
AN EVOLUTIONARY ALGORITHM FOR DEPTH IMAGE BASED
CAMERA POSE ESTIMATION IN INDOOR ENVIRONMENTS

by

Ang Lu

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2016

c© Copyright by Ang Lu, 2016

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vii

List of Abbreviations and Symbols Used viii

Acknowledgements . x

Chapter 1 Introduction . 1

1.1 Motivation and Background . 1

1.2 Our Method . 2

1.3 Contributions . 3

1.4 Publications . 4

1.5 Thesis Outline . 4

Chapter 2 Related Work . 5

2.1 Radio Frequency Identification . 5

2.2 Simultaneous Localisation and Mapping 6

2.3 Camera Pose Estimation . 7

2.3.1 Reference from Objects . 7

2.3.2 Reference from Images . 7

2.3.3 Reference from 3D Building Models 8

2.4 Object Pose Estimation . 9

2.5 Depth-Image based Indoor Localization 10

2.6 Evolutionary Strategies . 11

2.6.1 Objective Function . 11

2.6.2 Step size Control . 12

2.6.3 Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) 15

ii

Chapter 3 Algorithm . 16

3.1 Representation of Camera . 16

3.2 Objective Function . 17

3.3 Coordinate Systems . 18

3.4 Pose Optimization . 20

Chapter 4 Evaluation . 24

4.1 Unimodal Environment . 24
4.1.1 Objective Function . 24
4.1.2 Experiment result . 25

4.2 Experiment in 3D environment . 32
4.2.1 Classroom environment . 33
4.2.2 The Sagrada Famı́lia environment 37

4.3 Local Optima . 41

4.4 Multimodality . 42

4.5 Computational cost . 44

Chapter 5 Conclusion and Future Work 48

Bibliography . 50

iii

List of Tables

4.1 Runs in the unimodal environment with orientation scale factor
set to 1 . 26

4.2 Runs in the unimodal environment with orientation scale factor
set to 1,000 . 29

4.3 Runs in the classroom environment 35

4.4 Runs in the Sagrada Famı́lia environment 38

4.5 Runs in the Sagrada Famı́lia environment with different P values 40

4.6 Runs in the classroom environment with a system for multi-
modal optimization. Need to notice that there are an extra 1900
iterations for the runs chosen not to pursue. 44

4.7 Testing environment configuration 44

4.8 Average ratio of three most computational costly sections during
a searching iteration with different size of images 46

4.9 Average time cost on reading a block of pixels from the depth
buffer with different size of images 46

4.10 Average time cost on transforming the depth value from window
coordinate to camera coordinate with different size of images . 46

4.11 Average time cost on calculating objective function with differ-
ent size of images . 47

iv

List of Figures

2.1 Pseudocode of a (µ/µ, λ)-ES with Search Path 14

3.1 A target depth image (top left), a candidate depth image (top
right; both with intensities corresponding to depth values in
window coordinates) and the images obtained by computing
pixel-wise squared differences in window coordinates (bottom
left) and in camera coordinates (bottom right; both with inten-
sities normalized). 19

3.2 Single step of the evolutionary algorithm for pose estimation . 23

4.1 Tracing the objective function value (top row), step size (middle
row) and step scale factor (bottom row) during median search
processes. Orientation scale factor is set to 1. Initial location
within different range scale: 1 unit (left column), 100 units
(middle column), 10,000 units (right column) 27

4.2 Tracing the scoring value (top row), step size (middle row),
step scale factor (bottom row) during median search processes.
Orientation scale factor is set to 1,000. Initial location within
different range scale: 1 unit (left), 100 units (middle), 10,000
units (right) . 30

4.3 Orientation distance and location distance during search pro-
cesses. Orientation scale factor is set to 1, initial location within
different range scale: 1 unit (top left), 100 units (top middle),
10,000 units (top right). Orientation scale factor is set to 1,000,
initial location within different range scale: 1 unit (bottom left),
100 units (bottom middle), 10,000 units (bottom right) 32

4.4 Views of the classroom test environment from the four target
poses considered. Target poses A through D appear in clockwise
order, starting at the top left 34

4.5 Median successful runs in the classroom environment. Shown
are traces from those runs for each of the four targets that
required the median number of iterations to terminate among
all successful runs. 35

v

4.6 Traces from two successful runs for target poses A and D. In
both cases, the yellow camera is the initial camera, the black
camera is the target camera pose. The colour of camera illus-
trate the number of iterations. The start colour is blue with
iteration increases the colour transit to red. 36

4.7 Views of the church test environment from the four target poses
considered. Target poses A through D appear in clockwise or-
der, starting at the top left . 37

4.8 Depth image of target B (top left), a candidate depth image
(top right) and the images obtained by computing pixel-wise
differences with different power value P = 2.0 (bottom left)
and P = 0.1 (bottom right; both with intensities normalized). 39

4.9 Median successful runs in the church environment. Shown are
traces from those runs for each of the four targets that required
the median number of iterations to terminate among all suc-
cessful runs. 41

4.10 Classified results of 100 searching processes of Target A in the
Sagrada Famı́lia environment. Red border enclose the result of
all the successful runs (P = 2.0). Each border that with other
colour enclose a pose that been reached more than once. The
poses that have no border around are the poses that only been
reached once. 43

vi

Abstract

We consider the task of determining the pose of a depth camera based on a single

target depth image and a 3D model of the indoor environment that the image was

taken in. We identify the quality of a pose estimate with summed differences between

depth values in the target depth image and a depth image generated synthetically by

using that pose estimate in the 3D model. We then propose an evolutionary algorithm

for optimizing pose estimates.

In this thesis, we discuss indoor positioning approaches, introduce our evolutionary

algorithm, and then evaluate the performance of that algorithm in three artificial test

environments. Finally, we discuss the perspectives for the use of the algorithm in real

environments.

vii

List of Abbreviations and Symbols Used

Abbreviations

CMA-ES Covariance Matrix Adaptation Evolutionary Strategy

CSA Cumulative Step Size Adaptation

ES Evolutionary Strategies

GNSS Global Navigation Satellite Systems

ICP Iterative Closest Point

NDT Normal-Distributions Transform

RANSAC Random Sample Consensus

RFID Radio Frequency Identification

SLAM Simultaneous Localisation and Mapping

ToF Time-of-Flight

Symbols

σ ∈ R+ a step size

P the population of selected offspring

µ ∈ N the number of parents

λ ∈ N the number of offspring

x a solution vector/part of a solution vector

s a search path

c the cumulation parameter

viii

zk a single mutation vector

n ∈ N the search space dimension

m the mean value of the search distribution

S the unit sphere embedded in R4

TqS
3 the tangent space of the unit sphere in R4 at the location of unit quaternion q

α ∈ R+ a step scale factor

τ ∈ R+ a constant which controls the size of the mutations

D ∈ R+ the damping factor

q a four dimensional unit quaternion

w ∈ R4 a standard normally distributed vector

wi recombination weights

N (0, I) a multivariate normal distribution with expectation and modal value 0 and

the identity matrix I

ix

Acknowledgements

First of all, I wish to express my gratitude to my supervisor, Dr. Dirk Arnold, Faculty

of Computer Science, Dalhousie University, for his valuable guidance and ideas that

have helped me complete my research work and this thesis. I would like to thank my

grandfather as well as my parents for their enthusiasm and endless support.

x

Chapter 1

Introduction

“ –yes, that’s about the right distance –but then I wonder what Latitude or Longitude

I’ve got to? ”

— L. Carroll, Chapter I, Alice’s Adventures in Wonderland

This chapter introduces an overview of the thesis. First, we discuss our motivation

and background. Then, we briefly introduce our method. After that, we summarize

the main contributions of this thesis. Finally, we illustrate the structure and outline

of the thesis.

1.1 Motivation and Background

Similar to the question that Alice asked herself when she entered the wonderland,“ –

yes, that’s about the right distance –but then I wonder what Latitude or Longitude

I’ve got to? ”, the problem of localization that we will discuss throughout this thesis

is the task of locating objects or people in environments.

With the development of the Global Navigation Satellite Systems (GNSS), esti-

mating the position of objects in an outdoor environment can be performed almost

perfectly (7.8 meter horizontal accuracy for civilian usage [10]). At the same time,

many indoor localization applications (which we will describe in the following Chap-

ter) are looking for solutions to improve their performance of locating objects or peo-

ple in indoor environments. Theoretically, most localization systems including GNSS

can be used for indoor localization purposes. However, the GNSS is not sufficient

for indoor localization tasks for several reasons: 1) GNSS signal will be attenuated

and scattered by roofs, walls and other objects; 2) GNSS cannot provide an accurate

orientation of objects; 3) positioning accuracy is finer (on a smaller scale) for indoor

localization purposes. Therefore, the problem of estimating the position of objects in

an indoor environment has become a focus of research during the past decade.

1

2

In [23], Mautz summarized many scenarios where the application of indoor lo-

calization is needed, such as location based service in indoor environments, context

detection and situational awareness, intelligent transportation and police and fire-

fighting work. The task of indoor localization also arises in connection with assembly

and maintenance activities, where mechanics or engineers in the interior of the struc-

ture face a particular part or parts, and need to look up related information in parts

catalogues. Manually looking up parts is tedious and time consuming, and it is desir-

able to automate the task as much as possible.

Indoor environments have some features [23] that are particularly challenging for

localization purposes: 1) the structure of indoor environments (e.g. aircraft, church,

museum) can be very different; the presence of people and the change of some movable

objects in the environment (e.g. chairs in the classroom) may add more complexities;

2) the demand for precision and accuracy is higher than the demand for precision and

accuracy in outdoor environments.

As mentioned in [23], indoor environments facilitate localization in several ways:

1) relatively small searching area; 2) low weather influences (no rain, storm, blizzard

etc.); 3) fixed geometric constraints (e.g. walls, ceilings, floors).

1.2 Our Method

We explore opportunities arising from the increasing availability of commercial hard-

ware for depth sensing, variably referred to as depth cameras or RGB-D cameras.

A mechanic equipped with an RGB-D camera can take a depth image of the part

or parts in question, plus their context in the assembled structure. That image can

then be registered against a 3D model of the structure, thus yielding the pose (i.e.,

location and orientation) of the camera at the time that the image was taken.

We choose to perform registration based on depth images only, rather than addi-

tionally relying on RGB data. While discarding potentially useful information, the

advantage is simplicity; there is no need to consider illumination conditions, which

make colour a challenging issue to deal with. Moreover, as in our case, 3D models do

not always have accurate colour information associated with them.

The computational task is closely related to problems in indoor positioning [23],

mobile robot navigation [7], and object recognition [25], but it is distinguished from

3

these in several important respects:

1. We are able to take advantage of the existence of an accurate 3D model of the

environment that the depth camera is located in.

2. Positioning must be accomplished based on visual information only. The deploy-

ment of hardware for near field communication based approaches is precluded.

3. We strive to compute the camera pose from a single image, as opposed to

tracking a path through the environment.

4. We aim to determine the full camera pose (i.e., orientation in addition to loca-

tion).

While each of these aspects has been considered in related work, we are not aware of

approaches for settings where all of them hold simultaneously.

As proposed by Fillingham [8], the quality of a pose estimate is quantified by

synthetically generating a depth image of the 3D model with that pose and then

computing the sum of squared differences between that depth image and the target

depth image. A challenge in developing an evolutionary algorithm for pose estimation

is the representation of pose. It is desirable to represent camera orientation using unit

quaternions in order to avoid problems with gimbal lock stemming from the use of

Euler angle representations, or issues arising from redundancy in representations that

use a greater number of parameters. Consequently, the variation operators of the

evolutionary algorithm need to be designed to work in unit quaternion space.

1.3 Contributions

First, we present a simple evolutionary algorithm for the optimization of a pose vector.

The algorithm is built on the more general approach for optimization on Riemannian

manifolds proposed by Colutto et al. [6]. However, it differs in not adapting the full

covariance matrix but instead using self-adaptation for controlling a scaling factor

between the size of steps in the subspace of locations and those in the subspace

representing orientation. Second, we provide a proof of concept for the possibility

of inferring camera pose from a single depth image provided that a 3D model of the

environment is available.

4

1.4 Publications

Portions of the work presented in this thesis have resulted in a paper [21], which

can be found in the Proceedings of the IEEE Congress on Evolutionary Computation

2016.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. Recent techniques and methods

related to indoor localization and pose estimation are listed and discussed in Chap-

ter 2. We divide the various techniques into categories and discuss the merits and

limitations for each of them. Chapter 3 describes the representation of the camera,

the objective function, and the algorithm we designed for the optimization of a pose

vector. The evaluation of our algorithm in a unimodal environment, a classroom

environment and a church environment is described in Chapter 4. Results for the

various experiments are also explored in Chapter 4. In Chapter 5, we summarize the

thesis and suggest possible directions for future work.

Chapter 2

Related Work

“ I believe in God, Mozart, and Beethoven. ”

— R. Wagner, Autobiographic Sketch

In this chapter, different techniques that have been developed for solving indoor

localization and related problems are introduced; the advantages and disadvantages of

these different techniques are discussed. Radio frequency identification (RFID) based

indoor localization techniques are discussed in Section 2.1. A technology that is

related to indoor localization and robotic mapping, called Simultaneous Localisation

and Mapping (SLAM), is introduced in Section 2.2. In Section 2.3, different methods

related to camera pose estimation are discussed. In Section 2.4, we discuss a task

which is somewhat related to camera pose estimation in an indoor environment,

called object pose estimation. A depth image based indoor localization technique

is introduced in Section 2.5. Finally, we introduce the background of evolutionary

strategies and discuss two major features in these strategies.

2.1 Radio Frequency Identification

Radio frequency identification (RFID) is a technology that has been designed to

uniquely identify an object, animal, or person. RFID technology is widely used in

access management, tracking of objects, transportation, identification and security

etc. An RFID system consists of a reader and RFID tags. The reader, which has an

antenna, can be used to interrogate the nearby RFID tags. An RFID tag is designed

to provide data, which is usually used to uniquely identify an object. The data stored

in an RFID device can be related to position information. Because of this, RFID has

become a competitive technology for indoor localization purposes, even though it is

not designed for this.

Ni et al. [26] present an RFID based indoor localization system. In this system,

5

6

RFID devices are set up inside a building. While a reader is traveling around the

building and interrogating the RFID tags, the system can get the location information

of that reader. Typically, the accuracy of an RFID localization system is highly

dependent on the density of tags that are set in the environment and the maximal

reading ranges of the reader. This system directly provides position information but

cannot get orientation information from the sensor.

2.2 Simultaneous Localisation and Mapping

Simultaneous Localisation and Mapping (SLAM) is a category of techniques that

has been developed for indoor localization and robotic mapping. It is originally

developed by Leonard and Durrant-Whyte in [17]. These techniques help a robot to

simultaneously generate a map of environments while it wanders around unknown

areas. A SLAM system needs a mobile robot and a range measurement device (e.g. a

laser scanner). Many SLAM algorithms have been applied in self-driving cars, robots,

underwater vehicles and planetary rovers. Different types of sensors are used in a

SLAM algorithm. These sensors can be categorized into laser-based, sonar-based,

and vision-based systems. Different algorithms have been invented to manipulate

different kinds of input. In [3], Aulinas et al. provide a survey of different types of

SLAM techniques.

Zou et al. [40] propose an approach to indoor positioning using depth cameras

that does not require a 3D model of the scene. Instead it builds such a model on the

fly from the sequence of depth images taken. Depth cameras can provide valuable

information for simultaneous localization and mapping, and random sample consensus

(RANSAC) is used to establish relative transformations between frames based on

point-wise correspondence between feature points. The proposed SLAM approach

[40] has been successfully applied in an indoor environment consisting of several rooms

connected by hallways. However, the problem considered differs from that faced by

us in that we assume the existence of an accurate 3D model, but strive to estimate

camera pose from a single depth image rather than tracking a path through the

environment.

7

2.3 Camera Pose Estimation

Since many indoor localization problems focus on extracting the position of viewers,

these indoor localization problems are hence similar to the problems of estimating the

pose of a camera. One category of techniques that focuses on extracting parameters to

describe a camera is called camera pose estimation or camera calibration. To discuss

techniques in this category, we start by introducing the camera model that is most

used in these techniques. Most cameras described in these related works are pinhole

cameras, which can be described by two matrices. The intrinsic matrix contains

camera parameters of focal length, aspect ratio and principal point. The extrinsic

matrix contains camera position and orientation parameters. Many different methods

have been developed to extract both matrices. However, in order to estimate a camera

pose, extracting the extrinsic matrix is sufficient.

2.3.1 Reference from Objects

We start by considering what is perhaps the most intuitive technique, estimating

the camera pose with the help of a reference object in an environment. In [35],

Tsai provides a method to extract these matrices using a monoview coplanar as the

reference object. In [38], Zhang introduces a method to extract these two matrices

from a one dimensional labeled stick. Although different reference objects may be used

in these techniques, one extracting process for each of them is similar. Commonly, an

extracting process starts by taking one or more images that contain reference objects

from the environment, then detects and extracts the space information that is signed

on the object from the images, and then uses this information to estimate camera

pose.

2.3.2 Reference from Images

In [22], Luong et al. introduce another similar technique using a sequence of 2D

images that are taken from the environment to estimate the camera pose. From a

sequence of images (at least three images), the point correspondence between these

images provide information that can be used to estimate a camera pose. Many of

these methods that can be used to find point correspondence between images are

8

surveyed by Szeliski in [34]. Generally, one process of estimating camera pose in this

category includes the following steps: feature point detection, feature point matching,

and camera pose extraction based on matched features. In contrast with previous

methods, no reference object with known space information is needed. Instead, a

sequence of 2D images is needed to generate 3D point-cloud models which contain

both 3D space information of the environment and 2D image feature points. Then

the feature points that are extracted from 2D images are used to match the best

correspondence in the point clouds to estimate the camera pose.

In [32], Svarm et al. propose a method to solve the pose estimation problem as a

registration problem. They use a fast approximate outlier rejection scheme to handle

large datasets with large amounts of outliers. This method assumes knowledge about

the orientation of the camera relative to the ground plane as many modern cameras

and phones have gravitational sensors. In [18], Li et al. describe a method for

camera pose estimation on a world wide scale. The method scales to datasets with

hundreds of thousands of images and tens of millions of 3D points through the use

of two techniques: a co-occurrence based random sample consensus (RANSAC) [9]

and bidirectional matching of image features with 3D points. In [29], Sattler et al.

present a framework for determining the pose of a query image relative to a point

cloud reconstruction of a large scene consisting of more than one million 3D points.

This framework actively searches for additional matches, based on both 2D-to-3D

and 3D-to-2D searches. This unified formulation of searching allows the framework

to exploit the distinct advantages of both strategies.

One interesting application for these techniques is to estimate camera pose from

some old movies for which we have lost the information of the camera parameters.

However, as described by Lowe in [20], extracting feature points and handling a large

number of outliers is time consuming.

2.3.3 Reference from 3D Building Models

Techniques have also been developed to extract camera pose from a 3D model and

images. This category includes methods that are closest to our method as both 3D

models and images have been used to estimate camera pose.

9

In [16], Kohoutek et al. provide a method that uses Normal-Distributions Trans-

form (NDT) and Iterative Closest Point (ICP) to estimate the camera pose in indoor

environments. The main idea of their method is to find the pose of a Time-of-Flight

(ToF) range camera by matching two point clouds. One is acquired from a ToF range

camera, another is generated from a 3D environment polygon model. To do so, they

designed a coarse-to-fine matching procedure. First, it generates point clouds from

both range images (which are taken from a ToF range camera) and a 3D environment

polygon model separately. Then a coarse matching process between two 3D models

using the NDT algorithm is applied to two point clouds. After that, a fine matching

process using the ICP algorithm is applied. The camera pose is estimated when the

two matching processes are completed. One major difference between [16] and our

method is in the scale and complexity of the 3D model. In [16], the point cloud

that is acquired from a ToF range camera may only represent portions of the point

cloud that is generated from the 3D environment polygon model. A larger difference

between the number of points in two point clouds jeopardize the capability of the

NDT algorithm to converge in its best solution. Because of this, the scale and the

complexity of the 3D model is limited. In our method, the 3D model of an indoor

environment can be larger in scale and much more complicated.

2.4 Object Pose Estimation

A task somewhat related to that of camera pose estimation in an indoor environment

is that of pose estimation for objects. That problem forms a cornerstone for many

approaches to object recognition [25]. Moreno-Noguer et al. [24] propose an approach

for estimating pose from the correspondence between 2D points and a 3D model using

a Gaussian mixture model that is progressively refined as new correspondence are

hypothesized. Lim et al. [19] address the problems of pose estimation and detection

of objects for which accurate 3D models are available. Their approach relies on

feature point matching in RGB images. Zia et al. [39] employ 3D geometric object

class representations for recognition and evaluate the ability of their approach to

accurately estimate pose. Vajramushti et al. [36] present an object retrieval method

based on depth information. They employ their approach for retrieval tasks involving

over 3,000 3D objects. Finally, Choi and Christensen [5] use an RGB-D camera and

10

several scanned views of target objects for pose estimation. All of these approaches

differ from ours in the quality criteria that they use for alignment, but also in the

nature of the underlying search problem. While camera pose estimation in an indoor

environment is naturally continuous, object recognition is an inherently discrete task.

2.5 Depth-Image based Indoor Localization

As proposed by Fillingham in [8], the quality of a pose estimate can be quantified

by synthetically generating a depth image of the 3D model with that pose and then

computing the sum of squared differences between that depth image and the target

depth image.

In his method, a depth image which is taken from a target pose is used as input

to find the pose of a viewer. Then, a camera is set inside the 3D model to render

a depth image. The rendered image is matched against the input image, then the

camera parameters are updated iteratively based on matching results to find the

most possible pose of the viewer. By varying each of seven parameters of the camera

while keeping all the other dimensions constant then plotting fitness landscape, he

found that fitness function value decreases monotonically within a range around the

global optimum and the fitness landscape is not rugged and has a smooth basin of

attraction near the optimum. Because of this, an evolutionary strategy would be a

suitable search method for this task.

The algorithm he used in [8] is a two-tier matching strategy to find the target

camera pose. In the upper tier, a pose around the global optimum is supposed to be

reached as the starting pose for the lower tier. In the lower tier, the Covariance Matrix

Adaptation Evolutionary Strategy (CMA-ES) algorithm is applied to find the local

optimum. His strategy was tested in a 3D model of a classroom which was comprised

of 180,518 triangles. Four different target poses were generated for this classroom

environment. These target camera poses have been tested in his experiments and

resulted in a success rate above 61%. In his method, a seven dimensional vector is

used to represent camera pose, an infinite number of vectors may mapping into the

same pose which might cause some issues for an evolutionary strategy. In our method,

we strive to use the unit quaternion which is a more natural and less redundant way

to represent an orientation. The initial height of a camera pose is chosen to be near

11

eyelevel, which constrains the diversity of initial poses.

2.6 Evolutionary Strategies

The evolutionary strategies (ES) proposed by Rechenberg in [28] and described by

Beyer and Schwefel in [4] are optimisation techniques. The idea of these techniques

is derived from the principles of biological evolution where recombination, mutation

and natural selection happen to a population from generation to generation to grad-

ually improve its fit with the environment. In evolutionary strategies, in the process

of each generation, new offspring are generated from their parents with different re-

combinations and mutations, their fitness is evaluated, and the better offspring are

selected to become the parents for the next generation. The better offspring are al-

ways preserved in each generation. Within a certain number of iterations, the process

gradually improves their fit with the environment. The process stops once it reaches

the termination criteria. A question arises consequently: Since mutation is the key to

generate better offspring, can we control the mutation process to increase the prob-

ability of generating better offspring? This question leads to a need for mutation

strength control which is referred to as step size control. We will discuss several

topics related to evolutionary strategies in the following section.

2.6.1 Objective Function

In optimization algorithms including evolutionary strategies, an objective function is

used to measure the fitness of a given solution and hence formulate the optimization

problem. To design an objective function, there are two fundamental requirements: a)

the objective function defines the fitness of a candidate solution in a specific problem;

b) the objective function be computed quickly. For a specific problem, there could be

one or more objective functions that meet these requirements. Intuitively, to select

the best objective function (if there is one) from these workable objective functions

is crucial in designing a better evolutionary strategy. To do so, we need to evaluate

these workable objective functions and select the best one. However, evaluating the

performance of these objective functions can be complicated as the performance of

an objective function is influenced by many factors during a searching process, such

as initialization, initial parameter values, searching environment, and aimed solution.

12

Even if we can find the best objective function (if there is one), we may notice that

the mechanisms being used to measure the fitness of the objective functions are other

objective functions, and need other functions to evaluate them. Because of this, many

objective functions being used are empirical.

Although it is difficult to find the best objective function (if there is one) in

a certain environment, striving for a better evaluating mechanism is possible and

worthwhile. In [14], Hillis introduce a co-evolving system that is used to generate

minimal sorting networks. Instead of using one objective function, the system uses

two objective functions to evaluate the fitness of both the sorting networks and test

cases separately. This leads to a co-evolution between the sorting networks and test

cases. The benefits of this evaluation mechanism are twofold: first, it helps prevent

the system from becoming stuck in local optima; second, the testing becomes more

efficient [14]. In this thesis, we did experiments with different objective functions and

found these different objective functions influence the searching success rate signifi-

cantly.

2.6.2 Step size Control

Step size control is key to the design of evolution strategies. The step size controls

the mutation strength within each generation. A smaller step size increases the like-

lihood of generating improvements in each generation (and a larger step size leads to

the opposite scenario). In situations where larger step sizes lead to larger expected

improvements, a step size control mechanism should focus on increasing the step size

(and decreasing it in the opposite situation). The main goal of the step size control

is to keep the step sizes close to their optimal values. These optimal step size values

can significantly change over time or depending on the position in search space. In

the following, the 1/5th success rule, self-adaptation method, and cumulative step

size adaptation method (CSA) are introduced.

The 1/5th Success Rule

The 1/5th success rule for step size control is discovered very early in the research of

evolution strategies by Rechenberg in [28]. This method has been mostly superseded

by more sophisticated methods. However, the conceptual insight in it is still valuable.

13

As described by Hansen et al. in [12], in the 1/5th success rule, the step size increases

if the probability of making improvement in generating offspring is larger than 20%;

and it decreases if the probability of making improvement in generating offspring is

smaller than 20%. Schumer et al. also found a similar rule independently before in

[30].

Self-Adaptation

In self-adaptation, new control parameter settings are generated by recombination

and mutation. Hansen et. al. exemplified the concept in [13]. The mutation step

from generation g to g + 1 reads for each offspring k = 1, ..., λ

σk = σ(g) exp(ξk)

where σ ∈ R+ denotes step size, ξk ∈ R, for k = 1, ..., λ independent realizations of a

random number with zero mean. Typically, ξk is normally distributed with standard

deviation 1/
√

2n. After λ mutation steps are generated, the best offspring are selected

and the σ is updated as,

σ(g+1) =
1

µ

∑
σk∈P

σk

where P is the population of selected offspring, µ ∈ N denotes the number of parents.

However, as described by Hansen in [13], the mutation and recombination on σ

introduces a moderate bias such that σ tends to increase under random selection.

(µ/µ, λ)-ES and Cumulative Step Size Adaptation (CSA)

Our algorithm in this thesis is a (µ/µ, λ)-ES with search path. Figure 2.1 gives

pseudocode for a (µ/µ, λ)-ES with search path that is based on an algorithm described

by Hansen et al. in [12]. Our only difference is in Line 9, where we use the simplified

update of the mutation strength mentioned in [13] that is based on the squared

length of the overall path. µ ∈ N denotes the number of parents and λ ∈ N (λ >

µ) the number of offspring generated in each iteration (Line 1). A single parental

centroid x ∈ Rn is initialized as a solution vector, σ ∈ R+ is step size. (Line 2).

Mutation happens to this parental centroid and offspring are generated (Line 6), the

14

new offspring are selected to form the population P (Line 7). Recombination happens

at the end of the loop and the new centroid is generated (Line 10).

As mentioned in [12], algorithms with a single parental centroid are simpler to

formalize, easier to analyze and even perform better in many circumstances as they

allow for maximum genetic repair such as parameters recombination.

1. given n ∈ N, µ ∈ N, λ ∈ N, c ∈ (0, 1], D ∈ R+

2. initialize x ∈ Rn, σ ∈ R+, s = 0

3. while not meet terminating criteria

4. for k ∈ {1, ..., λ}

5. zk = N (0, I)

6. xk = x + σzk

7. P ← select µ best({(xk, zk, f(xk))})

8. s← (1− c)s +
√
c(2− c)

√
µ

µ

∑
k∈P

zk

9. σ ← σ exp

(
‖s‖2 − n

2Dn

)

10. x =
1

µ

∑
k∈P

xk

Figure 2.1: Pseudocode of a (µ/µ, λ)-ES with Search Path

Our algorithm uses a CSA method to control the step size, which is also described

in Figure 2.1. In self-adaptation, step sizes are connected with individuals and se-

lected based on the fitness of each individual. However, step sizes that serve individ-

uals well may not maximize the progress of the entire population. In a CSA method,

a search path carries information of the interrelation between individual steps. With

this information, we can improve the step size adaptation and search procedure. The

search path is updated by cumulating the actual evolution path in a weighted manner

(Line 8), where s is the search path, c ∈ (0, 1] is the cumulation parameter, zk is the

15

single (local) mutation step in each offspring (Line 5). The factors
√
c(2− c) and

√
µ

in Line 8 guaranty unbiasedness of s under neutral selection [12]. Then the step size

update is accomplished by comparing the length of search path s with the expected

length n (Line 9), where n ∈ N is the search space dimension, D ∈ R+ is a damping

parameter. The length of the search path s determines the global step-size change in

Line 9. The benefits of using a search path are: a) it implements a low-pass filter for

selected mutation vectors (z-steps), high frequency information (most likely noisy) is

removed. b) it records information of the direction of z-steps, because of this even if

the steps have the same length, the length of s can be different.

2.6.3 Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)

As a CMA-ES is applied by Fillingham in [8], a brief introduction of this evolutionary

strategy follows. Hansen described a CMA-ES in [11], the offspring in CMA-ES are

sampled from the a multivariate normal distribution

N
(
m, σ2C

)
(where m is the mean value of the search distribution, σ is the global step length

and C is the covariance matrix of the search distribution), which is updated each

generation. The mean of the distribution is updated each generation based on the

best µ offspring from the previous generation, according to

m(g+1) =

µ∑
i=1

wix
(g)
i:λ

where wi is the weight given to the i-th ranked candidate (must sum to 1, a weight

of 1/µ for each candidate results in taking the arithmetic mean) and x
(g)
i:λ is the i-th

ranked candidate. By adapting the covariance matrix in such a way that successful

directions are favoured, the distribution becomes elongated towards more favourable

solutions. This is to hopefully decrease the number of generations needed by providing

faster convergence. The covariance matrix is updated according to

C(g+1)
µ = (1− cµ)C(g)

µ + cµ

µ∑
i=1

wi

(
x
(g)
i:λ −m(g)

σ(g)

)(
x
(g)
i:λ −m(g)

σ(g)

)T
where cµ is the learning rate for updating the covariance matrix (which is set to adapt

how quickly previous generations fall out of influence), and σ is the global step length.

The global step length is adapted to make the search to converge faster.

Chapter 3

Algorithm

“A curious aspect of the theory of evolution is that everybody thinks (s)he under-

stands it.”

— J. Monod

In this chapter, we propose an evolutionary algorithm that uses a target depth

image as input and a 3D model of an environment as the reference to recover the

camera pose of the target depth image by registering it against the 3D model.

Our algorithm consists of: the representation of a camera, the objective function,

the coordinate systems and the pose optimization method. We will discuss each of

them in the following sections.

3.1 Representation of Camera

As this thesis focuses on designing an optical based indoor localization method, select-

ing a suitable camera model is crucial. Different types of cameras have been developed

to meet different requirements (e.g. zenith camera, omnidirectional camera, pinhole

camera) [37]. All the cameras described in this thesis are pinhole cameras. A pinhole

camera model can be described with two matrices. The intrinsic matrix contains

camera parameters of focal length, aspect ratio, and principal point. The extrinsic

matrix contains camera position and orientation parameters. In this thesis, we are

focusing on extracting camera pose, which includes camera location and orientation

information, and hence assuming that the intrinsic matrix is known.

The camera position and orientation information have six degrees of freedom (6-

DoF). To represent a camera position in space is straightforward, a three dimensional

vector (x, y, z) meets the requirement perfectly. To represent a camera orientation is

more complicated, several different expressions are available to represent an orienta-

tion, including fixed angle representation, Euler angle representation, and quaternion

16

17

representation. Both fixed angle and Euler angle representation use a vector with

three dimensions to describe an orientation while quaternion representation needs a

vector with four dimensions to do so. However, the first two representations meet the

Gimbal lock problem when two axes of rotation are in a parallel configuration which

causes a loss of one degree of freedom. In this thesis, we use the unit quaternion to

represent the orientation of a camera.

The location information can be directly represented with a three dimensional

vector. However, since the unit quaternion is used to represent and update the

orientation of the camera, we need to convert the value from the unit quaternion

to a 3 by 3 rotation matrix that used to introduce camera orientation, as described

by Shoemake in [31] is converted from a unit quaternion (x, y, z, w) as follows,

m =

1− 2y2 − 2z2 2xy + 2wz 2xz − 2wy

2xy − 2wz 1− 2x2 − 2z2 2yz + 2wx

2xz + 2wy 2yz − 2wx 1− 2x2 − 2y2

3.2 Objective Function

In this thesis, we consider the problem of registering the target depth image against

the 3D model of the environment as an optimization problem in the space of candidate

poses. A candidate pose is used to generate a depth image from the 3D model. That

depth image is then evaluated against the target depth image, and the resulting score

is associated with the candidate pose.

In [33], Szeliski distinguishes between direct (pixel based) and feature-based align-

ment approaches. Feature based approaches require feature detection, feature selec-

tion and establishing correspondence. In this thesis, we employ a direct approach that

quantifies the fit of an alignment simply by summing squared differences in depth val-

ues between the two images. Compared with feature based approaches, an advantage

of a pixel based approach is that it has a less computational cost [20]. The sum of

squared differences equation is

S =
n∑
k=1

(
I1(k)− I2(k)

)2
where n is the number of pixels in the image, I1 and I2 are the two depth images,

S is the sum of squared differences value between two depth images. A larger score

18

indicates a worse candidate. As mentioned in Chapter 2, it is challenging to find

the best objective function (if there is one). The further experiment introduced in

Chapter 4 indicates weakness of this objective function in some specific situations.

3.3 Coordinate Systems

A further important consideration is the choice of a coordinate system to compute

differences between depth values. The depth buffer in OpenGL stores the depth

value in window coordinates. In order to make the best use of the numerical accuracy

provided by the depth buffer, the projective transformation progressively compresses

depth values with increasing distance from the near clipping plane. Differences in

depth values in greater distance from the camera are thus deemphasized, resulting in

a focus of the registration algorithm on nearby objects.

Figure 3.1 illustrates how different coordinate systems influence the scoring result.

The top left is a target depth image, top right is a candidate depth image. Bottom

images are obtained by computing pixel-wise squared differences. Bottom left is in

window coordinates and bottom right is in camera coordinates. With window coor-

dinates, the difference is more emphasised on pixels that are close to the camera (e.g.

the chairs and the desks). With camera coordinates, the difference is more empha-

sised on pixels that far from camera (e.g. the rear wall and the desk). We have found

in preliminary experiments that transforming depth value into camera coordinates

results in a significantly improved ability of our algorithm to locate the globally opti-

mal solution to the optimization problem. Presumably, different coordinate systems

may formulate different local optima in the search space.

In this thesis, we convert the depth value from window coordinates to camera

coordinates by performing the following transformation,

v′ =
2× zfar × znear(

zfar + znear(zfar − znear)× (1− 2× v)
)

where v denotes the depth value in window coordinates and v′ denotes the depth

value in camera coordinates, znear and zfar are near and far clipping plane separately.

19

Figure 3.1: A target depth image (top left), a candidate depth image (top right; both
with intensities corresponding to depth values in window coordinates) and the images
obtained by computing pixel-wise squared differences in window coordinates (bottom
left) and in camera coordinates (bottom right; both with intensities normalized).

20

3.4 Pose Optimization

With the objective of minimizing the distance between the target depth image and

a depth image generated using the candidate pose thus defined, the problem of esti-

mating camera pose is an optimization problem over the search space TqS
3 where S is

the unit sphere embedded in R4. A challenge in developing an optimization algorithm

is that the search space is not Euclidean but instead a smooth manifold embedded

in R7. When developing an evolutionary algorithm for the problem, care must be

taken to design the variation operators in such a way that offspring candidate solu-

tions remain on the manifold without introducing any sort of bias in the search. The

algorithm for optimization on Riemannian manifolds proposed by Colutto et al. [6] is

immediately applicable. That algorithm is a covariance matrix adaptation evolution

strategy (CMA-ES) [13] and as such adapts the full covariance matrix governing its

offspring distribution. Mutation vectors are generated in the tangent space at the

current population centroid and are mapped onto the search manifold using the Rie-

mannian exponential map. The algorithm uses parallel transport to transform search

paths as well the covariance matrix from one iteration to the next.

In the absence of evidence of ill-conditioning of the problem under consideration,

we strive for a simpler approach that does not attempt to adapt the full covariance

matrix of its mutation distribution. However, as the parametrization of the 3D model

is arbitrary, a scale factor that governs the size of steps made in the subspace of

locations relative to those in the subspace of orientations needs to be adapted in

order to achieve scale invariant performance. The distribution of mutations in our

algorithm is thus controlled by two parameters: an overall step size and a scale factor

that is used to scale the step size in the subspace of orientations relative to that in

the subspace of locations. As Colutto et al. [6] we use cumulative step size adaptation

for the control of the overall step size, but we employ self-adaptation for the control

of the scale factor. We have conducted experiments with separate paths in the two

subspaces but found the self-adaptive approach to be more successful.

Common terminology used in this section is in connection with evolution strategies

[12], our algorithm is a (µ/µ, λ)-ES that at each iteration selects µ out of the λ > µ

offspring generated. One generation of offspring conduct both recombination and

mutation. For each iteration, the algorithm starts with a centroid pose 〈x,q〉 ∈

21

R3 × S3 from previous iteration or initialized one if this is first iteration, step size

σ ∈ R+, search path 〈sloc, srot〉 ∈ R3 × TqS3, where TqS
3 denotes the tangent space

of the unit sphere in R4 at the location of unit quaternion q, and step scale factor

α ∈ R+. A single iteration of the algorithm is described in Figure 3.2

Step 1) uses the step size σ along with the step scale factor α to compute the

sizes of the mutation steps in the subspaces of location and orientation for each of

the offspring to be generated. As we employ self-adaptation, those step sizes undergo

multiplication with a lognormally distributed factor. Constant τ ∈ R+, which controls

the size of the mutations, is set to 0.3. While the exact value is uncritical, smaller

values preclude fast adaptation while larger ones render the process unstable.

In Step 2) the pose vectors characterizing offspring candidate solutions are gen-

erated by applying mutation to the pose centroid. Mutations in the orientation sub-

space are implemented by generating steps in the tangent space at the location of the

quaternion associated with the current pose centroid. Those vectors can be generated

by sampling standard normally distributed vectors w ∈ R4 and then projecting them

onto the tangent space according to

zrot = w − (q ·w)q

where · denotes the inner product. The Riemannian exponential map, which for the

case of S3 can be computed as

expq(σz) = q cos(σ‖z‖) + z
sin(σ‖z‖)
‖z‖

is used to map the mutations onto the unit quaternion manifold.

Step 3) evaluates the candidate poses thus generated by using OpenGL to generate

the corresponding depth images and computes fitness values by summing squared

differences to the target across the images. The offspring are then ranked according

to their fitness.

The update of the search path in Step 4) is as proposed by Ostermeier et al. [27].

The orientation component of the search path is in the tangent space of the unit

quaternion manifold at q. Cumulation parameter c ∈ (0, 1] is uncritical and set to

0.25.

Step 5) describes the update of the pose centroid through recombination of the

µ best of the λ candidate poses. Recombination of the orientation component is

22

Input: pose centroid 〈x,q〉 ∈ R3 × S3

step size σ ∈ R+

search path 〈sloc, srot〉 ∈ R3 × TqS3

step scale factor α ∈ R+

1) For i = 1, ..., λ generate offspring scale factors

β(i) = α exp(τz(i))

where the z(i) are standard normally distributed, and let σ
(i)
loc = σ

√
β(i) and

σ
(i)
rot = σ/

√
β(i).

2) For i = 1, ..., λ generate offspring candidate solutions 〈y(i), r(i)〉 ∈ R3×S3 with

y(i) = x + σ
(i)
locz

(i)
loc

r(i) = expq

(
σ
(i)
rotz

(i)
rot

)
where mutation vectors z

(i)
loc are standard normally distributed in R3, mutation

vectors z
(i)
rot are standard normally distributed in TqS

3, and expq(·) denotes the
Riemannian exponential map.

3) For i = 1, ..., λ compute f(〈y(i), r(i)〉) as the sum of squared differences between
the target depth image and the depth image generated with camera parameters
〈y(i), r(i)〉. Let (k;λ) denote the index of the offspring candidate solution with
the kth smallest objective function value.

4) Update the search path according to

sloc ← (1− c)sloc +
√
c(2− c)/µ

µ∑
k=1

z
(k;λ)
loc

srot ← (1− c)srot +
√
c(2− c)/µ

µ∑
k=1

z
(k;λ)
rot

5) Update the pose centroid according to

x← 1

µ

µ∑
k=1

y(k;λ)

q← expq

(
1

µ

µ∑
k=1

σ
(k;λ)
rot z

(k;λ)
rot

)

6) Use parallel transport to transform srot from the location of the old pose cen-
troid to the new one.

23

7) Update the step size and scale factor according to

σ ← σ exp

(
‖sloc‖2 + ‖srot‖2 − 6

12D

)

α←

(
µ∏
k=1

β(k;λ)

)1/µ

8) If 2σ >
√
α, then let α← 2σ

√
α and subsequently σ ←

√
α/2.

Figure 3.2: Single step of the evolutionary algorithm for pose estimation

performed in tangent space and the Riemannian exponential map is used again in

order to map onto the unit quaternion manifold.

The use of parallel transport in Step 6) is as proposed by Colutto et al. [6] in order

to ensure that the rotational component of the search path remains within the tangent

space at the current unit quaternion, which has shifted in Step 5). Huckemann et al.

[15] provide a straightforward way of computing the parallel transport.

Step 7) updates the step size according to the prescription of cumulative step

size adaptation and the step scale factor by computing the geometric mean of the

step scale factors of the successful offspring, thus implementing self-adaptation. The

damping factor D ∈ R+ is rather uncritical and set to 4.0.

Finally, Step 8) implements a cap on the size of steps in the orientation subspace.

Arnold [1] shows that if no such cap is imposed, cumulative step size adaptation

on spherical manifolds may result in metastable states associated with large steps,

leading to many iterations without useful progress. The cap implemented in this step

ensures that σrot does not grow too large while not affecting the step size σloc used in

the subspace of camera locations.

We use µ = 3 and λ = 10 in all of our experiments. Further initialization condition

and termination criteria are discussed in the following Chapter.

Chapter 4

Evaluation

“Sentence first, verdict afterwards.”

— L. Carroll, Chapter XII, Alice’s Adventures in Wonderland

To see whether the algorithm performs as it is designed, we conducted two kinds

of experiment. First, we tested the algorithm in a unimodal environment to see

whether it works in a simple search space or not. Then we tested the algorithm in

two synthetic 3D environments, a classroom environment and a church environment.

The following sections discuss the details of these experiments.

4.1 Unimodal Environment

In a unimodal environment, only one global optimum exists in the search space which

means there is no other possible optimum for the algorithm to reach. By performing

experiments in a unimodal environment, we can see whether the algorithm is solid

enough to reach the global optimum consistently when there is no distraction from

local optima. By tracing the value of variables introduced in the algorithm during

the experiment, we can have a better understanding of the algorithm. There are

two major concerns in the unimodal experiment. First, can the algorithm reach the

global optima with different initializations? Second, does the self-adaptation of step

size between location space and orientation space work as it is designed to? We will

discuss the objective function that was used in our unimodal environment and the

experiment results in the following sections.

4.1.1 Objective Function

The unimodal environment does not contain 3D models of an indoor environment. It

is unnecessary to render depth image nor to transform between different coordinate

systems. The objective function used in a unimodal experiment is different from

24

25

but simpler than the function we introduced previously. The scoring function in

this environment measures the sum of position distance and rotation distance from

the current pose against the target one to evaluate the similarity between these two

poses. The objective function being used in the unimodal environment to calculate

the scoring value is

S = ‖x− xtarget‖+ 2 arccos |q · qtarget| · s

where x is a three dimensional location vector describing current pose location,

xtarget = (0, 0, 0) is the target location vector, q is a four dimensional unit quater-

nion vector describing current pose orientation, qtarget = (0, 1, 0, 0) is the target unit

quaternion vector, s is a scalar to orientation distance value; q · qtarget is the dot

product of two quaternions. S is the score evaluating the distance between the cur-

rent pose and the target one; a smaller scoring value S indicates two poses are closer.

Ideally, the value of this objective function should decrease to as close to 0 as numeric

issue permits as the search progresses.

4.1.2 Experiment result

In this thesis, a self-adaptation mechanism is designed to build a connection between

the location step size and the orientation step size in order to keep the scale difference

between location and orientation vectors in the offspring in a range that improves the

probability of generating better solutions. To test this mechanism and the algorithm,

we applied experiments in two categories: one has the orientation scale factor value as

1 and the other has it as 1, 000. In each of these two categories, we initialized position

by uniformly and randomly distributing them within a distance in three types which

are 1 unit, 100 units and 10, 000 units. The initial orientations are always generated

by uniformly and randomly sampling unit quaternions. The initial step size is set to

σ = 1 and the initial step scale factor to α = 1. The search path is set to 0 initially.

All the experiments are terminated when the scoring value is smaller than 1e−6.

We label runs in which such solutions are found successful. Runs are terminated as

unsuccessful if after 1, 000 iterations no solution satisfying the criteria for successful

termination has been found. For each of these different initialization categories, we

conducted 100 individual runs. The following sections discuss the experiments within

these two categories.

26

Orientation scale factor set to 1

Table 4.1 summarizes the experimental results when the orientation scale factor is set

to 1. With this orientation scale factor, the tests of all three different initializations

for location reached a 100% success rate during experiments. As the initial location

range decreases from 10,000 units to 1 unit, the number of iterations that it takes to

reach the target pose also decreases from 372.5 to 192.8. It is safe to say, a closer

starting pose takes fewer iterations to reach the target pose than one with a larger

starting distance. Standard deviation also increases as the starting pose is far from

the target one.

success rate median mean standard deviation

1 unit 100% 194 192.8 10.3
100 units 100% 252 252.1 16.3

10,000 units 100% 326 327.5 26.8

Table 4.1: Runs in the unimodal environment with orientation scale factor set to 1

To have a comprehensive understanding of our algorithm, we tracked the value of

the objective function score, step size σ and step scale factor α for each individual

run. Then we analyzed and visualized the behaviour of these parameters by plotting

the median run of each set of 100 experiments based on the number of iteration each

run takes.

The scoring value directly indicates the fitness of a result that is generated in

each iteration along one searching process. The first row of Figure 4.1 shows the

median runs of each type of location initialization and illustrates how the scoring value

changes within three different types of location initializations. Different initializations

lead to different starting scores due to the design of the objective function. All these

median runs can converge to the global optimum almost linearly. A closer starting

pose has a smaller score to begin with and often leads to a shorter searching process.

A more distant starting pose has a larger score to begin with and costs more iterations

to reach the target pose.

As the step size σ controls the mutation strength in each iteration, a larger σ

makes offspring more different from their parents. A smaller σ makes offspring more

similar to their parents. The middle row of Figure 4.1 illustrates the median run of

27

Figure 4.1: Tracing the objective function value (top row), step size (middle row)
and step scale factor (bottom row) during median search processes. Orientation scale
factor is set to 1. Initial location within different range scale: 1 unit (left column),
100 units (middle column), 10,000 units (right column)

each type of location initialization and shows how the value of step size σ changes

during the searching processes. As the searching processes during these three median

runs, the step sizes all decrease close to zero. However, there are still some differences:

with 1 unit initial location (left), the step size decreases almost constantly; with 100

and 10,000 units initial location (middle and right), the step sizes increase first before

decreasing. From certain iterations onward the σ starts decreasing continuously.

The sooner the searching process and σ reach that point, the faster the algorithm

can finish its searching process. It can be seen from middle row of Figure 4.1 that

28

different initial locations also influence the maximum value of σ during a searching

process. With an initial range for location as 1 unit (left), the starting value of step

size is the maximum value during the entire searching process. With a larger initial

range for location such as 100 and 10,000 units, the step size increases to 1e1 and 1e2

before it starts decreasing. In some cases the step sizes may have other increases or

stagnations (middle and right) during a searching process.

Another variable we traced during the experiment is step scale factor α. In the

algorithm, the step scale factor α is designed to automatically connect the position

step size and rotation step size. Since the scale of location search space can be

significantly larger than that of orientation, the step scale factor α is designed to

balance this difference in the scale of two search spaces. As described in Section 3.4,

a larger α decreases the step size in orientation space and increases the step size in

location space. A smaller α increases the step size in orientation space and decreases

the step size in location space.

The bottom row of Figure 4.1 illustrates the median run of each type of location

intialization and shows how the value of step scale factor α changes during searching

processes. With an initialization distance around 1 unit (left), the behaviour of the

step scale factor fluctuates in a range between 0.5 to 10. Because the initial location

is close to the target pose, the optimum mutation strengthes for location space and

orientation space are close.

A better understanding of step scale factor α comes from a larger initialization of

location such as 100 or 10,000 units. In these two initializations, the location search

space is far larger than the orientation search space. Therefore, using the same step

size for both location and orientation search space is highly biased toward the location

search space and hence inefficient. We want to control the step size σ in both location

and orientation space automatically by introducing the step scale factor α. We can see

from the bottom row of Figure 4.1 that the step scale factor α increases dramatically

within the first 50 iterations before it starts decreasing. During these iterations, a

reasonable compromise is made by increasing the step scale factor α to get a larger

step size for location search space and meanwhile keep a rather small step size for

orientation space. Comparing step size and step scale factor in Figure 4.1, we can see

an increasing step size σ is desirable for the search space of location. And at the same

29

time, a large step scale factor α keeps a relatively small step size σ in the orientation

search space.

Comparing the scores in the top row of Figure 4.1, we notice that the stagnations

appear at the same period when the σ increases for the second time (right). One

possible explanation for this is that the step size σ becomes too small to make any

significant progress during this period; by increasing the step size σ, the algorithm

attains the ability to make significant progress again. Fortunately, after stagnations,

the algorithm can converge to the target pose linearly.

Orientation scale factor set to 1, 000

We also did the experiments with the orientation scale factor set to 1, 000. Table

4.2 summarizes the experimental results when the orientation scale factor is set to

1,000. With this orientation scale factor, the tests of all three different initializations

for location reached 100% success rate during experiments. As the initial location

range decreases from 10,000 units to 1 unit, the number of iterations that it costs

to reach the target pose also decreases from 392.5 to 268.5. Compared with Table

4.1, the algorithm with the orientation scale factor set as 1, 000 needs more iterations

to reach the target pose. In other words, different objective functions influence the

efficiency of a searching process in a unimodal environment.

success rate median mean standard deviation

1 unit 100% 264 268.5 25.4
100 units 100% 311 313.9 28.7

10,000 units 100% 390 392.5 25.1

Table 4.2: Runs in the unimodal environment with orientation scale factor set to
1,000

Similar to the previous experiment, we tracked the value of the objective function

score, step size σ and step scale factor α for each individual run. Then we analyzed

and visualized the behaviour of these parameters by plotting the median run of each

set of 100 experiments based on the number of iteration each run takes.

The top row of Figure 4.2 shows the score of median success runs for each type

of location initialization. Different initializations lead to different starting scores. A

closer starting pose costs less iterations to reach the target pose than a more distant

30

Figure 4.2: Tracing the scoring value (top row), step size (middle row), step scale
factor (bottom row) during median search processes. Orientation scale factor is set
to 1,000. Initial location within different range scale: 1 unit (left), 100 units (middle),
10,000 units (right)

one. Compared with the top row in Figure 4.1, the stagnations in 100 units (middle)

and 10, 000 units (right) are more significant. The stagnation happens in the median

run where the initial location range is set to 10, 000; there is no log-linear convergence

in the first 100 iterations.

The middle row of Figure 4.2 shows the step size of median success runs for each

type of location initialization. Since all the step sizes are set to 1 initially, the change

of the step size during the searching process reveals the behaviour of the searching

process. For the initial location range set to 1 unit (left), the behaviour of step size is

31

similar to that in the middle row of Figure 4.2; the step size starts decreasing once the

searching process begins. For the initial location as 100 (middle) or 10, 000 (right),

the behaviour of these step sizes is different from the middle row of Figure 4.2. In the

middle row of Figure 4.2, these two step sizes decrease in the first hundred iterations

and then increase to their maximum before the linear decrease. One major difference

between the behaviour of these two step sizes is their maximum values: the maximum

step size in 100 units location initialization (middle) is less than 1, the maximum step

size in 10, 000 units location initialization (right) is larger than 50. In the middle row

of Figure 4.2, these two step sizes increase first then start decreasing linearly.

Figure 4.3 shows the location and orientation distances during a searching process

in these median runs. When the orientation scale factor is set as 1 unit (top row),

the location distance in all three median runs decreases directly, but in some cases

(middle and right) the orientation distance stays in stagnation. This means the

algorithm makes some improvement on reaching the target location but not on the

target orientation, in the first one hundred iterations. On the contrary, when the

orientation scale factor is set to 1, 000 units (bottom row), the orientation distance in

all three median runs decreases directly, but the location distance stays in stagnation

(middle and right) or even increases (left) in the first one hundred iterations. Since

the orientation scale factor in the objective function is the only changed variable

in these two sets of experiments, it is safe to say that different objective functions

influence the performance of a searching process by introducing different weights to

their components.

The bottom row in Figure 4.2 shows the step scale factor during a searching

process in these median runs. When the orientation scale factor is set to 1, 000,

the step scale factor increases linearly in the first one hundred iterations. Then

the step scale factor fluctuates randomly in a range between 100 to 10, 000 units.

Compared with the bottom row in Figure 4.1, the step size factor in this case increases

dramatically during the first one hundred iterations and stays in a range of value that

is larger than the runs in the bottom row in Figure 4.1.

32

Figure 4.3: Orientation distance and location distance during search processes. Ori-
entation scale factor is set to 1, initial location within different range scale: 1 unit
(top left), 100 units (top middle), 10,000 units (top right). Orientation scale factor
is set to 1,000, initial location within different range scale: 1 unit (bottom left), 100
units (bottom middle), 10,000 units (bottom right)

Conclusion

From the unimodal experiments with two objective functions, we see the algorithm

converges to the target pose linearly with different initializations. During a searching

process there are two phrases. In the first phase, the step size and step scale factor

adjust to values to generate some meaningful progresses. In the second phase, the step

size decreases linearly and the step scale factor fluctuates in a range; the objective

function value decreases linearly.

4.2 Experiment in 3D environment

After testing our algorithm in the unimodal environment, we turn to evaluate it in syn-

thetic environment, we conducted experiments in two different indoor environments,

one is a classroom environment and the other is the Sagrada Famı́lia in Barcelona.

Target depth images are generated from the 3D models using OpenGL as opposed

33

to using a depth camera in the real environments being modelled. Our target images

are thus ideal in that they are noise free, accurate up to the numerical limits of the

depth buffer, and taken with the same camera that is used to evaluate candidate

pose vectors. The global optimum of the registration problem thus has an objective

function value of zero. The initial step size σ and mutation scale factor α are set such

that the initial standard deviation of steps in any direction of the location subspace

is about 1 meter, and the initial value of σrot is about 1. The search path is zero

initially.

4.2.1 Classroom environment

For the classroom environment, the 3D model of the classroom we used was obtained

from http://www.blendswap.com created by Andre Schneider under a Creative Com-

mons license. The classroom we used in our project is a rectangular box with furniture

(desks, chairs, etc.). The entire model consists of 180,518 triangles. One unit in the

3D model is approximately 1 meter.

We generate initial poses that serve as starting points for the search by uniformly

and randomly sampling location from the interior of the classroom, with the constraint

that any location has a distance of at least one meter from the walls, floor, and

ceiling. The initial orientations are generated by uniformly and randomly sampling

unit quaternions.

All runs are terminated when a candidate pose that is within 5 cm in terms of

location and within 3◦ in terms of orientation of the target pose are found. We label

runs in which such solutions are found successful. Runs are terminated as unsuccessful

if after 500 iterations no solution satisfying the criteria for successful termination has

been found.

Classroom experiment result

To test the algorithm in the classroom environment, we selected four target poses

in this environment as shown in Figure 4.4. These four target poses vary from each

other, trying to capture a wide range of different perspectives.

For each target pose, we have conducted 100 runs independently. The size of

depth image that we used during experiments is 160×120. Table 4.3 summarises the

http://www.blendswap.com

34

Figure 4.4: Views of the classroom test environment from the four target poses con-
sidered. Target poses A through D appear in clockwise order, starting at the top
left

experimental results. The column labelled “success rate” indicates what fraction of

the runs terminated successfully. The remaining columns give the median, mean, and

standard deviation of the number of iterations required in those successful runs.

The success rate of each target is between 30% and 40%. An analysis of the

unsuccessful runs shows that nearly 60% of the unsuccessful runs were terminated

with an orientation of the camera that differs from the orientation of the target

camera by an angle very close to 180◦.

Figure 4.5 shows the evolution of the objective function value, the step sizes in

the subspaces of locations and orientations employed by the evolutionary algorithm,

and the distance from the target pose in both of those subspaces for those success-

ful runs for each of the four targets that required the median number of iterations

to terminate. The plots of the objective function value suggest that the algorithm

35

success rate median mean standard deviation

target A 31% 309 298.8 93.6
target B 39% 192 217.7 92.0
target C 30% 240 257.1 84.1
target D 35% 214 222.0 73.9

Table 4.3: Runs in the classroom environment

target A target B target C target D

iteration number

ob
je
ct
iv
e
fu
nc
tio
n
va
lu
e

iteration number

ob
je
ct
iv
e
fu
nc
tio
n
va
lu
e

iteration number

ob
je
ct
iv
e
fu
nc
tio
n
va
lu
e

iteration number

ob
je
ct
iv
e
fu
nc
tio
n
va
lu
e

iteration number

st
ep
 s
iz
e

iteration number

st
ep
 s
iz
e

iteration number

st
ep
 s
iz
e

iteration number

st
ep
 s
iz
e

iteration number

di
st
an
ce
 f
ro
m
 t
ar
ge
t
po
se

iteration number

di
st
an
ce
 f
ro
m
 t
ar
ge
t
po
se

iteration number

di
st
an
ce
 f
ro
m
 t
ar
ge
t
po
se

iteration number

di
st
an
ce
 f
ro
m
 t
ar
ge
t
po
se

Figure 4.5: Median successful runs in the classroom environment. Shown are traces
from those runs for each of the four targets that required the median number of
iterations to terminate among all successful runs.

converges linearly. For all of the targets, the step size in the subspace of orientations

eventually exceeds that in the subspace of orientations by approximately an order of

magnitude, suggesting that self-adaptation of the step scale factor is successful.

Two different searching processes are visualized in Figure 4.6. The yellow cameras

represent the initial camera pose that the search starts from. The black cameras

represent the target pose, and the cameras that represent the pose centroids generated

during the run of the evolutionary algorithm turn from blue to red as the search

progresses.

36

Figure 4.6: Traces from two successful runs for target poses A and D. In both cases,
the yellow camera is the initial camera, the black camera is the target camera pose.
The colour of camera illustrate the number of iterations. The start colour is blue
with iteration increases the colour transit to red.

37

4.2.2 The Sagrada Famı́lia environment

For the church environment, a 3D model of the Sagrada Famı́lia in Barcelona, avail-

able from Dosch Design (http://www.doschdesign.com) is used. The church was

originally designed by Spanish Catalan architect Antoni Gaud́ı. The Sagrada Famı́lia

environment is of a scale much larger than the classroom, with the central nave

vaults reaching a height of about 45 meters. The building’s interior is characterized

by vaulted ceilings, numerous columns. This 3D model consists of 245,189 triangles.

To test the algorithm in the Sagrada Famı́lia environment, we selected four target

poses as shown in Figure 4.7, trying to capture a wide range of different views.

Figure 4.7: Views of the church test environment from the four target poses con-
sidered. Target poses A through D appear in clockwise order, starting at the top
left

The terminating criteria used in the church environment are different from those

used in the classroom environment due to a huge difference in scale. All runs are

terminated when a candidate pose that is within 50 cm in terms of location and

http://www.doschdesign.com

38

within 3◦ in terms of orientation of the target pose are found. We label runs in which

such solutions are found successful. Runs are terminated as unsuccessful if after 500

iterations no solution satisfying the criteria for successful termination has been found.

For the Sagrada Famı́lia environment, we generate initial locations uniformly at

random within a ball of 10 m radius around the target pose, with the added constraint

that starting poses are located in the interior of the building. The initial orientations

are generated by uniformly and randomly sampling unit quaternions.

Sagrada Famı́lia experiment result

As with the classroom environment, we have conducted 100 independent runs for

each of the four target poses in the Sagrada Famı́lia environment. The results are

summarized in Table 4.4. It can be seen from the table that the success rates in the

Sagrada Famı́lia environment for target poses A and C are lower than in the classroom

one, though by a factor of no more than two. For target poses B and D, less than

five out of the 100 runs successfully recovered the target pose.

success rate median mean standard deviation

target A 27% 296 288.3 101.5
target B 0% 0 0 0
target C 18% 331 326.8 127.9
target D 3% 124 120.7 3.1

Table 4.4: Runs in the Sagrada Famı́lia environment

Power function

To improve the searching success rate of the target poses B and D, the first attempt we

tried is introducing an objective function that is slightly different from the previous

one. In the previous objective function, the component that was used to evaluate

the difference between two correspondence pixels in two depth images was a power

function of the form:

f(x) = xP

39

where the x is the difference between two corresponding pixels in two depth images,

P is constant. In the previous objective function, P is set as 2.0 (to square the dif-

ference). In the new objective functions, we set the P values to 0.5 or 0.1. Figure 4.8

shows the depth image of target B (top left) and a depth image generated using

similar pose vectors (top right). Shown at the bottom of the figure are the images

obtained by computing powered differences between depth values in both P = 2.0

and P = 0.1. Both with intensities normalized. In the difference image computed

with P = 2.0, the scoring value is dominated by the pixels around the pillars. With

P = 0.1, the biggest difference is still in the pixels around the pillars, but the dif-

ference is less dominated by these pixels. To experiment, we have conducted 100

independent runs for each of the four target poses with different P values of 2.0, 0.5

and 0.1.

Figure 4.8: Depth image of target B (top left), a candidate depth image (top right) and
the images obtained by computing pixel-wise differences with different power value
P = 2.0 (bottom left) and P = 0.1 (bottom right; both with intensities normalized).

40

The results of the experiments with different P values are summarized in Table 4.5.

It can be seen that with a smaller P value such as 0.1 and 0.5, the success rates in

target poses B, C and D increase significantly with a loss of success rates in target

pose A. Further, the average number of iterations that are needed to reach the target

poses is smaller as the P value decreases.

P = 2.0
success rate median mean standard deviation

target A 27% 296 288.3 101.5
target B 0% 0 0 0
target C 18% 331 326.8 127.9
target D 3% 124 120.7 3.1

P = 0.5
success rate median mean standard deviation

target A 11% 120 135.5 32.3
target B 29% 210 217.2 86.8
target C 38% 150 159.5 65.0
target D 18% 169.5 168.2 65.0

P = 0.1
success rate median mean standard deviation

target A 6% 123 119.3 23.6
target B 33% 145 161.6 70.6
target C 32% 132 134.2 39.4
target D 18% 145.5 154.9 41.7

Table 4.5: Runs in the Sagrada Famı́lia environment with different P values

Figure 4.9 shows the evolution of the objective function value, the step sizes in

the subspace of locations and orientations employed by the evolutionary algorithm,

and the distance from the target pose in both of those subspaces for those successful

runs for each of the four targets that required the median number of iterations to

terminate (in these experiments the P value used in the objective function is set as

0.5, since using the previous objective function cannot provide adequate successful

runs). The plots of the objective function value suggest that the algorithm converges

41

target A target B target C target D

iteration number

ob
je
ct
iv
e
fu
nc
tio
n
va
lu
e

iteration number

ob
je
ct
iv
e
fu
nc
tio
n
va
lu
e

iteration number

ob
je
ct
iv
e
fu
nc
tio
n
va
lu
e

iteration number

ob
je
ct
iv
e
fu
nc
tio
n
va
lu
e

iteration number

ob
je
ct
iv
e
fu
nc
tio
n
va
lu
e

iteration number

ob
je
ct
iv
e
fu
nc
tio
n
va
lu
e

iteration number

ob
je
ct
iv
e
fu
nc
tio
n
va
lu
e

iteration number

ob
je
ct
iv
e
fu
nc
tio
n
va
lu
e

iteration number

di
st
an
ce
 f
ro
m
 t
ar
ge
t
po
se

iteration number

di
st
an
ce
 f
ro
m
 t
ar
ge
t
po
se

iteration number

di
st
an
ce
 f
ro
m
 t
ar
ge
t
po
se

iteration number

di
st
an
ce
 f
ro
m
 t
ar
ge
t
po
se

Figure 4.9: Median successful runs in the church environment. Shown are traces from
those runs for each of the four targets that required the median number of iterations
to terminate among all successful runs.

linearly in targets A, B, and C. For the target D, the algorithm converges slower

than in the other three target poses around the first one hundred iterations. Then it

converges faster and reaches the target pose.

4.3 Local Optima

A typical problem optimization algorithms face is avoiding sticking in local optima. A

local optimum is a solution that is the best solution within a neighbourhood of possible

candidates but is not necessarily the best solution among all possible solutions. As

evolutionary strategy is an optimization strategy that is designed to search for optima,

it selects the best solutions within each generation to get closer to an optimum;

however even if it finds an optimum within a certain area of the search space, it lacks

the vision to reveal whether this optimum is the global one or not. As an algorithm

reduces its searching area by decreasing the step size in order to converge to an

optimum more efficiently, it is hard for the strategy to jump out of this neighbourhood

and start searching for the global optimum.

42

During the experiments in two indoor environments, one major problem we are

still facing is that the algorithm fails to reach the global optimum (around 70% in

each set of experiments). From the unimodal test with different initializations, we see

the algorithm is solid enough to reach the optimum after hundreds of iterations as

there is only one optimum in the search space. Unfortunately, in the experiments with

two indoor environments (classroom and church), some searching processes sometimes

result in other poses instead of the target one. Presumably, there may exist some

local optima that our algorithm cannot avoid or get rid of and this leads to a failed

searching process. In order to have a better understanding of where these failed

searches end, we plotted all the results of the 100 runs in an experiment. For this

experiment, we generate initial location uniformly at random with a ball of 5 m

radius around the target pose. The initial orientations are generated by uniformly

and randomly sampling unit quaternions.

Figure 4.10 shows the classified 100 run-results of the target A in the church envi-

ronment where P = 2.0. During the experiment, all the runs that reached the target

pose successfully are shown inside the red border. For the unsuccessful runs, many of

them converge to certain poses frequently (examples are shown inside different colour

borders, for each colour of border encloses one pose). Statistically, those poses which

are not the target but the algorithm converges to them frequently are probably the

local optima. By analysing the optical information of those unsuccessful images, we

can see that these images have similar optical information as that of the target image:

either the ground in both images is almost the same or the position of pillars is close

or both. This indicates that where these unsuccessful runs converged are probably

the local optima. And with a close look at Figure 4.10, we hypothesize that the

corresponding poses correspond to local minima of the objective function that are a

result of the symmetries present in the geometric model.

4.4 Multimodality

A common approach to deal with multimodality is to detect stagnation in a searching

process and to restart with independently sampled initial conditions. In order to

increase the success rate with a minimum redundant computational cost, based on

our algorithm, we implemented a system for multimodal optimization which can

43

Figure 4.10: Classified results of 100 searching processes of Target A in the Sagrada
Famı́lia environment. Red border enclose the result of all the successful runs (P =
2.0). Each border that with other colour enclose a pose that been reached more than
once. The poses that have no border around are the poses that only been reached
once.

conduct multiple searching processes simultaneously, then detect and select the most

possible candidate to complete the searching process. This system is similar to the

two-tier mechanism described by Fillingham in [8]; both methods start with multiple

threads and select the best one to complete the searching process. By computing the

objective function values in the current set of offspring poses, we usually can detect

whether a searching process converges to a global optimum solution or not, within

the first 100 iterations. Assuming a likelihood of p converging to the globally optimal

solution in a single run, the number of restarts required to locate the globally optimal

solution with probability 1− ε is dlog1−p ε− 1e. Assuming p = 0.3 (the lowest value

encountered across the four target images in the classroom environment), the number

of restarts required to locate the globally optimal solution with probability 0.95 is

44

thus 8; the number of restarts required to locate it with probability 0.99 is 12.

success rate median mean standard deviation

target A 100% 161 166.9 54.4
target B 100% 132 142.2 54.6
target C 100% 154.5 158.3 41.8
target D 100% 108 115.3 32.9

Table 4.6: Runs in the classroom environment with a system for multimodal opti-
mization. Need to notice that there are an extra 1900 iterations for the runs chosen
not to pursue.

The multimodal system supports 20 individual runs at a time in one searching

process. The system selects the run which produces the best solution within the

first 100 iterations among all runs, and discards the others as assuming they are

less likely to reach the global optimum. Then the system keeps the preserved run

running until it gets a result. We conducted 100 independent runs for the four target

poses in the classroom environment. Table 4.6 summarises the experimental results.

The column labelled “success rate” indicates what fraction of the runs terminated

successfully. The remaining columns give the median, mean, and standard deviation

of the number of iterations required in those successful runs. With this multimodal

system, the success rate of all the four target poses reached 100%.

4.5 Computational cost

We did a performance-analysis with our program during the experiments in the church

environment to investigate the computational cost of our method. The major config-

uration of our testing environment is shown in Table 4.7.

Processor name Intel Core i7

Processor speed 2.6 GHz

Memory 16 GB

Graphic card NVIDIA GeForce GT 650M

Video RAM 1024 MB

Table 4.7: Testing environment configuration

45

During a single search iteration (as introduced in Figure 3.2), we found more

than 95% of the time is spent on these sections: a) reading a block of pixels from

the depth buffer, b) transforming the depth value from window coordinates to camera

coordinates, c) calculating the objective function. These three sections are the largest

bottlenecks in our implementation; a) is acquired from the glReadPixels function in

OpenGL, b) and c) are implemented on the CPU. However, all the three sections

are influenced by one factor which is the scale of a rendered depth image; the largest

bottleneck in this optic based algorithm is caused by the scale of the optical informa-

tion it processes. The size of an image and the amount of time spent on these three

sections are in positive correlation. Generally, a larger image provides more infor-

mation but at the same time may jeopardise the searching speed. The ideal size of

an image for the experiments would be one that is large enough to provide sufficient

information which leads to a reliable searching accuracy and at the same time is as

small as possible to keep the searching processes run as fast as possible.

During the experiments, we found different sizes of images may influence the com-

putational cost in these sections. Figure 4.8 shows the computational cost ratio of

each section within an iteration, with a size of 40×30 pixels: 91.7% computational

cost is spent on reading a block of pixels from the depth buffer, 4.3% of computa-

tional cost is spent on transforming the coordinates, and 1.0% of computational cost

is spent on calculating the objective function. With a size of 1280×960 pixels: 25.9%

computational cost is spent on reading a block of pixels from the depth buffer, 58.7%

of computational cost is spent on transforming the coordinates, and 15.1% of com-

putational cost is spent on calculating the objective function. The larger the image

used, the more the ratio of computational cost spent on transforming the coordinates

and calculating the objective function increases, and the ratio of computational cost

spent on reading the pixels from depth buffer decreases.

We tracked the amount of time that is spent on reading a block of pixels from

the depth buffer, transforming from window coordinate to camera coordinates and

calculating the objective function with different size of images separately. Table 4.9

shows the time cost during reading a block of pixels from different size of depth

buffers. Reading a block of pixels from a 1280 by 960 pixels depth buffer costs 4.557

milliseconds while reading from a 40 by 30 pixels depth buffer costs 0.219 milliseconds.

46

Image size Reading pixels Transforming coordinates Objective function

40×30 91.7% 4.3% 1.0%
80×60 83.8% 11.0% 2.8%

160×120 67.6% 25.3% 4.8%
320×240 55.8% 21.8% 12.6%
640×480 30.0% 55.8% 13.7%
1280×960 25.9% 58.7% 15.1%

Table 4.8: Average ratio of three most computational costly sections during a search-
ing iteration with different size of images

Image size Time cost (millisecond) Image size Time cost (millisecond)

40×30 0.219 80×60 0.251
160×120 0.527 320×240 0.786
640×480 1.026 1280×960 4.557

Table 4.9: Average time cost on reading a block of pixels from the depth buffer with
different size of images

Table 4.10 shows time cost during transforming the depth value from window

coordinates to camera coordinates. With the largest size, 1280 by 960 pixels, trans-

forming coordinates costs 10.325 milliseconds while the smallest size, 40 by 30 pixels,

costs 0.028 milliseconds.

Image size Time cost (millisecond) Image size Time cost (millisecond)

40×30 0.028 80×60 0.067
160×120 0.209 320×240 0.745
640×480 2.681 1280×960 10.325

Table 4.10: Average time cost on transforming the depth value from window coordi-
nate to camera coordinate with different size of images

Table 4.11 shows the time cost during calculating the objective function with

different sizes of images. With the largest image size of 1280 by 960 pixels, calculating

the objective function costs 3.984 milliseconds while the smallest size of 40 by 30 pixels

costs 0.019 milliseconds.

In the experiments, the size of image is 160 by 120 pixels which costs 0.527 millisec-

onds on average in reading a block of pixels from the depth buffer, 0.209 milliseconds

47

Image size Time cost (millisecond) Image size Time cost (millisecond)

40×30 0.019 80×60 0.029
160×120 0.075 320×240 0.281
640×480 1.005 1280×960 3.984

Table 4.11: Average time cost on calculating objective function with different size of
images

on average on transforming the depth value from window coordinates to camera co-

ordinates, and 0.075 milliseconds on average in calculating the objective function.

In the preliminary experiment, we found a smaller image (e.g. 30×40 pixels image

and smaller) will lead the success rate of a searching process to drop significantly,

presumably because the information stored in the image is not sufficient. On the

other hand, the success rate of a searching process will increase as the size of image

processed increases. However, in the preliminary experiment, there is no significant

increase in the success rate if the image size is larger than 160×120 pixels.

Chapter 5

Conclusion and Future Work

“Change is one thing, progress is another.”

— B. Russell, Unpopular Essays

In this thesis, we have presented an evolutionary algorithm for the optimization

of pose vectors. The algorithm simplifies the covariance matrix adaptation evolu-

tion strategy for optimization on general Riemannian manifolds by Colutto et al. [6]

in that it does not adapt the full covariance matrix governing the sampling of off-

spring candidate solutions, but instead uses self-adaptation to control a factor that

determines the size of steps in the subspace of locations relative to that in the sub-

space of orientations. An advantage of the simplified algorithm is that it is easier to

experimentally analyze its performance.

We have then applied that algorithm to determine the pose of a depth camera

based on a single target depth image and a 3D model of the indoor environment that

the image was taken in. Evaluation of the objective function for a candidate pose

requires generating a depth image of the model from that pose and then summing

squared differences between the depth values obtained and target depth values. We

have found that the algorithm is able to recover the target pose in about one third of

the runs when applied in a classroom environment with random initialization, and in a

much larger environment of a church if initialized within about 10m of the target pose.

The results are encouraging as modern graphics hardware makes it possible to conduct

many evaluations of the objective function in a short amount of time. Independent

restarts of the algorithm can be used to arbitrarily increase the likelihood of locating

the target pose.

The future works here are in multiple directions. A systematic analysis of how the

likelihood of recovering the target pose varies with population size parameters µ and

λ will allow us to determine whether it is advantageous to perform restarts with the

48

49

same values of the population size parameters or the approach of doubling population

size parameters between runs proposed by Auger and Hansen [2] is advantageous.

The observation of symmetries in the search space suggests that the pose estimation

problem may be characterized by rather large basins of attraction, and that the former

approach may be preferable.

A second line of inquiry is to try to improve the global search capability of the

algorithm, thus making it applicable in larger environments. The insight that un-

successful runs tend to recover orientations that differ from the target ones by 180◦

offers opportunities for improved initialization conditions when restarting. Also of

interest will be the use of other approaches for dealing with multimodality that strive

to balance exploration and exploitation, e.g. through the minimization of cumulative

regret. There is also the option of nonlinearly transforming differences between depth

values before summing them up, thus modulating the objective function.

And finally, it would be interesting to evaluate our approach in real environments,

with target images taken using depth cameras rather than being generated synthet-

ically from 3D models. The noisy nature of those images will pose difficulties in the

optimization process not present in our current set-up.

Bibliography

[1] D. V. Arnold. On the use of evolution strategies for optimization on spherical
manifold. Parallel Problem Solving from Nature—PPSN XIII, pages 882–891,
2014.

[2] A. Auger and N. Hansen. A restart CMA evolution strategy with increasing
population size. In IEEE Congress on Evolutionary Computation, pages 1769–
1776, 2005.

[3] J. Aulinas, Y. R. Petillot, J. Salvi, and X. Lladó. The SLAM problem: a survey.
In Proceedings of the 11th International Conference of the Catalan Association
for Artificial Intelligence, pages 363–371, 2008.

[4] H.-G. Beyer and H.-P. Schwefel. Evolution strategies–a comprehensive introduc-
tion. Natural Computing, 1(1):3–52, 2002.

[5] C. Choi and H. I. Christensen. 3D pose estimation of daily objects using an
RGB-D camera. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3342–3349. IEEE, 2012.

[6] S. Colutto, F. Frühauf, M. Fuchs, and O. Scherzer. The CMA-ES on Riemannian
manifolds to reconstruct shapes in 3-D voxel images. IEEE Transactions on
Evolutionary Computation, 14(2):227–245, 2010.

[7] G. N. DeSouza and A. C. Kak. Vision for mobile robot navigation: a survey.
IEEE Transcations on Pattern Analysis and Machine Intelligence, 24(2):237–
267, 2002.

[8] J. Fillingham. Exploring the depth-image based fitness landscape for indoor
localization. Honours thesis, Faculty of Computer Science, Dalhousie University,
2013.

[9] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[10] National Coordination Office for Space-Based Positioning. Global positioning
system standard positioning service signal specification. United States Coast
Guard Navigation Center, 1995.

[11] N. Hansen. The CMA evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772, 2016.

50

51

[12] N. Hansen, D. V. Arnold, and A. Auger. Evolution strategies. In Springer
Handbook of Computational Intelligence, pages 871–898. Springer, 2015.

[13] N. Hansen and A. Ostermeier. Completely derandomized adaptation in evolution
strategies. Evolutionary Computation, 9(2):159–195, 2001.

[14] W. D. Hillis. Co-evolving parasites improve simulated evolution as an optimiza-
tion procedure. Physica D: Nonlinear Phenomena, 42(1):228–234, 1990.

[15] S. Huckemann, T. Hotz, and A. Munk. Intrinsic MANOVA for Riemannian mani-
folds with an application to Kendall’s space of planar shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 32(4):593–603, 2010.

[16] T. K. Kohoutek, R. Mautz, and J. D. Wegner. Fusion of building information
and range imaging for autonomous location estimation in indoor environments.
Sensors, 13(2):2430, 2013.

[17] J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by tracking
geometric beacons. IEEE Transactions on Robotics and Automation, 7(3):376–
382, 1991.

[18] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua. Worldwide pose estimation using
3D point clouds. In Computer Vision–ECCV 2012, pages 15–29. Springer, 2012.

[19] J. J. Lim, H. Pirsiavash, and A. Torralba. Parsing IKEA objects: Fine pose
estimation. In IEEE International Conference on Computer Vision (ICCV),
pages 2992–2999, 2013.

[20] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

[21] A. Lu and D. V. Arnold. An evolutionary algorithm for depth image based cam-
era pose estimation in indoor environments. In IEEE Congress on Evolutionary
Computation, 2016.

[22] Q. Luong and O. D. Faugeras. Self-calibration of a moving camera from point
correspondences and fundamental matrices. International Journal of Computer
Vision, 22(3):261–289, 1997.

[23] R. Mautz. Indoor positioning technologies. Habilitation thesis, ETH Zürich,
2012.

[24] F. Moreno-Noguer, V. Lepetit, and P. Fua. Pose priors for simultaneously solving
alignment and correspondence. In European Conference on Computer Vision,
pages 405–418. Springer, 2008.

[25] H. Murase and S. K. Nayar. Visual learning and recognition of 3-D objects from
appearance. International Journal of Computer Vision, 14:5–24, 1995.

52

[26] L. M. Ni, Y. Liu, Y. C. Lau, and A. P Patil. Landmarc: indoor location sensing
using active RFID. Wireless Networks, 10(6):701–710, 2004.

[27] A. Ostermeier, A. Gawelczyk, and N. Hansen. A derandomized approach to
self-adaptation of evolution strategies. Evolutionary Computation, 2(4):369–380,
1994.

[28] I. Rechenberg. Evolutionsstrategie–Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973.

[29] T. Sattler, B. Leibe, and L. Kobbelt. Improving image-based localization by
active correspondence search. In European Conference on Computer Vision,
pages 752–765. Springer, 2012.

[30] M. Schumer and K. Steiglitz. Adaptive step size random search. IEEE Transac-
tions on Automatic Control, 13(3):270–276, 1968.

[31] K. Shoemake. Animating rotation with quaternion curves. In ACM SIGGRAPH
Computer Graphics, volume 19, pages 245–254. ACM, 1985.

[32] L. Svarm, O. Enqvist, M. Oskarsson, and F. Kahl. Accurate localization and
pose estimation for large 3D models. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 532–539, 2014.

[33] R. Szeliski. Image alignment and stitching: A tutorial. Foundations and Trends R©
in Computer Graphics and Vision, 2(1):1–104, 2006.

[34] R. Szeliski. Computer Vision: Algorithms and Applications, pages 303–332.
Springer Science & Business Media, 2010.

[35] R. Tsai. A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal on
Robotics and Automation, 3(4):323–344, 1987.

[36] N. Vajramushti, I. A. Kakadiaris, T. Theoharis, and G. Papaioannou. Effi-
cient 3D object retrieval using depth images. In 6th ACM SIGMM International
Workshop on Multimedia Information Retrieval (MIR), pages 189–196, 2004.

[37] Wikipedia. List of camera types — Wikipedia, the free encyclopedia, 2016.
[Online; accessed 12-July-2016].

[38] Z. Zhang. Camera calibration with one-dimensional objects. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(7):892–899, 2004.

[39] M. Z. Zia, M. Stark, B. Schiele, and K. Schindler. Revisiting 3D geometric
models for accurate object shape and pose. In IEEE International Conference
on Computer Vision (ICCV Workshops), pages 569–576, 2011.

53

[40] Y. Zou, W. Chen, X. Wu, and Z. Liu. Indoor localization and 3D scene recon-
struction for mobile robots using the Microsoft Kinect sensor. In IEEE Interna-
tional Conference on Industrial Informatics, pages 1182–1187, 2012.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgements
	Introduction
	Motivation and Background
	Our Method
	Contributions
	Publications
	Thesis Outline

	Related Work
	Radio Frequency Identification
	Simultaneous Localisation and Mapping
	Camera Pose Estimation
	Reference from Objects
	Reference from Images
	Reference from 3D Building Models

	Object Pose Estimation
	Depth-Image based Indoor Localization
	Evolutionary Strategies
	Objective Function
	Step size Control
	Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)

	Algorithm
	Representation of Camera
	Objective Function
	Coordinate Systems
	Pose Optimization

	Evaluation
	Unimodal Environment
	Objective Function
	Experiment result

	Experiment in 3D environment
	Classroom environment
	The Sagrada Família environment

	Local Optima
	Multimodality
	Computational cost

	Conclusion and Future Work
	Bibliography

