

composition of each sample by borrowing information from the estimated population

composition, i.e. from all other samples. In our case, for each column, the Poisson

model for data xij ∼ Poisson(diλij),where xij is the observed count number of OTUj

in sample i, i = 1, ..., 301, j = 1, ..., 361, where di is a linear scaling factor for sample

i that accounts for its sequence depth. λij is the underlying composition of jth OTU

in ith observation that is being inferred.

In Bayes statistics, the parameterization with α and β is more common for Gamma

distribution, in this notation, with prior distribution λij ∼ Γ(αj, βj), now αj =

kj, βj = 1
θj

, where the resulting posterior distribution for ith sample is λij|xij ∼
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Γ(αj + xij, βj + di). Now we can get the posterior mean estimate for λij,

λ̂ij = E(λij|xij) =
αj + xij
βj + di

=
kj + xij
1
θj

+ di

=

1
θj

1
θj

+ di
· kj1
θj

+
di

1
θj

+ di
· xij
di
.

(3.1)

These estimates are readily provided by the MLEs of the NB fitting in the last

chapter. This provides another way of normalization for the microbiome count data.

The posterior mean for the ith sample,
kj+xij
1
θj

+di
, is a compromise between the prior

mean
kj
1
θj

, which is estimated from all samples and weighted by
kj

1
θj

+di
, and the simple

proportion
xij
di

, which is weighted by di
1
θj

+di
. Since di is the sequencing depth, which

is often much larger than 1
θj

, thus, the prior mean
kj
1
θj

has very little effects for most

samples except the ones with very low sequencing depths. The posterior means are

mostly approximately equal to the simple proportions, but the simple proportions

which are 0’s will be estimated by some small non-zero numbers. This change makes

it much easier to perform the analysis on the log transformed composition.

Figure 3.1 left panel is the PCA plot based on the covariance matrix of simple

proportion of sub-gingival plaques and Figure 3.1 right panel is the PCA plot based

on the covariance matrix of Bayesian posterior mean we estimated for sub-gingival

plaques. We can see that the right panel is quite the same as left panel with 180◦

rotation. The simple proportions contain so many 0’s that we are unable to perform a

log-transformation on the simple proportions. The Bayesian posterior means change

the simple proportions which are 0’s into slightly non-zero’s. This enable us to perform

a log-transformation on the posterior means. The bottom plot in Figure 3.1 is the

PCA plot based on the covariance matrix of log-transformation of the posterior mean.

We can see that after log-transformation of the posterior mean, the PCA plot is

quite different from the original one. The log-transformation of the posterior mean

estimates for the OTU compositions have greatly smoothed the data and reduced the

extreme influence from the spurious simple proportion estimates. The data after the

log-transformation now look much more “normal distributed”.

Similarly, based on the 361 common OTUs which are successful in NB model fitting

in both sub-gingival plaques and supra-gingival plaques, we separately estimate their
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Figure 3.1: PCA plots based on two analysis methods.

posterior means λ̂1
ij (i = 1, ..., 301) and λ̂2

ij (i = 1, ..., 305), perform PCA on the log-

transformation of λ̂1
ij and λ̂2

ij. In Figure 3.2, the top graph is the PCA plot based on

the covariance matrix of simple proportions of sub-gingival plaques and supra-gingival

plaques. We also combine posterior means estimated from sub-gingival plaque with

posterior means estimated from supra-gingival plaque together, then performed the

log-transformation on the posterior means and calculate the covariance matrix over

pooled posterior means. The bottom graph is the PCA plot based on the covariance

matrix of the log-transformed data. The separation is quite clear in the bottom plot,

although the change from simple proportion to the posterior mean is very small for
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each data point.

Comparing the coefficients of the first eigenvector and the second eigenvector from

two principal component analysis methods, from Figure 3.3, we can see that the

coefficients of the log-transformation of the posterior means are quite different from

the coefficients of the simple proportions, which means the PCA eigenvector directions

from these two procedures are very different. The directions from log-transformation

of posterior means are more decided by majority of the OTUs while as the PCA

direction from the simple proportions are mainly related to several OTUs with larger

observations.

3.3 Posterior Mean Estimate for OTU Composition based on a Mixture

Gamma Prior

The data of human oral cavity from HMP is about two populations (301 sub-gingival

plaque samples and 305 supra-gingival plaque samples) for each OTU. To fully use all

the information, we explore the posterior mean estimates based on a mixture Gamma

prior.

For ith sample jth OTU, the mixture Gamma prior can be written as πΓ(k1j, θ1j) +

(1− π)Γ(k2j, θ2j), where π is the prior probability that an observation from the sub-

gingival plaque population. The posterior probability under such a mixture Gamma

prior is

p(λij|xij) =
(πΓ(k1j, θ1j) + (1− π)Γ(k2j, θ2j))L(xij|λij)∫

(πΓ(k1j, θ1j) + (1− π)Γ(k2j, θ2j))L(xij|λij)dλij
(3.2)
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The posterior mean based on the above posterior distribution is

E(λij|xij) =

∫
λijp(λij|xij)dλij

=π

∫
λij

Γ(k1j, θ1j)L(xij|λij)∫
(πΓ(k1j, θ1j) + (1− π)Γ(k2j, θ2j))L(xij|λij)dλij

dλij

+ (1− π)

∫
λij

Γ(k2j, θ2j)L(xij|λij)∫
(πΓ(k1j, θ1j) + (1− π)Γ(k2j, θ2j))L(xij|λij)dλij

dλij

=
π
∫

Γ(k1j, θ1j)L(xij|λij)dλij∫
(πΓ(k1j, θ1j) + (1− π)Γ(k1j, θ1j))L(xij|λij)dλij

∫
λij

Γ(k1j, θ1j)L(xij|λij)∫
Γ(k1j, θ1j)L(xij|λij)dλij

dλij

+
(1− π)

∫
Γ(k2j, θ2j)L(xij|λij)dλij∫

(πΓ(k1j, θ1j) + (1− π)Γ(k1j, θ1j))L(xij|λij)dλij

∫
λij

Γ(k2j, θ2j)L(xij|λij)∫
Γ(k2j, θ2j)L(xij|λij)dλij

dλij

=
πf1(xij)

πf1(xij) + (1− π)f2(xij)
λ̂1ij +

(1− π)f2(xij)

πf1(xij) + (1− π)f2(xij)
λ̂2ij

(3.3)

The mixture posterior mean is:

λ̂mixij =
πf1(xij)

πf1(xij) + (1− π)f2(xij)
λ̂1ij +

(1− π)f2(xij)

πf1(xij) + (1− π)f2(xij)
λ̂2ij, (3.4)

where π = n1

n
is the prior probability that samples come from sub-gingival plaque,

f1(xij) is the NB probability estimated from sub-gingival plaque; f2(xij) is the NB

probability estimated from supra-gingival plaque. Thus the whole term (in front of

λ̂1ij) is the posterior probability that xij is from population 1. λ̂1ij is the posterior

mean of λij calculated using the prior of the 1st population, similarly for the second

term in (3.4). Thus the mixture prior posterior mean estimate of λij is the weighted

average of the posterior means from two different priors with the weights given by

the posterior probability of the observation from two different populations.

In summary, we have the following procedure:

• For jth OTU, j = 1, ..., 361, estimate NB parameters k̂1j, θ̂1j from sub-gingival

plaque samples; at the same time, estimate NB parameters k̂2j, θ̂2j from supra-

gingival plaque samples;

• For ith sample jth OTU, i = 1, ..., 606, calculate the posterior mean
k̂1j+xij

1

θ̂1j
+di

base

on parameters from sub-gingival plaque group, denote it as λ̂1ij;

• For ith sample jth OTU, i = 1, ..., 606, calculate the posterior mean
k̂2j+xij

1

θ̂2j
+di

base

on parameters from supra-gingival plaque group, denote it as λ̂2ij;
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• For ith sample jth OTU, i = 1, ..., 606, calculate the mixture posterior mean

λ̂mixij =
πf1(xij)

πf1(xij)+(1−π)f2(xij) λ̂
1
ij +

(1−π)f2(xij)
πf1(xij)+(1−π)f2(xij) λ̂

2
ij.

We apply the PCA on the derived mixture prior posterior mean estimates for the

OTU composition on both super gingival and sub gingival plaque data, in comparison

with the PCA analysis based on the log-transformation of the mixture prior posterior

means. Figure 3.4 shows the projected data on the 1st and 2nd principal components.
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Figure 3.2: Top: PCA plot based on simple proportion of sub-gingival plaques and
supra-gingival plaques; the bottom: PCA plot of log-transformation of posterior
means separately estimated from sub-gingival plaque and supra-gingival plaque.
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Figure 3.3: Coefficients of the first eigenvector and the second eigenvector from two
principal component analysis.
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Figure 3.4: Top: PCA plot based on mixture posterior mean from sub-gingival plaques
and supra-gingival plaques; bottom: PCA plot based on log-transformation of mixture
posterior means.



Chapter 4

Differentially Distributed OTUs in Two Environments

It is quite natural that such questions would arise: are the NB models estimated

from sub-gingival plaques the same with NB model estimated from supra-gingival

plaques for the same OTUs? Which OTUs will have different underlying compositions

between these two populations? Do they play a critical role in classification? We try

to find out those OTUs which have different underlying compositions between sub-

gingival plaques and supra-gingival plaques. In this chapter, the log-likelihood ratio

test based on NB distribution will be employed to explore these issues.

4.1 Likelihood Ratio Test

The likelihood ratio test is conducted as following: in the null model, we use the whole

dataset to estimate the NB model, let k̂0, θ̂0 be the values of the parameters that

maximize the likelihood function. Let the maximum likelihood function be written

as L0(k̂0, θ̂0). In the alternative model, we separate the OTUs into two groups –

sub-gingival plaques and supra-gingival plaques. An NB model is fitted on the sub-

gingival plaques samples and the supra gingival plaques samples separately. Let k̂1,

θ̂1 be the values of the parameters that maximize the sub-gingival plaques likelihood

function; let k̂2, θ̂2 be the values of parameters that maximize the supra-gingival

plaques likelihood function. Then the maximum likelihood function of the alternative

model can be written as La(k̂1, θ̂1, k̂2, θ̂2).

H0: The OTU in sub-gingival plaque and supra-gingival plaque follows the same NB

distribution;

Ha: The OTU in sub-gingival plaque and supra-gingival plaque follows different NB

distributions.

The test statistic is T = 2log(La/L0). The null hypothesis is rejected if T > c,

where c is the critical value at significant level α = 0.05. T has a chi-square distri-

bution with degree of freedom equal to 2. Based on the likelihood ratio test results,

25
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we can decide the significantly different OTUs between the sub-gingival plaques and

supra-gingival plaques.

4.2 False Discovery Rate Control (FDR) and BH Method

When we conduct a single hypothesis test, we choose a rejection threshold to control

Type I error rate. In the Log-likelihood Ratio Test mentioned above, we perform

361 simultaneous hypothesis tests. With multiple tests, choosing a rejection thresh-

old becomes more complicated. Each of the tests has possible Type I and Type II

errors, and there are many ways to combine them. The probability of Type I error

increases with the number of tests. FDR control offers a way to choose a threshold,

by increasing power while maintaining some principled bound on error.

Benjamini and Hochberg [16] introduced the FDR (False Discovery Rate) and show

a procedure independently from Simes [17, 18]. The procedure - which is called the

BH procedure - is simple to calculate.

Consider testing m hypotheses, H1, H2, . . . , Hm based on their respective p values,

p1, p2, . . . , pm. Consider that a fraction q∗ of discoveries are allowed (tolerated) to be

false. Sort the p values in ascending order, p(1) ≤ p(2) ≤ . . . ≤ p(m) and denote H(i)

the hypothesis corresponding to p(i). Let k be the largest i for which p(i) ≤ i
m
q∗.

Then reject all H(i), i = 1, 2, . . . , k. The BH procedure has found many applications

across different fields, including neuroimaging, as introduced by Genovese et al. [19].

4.3 OTUs Differently Distributed between Sub-gingival Plaque and

Supra-gingival Plaque

We apply the Log-likelihood Ratio Test to find which OTUs are significantly dif-

ferently distributed between sub-gingival plaques and supra-gingival plaques. The

selection process is defined by the following steps:

• For sub-gingival plaque microbime samples, use parameters estimated from sub-

gingival plaque group (k̂1,θ̂1) to calculate NB probability for each OTU, denoted

as f1(xij);
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Figure 4.1: Use FDR (False Discovery Rate) to determine the number of differentially
distributed OTUs between sub-gingival plaque and supra-gingival plaque.

• For supra-gingival plaque microbime samples, use parameters estimated from

supra-gingival plaque group (k̂2,θ̂2) to calculate NB probability, denoted as

f2(xij);

• For each OTU, calculate NB probability based on the parameters (k̂0,θ̂0) esti-

mated from all the samples, denoted as f0(xij);

• Calculate T = 2× log
∏n1

j=1 f1(xij)
∏n

j=(n1+1) f2(xij)
∏n

j=1 f0(xij)
, n1 is the number of sub-gingival

plaque samples and n is the total number of samples;

• Use FDR (False Discovery Rate) to determine the number of OTUs, which

have significantly different distributions between sub-gingival plaque and supra-

gingival plaque.

According to the results shown in Figure 4.1, the first 144 p values are smaller

than the FDR, that means the first 144 OTUs are significantly different between sub-

gingival plaques and supra-gingival plaques. The order of the p values also provides
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an order of the significance of the test, thus the OTUs with the smallest p values are

the most differentially distributed between two populations. And interestingly, most

of those OTUs which have quite different coefficients between PCA of simple propor-

tions and PCA of log-transformation of posterior means are in these 144 significantly

differently distributed OTUs. Are these OTUs really good at classification? We’ll

verify them with the OTUs ordered according to their predictive power in the next

chapter.



Chapter 5

Näıve Bayes Discriminant Analysis based on NB Likelihood

The Linear Discriminant Analysis (LDA) for classification was first developed by R.A.

Fisher in 1936 [20]. Fisher’s LDA searches for a linear combination of variables to

best separate two classes.

5.1 Review of Linear Discriminant Analysis

LDA can be derived from simple probabilistic models which model the class condi-

tional distribution of the data P (X|y = k) for each class k, where X is a vector of

the measurement and y is the class membership. Predictions can then be obtained

by using Bayes’ rule:

P (y = k|X) =
P (X|y = k)P (y = k)

P (X)
=

P (X|y = k)P (y = k)∑
l P (X|y = l) · P (y = l)

, (5.1)

and we select the class k which maximizes this conditional probability. More specifi-

cally, for linear and quadratic discriminant analysis, P (X|y) is modelled as a multi-

variate Gaussian distribution with density:

p(X|y = k) =
1

(2π)n|Σk|1/2
exp

(
−1

2
(X − µk)tΣ−1k (X − µk)

)
. (5.2)

To use this model as a classifier, we need to estimate from the training data the

class priors P (y = k) = nk
N

, that is the proportion of instances of class k; the class

means µk (by the empirical sample class means) and the covariance matrices (either

by the empirical sample class covariance matrices, or by a regularized estimator). In

LDA, the Gaussians for each class are assumed to share the same covariance matrix:

Σk = Σ for all k. This leads to linear decision boundary, as can be seen by the

log-probability ratios log[P (y = k|X)/P (y = l|X)]:

log

(
P (y = k|X)

P (y = l|X)

)
= 0⇔ (µk − µl)Σ−1X =

1

2
(µtkΣ

−1µk − µtlΣ−1µl) (5.3)

29
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LDA assigns y to Class k if log
(
P (y=k|X)
P (y=l|X)

)
> 0 for all l(l 6= k). We generalize

LDA from Normal distribution to NB distribution here, developing a Näıve Bayes

Discriminant Analysis (NBDA) based on NB model. We try to find whether our

NBDA method produces a classifier whose accuracy is as good as other more complex

methods. In addition, by variable selection, there are a number of ways to select

key discriminating OTUs, the NBDA may select the most important OTUs that

discriminate the populations which can provide the information that the black box

type of classification methods incapable of.

5.2 Mathematical Formulation of the Näıve Bayes Discriminant

Analysis Classifiers

Näıve Bayes here means that we assume OTUs to be independent. Some notations

come as follows:

• The prior probability of class m is πm,
∑M

m=1 πm = 1,πm is estimated simply by

empirical frequencies of the training set:

π̂m =
number of samples in class m

total number of samples
(5.4)

• The class-conditional density of xi = (xi1, · · · , xip) in class G = m is fm(xi),

fm(xi) ∼
p∏
j=1

NB(kmj,
θmjdi

1 + θmjdi
). (5.5)

• Compute the posterior probability

Pr(G = m|X = xi) =
fm(xi)πm∑M
`=1 f`(xi)π`

. (5.6)

For Class m, Sample i,

fm(xi) =

p∏
j=1

f(xij; di, kmj, θmj)

=

p∏
j=1

Γ(xij + kmj)

xij!Γ(kmj)
(

θmjdi
θmjdi + 1

)xij(1− θmjdi
θmjdi + 1

)kmj

(5.7)
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Consider the ratio: Pr(G=m|X=xi)
Pr(G=`|X=xi)

= πmfm(xi)
π`f`(xi)

, thus we assign xi to class m if πmfm(xi)

is the maximum for πlfl(xi) for l = 1, ...,M.

In our case, M = 2 (sub-gingival plaques and supra-gingival plaques). Denote sub-

gingival plaques as Class 1, supra-gingival plaques as Class 2, note that the decision

boundary is:

log
p1

1− p1
= log

π1f1(x)

π2f2(x)
= log

π1
π2

+ log
f1(x)

f2(x)

= log
π1
π2

+

p∑
j=1

[logΓ(xij + k̂1j)− log(Γ(k̂1j) + xijlog(
θ̂1jdi

θ̂1jdi + 1
)

+ k̂1jlog(1− θ̂1jdi

θ̂1jdi + 1
)]−

p∑
j=1

[logΓ(xij + k̂2j)− logΓ(k̂2j)

+ xijlog(
θ̂2jdi

θ̂2jdi + 1
) + k̂2jlog(1− θ̂2jdi

θ̂2jdi + 1
)] = 0

(5.8)

5.3 Results of Näıve Bayes Discriminant Analysis (NBDA)

Note that the order of the OTUs in Chapter 4 was calculated based on the whole

data set. Strictly speaking we should have used the training data only to rank the

variables. We separate the whole dataset (301 sub-gingival plaques and 305 supra-

gingival plaques with 361 common OTUs) into training data and test data in about

2:1 ratio. The training data contain 200 sub-gingival plaque samples and 203 supra-

gingival plaque samples, while the test data contain 101 sub-gingival plaque samples

and 102 supra-gingival plaque samples. We use the training data to build a predictive

model and use the test data to see how well the model performs on new samples.

We divide the training data into 10 equal sized subsets to do a 10-fold cross-

validation. For each cross-validation process, the ith (i = 1, 2, ..., 10) set is used for

testing while the other 9 sets are for training. For each cross-validation, the training

data includes 180 sub-gingival plaque samples and 183 supra-gingival plaque samples

while the test data has 21 sub-gingival plaque samples and 20 supra-gingival plaque

samples. We estimate parameters k̂1j, θ̂1j of NB models from sub-gingival plaque

samples and k̂2j, θ̂2j from supra-gingival plaque samples in training data. Based on

parameters estimated in training data, we perform NBDA based on jth (j = 1, ..., 361)
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OTU individually and calculate each OTU’s predictive error. That is, in test data,

for ith (i = 1, ..., 41) sample jth OTU, we calculate log
f1(xij)

f2(xij)
.

For each sample, if the probability from sub-gingival plaque is greater than the

probability from supra-gingival plaque, we assign it into sub-gingival plaque and vice

versa. Then we calculate this OTU’s predictive error. Repeating the process for each

fold of the cross-validation, a test error can be obtained for each sample based on

each OTU. We arrange the test errors of each sample for each OTU from the 10-fold

cross-validation in a predictive error matrix of m by p (m = 10,p = 361), the column

means gives the final predictive error estimation for each OTU. We rank these 361

OTUs according to their final predictive errors, the smaller the predictive error is,

the stronger predictive power the OTU has.

Now these 361 OTUs are ordered according to their predictive power, re-order the

columns of the predictive error matrix according to the OTU predictive power order,

add the first k terms for each row (k = 1, ..., 361), plus log(π1
π2

) (here use training ratio

180
183

to estimate π1
π2

), this provides us the log-odds for using first k OTUs to predict.

Then we can easily get a cross-validated error for using the first k OTUs to predict.

Recall that the one standard error rule is a way of choosing k from the CV-error

curve, in which we choose the simplest model whose error is within one standard error

of the minimal error. This would indicate that this much simpler model is not worse,

at least not in a statistically significant way. Using the one standard error rule,

choose k = 3 (OTU ID: 4459671, 4452538, 4338372) as our best choice (see Figure

5.1). These three OTUs are all highly ranked in the LR test in Chapter 4 (top 5, top

6 and top 14), which verifies our guess that OTUs which have significantly different

distributions between sub-gingival plaque samples and supra-gingival plaques play an

important role in classification.

The classification error e depends on the number of samples incorrectly classified

(false positives plus false negatives) and is evaluated by the formula:

e =
f

n
(5.9)

where f is the number of sample cases incorrectly classified, and n is the total number

of sample cases. For reference purpose, we perform NBDA sequentially by including

the first k (k = 1, ..., 361) of these 361 ordered OTUs and train the classifier on all of
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Figure 5.1: Classification error of Näıve Bayes Discriminant Analysis on sub-gingival
plaque and supra-gingival plaque samples.

the training set to obtain the test errors for each k. The test errors are also presented

in Figure 5.1. With k=3, we get the following training/test errors:

training error: 0.2679

test error: 0.2463

Interestingly, Figure 5.1 shows that using only the first significantly differently dis-

tributed OTU in the model, the training error is 0.32 and test error is 0.27. A binary

classification of the sub-gingival and supra-gingival samples with features selection

was performed in [21], Random Forest feature permutation showing the best perfor-

mance of a trained model with an accuracy of 79.8% on 20 feature. After including
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the first three significantly differently distributed OTUs in our NBDA model, the

training error fluctuates within a narrow range and so does the test error. Note that

by fixing the order of OTUs according to the predictive power, this simplifies the vari-

able selection procedure, but this may not be an optimal choice, in which case it also

confines the possibility of choosing the optimum OTUs for the discriminant analysis.

Another element that can obviously improve the performance is to jointly model the

OTUs instead of treating them as independent. However it is not obvious how to

model the OTUs jointly. The work in this thesis indeed is the starting effort for the

eventual goal of jointly modelling the OTUs with the phylogenetic tree relationship

considered in the model.

The fact that only three OTUs can predict so accurately means that these three

OTUs indeed are worth of being looked more carefully. After all, classification for

this data is not the purpose of the analysis, we are not really interested in predicting

a future observation is actually a sub-gingival plaque or supra-gingival plaque data

point. The accuracy of the classification merely is used to demonstrate that the

OTUs selected are the most important elements for two different communities. From

this point of view, the method proposed in this thesis is far better than a black-box

classification methods that can achieve slightly higher predictive accuracy.



Chapter 6

Application of LASSO

One assumption of NBDA is the independence of the variables, this could result in

the reduced performance of NBDA. The resulted procedure of NBDA is to add the

log probability difference for the selected k OTUs. One way to possibly improve

this is to use a logistic regression on the log probability differences to select better

linear coefficients to help partially addressing the problem of inaccurate assumption

of independence. We choose to apply LASSO on these log probability difference

scores to test if LASSO can also help to choose the best variables, if so, this could

also be used to replace the ranking step in the NBDA procedure. As we know,

LASSO (Least Absolute Shrinkage and Selection Operator) is a method that not

only performs variable selection but also ranks as one of the top prediction methods

as well [22]. Thus in addition to comparing the predictive accuracy, we can compare

OTUs picked up by LASSO with those OTUs significantly differently distributed

between sub-gingival plaques and supra-gingival plaques by the LR test in Chapter

4.

6.1 Review of LASSO

LASSO is a regression analysis method with ability to perform subset selection. Given

a linear regression with standardized predictors Z = (zij), for i = 1, 2, ..., N and

j = 1, 2, ..., P , and response values y1, ..., yi, ..., yN , the LASSO solves the `1-penalized

regression problem of finding β = (β1, ..., βj, ...βP ) to minimize

N∑
i=1

(yi −
P∑
j=1

zijβj)
2 + c

P∑
j=1

|βj|. (6.1)

This is equivalent to minimizing the sum of squares with a constraint of the form∑P
j=1 |βj| ≤ λ. λ is a tuning parameter, the larger λ, the smaller effect from the

constraint. It is similar to ridge regression (`2 norm), which has constraint
∑P

j=1 β
2
j ≤

35
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t, t is a constant, it’s a tuning parameter. Because of the form of the `1-penalty,

the lasso is able to perform variable selection and shrinkage, while ridge regression

only can do shrinkage. With λ value increasing, LASSO will output more non-zero

coefficients, which corresponds to more variables selected.

The R package “glmnet” is used to solve the LASSO fitting. By setting the fam-

ily=“binomial”, y should be a factor with two levels, in our case, with ‘1’ indicating

sub-gingival plaque, and ‘0’ indicating supra-gingival plaque. By default in the pack-

age, the selection of OTUs is controlled by the regularization parameters λ, which

is chosen by a cross-validation procedure on training data. The algorithm gives us

a sequence of λ’s with the associated cross-validated errors, there’s one λ with the

minimum mean cross-validated error, is usually chosen as the tuning parameter value

and the variables with non-zero coefficients in the model at this tuning parameter

value are the selected variables.

6.2 Application of LASSO on Four Different Types of Input variables

We apply LASSO on the oral cavity data using the same training dataset and test

dataset as the NBDA, comparing with the predictive accuracy from NBDA and com-

paring the OTUs selected from LASSO with those OTUs significantly differently

distributed between sub-gingival plaques and supra-gingival plaques in Chapter 4.

We apply LASSO on four different types of input variables using the 361 OTUs in

Chapter 2, and the same training data and test data as in Chapter 5.

In the first procedure, we perform LASSO regression analysis on the simple pro-

portions of OTUs in sub-gingival plaques and supra-gingival plaques; in the second

procedure, different from Chapter 2, where only one population (sub-gingival plaques

was used) to estimate the posterior means, here we use data from both populations

to estimate the Bayesian posterior means of OTUs, then applying LASSO on the

Bayesian posterior means of OTUs estimated from sub-gingival plaques and supra-

gingival plaques. The third procedure is performing a log-probability-difference trans-

formation on the OTU data. That is, for jth OTU of ith observation, we calculate

the NB probability of sub-gingival plaques f1(xij, k1j; θ1j), k1j and θ1j are estimated

from the counts of jth OTU in sub-gingival plaque training samples; meanwhile, we

calculate the NB probability of supra-gingival plaques f2(xij; k2j, θ2j), k2j and θ2j are
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estimated from the counts of jth OTU in supra-gingival plaque training samples; then

calculate the log difference of these two probabilities log
f1(xij ;k1j ,θ1j)

f2(xij ;k2j ,θ2j)
. We then apply

LASSO on the log-probability-difference. This enables significant OTUs’ ratio proba-

bility to be weighted by regression coefficients. The fourth LASSO procedure is based

the mixture posterior means of OTUs as introduced in Section 3.3. When we use the

posterior means or log probability difference as LASSO input, we estimate the prior

information or the negative binomial parameters from the training data. We fix these

parameters and pre-process the test data based on the training data parameters to

get the test errors.

6.3 Results and Discussion

Figure 6.1 shows us the classification errors of LASSO based on simple proportions,

and Bayesian posterior means estimated from sub-gingival plaques and supra-gingival

plaques pooled together. The “glmnet” algorithm gives us a sequence of λ’s (tuning

parameter) with the associated cross-validated errors the λ with the minimum mean

cross-validated error, is usually chosen as the tuning parameter value and the variables

with non-zero coefficients in the model at this tuning parameter value are the selected

variables. When applying LASSO on the simple proportion of OTUs, LASSO selects

38 variables into the model, corresponding test error is 0.2167. Among these 38 OTUs,

22 of them are significantly differently distributed between sub-gingival plaques and

supra-gingival plaques by the LR test in Chapter 4. For the Bayesian posterior

means estimated from sub-gingival plaques and supra-gingival plaques, LASSO selects

46 OTUs (33 of them have significantly different distributions between sub-gingival

plaques and supra-gingival plaques) and the corresponding test error is 0.2266. In

Figure 6.2, top graph is the classification error when applying LASSO on the log

probability difference, the number of non-zero coefficients from LASSO is 45 (23 have

significantly different distributions between sub-gingival plaques and supra-gingival

plaques), and the test error is 0.2512; the bottom graph is the classification error when

applying LASSO on the mixture posterior mean of OTUs, 36 OTUs are selected by

LASSO, 19 of them are ranked as significantly differently distributed between sub-

gingival plaques and supra-gingival plaques by LR test, and the test error is 0.2266.

Recall Naive Bayes Discriminant Analysis in Chapter 5, we only need three OTUs
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Procedure Test.err Training.err Std.err Selected.OTU
NBDA 0.2463 0.2679 0.0302 3

(0.2161,0.2765)

Table 6.1: Classification error from NBDA

and achieve the test error as 0.2463, in Table 6.1, we use binomial distribution to

estimate the standard error for the test error,

Std.err =

√
p(1− p)

n
, (6.2)

where p = 0.2463, n = 203. We can see that all the four test errors from the LASSO

fall into (0.2161, 0.2765), that is to say all this five test errors are consistent, this can

demonstrate that the OTUs selected in NBDA are the most important elements for

two different communities.
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Figure 6.1: Top: classification error from simple proportions; bottom: classification
error from Bayesian posterior means estimated from sub-gingival plaques and supra-
gingival plaques.
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Figure 6.2: Top: classification error from log-probability-difference; bottom: classifi-
cation error from Bayesian mixture posterior means.



Chapter 7

Conclusion

In this thesis, we first model the OTU data with Negative Binomial (NB) model and

fit the MLE’s for NB model parameters. The results of parametric bootstrap of NB

model and the empirical data distributions show that NB model could model some

part of the OTU count data well, this enables us to better estimate the underly-

ing composition for these OTUs. Then we perform the empirical Bayesian inference

for the underlying composition of these OTUs, try to visualize overall differences in

bacterial composition between sample groups through the PCA plots. The simple

proportions contain so many 0’s that we are unable to perform a log-transformation

on the simple proportions. The Bayesian posterior means change the simple pro-

portions which are 0’s into slightly non-zero’s. Using the Bayesian posterior mean

instead of the commonly used simple proportion normalization enables us to perform

a log-transformation on the posterior means. The log-transformation on the posterior

means provides a better PCA plot, which helps us explore the data in a better way.

The LR test can be used to determine that some NB models estimated from sub-

gingival plaques are significantly different from the NB model estimated from supra-

gingival plaques for the same OTUs. We find those OTUs with strong predictive

power and develop the Naive Bayes Discriminant Analysis (NBDA) based on the NB

distributions of those OTUs. By fixing the order of OTUs according to the predic-

tive power, NBDA can effectively reduce the dimensionality of the data, choosing the

optimum OTUs for discriminant analysis. After that, we apply LASSO to several

transformation of the estimated underlying compositions of OTUs. And our devel-

oped NBDA and LASSO verify that those OTUs play a critical role in classification.

In our thesis, we assume OTUs to be independent, one element that can obviously

improve the performance is to jointly model the OTUs instead of treating them as

independent. However it is not obvious how to model the OTUs jointly. The fu-

ture work of this thesis is to jointly modelling the OTUs with the phylogenetic tree

41
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relationship considered in the model.
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