DEVELOPMENT OF A 24-HOUR TRANSPORTATION NETWORK AND EMISSION

MODELLING SYSTEM FOR HALIFAX

by

Mahbubur Rahman

Submitted in partial fulfilment of the requirements for the degree of Master of Applied Science

at

Dalhousie University Halifax, Nova Scotia August 2016

© Copyright by Mahbubur Rahman, 2016

DEDICATION

To my Parents

MOHAMMAD ABDUL JALIL

And

RASHIDA BEGUM

TABLE OF CONTENTS

LIST	OF TABLES	••••••	vi
LIST	OF FIGURES	••••••	vii
ABST	RACT	••••••	X
LIST	OF ABBREVIATIONS USED	••••••	xi
ACK	NOWLEDGEMENTS	••••••	xiii
Chap	ter 1. INTRODUCTION	••••••	1
1.1	Background and Motivation		1
1.2	Research Objectives		6
1.3	Organization of the Thesis		7
Chap	ter 2. TRANSPORTATION	NETWORK	MODEL
DEVI	ELOPMENT	••••••	8
2.1	Chapter Overview		
2.2	Introduction		9
2.3	Four Stage Travel Demand Forecasting	Model	11
2.4	Study Area: Traffic Analysis Zone		14
2.5	Transportation Network of Halifax		16
2.6	Trip Generation		
2.7	Trip Distribution		23
2.8	Time of The Day model		25
2.9	Modal Split Model		27
2.10	Traffic Assignment		
2.11	Model Validation		35
2.	11.1 Validation of Modal Share		35
2.	11.2 Validation of traffic volume		

	2.1	11.3	Validation of transit ridership	41
	2.12	F	uture Demand Forecasting for 2016 and 2021	43
	2.13	N	etwork Model Results	44
	2.1	13.1	Analysis of trips	44
	2.1	13.2	Average Speed in the Network	46
	2.1	13.3	Corridor Analysis of Halifax Peninsula	50
	2.1	13.4	Travel Time Analysis between Origin-Destination Zones	53
	2.14	C	onclusion	56
С	hapt	ter 3.	EMISSION ESTIMATION	58
	3.1	Cha	pter Overview	58
	3.2	Bac	kground	59
	3.3	Lite	erature Review	60
	3.4	Emi	ission Model Development	67
	3.5	Sce	nario Preparation	68
	3.6	Res	ults and Discussions of Aggregate Emission	69
	3.7	Poll	uting Power and Pollution Experienced	73
	3.8	Con	clusion	79
С	hapt	ter 4.	ALTERNATIVE TRANSIT INFRASTRUCTU	RE
P	ROJ	ЕСТ	EVALUATION	81
	4.1	Cha	pter Overview	81
	4.2	Bac	kground	82
	4.3	Lite	rature Review	83
	4.4	Trai	nsit alternative plans for Halifax-Bedford	85
	4.5	Moo	delling framework	86
	4.6	Eva	luation based of network performance	89
	4.6	5.1	Change in Modal Share	89
	4.6	5.2	Network Characteristics	90
	4.6	5.3	Transit-Auto Travel Time Ratio between O-D Zones	92
	4.7	Eva	luation based on GHG Emission	93
	4.8	Con	clusion	96

Chapt	er 5. CONCLUSION	
5.1	Summary	
5.2	Research Contributions	
5.3	Practical Implications of findings	
5.4	Limitations and Future Work	
BIBLI	OGRAPHY	
APPE	NDIX A	
APPE	NDIX B	120
APPE	NDIX C	146
APPE	NDIX D	

LIST OF TABLES

Table 2-1	Road Network Characteristics	16
Table 2-2	Trip Production Regression Model Results	20
Table 2-3	Trip Production and Attraction Summary for Work Trip	22
Table 2-4	A sample Origin Destination trip matrix	24
Table 2-5	Multinomial Logit Model for Modal Split	29
Table 2-6	Modal Split by Time of the Day	30
Table 2-7	Modal Split by Traffic Analysis Zone	31
Table 2-8	Key Growth Scenario Projection Parameter	43
Table 2-9	Distribution of Observed Growth	44
Table 2-10	Average travel time and trip length of the network	45
Table 3-1	Summary of Literature Review	61
Table 3-2	Scenario Description	69
Table 3-3	Number of trips, VKT and GHG emission in the base year 2011	70
Table 3-4	Annual Per Capita Emission	71
Table 3-5	Annual GHG emission per capita	74
Table 3-6	Annual GHG emission per unit area	75
Table 4-1	MNL Model Results Based on the Data from the SP Survey Results.	88
Table 4-2	Network Characteristics of Alternative Transit Scenarios	91
Table 4-3	Transit-Auto Travel Time Ratio	92
Table 4-4	Per Capita GHG Emissions	94

LIST OF FIGURES

Figure 1-1	Canadian GHG Emission Trend and Target	2
Figure 1-2	Canada's Emissions Breakdown by Economic Sector 2014	3
Figure 1-3	Canadian sector wise net change in Emissions 2005-2014	4
Figure 1-4	Map of Halifax Regional Municipality, Nova scotia	5
Figure 2-1	Travel demand forecasting model framework considered in this study	13
Figure 2-2	Traffic Analysis Zones (TAZ) of Halifax	15
Figure 2-3	Halifax Road Network in the model	17
Figure 2-4	Road Network in Halifax core in the model	17
Figure 2-5	Transit Network in the model	18
Figure 2-6	Trip Production and Attraction in Traffic Analysis Zone (TAZ) level	21
Figure 2-7	Distribution of hourly Trips	26
Figure 2-8	24 Hour Distribution of Home Based Trip	27
Figure 2-9	Link Volume in Auto assignment	33
Figure 2-10	Link Volume in Transit assignment	34
Figure 2-11	Speed on each link of an Auto assignment	34
Figure 2-12	Modal share validation	36
Figure 2-13	Model Validation: Traffic Volume for all five locations	37
Figure 2-14	Model Validation: Traffic Volume (Victoria Rd, Dartmouth)	38
Figure 2-15	Model Validation: Traffic Volume (Burnside, Dartmouth)	39
Figure 2-16	Model Validation: Traffic Volume (Sackville)	40

Figure 2-17	Model Validation: Traffic Volume (Kearney Lake Rd)	40
Figure 2-18	Model Validation: Traffic Volume (Herring Cove Rd)	41
Figure 2-19	Model Validation: Transit ridership	42
Figure 2-20	Model Validation: Transit ridership in routes	42
Figure 2-21	Temporal distribution of trips	45
Figure 2-22	Average speed of the network	47
Figure 2-23	Average speed on Highway	48
Figure 2-24	Average speed on Arterial	49
Figure 2-25	Average speed on Major Collector	49
Figure 2-26	Traffic volume at Halifax peninsula inbound	50
Figure 2-27	Average speed of vehicle at Halifax peninsula inbound	51
Figure 2-28	Traffic volume at Halifax peninsula outbound	52
Figure 2-29	Average speed of vehicle at Halifax peninsula outbound	52
Figure 2-30	Travel time (Portland-Halifax downtown)	53
Figure 2-31	Travel time (Spry field -Halifax downtown)	54
Figure 2-32	Travel time (Bedford west-Halifax downtown)	55
Figure 3-1	Modelling Framework for Emission estimation	67
Figure 3-2	24-hour GHG emission	72
Figure 3-3	GHG polluting power-pollution experienced ratio in Halifax	76
Figure 3-4	Daily GHG Polluting Power Map of Halifax (2016)	77
Figure 3-5	Daily GHG Pollution Experienced Map of Halifax (2016)	78
Figure 4-1	Proposed BRT, Ferry and Rail Route	86
Figure 4-2	Modeling framework for alternative transit evaluation	88

Figure 4-3	Modal share of different alternative transit	90
Figure 4-4	Change of GHG emissions	94
Figure 4-5	Change of AM peak GHG emissions polluting power	95
Figure 4-6	Change of PM peak GHG emissions polluting power	95

ABSTRACT

The objectives of this study is to develop a 24-hour transportation network model for Halifax, to estimate emission by using the modeling system and to evaluate alternate transit infrastructure projects. A regional transportation network model was developed and validated. Emissions from GHG, GHG, CO, NOx, THC, VOC, PM₁₀, and PM_{2.5} were estimated. Model results reveals that annual per capita GHG emission was found 3.09 ton in 2011 and forecasted 3.41 ton for 2021. The results also suggests that emission polluting power and pollution experienced demonstrates difference for instance, suburban and rural areas experiencing more emission than they generate. Study results suggests that modal shift from auto to transit or active transportation would help to reduce emissions, for example, 3.81% less emission for a 5% shift towards transit. Alternative transit infrastructure evaluation concludes that rail and BRT would decrease auto ridership and emission whereas BRT would reduce travel time.

LIST OF ABBREVIATIONS USED

BAU	Business as usual
BPR	Bureau of Public Roads
BRT	Bus Rapid Transit
CH ₄	Methane
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
СТ	Census Tract
EMME	Equilibre Multimodal Multimodal Equilibrium
EPA	Environmental Protection Agency
GEH	Geoffrey E. Havers, Statistics
GHG	Greenhouse Gas
GTA	Greater Toronto Area
GSS	General Social Survey
HBO	Home Based Other (Trip)
HBW	Home Based Work (Trip)
HFCs	Hydro Fluorocarbons
HMTS	Household Mobility and Travel Survey,2012-13
HRM	Halifax Regional Municipality
iTLE	integrated Transportation, Land-use and Energy (Model)
ITS	Intelligent Transportation System
LRT	Light Rail Transit
MNL	Multinomial Logit
MOVES	Motor Vehicle Emission Simulator
Mt CO ₂ Eq.	Metric Tons of Carbon Dioxide Equivalent
N ₂ O	Nitrous Oxide
NCHRP	National Cooperative Highway Research Program

NF ₃	Nitrogen Trifluoride
NHB	Non Home Based (Trip)
NHS	National Household Survey
NLOGIT	Nested Logit
NOx	Nitrogen Oxides
NSTIR	Nova Scotia Transportation and Infrastructure Renewal
O-D	Origin-Destination
PFCs	Per Fluorocarbons
PM ₁₀	Particulate matter under 10 µm
PM _{2.5}	Particulate matter under 2.5 µm
RMPS	Regional Municipal Planning Strategy
SF_6	Sulphur Hexafluoride
SP	Stated Preference
TAZ	Traffic Analysis Zone
THC	Total Hydrocarbons
UNFCCC	United Nations Framework Convention on Climate Change
UTEC	Urban Transportation Emission Calculator
VDF	Volume Delay Function
VHT	Vehicle Hour Traveled
VKT	Vehicle Kilometer Traveled
VOC	Volatile Organic Compounds

ACKNOWLEDGEMENTS

I would like to express gratitude to my supervisor Dr. Muhammad Ahsanul Habib, for his valuable guidance, moral advice and continuous support throughout my thesis work. I would like to thank him for giving me the opportunity to work with him in a great working environment at Dalhousie Transportation Collaboratory (DalTRAC). I would also like to thank Dr. Hany El Naggar, and Dr. Claver Diallo for their valuable contribution in the supervisory committee. I would like to thank to my colleagues at Dalhousie Transportation Collaboratory (DalTRAC) for their cooperation and support throughout my time.

I would like to acknowledge the heartiest appreciation and encouragement from Dalhousie University President Dr. Richard Florizone, Provost & vice-president, academic Dr. Carolyn Watters, Dean of Engineering Dr. Joshua Leon, Dean of Graduate Studies Dr. Marty Leonard and others during my incredible journey at Dalhousie University. I would like to thank all Professors, Staffs and fellow students who facilitated me in my academic and non-academic activities at Dalhousie. I appreciate the support from everyone involved at Dalhousie student Union (DSU) during my two year term there within the time frame of this study.

I am grateful to my parents, Mohammad Abdul Jalil and Rashida Begum who brought me up by providing all the life lessons and still praying for my success from thousands of miles away. I feel honored to have my sisters Jubeda Begum and Taslima Akter and my brother Mahfuzur Rahman beside me throughout my life journey. I am thankful to my wife Tahmina Dewan, who took a lot of hardship managing the family especially when I have to dedicate my full concentration into this thesis work. Lastly, I am humble and graciously thankful to Allah for giving me two daughters Galiba binte Mahbub and Unaiza Binte Mahbub who at their 7 and 4, feels for their Dad and understandably sacrificed a lot of their possible Dad-time so that I could dedicate my time on this research.

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Greenhouse Gas (GHG) emission estimation is becoming an increasingly important field of study to combat the global issue of climate change. Greenhouse gases absorb radiation in the atmosphere and are largely responsible for the greenhouse effect which is one of the leading causes of global warming. Hence, GHG emissions has become a growing concern nowadays around the globe. Developed countries including Canada are leading research on GHG emission estimation to address the issue and develop effective strategy to reduce greenhouse effect.

According to the National Inventory Report 1990-2014 of Environment and Climate Change Canada, GHG emissions in Canada in 2014 was 733 Mt CO₂ Eq. This value is 20% above the 1990 total of 613 Mt. CO₂ Eq. Figure 1-1 shows steady increases in annual emissions characterized the first 10 years of this period, followed by fluctuating emission levels between 2000 and 2008, a steep drop in 2009, and a gradual increase thereafter. From 2005 to 2009, emissions decreased by 6.8% and from 2009 to 2014, emissions increased by 5.2%, resulting in an overall decrease of 15 Mt CO₂ Eq. between 2005 and 2014. At the 15th session of the United Nations Framework Convention on Climate Change (UNFCCC) in 2009, Canada committed to reduce its GHG emissions to 17% below the 2005 level by the year 2020. In May 2015, Canada further indicated its intent to reduce GHG emissions by 30% below 2005 levels by 2030.

Figure 1-1 Canadian GHG Emission Trend and Target (Environment and Climate Change Canada, 2016)

Identifying the major contributors of GHG emission is a necessary preliminary step for emission study. Transportation is the second largest contributor of GHG emissions in Canada after oil and gas. Figure 1-2 shows that in 2014, transportation generated 171 Mt CO₂ Eq emission, which is 23% of Canadian total GHG emission. Passenger cars and passenger light trucks contributed 50.11% of this emission in 2014, whereas freight trucks generated 31.95% of this emission. (*Environment and Climate Change Canada, 2016*).

Figure 1-2 Canada's Emissions Breakdown by Economic Sector for 2014

(Environment and Climate Change Canada, 2016)

Moreover if we analyze emissions from different source categories between 2005-2014, it becomes evident that even though overall emissions decreased during this period, the emissions produced by the transportation sector has increased by 4% (8 Mt) from 2005 to 2014 (Figure 1-3). Whereas all other sectors were able to reduce emissions in this period, emissions from transportation sector has increased. Therefore, emissions from transportation especially from passenger transportation needed to be at the forefront of GHG emissions reduction initiative.

Figure 1-3 Canadian sector wise net change in Emissions 2005-2014 (Environment and Climate Change Canada, 2016)

In addition to GHG, motor vehicles in transportation sector are responsible for emission from other pollutants such as, particulate matter under 10 μ m (PM₁₀), Total Hydrocarbons (THC), particulate matter under 2.5 μ m (PM_{2.5}) Carbon monoxide (CO), Volatile organic compounds (VOC), Nitrogen Oxides (NOx) which have serious health consequences on human body. A comprehensive transportation network and emission modeling framework can provide estimation of all those pollutants.

The combined use of regional transportation network modeling in conjunction with energy and emission modeling can be utilized for the evaluation of environmental impacts of transportation related emissions. Transportation modeling research field has also moved in recent times towards developing analytical framework that provides a comprehensive analysis of vehicle emissions. By using transport network and emission modeling framework, emissions can be estimated illustrating both temporal and spatial variation. Therefore, a regional 24-hour transportation network and emission modeling system can quantify aggregate emissions for an area as well as provide understanding about from which area the pollution is generating and which area is experiencing that pollution. This understanding would be hugely beneficial for a city like Halifax, where there are urban, suburban and rural areas within its boundary.

Figure 1-4 Map of Halifax Regional Municipality, Nova scotia

Halifax is the capital of the province of Nova Scotia, Canada (*Figure 1-4*). In 2011, the Halifax Regional Municipality (HRM) had a population of 390,096. It is the largest population center in Atlantic Canada, and has one of the world's largest natural harbor.

Halifax is the combination of urban, suburban and rural areas due to amalgamation of the City of Halifax, the City of Dartmouth, the Town of Bedford and Halifax County in 1996 (*Halifax Regional municipality Report, 2013*). The growth pattern and travel behaviors differ significantly between the urban core, suburban and rural areas. It will be interesting to observe which of these areas are polluting more and which area are experiencing the pollution. This can be done by examining polluting power and pollution experienced in these areas. Therefore, the development of a 24-hour transport network model for emissions estimation is required for a comprehensive study on emission of Halifax.

Hence, the motivation of the thesis is to provide a modeling framework to quantify transportation emissions in Halifax. The modeling is further used to evaluate alternative transit infrastructure projects in Halifax.

1.2 Research Objectives

The research objectives of this study were as follows:

- To develop a 24-hour transportation network and emission modelling system for Halifax.
- 2. To estimate vehicular emission and examine spatio-temporal variations specifically in relation to polluting power and pollution experienced.
- 3. To evaluate alternative transit infrastructure projects in Halifax using the modeling system.

1.3 Organization of the Thesis

This thesis is presented in 5 chapters. The contents of this thesis are arranged in the following sequence:

Chapter 2 describes the steps of development of the transportation network model.

Chapter 3 presents the estimation of the emissions in Halifax illustrating spatial and temporal variation.

Chapters 4 presents the evaluation of alternate transit infrastructure project for Halifax-Bedford corridor using the transportation network and emissions modeling with respect to network performance and GHG emissions.

Chapter 5 summarizes the conclusion of the research, contributions and recommendations for future work.

CHAPTER 2

TRANSPORTATION NETWORK MODEL DEVELOPMENT

2.1 Chapter Overview

This chapter deals with the development of a regional transportation network model for Halifax, Nova scotia, Canada. This was done by using a four stage travel demand forecasting modeling framework which includes trip generation, trip distribution, modal split and traffic assignment. To represent the 24 hour temporal variation, a time of the day model was also incorporated in the modeling system. The model was developed for base year of 2011 and then Halifax regional observed growth parameters were used to forecast for 2016 and 2021.

The model validation was performed with existing traffic data in Halifax. Network performance were evaluated based on the following metrics: travel time, traffic volume and speed of 24 hours for the total network. Screen line analysis were performed at specific locations and between O-D pairs to characterize network performance in Halifax.

This chapter is organized as follows: first, a brief introduction of description of traffic analysis zone and road network of Halifax followed by the four stage model development, validation and forecasting. Analysis of the transportation network performance measures were presented with discussion of the model results.

2.2 Introduction

Travel is a derived demand for activity participation. In transportation modeling, this demand is defined by number of trips between origin-destination. Trip-based methods are widely used in regional transportation network modeling. Four stage modeling approach holds a significant and useful contribution in the history of demand modeling research. Travel demand forecasting models have been playing a crucial role in transportation planning particularly for the evaluation of transport and land use policies, programs and projects.

The availability of travel demand forecasting models has provided planners with powerful and flexible tools for transport studies. Kriger et al. (2007) reviews travel demand forecasting models of Canada's nine largest urban areas: Québec City, Montréal, Ottawa-Gatineau, Toronto, Hamilton, Winnipeg, Calgary, Edmonton and Vancouver. Their finding suggested that well-developed travel demand forecasting models available in each of the nine urban areas which provided a unique opportunity for local authorities to use the models in policy decisions.

Across North America various cities use travel demand forecasting model for transportation planning purpose. For example, Anderson et al. (2006) developed the direct demand forecasting model which generates traffic volumes for roadways through the development of a functional relationship between roadway characteristics and socioeconomic influences. The direct demand travel forecasting model has been developed

and applied, with a small urban area as a case study community. Proussaloglou et al. (2007) developed and validated statewide demand forecasting model for Wisconsin to understand and quantify both passenger and freight flows to support statewide level transportation. A number of different policies including the impact of different land use scenarios, transportation projects on highway traffic, the diversion of traffic along key corridors, and the ridership potential of enhanced intercity bus service were tested in this model. Xiao et al. (2010) implemented Intelligent Transportation System (ITS) evaluation as part of the Florida Standard Urban Transportation Model Structure. It represents a formal set of modeling steps, procedures, software, file formats, and guidelines established by the Florida Department of Transportation for use in travel demand forecasting throughout the state of Florida. Kuppam et al. (2011) developed special events model which is being designed as a regional model. It will be able to serve as a forecasting and scenario testing tool for special events. The model is a stand-alone forecasting procedure, but it can be integrated within a weekday trip-based modeling framework. Jansuwan et al. (2012) developed a simplified planning tool with planning applications like four stage travel demand forecasting model specifically targeted at small cities like Utah and demonstrates how the tool can be implemented in practice.

Unlike those examples, Halifax has a limited research history in the development of travel demand forecasting model. Yan and Habib (*2011*) built a transit network for Halifax. Rahman and Habib (*2014*) developed a transportation network model using four stage

modeling approach and by further developing the existing transit network. This study further extend the modeling system by validating with existing data, forecasting for 2021 and estimating emission. In this way, this study aims to contribute in the sequential development of a transportation network model for Halifax.

The first objective of this study is to develop a 24 hour transport network model. Stages of that model and their developments are described in the following sections.

2.3 Four Stage Travel Demand Forecasting Model

The National Cooperative Highway Research Program (NCHRP) report on Travel Demand Forecasting: Parameters and Techniques (*2012*) provides outline and guidelines on travel demand forecasting procedures and their application for solving common transportation problems. The classical four stage travel demand forecasting model consists of the following four stages:

- 1. Trip Generation
- 2. Trip Distribution
- 3. Modal Split
- 4. Traffic Assignment.

The purpose of trip generation is to estimate the number of trips of each type in an area. In most models, trips are aggregated to a specific unit of geography (e.g., a traffic analysis zone). The estimated number of daily trips is either vehicle trips or person trips in motorized modes or all modes including motorized and nonmotorized (walking, bicycling) modes. Trip generation models require specific explanatory variables that are related to tripmaking behavior and key functions that estimate the number of trips based on these explanatory variables. Typical variables include household characteristics such as number

of persons, number of workers, vehicle availability, income level and employment by type. Trip generation stage provides trip productions and attractions by traffic analysis zone and by purpose as output.

The trip distribution stage of the model addresses the question of how many trips travel between units of geography (e.g., traffic analysis zones). It links the trip productions and attractions from the trip generation step. Trip distribution requires explanatory variables that are related to the cost (including time and distance) of travel between zones, as well as the amount of trip-making activity (such as employment) in both the origin zone and the destination zone. Production-attraction zonal trip tables by purpose are the outputs of trip distribution.

Mode choice is the third stage in the four-stage process. In this stage, it is determined which travel modes are being used by the trip makers. The modes can be generally grouped into automobile, transit, and nonmotorized modes. Individual travel behavior is determined in choice models analyzing their sociodemographic chracteristics and relative attractiveness of the mode. The outputs of the mode choice process include person trip matrix by mode and purpose.

The final stage of the process is traffic assignment. This step consists of separate automobile and transit assignment processes. During the assignment process route choice decisions are made and trips are assigned to the route from origin to destination along the transportation network, resulting in traffic volumes on network links by time of day. Speed and travel time estimates, which reflect the levels of congestion indicated by link volumes, are also output of this stage.

12

Figure 2-1 Travel demand forecasting model framework considered in this study

The modeling framework used in this study is shown in figure 2-1. Here a regional transportation network model for Halifax is developed using four stage travel demand forecasting methodology. In addition to that, to incorporate 24 hour temporal distribution, a time of the day model was used. The model is further extended to estimate emission.

2.4 Study Area: Traffic Analysis Zone

Halifax Regional Municipality is the study area of this thesis. The first step of network modeling is to develop a zonal system. Yan and Habib (*2011*) developed a zonal system for Halifax with 206 traffic analysis zones. This study extends the zonal system and divided Halifax into 219 traffic analysis zones out of which 91 urban core, 91 suburban and 37 rural zones.

During TAZ development, considerations were taken to ensure compatibility with census tract boundaries, major road network and land use. TAZ were also created to correspond population density, new growth and employment concentration.

Figure 2-2 shows the traffic analysis zones in Halifax map. Here, urban areas are concentrated around downtown Halifax and has a mix of commercial and residential use. Suburban areas are around the periphery of urban areas and mostly residential areas. Rural areas are further outspreaded from the Halifax peninsula.

Location of Traffic analysis zone details can be found in Appendix A-1. Additionally Appendix A-2 lists demographic and socio economic characteristics such as population, household characteristics, employment, income etc.

Figure 2-2 Traffic Analysis Zones (TAZ) of Halifax

2.5 Transportation Network of Halifax

Transportation network model requires network coding of existing roads with their physical and operational characteristics. Halifax has a road network of 2140.3 kilometers. In this study, Road network of Halifax is coded in EMME/4. The roads of transportation network in the model are classified as Highways, Arterial, Major Collector, Minor Collector and Local roads. In this network model, the road network of Halifax is represented by 219 zone centroids, 2249 regular nodes, 5232 directional links, which includes 339.76 km of highway, 551.63 km of arterial road, 395.41 km of major collector, 212.25 km of minor collector and 452.13 km of local roads. Total 1956.45km of road is represented in the network model. The network covers total length of highway, arterial and major collector as well as most of minor collector and some local roads. The road network characteristics with free flow speed and capacity of each road type, considered in this study is represented in table 2-1.

SI No.	Type of Road	Length (km)	Number of Road	Free flow speed (km/hr)	Capacity (veh/hr)
			segment		
1	Highway	339.76	585	100	4400
2	Arterial	556.90	2148	70	3200
3	Major Collector	395.41	1341	50	2200
4	Minor Collector	212.25	387	40	1900
5	Local	452.13	750	30	1600

Table 2-1 Road Network Characteristics

Figure 2-3 shows the road network of Halifax which is coded in EMME/4 classified with road types. Figure 2-4 highlights the road network of Halifax core area.

Figure 2-3 Halifax Road Network in the model

Figure 2-4 Road Network in Halifax core in the model

The transit network is also developed with the existing transit routes for Halifax. Transit services in Halifax are delivered by Metro Transit. The organization operates 63 bus routes as well as two ferries that connect Woodside and Downtown Dartmouth to Downtown Halifax across Halifax Harbor. Figure 2-5 shows the transit network in EMME/4. List of all the transit routes and their headways are provided in Appendix B-3

Figure 2-5 Transit Network in the Model

Additional alternate transit route of Bus Rapid transit (BRT), Commuter rail and ferry between Halifax and Bedford are added to the network for transit infrastructure evaluation which is described in chapter 4.

2.6 Trip Generation

Trip generation is the first stage of demand forecasting model. This stage estimates the number of trips produced and attracted in each traffic analysis zone. Generally trip generation model consists of two models such as trip production model and trip attraction model. Several techniques have been proposed to develop these models. Most methods attempt to predict the number of trips produced (or attracted) by household or zone as a function of (generally linear) relations to be defined from available data. (*Ortuzar and Williumsen, 2011*). All of those techniques can be broadly classified in the following three groups:

- 1. Growth factor method
- 2. Cross-classification analysis
- 3. Regression analysis

In this study, zone based multiple regression method is used in trip production model which attempt is made to find a linear relationship between the number of trips produced by zone considering average socioeconomic characteristics of the households in each zone. If the trips per household in a zone is Y and $X_1, X_2 \dots X_k$ are demographic and socioeconomic characteristics such as household size, employment, income, vehicle ownership then the regression model would be:

$$Y_i = \theta_0 + \theta_1 X_{1i} + \theta_2 X_{2i} + \ldots + \theta_k X_{ki} \dots (1)$$

Whereas θ_0 is the constant parameter and $\theta_1, \theta_2, \dots, \theta_k$ are the parameter value corresponds

to variable $X_1, X_2 \dots X_k$. The regression model is run using Minitab software. R-square value is used to measure the model fit.

National Household Survey (NHS) 2011 provides population, household size, employment and income and number of work trips data at 87 Census Tract (CT) level of Halifax. Those data are processed and converted into 219 TAZ data by using weighted average of the area of the individual TAZ. Zone based regression model was developed for the Halifax network model. Trips per household is the dependent variable in this model. Among the independent variables, employment per household, average household size are used as continuous variable and neighborhood characteristics and average income groups were used as binary variables.

Variables	Parameter	T- stat
Constant	-1.3294	-11.65
Household Characteristics		
Employment rate	2.0765	41.25
Average Household Size	0.5145	37.02
Neighborhood characteristics		
Urban Core	.0017	.10
Sub Urban	.0292	2.12
Average individual income		
\$15000-\$30,000	.0613	1.04
\$30,000-\$45000	.1009	1.71
\$45000-\$60,000	0.0798	1.34
\$60,000-\$75000	0.0211	0.35
\$75,000 and above	-0.0170	-0.23
· · · · · · · · · · · · · · · · · · ·		
Adjusted R – Sq .8731		

Table 2-2 Trip Production Regression Model Results

The results of the regression model is shown in table 2-2 which is used to calculate the work trips for each zone. Model result suggests that the higher the employment rate in the zone, the higher the trip production. Suburban areas produce more trip per household than other area. Zones with average individual income \$30,000-\$45,000 produce more trip than other income group. It also concludes that, with income of more than \$75,000 trip per household decreases.

Trip attraction is calculated by using point of interest data for business establishment at Decimation Area (DA) level from NHS 2011. The points which has employment potential such as commercial, industrial, service sector, educational institute, and hospital are considered for this purpose. Those are then spatially joined into TAZ level to estimate trip attractions in each zone. Figure 2.6 shows zonal trip productions and attractions in the network model.

Figure 2-6 Trip Production and Attraction in Traffic Analysis Zone (TAZ) level

Total trip attractions are then matched with total trip generations as by default, that the total number of trips originating (the origins Oi) for all zones will be equal to the total number of trips attracted (the destinations Dj) to them,

	Location	TAZ group	Work Trip	Work Trip
			Production	Attraction
Urban core	Halifax Core (South End)	U-1	6475	4915
	Halifax Core (Citadel-Downtown)	U-2	6099	57361
	Halifax Core (University-	U-3	7014	5286
	Residential)			
	Halifax Core (Chebucto)	U-4	7204	7716
	Halifax Core (North End)	U-5	5833	7276
	Dartmouth Core (Dartmouth North)	U-6	6329	6720
	Dartmouth Core (Dartmouth South)	U-7	6886	13537
	Total Urban		45840	102811
Suburban	Halifax (Armdale)	S-1	12139	5053
	Halifax (Fairview Clayton park)	S-2	20827	8824
	St Margaret's Bay	S-3	3700	1835
	Bedford Core	S-4	10603	5595
	Bedford	S-5	1468	1006
	Sackville	S-6	14662	8200
	Dartmouth North	S-7	11655	27857
	Dartmouth South	S-8	12437	6614
	Cole Harbor Eastern Passage	S-9	14495	3627
	Total Suburban		101986	68611
Rural	Prospect	R-1	7692	5279
	St. Margarets Bay	R-2	5075	2434
	Sackvile	R-3	17276	6929
	Waverley-fall River	R-4	2820	2667
	Portar's Lake-Lawraencetown	R-5	9652	5132
	Musquo-doboit Harbour	R-6	5496	2457
	Sheet Harbour	R-7	1521	1037
	Total Rural		49532	25935

Table 2-3 Trip Production and Attraction Summary for Work Trip
The summary results of work trip generations and attractions by zones are shown in table 2-3. It reveals that the total work trip produced in Halifax in a day is 197,358. Most of the trips are produced from suburban areas represents 51.67% of total trips, whereas rural and urban areas produce 25.10% and 23.23% respectively. On the other hand, 52.09% of total trips are attracted to urban areas and suburban and rural areas attract 34.76% and 13.14% respectively. This reflects that most of the work trips are produced from suburban areas to urban areas.

2.7 Trip Distribution

The objective of the second stage of the process is to recombine trip ends from trip generation into trips. This step matches trip makers' origins and destinations to develop a "trip table", a matrix that displays the number of trips going from each origin to each destination.

This is essentially a two-dimensional array of cells where rows and columns represent each of the *z* zones in the study area. The cells of each row *i* contain the trips originating in that zone which have as destinations the zones in the corresponding columns.. Therefore: *Tij* is the number of trips between origin *i* and destination *j*; the total array is $\{Tij\}$ or **T**; *Oi* is the total number of trips originating in zone *i*, and *Dj* is the total number of trips attracted to zone *j*. *Pi* is the number of trips produced or generated in a zone *i* and *Qj* those attracted to zone *j*. A sample Origin-Destination trip matrix is shown in table 2-4.

Traditionally, three methods are used for trip distribution.

- 1. Growth factor method
- 2. Gravity model
- 3. Entropy maximizing approach

Destinations $\sum_{i} T_{ij}$ Origins 1 2 3 ...jz 1 T_{11} O_1 T_{12} T_{13} $\dots T_{1j}$ $... T_{1z}$ $... T_{2j}$... T_{3j} $\dots T_{2z}$ $\dots T_{3z}$ 2 T_{22} T₂₃ T₃₃ T_{21} O_2 3 T_{31} T_{32} 03 Ι $\ldots T_{ii} \qquad \ldots T_{iz}$ T_{i1} T_{i2} T_{i3} O_i $\frac{Z}{\sum_{i} T_{ij}}$ $\begin{array}{cccc} T_{z3} & \dots T_{zj} & \dots T_{zz} & O_z \\ \hline D_3 & \dots D_j & \dots D_z & \sum_{ij} T_{ij} = T \end{array}$ T_{z1} T_{z2} D_1 D_2

Table 2-4 A sample Origin Destination trip matrix

In this study a doubly-constrained gravity model is used to develop the trip matrix. Mathematically, the gravity model takes the form:

$$T_{ij} = \frac{A_j F_{ij} K_{ij}}{\sum_{n=1}^{m} A_j F_{ij} K_{ij}} \times P_i....(2)$$

Where:

 T_{ij} = trips produced from zone *i* and attracted to zone *j*

 P_i = total trip production from zone *i*

 A_j = total trip attraction to zone *j*

 K_{ii} = a socioeconomic adjustment factor

 F_{ij} = friction factor or travel time factor $F_{ij=\frac{1}{(t_{ij})^C}}$

 t_{ii} =travel time between zone *i* and *j*

C = calibration factor for the friction factor

Here t is doubly constrained, in the sense that for any i the total number of trips from i predicted by the model always equals the real total number of trips from i. In our model, distance between centroids of each pair of TAZ are considered as friction factor in absence of actual travel time data.

For a medium sized city with population between 200, 000 to 500, 000 the calibration factors were found 1.95 to 2.1 (*NCHRP report 716*) in this study calibration factor C was taken as 2.0.Socioeconomic adjustment factor K for the Greater golden Horseshoe (GGH) model of Toronto were found 0.667 to 1.487 for different occupation trip. (*IBI Group, 2009*).In this study K was taken as 1.0 for all O-D pair zones. Thus variation of socioeconomic adjustment is not considered across trips in this stage as it was incorporated in trip generation stage. Thus this stage results into a 219×219 work O-D trip matrix for Halifax.

2.8 Time of The Day model

Development of 24-hour model requires determination of daily trips in each hour. Time of the day modeling is used to divide the daily trips into trips for various time periods, such as morning and afternoon peak periods, mid-day, and evening. Most four-step models that include the time-of-day step use fixed factors applied to daily trips by purpose. For time of the day model, the General Social Survey (GSS) data of 2009 was used. Total 3605 trips were reported from Nova Scotia. Start time of those trips are identified to classify into hourly trips. Travel activity throughout the day was classified into Home Based Work (HBW) trips, Home Based Other (HBO) trips and Non Home Based (NHB) trips.

Figure 2-7 Distribution of hourly Trips

Figure 2-7 represents the distribution of HBW, HBO, NHB and all trips throughout 24 hour period. It shows morning peak period is dominated by HBW trips. Afternoon peak consists of HBW, HBO and NHB trips in fair amount.

HBW trips were further identified by observing the location of the start point of trip into trip to work and trip back from work. Figure 2-8 shows the % of home based trips of each hour into trip to work and trip back from work. It found that during morning peak hours most of the work trips starts from home. In the afternoon peaks most work trips are trip to home. At night almost all the trips are trip to home. Hourly trip factors were calculated for trip to and from work. Trip factors by purpose were calculated for 24-hour periods and used to calculate an hourly trip matrix for all purposes.

Figure 2-8 24 Hour Distribution of Home Based Trip

HBW trips for 8.00AM is used as reference in this case (appendix). These factors are used to calculate to 24 hour trip matrix for all-purpose. This model also provide opportunity to include HBO and NHB trips in the model in addition to work trips.

2.9 Modal Split Model

Mode choice analysis is the third step in the conventional four-step transportation forecasting model. Mode choice analysis allows the modeler to determine what mode of transport will be used, and what modal share results. There are different types of mode choice model such as

1. Synthetic model

- 2. Direct demand model
- 3. Discrete choice model

Multinomial logit model is a discrete choice model. The general equation of a multinomial logit model is given by the equation below (*McFadden 1978*):

$$P_{ijm} = \frac{\exp(V_{ijm})}{\sum_{m \in C_t} \exp(V_{ijm})}.$$
(3)

Where,

 P_{ijm} is the probability that mode m is chosen for a trip from zone *i* to zone *j*

 V_{ijm} is the utility of using mode m for a trip from zone *i* to zone *j*,

$$= \beta X_{ijm}$$

 β is vector of utility function parameters

 X_{ijm} is vector of explanatory variables for jone *i*,*j* and mode m

 C_t is the choice set of available modes for a trip from zone *i* to zone *j*

MNL model estimate utility by the maximization using Log likelihood procedure. In this study NLOGIT 5.0, which is an econometric and statistical software package was used for the estimation.

The mode choice modeling utilizes data from Household Mobility and Travel Survey (HMTS) which was conducted in Halifax, Nova Scotia in 2012-2013. HMTS yielded 289 complete responses. Five mode choices were considered including auto driver, auto passenger, transit, bike and walk. Location of the trip and distance of the trip was used along with travel time as explanatory variables. The results are shown in table 2-5.

The results of the model shows the probability of choosing auto driver is higher than other modes. In urban areas probability of choosing bike increases. In short distance trips, people are less likely to choose auto drivers.

Variable	Mode	Parameter	T-stat
Travel Time		01345	-1.98
Alternative Specific	Auto Driver	2.24552	4.73
Constant			
	Auto Passenger	0.75108	1.48
	Transit	1.04173	2.28
	Bike	-0.70205	-1.14
	Walk	Fix	ked
Urban Core	Auto Driver	-2.67820	-4.94
	Auto Passenger	-2.67213	-3.55
	Transit	-1.54443	-2.64
	Bike	0.31225	0.44
Trip length <5km	Auto Driver	-1.09797	-2.14
	Auto Passenger	-0.86536	-1.16
	Transit	-0.25680	-0.48
	Bike	-0.24787	-0.45
R square=0.1748			

Table 2-5 Multinomial Logit Model result for Modal Split

TAZ specific modal split were derived for each zone using the MNL model results. This stage provides 24-hour trip matrix for each mode choice. The overall modal share of Auto driver, Auto passenger, Transit, Walking and Biking were found 65.88%, 12.08%, 12.81%, 7.46% and 1.77% respectively. Modal share were calculated by both time of the day (table 2-6) and by traffic analysis zones (Table 2-7).

Table 2-6 shows 24-hour modal split. During 12am-6am Transit and bike were not taken as options. Otherwise the modal split is consistent with time and Auto Driver dominates the modal share with a 63-69% modal share during day and with 80-90% in the late-night.

Time of the day	Auto Driver	Auto Passenger	Transit	Bike	Walk
12:00 AM	81.09	11.24	0.00	0.00	7.67
1:00 AM	89.05	5.04	0.00	0.00	5.91
2:00 AM	92.55	2.75	0.00	0.00	4.70
3:00 AM	83.95	8.59	0.00	0.00	7.46
4:00 AM	78.95	12.03	0.00	0.00	9.02
5:00 AM	78.69	12.26	0.00	0.00	9.04
6:00 AM	65.85	11.59	13.16	1.85	7.55
7:00 AM	68.10	12.68	11.50	1.83	5.90
8:00 AM	64.66	12.12	13.30	2.08	7.84
9:00 AM	66.24	11.56	13.21	1.63	7.36
10:00 AM	66.50	11.50	13.18	1.55	7.28
11:00 AM	66.19	11.68	13.24	1.57	7.33
12:00 PM	65.26	12.05	13.35	1.82	7.52
1:00 PM	65.41	11.99	13.35	1.79	7.47
2:00 PM	65.60	11.92	13.27	1.77	7.45
3:00 PM	65.24	12.03	13.38	1.80	7.55
4:00 PM	63.46	12.87	13.78	2.13	7.76
5:00 PM	63.75	12.70	13.77	2.09	7.69
6:00 PM	64.62	12.34	13.49	1.93	7.62
7:00 PM	65.16	12.15	13.34	1.85	7.50
8:00 PM	65.40	12.00	13.32	1.84	7.45
9:00 PM	66.71	11.48	13.10	1.54	7.17
10:00 PM	67.94	10.97	12.97	1.22	6.90
11:00 PM	71.06	9.65	12.51	0.67	6.11
Overall	65.88	12.08	12.81	1.77	7.46

 Table 2-6 Modal Split by Time of the Day

Table 2-7 provided modal split by traffic analysis zones. It reflects that trips from and to urban and urban has high modal share of transit than overall. Auto driver modal share increases in case of rural areas and transit modal share is lowest in trips involving rural areas.

Trip Origin-Destination	Auto Driver	Auto Passenger	Transit	Bike	Walk
All Zone-All Zone	65.88	12.08	12.81	1.77	7.46
Urban- All Zone	65.16	12.23	14.24	1.19	7.18
Suburban-All Zone	60.18	10.91	16.67	2.50	9.74
Rural- All Zone	80.71	14.46	0.54	1.46	2.83
All Zono Urbon	62.48	11.92	15 19	1.26	<u> </u>
	03.48	11.82	13.18	1.20	0.27
All Zone-Subrban	60.47	10.97	17.06	2.28	9.22
All Zone-Rural	80.48	14.77	0.64	1.46	2.65
Urban- Urban	60.21	12.45	16.69	1.15	9.50
Urban-Suburban	65.55	11.28	15.89	1.24	6.04
Urban- Rural	82.37	13.91	0.81	1.25	1.66
Suburban - Urban	64.03	9.79	16.71	1.68	7.79
Suburban -Suburban	53.02	10.38	21.22	3.12	12.26
Suburban - Rural	81.49	14.10	0.35	1.17	2.89
Rural - Urban	84.94	12.91	0.31	0.89	0.95
Rural -Suburban	82.15	12.98	0.28	1.14	3.46
Rural - Rural	78.59	15.78	0.75	1.81	3.06

 Table 2-7 Modal Split by Traffic Analysis Zone

2.10 Traffic Assignment

Traffic assignment involves determination of route choices between given O-D pairs.it is the fourth and final stage of demand forecasting model. In this study EMME/4 platform is used for both auto and transit assignment. EMME is a software package which provides travel demand modelling system for urban, regional and national transportation forecasting. It models how people move across a transportation network under a given set of conditions. The assignment algorithm aims at minimizing the total travel time of all the passengers using the network. In this study, strategy based user's equilibrium assignment was performed in the EMME /4 platform in each hour for auto and transit. Volume delay function was used for each type of road.

The Volume delay function equation used in traffic assignment is

 $t = t_0 [1 + \alpha (V/Q)^{\beta}].....(4)$

 t_0 = free flow travel time on the link per unit of time

V = volume of traffic on the link per unit of time

Q = capacity of the link per unit of time

t = is the average travel time for a vehicle on the link

The standard coefficient values for α and β are 0.15 and 4.00 respectively assigned by Bureau of Public roads (BPR).

In this model, the road network with centroids, nodes, and links and with their attributes are developed in EMME/4 platform Demand trip O-D matrix for each hour is used. Volume delay function was for each type of road. Traffic assignment involves iteration of the whole network traffic distribution unless the stopping criteria is satisfied. The network provides

results of performance measures which includes Travel time, Traffic volume, and speed of each link and within each O-D pairs. Figure 2-9 shows a sample link volume of an auto assignment. Separate assignment were performed for transit network with transit demand and transit routes in the network. Effective headways, boarding time, wait times are used as parameters. Standard transit assignment provides transit volume, boarding on links and road segments as well as transit time between zones, average number of boarding, transit in vehicle time as outputs. Figure 2-10 shows a sample transit assignment output.

Figure 2-9 Link Volume in Auto assignment

Figure 2-10 Link Volume in Transit assignment

Figure 2-11 Speed on each link of an Auto assignment

Figure 2-11 shows a sample output of average speed on each link of an Auto assignment. Thus each scenario of daily traffic assignment comprise of 24 hourly auto and transit assignments. This step provides total traffic volume, average speed and Vehicle Kilometer Traveled (VKT) of each link of the network, travel time between each O-D pair as well as average speed and travel time of the network. A sample traffic assignment is shown in appendix B-1 as well as transit assignment in appendix B-2.

2.11 Model Validation

A regional transportation network model is required to be validated with existing field or survey data. In this study model validation was done for modal share, traffic volume and transit ridership.

2.11.1 Validation of Modal Share

Modal share results from the transportation network model is validated with observed modal share from different surveys conducted in Halifax. In this study modal share of Auto driver, Auto passenger, Transit, Walking and Biking were found 65.88%, 12.08%, 12.81%, 7.46% and 1.77% respectively. Figure 2.12 shows the comparison of model modal share with Census 2006, NHS 2011, HMTS 2013 (*Salloum and Habib*) and NovaTRAC (*Habib 2015*). The comparison shows the model results are consistent with the survey data.

Figure 2-12 Modal share validation

2.11.2 Validation of traffic volume

Traffic volume obtained from the model are validated with Nova Scotia Transportation and Infrastructure Renewal survey data 2011 (Appendix B-4). Screen line validation was used for this purpose. 24 hour traffic volume for 5 different locations are taken for that purpose. Locations are: Victoria Road (Dartmouth), Burnside drive (Dartmouth), Sackville drive, Kearney Lake Road and Herring Cove Road. (Appendix B-7) Those are then plotted against collected average hourly traffic data. Figure 2.13 shows the comparison and R² was found to be 0.852.

Figure 2-13 Model Validation: Traffic Volume for all five locations

Geoffrey E. Havers (GEH) statistics was used for validation of hourly volume in each location. It is a modified form of chi squared statistic which is used to detect the relative difference between the simulated and field traffic volume. It is expressed by the equation as shown below:

$$GEH = \sqrt{\frac{2(S-F)^2}{S+F}}....(5)$$

Where, S is the traffic volume obtained from the model and F is the observed traffic volume through the field survey.

The GEH value also determines the goodness of fit of the traffic simulation model. A GEH value smaller than 5 represents a good match between model and field traffic volume. If

the GEH value is between 5 and 10, investigation may be required to make the model more representative of the real world. On the other hand, if the GEH value is greater than 10, it represents a bad fit between the model volume and field volume. In that case more investigation and calibration techniques are strongly recommended to improve the accuracy of the model (*Oketch and Carrick, 2005*).

In this study, GEH value was found 3.21, 3.99, 3.53, 5.20 and 5.08 for traffic volume at Victoria Road (Dartmouth), Burnside (Dartmouth), Sackville, Kearney Lake Road and Herring Cove Road respectively. Additionally for A.M. peak (6am-10am) and P.M. peak (2pm-6pm) GEH value was found to be 3.22 and 2.20 respectively. Therefore it can be concluded that the traffic volume obtained from the model can be considered as reasonably good match.

Figure 2-14 Model Validation: Traffic Volume (Victoria Rd, Dartmouth)

Hourly traffic volume obtained from the model for Victoria Road (Dartmouth), Burnside (Dartmouth), Sackville, Kearney Lake Road and Herring Cove Road are plotted with traffic volume observed in each day of the week along with average typical day volume in Figure 2.14 to 2.18. The figures reflects distribution pattern of traffic across the day which is another indicator that shows the model traffic volume is representative of observed traffic volume. In figure 2-14 traffic volume of Victoria Rd. showed morning and afternoon peak and mid-day traffic volume was also significant. Figure 2-15 shows a sharp afternoon peak of traffic volume at Burnside, Dartmouth.

Figure 2-15 Model Validation: Traffic Volume (Burnside, Dartmouth)

In Sackville (figure 2-16) and Kearney lake road (figure 17) afternoon peak traffic volume was prominent and morning and mid-day peak was also observed. In figure 2-18 Herring cove road traffic volume shows morning and afternoon peak.

Figure 2-16 Model Validation: Traffic Volume (Sackville)

Figure 2-17 Model Validation: Traffic Volume (Kearney Lake Rd)

Figure 2-18 Model Validation: Traffic Volume (Herring Cove Rd)

2.11.3 Validation of transit ridership

Transit ridership of all the transit routes are plotted against observed transit ridership data of Halifax transit for 2011. The trend line is shown in figure 2-19 and R² was found 0.839. GEH statistics was also performed with transit ridership data and the value is 3.90 which is within a good fit limit.

Figure 2-19 Model Validation: Transit ridership

Figure 2-20 shows that transit ridership in each route for observed and predicted data.

Figure 2-20 Model Validation: Transit ridership in routes

The model results need to be further validated with NovaTRAC survey (*Habib*, 2015) when the data become available.

2.12 Future Demand Forecasting for 2016 and 2021

After the development and validation of transportation network model for the base year 2011, the model is used for future forecast. In this study this were done for 2016 and 2021. Table 2-8 and 2-9 shows the key growth scenario projection parameter and distribution of observed growth. According to Regional Municipal Planning Strategy (RMPS) which was adopted in 2006, regional plan growth goals are 25% Regional Centre, 50% Suburban and 25% Rural. But actual observed growth after adoption of regional plan Adoption were 16% Regional Centre, 56% Suburban, and 28% Rural.

	2011	2016	2021
Population	392,255	422,730	448,735
Change		30,475	26,005
% Change		7.8%	6.2%
Dwelling Units	165,155	182,730	202,130
Change		17,575	19,400
% Change		10.6%	8.9%
Employed	211,375	233,565	247,040
Change		22,190	13,480
% Change		10.5%	5.8%

 Table 2-8 Key Growth Scenario Projection Parameter (HRM report, 2013)

	Housing Growth	Employment Growth
Urban Core	16%	31%
Suburban	56%	51%
Rural	28%	18%

 Table 2-9 Distribution of Observed Growth (HRM report, 2013)

To forecast future travel demand for 2016 and 2021, trip generation is revised using this growth of dwelling unit and employment. After preparing the trip generation, all of the other stages trip distribution, modal split and traffic assignment was performed for 24 hours for each hour and each mode with 2016 and 2021 data. Results of those analysis is shown in the following sections.

2.13 Network Model Results

Transportation network model results for 2011, 2016 and 2021 are discussed in this section. Results are represented on the basis of performance measures such as trips and speed of the network in 24 hours. Corridor analysis is performed on the five entrance of Halifax peninsula. Moreover travel times along the in three different O-D pair from suburban areas to Halifax downtown is also analyzed.

2.13.1 Analysis of trips

The time of the day model provides hourly factors which are used to develop hourly trip matrix. Total hourly trips of the network at 2011, 2016 and 2021 are shown in Figure 2-21.

It shows temporal distribution of trips and found that maximum number of hourly trip is 92,455 at 4-5pm for 2011 which is predicted to be 120,508 at the same time period in 2021.

Figure 2-21 Temporal distribution of trip

Table 2-10 shows the average travel time and average trip length in each hour of the day for 2011, 2016 and 2021. Maximum average travel time for a trip is calculated as 18.06 minute in 4-5pm period which is expected to increase to 19.32 minute in 2016 and 23.18 minute in 2021. Similarly, maximum average trip length is found 15.77km at the same period which is expected to increase to 16.05 and 17.04 km in 2016 and 2021 respectively.

 Table 2-10 Average travel time and trip length of the network

	Average travel time (minute)			Average trip length (km)		
	2011	2016	2021	2011	2016	2021
12-1am	12.31	12.54	13.29	13.18	13.43	14.31
1-2am	12.26	12.31	13.24	13.04	13.04	14.13
2-3am	12.21	12.38	13.34	12.99	13.13	14.18
3-4am	12.34	12.43	13.3	13.12	13.20	14.20
4-5am	12.62	12.81	13.62	13.54	13.74	14.71

	Average travel time (minute)			Average trip length (km)		
	2011	2016	2021	2011	2016	2021
5-6am	12.75	12.93	13.69	13.68	13.87	14.78
6-7am	14.6	14.96	15.85	15.40	15.66	16.50
7-8am	15.38	15.8	17.06	15.69	15.93	16.87
8-9am	15.45	15.88	17.18	15.71	15.95	16.88
9-10am	14.27	14.58	15.55	15.12	15.40	16.32
10-11am	14.17	14.43	15.36	15.14	15.38	16.32
11am-12pm	14.21	14.48	15.41	15.12	15.36	16.23
12-1pm	14.71	15.08	16.24	15.34	15.52	16.43
1-2pm	14.6	14.94	15.99	15.34	15.58	16.43
2-3pm	14.61	14.95	16.03	15.28	15.49	16.37
3-4pm	14.74	15.12	16.25	15.32	15.52	16.41
4-5pm	18.06	19.32	23.18	15.77	16.05	17.04
5-6pm	16.84	17.68	20.43	15.64	15.89	16.82
6-7pm	15.61	16.12	17.69	15.52	15.77	16.64
7-8pm	15.19	15.64	16.85	15.46	15.70	16.56
8-9pm	14.87	15.24	16.44	15.33	15.56	16.44
9-10pm	14.2	14.48	15.39	15.09	15.34	16.23
10-11pm	13.9	14.17	14.98	14.89	15.17	16.08
11pm-12am	13.62	13.85	14.68	14.50	14.77	15.81

2.13.2 Average Speed in the Network

Vehicular speed of transportation network of Halifax is analyzed in this 24 hour transportation network model. Figure 2-22 shows the average speed of the network is stable around 59 km/hr or decrease slightly for most part of the day over the years. Speed of the total network is decreased in peak period which demonstrates congestion in the P.M. peak

period. The speed is projected to decrease to around 53.87km/hr in 2021 from 56.64 km/hr in 2011 at 4-5pm.

Figure 2-22 Average speed of the network

Speed on different types of roads are also analyzed. Figure 2-23, 2-24 and 2-25 shows 24 hour speed variation in Highway, Arterial and major collector roads. The results show stable speed on highway, arterial and major collector in mid days and at night. At the morning peak hour's speed of all types of roads drops but it is more alarming in afternoon peak period where speed drops significantly. Speed comparison between 2011, 2016 and 2021 reveals that speeds are showing similar pattern over the years but in P.M. peak the speed drop increase continues. At 4-5pm Speed on highway, arterial and major collectors are 76 km/hr, 48.4 km/hr and 43.7 km/hr respectively at 2011. In 2021, those speed are predicted to drop to 61.1 km/hr, 36.7 km/hr and 39.2 km/hr. This indicates the speed

decrease on highway, arterial and major collector from 2011 to 2021 are 19.60%, 24.17% and 10.30% respectively.

Figure 2-23 Average speed on Highway

The significance of this result is arterial roads are more vulnerable to speed decrease which indicate where more investment is required in coming years to keep up the road network as functional as present.

Figure 2-24 Average speed on Arterial

Figure 2-25 Average speed on major Collector

2.13.3 Corridor Analysis of Halifax Peninsula

Halifax downtown peninsula have five major entry/exit points of. Those are Macdonald Bridge, McKay Bridge, Highway 102, Bedford highway and Herring cove road. In this section traffic volume and average speed of those five corridor is analyzed for 24 hours in 2016.

Figure 2-26 shows the inbound traffic volume that enters the peninsula and the average speed of those traffics are shown is figure 2-27. Halifax inbound traffic analysis shows that at all the corridor traffic volume is maximum in morning peak hours. MacDonald Bridge carries the maximum traffic for A.M. peak which is 3857 at 7-8am. In the afternoon peak McKay Bridge carries maximum traffic which is 3326 at 4-5pm.

Figure 2-26 Traffic volume at Halifax peninsula inbound

Average speed of vehicle drops at all corridor in the morning peak period. Maximum drop is experience at MacDonald Bridge which is 22.5km/hr from 70km/hr.

Figure 2-27 Average speed of vehicle at Halifax peninsula inbound

Outbound traffic volume that leaves the peninsula and the average speed of those traffics are shown is figure 2-28 and 2-29. Traffic volume reaches its maximum in all corridors in afternoon peak period. For P.M. peak, McKay Bridge carries the maximum traffic which is 5880, and Macdonald carries 5319 at 4-5pm.

Figure 2-28 Traffic volume at Halifax peninsula outbound

All the corridors experiences sharp speed drop at afternoon peak period. Average speed drops from 100km/hr to 23.87 km/hr at McKay Bridge and from 70km/hr to 8.11km/hr at McDonald Bridge.

Figure 2-29 Average speed of vehicle at Halifax peninsula outbound

These results provide important traffic volume and speed information about exit/entry point of Halifax peninsula which can be useful for traffic management and future transportation policy decision.

2.13.4 Travel Time Analysis between Origin-Destination Zones

24 hour transportation network model developed in the study also provides travel time between any O-D pair in each hour. In this section, travel time between Halifax downtown to three suburban areas Portland, Spry field and Bedford are presented and change in travel time along the day is observed for 2011, 2016 and 2021. In Figure 2-30, 2-31, 2-32 travel times between Halifax downtown to Portland, Spry field and Bedford west are shown.

Figure 2-30 Travel time (Portland-Halifax downtown)

Travel time analysis shows that traffic from Portland, spry field and Bedford west towards Halifax downtown experiences increased travel time during morning peak hours. In the afternoon peak travel time for traffic from Halifax downtown towards Portland, Spry field and Bedford west increases significantly.

The model also predict travel time between this zones in 2016 and 2021. It shows travel time would further increase in future. For example, during 4-5pm, travel time between Halifax downtown-Portland, Halifax Downtown-Spry field and Halifax Downtown-Bedford West are 27.43minutes, 16.33 minutes and 22.48 minutes respectively in 2011. The model forecasts that in the same route travel time would be 38.28 minutes, 24.78minutes and 29.58 minutes respectively in 2021. Which means the travel time would increase by 39.56%, 51.74% and 31.58% respectively between 2011and 2021.

Figure 2-31 Travel time (Spry field -Halifax downtown)

Figure 2-32 Travel time (Bedford west-Halifax downtown)

These results shows that transportation network in Halifax is about to face great challenge of mobility in coming future especially in afternoon peak hours. Transportation planners and policy makers should consider suitable transport demand management measures like peak hour road pricing, adjustment of work hour and lane reallocation for peak hour etc.to address this serious issue.

2.14 Conclusion

A regional 24 hour transportation network model was developed with base year of 2011. The model was developed by using four stage demand forecasting modeling framework which includes trip generation, trip distribution, modal split and traffic assignment.

The model results provide trip production and attraction of each zone. Most of the trips are produced from suburban areas which is 51.67% of total trips, whereas, 52.09% of total trips are attracted to urban areas. It revealed that the modal share of Auto driver, Auto passenger, Transit, Walking and Biking are 65.88%, 12.08%, 12.81%, 7.46% and 1.77% respectively. It also developed hourly O-D matrix for 24 hours with all of those five modes. The model result for 2011 is validated with existing NSTIR and Halifax transit data. The results obtained from the model for 2016 can be used for further validation by NovaTRAC 2016.

The model provides results of travel time, traffic volume and speed of the network in 24 hours. Result indicates the speed decrease on highway, arterial and major collector from 2011 to 2021 are 19.60%, 24.17% and 10.30% respectively. This indicates arterial roads need more investment in coming years to keep up the road network as functional as present. Corridor analysis was done on the five entrances of Halifax peninsula which were Macdonald Bridge, McKay Bridge, Highway 102, Bedford highway and Herring Cove Road. Results shows that McDonald bridge experience more traffic on AM peak and McKay Bridge at PM peak.

Travel times along three different O-D pairs from suburban areas such as Bedford West, Portland and Spry field to Halifax downtown is also analyzed. It reveals that travel time would increase by 39.56%, 51.74% and 31.58% respectively at afternoon peak period within those O-D pairs between 2011and 2021. Transportation planners and policy makers should take proactive measure to overcome this potential mobility challenge.

CHAPTER 3

EMISSION ESTIMATION

3.1 Chapter Overview

This chapter represents an emission estimation framework for passenger transportation in Halifax, Canada. A regional transportation network model is developed for Halifax which is described in the previous chapter. This study follows a disaggregate accounting approach at the TAZ level for estimating emissions. It uses VKT, speed, traffic volume and other outputs from the 24 hour transportation network model from both auto and transit assignment models. Pollutants considered include: GHG, CO, NOx, THC, VOC, PM₁₀, and PM_{2.5}.

Emission estimate of Polluting power and pollution experienced, often identified as in the existing literature, were performed. A unique approach was taken in this study to observe who generates emission and who experienced in highlighting urban-rural divide. Policy scenarios were created to estimate the potential impact of modal shift from auto to transit. This chapter is organized as follows: first, a brief introduction with a review of the literature, discussion on the model and scenario development for the study, followed by a
discussion of the model results. The chapter concludes by providing a summary of contributions and future research directions.

3.2 Background

Greenhouse Gas (GHG) and other vehicular emissions contributed by the transportation sector is a growing concern in North American cities. The inventory of GHG includes carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O), per fluorocarbons (PFCs), hydro fluorocarbons (HFCs), sulphur hexafluoride (SF6), and nitrogen trifluoride (NF3). In 2014, Canada's total GHG emissions were estimated at 732 megatons of carbon dioxide equivalent emissions (Mt CO₂ eq.) The government of Canada is committed to reduce GHG emissions to 17% below 2005 emission levels by 2020, and 30% below 2005 emission levels by 2030. However, the reality is that Canada has only seen a 2% decrease of emissions from 2005 to 2014. (*Environment and Climate Change Canada, 2016*).

Even though overall emissions decreased during this period, the emissions produced by the transportation sector has increased 4% from 2005 to 2014. In 2014, transportation was responsible for 23% of GHG emission in Canada, which is 171 Mt CO₂ eq. Emissions from light-duty and heavy-duty vehicles increased 42 Mt between 1990 and 2014. Canada produced approximately only 1.6% of total global GHG emissions in 2012. But it has one of the highest per capita emission rate which was 20.6 ton CO₂ eq. in 2014.(*Environment and Climate Change Canada, 2016*). According to the Canadian vehicle survey 2009, 96.3% of vehicles on the road are light vehicles which is the main contributor to this increase. (*National Resources, Canada, 2011*).

Nova Scotia has an annual GHG emission of 17 Mt CO₂ eq in 2014 which had decreased from 20 Mt CO₂ eq in 1990 .The Halifax Regional Municipality (HRM) council adopted a new reduction target of 30% below 2008 levels by 2020 for HRM's greenhouse gas (GHG) emissions (*Halifax Regional Municipality*, 2012). In order to meet the emission reduction target it is vital for HRM to track progress in mobile source emission. Many recent studies focused on developing models for tracking progress (TRB *Special Report*, 2009; Hankey and Marshall, 2010; Niemeier et al., 2011) and testing policy scenarios to identify countermeasures for emission reduction. (*Norman et al.*, 2006; Gouge et al., 2010; Alam et al., 2014)

In addition, it is also equally important to understand the "polluting power" and "pollution experienced" for proper representation of spatial dimension of emission. Polluting power is the level of emissions generated in any area and the level of emissions that actually occur in that area is termed as pollution experienced by the area.

3.3 Literature Review

GHG emission in passenger transportation is one of the primary focus of emission modeling in recent years. Considerable research have been recently conducted to investigate emissions in many states or cities such as Washington, Toronto, Leeds, Northern Virginia (*Frank et al., 2000; Hatzopoulou et al., 2007; Namdeo and Mitchell, 2008; Ahn and Rakha, 2008*). Table 3-1 summarizes the findings of some available literature in this aspect.

	Study	Data used	Emissions	Pollutant	Traffic	Tempor	Scenario design
	area		calculation	Consider	Mode	al	
			method	ed		Conside	
						ration	
Frank et al.	Puget	Puget Sound	Speed sensitive	CO, VOC,	Auto	Not	N/A
(2000)	Sound,	Household	emission rates of	NO _x		considered	
	Washington,	Travel Survey	MOBILE for				
	USA	1999	every link of				
			every trip				
Norman et	Toronto,	NRTEE (2003)	Calculated using	GHG	Auto	Not	Two scenario: high
al. (2006)	Canada	University of	emission rate		Transit	considered	density development
		Toronto (2003)	from data used				& low density
			and previous				development
			studies				
Namadeo	Leeds, UK	TEMMS,	Calculate link	CO _{2,} CO,	Auto	AM peak	Six scenarios: base
& Mitchell		LEEDS (2002)	based emissions	NO _x , SO _{2,}		only,	scenario, two
(2007)			using	PM _{10,}		(correction	scenarios with inner
			ROADFAC	Benzene,		factor used	orbital cordon and
				Butadiene		to get 24-	double cordon, three
						hour	scenarios with
						emission)	distance charges
Hatzopoul	Toronto,	GTA travel data	Calculated VKT	VOC, CO,	Auto	24 hour	N/A
ou et al.	Canada	generated by	from EMME	NO _x , HC			
(2007)		TASHA	assignment and				
			emission from				
			MOBILE				
Ahn &	Northern	GPS Commute	Calculated using	HC, CO,	Auto	AM peak	User Equilibrium and
Rakha	Virginia,	data	three models:	NO _x , CO ₂ ,		only	System Optimum
(2008)	USA		Mobile6, CMEM				assignments for high
			and VT micro				emitting, low
			model				emitting vehicles

Table 3-1 Summary of Literature Review

	Study area	Data used	Emissions	Pollutant	Traffic	Temporal	Scenario design
			calculation	Considered	Mode	Considerat	
			method			ion	
Stone et al.	11 areas in 6	US Census	Calculated based	CO2	Auto	Not	Three scenarios:
(2009)	Midwestern	2000	on VMT (NPTS)			considered	Business-as-usual
	states: IL,		Tract level CO2				(BAU), Smart-
	IN, MI, MN,		calculated by				growth 1 (SG1):
	OH, WI		EPA 2011				same growth, new
			mission rate:				population
			8887*VMT/MP				reallocated to
			G				suburban & urban,
							Smart-growth 2
							(SG2): larger
							population growth,
							new population
							reallocated to
							suburban & urban
TRB	USA	US census	Calculated based	CO ₂	Auto	Not	Three scenarios: base
Special	Nationwide	2000, NHTS	on VMT			considered	scenario: 1.4% VMT
Report 298		2001, NPTS	EPA 2005				increase; scenario 1:
(2009)		1990,	emission rate:				25% compact growth
			19.4 lb CO2 per				with 12% VMT
			gallon gasoline				reduction; scenario 2:
							75% compact growth
							with 25% VMT
							reduction
Hankey &	142 US	US Census	Monte Carlo	CO ₂	Auto	Not	Six scenarios: three
Marshall	cities	2000	statistical			considered	bounding scenarios:
(2010)			distribution for				infill only, constant
			future scenario,				density, suburban
			emission				nation;
			calculated based				three historical
			on VKT and				decadal growth: with
			depends on				small (S1), average
			scenario				(S2), large rates (S3);
1	1		1		1	1	

	Study area	Data used	Emissions	Pollutant	Traffic	Temporal	Scenario design
			calculation	Considered	Mode	Considerat	
			method			ion	
Gouge et	Vancouver,	GPS data	MOBILE	CO, NO _x , HC	Transit	Not	Corridor scenario and
al. (2010)	BC, Canada					considered	spatial distribution
Niemeier	Eight	660,000	UPlan for land	CO ₂	Auto	Not	Four scenarios:
et al.	counties of	population	use;			considered	Baseline growth
(2011)	the San	growth between	four-step travel				(BG): follow current
	Joaquin	2000 and 2030	demand forecast;				trend; Controlled
	Valley		UC Drive &				growth (CG):
	region, USA		MOBLIE6 model				compact growth;
			for emissions				Uncontrolled growth
			calculation				(UG): (very) low
							density, roadway
							expansion with little
							transit;
							As planned (AP):
							new road, high speed
							rail, and medium
							density
Hennessy	South	US Census	Using VMT	CO ₂	Auto	Not	Five scenarios:
& Tynan	Carolina,	1990, US	relationship with			considered	Current trend: 5:1
(2012)	USA	Census 2000,	GHG emissions				"growth ratio" (land
		South Carolina					growth /population
		Population					growth)
		report					4 Compact dev.
							ratios: 4:1, 3:1, 2:1,
							1:1 "growth
							ratio"
Sider et al.	Montreal,	Origin	Customized	NO _x	Auto	A.M. and	No additional
(2013)	Canada	Destination	MOVES model			P. M peak	scenario
		Trip data,					
		Montreal,					
		2008					
1	1	1		1	1	1	1

	Study area	Data used	Emissions	Pollutant	Traffic	Temporal	Scenario design
			calculation	Considered	Mode	Considerat	
			method			ion	
Mathez et	Montreal,	McGill Travel	MOVES for	GHG	Auto	A.M. Peak	Six scenario: base
al. (2013)	Canada	Survey 2010	Auto		Transit		scenario; 5 scenario
			STM for Transit				of switching mode
							depending on
							conditions
Wang et al.	Virginia,	Virginia Add-	Equation from	CO ₂	Auto	Not	No additional
(2013)	USA	on survey of	EPA using VMT			considered	scenario
		NHTS					
		2009,					
		CENSUS 2010,					
		LEHD 2009					
Alam et al.	Montreal,	Transit Data	MOVES model	GHG	Transit	A.M. peak	Corridor level
(2014)	Canada	collection				and P.M.	scenario created for
						peak	regular and reserved
							lane for both regular
							and express buses
Megenbir	Halifax,	Dalhousie	Accounting	GHG, VOC,	Auto,	Not	No additional
& Habib	Canada	commuter	method using	THC, NO _x ,	Transit	considered	scenario
(2015)		Survey, 2011-	emission factors	CO, PM _{2.5,}			
		2013		PM ₁₀			
Matute &	California,	N/A	Life cycle	GHG	Transit	Not	Four scenario of cost
Chester	USA		assessment			considered	allocation technique
(2015)							for High speed rail
							project
Rahman et	Kelowna,	Okanagan	Using emission	GHG	Auto	Not	No additional
al. (2016)	BC, Canada	Travel Survey,	factors with VKT		Transit	considered	scenario
		2013					

Frank et al. (2000) found that auto emissions are positively associated with vehicle mile travelled, vehicle per household, people per household and income in Puget Sound,

Washington. Stone et al. (2009) showed that smart growth can reduce emissions from auto in six Midwestern states in United States up to 16.7%. Norman et al. (2006) reveals that in Toronto, low density suburban development is more GHG intensive than high density urban core development by a factor of 2.0-2.5. Wang et al. (2013) estimated that CO₂ emissions are lower for households in mixed land use neighborhood with denser road network and better network connection in Virginia. Hennessy and Tynan (2010) concluded that with 1:1 growth ratio CO₂ emission will be reduced by 11% in South Carolina. Megenbir and Habib (2015) proposed a disaggregate accounting approach to estimate vehicle emissions using emission factors from the Urban Transportation Emission Calculator (UTEC) and the Environmental Protection Agency (EPA) which were used to estimate emissions from carbon monoxide (CO), volatile organic compounds (VOC), Nitrogen Oxides (NOx), particulate matter under 10 (PM₁₀), total hydrocarbons (THC), particulate matter under 2.5 (PM_{2.5}), along with GHG. As there are public health implications of PM_{10} , $PM_{2.5}$ and other pollutants, comprehensive review of all of those pollutant is required.

To capture temporal variation, some studies used the time period of A.M. peak or P.M peak. Namadeo and Mitchell (2008) found that emission reduced with implementation of inner cordon charges in Leeds in the morning peak period. Hatzopoulou et al. (2007) quantified vehicle emissions in the Greater Toronto Area (GTA) by exploiting travel information provided by activity-based, 24-hour models. Alam et al. (2014) estimated corridor level transit emission to explore the impact of transit reserved lane in Montreal. Matute and Chester (2015) conducted life cycle emission assessment of a high speed rail project which shows net reduction of GHG emission. It would have been interesting to see the relative impact of shift of modal share from auto to transit which has not been explored extensively.

Emission modeling results generally represents emission of a city or state at aggregate level. The studies by Norman et al. (2006) found in Toronto, annual per capita GHG emission from transportation is 5.18 ton CO₂ eq, for low density and 1.42 ton CO₂ eq, for high density area. Mathez et al. (*2013*) estimated that McGill commuters emit 31.13 tons CO₂ eq in a typical winter day. Rahman and Idris (*2016*) estimated 374,344 ton CO₂ eq total annual GHG emission from transportation in Kelowna for 2007. Sider et al. (*2013*) estimated NOx emission polluting power and pollution experienced for Montreal and found that there is much higher pollution along the main highway corridors and in the downtown areas. They also found the emissions are very low for zones on the region's periphery. Aggregate level emission reporting don't reflect actual nature of emission in a city with urban-rural divide. It fails to capture the spatial diversity within the city or state. In a city like Halifax where there are urban, suburban and rural areas within its boundary, spatial distribution of emissions is necessary to explain their relative contribution and exposure to emissions. It is very important to understand how much they pollute and how much they experiences pollution.

There is a clear gap in literature for understanding who generate emission and who experiences where the debate of urban-rural divide exists. Emission analysis with polluting power and pollution experienced in disaggregate level can fulfil the objectives by providing the pollution generation and exposure to pollution of each area. This study addresses above mentioned literature gap and provides the framework to quantify the spatial and temporal emission modelling by estimating polluting power and pollution experienced of each area. Furthermore it also shows the impact of transit modal shift on GHG emission in urban-rural divide context.

3.4 Emission Model Development

This study first developed a regional transportation network model for Halifax. The process diagram of transport network and emission modeling is shown in Figure 3-1.

Figure 3-1 Modelling Framework for Emission estimation

Emission modelling comprises of two parts: polluting power and pollution experienced. To estimate polluting power VKT generation is calculated using hourly O-D matrix by mode, travel time between TAZ and average speed of the network. Using emission factors with the VKT polluting power of each TAZ is calculated. Pollution experienced within the TAZ was calculated by using VKT of the links within the zone with the same emission factors. For both cases Megenbir and Habib (*2015*) proposed approach was followed. In that study, we have estimated emissions of GHG, CO, THC, VOC, NOx, PM₁₀ and PM_{2.5}. The scenarios are described in the following section. (Appendix C-1)

3.5 Scenario Preparation

The Transportation network and emission model used 2011 as base year and forecasted for 2016 and 2021 for different scenarios to calculate emissions for the same time period. As explained in the last chapter, HRM growth scenario projection for household and employment were considered to forecast trip generation for 2016 and 2021.

Additional scenarios were created with 2.5% and 5% modal shift from Auto to transit. This is developed to evaluate the potential impact of transit modal shift in 2016 and 2021. Halifax transit has adopted a plan to increase transit ridership by 5% within next 5 years (*Halifax Transit, 2013*). Scenarios were created in this study to understand what would have been the effect on GHG emission if it were possible to reach the target fully or partially within 2016 or 2021. Table 3-2 shows the household number, employment and state of modal share used in each scenario.

Scenarios	Year	No. of	Employment	Modal share of auto and
		Households		transit
2011: Base Scenario	2011	165,155	211,375	no change in modal share
2016: Scenario 01	2016	182,730	233,565	no change in modal share
2016: Scenario 02	2016	182,730	233,565	2.5% modal shift from auto
				to transit
2016: Scenario 03	2016	182,730	233,565	5% modal shift from auto to
				transit
2021: Scenario 01	2021	202,130	247,040	no change in modal share
2021: Scenario 02	2021	202,130	247,040	2.5% modal shift from auto
				to transit
2021: Scenario 03	2021	202,130	247,040	5% modal shift from auto to
				transit

Table 3-2 Scenario Description

To incorporate modal shift from auto to transit, modal split was completed in each TAZ level and a 24-hour mode specific O-D matrix was established for each scenario. For these seven scenarios 24-hour auto and transit models are discussed in the following section.

3.6 Results and Discussions of Aggregate Emission

The results generated from the emission model gives aggregate level transportation emissions of Halifax as well as addressing the urban-rural divide. Table 3-3 shows the number of trips, VKT and GHG emissions of auto and transit at different times of the day for 2011.

Auto trips comprise 87.18% of total trips, constitute more than 99.62% of the VKT and are responsible for 97.73% of the GHG emissions. Whereas, transit trips are 12.18% of total trips, the VKT of transit is 0.38% and it generates 2.27% of the GHG emissions. This indicates that the emissions contribution of auto is not proportional but higher than its modal share, which is true for each time segment of the day. The maximum GHG emission for Auto occurred during Afternoon peak which is 1018.71 ton.

		Morning	Mid-Day	Afternoon	Evening	Early	Daily
		Peak	(10AM -	Peak	(6 PM -	Morning	Total
		(6AM -	2PM)	(2PM -	12PM)	(12AM -	
		10AM)		6PM)		6 AM)	
Number	Auto	182,726	201,487	301,563	244,224	41,624	971,624
of Trips	%	87.19%	86.76%	86.32%	86.68%	100%	87.18%
	Transit	26,847	30,739	47,783	37,528	0	142,893
	%	12.81%	13.23%	13.68%	13.32%	0%	12.18%
VKT	Auto	2,529,936	2,736,126	4,193,235	3,332,456	490,001	13,281,754
	%	99.34%	99.66%	99.64%	99.73%	100%	99.62%
	Transit	16,848	9,429	15,075	9,020	0	50,372
	%	0.66%	0.34%	0.36%	0.27%	0%	0.38%
GHG	Auto	614.63	664.72	1018.71	809.59	119.04	3,226.69
emissions	%	96.08%	97.93%	97.84%	98.37%	100%	97.73%
(ton)	Transit	25.08	14.03	22.44	13.43	0	74.98

Table 3-3 Number of trips, VKT and GHG emission in the base year 2011

The estimation of the seven scenarios shows that household and employment growth over time would increase annual per capita emissions in table 3-4. The impact of modal shift towards transit during the same time period is found to decrease per capita emission. In 2011, annual per capita GHG emission was found to be 3.09 ton. The projected emission for household and employment growth is found to be 3.16 ton in 2016 and 3.41 ton in 2021.

However, a modal shift towards transit can help reduce emission. For a 5% modal share shift from auto to transit the emission would be 3.05 ton in 2016 and 3.28 ton in 2021. Annual per capita emission from GHG, CO, THC, VOC, NOx, PM₁₀ and PM_{2.5} for 2021 is expected to be 3.41 to, 86.57 kg, 9.89kg, 9.34kg, and 6.89kg, 39.55gm and 42.95 gm respectively. Similarly, an increase for growth and a decrease for transit modal shift is observed for all emissions such as CO, THC, VOC, NOx, PM₁₀ and PM_{2.5}.

	2011		2016			2021	
Emissions	Base Year	Scenario 1 (no change in modal share)	Scenario: 2 (2.5% modal shift from auto to transit)	Scenario: 3 (5% modal shift from auto to transit)	Scenario: 1 (no change in modal share)	Scenario: 2 (2.5% modal shift from auto to transit)	Scenario: 3 (5% modal shift from auto to transit)
GHG (ton)	3.09	3.16	3.16	3.05	3.41	3.37	3.28
CO (kg)	77.92	80.05	79.86	77.03	86.57	85.51	83.22
THC (kg)	8.90	9.15	9.12	8.80	9.89	9.77	9.51
VOC(kg)	8.41	8.64	8.62	8.31	9.34	9.22	8.98
NOx(kg)	6.33	6.45	6.43	6.22	6.89	6.81	6.64
PM ₁₀ (gm)	35.82	36.70	36.62	35.34	39.55	39.07	38.04
PM _{2.5} (gm)	41.18	41.22	41.14	39.96	42.95	42.50	41.55

 Table 3-4 Annual
 Per Capita Emission

Temporal distribution of emissions throughout the 24-hour period is estimated from the model which is shown in Figure 3-2. Passenger transportation emissions were estimated throughout the day in Halifax for all the prepared scenarios. GHG emissions reach the maximum during P.M. peak between 4pm - 5pm of 354.28 ton/hour in 2011, 402.83 ton/hour in 2016 and 498.90 ton/hour in 2021. The model also forecast that the impact of

modal shift towards transit would decrease the hourly emissions throughout the day, but its contribution is more significant in the P.M. peak. Calculating a 5% modal shift from auto to transit, the P.M. peak hourly emission would be 387.20 ton/hour in 2016 and 478.18 ton/hour in 2021.

Figure 3-2 24-hour GHG emission

Thus 24-hour emission estimation provides the understanding of the quantity of emission occurred in different time of the day and indicates about the vulnerable time so that policies can be developed accordingly to address those variation.

3.7 Polluting Power and Pollution Experienced

GHG polluting power and pollution experienced is estimated in each zone following the modeling framework described at section 3.4 the results are then accumulated for urban, suburban and rural zones. Table 3-5 shows the GHG emissions per capita for urban, suburban and rural areas. In 2011, the annual GHG per capita was 3.09 ton. The urban area per capita polluting power was 4.16 ton, which is significantly higher than the 2.53 ton of per capita pollution experienced by the urban area. However, both in suburban and rural areas polluting power is less than pollution experienced. This implies that emissions generated from vehicles in the urban areas are adding to the emission experienced at suburban and rural areas.

It also shows the polluting power and pollution experienced in rural areas is higher than overall per capita GHG emission, due to low population density. Polluting power and pollution experienced of suburban areas is lower than overall per capita GHG emissions, reflecting a higher population density in suburban areas. Even though urban areas have the highest population density the per capita polluting power is higher than the overall per capita GHG emission. On the contrary, per capita pollution experienced in urban area is lower than overall per capita GHG emission. This is because the urban areas generate the maximum emissions.

There is also a gradual increase in emissions within 2016 and 2021 when household and employment growth are considered. Pollution experienced is expected to increase 13.54% in urban and 11.67% in suburban areas and 1.51% in rural areas between 2011 and 2021. Polluting power is predicted to increase 25.10% in urban, 15.83% in suburban and 0.02%

in rural areas during the same period. This indicates urban and suburban areas are expected to experience much higher emission increase than in rural areas.

		2011		2016			2021	
		Base Year	Scenari o: 1 (no modal shift)	Scenario: 2 (2.5% modal shift from auto to transit)	Scenario: 3 (5% modal shift from auto to transit)	Scenario: 1 (no modal shift)	Scenario: 2 (2.5% modal shift from auto to transit)	Scenari o: 3 (5% modal shift from auto to transit)
GHG	Total	3 09	3 16	3 16	3.05	3 41	3 37	3 28
per capita	% increase from 2011	0.07	2.47%	0.10	0.00	10.40%	0.07	0.20
	% change from no modal shift			-0.24%	-3.71%		-1.21%	-3.81%
GHG	Urban	2.53	2.59	2.55	2.47	2.87	2.81	2.74
per capita	% increase from 2011		2.54%			13.54%		
(Pollu tion	% change from no modal shift			-1.57%	-5.00%		-2.16%	-4.73%
exper	Suburban	2.25	2.30	2.30	2.22	2.52	2.50	2.42
ience d)	% increase from 2011		2.18%			11.67%		
	% change from no modal shift			0.06%	-3.75%		-0.75%	-3.78%
	Rural	5.24	5.33	5.33	5.16	5.32	5.25	5.13
	% increase from 2011		1.76%			1.51%		
	% change from no modal shift			0.06%	-3.15%		-1.22%	-3.49%
GHG	Urban	4.16	4.29	4.04	3.83	5.21	4.87	4.61
per capita	% increase from 2011		3.18%			25.10%		
(Pollu ting	% change from no modal shift			-5.85%	-10.78%		-6.36%	-11.36%
powe	Suburban	1.87	1.94	1.91	1.84	2.16	2.13	2.04
r)	% increase from 2011		4.06%			15.83%		
	% change from no modal shift			-1.58%	-5.60%		-1.78%	-5.87%
	Rural	5.00	5.05	5.08	4.88	5.00	5.00	4.81
	% increase from 2011		1.16%			.02%		
	% change from no modal shift			0.57%	-3.38%		0.05%	-3.79%

Table 3-5 Annual GHG emission per capita

In those same years, the change of modal shift towards transit reduce GHG emissions. For a 5% modal shift to transit, the decrease per capita emissions is found 3.71% in 2016 and 3.81% in 2021 for a 5% change in modal shift from Auto to transit.. This shift would decrease polluting power of 11.36% in urban areas, 5.87% in suburban areas and 3.79% in rural areas for 2021. This shows modal shift towards auto has more potential to emission reduction in urban and suburban areas.

		2011		2016			2021	
		Base Year	Scenario: 1 (no change in modal share)	Scenario: 2 (2.5% modal shift from auto to transit)	Scenario: 3 (5% modal shift from auto to transit)	Scenario: 1 (no change in modal share)	Scenario: 2 (2.5% modal shift from auto to transit)	Scenari o: 3 (5% modal shift from auto to transit)
GHG	Total	220.50	250.59	249.99	241.30	309.85	306.10	298.03
per Sq KM	% increase from 2011		13.64%			40.52%		
GHG	Urban	6744.15	7352.35	7236.63	6984.56	8675.33	8487.51	8264.90
per Sq KM	% increase from 2011		9.02%			28.63%		
(Pollut	Suburban	1723.78	1970.23	1971.35	1896.33	2405.17	2387.12	2314.16
ion experie	% increase from 2011		14.30%			39.53%		
nced)	Rural	102.17	117.55	117.61	113.85	149.60	147.78	144.38
	% increase from 2011		15.05%			46.43%		
GHG per Sq	Urban	11089.67	12165.25	11453.11	10853.96	15717.02	14717.3	13930.8 0
KM (Pollut	% increase from 2011		9.70%			41.73%		
ing	Suburban	1429.97	1664.47	1638.25	1571.30	2069.58	2032.70	1948.00
power)	% increase from 2011		16.40%			44.73%		
	Rural	97.47	111.48	112.12	107.72	140.64	140.71	135.31
	% increase from 2011		14.38%			44.29%		

Table 3-6 Annual GHG emission per unit area

GHG emissions per unit area is estimated for both polluting power and pollution experienced. (Table 3-6) In 2011, the GHG emissions were 220.50 ton/km². The polluting

power of urban, suburban and rural areas were found to be 11,089.67 ton/km², 1429.97 ton/km² and 97.47 ton/km², respectively. On the other hand, pollution experienced in urban, suburban and rural area were found to be 6744.15 ton/km², 1723.78 ton/km² and 102.17 ton/km². These affirms that suburban and rural areas experience more pollution than they generate, but for the urban area polluting power and experienced are significantly higher than the average GHG emissions in Halifax.

Emission forecasting shows that polluting power per sq km at suburban areas are expected to generate highest increase which is 16.40% in 2016 and 44.73% in 2021 from the base year 2011. This indicates emission per unit arear in suburban area has potential to increase at higher rate than urban and rural in future.

Figure 3-3 GHG polluting power-pollution experienced ratio in Halifax

Figure 3-3 shows who is generating emission and who is experiencing it. Polluting powerpollution experienced ratio of urban area is 1.68 which means urban areas generating 68% more than they are experiencing. 20 out of 91 urban TAZ has a Polluting power-pollution experienced ratio over 2.0 and maximum being 13.83 in Halifax south end. The same for suburban and rural areas are 0.82 and 0.95 which implies suburban and rural areas experience more emission than they generate.

Figure 3-4 Daily GHG Polluting Power Map of Halifax (2016)

GHG emissions were also analyzed at the TAZ level, and a polluting power map and pollution experienced map were produced (Figure 3-4 and 3-5). These maps show the

spatial distribution of emissions. Figure 3-4 represents the daily GHG polluting power map of Halifax Regional Municipality (HRM) for 2016. The map shows that the GHG emissions generation from the urban areas are significantly higher than other areas. The maximum GHG polluting power was found to be 862.29 ton/km² in the downtown area. Four TAZ values around downtown have a polluting power more than 500 ton/km².

Figure 3-5 Daily GHG Pollution Experienced Map of Halifax (2016)

Figure 3-5 represents the daily GHG pollution experienced in Halifax Regional Municipality for 2016. The maximum GHG polluting power of 118.89 ton/km² was found in the downtown area. Three TAZ values around the downtown experienced pollution of

more than 100 ton/km². Pollution experienced in the downtown is higher than suburban and rural areas

3.8 Conclusion

The results showed that the emission contribution of auto is higher than its modal share, where 87.18% of total trips contribute 97.73 % of GHG emissions. GHG emissions reached the maximum during P.M. peak between 4pm - 5pm of 354.28 ton/hour in 2011, 402.83 ton/hour in 2016 and 498.90 ton/hour in 2021. The model forecasts the increase of annual per capita emissions from 3.09 in 2011 to 3.16 in 2016 and 3.41 in 2021. A 5% shift in modal share from auto to transit translates to a decrease of GHG pollution in 2016 and 2021 which shows the values of 3.05 in 2016 and 3.28 in 2021 The results also indicates that the impact of modal shift towards transit would decrease the hourly emissions throughout the day, but its contribution is more significant in the P.M. peak. This shift would decrease polluting power of urban areas 11.36% and 5.87% in suburban areas whereas the same in rural areas 3.79% in 2021. This shows modal shift from Auto has more potential to emission reduction in urban and suburban areas. Therefore, there is potential that if more transit and active transportation options are offered in urban and suburban areas by transportation planners, that would help to reduce emission contribution from Auto

The results also reflect the polluting power of urban areas was significantly higher than the pollution experienced in the same areas. This implies that the emissions generated from vehicles in urban areas are adding to the emissions experienced at suburban and rural areas.

Urban areas are generating 68% more emission they generate and suburban and rural areas experience more emission than they generate.

Emission forecasting shows that pollution experienced is expected to increase 13.54% in urban,11.67% in suburban areas and only 1.51% in rural areas between 2011 and 2021.Polluting power is predicted to increase 25.10% in urban,15.83% in suburban and 0.02% in rural areas during the same period. This indicates the prospective increase of emission in coming years at urban and suburban areas is much higher than in rural areas. The pollution map dictates that the downtown areas are responsible for maximum pollution and experienced pollution. It reveals that maximum emissions are generated and experienced at urban downtown areas which is 862.29 ton/km² and 118.89 ton/km² respectively. Emission forecasting also shows that polluting power at suburban areas are expected to generate highest increase which is 16.40% in 2016 and 44.73% in 2021 from the base year 2011. This indicates emission per unit area in suburban area has potential to increase at higher rate than urban and rural in future

The findings of emission polluting power and pollution experienced can be used as a basis for a decision making strategy in a urban-rural divide context particularly how to reduce pollution in one hand and how to reduce exposure on the other hand. It also shows the impact of GHG emission reduction for a modal shift to transit in urban and suburban areas are significant which can be useful for making transit investment and policy decisions. More investment in transit for urban and suburban areas will not only be beneficial for urban and sub urban, but would help rural areas to experience less pollution.

CHAPTER 4

ALTERNATIVE TRANSIT INFRASTRUCTURE PROJECT EVALUATION

4.1 Chapter Overview

The chapter investigates the impact of transit infrastructure projects on network performance and emission by using the transport network and emission modelling system. Halifax Regional Municipality (HRM) is considering three alternative transit infrastructure projects such as BRT, rail and ferry between Halifax Downtown-Bedford corridors to enhance the transit service. This study creates four different scenarios including three proposed alternative modes: Bus rapid transit (BRT), commuter rail and ferry along with business as usual regular transit. Prediction of transit users, network performance indicators and greenhouse gas (GHG) emissions were considered as evaluation criteria.

This study implemented a unique approach by using of stated preference survey to create future origin-destination matrix for the network model. The scenarios thus reflect alternative futures, with the interaction of external conditions and as a result of choices.

This chapter is organized as follows: first, a brief introduction with a review of the literature, then background of alternative transit plans for Halifax-Bedford. Use of stated

preference survey is discussed followed by evaluation of projects by network performance and GHG emissions results.

4.2 Background

Public transit is a vital component of an integrated sustainable transportation system for an urban area. Transit agencies in different cities around the world, are aiming for improving their quality of service and introducing new alternative transit infrastructure projects in order to increase transit ridership and attract passengers from other modes, especially passenger car.

Any transportation project evaluation process involve predicting future ridership. But as it is an unobserved future and hypothetical in nature, modelling future ridership is challenging. Stated preference survey is an effective tool which is very useful in this type of evaluation. Transport network modeling is the best possible way to conduct network evaluation. Greenhouse gas (GHG) emissions contributed by the transportation sector is a growing concern in recent years in North American cities, which should be taken into consideration in any transportation infrastructure project. Nowadays, GHG emissions is one of the most important criteria to use when evaluating between alternate public transportation projects.

Different alternatives of public transportation have evolved around the world for small or medium sized cities. Bus Rapid Transit (BRT) is a popular option in some cities, and commuter rail is a viable option for cities that are equipped with railway track infrastructure. Similarly, cities that have a proximal water body or harbor have the advantage of considering fast ferry service as an option. Halifax, which is the capital of Nova Scotia, Canada has all of these options are available for consideration. This is why Halifax can be a perfect case study to investigate those three transit alternative infrastructure projects.

4.3 Literature Review

Transit infrastructure projects are of large investment, therefore, there are always attempts to analyze the potential impact of the project as precisely as possible.

Future potential ridership is one of the important indicator for evaluating transit infrastructure. Henao et al. (2015) concluded that transportation infrastructure investments such as improving mode choices through new infrastructure and services in Boulder, Colorado from 1990 to 2009, are associated with an increase in transit mode share and a decrease in single occupancy vehicle mode share. Allen et al. (2006) analyzed a transit database from 1985 to 2003 and reported that the Dallas Area Rapid Transit system in Texas experienced significant ridership changes as it transitioned from an all-bus system to a bus-and-rail system. It is very important to forecast potential ridership of transit infrastructure as close as possible. Jones et al. (2014) pointed out that CBA overestimates traffic forecast by 20%-60%. Therefore to address unobserved future is a challenge for transit modal shift forecasting. Stated preference survey can be used to serve the purpose very effectively to address these future hypothetical scenarios.

Stated preference (SP) methods were introduced to transportation in the early 1970s and become popular among researchers during early to mid-1980s, when SP surveys were used to investigate travelers' behavior. Loo (*2002*) reviewed studies conducted in different parts

of the world in stated preference (SP) surveys and suggested that SP techniques can be used with the traditional four-stage transportation planning model. Stated preference surveys are popular in modal choice and other decision choice studies. Roman et al. (2010) analyzed a mixed revealed preference data set to study Madrid–Zaragoza and Madrid– Barcelona routes, in which high speed rail could attract more traffic than competing modes. In this study, a stated preference survey results were used as a tool for hypothetical future investments.

Recently, the impact of GHG emissions is a growing concern which also has been used as an evaluation tool for projects. Euritt et al. (1996) concludes if greenhouse gas emissions are to be held at 1990 levels or reduced below that in Texas, very dramatic policies in the are needed that include modal shift to high occupancy vehicles including high speed rail. Puchalsky's (2005) analysis shows that whenever equal levels of technology are compared, Light rail transit (LRT) consistently performs better to reduce emission than BRT despite recent advances in the BRT mode. The analysis also shows that both modes are cleaner now than in the past. Brisson et al. (2012) examined GHG reduction strategy for San Francisco and found that although investments in transit alone may not produce substantial GHG reductions, they are necessary to accommodate the mode shift of other strategies and can be paired strategically with road pricing strategies which were found to have the largest potential to reduce GHG emissions.

This study extends the regional transport network and emission modelling system to evaluate future alternative transit infrastructure projects in Halifax

84

4.4 Transit alternative plans for Halifax-Bedford

Halifax is the capital of the province of Nova Scotia, Canada. The proportion of commuters in Halifax using public transit to get to work has continued to rise in recent years. In the HRM, 11.9% commuters used public transit in 2006 compared to 9.9% in 2001. (*Halifax Transit, 2013*).

Meanwhile, in 2009 the HRM emphasized its potential growth of transit users in the 5-year strategic plan. They have adopted a transportation strategy, which further emphasizes the need for increased reliance on transit. To accommodate a greater portion of transportation trips, the HRM strives to increase to as high as 26% of overall trips by 2031 and 18% within next five years. The HRM addresses this issue with greater emphasis on public transit and the ability to handle a major portion of the future growth of transportation (*Halifax Transit, 2013*).

For more than a decade, the HRM has been investigating the possibility of enhancing commuter service between Bedford and the Halifax Peninsula, and has considered a BRT system, a commuter rail service, and a ferry service. According to the Regional Municipal Planning Strategy (RMPS) adopted by the HRM in 2006, the suburban communities of Bedford West and Bedford South are each expecting a population increase of over 15,000 people in the next twenty years (*Delphi-MRC, 2010*). In order to accommodate the large increase in the number of commuters to the Halifax Peninsula and reduce automobile congestion along major commuter corridors, the current public transit system needs to be improved. Therefore, the study has great significance in present context of Halifax. Figure 4-1 shows the proposed BRT, rail and ferry routes in Halifax.

Figure 4-1 Proposed BRT, Ferry and Rail Route

The proposed BRT line starts at from the Park and Ride facility in Bedford and ends at Scotia Square in Downtown Halifax. The proposed ferry route is from Mill Cove, Bedford to Halifax ferry terminal. Meanwhile the proposed commuter rail stats at Mill cove and runs through Rockingham to a VIA rail station.

4.5 Modelling framework

A regional transportation model is developed for Halifax in this study which is described in Chapter 2. The model was validated with existing data and forecasted for 2016 and 2021. Emission estimation is incorporated in the modelling framework to quantify emissions for Halifax which is described in Chapter 3. This transportation network and emission modelling system is used to evaluate alternate transit infrastructures in Halifax.

Four different scenarios were created for 2016 with one being business as usual and the other three including BRT, rail and ferry with the current transit network of Halifax. For each scenario, an A.M. peak (6 am-10am) and a P. M. peak (2pm-6pm) model were performed using 2016 hourly auto and transit origin-destination trip matrix. These two time periods are used to investigate the impact of a transit infrastructure project of BRT, rail or ferry in this study. Eight traffic analysis zones from downtown Halifax and eight traffic analysis zones from Bedford are considered to show the response of implementing the transit infrastructure options with BRT, rail or ferry in this study. (Appendix D-1)

Richardson and Habib (2011) performed a stated preference survey to investigate user preferences for three proposed transit alternatives, bus rapid transit, commuter rail and ferry connecting Bedford and Halifax. The survey design used for the study considers three attributes. Those are: travel time, travel cost, and service frequency for each transit alternative. A fractional factorial design is considered for the SP survey, which generates 12 choice scenarios. A multinomial logit (MNL) model was developed using SP survey data with random utility-based discrete choice modelling techniques. Results of that Multinomial model which is based on SP survey data for BRT, rail and ferry is are shown in Table 4-1. Results indicates increase in travel cost and travel time for a mode would decrease the probability of choosing that mode. On the other hand increase in service frequency of a mode would increase the probability of choosing that mode.

Attribute	Coefficient	t-stat
Travel time	0554	-17.103
Travel Cost	3929	-23.445
Service Frequency	.0231	4.118
ASC Ferry	8292	-4.715
ASC Train	3957	-2.535
ASC Bus	9004	-7.318
Model Fit (Adjusted R	ho-square) = 0.11	

Table 4-1 MNL Model Results Based on the SP Survey Results

(Richardson and Habib, 2011)

The Modeling framework for alternative transit infrastructure evaluation is shown in figure 4-2. This study uses the above mentioned MNL model results to calculate the future modal share of Auto, existing transit and proposed alternate transit. This provides the forecast of transit users of all three transit alternatives which is the first evaluation criteria.

Figure 4-2 Modeling framework for alternative transit evaluation

Transportation network model is used to evaluate network performance. Transit and Auto assignments are run for the created four scenarios. To represent unobserved future, modal share of the 16 zones were updated by using the MNL model results. Thus SP survey provide the hypothetical future choices to the transportation network modeling framework. Travel time, trip length of overall network is observed for all the scenario. Transit-Auto travel time ratio for each O-D pair was calculated which gives the performance measure of the each transit alternatives.

GHG emission of the network for each scenario were also estimated using the emission estimation procedure described in chapter 3. Per capita GHG emission and emission experienced in each zone were estimated. This provides the relative impact of all those transit alternative on increasing or decreasing GHG emission.

4.6 Evaluation based of network performance

Network performance indicators those are used in this study are change in modal share, network characteristics like travel time and trip length and transit-auto travel time ratio.

4.6.1 Change in Modal Share

The model result suggest that, current modal share between auto and transit is expected to change with inclusion of an alternate transit like BRT, rail or ferry. Figure 4-3 shows modal share of auto will be dropped 84.94% to 80.59% at AM peak and from 79.87% to 74.38% at PM peak for rail. It would attract more rider than other two options as 7.16% in PM peak and 5.73% in AM peak. Among these shift 5.49% in PM peak and 4.35% in AM peak are

from auto and rest are from existing transit. Among the other two options BRT is attracting more rider in AM peak which is 2.36% compare to ferry's 2.04%. But shift to ferry in PM peak is 4.25%, which is higher than 2.82% of BRT. Thus all the options shows modal shift from auto to transit and rail has the maximum potential to shift Auto users to transit.

Figure 4-3 Modal share of different alternative transit

4.6.2 Network Characteristics

The model also evaluates the overall transit system performance of the HRM with respect to the proposed inclusion of BRT, rail and ferries in the system. Table 4-2 shows the average distance traveled for transit per trip and the average transit travel time per trip for both AM peak and PM peak periods. Although this improvement is proposed for one corridor of the city, it shows some impact of overall transit performance of the city. For a business as usual scenario, the average distance traveled in transit per trip is 5.31 km in AM peak and 5.55 km in PM peak. All three options would decrease the distance whereas BRT would do the maximum. Introduction of BRT decreases average distance traveled in transit per trip to 0.32% in AM peak and 0.33% at PM peak.

Average transit travel time per trip was found to be 11.65 minute for AM peak and 12.21 for PM peak. In this case, BRT shows a 1.65% and 1.70% decrease, whereas rail and ferry indicate some increase of travel time. Overall, the inclusion of BRT is showing better network performance than other options.

AM Peak period	AM Peak period									
	BAU	BRT	Rail	Ferry						
Distance traveled in	5.311	5.295	5.307	5.310						
transit per trip (km)										
% Change from BAU		-0.32	-0.09	-0.03						
Average transit travel	11.652	11.459	11.668	11.658						
time per trip (minute)										
% Change from BAU		-1.65	0.14	0.05						
PM Peak Period										
	BAU	BRT	Rail	Ferry						
Distance traveled in	5.550	5.532	5.544	5.547						
transit per trip (km)										
% Change from BAU		-0.33	-0.11	-0.07						
Average transit travel	12.209	12.001	12.227	12.220						
time per trip (minute)										
% Change from BAU		-1.70	0.15	0.09						

Table 4-2 Network Characteristics of Alternative Transit Scenarios

4.6.3 Transit-Auto Travel Time Ratio between O-D Zones

Transit–auto travel time ratio is a service quality measure which indicates the relative effectiveness of a transit system with respect to Auto travel time. In this study, the transitauto travel time ratio is calculated with each origin destination zone between Bedford-Halifax downtown in PM peak period for all the scenarios. In the business as usual case, transit-auto travel time varies from 1.428 between the Downtown Core-Mill Cove to 2.655 between Downtown Citadel-Kerney Lake areas. For most of the cases including BRT is better in terms of transit-auto travel time ratio. Out of the 64 origin destination pair for BRT transit-auto travel time ratio is lower than business as usual for 62 cases. Rail and ferry showed a similar advantage for 26 and 28 O-D pair respectively. Table 4-3 shows the relative comparison of transit-auto travel time ratio.

					Destination	Zones			
Origin Zones		Larry Uteck	Kearney Lake Rd	Kearney Lake	Hamond Plains Rd	Bedfod West	Bedfod South	Mill Cove	Bedfod Core
Downtown	BAU	2.153	2.075	2.471	1.902	2.260	1.954	1.689	1.826
-Pier 21	BRT	2.092	1.994	2.398	1.836	2.099	1.879	1.628	1.755
	Rail	2.156	2.069	2.465	1.897	2.254	1.949	1.691	1.822
	Ferry	2.153	2.069	2.464	1.897	2.254	1.949	1.689	1.822
Downtown	BAU	1.998	1.892	2.313	1.751	2.089	1.784	1.529	1.661
-Lower Water	BRT	1.935	1.813	2.241	1.687	1.929	1.711	1.466	1.591
Street	Rail	2.001	1.890	2.311	1.750	2.087	1.783	1.532	1.660
	Ferry	2.004	1.892	2.313	1.751	2.090	1.785	1.534	1.661
Downtown	BAU	2.339	2.253	2.655	2.033	2.442	2.107	1.834	1.966
-Citadel	BRT	2.282	2.176	2.586	1.972	2.279	2.037	1.776	1.898
	Rail	2.351	2.260	2.663	2.038	2.450	2.113	1.844	1.971
	Ferry	2.348	2.255	2.657	2.034	2.444	2.109	1.841	1.967

 Table 4-3 Transit-Auto Travel Time Ratio

Origin Zones		Larry Uteck	Kearney Lake Rd	Kearney Lake	Hamond Plains Rd	Bedfod West	Bedfod South	Mill Cove	Bedfod Core
Downtown Core	BAU	1.901	1.786	2.225	1.663	1.992	1.686	1.428	1.563
	BRT	1.846	1.715	2.161	1.606	1.838	1.620	1.372	1.500
	Rail	1.912	1.793	2.233	1.668	1.999	1.691	1.436	1.569
	Ferry	1.910	1.790	2.229	1.666	1.996	1.689	1.434	1.566
Downtown -Upper Water street	BAU	1.912	1.801	2.227	1.678	2.000	1.701	1.450	1.582
	BRT	1.849	1.722	2.156	1.614	1.842	1.629	1.387	1.512
	Rail	1.921	1.806	2.233	1.681	2.006	1.706	1.457	1.586
	Ferry	1.918	1.802	2.229	1.679	2.002	1.703	1.455	1.583
Downtown -Casino NS	BAU	1.971	1.843	2.278	1.709	2.046	1.737	1.490	1.607
	BRT	1.921	1.775	2.215	1.654	1.895	1.674	1.440	1.553
	Rail	1.972	1.843	2.278	1.708	2.046	1.737	1.490	1.607
	Ferry	1.975	1.839	2.273	1.706	2.042	1.734	1.492	1.604
Downtown -Cogswell	BAU	2.080	1.974	2.408	1.810	2.178	1.853	1.584	1.721
	BRT	2.072	1.952	2.387	1.793	2.067	1.833	1.575	1.702
	Rail	2.090	1.979	2.413	1.814	2.183	1.858	1.591	1.725
	Ferry	2.087	1.970	2.403	1.807	2.174	1.850	1.589	1.718
Downtown - North St	BAU	2.136	2.016	2.441	1.845	2.216	1.892	1.638	1.751
	BRT	2.142	2.004	2.428	1.836	2.113	1.881	1.642	1.742
	Rail	2.138	2.016	2.441	1.844	2.216	1.892	1.639	1.751
	Ferry	2.140	2.011	2.436	1.842	2.211	1.889	1.641	1.748

4.7 Evaluation based on GHG Emission

GHG emission analysis provides per capita emissions of downtown Halifax and Bedford area in AM peak and PM peak period for all the scenarios (Table 4-4). In Halifax, per capita emission is 1.692 kg at AM peak and 3.029 kg in PM peak. On the other hand, in Bedford, per capita emission is 1.002 kg at AM peak and 1.89 kg in PM peak. Results also show a decrease of per capita emission for BRT during all period, with the highest being 0.19% in PM peak at Halifax. For rail and ferry in Halifax, AM peak pollution increased slightly. All other instances show a decrease of emission. In Bedford, AM peak rail per capita emission decreases the most which is 0.30%. For ferry its 0.26% during Halifax PM period.

	Per capita GHG Emissions (Kg)						
	BAU	BRT	Rail	Ferry			
Halifax (AM Peak)	1.692	1.692	1.693	1.693			
% Change from BAU		-0.03	0.01	0.03			
Halifax (PM Peak)	3.029	3.023	3.022	3.021			
% Change from BAU		-0.19	-0.23	-0.26			
Bedford (AM Peak)	1.002	1.001	0.999	1.001			
% Change from BAU		-0.09	-0.30	-0.11			
Bedford (PM Peak)	1.895	1.893	1.892	1.893			
% Change from BAU		-0.13	-0.17	-0.11			

 Table 4-4 Per Capita GHG Emissions

Comparing GHG emission reduction in Halifax and Bedford with the total network is shown in Figure 4-4. There is a very small increase in emission in total network but decrease in Halifax and Bedford except PM peak period in Halifax. This reflects that only one route might not have a significant impact on GHG emission but it may have the potential to decrease GHG emissions if the total network is of BRT or rail can be established.

Figure 4-4 Change of GHG emissions

Figure 4-5 Change of AM peak GHG emissions polluting power

Figure 4-6 Change of PM peak GHG emissions polluting power

GHG emission polluting power in each zone of Halifax and Bedford during AM peak period is shown in Figure 4-5. It shows most of the zone is polluting power is decreasing in Halifax and Bedford zones. Figure 4-6 shows polluting power of PM peak period which reflects decrease of emission in Bedford zones but small increase of emissions in most Halifax zones. Emission experienced for all zones were also estimated (Appendix D-2) Though overall change in GHG emission is not significant reduction emission, but there may be potential of substantial emission reduction if a network of Rail of BRT can be established. This also states any of the transit infrastructure projects can help to reduce emissions. Further study is required in this regard to reach a definite conclusion.

4.8 Conclusion

This study evaluate three alternative transit infrastructure projects between Halifax-Bedford using transport network and emission modeling system. It is evident from the model results that rail showed better results in terms of modal shift from Auto. On the other hand, BRT has advantage in terms of reducing travel time. In the case of GHG emission reductions, BRT, ferry and rail have impacts on the local level, whereas overall GHG reduction is not that significant. It reflects that implementation of an infrastructure project in one route might not have a significant impact on GHG emissions but has potential to decrease GHG emissions if the total network of BRT or rail can be established. The findings of this study have important policy implications. This study sheds light on possible options to be prioritized by decision makers.

CHAPTER 5

CONCLUSION

5.1 Summary

The first objective of this study was to develop a 24 hour transportation network model for Halifax. A regional transportation network model was developed using four stage demand forecasting modeling framework with base year of 2011. Time of the day model was incorporated into it to have the 24 hour temporal variation. By using the observed growth, the model forecasted travel demand and other attributes of the transportation system in 2016 and 2021.

The model results provide trip production and attraction of each zone. Most of the trips are produced from suburban areas which is 51.67% of total trips, whereas rural and urban areas produce 25.10% and 23.23% respectively. On the other hand, 52.09% of total trips are attracted to urban areas and suburban and rural areas attract 34.76% and 13.14% respectively. It revealed that the modal share of Auto driver, Auto passenger, Transit, Walking and Biking are 65.88%, 12.08%, 12.81%, 7.46% and 1.77% respectively. It also developed hourly O-D matrix for 24 hours with all of those five modes. The model provides the temporal variation of travel time, traffic volume and speed of the network in 24 hours. Model results indicates that speed decrease on highway, arterial and major collector from 2011 to 2021 are 19.60%, 24.17% and 10.30% respectively. This indicates the necessity

of putting more resources such as infrastructure investment on arterial roads in coming years to keep up the road network as functional as present. Corridor analysis was done on the five entry/exit points of Halifax peninsula which were Macdonald Bridge, McKay Bridge, Highway 102, Bedford highway and Herring Cove Road. This analysis found that Macdonald Bridge is having highest traffic volume and experiencing lowest speed among those corridors in morning peak periods. The study on travel times and speed along three different O-D pairs from suburban areas like Bedford West, Portland and Spry field to Halifax downtown concludes that travel time would increase by 39.56%, 51.74% and 31.58% respectively at afternoon peak period within those O-D pairs between 2011and 2021.

The second objective of this study was to estimate vehicular emission by using the modeling system. The scope of this is to characterize the emission in terms of who generates emission and who experiences highlighting urban-rural divide. Scenarios were created to forecast the impact of a potential modal shift from auto to transit and on GHG emissions. The results revealed that whereas Auto is 87.18% of total trips, it contributes 97.73% of GHG emissions. It reached the maximum during P.M. peak of 354.28 ton/hour. The impact of household and employment growth would increase annual per capita emissions from 3.09 in 2011 to 3.16 in 2016 and 3.41 in 2021 in Halifax. The impact of modal shift is found to decrease per capita emissions by 3.71% in 2016 and 3.81% in 2021 for a 5% shift from Auto to transit. This shift would decrease polluting power of urban areas 11.36% and 5.87% in suburban areas whereas the same in rural areas 3.79% in 2021. This shows modal shift from auto has more potential to emission reduction in urban and suburban areas. It can be concluded that more transit and active transportation options

should be offered in urban and suburban areas by transportation planners to reduce emission contribution from Auto which would help rural areas also to experience less emission.

This research illustrates the findings of pollution generation and experienced in urban-rural Halifax Nova Scotia. The polluting power and pollution experienced map reveals that maximum emissions are generated and experienced at urban downtown areas which is 862.29 ton/km² and 118.89 ton/km² respectively. Overall urban areas generates 68% more emission than they are experienced whereas suburban and rural areas experience more emission than they generate. This implies that emissions generated by vehicles from urban areas are adding to the emission experienced in suburban and rural areas in Halifax. Emission forecasting reveals that between 2011 and 2021 Pollution experienced is expected to increase 13.54% in urban, 11.67% in suburban areas and only 1.51% in rural areas. Polluting power is predicted to increase 25.10% in urban, 15.83% in suburban and only 0.02% in rural areas during the same period. This indicates urban and suburban areas are expected to experience much higher emission increase than in rural areas. Emission forecasting also shows that polluting power at suburban areas are expected to generate highest increase which is 16.40% in 2016 and 44.73% in 2021 from the base year 2011. This indicates emission per unit area in suburban area would increase at a higher rate than urban and rural in future.

The third objective of this study was to evaluate alternative transit infrastructure projects in Halifax. It evaluates three alternative transportation options which were BRT, rail and ferry in the Bedford-Halifax corridor. In this study transit ridership and different network performance indicators were used for performance evaluation. Greenhouse gas (GHG) emissions were also considered for the purpose of investigation.

The evaluation of results found that rail showed better results in terms of modal shift from auto which is a maximum of 5.49% modal shift from auto to transit in PM peak period. Whereas BRT has advantage in terms of reducing travel time. 62 out of 64 O-D pair would experience decrease of transit travel time in case of BRT. For GHG emission reductions, BRT, ferry and rail have impacts on the local level, but overall GHG reduction is not significant. It implies that implementation of an infrastructure project in one route might not have a significant impact on GHG emissions but if the total network of BRT or rail can be established that may have potential to decrease GHG emissions substantially.

5.2 Research Contributions

The study has following research contributions:

- This study contributes by developing a 24 hour transportation network model for Halifax. 24-hour network model is limited in the existing literature. The model evaluate the impact of a policy scenario of modal shift towards transit.
- Transportation network and emission modeling system is used in this study to estimating emission polluting power and pollution experienced for urban, suburban and rural areas. The study addresses the literature gap by describing the relative contribution of urban, suburban areas rural in generating and experiencing emissions.

This study evaluates three alternative transit infrastructure projects. A unique feature of this evaluation is the use of Stated Preference survey to create future origin-destination matrix. The scenarios thus reflect alternative futures, with the interaction of external conditions and as a result of choices.

5.3 Practical Implications of findings

The study results and findings have practical implications. Some of them are discussed in the following.

- Auto is 87.18% of total trips but it contributes 97.73% of GHG emissions. Therefore any modal shift from Auto to transit or active transportation would reduce emission.
- From 2011 to 2021, that travel time would increase by maximum 51.74% at afternoon peak period from Halifax downtown to suburban areas. Transportation demand management measures need to be implemented in afternoon peak period to ensure stable network performance from Halifax Downtown to suburban areas.
- The study identified that on arterial roads speed would decrease the maximum which is 24.17% from 2011 to 2021. So it is a necessity of putting more resources such as infrastructure investment on arterial roads in coming years to keep up the road network as functional as present.
- The study result suggested that a 5% modal shift from auto to transit would decrease polluting power of urban areas 11.36% and 5.87% in suburban areas

whereas the same in rural areas 3.79% in 2021. More transit and active transportation options should be offered in urban and suburban areas by transportation planners to reduce emission contribution from Auto.

- An interesting finding of the study is that urban areas are generating 68% more emission they generate. On the other hand, suburban and rural areas experiencing emission generated by urban areas. Hence, investment of emission reduction on urban areas would help rural areas also to experience less emission.
- Implementation of an infrastructure project in one route would not have a significant impact on GHG emissions, which can be achieved by establishing network of BRT or rail.

5.4 Limitations and Future Work

The transportation network model developed in this study is a four stage trip based model. Activity-based models could replicate actual traveler decisions and may provide forecasts of future travel patterns. Incorporation of an activity based model into the current transport network can improve the model output. Moreover the typical daily 24 hour model can be upgraded to weekly model considering the weekly variation of travel behavior.

This study focused on emission from passenger transportation. Future work should include freight transportation to present the complete picture of emission from road transportation. In this study, emission was estimated by using emission factors. Emission modeling software platforms such as MOVES offer the opportunity to estimate emissions of a wide range of transportation related air pollutants for different vehicle types considering various

vehicle model years, fuel types, meteorology, and road types. Adoption of MOVES platform can offer extensive emission analysis. An emission dispersion model can also be used to measure the intensity of pollutants.

The study area has exogenous land use characteristics. Land use models can predict future changes in land use, socioeconomic and demographic data based on economic theories and social behaviors. Use of a land use model to predict population growth, residential location choice, vehicle ownership etc. under the current modeling framework would be an improvement of the transportation network model.

Finally future work include development of an integrated Transportation, Land-use and Energy (iTLE) model which can simultaneously predict spatial distribution of population and travel patterns.

Nevertheless, this thesis work developed a 24 hour regional transportation network and emission modeling system for Halifax which provides emission estimation and transit infrastructure projects evaluation. The transportation network model developed in this study is the first step towards the integration of the models developed in DalTRAC towards Halifax integrated Transportation, Land-use and Energy (iTLE) model.

BIBLIOGRAPHY

Abdel-Aty, M. A. Using Ordered Probit Modeling to Study the Effect of ATIS on Transit Ridership. *Transportation Research Part C: Emerging Technologies, Vol.* 9, 2001 pp.265–277.

Ahern, A.A. and N. Tapley. The Use of Stated Preference Techniques to Model Modal Choices on Interurban Trips in Ireland. *Transportation Research Part A: Policy and Practice, Vol. 42*, 2008 pp. 15-27.

Ahn, K. and H. Rakha. The Effects of Route Choice Decisions on Vehicle Energy Consumption and Emissions. *Transportation Research Part D: Transport and Environment, Vol. 13*, 2008, pp. 151-167.

Alam, A., E. Diab, A. M. El-Geneidy and M. Hatzopoulou. A Simulation of Transit Bus Emissions along an Urban Corridor: Evaluating Changes under Various Service Improvement Strategies. *Transportation Research Part D: Transport and Environment, Vol. 31*, 2014, pp. 189-198.

Allen, D. and G. Hufstedler. Bus-and-Rail and All-Bus Transit Systems: Experience in Dallas and Houston, Texas, 1985 to 2003 .*Transportation Research Record: Journal of the Transportation Research Board, Vol. 1986*, 2006, pp. 127-136

Anderson, M. D., K.Sharfi, and S. E. Gholston. Direct Demand Forecasting Model for Small Urban Communities Using Multiple Linear Regression. *Transportation Research Record: Journal of the Transportation Research Board, Vol. 1981,* 2006, pp. 114–117.

Burgess, P.V. HRM Travel Demand Model Traffic Analysis Zone Development, 2010

Bates, J.J. Econometric Issues in Stated Preference Analysis, *Journal of Transport Economics and Policy, Vol. 22*, 1985, pp. 56-69.

Ben-Akiva, M. E. and S. R. Lerman. *Discrete Choice Analysis: Theory and Application to Travel Demand*, MIT Press, Cambridge, Ma., 1985

Ben-Akiva, M., and M. Bierlaire. Discrete Choice Methods and Their Applications to short term travel decisions. *Handbook of Transportation Science*, 1999.

Ben-Akiva, M., and T. Morikawa. Comparing Ridership Attraction of Rail and Bus, *Transport Policy, Vol. 9*, 2002, pp.107–116.

Brisson, E. M., E. Sall, and J.Ang-Olson. Achieving Goals of San Francisco, California, for Greenhouse Gas Reductions in Transportation Sector .What Would It Take? *Transportation Research Record: Journal of the Transportation Research Board, No.* 2287, 2012, pp. 89–97.

Chakrabarty, A., and S. Mishra.A Case for Increased State Role in Transit Planning: Analyzing Land Use and Transit Ridership Connections Using Scenarios presented at 91st Annual Meeting of the Transportation Research Board (TRB), Washington, D.C., 2012

Creemers, L., M. Cools, H. Tormans, P. Lateur, D. Janssens, and G. Wets. Identifying the Determinants of Light Rail Mode Choice for Medium- and Long-Distance Trips Results from a Stated Preference Study. *Transportation Research Record: Journal of the Transportation Research Board, No. 2275*, 2012, pp. 30–38.

Delphi-MRC. An Operational and Life Cycle Cost Analysis of Transit Service Alternatives in the Bedford-Halifax Corridor – Final Report, 2010. https://www.halifax.ca/planhrm/documents/MMMReport_BedfordHalifaxMainlandNorth Corridor.pdf Accessed July 28, 2016 Environment and Climate Change Canada. *National Inventory Report 1990-2014: Greenhouse Gas Sources and Sinks in Canada Executive Summary*. https://www.ec. gc.ca/ges-ghg/662F9C56-B4E4-47897D4BAABE1E6E2E7/2016_NIR_Executive_ Summary_en.pdf. Accessed July 28, 2016.

Euritt, M. A., M. Martello, J. Qin, and A. Weissmann, M. Fulmer, and I. Peters. Strategies for Reducing Energy Consumption and Emissions in Texas Transportation Sector *Transportation Research Record: Journal of the Transportation Research Board, Vol. 1520*, 1996, pp 122-130

Frank, L. D., B. Stone Jr, and W. Bachman. Linking Land Use with Household Vehicle Emissions in the Central Puget Sound: Methodological Framework and Findings. *Transportation Research Part D: Transport and Environment, Vol. 5, No. 3*, 2000, pp. 173-196.

Frisken, F. The Contributions of Metropolitan Government to the Success of Toronto's Public Transit System, *Urban Affairs Review 27, 268, 1991*

Fujii, T., and T. A. Hartshorni. The Changing Metropolitan Structure of Atlanta, Georgia: Locations of Functions and Regional Structure in a Multinucleated Urban Area, *Urban Geography 16*, 1995, pp.680-707.

Gao, W., M. Balmer and E. J. Miller. Comparisons between MATSim and EMME/2 on the Greater Toronto and Hamilton Area Network. Presented in 89th Annual Meeting of the Transportation Research Board (TRB), 2000.

Gouge, R., F. J. Ries and H. Dowlatabad. Spatial Distribution of Diesel Transit Bus Emissions and Urban Populations Implications of Coincidence and Scale on Exposure. *Environ. Sci. Technol, Vol. 44,* 2010, pp. 7163–7168 Greene, E. R., and C. Smith. Congestion Pricing on Highways in Chicago, Illinois. What Do Drivers Think? *Transportation Research Record: Journal of the Transportation Research Board, No. 2187, 2010, pp. 68–75.*

Habib, M.A. Working paper on NovaTRAC survey, Dalhousie Transportation Collaboratory (DalTRAC), 2015

Halifax Regional Municipality. Corporate Plan to Reduce Greenhouse Gas Emissions 2012-2020.http://www.halifax.ca/energy environment/environment/documents/
CorporateGreenhouseGasEmissionsReductionPlan2012Update.pdf. Accessed July 28, 2016.

Halifax Transit. *Moving Forward Together Plan*. http://www.halifax.ca /boardscom/SCtransp/documents/160324tsc1213.pdf. Accessed July 28, 2016

Hankey, S. and J. D. Marshall. Impacts of Urban Form on Future US Passenger-Vehicle Greenhouse Gas Emissions. *Energy Policy, Vol. 38, No. 9*, 2010, pp. 4880-4887.

Hatzopoulou, M., E. J. Miller and B. Santos. Integrating Vehicle Emission Modeling with Activity-Based Travel Demand Modeling Case Study of the Greater Toronto, Canada, Area. *Transportation Research Record: Journal of the Transportation Research Board, No. 2011*, 2007, pp. 29–39.

Hatzopoulou, M. An Integrated Multi-Model Approach for Predicting the Impact of Household Travel on Urban Air Quality and Simulating Population Exposure. A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy, Department of Civil Engineering, University of Toronto, 2008

Henao, A., D. Piatkowski, K. S. Luckey, K. Nordback, W. E. Marshall and K. J. Krizek. Sustainable Transportation Infrastructure Investments and Mode Share Changes: A 20-Year Background of Boulder, Colorado. *Transport Policy* 37. Jan 2015, 64-71. Hennessy, J. and J. Tynan. Assessing Upstate Greenhouse Gas Emissions from Transportation Sources under Changing Land Use Patterns 2010. http://www.upstateforever.org/progCAWdocs/VMTGrowthAndGHG.pdf. Accessed July 28, 2016.

Hensher, D.A. Stated Preference Analysis of Travel Choices: The State of Practice. *Transportation, Vol. 21*, 1994, pp. 107-133

Hensher, D.A., and J.M. Rose. Development of Commuter and Non-Commuter Mode Choice Models for the Assessment of New Public Transport Infrastructure Projects: A Case Study. *Transportation Research Part A: Policy and Practice, Vol. 41, No. 5,* 2007, pp. 428-443.

Hensher, D.A., P.O. Barnard and T. P. Truong. The Role of Stated Preference Methods in Studies of Travel Choice. *The Journal of Transport Economics and Policy. Vol 22(1).* 1988, pp. 45-58.

Hirsch, L. R., J. D. Jordan, R. L.Hickey, and V. Cravo. Effects of Fare Incentives on New York City Transit Ridership. *Transportation Research Record: Journal of the Transportation Research Board 1735*, 2000, pp.147-157.

Horowitz, A. J. Simplifications for Single-Route Transit-Ridership Forecasting Models. *Transportation Vol. 12*, 1984 pp.261–275.

IBI Group. *Five-Year Strategic Operations Plan – Taking Transit to the Next Level*, Halifax Regional Municipality ,2009

IBI Group. *TPM for Multi-Modal Transportation Forecasting Tools for the GGH: Model Development & Validation Report*, Ministry of Transportation Ontario, 2009

Idris, A.O., K.M.N. Habib and A. Shalaby. Dissecting the Role of Transit Service Attributes in Attracting Commuter: Lessons from a Comprehensive RP-SP Study on Commuting Mode Switching Behavior. Paper presented at the 93rd 43 TRB Annual Meeting, January 12-16, 2014 Washington, D.C.

INRO, EMME user's guide, 2009

Jansuwan, S., A. Chen, and S. Ryu. Alternative Planning Tool for Small Metropolitan Planning Organization in Utah. *Transportation Research Record: Journal of the Transportation Research Board, No. 2307, pp. 68–79.*

Jones, H., F. Moura and T. Domingos. Transport Infrastructure Project Evaluation using Cost-Benefit Analysis *Procedia - Social and Behavioral Sciences 111*,2014 pp.400 – 409

Kain, J. F., and Z. Liu. Secrets of Success: Assessing The Large Increases in Transit Ridership Achieved by Houston and San Diego Transit Providers. *Transportation Research Part A: Policy and Practices, Vol. 33A,* 1999, pp. 601-624

Kuby, M., A. Barranda, and C. Upchurch. Factors Influencing Light-Rail Station Boardings in The United States, *Transportation Research Part A: Policy and Practice 38*, 2004, pp.223-247

Kucirek, P. Comparison between MATSim & EMME: Developing a Dynamic, Activitybased Microsimulation Transit Assignment Model for Toronto. Master of Applied Science Thesis, Department of Civil Engineering University of Toronto, 2012

Kuppam, A., R. Copperman, T. Rossi, V. Livshits, L. Vallabhaneni, T.Brown, and K. DeBoer Innovative Methods for Collecting Data and for Modeling Travel Related to Special Events. *Transportation Research Record: Journal of the Transportation Research Board, No. 2246,* 2011, pp. 24–31.

Kyte, M., J.Stoner, and J. Cryer. A Time-Series Analysis of Public Transit Ridership in Portland, Oregon, 1971-1982. *Transportation Research Part A: General 22*, 1988, pp. 345-359.

Loo, B.P.Y. Role of State Preference Methods in Planning for Sustainable Urban Transportation: State of Practice and Future Prospects. *Journal of Urban Planning and Development*. *128(4)*. 210-224, 2002

Louviere, J.J. and D.A. Hensher. Using Discrete Choice Models with Experimental Design Data to Forecast Consumer Demand for a Unique Cultural Event, *Journal of Consumer Research*, *10*, 1983, pp.348-361.

Louviere, J.J., D. H. Henley, G.Woodworth, R. J.Meyer, I.P.Levin, J.W.Stoner, D.Curry, and D. A. Anderson. Laboratory Simulation versus Revealed Preference Methods for Estimating Travel Demand Models: An Empirical Comparison. *Transportation Research Record: Journal of the Transportation Research Board*, 794, 1981, pp.42-51

Manheim, M. L. Fundamentals of Transportation Systems Analysis. MIT Press, Cambridge, MA, 24, 1979

Mathez, A., K. Manaugh, V. Chakour, A. El-Geneidy and M. Hatzopoulou. How Can We Alter Our Carbon Footprint? Estimating GHG Emissions Based on Travel Survey Information. *Transportation, Vol. 40, No. 1,* 2013, pp. 131-149.

Matute, J. M. and M. V. Chester. Cost-effectiveness of Reductions in Greenhouse Gas Emissions from High Speed Rail and Urban Transportation Projects. *Transportation Ressearch Part D:Transport and Environment, Vol. 40,* 2015, pp. 104-133.

McFadden, D., W. Tye and K. Train. An Application of Diagnostic Tests for the Independence from Irrelevant Alternatives Property of the Multinomial Logit Model. *Transportation Research Record: Forecasting Passenger and Freight Travel, No. 637,* Transportation Research Board, 1978 pp.39-46.

Megenbir, L. E. and M. A. Habib. Estimating Fuel Consumption and Vehicle Emissions Using Multi Year Travel Survey Data. Presented at 94st Annual Meeting of the Transportation Research Board (TRB), Washington, D.C., 2015.

Namdeo, A. and G. Mitchell. An Empirical Study of Vehicle Emissions Under Cordon and Distance Based Road User Charging, Leeds, UK. *Environmental Monitoring and Assessment, Vol. 136*, 2008, pp. 45-51.

Natural Resources Canada. *Canadian Vehicle Survey: 2009 Summary Report*. http://oee.nrcan.gc.ca/publications/statistics/cvs09/pdf/cvs09.pdf. Accessed July 28, 2016.

Niemeier, D., S. Bai, and S. Handy. The Impact of Residential Growth Patterns on Vehicle Travel and Pollutant Emissions. *The Journal of Transport and Land Use, Vol. 4, No. 3,* 2011, pp. 65-9 80.

Norman, J., H.L. Maclean and C.A. Kennedy. Comparing High and Low Residential Density: Life Cycle Analysis of Energy use and Greenhouse Gas Emissions. *Journal of Urban Planning and Development, Vol. 132, No. 1,* 2006, pp. 10-21.

Oketch, T., and M. Carrick. Calibration and Validation of a Micro-Simulation Model in Network Analysis. Presented at the 84th TRB Annual Meeting, Washington, DC, 2005.

Ortuzar, J.D.and L. G. Willumsen. *Modelling Transport*, 2011, Fourth edition. ISBN 978-0-470-76039-0

Outwater, M.L., G. Spitz, J. Lobb, M. Campbell, B. Sana, R. Pendyala, and W. Woodford. Characteristics of Premium Transit Services that Affect Mode Choice. *Transportation, Vol. 38, No. 4*, 2011, pp. 605-623. Proussaloglou, K., Y.Popuri, D. Tempesta, K. Kasturirangan, and D. Cipra. Wisconsin Passenger and Freight Statewide Model: A Case Study in Statewide Model Validation. *Transportation Research Record: Journal of the Transportation Research Board, No.1808*, 2007

Puchalsky, C. Comparison of Emissions from Light Rail Transit and Bus Rapid Transit. *Transportation Research Record: Journal of the Transportation Research Board. Vol.* 1927, 2005 pp. 31-37

Rahman, M. N. and A. O. Idris. Modelling on Road Transport Greenhouse Gas (GHG) Emissions Under Various Land Use Scenarios. Presented at 95st Annual Meeting of the Transportation Research Board, Washington, D.C., 2016.

Rahman, M. and M. A. Habib. Transit Demand Forecasting Model Development for HRM. Presented in CSCE 10th International Transportation Specialty Conference, May 28-31, 2014, Halifax, Canada.

Rahman, M. and M. A. Habib. Evaluating Alternate Transit Options in Halifax Using Travel Demand Forecasting Model Informed by a Stated Preference Survey. Presented in Canadian Transportation Research Forum (CTRF) 50th Annual Conference, May 24-26, 2015, Montreal, Canada.

Richardson, D. and M. A. Habib, M.A. Evaluation of Transit Alternatives for the Bedford-Halifax Corridor: A Stated Preference Study. Presented in the 58th Annual North American Meeting of the Regional Science Association International, Florida, USA, November 9-12, 2011.

Román, C., R. Espino, and J. C. Martín. Analyzing Competition between the High Speed Train and Alternative Modes. The Case of the Madrid–Zaragoza–Barcelona Corridor. *Journal of Choice Modeling, Vol. 3, No. 1,* 2010, pp. 84–108. Salloum, S., and Habib, M. A. Mobility, Accessibility and Travel Behavior: Analysis of Halifax Household Mobility and Travel Survey. Technical Report, Dalhousie Transportation Collaboratory, 2015.

Schramm, L.R., K. Watkins, and S. Rutherford. Features that Affect Variability of Travel Time on Bus Rapid Transit Systems. In Transportation Research Record: Journal of the Transportation Research Board, No. 2143, Transportation Research Board of the National Academies, Washington, D.C., 2010, pp. 77-84.

Sider, T., A. Alam, M. Zukari, H. Dugum, N. Goldstein, N. Eluru and M. Hatzopoulou. Land–use and Socio-economics as Determinants of Traffic Emissions and Individual Exposure to Air Pollution. Journal of Transport Geography, Vol. 33, 2013, pp. 230-239

Statistics Canada, Census (2011) Canada

Stone, B., A. C. Mednick, T. Holloway and S. N. Spak. Mobile Source CO2 Mitigation through Smart Growth. Development and Vehicle Fleet Hybridization. Environ. Sci. Technol., Vol. 43, No. 6, 2009, pp. 1704-1710.

Taylor, B. D., D. Miller, H. Iseki, and C. Fink. Analyzing the determinants of transit ridership using a two-stage least squares regression on a national sample of urbanized areas. Presented in 83rd Annual Meeting of the Transportation Research Board, Washinton, D.C.,2004

Thompson, G. L., and J. R.Brown. Explaining Variation in Transit Ridership in US Metropolitan Areas Between 1990 and 2000: Multivariate Analysis, Transportation Research Record: Journal of the Transportation Research Board 1986, 2006, pp.172-181.

Train, K., and W. W. Wilson. Estimation on Stated-Preference Experiments Constructed from Revealed-Preference Choices. *Transportation Part B, Vol.* 42,2005 pp. 191-203.

Transportation Research Board. Driving and the Built Environment: The Effects of Compact Development on Motorized Travel, Energy Use, and CO2 Emissions. Special Report 298, 2009, Washington, DC: The National Academies Press.

Transportation Research Board. *National Cooperative Highway Research Program report* 716 Travel Demand Forecasting: Parameters and Techniques. Transportation Research Board of the National Academics, 2012

Van Loon, R., P. Rietveld, and M. Brons. Travel-time Reliability Impacts on Railway Passenger Demand: a Revealed Preference Analysis. *Journal of Transport Geography, Vol. 19*, 2011, pp. 917-925.

Vanwee, B.,R. Vandenbrink, H. Nijland. Environmental Impacts of High-Speed Rail Links in Cost-Benefit Analyses: A Case Study of the Dutch Zuider Zee Line. *Transportation Research Part D: Transport and Environment Volume:* 8, 2003, pp. 299-314.

Wang, G. H. K., and D. Skinner. The Impact of Fare and Gasoline Price Changes on Monthly Transit Ridership: Empirical Evidence from Seven US Transit Authorities. *Transportation Research Part B: Methodological Vol.18*, 1984, pp. 29–41.

Wang, X., A. Khattak and Y.Zhang. Is Smart Growth Associated with Reductions in Carbon Dioxide Emissions? *Transportation Research Record: Journal of the Transportation Research Board, Vol. 2375*, pp. 62-70.

Xiao, Y., M. Hadi, H. Ozen, and V.Mysore. Intelligent Transportation System as Evaluation Tool in a Regional Demand Modeling Environment Implementation in Florida Standard Urban Transportation Model Structure. *Transportation Research Record: Journal of the Transportation Research Board, No. 2176,* 2010, pp. 76–83. Yan, J. and M.A. Habib. Developing a Transit Demand Forecasting Model for Halifax Regional Municipality, Working paper of Dalhousie Transportation Collaboratory (DalTRAC), 2011.

Yoh, A. C., Haas, P. J., and Taylor, B. D. Understanding Transit Ridership Growth:Case Studies of Successful Transit Systems in The 1990s. *Transportation Research Record: Journal of the Transportation Research Board 1835*, 2003 pp.111-120.

Zhang, J., A. Fujiwara, and S. Thein. Capturing Travelers Stated Mode Choice Preferences under Influence of Income in Yangon City, Myanmar. *Journal of Transportation Systems Engineering and Information Technology, Vol. 8, No. 4,* 2008, pp. 49-62.

APPENDIX A

	Location	Total	Zone Number	TAZ
		Number of		group
		Zones		
Urban	Halifax Core (South End)	11	1-11	U-1
core	Halifax Core	14	12-16, 25-33	U-2
	(Citadel-Downtown)		15.04	
	Halifax Core	8	17-24	U-3
	(University-Residential) Halifax Cara (Chabuata)	11	31 11	II A
	Halifax Core (North End)	11	<u> </u>	U-4 11.5
	Hamax Core (North End)	13	43-37	0-5
	Dartmouth Core (Dartmouth North)	18	58-64,/8-88	U-6
	Dartmouth Core	16	65 77 80 01	117
	(Dartmouth South)	10	05-77, 89-91	0-7
	Total Urban	91		
Suburban	Halifax (Arm dale)	9	92-98,103-104	S-1
	Halifax (Fairview Clayton park)	15	99-102,105-115	S-2
	St Margaret's Bay	3	116-118	S-3
	Bedford Core	10	119-121, 128-134	S-4
	Bedford	6	122-127	S-5
	Sackville	12	135-146	S-6
	Dartmouth North	15	147-161	S-7
	Dartmouth South	9	162-170	S-8
	Cole Harbor Eastern Passage	12	171-182	S-9
	Total Suburban	91		
Dural	Drogradient	E	102 107	D 1
Kurai	Prospect St. Managenti's Deer	5	183-187	R-1
	St. Margaret's Bay	5	188-192	K-2
	Sackville	11	193-203	R-3
	Waverley-fall River	3	204-206	R-4
	Porter's Lake-Lawraencetown	6	207-212	R-5
	Musquo-doboit Harbour	4	213-216	R-6
	Sheet Harbour	3	217-219	R-7
	Total Rural	37		
Tetal		210		
Total		219		

Appendix A-1 Traffic Analysis Zone Summary

TAZ	*Pop. (2011)	*Pop. (2006)	Area (km ²)	No. of *HH	*Pop. density	*Avg. *HH	*Empl. rate per	*Avg. *Ind
Group	(2011)	(2000)	(KIII)	1111	(pop./km ²)	size	насе рег НН	Income
U-1	12902	11914	4.10	6741	3145.81	1.91	0.59	\$56,463
U-2	11492	10979	3.14	6490	3659.87	1.77	0.61	\$41,221
U-3	12744	12674	2.97	5511	4295.44	2.31	0.63	\$44,268
U-4	13947	13404	3.89	6783	3581.18	2.06	0.60	\$35,954
U-5	11413	11251	4.72	5550	2418.01	2.06	0.58	\$37,237
U-6	12407	12694	7.53	6509	1648.55	1.91	0.59	\$35,771
U-7	14138	14164	7.06	6935	2001.41	2.04	0.57	\$35,546
Urban	89042	87080	33.41	44520	2664.93	2.00	0.60	\$40,869
S-1	24892	24371	49.64	10969	501.46	2.27	0.55	\$38,777
S-2	40270	37823	19.76	18776	2037.97	2.14	0.58	\$36,925
S-3	6820	6747	25.79	2490	264.44	2.74	0.61	\$40,930
S-4	20836	16759	15.55	8733	1340.10	2.39	0.58	\$49,776
S-5	3113	2776	31.97	977	97.36	3.19	0.52	\$51,956
S-6	27840	27650	24.21	10590	1149.94	2.63	0.59	\$36,505
S-7	23124	23322	41.74	10115	553.96	2.29	0.58	\$40,355
S-8	24516	24456	15.76	9642	1555.78	2.54	0.57	\$38,491
S-9	29014	26738	37.48	10738	774.04	2.70	0.57	\$43,480
Suburban	200426	190643	261.90	83030	765.27	2.41	0.58	\$40,339
R-1	15229	14846	401.74	5861	37.91	2.60	0.58	\$38,579
R-2	11101	9978	389.75	4225	28.48	2.63	0.53	\$47,312
R-3	34460	30345	352.25	11778	97.83	2.93	0.58	\$48,120
R-4	5561	5431	83.82	2130	66.34	2.61	0.59	\$44,769
R-5	19142	18437	807.24	7105	23.71	2.69	0.58	\$39,742
R-6	11869	12148	1384.96	4891	8.57	2.43	0.53	\$34,132
R-7	3478	3936	1749.11	1681	1.99	2.07	0.50	\$29,218
Rural	100840	95121	5168.87	37670	19.51	2.68	0.57	\$42,517
Tatal	200200	272944	5464 10	1(5000	71.42	1 26	0.50	¢41.022
I otal	370309	J/2844	5404.19	105220	/1.43	2.36	0.58	\$41,022

Appendix A-2 Demographic and Socio Economic Characteristics of TAZ

*Pop.=Population, *HH=Household, *Avg.=Average, *Empl.=Employment *Ind.=Individual

Time of the	Hourly	factor	Trip Purpose factor				
day	Home To Work	Work to Home	HBW	HBO	NHB		
12:00 AM	0.002433090	0.01734104	0.076190476	0.032019079	0.071371900		
1:00 AM	0.002433090	0.000000000	0.019047619	0.044826710	0.012976709		
2:00 AM	0.002433090	0.000000000	0.009523810	0.012807631	0.012976709		
3:00 AM	0.009732360	0.002890173	0.047619048	0.003201908	0.000000000		
4:00 AM	0.024330900	0.008670520	0.123809524	0.016009539	0.012976709		
5:00 AM	0.060827251	0.002890173	0.247619048	0.035220987	0.000000000		
6:00 AM	0.184914842	0.005780347	0.752380952	0.076845789	0.032441773		
7:00 AM	0.272506083	0.020231214	1.285714286	0.147287762	0.045418482		
8:00 AM	0.184914842	0.011560694	1.000000000	0.336200326	0.227092409		
9:00 AM	0.055961071	0.017341040	0.352380952	0.275364076	0.363347855		
10:00 AM	0.024330900	0.011560694	0.161904762	0.304181247	0.356859500		
11:00 AM	0.014598540	0.031791908	0.209523810	0.345806049	0.408766337		
12:00 PM	0.026763990	0.054913295	0.314285714	0.342604141	0.557998491		
1:00 PM	0.021897810	0.028901734	0.209523810	0.432257562	0.551510137		
2:00 PM	0.017031630	0.054913295	0.314285714	0.400238483	0.428231400		
3:00 PM	0.03163017	0.101156069	0.676190476	0.403440391	0.480138237		
4:00 PM	0.01703163	0.187861272	0.733333333	0.470680456	0.655323810		
5:00 PM	0.01216545	0.193641618	0.733333333	0.406642299	0.415254691		
6:00 PM	0.01459854	0.072254335	0.314285714	0.496295719	0.395789628		
7:00 PM	0.00486618	0.040462428	0.161904762	0.438661377	0.304952664		
8:00 PM	0.00243309	0.066473988	0.266666667	0.352209865	0.259534182		
9:00 PM	0.00243309	0.023121387	0.095238095	0.262556445	0.201138991		
10:00 PM	0.00486618	0.028901734	0.114285714	0.176104933	0.064883545		
11:00 PM	0.00486618	0.01734104	0.076190476	0.086451512	0.038930127		

Appendix A-3 Hourly and Trip Purpose factor

	Auto Dr	iver	Auto Pas	senger	Transit		Bike		Walk	
Variable	Param	T-stat	Param	T-stat	Param	T-	Paramet	T-	Param	T-stat
	eter		eter		eter	stat	er	stat	eter	
Constant	22.87	8.45	24.03	8.93	24.3	1.25	4.75	.51	-31.5	-2.83
Distance	.5645	11.65	.5292	11.34	.737	4.18	1.844	2.7	6.963	7.86
(KM)										
Suburban	-8.36	-3.61	-8.16	-3.55	14.1	.81				
Urban	-11.57	-3.93	-10.47	-2.93	16.8	.91	-1.22	4	14.68	2.42
Distance<	-5.35	-2.02	2.20	.52	-17.78	-2.34	4.12	.56	21.64	3.31
5km										
Distance5	40	20	1.01	.48	-8.10	-1.14	4.94	1		
kmto10k										
m										
R-Sq (adj)	.7408		.6856		.5669		.5107		.5651	

Appendix A-4 Travel time Regression model for modal split

APPENDIX B

Appendix B-1 : Sample Traffic Assignement Model run in EMME/4

Licence EF87: FAP-DU...none **Dalhousie University** Database Title: HRM Scen. 1(--- A-): Auto Run 9 am 1. UTILITIES 2. NETWORK EDITOR 3. MATRIX EDITOR 3.01 Input / modify / output zone groups 3.11 Input matrices using batch entry 3.12 Input / modify matrices interactively 3.13 Plot matrices 3.14 Output matrices 3.16 Plot histogram of matrices 3.21 Matrix calculations 3.22 Matrix balancing 3.23 Triple-index operations 4. FUNCTION EDITOR 5. ASSIGNMENT PROCEDURES 6. RESULTS 9. END OF SESSION Enter: Next module=5.11

Fri Aug 12 03:14:07 20165.11 PREPARE SCENARIO 1 FOR STANDARD TRAFFIC OR TRANSIT ASSIGNMENT

Scenario 1 currently contains: Standard traffic assignment with fixed demand (5 iterations)

Select: Type of assignment

- 1= fixed demand traffic assignment
- 2= fixed demand transit assignment
- 3= variable demand traffic assignment
- 4= end
- 1

A standard traffic assignment has already been performed: Demand: mf01 : trDist 910am auto OD Travel times: mf06 : TT910 Traveltime9am10amAuto Stopping criteria: iter= 100 bgap= 0.1000 % rgap= 0.0000 ngap= 0.0500 Number of iterations: 5 stopped by: bgap Select: 1= more iterations on old assignment

2= new assignment

2

Select: 1= single class assignment on auto mode

2= single class assignment with generalized cost

3= multiclass assignment

4= multiclass assignment with generalized cost

- 5= generalized cost multiclass assignment with class specific volumes
- 6= generalized cost multiclass assignment with path analysis

1

Select: Source for additional volumes

1= no additional volumes 2= auto equivalent of transit vehicles 3= user data on links and turns 4= transit vehicles and user data

5= assign additional demand (additional options assignment)

1

Demand in persons Enter: Matrix=mf1 mf01 trDist 910am auto OD $(16-05-08\ 17:30:53)$ Vehicle occupancy in persons/veh (optional) Enter: Matrix= Additional demand in auto equivalents (optional) Enter: Matrix= Matrix to hold travel times (optional) Enter: Matrix(mf) = mf6 mf06 TT910 Traveltime9am10amAuto $(16-05-09\ 21:55:13)$ Change header information?no Enter: Max. number of iterations (100)= Enter: Stopping criterion for best relative gap (0.1000 %) [, relative gap (0)]= Enter: Stopping criterion for normalized gap (excess avg time) (0.0500 min)=

Fri Aug 12 03:14:32 2016Licence EF87: FAP-DU...none Dalhousie University
Database Title: HRM
Scen. 1(--- R-): Auto Run 9 am
1. UTILITIES
2. NETWORK EDITOR
3. MATRIX EDITOR

4. FUNCTION EDITOR

5. ASSIGNMENT PROCEDURES

5.11 Prepare for standard traffic or transit assignment

5.21 Standard traffic assignment

5.22 Standard traffic assignment (parallel)

5.23 SOLA traffic assignment

5.25 Path-based traffic assignment

5.31 Standard transit assignment

5.32 Extended transit assignment

5.33 Extended transit assignment (parallel)

5.34 Prepare access/egress nodes for individual transit trips

5.35 Analyze / assign individual transit trips

5.36 Deterministic transit assignment

6. RESULTS

9. END OF SESSION

Enter: Next module=5.21

Fri Aug 12 03:14:37 20165.21 STANDARD TRAFFIC ASSIGNMENT

Select: List device 1= Terminal 2= Printer 1

Fri Aug 12 03:14:39 2016Emme Module: 5.21 Date: 16-08-12 03:14 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Auto Run 9 am Matrix mf01 trDist 910am auto OD

STANDARD TRAFFIC ASSIGNMENT

Scenario:1: Auto Run 9 amNetwork size:219 centroids2249 reg. nodes5211 road links0 turn entries

Demand:mf01 : trDist910am auto ODTravel time:mf06 : TT910Traveltime9am10amAuto

Stopping criteria: iter= 100 bgap= 0.1000 % rgap= 0.0000 ngap= 0.0500

------ Iteration 0 ------33810.00 Number of trips: Total persons: Total automobiles: 33810.00 Additional veh.: 0.00 Total vehicles: 33810.00 Not assigned: 1161.00 Obj. function: Initial value: 0.460984E+09 Subproblem: 0.1 (0.1) Steplength: 0.0 (0.0) CPU time: Update: 0.0 (0.0) Total: 0.1 (0.1) ------ Iteration 1 ------33810.00 Number of trips: Total persons: Total automobiles: 33810.00 Additional veh.: 0.00 Total vehicles: 33810.00 Not assigned: 1161.00 --> Fri Aug 12 03:14:40 2016Emme Module: 5.21 Date: 16-08-12 03:14 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Auto Run 9 am Matrix mf01 trDist 910am auto OD _____ Search for lambda:L= 0.000000 0.062500 0.125000 0.250000 0.500000 1.000000 G=-.656E+07-0.403E+07-0.182E+07 0.185E+07 0.761E+07 0.245E+08 Appr. optimal lambda:0.182727 Estimated error: 0.000524 Avg trip times: Currently on network:14604.04 On shortest paths: 14403.11 Vol. difference: Average per link: 0.62 Avg absolute diff: 14.63 Minimum difference: -650.87 (on link 427 431) 407 603) Maximum difference: 549.46 (on link Obj. function: Absolute gap: 6560250.6880 Normalized gap: 200.932663 Relative gap: 0.01375870 New lower bound: 0.454424E+09 Best lower bound: 0.454424E+09 Current value: 0.460422E+09 Best relative gap: 1.3027 % CPU time: Subproblem: 0.1 (0.2) Steplength: 0.0 (0.0) Update: 0.0 (0.0) Total: 0.5 (0.6) ------ Iteration 2 ------

Number of trips: Total persons: 33810.00 Total automobiles: 33810.00 Additional veh.: 0.00 Total vehicles: 33810.00 Not assigned: 1161.00 Search for lambda:L= 0.000000 0.049280 0.098561 0.197121 0.394242 0.788484

G=-.165E+07-0.145E+07-0.127E+07-0.953E+06-0.422E+06 0.495E+06 Appr. optimal lambda:0.565649 Estimated error: 0.010645

Avg trip times: Currently on network:14373.24 On shortest paths: 14322.72

-->

Fri Aug 12 03:14:41 2016Emme Module: 5.21 Date: 16-08-12 03:14 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Auto Run 9 am Matrix mf01 trDist 910am auto OD

Vol. difference: Average per link: -1.66 Avg absolute diff: 15.40 Minimum difference: -1186.24 (on link 585 584) Maximum difference: 1118.39 (on link 562 547)

- Obj. function: Absolute gap: 1649309.3460 Normalized gap: 50.516380 Relative gap: 0.00351461 New lower bound: 0.458773E+09 Best lower bound: 0.458773E+09 Current value: 0.459997E+09 Best relative gap: .2662 %
- CPU time: Subproblem: 0.1 (0.4) Steplength: 0.0 (0.0) Update: 0.0 (0.0) Total: 0.5 (1.1)

------ Iteration 3 ------

Number of trips: Total persons: 33810.00 Total automobiles: 33810.00 Additional veh.: 0.00 Total vehicles: 33810.00 Not assigned: 1161.00

Search for lambda:L= 0.000000 0.056422 0.112844 0.225689 0.451378 0.902755 G=-.945E+06-0.823E+06-0.708E+06-0.495E+06-0.660E+05 0.141E+07 Appr. optimal lambda:0.478713 Estimated error: 0.003647

Avg trip times: Currently on network:14277.63 On shortest paths: 14248.69

Vol. difference: Average per link: 1.37 Avg absolute diff: 11.72 Minimum difference: -829.72 (on link 2199 794)

Maximum difference: 1137.83 (on link 2206 796) Obj. function: Absolute gap: 944821.2462 Normalized gap: 28.938749 Relative gap: 0.00202686 New lower bound: 0.459052E+09 Best lower bound: 0.459052E+09 Current value: 0.459771E+09 Best relative gap: .1563 % --> Fri Aug 12 03:14:41 2016Emme Module: 5.21 Date: 16-08-12 03:14 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Auto Run 9 am Matrix mf01 trDist 910am auto OD CPU time: Subproblem: 0.0 (0.4) Steplength: 0.0 (0.0) Update: 0.0 (0.0) Total: 0.4 (1.5) ------ Iteration 4 -----Number of trips: Total persons: 33810.00 Total automobiles: 33810.00 Additional veh.: 0.00 Total vehicles: 33810.00 Not assigned: 1161.00 Search for lambda:L= 0.000000 0.057561 0.115122 0.230245 0.460489 0.920979 G=-.594E+06-0.565E+06-0.536E+06-0.483E+06-0.377E+06-0.896E+05 Appr. optimal lambda:1.000000 Estimated error: 0.029219 Avg trip times: Currently on network:14287.86 On shortest paths: 14269.66 Vol. difference: Average per link: -1.34 Avg absolute diff: 18.39 Minimum difference: -1477.98 (on link 2206 796) Maximum difference: 1141.79 (on link 533 544) Obj. function: Absolute gap: 594085.0625 Normalized gap: 18.196117 Relative gap: 0.00127354 New lower bound: 0.459177E+09 Best lower bound: 0.459177E+09 Current value: 0.459430E+09 Best relative gap: .0551 % Subproblem: 0.1 (0.5) Steplength: 0.0 (0.0) CPU time: Update: 0.0 (0.0) Total: 0.1 (1.6) -->

Fri Aug 12 03:14:41 2016Emme Module: 5.21 Date: 16-08-12 03:14 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Auto Run 9 am Matrix mf01 trDist 910am auto OD _____ ----------- Iteration 5 ------Number of trips: Total persons: 33810.00 Total automobiles: 33810.00 Additional veh.: 0.00 Total vehicles: 33810.00 Not assigned: 1161.00 Search for lambda:L= 0.000000 0.062500 0.125000 0.250000 0.500000 1.000000 G=-.453E+06-0.284E+06-0.139E+06 0.913E+05 0.421E+06 0.142E+07 Appr. optimal lambda:0.197522 Estimated error: -0.001777 Avg trip times: Currently on network:14272.40 On shortest paths: 14258.52 Vol. difference: Average per link: 0.62 Avg absolute diff: 4.35 Minimum difference: -383.59 (on link 2199 794) Maximum difference: 525.21 (on link 2206 796) Obj. function: Absolute gap: 453004.2993 Normalized gap: 13.874983 Relative gap: 0.00097215 New lower bound: 0.458977E+09 Best lower bound: 0.459177E+09 Current value: 0.459389E+09 Best relative gap: .0462 % Subproblem: 0.4 (0.9) Steplength: 0.0 (0.0) CPU time: Update: 0.0 (0.0) Total: 0.4 (2.0) ----- Stopping criterion: Best Relative Gap ------

-->

Appendix B-2 : Sample Transit Assignement Model run in EMME/4

Licence EF87: FAP-DU...none **Dalhousie University** Database Title: HRM Scen. 1(---- A): Transit Run 10am-2pm 1. UTILITIES 2. NETWORK EDITOR 3. MATRIX EDITOR 3.01 Input / modify / output zone groups 3.11 Input matrices using batch entry 3.12 Input / modify matrices interactively 3.13 Plot matrices 3.14 Output matrices 3.16 Plot histogram of matrices 3.21 Matrix calculations 3.22 Matrix balancing 3.23 Triple-index operations 4. FUNCTION EDITOR 5. ASSIGNMENT PROCEDURES 6. RESULTS 9. END OF SESSION Enter: Next module=5.21

Fri Aug 12 03:20:07 20165.21 STANDARD TRAFFIC ASSIGNMENT

Scenario 1 not ready for standard traffic assignment!

Fri Aug 12 03:20:08 2016Licence EF87: FAP-DU...none Dalhousie University Database Title: HRM

Scen. 1(--- -A): Transit Run 10am-2pm

- 1. UTILITIES
- 2. NETWORK EDITOR
- 3. MATRIX EDITOR
- 4. FUNCTION EDITOR
- 5. ASSIGNMENT PROCEDURES
- 5.11 Prepare for standard traffic or transit assignment
- 5.21 Standard traffic assignment

5.22 Standard traffic assignment (parallel)

- 5.23 SOLA traffic assignment
- 5.25 Path-based traffic assignment

5.31 Standard transit assignment
5.32 Extended transit assignment
5.33 Extended transit assignment (parallel)
5.34 Prepare access/egress nodes for individual transit trips
5.35 Analyze / assign individual transit trips
5.36 Deterministic transit assignment
6. RESULTS
9. END OF SESSION
Enter: Next module=5.11

Fri Aug 12 03:20:13 20165.11 PREPARE SCENARIO 1 FOR STANDARD TRAFFIC OR TRANSIT ASSIGNMENT

Scenario 1 currently contains: Standard transit assignment

Select: Type of assignment

1= fixed demand traffic assignment

2= fixed demand transit assignment

3= variable demand traffic assignment

4= end

2

A transit assignment has already been performed: Standard transit assignment: 16-06-14 17:07 Transit demand: mf02 : Tran2 10am-2pm Tansit OD Transit times: mf06 : tt Transit travel time Invehicle times: mf07 : invt In vehicle time Aux. transit times: mf08 : auxtt aux. transit time Total waiting times: mf09 : Twt total waiting time Number of boardings: mf10 : Board Number of Boarding Active modes: Subset for trip components: b bc Boarding time: 2.50 .50 Wait time factor: Weight factors: wait= 2.00 aux= 2.00 board= 2.00Spread factor: 1.00

Select: 1= assign more demand on existing transit volumes 2= new assignment

2

Transit demand matrix Enter: Matrix=mf2 mf02 Tran2 10am-2pm Tansit OD

(16-06-11 16:06:14)

 $(16-06-14\ 17:07:56)$

Matrix to hold transit times (optional) Enter: Matrix=mf6 mf06 tt Transit travel time Change header information?no

Matrix to hold in-vehicle times (optional) Enter: Matrix=mf7						
mf07 invt In vehicle time Change header information?no	(16-06-14 17:07:56)					
Matrix to hold auxiliary transit times (optic Enter: Matrix=mf8	onal)					
mf08 auxtt aux. transit time Change header information?no	(16-06-14 17:07:56)					
Matrix to hold total waiting times (optiona Enter: Matrix=mf9	l)					
mf09 Twt total waiting time Change header information?no	(16-06-14 17:07:56)					
Matrix to hold first waiting times (optional Enter: Matrix=)					
Matrix to hold boarding times (optional) Enter: Matrix=						
Matrix to hold average number of boardings (optional)						
mf10 Board Number of Boarding Change header information?no	(16-06-14 17:07:56)					
Active transit and aux. transit modes for as	ssignment					
Enter: Mode(s)=bc						
Compute auxiliary transit time, in-vehicle t on a subset of active modes only?y	ime and number of boardings					
Modes to be included in trip component m	natrices					
Enter: Mode(s)=b						
Select: Source for effective headways 1= actual line headways						
2= actual line neadways with maximul3= user defined line attribute	(11)					
4= user defined segment attribute 1						

Select: Source for boarding times

1= same value for entire network

2= node specific boarding times 3= line specific boarding times 4= node and line specific boarding times 1 Enter: Boarding time (mins)=2.5 Select: Source for wait time factors 1= same value for entire network 2= node specific wait time factors 1 Enter: Wait time factor=.5 Enter: Wait time weight [, spread factor]=2 Enter: Auxiliary transit time weight=2 Enter: Boarding time weight=2 Perform additional options assignment?no Fri Aug 12 03:22:12 2016Licence EF87: FAP-DU...none **Dalhousie University** Database Title: HRM Scen. 1(-----R): Transit Run 10am-2pm 1. UTILITIES 2. NETWORK EDITOR 3. MATRIX EDITOR 4. FUNCTION EDITOR 5. ASSIGNMENT PROCEDURES 5.11 Prepare for standard traffic or transit assignment 5.21 Standard traffic assignment 5.22 Standard traffic assignment (parallel) 5.23 SOLA traffic assignment 5.25 Path-based traffic assignment 5.31 Standard transit assignment 5.32 Extended transit assignment 5.33 Extended transit assignment (parallel) 5.34 Prepare access/egress nodes for individual transit trips 5.35 Analyze / assign individual transit trips 5.36 Deterministic transit assignment 6. RESULTS 9. END OF SESSION Enter: Next module=5.31

Fri Aug 12 03:22:23 20165.31 STANDARD TRANSIT ASSIGNMENT
Select: List device 1= Terminal 2= Printer 1

Fri Aug 12 03:22:25 2016Emme Module: 5.31 Date: 16-08-12 03:22 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Transit Run 10am-2pm Matrix mf02 Tran2 10am-2pm Tansit OD

STANDARD TRANSIT ASSIGNMENT

Scenario: 1 Transit demand: mf02 : Tran2 10am-2pm Tansit OD Transit times: mf06 : tt Transit travel time Invehicle times: mf07 : invt In vehicle time Aux. transit times: mf08 : auxtt aux. transit time Total waiting times: mf09 : Twt total waiting time Number of boardings: mf10 : Board Number of Boarding Effective headways: Actual line headways Boarding time: 2.50 min Wait time factor: 0.50 Wait time weight: 2.00 Spread factor: 1.00 Aux. transit time weight: 2.00 2.00 Boarding time weight: Maximum segment time: 12295.3 min (resolution 0.10 used) Truncated transit times (3276.70) will be used for 22 line segments! Auxiliary transit mode: c 740 links, speed: 5.00 km/hr (not in aux. tr. time matrix) Transit mode: b 96 lines 6089 segments --> Fri Aug 12 03:22:26 2016Emme Module: 5.31 Date: 16-08-12 03:22 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Transit Run 10am-2pm Matrix mf02 Tran2 /c 10am-2pm Tansit OD _____

destin total assigned intrazonal not ass. aux.tr. total lines pass. mean cpu zone demand demand demand demand only board. /pass. hours time time

67 68.00 59.00 0.00 9.00 0.00 96.00 1.63 27181.1227641.82 0.00 0.00 14.00 73 102.00 88.00 0.00 216.67 2.46 36335.5224774.22 0.00 74 2.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 78 2.00 2.00 0.00 0.00 2.00 0.00 0.00 2543.0076290.10 0.00 81 234.00 202.00 0.00 32.00 2.00 434.87 2.15 120277.9735726.13 0.00 83 126.00 117.00 0.00 9.00 0.00 267.00 2.28 55587.7028506.51 0.00 0.00 205.67 1.98 49399.6528499.80 0.00 119.00 104.00 0.00 15.00 84 100.00 0.00 227.00 2.58 43093.0129381.60 0.00 86 88.00 0.00 12.00 94 62.00 62.00 0.00 0.00 24.00 146.00 2.35 13044.5112623.72 0.00 97 100.00 100.00 0.00 0.00 23.00 174.33 1.74 19905.0411943.02 0.00 98 86.00 0.00 0.00 4.00 161.67 1.88 22711.4615845.21 0.00 86.00 14.00 14.00 0.00 0.00 4.00 12.00 0.86 2976.0912754.67 0.00 99 137 71.00 71.00 0.00 0.00 0.00 340.11 4.79 58857.9649739.12 0.00 139 131.00 124.00 0.00 7.00 0.00 719.67 5.80 108398.2452450.76 0.00 143 434.00 389.00 0.00 45.00 0.00 964.14 2.48 196974.3230381.64 0.00 4.00 0.00 4.00 0.00 0.00 0.00 153 0.00 0.00 0.00 0.00 156 24.00 0.00 0.00 24.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 993.23 3.79 237394.7154365.20 0.00 157 310.00 262.00 0.00 48.00 166 371.00 339.00 0.00 32.00 0.00 1658.02 4.89 258799.0545805.14 0.00 217 162.00 156.00 0.00 6.00 0.00 461.17 2.96 79456.3830560.15 0.00 241 61.00 61.00 0.00 0.00 0.00 137.00 2.25 22774.2322400.88 0.00 244 80.00 77.00 0.00 3.00 0.00 191.00 2.48 26025.5320279.63 0.00 42.00 0.00 42.00 0.00 0.00 0.00 0.00 0.00 0.00 245 0.00 308 84.00 82.00 0.00 2.00 13.00 256.17 3.12 23276.6217031.67 0.00 327 53.00 53.00 0.00 0.00 0.00 77.00 1.45 17837.8320193.77 0.00 330 731.00 595.00 0.00 136.00 0.00 1622.46 2.73 310396.2531300.46 0.00

-->

Fri Aug 12 03:22:27 2016Emme Module: 5.31 Date: 16-08-12 03:22 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Transit Run 10am-2pm Matrix mf02 Tran2 /c 10am-2pm Tansit OD

destin total assigned intrazonal not ass. aux.tr. total lines pass. mean cpu zone demand demand demand demand only board. /pass. hours time time

0.00 125.21 2.72 10042.0413098.31 0.00 331 46.00 46.00 0.00 0.00 425 95.00 93.00 0.00 2.00 0.00 231.00 2.48 18552.1211969.11 0.00 434 119.00 112.00 0.00 7.00 9.00 229.70 2.05 31456.1416851.51 0.00 435 93.00 88.00 0.00 5.00 28.00 130.39 1.48 24570.1416752.37 0.00 36.00 0.00 436 46.00 0.00 10.00 77.69 2.16 8584.3114307.18 0.00 492 380.00 340.00 0.00 40.00 0.00 1132.49 3.33 154578.4227278.55 0.00 514 54.00 54.00 0.00 0.00 6.00 108.98 2.02 13730.8915256.54 0.00 528 274.00 209.00 0.00 508.01 2.43 62332.8217894.59 0.00 0.00 65.00 536 88.00 80.00 0.00 8.00 17.00 171.17 2.14 23078.5717308.93 0.00 0.00 200.33 2.38 22277.6915912.63 0.00 537 96.00 84.00 0.00 12.00 543 55.00 52.00 0.00 3.00 0.00 115.00 2.21 14726.2316991.80 0.00 545 218.00 0.00 0.00 218.00 0.00 0.00 0.00 0.00 0.00 0.00 554 208.00 187.00 0.00 21.00 0.00 539.00 2.88 35235.6611305.56 0.00 569 60.00 49.00 0.00 11.00 0.00 127.97 2.61 12887.0815780.10 0.00 575 94.00 81.00 0.00 13.00 0.00 223.14 2.75 25925.8319204.32 0.00 40.00 40.00 0.00 0.00 0.00 99.77 2.49 9985.2314977.85 0.00 594 595 385.00 362.00 0.00 974.70 2.69 156229.1825894.34 0.00 0.00 23.00 635 153.00 142.00 0.00 11.00 0.00 386.75 2.72 35120.7214839.74 0.00 671 275.00 223.00 0.00 52.00 0.00 805.86 3.61 72708.0719562.71 0.00 16.00 557.72 2.20 73797.7917432.55 0.00 691 282.00 254.00 0.00 28.00 26.00 7.00 0.00 120.33 4.63 8963.5220685.04 0.00 810 33.00 0.00 811 314.00 198.00 0.00 116.00 0.00 796.90 4.02 81060.7924563.87 0.00 815 472.00 0.00 0.00 472.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 816 213.00 0.00 0.00 213.00 0.00 0.00 0.00 0.00 0.00 851 9.00 5.00 0.00 4.00 0.00 10.00 2.00 1838.1422057.70 0.00 855 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-->

Fri Aug 12 03:22:28 2016Emme Module: 5.31 Date: 16-08-12 03:22 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Transit Run 10am-2pm Matrix mf02 Tran2 /c 10am-2pm Tansit OD

destin total assigned intrazonal not ass. aux.tr. total lines pass. mean cpu zone demand demand demand demand only board. /pass. hours time time

923 305.00 283.00 0.00 22.00 0.00 862.10 3.05 70735.3014996.88 0.00 1051 149.00 136.00 0.00 13.00 0.00 341.00 2.51 16640.79 7341.53 0.00 27.00 27.00 0.00 0.00 79.00 2.93 11591.8025759.55 0.00 1128 0.00 1131 257.00 208.00 0.00 49.00 0.00 754.67 3.63 90145.5326003.52 0.00 1348 86.00 65.00 0.00 21.00 0.00 169.25 2.60 29407.2227145.13 0.00

0.00 0.00 0.00 0.00 0.00 1352 1.00 0.00 0.00 1.00 0.00 1358 21.00 18.00 0.00 3.00 0.00 31.75 1.76 5541.0018470.00 0.00 1360 68.00 57.00 0.00 11.00 0.00 122.00 2.14 21620.8722758.81 0.00 1461 59.00 0.00 0.00 59.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 8.00 2.00 942.8314142.50 0.00 1754 4.00 1757 222.00 200.00 0.00 22.00 0.00 556.42 2.78 53390.7416017.22 0.00 1758 46.00 41.00 0.00 5.00 0.00 151.75 3.70 8774.7512841.10 0.00 1768 35.00 33.00 0.00 2.00 0.00 102.71 3.11 6845.6312446.59 0.00 1769 89.00 78.00 0.00 11.00 0.00 237.33 3.04 15165.4311665.71 0.00 0.00 18.00 20.00 306.61 1.98 30342.4811745.48 0.00 1772 173.00 155.00 1774 139.00 126.00 0.00 13.00 19.00 260.75 2.07 23083.9910992.38 0.00 1775 12.00 0.00 0.00 12.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 209.00 1787 1025.00 816.00 0.00 2857.89 3.50 292116.0721479.12 0.00 1788 1027.00 835.00 0.00 192.00 0.00 3156.76 3.78 325776.4323409.09 0.00 1789 662.00 554.00 0.00 108.00 0.00 2234.84 4.03 198947.7421546.69 0.00 1790 1103.00 872.00 0.00 231.00 0.00 3325.72 3.81 331756.6022827.29 0.00 1993 132.00 0.00 132.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1995 223.00 124.00 0.00 99.00 0.00 548.80 4.43 74784.6836186.14 0.00 62.00 42.00 0.00 20.00 0.00 181.34 4.32 22300.4931857.85 0.00 1996 0.00 92.00 1997 725.00 633.00 0.00 2238.05 3.54 296232.2928078.89 0.00 1998 0.00 0.00 0.00 8.00 2.00 985.2614778.90 0.00 4.00 4.00

-->

Fri Aug 12 03:22:28 2016Emme Module: 5.31 Date: 16-08-12 03:22 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Transit Run 10am-2pm Matrix mf02 Tran2 /c 10am-2pm Tansit OD

destin total assigned intrazonal not ass. aux.tr. total lines pass. mean cpu demand demand demand only board. /pass. hours time time zone 1999 427.00 413.00 0.00 14.00 0.00 897.57 2.17 136734.1519864.53 0.00 0.00 0.00 0.00 0.00 2000 28.00 0.00 28.00 0.00 0.00 0.00 2001 67.00 66.00 0.00 1.00 0.00 212.00 3.21 32928.1929934.72 0.00 0.00 2159 79.00 71.00 8.00 0.00 164.00 2.31 13571.5811468.94 0.00 0.00 189.00 2.25 13077.54 9341.10 0.00 2161 88.00 84.00 0.00 4.00 19.00 2162 232.00 213.00 0.00 17.00 568.38 2.67 54732.8215417.70 0.00 2163 310.00 277.00 0.00 33.00 0.00 715.06 2.58 52473.5411366.11 0.00 49.00 45.00 4.00 88.17 1.96 8826.7111768.94 0.00 2164 0.00 0.00 2250 86.00 0.00 0.00 86.00 0.00 0.00 0.00 0.00 0.00 0.00 2251 61.00 45.00 0.00 16.00 10.00 83.67 1.86 8731.0611641.41 0.00

134

27.00 1.23 3103.13 8463.07 0.00 2252 24.00 22.00 0.00 2.00 10.00 2253 90.00 72.00 0.00 18.00 0.00 204.00 2.83 17251.4014376.17 0.00 2254 81.00 0.00 0.00 81.00 0.00 0.00 0.00 0.00 0.00 0.00 2255 29.00 19.00 0.00 10.00 0.00 40.00 2.11 3161.08 9982.35 0.00 100.00 95.00 2256 0.00 5.00 0.00 290.54 3.06 26598.7516799.21 0.00 2257 72.00 72.00 0.00 0.00 13.00 196.60 2.73 16467.0413722.54 0.00 2258 150.00 147.00 0.00 3.00 0.00 477.28 3.25 52087.0021260.00 0.00 2259 72.00 72.00 0.00 0.00 186.16 2.59 14231.6111859.67 0.00 0.00 2260 110.00 104.00 0.00 6.00 7.00 224.38 2.16 31557.3218206.14 0.00 2261 67.00 66.00 0.00 1.00 7.00 148.29 2.25 19486.4017714.91 0.00 2262 143.00 134.00 0.00 9.00 0.00 325.54 2.43 43164.8519327.55 0.00 2263 81.00 71.00 0.00 10.00 0.00 225.51 3.18 18926.1515993.93 0.00 2264 47.00 44.00 0.00 3.00 0.00 81.33 1.85 9574.7113056.42 0.00 2265 91.00 74.00 0.00 17.00 0.00 178.37 2.41 22996.3818645.72 0.00 79.00 0.00 79.00 0.00 0.00 0.00 2266 0.00 0.00 0.00 0.00 2267 460.00 435.00 0.00 25.00 0.00 1475.67 3.39 297007.7940966.59 0.00

-->

Fri Aug 12 03:22:29 2016Emme Module: 5.31 Date: 16-08-12 03:22 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Transit Run 10am-2pm Matrix mf02 Tran2 /c 10am-2pm Tansit OD

destin total assigned intrazonal not ass. aux.tr. total lines pass. mean cpu zone demand demand demand demand only board. /pass. hours time time

2268 4.00 4.00 0.00 0.00 0.00 10.00 2.50 2642.7139640.68 0.00 2269 226.00 193.00 0.00 33.00 0.00 595.50 3.09 99150.9630824.13 0.00 2270 4.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 2271 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2272 475.00 454.00 0.00 21.00 0.00 1190.35 2.62 197358.3026082.59 0.00 2273 319.00 309.00 0.00 10.00 0.00 902.07 2.92 166363.1832303.53 0.00 2274 377.00 366.00 0.00 11.00 0.00 713.25 1.95 162602.3226656.12 0.00 2275 289.00 272.00 0.00 17.00 0.00 635.50 2.34 154292.7134035.16 0.00 2.00 2.00 444.1626649.40 0.00 2276 1.00 1.00 0.00 0.00 0.00 2277 307.00 287.00 0.00 20.00 0.00 918.17 3.20 195803.6640934.56 0.00 17.00 13.00 2278 0.00 4.00 0.00 33.00 2.54 12254.3656558.58 0.00 2279 150.00 0.00 0.00 150.00 0.00 0.00 0.00 0.00 0.00 0.00 2280 221.00 169.00 52.00 0.00 425.50 2.52 66430.8223584.91 0.00 0.00 2281 70.00 13.00 0.00 57.00 0.00 13.00 1.00 2936.9813555.30 0.12 2282 173.00 0.00 0.00 173.00 0.00 0.00 0.00 0.00 0.00 0.00

135

32.00 21.00 0.00 11.00 0.00 32.00 1.52 7016.9020048.29 0.00 2283 3.00 0.00 0.00 0.00 2284 3.00 3.00 1.00 597.9611959.10 0.00 2285 25.00 25.00 0.00 0.00 0.00 55.00 2.20 6053.5014528.40 0.00 2286 18.00 18.00 0.00 0.00 0.00 54.00 3.00 3612.7212042.39 0.00 2287 65.00 65.00 0.00 0.00 0.00 133.00 2.05 15284.6914108.95 0.00 2288 148.00 139.00 0.00 9.00 0.00 404.00 2.91 39046.3216854.53 0.00 27.00 27.00 0.00 2289 0.00 0.00 56.00 2.07 3922.12 8715.83 0.00 2290 42.00 42.00 0.00 0.00 0.00 103.33 2.46 14355.6820508.11 0.00 2291 161.00 158.00 0.00 3.00 10.00 381.67 2.42 59183.1822474.63 0.00 2292 7.00 7.00 0.00 2.00 7.00 1.00 2181.0918695.07 0.00 0.00 2293 26.00 26.00 0.00 0.00 7.00 43.00 1.65 7786.6617969.22 0.00

-->

Fri Aug 12 03:22:29 2016Emme Module: 5.31 Date: 16-08-12 03:22 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Transit Run 10am-2pm Matrix mf02 Tran2 /c 10am-2pm Tansit OD

destin	total a	ssigned i	ntrazor	nal not as	s. aux	.tr. to	otal lir	nes p	ass. r	nean	сри	
zone	demand	demar	nd der	mand d	emand	only	/ boa	ard. /p	ass. h	ours	time	time
2204	15.00	12.00	0.00	2.00	2 00	22 (7	1 00	4014	<u> </u>	72 20	0.00	
2294	15.00	12.00	0.00	3.00	3.00	22.67	1.89	4014.	68200	/3.38	0.00	
2295	50.00	48.00	0.00	2.00	0.00	145.67	3.03	18006	5.6222	508.27	0.00	
2296	4.00	4.00	0.00	0.00 (0.00	8.00 2	2.00 1	.058.98	315884	.70 0	.12	
2297	1.00	1.00	0.00	0.00 (0.00	3.00 3	8.00	304.37	18262.	40 0.	00	
2298	59.00	59.00	0.00	0.00	0.00	149.00	2.53	17850).2118	152.76	0.00	
2299	24.00	24.00	0.00	0.00	0.00	83.67	3.49	7858.	751964	46.87	0.00	
2300	245.00	240.00	0.00	5.00	0.00	602.6	67 2.5	1 815	18.562	0379.6	64 0.0	0
2301	246.00	223.00	0.00	23.00	0.00) 682.0	00 3.	06 934	48.042	25142.	97 0.0	00
2302	77.00	75.00	0.00	2.00	0.00	178.67	2.38	25577	7.30204	461.84	0.00	1
2303	94.00	94.00	0.00	0.00	0.00	224.46	2.39	45941	1.92293	324.63	0.00	
2304	87.00	87.00	0.00	0.00	0.00	204.66	2.35	35963	3.34248	802.30	0.00	
2305	269.00	229.00	0.00	40.00	0.00) 705.4	44 3.0	08 122	671.86	32141	.10 0	.00
2306	282.00	213.00	0.00	69.00	0.00	786.3	33 3.	69 914	42.582	25758.4	47 0.0	00
2307	83.00	0.00	0.00	83.00	0.00	0.00	0.00	0.00	0.00	0.00		
2308	36.00	36.00	0.00	0.00	0.00	88.00	2.44	18079	.22301	32.03	0.00	
2309	20.00	20.00	0.00	0.00	4.00	39.00	1.95	7005.	372101	16.11	0.00	
2310	191.00	168.00	0.00	23.00	8.00	488.	12 2.	91 103	558.25	36985	.09 0	.00
2311	11.00	11.00	0.00	0.00	0.00	30.00	2.73	4154.	882266	53.00	0.00	
2312	10.00	0.00	0.00	10.00	0.00	0.00	0.00	0.00	0.00	0.00		
2313	16.00	16.00	0.00	0.00	0.00	43.00	2.69	6996.	402623	36.48	0.00	

136

0.00 69.00 3.29 5694.7416270.68 0.00 2314 21.00 21.00 0.00 0.00 2315 118.00 110.00 0.00 8.00 0.00 332.62 3.02 73118.4239882.78 0.00 2316 69.00 57.00 0.00 12.00 0.00 193.33 3.39 45373.6747761.76 0.00 2317 66.00 43.00 0.00 23.00 0.00 131.00 3.05 23830.0033251.17 0.00 0.00 2318 314.00 0.00 0.00 314.00 0.00 0.00 0.00 0.00 0.00 2319 263.00 125.00 0.00 138.00 0.00 492.40 3.94 61998.2929759.18 0.00

-->

Fri Aug 12 03:22:30 2016Emme Module: 5.31 Date: 16-08-12 03:22 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Transit Run 10am-2pm Matrix mf02 Tran2 /c 10am-2pm Tansit OD

destin total assigned intrazonal not ass. aux.tr. total lines pass. mean cpu zone demand demand demand only board. /pass. hours time time 2320 239.00 0.00 0.00 239.00 0.00 0.00 0.00 0.00 0.00 0.00 2321 411.00 217.00 0.00 194.00 0.00 919.33 4.24 136121.8737637.38 0.00 2322 342.00 0.00 0.00 342.00 0.00 0.00 0.00 0.00 0.00 0.00 2323 163.00 0.00 0.00 163.00 0.00 0.00 0.00 0.00 0.00 0.00 2324 20.00 20.00 0.00 0.00 52.00 2.60 9084.6027253.79 0.00 0.00 0.00 1111.56 3.63 156945.3030773.59 0.00 2325 326.00 306.00 0.00 20.00 2326 122.00 120.00 0.00 2.00 0.00 339.17 2.83 60099.8630049.93 0.00 2327 693.00 615.00 78.00 0.00 1996.33 3.25 298374.9629109.75 0.00 0.00 2328 72.00 72.00 0.00 0.00 0.00 285.80 3.97 28809.1324007.61 0.00 2329 275.00 251.00 0.00 24.00 0.00 1105.86 4.41 138701.6433155.77 0.00 2330 394.00 60.00 0.00 334.00 0.00 60.00 1.00 49209.1049209.10 0.00 2331 154.00 125.00 0.00 29.00 0.00 343.62 2.75 126405.1560674.48 0.00 2332 118.00 0.00 0.00 118.00 0.00 0.00 0.00 0.00 0.00 0.12 2333 126.00 95.00 0.00 31.00 0.00 396.83 4.18 96539.8860972.56 0.00 2334 34.00 0.00 0.00 34.00 0.00 0.00 0.00 0.00 0.00 0.00 2335 2.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 249.40 2.60 51161.7131976.07 0.00 2336 134.00 96.00 0.00 38.00 2337 206.00 0.00 0.00 206.00 0.00 0.00 0.00 0.00 0.00 0.00 2338 140.00 106.00 0.00 34.00 0.00 260.20 2.45 55819.6931596.05 0.00 2339 348.00 301.00 0.00 47.00 0.00 856.67 2.85 169494.4833786.28 0.00 2340 539.00 450.00 0.00 89.00 0.00 1261.33 2.80 250963.1733461.76 0.00 2341 399.00 305.00 0.00 94.00 0.00 792.00 2.60 170354.4333512.35 0.00 2342 187.00 0.00 0.00 187.00 0.00 0.00 0.00 0.00 0.00 0.00 2343 315.00 256.00 0.00 59.00 0.00 922.83 3.60 271033.1063523.39 0.00 2344 6.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00

2345 345.00 0.00 0.00 345.00 0.00 0.00 0.00 0.00 0.00 0.00

-->

Fri Aug 12 03:22:30 2016Emme Module: 5.31 Date: 16-08-12 03:22 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Transit Run 10am-2pm Matrix mf02 Tran2 /c 10am-2pm Tansit OD

destin total assigned intrazonal not ass. aux.tr. total lines pass. mean cpu zone demand demand demand only board. /pass. hours time time

2346	387.00	0.00	0.00	387.00	0.00	0.00 0.00	0.0	0.0	0.00	
2347	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	
2348	1.00	0.00	0.00	1.00	0.00	0.00 0.00	0.00	0.00	0.00	
2349	8.00	0.00	0.00	8.00	0.00	0.00 0.00	0.00	0.00	0.00	
2350	397.00	0.00	0.00	397.00	0.00	0.00 0.00	0.0	0.0	0.00	
2351	149.00	0.00	0.00	149.00	0.00	0.00 0.00	0.0	0.0	0.00	
2352	81.00	0.00	0.00	81.00	0.00	0.00 0.00	0.00	0.00	0.00	
2353	16.00	0.00	0.00	16.00	0.00	0.00 0.00	0.00	0.00	0.00	
2354	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	
2355	7.00	0.00	0.00	7.00	0.00	0.00 0.00	0.00	0.00	0.00	
2356	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	
2357	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	
2358	2.00	0.00	0.00	2.00	0.00	0.00 0.00	0.00	0.00	0.00	
2359	14.00	0.00	0.00	14.00	0.00	0.00 0.00	0.00	0.00	0.00	
2360	20.00	0.00	0.00	20.00	0.00	0.00 0.00	0.00	0.00	0.00	
2361	9.00	0.00	0.00	9.00	0.00	0.00 0.00	0.00	0.00	0.00	
2362	34.00	0.00	0.00	34.00	0.00	0.00 0.00	0.00	0.00	0.00	
2367	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	
2368	5.00	0.00	0.00	5.00	0.00	0.00 0.00	0.00	0.00	0.00	
2369	19.00	0.00	0.00	19.00	0.00	0.00 0.00	0.00	0.00	0.00	
2373	15.00	0.00	0.00	15.00	0.00	0.00 0.00	0.00	0.00	0.00	
2379	15.00	0.00	0.00	15.00	0.00	0.00 0.00	0.00	0.00	0.00	
2380	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	
2381	67.00	62.00	0.00	5.00	0.00	147.50 2.38	83890	0.3181	184.17	0.00
2382	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	
2383	3.00	0.00	0.00	3.00	0.00	0.00 0.00	0.00	0.00	0.00	

-->

Fri Aug 12 03:22:31 2016Emme Module: 5.31 Date: 16-08-12 03:22 User: EF87/FAP-DU...none Database Title: HRM Scenario 1: Transit Run 10am-2pm Matrix mf02 Tran2 /c 10am-2pm Tansit OD

destin	total as	signed intr	azonal not	ass. aux.ti	r. tota	al lines	pass.	mean	сри	
zone	demand	demand	demand	demand	only	board. /	/pass.	hours	time	time

2387	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00 0.00	
2388	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00 0.00	
2389	18.00	0.00	0.00	18.00	0.00	0.00 0.00	0.00 0.00 0.00	
2390	4.00	0.00	0.00	4.00	0.00	0.00 0.00	0.00 0.00 0.00	
2391	10.00	0.00	0.00	10.00	0.00	0.00 0.00	0.00 0.00 0.00	
2392	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00 0.00	
2393	7.00	0.00	0.00	7.00	0.00	0.00 0.00	0.00 0.00 0.00	
2394	3.00	0.00	0.00	3.00	0.00	0.00 0.00	0.00 0.00 0.00	
2395	3.00	0.00	0.00	3.00	0.00	0.00 0.00	0.00 0.00 0.00	
2396	2.00	0.00	0.00	2.00	0.00	0.00 0.00	0.00 0.00 0.00	
2412	21.00	21.00	0.00	0.00	0.00	38.00 1.81	10516.5430047.25	0.00

TOTAL 30739.00 21850.00 0.00 8889.00 285.00 66117.99 3.039733056.9926726.93 6.25

		Headwa	y (minute))	
#	Name	6am- 10am	10am- 2pm	2pm- 6pm	6pm- 12am
1	Spring Garden	10	10	10	15
2	Wedgewood	30	30	30	60
4	Rosedale	30	30	30	60
5	Chebucto	30		30	
6	Quinpool	30	60	60	60
7	Gottingen	15	15	15	20
9	Barrington	20	30	20	60
10	Dalhousie	15	30	30	30
11	Dockyard	30		30	
14	Leiblin	15	30	30	60
15	Purcells Cove	60	60	60	
16	Parkland	30	30	30	60
17	Saint Mary's	30	30	30	
18	Universities	30	30	30	30
19	Greystone	20	30	30	30
20	Herring Cove	20	30	30	30
21	Timberlea	30	30	30	60
22	Armdale	30	30	30	30
23	Timberlea/ Mumford	30		30	
31	Main	20		20	
32	Cowie Hill	20		15	
33	Tantallon	60		60	
34	Glenbourne	20		20	
35	Parkland	45		45	
41	Dartmouth	20	20	20	
42	Lacewood	20	20	20	
51	Shannon	30	30	30	60
52	Ilsley	20	30	20	30
53	Notting Park	20	30	20	30
54	Montebello	30	60	30	60

Appendix B-3: Transit route in Halifax

55	Port Wallce	30	60	30	60
56	Dartmouth	30	30	30	30
	Crossing				
57	Russel Lake	30	30	30	30
58	Woodlawn	30	60	30	60
59	Colby	20	30	20	30
60	Eastern Passage	15	30	15	30
61	Forest Hills	20	30	20	60
62	Cherrybrook	30	60	30	60
63	Woodside	30	30	30	
64	Akerley	30		30	
65	Astral	30	30	30	30
66	Gaston	30	30	30	60
68	Cherrybrook	30	30	30	60
72	Portland Hills	30	30	30	60
78	Mount edward	30		30	
79	Cole harbour	30		30	
80	Sackville	15	30	30	30
81	Hemlock Ravine	30	30	30	
82	Millwood	30	30	30	
83	Springfield	40	60	60	
84	Glendale	15		15	
85	Downsview	60		60	
86	Basinview	60		60	
87	Dartmouth	30	30	30	60
88	Dumacus	30	60	60	
89	Bedford	30	60	60	
90	Larry Uteck	30	30	30	60
159	Portland Hills	10	60	30	
185	Sackville	10	60	60	60
320	Airport	30	30	30	60
330	tantallon	20		20	
370	Porters lake	30		30	
400	Beaver bank	60		60	
401	Preston	90		90	
402	Sambro	60		60	
	Ferry - Dartmouth	15	30	15	30
	Ferry Woodside	15	30	15	30

Appendix B-4 NSTIR traffic volume survey sample data

N Tr Infr	O rai	nsp stru	or	tat	tion e R)T n a en	'IA nd ew	al al	lume :	Summar	y for	: Mon,	, Augus	st 15	2011 t	co Mor	n, Au	gust 2	2 2011	***					
																		662.559726.0	9 1 495			210			
			Nai	me: Of	102-03	0- <mark>01-1</mark>	St	art D	ate: 1	.5 Aug	,2011	End	l Date	: 22 A	ug, 201	.1 (Counte	r: 143	La	ine: co	ombined	1			
			Na	me: 01	102-03	0-01-1 County	St : HAL	art D Lo	ate: 1 ocatio	15 Aug n: 1 F	,2011 M NOR	End	l Date KEARNE	: 22 A	ug,201 D INT	.1 () R/C (N	Counte: ORTHEC	r: 143)UND)	La (LOOP)	ine: co	ombined	1			
			Na	me: 01	(0-01-1 County	St : HAL	art D	ate: 1 ocatio	.5 Aug n: 1 F Hour	,2011 M NOR : Perio	End TH OF 1 ods fo	l Date KEARNE r 24 H	: 22 A EY LK F Hour Cl	ug,201 ED INTI Lock	1 (R/C (N	Counte: ORTHEC	r: 143)UND)	La (LOOP)	ine: co	ombined	1			
T	0	1	Na:	me: 01	102-03	0-01-1 County 5	St : HAL 6	art D Lo	ate: 1 ocatio 8	.5 Aug n: 1 k <u>Hour</u> 9	,2011 34 NOR : Peric 10	End TH OF 1 ods fo 11	l Date KEARNE r 24 H 12	: 22 A EY LK F Hour CJ 13	ug,201 2D INT Lock 14	1 (R/C (N 15	Counte ORTHEC 16	r: 143 DUND) 17	La (LOOP) 18	ne: co 19	ombined 20	21	22	23	Total
	0	1	Na:	me: 01	102-03 (4 0	0-01-1 County 5 0	St : HAL 6 0	art D Lo 7 0	ate: 1 ocatio 8 0	.5 Aug n: 1 F Hour 9 0	,2011 34 NOR 2 Perio 10 0	End TH OF 1 ods fo 11 0	l Date KEARNE r 24 H 12 1430	: 22 A EY LK F Hour CJ 13 1463	ug,201 20 INT Lock 14 1684	1 (R/C (N 15 2204	Counte: ORTHEC 16 2774	r: 143 DUND) 17 2594	La (LOOP) 18 1534	19 1136	20 1009	1 21 748	22 367	23 206	Total 17149
<i>I</i> 5 6	0 0 151	1 0 65	Na 2 0 39	me: 01	102-03 (4 0 103	0-01-1 County 5 0 227	St : HAL 6 0 617	art D. Lo 7 0 1151	ate: 1 ocatio 8 0 1344	.5 Aug n: 1 F Hour 9 0 1218	,2011 24 NOR 2 Perio 10 0 1180	End TH OF 1 ods fo 11 0 1427	l Date KEARNE r 24 H 12 1430 1501	: 22 A BY LK F Hour CJ 13 1463 1579	ug,201 2D INT Lock 14 1684 1748	1 (R/C (N 15 2204 2311	Counte ORTHBC 16 2774 2901	r: 143 DUND) 17 2594 2697	La (LOOP) 18 1534 1654	19 1136 1387	20 1009 1213	21 748 967	22 367 464	23 206 312	Total 17149 26320
1 5 5 7	0 0 151 199	1 0 65 78	Na: 2 0 39 37	me: 0: 3 0 64 56	102-03 (4 103 95	0-01-1 County 5 0 227 246	St : HAL 6 0 617 690	art D. Lo 7 0 1151 1320	ate: 1 ocatio 8 0 1344 1478	5 Aug n: 1 F Hour 9 0 1218 1334	,2011 24 NOR 2 Perio 10 0 1180 1305	End TH OF 1 ods fo 11 0 1427 1442	l Date KEARNE 12 1430 1501 1541	: 22 A EY LK F Hour CJ 13 1463 1579 1572	ug,201 D INT Lock 14 1684 1748 1671	1 (R/C (N 15 2204 2311 2313	Counte: ORTHEC 16 2774 2901 2916	r: 143 DUND) 17 2594 2697 2648	La (LOOP) 18 1534 1654 1503	19 1136 1387 1391	20 1009 1213 1208	21 748 967 988	22 367 464 520	23 206 312 296	Total 17149 26320 26847
7 5 7 3	0 0 151 199 148	1 0 65 78 57	Na 2 0 39 37 49	me: 01	102-03 (4 0 103 95 114	0-01-1 County 5 0 227 246 242	St : HAL 6 0 617 690 653	rart D Lo 7 0 1151 1320 1385	ate: 1 ocatio 8 0 1344 1478 1439	5 Aug n: 1 F Hour 9 0 1218 1334 1273	,2011 <u>AM NOR</u> <u>Perio</u> 10 0 1180 1305 1416	End TH OF 1 ods fo 11 0 1427 1442 1456	I Date KEARNE 12 1430 1501 1541 1588	: 22 A EY LK F Hour CJ 13 1463 1579 1572 1609	ug,201 2D INT Lock 14 1684 1748 1671 1696	1 (NR/C (N 15 2204 2311 2313 2246	Counte: ORTHBC 2774 2901 2916 2899	r: 143 DUND) 17 2594 2697 2648 2876	La (LOOP) 18 1534 1654 1503 1798	19 1136 1387 1391 1392	20 1009 1213 1208 1219	21 748 967 988 924	22 367 464 520 486	23 206 312 296 299	Total 17149 26320 26847 27329
1 5 6 7 8 9 9	0 0 151 199 148 185	1 0 65 78 57 80	Na 2 0 39 37 49 63	me: 01	102-03 (4 0 103 95 114 126	5 0 227 246 233	St : HAL 6 0 617 690 653 664	art D Lo 7 0 1151 1320 1385 1184	ate: 1 ocatio 8 0 1344 1478 1439 1363	5 Aug n: 1 k Hour 9 0 1218 1334 1273 1407	,2011 M NOR Peric 10 0 1180 1305 1416 1444	End TH OF 1 ods fo 11 0 1427 1442 1456 1603	I Date KEARNE 12 1430 1501 1541 1588 1798	: 22 A BY LK F Hour CJ 13 1463 1579 1572 1609 1848	ug,201 2D INT Lock 14 1684 1748 1671 1696 2091	1 (N R/C (N 15 2204 2311 2313 2246 2471	0RTHB0 0RTHB0 2774 2901 2916 2899 2947	17 2594 2697 2648 2876 2604	La (LOOP) 18 1534 1654 1503 1798 1658	19 1136 1387 1391 1392 1249	20 1009 1213 1208 1219 1122	21 748 967 988 924 888	22 367 464 520 486 495	23 206 312 296 299 337	Total 17149 26320 26847 27329 27909
I 5 6 7 7 8 9 9	0 0 151 199 148 185 198	1 0 65 78 57 80 130	Na 2 0 39 37 49 63 88	me: 0: 3 0 64 56 65 49 73	102-03 (4 0 103 95 114 126 110	0-01-1 County 5 0 227 246 242 233 175	St HAL 6 0 617 690 653 653 654 325	Lo Lo 1151 1320 1385 1184 550	ate: 1 ocatio 8 0 1344 1478 1439 1363 768	5 Aug n: 1 k Hour 9 0 1218 1334 1273 1407 1087	,2011 24 NOR 2 Perio 10 0 1180 1305 1416 1444 1409	End TH OF 1 ods fo 11 0 1427 1442 1456 1603 1651	I Date KEARNE 12 1430 1501 1541 1588 1798 1607	: 22 A BY LK F Hour CJ 13 1463 1579 1572 1609 1848 1735	ug,201 D INT Lock 14 1684 1748 1671 1696 2091 1655	1 (N R/C (N 15 2204 2311 2313 2246 2471 1620	Countes ORTHBC 2774 2901 2916 2899 2947 1507	17 2594 2697 2648 2876 2604 1506	La (LOOP) 18 1534 1654 1503 1798 1658 1260	19 1136 1387 1391 1392 1249 947	20 1009 1213 1208 1219 1122 780	21 748 967 988 924 888 642	22 367 464 520 486 495 445	23 206 312 296 299 337 320	Total 17149 26320 26847 27329 27909 20588
Y 5 6 7 7 8 8 9 9 1	0 0 151 199 148 185 198 221	1 0 65 78 57 80 130 122	Na 2 0 39 37 49 63 88 88 87	me: 0: 3 0 64 56 65 49 73 73	(((103 95 114 126 110 78	0-01-1 County 5 0 227 246 242 233 175 113	St : HAL 6 0 617 690 653 664 325 225	Lo 7 0 1151 1320 1385 1184 550 376	ate: 1 0 1344 1478 1439 1363 768 471	5 Aug n: 1 F Hour 9 0 1218 1334 1273 1407 764	,2011 M NOR Peric 10 0 1180 1305 1416 1444 1409 1062	End TH OF : ods fo 111 0 1427 1442 1456 1603 1651 1303	l Date KEARNE r 24 H 12 1430 1501 1541 1548 1798 1607 1436	: 22 A BY LK F Hour CJ 1463 1579 1572 1609 1848 1735 1544	201 INT 20 INT 100k 1684 1684 1671 1696 2091 1655 1453	1 (N R/C (N 2204 2311 2313 2246 2471 1620 1425	16 2774 2901 2916 2899 2947 1507 1446	r: 143 JUND) 17 2594 2697 2648 2876 2604 1506 1329	La (LOOP) 18 1534 1553 1503 1798 1658 1260 991	19 1136 1387 1391 1392 1249 947 924	20 1009 1213 1208 1219 1122 780 715	21 748 967 988 924 888 642 519	22 367 464 520 486 495 445 355	23 206 312 296 299 337 320 204	Total 17149 26320 26847 27329 27909 20588 17236

Appendix B-5: Transit route map in Halifax

Appendix B-6: Transit route profile map (route #1)in Halifax

Appendix B-7: Model validation points

APPENDIX C

Appendix C-1 Emission factor (Megenbir and Habib)

Table 1: Passenger Kilometre Fuel C	Consumption and \	/ehide Emission F	actors					
	CO (g/km)	THC (g/km)	VOC (g/km)	NOx (g/km)	PM10 (g/km)	PM2.5 (g/km)	GHG (g/km)	Fuel (L/km)
Passenger Vehicle Drive Alone	6.266	0.716	0.676	0.475	0.00282	0.00262	242.942	0.098
Passenger Vehicle Carpool	2.3126	0.261	0.249	0.176	0.00104	0.000966	89.663	0.0362
Diesel Bus	0.131	0.0137	0.0136	0.574	0.00106	0.0115	93.049	0.0338
				1				

APPENDIX D

Appendix D-1 TAZ considered in alternative transit evaluation

	Zone	Location	Area	Population	Employment
	Number		(km2)	(2011)	(2011)
Halifax	11	Downtown-Pier 21	0.29	2063	1138
Downtown	12	Downtown-Lower Water Street	0.18	987	3466
(Urban)	25	Downtown-Citadel	0.54	787	1606
	26	Downtown Core	0.17	541	13180
	27	Downtown-Upper Water street	0.18	578	14094
	28	Downtown-Casino NS	0.11	338	8252
	29	Downtown-Cogswell	0.17	527	12842
	30	Downtown- North St	0.26	1582	791
Bedford	121	Larry Uteck	2.54	4652	1629
(Suburban)	122	Kearney lake Rd	1.53	149	54
	123	Kearney lake	4.82	469	169
	125	Hammonds Plains Rd	1.40	136	49
	127	Bedford West	1.95	189	68
	128	Bedford South	1.72	2881	530
	129	Mill Cove	1.36	2478	867
	130	Bedford core	1.05	1959	1553

Appendix D-2 Change of AM and PM peak GHG emissions pollution Experienced

