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Abstract

Ranking and selection is the problem of identifying the best units according to some
parameters based on estimates for the parameters obtained from data. Various meth-
ods of ranking and selection have been developed, such as empirical Bayes methods
ranking units based on a multi-stage Bayesian hierarchical model. Compared with the
non-Bayesian methods, including local maximum likelihood and testing, the Bayesian
methods have a number of advantages. However, Bayesian methods have the diffi-
cultly of choosing the prior. A common choice is to use the conjugate prior for
mathematical convenience. We show that while this is often acceptable for many
Bayesian analysis, it can have serious problems for ranking.

We perform a simulation study to determine the effect of choice of prior on ranking
methods. We find that a heavy-tailed prior is more robust to misspecification in many
ranking problems, especially when we are focused on the top ranked units. We give an
example of applying the posterior mean ranking method with t-prior and normal prior
and some other ranking methods in a simulated market basket data, which provide
more comparison between different ranking methods. The results of the simulation

study can be applied to a range of empirical Bayesian analysis.
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Chapter 1

Introduction

1.1 Ranking and Selection

Ranking and selection are statistical inference problems, which aim to identify the
most important units from a list of candidates. Various approaches to ranking and
selection have been developed over the past decades, since the problem was first
introduced by Bechhofer [1] and Gupta [2]. Later work given by Bechhofer, Kiefer
and Sobel [3], Gibbons, Chakraborti [4] provided a good overview of the field.

In order to simplify our discussion, a general ranking problem is described by
Gibbons, Olkin and Sobel [5] as follows: Suppose there are n populations in our list,

which are indexed by parameters 6;’s

f(xl;el)v f(x2;02)7 T f(xn79n> (1'1)

Each 60; represents the unknown parameter for the interest of ith population, and z; is

the real-valued measurement/observation sampled from the corresponding population
2

with variance o;. Basically, the purpose is to rank these populations based on the

value of #;’s in a well-defined way (say from largest to smallest). Therefore, the true

ranks of units in the list @ = (61,60,,--- ,6,) are given by
Ry (0) = rank(6;) = > _1(6; < 0;), (1.2)
j=1

where I(+) is the indicator function.We assume the populations follow normal distri-
bution, that is X; ~ N(6;,0?) in the following discussion. Adapting the methods to
other distributions is mostly straightforward.

The way we treat 6; is critical to our methods of ranking and selection. Aitkin
and Longford [6] provide two approaches in ranking the effectiveness among schools,
one approach treating 6;’s as fixed and another treating them as random.

If treating the 6;’s as fixed parameters, then a natural way of proceed is using

the maximum likelihood (ML) method to obtain an estimate (0MLE = z,) of 6;. The

1
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rank of 6; is based on the rank of éiM LE ~ Another frequently used method is the test-
ing approach, which is an application of the classical analysis of variance (ANOVA).
The testing approach simply tests the evidence against some designated null hypoth-
esis, usually Hy : 6; = 0. The ranks from the testing approach are the ranks of
p-values, smallest to largest, for the test of Hy : 6; = 0 against Hy : 6; > 0. The
first method is very useful when all of the variances o? are relatively close (balanced
case) or extremely small. Since the MLE ranking ignores the effect of sampling fluc-
tuations, X;’s associated with fairly high standard error are over-represented among
the top elements under MLE ranking. Conversely, testing approach based ranking
over-represents those X;’s associated with fairly low standard error among the top

ranked elements [7].

The other approach: treating #; as random effect, assumes 6; independent identi-
cally distributed (i.i.d) from some prior distribution. A simple two-stage hierarchical
model can be established in conjunction with Bayes or empirical Bayesian methods,
with the final ranks of the 6;’s based on information from the posterior distribution.

The empirical Bayesian ranking methods rely on a certain loss function.

A very straightforward Bayes and empirical Bayesian method is posterior mean
ranking (PMR) [6]. This method gives the rank of 6; as the rank of the posterior mean
E[0;]X;, 0?] in the list of all posterior means. Moreover, Laird and Louis [8] proposed
the posterior expected ranking (PER) method, which is one of the most used methods
under the view of empirical ranking. This method is based on the posterior mean
of the ranks, in which it calculates the posterior distribution of #;, then calculates
the posterior distribution of the induced ranking and then ranks according to the
mean position of each unit in the ranking. Another method introduced by Berger
and Deely [9] gives ranks of 6;’s by their posterior probability of 6; being the largest
conditional on data and all §; not being homogenous. The usual procedure for this
method is: (a) a homogeneity test with null hypothesis Hy : 01 = 03 = -+ = 6,,; (b)
ranking the posterior probabilities Pr(6; is the largest|data, Hy false).

A series of papers coauthored by Gupta [10, 11] have covered the methodology
and application of ranking and selection problems with empirical Bayes. Laird and
Louis [8], Berger and Deely [9] provided some seminal contributions to the empirical

Bayesian ranking framework, which has been further developed in many ways. Lin
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et al. [12] elaborates the loss functions in empirical Bayes methods, by giving a series
of loss functions with which the corresponding empirical Bayes methods are able to
meet different objectives in ranking (e.g. identifying the relatively good or relative
poor units). Noma et al. [13] provides comparisons in microarray studies among three
ranking methods based on their corresponding loss functions.

Shen and Louis [14] compare various estimators of §; based on their performance in
estimating the parameter histogram, estimating the parameter ranks and estimating
unit-specific parameters.

Henderson and Newton [7] propose another empirical Bayes ranking method,
which ranks units on a statistic called “r-value” in their paper. The intention of the
r-value ranking method is to choose a series of cutoffs that maximize the expected
overlap between the selected unit and true top list. The cutoffs in ranking are math-
ematically defined by a family of threshold functions, 7 = {t, : « € (0,1)}, where
t, is a function t,(0?), indicating that the ith unit X; is in top a% if X; > t,(0?).
Then the threshold function of r-value, 7* = {t : a € (0, 1)}, satisfies that

)

Pr (X; > t:(07),0; > 0,) > Pr (X; > ta(07),0; > 6,) (1.3)

for any other threshold 7 = {t, : « € (0,1)}, where 6, is the (1 — a)th quantile of
prior, that is Pr(6; > 6,) = a. Therefore, given the r-value threshold function, we
select 0; before 6;, if X; > t}(07), th(0F) > X; for some o

These empirical Bayesian methods typically provide a compromise between the
p-value approach which is based only on the certainty that an effect is non-zero, and
not on the size of the effect [15], and the MLE approach which does not properly
account for the different uncertainties in the estimates. A number of advantages of
empirical Bayes methods are given by Laird and Louis [8], and Berger and Deely [9].

There have been numerous applications of ranking and selection, including iden-
tifying the most hazardous road sites by Brijs et al. [16]; ranking of institutions, e.g.
universities, schools and hospitals by Hall and Miller [17]; ranking of animals or plants
by their breeding value by Campos et al. [18]; ranking of risk factors, single-nucleotide
polymorphisms (SNPs), for type II diabetes (T2D) [7]. The methods of ranking and
selection are broadly being used in various domains of large-scale inference. In this

thesis, we present an application of ranking methods to market basket analysis.



1.2 Market Basket Analysis

Market basket analysis (MBA) is a common application of a methodology known
as association analysis, which is useful for discovering interesting relationships hid-
den in large data sets [19]. It is used to extract information useful for a variety of
business-related applications such as marketing promotions, inventory management,
and customer relationship management.

Table 1.1 gives a small example of two representations of a typical MBA dataset.
The data consist of a list of sets of items purchased in five transactions. The data
in Table 1.1 is expressed in two different ways. The left table is the original format
with each row being a transaction, which contains a uniquely labeled TID and a
set of items bought by a given customer, while the right table uses binary variables
to re-express the transaction data with “0” being not included in the corresponding

transaction, “1” being included.

TID | Ttems . Items .
1 { Bread, Milk } TID | Bread ‘ Milk ‘ Eggs ‘ Beer ‘ Cola ‘ Diapers
2 | { Bread, Diapers, Beer, Eggs } ! 1 1 0 0 0 0
. . — 2 1 0 1 1 0 1
3 { Milk, Diapers, Beer, Cola } 3 0 1 0 1 1 1
4 | { Bread, Milk, Diapers, Beer } 4 1 1 0 1 0 1
5 | { Bread, Milk, Diapers, Cola } 5 1 1 0 0 1 1
Table 1.1: An example of market basket transactions
Let I = {i1,is, -+ ,iq} be the set of items in a market basket transaction data and

T = {t1,ta, - ,tn} be the set of all transactions [19]. Our objective is to identify
association rules between item sets, that is, disjoint sets of items A and B such that
the probability of a transaction including both A and B is significantly different from
the product of the probabilities of including A and including B which would be the
probability if the purchase of A and B were independent. We use notation support

count as the frequency of occurrence of any itemset A,
count(A) = {t;|A C t;,t; € T} (1.4)

Then, it is common to describe an association rule as an implication expression of
the form X leads to Y (X = Y), where X and Y are disjoint itemsets, i.e. XNY = 0.

A number of measures of the strength of an association rule have been proposed in
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the literature. For example, two of the most commonly used measures are support

and confidence [20]
count(A U B)

Support, s(A = B) = N (1.5)
~ count(AU B)
Conﬁdence, C(A = B) = W (16)

Support is an estimation of the probabilities of the occurrence of corresponding
association rule which determines how often a rule is applicable to a given data set,
while confidence is an estimation of conditional probabilities of occurrence of corre-
sponding association rule given itemset A, which determines how frequently items in
B appear in transactions that contain A.

We will also look at the leverage measure introduced by Piatetsky-Shapiro in

1991 [21]. The Leverage measure, or Piatetsky-Shapiro (PS) measure is defined as
leverage(A = B) = s(A = B) — s(A)s(B) (1.7)

We will give more detail about leverage and the reason why it is a desirable measure
of our study in Section 3.2. The important point to observe about these measures
is that they are statistics, so they all have standard errors associated with them.
For applying the ranking methods discussed in Section 1.1, we will need to use the

estimated standard errors of these statistics.

1.3 Purpose of This Study

In this thesis, I study the effect of priors in empirical Bayes ranking methods, es-
pecially using normal/normal model in posterior mean ranking. The conventional
choices of priors in empirical Bayesian analysis are conjugate priors and nonparamet-
ric priors. In this thesis, I study what factors are important in choice of priors.

In the next chapter, we will focus on the heaviness of the tail of the prior distribu-
tion. We will compare posterior mean ranking using a light-tailed normal distribution,
a medium-tailed gamma distribution and a heavy-tailed Student’s t-distribution as
priors, under the same three choices of true priors. This will provide a comparison
of the loss arising from overestimating the tail weight and the loss arising from un-
derestimating the tail weight. Additionally, there will be some discussion about the

estimations of hyperparameters of priors.
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In the third chapter, there is an application to simulated MBA. We compare
posterior mean ranking with a suitable choice of prior to a variety of other ranking
methods, including MLE approach, testing approach, posterior mean ranking and
r-value ranking.

I will make some conclusions of the idea of choosing priors in Chapter 4 with

several progress to be made in future work.



Chapter 2

General Choice of Prior for Posterior Mean Ranking

2.1 Introduction

Bayesian approaches are very commonly used and powerful tools in ranking and
selection problems. Unlike testing approaches and local maximum likelihood ap-
proaches which only consider the information of observations/estimates, these rank-
ing approaches rely on the posterior distribution of # in equation (1.1) which contains
information both from observations and prior information.

In a simplified general ranking problem, using the notation from equation (1.1),

there are n independent populations

f(*rl;ehaf)? f(IQ; 02703)7 T f(xn;‘gmo-i)' (2'1)

The intention of this ranking is to give orders to 6#;’s from large to small. For our
treatment of the 6;’s as random effects, we assume that each 6; has the same prior
distribution ¢(#), and all 6;’s are different. The conditional likelihood of observations
or the sampling model is normal N'(6;, c?), that is

215 0;,07) = p(x]0;,07) = e i, 2.2

is the variance of observation. The ranks of the true list of units § =

where o2

(61,6, ,0,) are as defined in Section 1.1, given by equation (1.2), Ry(0), for k =
1,2,--+ ) n.

Although, for a general ranking problem, the primary objective is to give ranks
to 6; close to their true ranks R;(-). For our purposes, we consider the relative values
of the 6; to also be important - if §; and 0, are close, then ranking them in the wrong
orders is a small error; if the difference is larger then ranking them in the wrong order
should be considered a larger error. The loss function for posterior mean ranking

incorporates this factor in a very natural way. We Therefore focus on the effect of

prior distribution on posterior mean ranking.

7
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For an individual variable X; with parameter 6;, the posterior mean estimation

(6*M = E[0;| X, 02]) minimizes expectation of a squared-error loss, which is
L(0,0) = (6 — 6)* (2.3)

where 6 is an estimate of 6.

For ranking, posterior mean ranking minimizes the expectation of a loss function
given by the best value minus the value chosen. That is if X; with parameter 6; is
the value we should choose, but instead we choose X, with parameter 6;, then the

loss function in selecting the top k units is

(2.4)

where R = (]-?1, ay ,}A?m) is the ranks of all éis by the ranking method and R; is the
ranking of §;. That is E[L(-)] is minimized by posterior mean ranking RFM® defined

as

n

RM® = rankpy (6x) = Y 1(6, < 6))

= (2.5)
= ZI [0k Xk, 03] < E[6;X;,07])
7j=1
The general form of posterior mean estimate is given by
0; X:10:, 02) dob;
R[6|X,] Ja, 9( ) p(Xil0;, 07) (2.6)

fe p(X;|0;,02) db;

There are some other choices for loss functions, which will give different poste-
rior distribution ranking. Mostly they can be converted to the posterior mean by
transforming the parameter space.

The most commonly chosen prior for posterior mean ranking is the conjugate
prior, which is a normal prior here, for its simplicity and generality. However, in
some cases, such a choice of prior will produce a poor result of ranking, since it can
favor small variance units. Especially, when we rank the top « units (6;’s), we are

more focusing on units with high observations/estimates. For example, when the



9

2

7

is a bit larger than o2, but

two units ¢; and 0; have very close variances where o 7

very different estimates with 6; much larger than éj, the posterior mean method with
normal/normal model can rank the 6; above ;. Examples of this problem will be
illustrated in Section 3.4.1. Thus normal priors seem to suffer from some deficiencies
that can not satisfy our purpose. How to choose a general choice of prior is a critical
task. The following sections will give some comparison of different types of prior:
heavy-tail, medium-tail and light-tail. By comparing the result of posterior mean
ranking with different priors, we are able to choose prior that is more robust to our

ranking procedure.

2.2 Simulations from Different Priors

In order to achieve our goal, we will firstly draw samples from three sets of priors with
different types of tail, normal distribution with light-tail, gamma distribution with
medium-tail and Student’s t-distribution with heavy-tail, so that we can compare the
effect of using different priors in cases where the tail of the prior used is too light or
too heavy.

We generate three sets of 6 from different prior:

° GiN), GgN), e ,HéN) i.i.d normal distribution, N (u, 72) with g = 1 and 72 = 0.1;

« 60 6O . O
8 =10;

i.i.d gamma distribution, Gamma(«, ) with @ = 10 and

Y

. 9}”, QgT), e ,HéT) i.i.d Student’s t-distribution, ¢, (n, ) with d.f v = 3, location

parameter (mean) n = 1 and inverse scaling parameter A\ = 30.

Those settings mean that these three prior distributions have the same first two

moments, i.e. the same mean E[f] = p = 5 = n = 1 and the same variance
Var(f) = 12 = = +-%5 = 0.1, which simplify our analysis in the following sections.

We sample observations for each 6; from same sampling distribution N (6;, 02), where
o; ~ Gamma(1,5).

Then, we generate three sets of observations with corresponding prior,

e Normal prior observations: X6 ~ A (817, 62);
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e Gamma prior observations: X \6 ~N (H,EG),UZ?);

e Student’s t prior observations: X\ |6 ~ N(8, 52).

In this study, we generate 10 simulations with each simulation let n = 50, 000.
Since we are focusing on ranking the top a%, which is related to the upper tail of the
posterior distribution in posterior mean ranking, we need to generate enough samples
in top a% ranking. Also, in the many real case of ranking, it is natural to have a large
number of data, such as market basket data. Therefore, such a number of samples in

each simulation satisfies our purpose.

2.3 Calculation of Posterior Means

We use the same normal prior, gamma prior and Student’s t-prior distributions in
simulation with different types of tail for estimating the posterior mean of these three
sets of 6.

We use the same normal prior

g (60) = p(Bljn, ) = ——e (2.7)

2T

with the hyperparameters (i, 72) = (1,0.1) to estimate the posterior mean of these
three sets of 0’s,
Therefore, the posterior mean of these three sets of data using a normal distribu-

tion prior is given by an explicit form

J, Z-gN z) p(Xil6:, 07) db;

N[9i|Xi7U-]
’ (X6, db;
Jo, 97 (01) A |2 o) (2.8)
7' :
- X; i
72 + o? " R

Equation (2.8) shows that the posterior mean of a normal/normal model is weighted

mean of observed data and prior information. It is weighted by uncertainty of the

prior and measurement error of the observed data, which are the variance prior 72

and the variance of observations o?. This form also explains the reason that posterior

mean with normal prior prefers observations with low variance. The posterior mean

2

¢) observation is weighted closer to the observation, which

of a smaller variance (o;
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give a larger posterior mean estimate. Therefore, the posterior mean method with

normal prior give higher ranks to units with small variance.

The posterior mean when using the same gamma prior (g% (#)) is

with

where («

f999 ) p(Xilb;, of) db;

G[ | U] fe X|027 Z) de
_(X=0y)? 29
fei 91 ea—le,@@i (& 2022 dez ( )
- _(X-0)2
Jo, 07 e e 2 db;
49(0) = p(Ola, B) = o165 (2.10)
’ ['(a)

,B) are equal to (10, 10) as used for the simulation.

And the posterior mean when using the same Studnet’s t-prior (¢*(0)) is

with

Jo, O 9( i) p(Xil0;, 07) db;
97 (6:) p(Xi16s,0%) db;

7(Xi_9i)2
I, 6: (1+—A<95ﬂ>2)—”$1e Z ) (2.1)

Er[0;| X, 07] =

_(X;-6;)2

S, (14 A2y T gy,

At MO —n)?
(%) (771/) (1+ v )"

V+l

(2.12)

where (A, 1) are the same hyperparameters of prior equal to (1, 30).

However, we are not able to calculate an explicit form of posterior mean for the

gamma prior and the t prior as we have for the normal prior, because the integrals

above do not have an analytic solution. Therefore, we can only use numerical methods

to get the posterior mean for these two priors. Here we use a Gibbs sampler by taking

a selected prior and likelihood to sample from its posterior distribution and calculate

the mean of those posterior distribution samples.

2.4 Comparison of the Results

In this section, We show the effect of using different types of tail distributions for

estimating the posterior mean.
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In Section 2.3, we notice that the normal/normal model provides straightforward
form of posterior mean. There are some other benefits of using normal prior besides
its explicit form of posterior mean. It also gives a better estimation of 6; than just

using observation as estimates in ranking problem.

True Prior

Normal Gamma T

MSE | 0.0258  0.0256 0.0266
std.err | 0.00025 0.00027 0.00251
MSE | 0.0263  0.0252 0.0293
std.err | 0.00025 0.00028 0.00134
MSE | 0.0271  0.0267  0.0218
std.err | 0.00026 0.00029 0.00032

Normal

Estimating Prior | Gamma

T

Table 2.1: Average MSE and standard error over 10 simulations

Table 2.1 is the average of total MSE of 50,000 samples over 10 simulations and
the average standard error of the total MSE over 10 simulations. Here MSE for one
simulation is the mean squared error between 6; and its posterior mean estimation

0, = E[6;|X;], defined as

1 n n

MSE = ~ Z(ej —0,) = %Z(Qj - E[0;]1X;])° (2.13)

The standard error in Table 2.1 is the average standard error over 10 simulations.
Since the MSE given in Table 2.1 is the estimate over 10 simulations, each with
50,000 points. For each simulation, we estimated the MSE as the mean of these
50,000 squared errors. However, there is some error in this based on the variance of
the estimated MSE. The standard error is an indication of how much error present

to the estimated MSE, which is calculated as equation (2.14)

~

Var((0; — 0;)*)

std.err® =
(2.14)

S0 = 6;)2 = L3 (8 — 6.7/ (n — 1)

Since posterior mean estimation minimizes the expect of a squared-error loss given
by equation (2.3), MSE is a very reasonable measure in evaluating the precision of

the posterior mean estimator under different priors.
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Obviously, using the true prior is the best choice for the overall MSE, since using
the correct prior gives the smallest MSE. The effects of using prior with too heavy a
tail and using a prior with too light a tail are comparable. This means that using a
normal prior for convenience is likely to be reasonable unless we have good reason to
believe the prior is not normal.

In general, taking normal prior is good in overall estimation. Nevertheless, the
following results show the weakness of normal prior in estimating the upper tail of
posterior distribution, when we are more interested in the ranking the top « units.
This problem affects the performance of normal/normal model in posterior mean
ranking.

Two more measurements of the performance of posterior mean ranking method
with different priors are given below. Firstly, we define the MSE of top ranked a%

of #; for one simulation,

1 i[k] R TRL
MSEag = - D00 = e > (0, —E[b;1X)])° (2.15)
J=ipn) J=ipn)
where i[},49),- - - , iy are indices of ¢. Here it is given by ranking the true list of

parameters 0;, that is Ry, (0) = 1, R, (0) = 2,---, R;, (0) = na%. Compared to
the overall MSE, the top a% MSE helps us focus on the accuracy of posterior mean
estimators with different choices of prior in top units (6;’s). These are the units we
are most interested in for the ranking problem. This MSE is an important indicator,
because the larger the MSE of posterior mean, the greater the chance of ranking in
the wrong order.

Another good measurement of the quality of ranking is the mean of the top a%

of ranked 6 (6,) for on simulation given by

k]
_ 1
Ha = E Z Qj, (216)
J=myy
where mpj, mp, - -+ ,mpy are the indices of units (6;’s) given by a ranking method.
Here it is ranked by posterior mean method, which is }%21}/11]1% =1, ]:2511\[/2[? =2, }A%mﬁ? =

na%. Since the posterior mean ranking minimizes the loss function of ranking L(-)
(equation (2.4)), which is the sum of 6;’s we should select in the top minus the sum

of 0,’s selected by posterior mean ranking method in the top, the 6, is positively
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correlated to the second term of loss function, so increasing , will decrease the L(-).
Therefore, the mean of top a% of # is a good measurement of performance of poste-
rior mean ranking with different choices of prior. The larger this value is, the better

the result of ranking.

True Prior
Normal Gamma T
Normal | 0.1098  0.1622 0.4044
Estimating Prior | Gamma | 0.0997  0.1341 0.1817
T 0.1188  0.1498 0.1632

Table 2.2: Average of the MSE of top ranked 1% of 6; (MSE;¢) over 10 simulations

Table 2.2 shows the average top 1% MSE of 10 simulations, using equation (2.15)
with a = 0.01,k = 500. In this table, it is shown that using a normal prior when
the prior is actually a heavy-tailed Student’s t-distribution, the MSE increases signif-
icantly, which is much worse than using a gamma distribution as prior. Conversely,
using a heavy-tail prior when the true prior has a light-tail seems to be less harmful.
In the first column of Table 2.2, the MSE of estimating # with normal prior using
a t-distribution as prior is 0.1188 compared to 0.1098 using the true normal prior.
In the third column of Table 2.2, the MSE of estimating t-distribution as normal
distribution is 0.4044 comparing using true t-distribution prior which is 0.1632. This
difference is much larger, showing that using too light a tail in the prior has much

larger negative impact than using too heavy a tail.

True Prior
Normal Gamma T
Normal | 1.7672 1.9675  2.1644
Estimating Prior | Gamma | 1.7616  1.9748 2.1793
T 1.7608 19719 2.1824

Table 2.3: Average of the mean of top 1% of ranked 6 (f;) over 10 simulations

Table 2.3 shows the average mean of the top 1%, which is the top 500 values of ¢
(61%), ranked by their posterior mean under different choices of prior. It shows that
taking normal/normal model in posterior mean ranking produces less satisfactory
results compared to using a t-distribution as prior. There is significant drop in 6y

using a normal prior to analyse data with a heavy-tailed prior. Also when true prior
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is medium-tailed, a t-distribution prior gives better results than a normal prior.
Moreover, the following two tables give us a deeper view of the heavy-tail problem
using normal /normal model in posterior mean ranking. These results are for the top

5% ranking using posterior mean.

True Prior
Normal Gamma T
Normal | 0.0713  0.0941 0.1258
Estimating Prior | Gamma | 0.0691  0.0861 0.0815
T 0.0838  0.1024 0.0867

Table 2.4: Average of the MSE of top ranked 5% of 6; (MSEsy) over 10 simulations

True Prior
Normal Gamma T
Normal | 1.5785  1.6835 1.6181
Estimating Prior | Gamma | 1.5770  1.6855 1.6167
T 1.5780 1.6835 1.6204

Table 2.5: Average of the mean of top 5% of ranked 6 (fs5) over 10 simulations

Table 2.4 shows the result of average top 5% MSE over 10 simulations, using
equation (2.15) with o = 0.05, k = 2500. And Table 2.5 shows the average mean of
top 5%, which is top 2500 of 6 (f5y), ranked by their posterior mean under different
choices of priors. From Table 2.4, we see that taking prior as a gamma distribution
gives the best posterior mean estimation to true value 6 over these three choices of
priors. As we can see in Table 2.5, in the situation that the true prior # is a normal

prior 9§N),0§N), e ,07(5“ or a gamma prior QgG),QgG), e ,«9,(10) taking t-distribution
as prior gives good results for f5¢. This confirms the conclusion from Tables 2.2 and
Table 2.3 that using a prior with too light a tail is far more serious than using a prior
with too heavy a tail. This suggests that when selecting a parametric model for the

prior distribution in a ranking problem, it is safer to be on the side of heavier tails.

2.5 Different Choices of Prior Variance

In this section, we will study the influence of using the incorrect variance of the prior

distribution on the accuracy of the estimated ranking.
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Table 2.6 is the average overall MSE over 10 simulated sets of data calculated the
same way as equation (2.13) with their true family of prior but different variance of
prior distribution. Table 2.7 is the average top 5% MSE over 10 simulated sets of data
calculated the same way as equation (2.15) with their true family of prior but different
variance of prior distribution. Here the posterior means are given by equation (2.8),
equation (2.9) and equation (2.11) with different values for the parameters of the
prior, which allows us to change the variance of prior with fixed mean of prior. That
is

o

e Posterior mean of normal prior Ex|6, )|X i(N)] with hyperparameters being

(1,0.57%), (,0.87%), (,7°), (p,1.27%), (p,1.57%) (2.17)
e Posterior mean of gamma prior Eg[el@) |Xi(G)] with

0.5 (o, B), 0.8 e, B), (a, B), 1.27 (v, B), 1.5 (e, ) (2.18)

e Posterior mean of t-distribution prior Er [Q(T)|Xi(T)] with

%

(0.57'A,m), (0.87'A,m), (A, n), (1.27*A\,n), (1.5 "\, n) (2.19)

Different Variance of from True Family of Prior
0.5Var(d) 0.8Var(#) Var(d) 1.2Var(d) 1.5Var(0)
Normal Prior | 0.0281 0.0261  0.0258  0.0259 0.0266
Gamma Prior | 0.0273 0.0254  0.0252  0.0253 0.0259

T Prior 0.0231 0.0222  0.0218  0.0222 0.0225

Table 2.6: Average overall MSE using different prior variances over 10 simulations

Table 2.6 reveals as expected that average overall MSE of posterior mean esti-
mations using their true family of prior is minimized by accurately estimating the
variance of the prior. And errors in either direction have similar effects on the MSE.

However, it appears to be different when we concentrate on the top a% 6;. Choos-
ing a larger variance of prior than its true variance of prior is less harmful to our
posterior mean estimators in all three priors. Indeed, overestimating the variance

may even improve the MSE of the top values.
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Different Variance of True Family of Prior
0.5Var(d) 0.8Var(f) Var(d) 1.2Var(d) 1.5Var(0)
Normal Prior | 0.1001 0.0794  0.0713  0.0657 0.0599
Gamma Prior | 0.1181 0.0934  0.0861  0.0784 0.0727
T Prior 0.1055 0.0932  0.0867  0.0833 0.0783

Table 2.7: Average top 5% MSE ranked by true values (MSE5q) using different prior
variance over 10 simulations

Table 2.8 and Table 2.9 present the average overall MSE and the average of top
5% MSE results over 10 simulations.

The posterior means are given by equations (2.8), using a normal prior with differ-
ent variances of hyperparameters: (1, 0.57%), (1, 0.872), (1, 7%), (1, 1.272), (u, 1.572).
The last column of these two Table 2.8 and Table 2.9 are the MSE result when the
variance of prior goes to infinity, which is the MSE between 6; and its maximum

likelihood estimator, which is X here.

Different Variance of Normal Estimating Prior
0.5Var(#) 0.8Var(f) Var(d) 1.2Var(d) 1.5Var(f) 00
Normal Prior | 0.0278 0.0258  0.0256  0.0257 0.0264  0.0798
Gamma Prior | 0.0281 0.0261  0.0257  0.0259 0.0266  0.0802
T Prior 0.0295 0.0268  0.0263  0.0262 0.0267  0.0795

Table 2.8: Average overall MSE using normal prior with different variances over 10

simulations

Different Variance of Normal Estimating Prior
0.5Var(f) 0.8Var(f) Var(d) 1.2Var(d) 1.5Var(9) 00
Normal Prior | 0.0999 0.0794  0.0713  0.0657 0.0598  0.0799
Gamma Prior | 0.1362 0.1061  0.0941  0.0855 0.0763  0.0786
T Prior 0.1945 0.1455  0.1258  0.1115 0.0965  0.0819

Table 2.9: Average top 5% MSE ranked by true values (MSEs5y) using normal prior
with different variances over 10 simulations

Table 2.8 and Table 2.9 show the same results as Table 2.6 and Table 2.7 that
when using normal prior with different prior variances, the average overall MSE is
minimized by accurately estimating the variance of prior, but overestimating the
variance leads to decrease in MSE of the top 5% units which can be most beneficial

where the true prior is a heavy-tailed t-distribution. Therefore, using overestimated
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prior variance in the normal/normal model can be less harmful in estimating the top

ranked 6, and therefore is better for ranking 6’s.

2.6 Conclusion of Robustness

Based on the comparison results in the previous sections, we draw the following
conclusions about the best choice of prior and a good estimation of prior parameters
in posterior mean ranking.

As in Section 2.4, a normal /normal model of choosing normal prior generally pro-
duces good results in estimating the posterior mean of all units. Such model is simple
to estimate. However, when it comes to choosing the top « units, posterior mean
ranking of normal/normal model appears to be less acceptable. Moreover estimating
the prior using a heavy-tail distribution such as the Student’s t-distribution from the
previous sections is less harmful and more robust in posterior mean ranking.

Lastly, when we are focusing on ranking the top « units, the accuracy of estimating
the parameters of the prior distribution seems to be less important. In some cases,
the posterior mean estimator is better when we overestimate the variance of the prior.

In the next chapter, we will apply what we have learned about the choice of prior
distribution to the problem of ranking and selection in market basket analysis. We

will compare a number of popular ranking methods to this problem.



Chapter 3

Application of Various Ranking Methods in Market Basket
Analysis

3.1 Introduction

Of all sorts of applications of ranking and selection from large scale data, choosing the
leading association rules is perhaps one of the most interesting and underdeveloped
examples. In this chapter, we give an example of applying some general ranking and
selection methods to rank the top associated items in market basket analysis.

First a measurement (leverage) is chosen to evaluate association patterns based
on transaction data. Then I will go through some of its properties and generate
a simulation of it. With the leverage measurement, I'm going to simulate a set of
market basket data. Finally, I will apply some ranking and selection methods to
my simulated market basket data, including empirical Bayesian approaches such as
posterior mean and r-values method, and some alternative methods, and compare the

results.

3.2 Objective Interestingness Measure: Leverage

Firstly, I would like to give a brief introduction of the selected objective interest-
ingness measure, leverage, which we have mentioned in Section 1.2. Since the size
of market basket data could be large, it is natural to generate hundreds and thou-
sands of association rules. Among all these rules, identifying the top association rules
of interest is a difficult job. Therefore it is important to evaluate association rules
objectively using well-accepted measure.

It is more convenient to use Table 3.1 which is a 2-way contingency table for
itemsets A and B to show some properties of leverage. We use notation A (B)
to indicate the event that itemsets A (B) don’t all occur in a transaction. Each

fi; represents a frequency count of the corresponding event where ¢ represents the

19
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B B
fu  fio | fir
Jor  Joo | Jor
Jri Jro | N

Table 3.1: A 2-way contingency table for itemsets A and B

A
A

occurrence of A, j represents the occurrence of B. fi,(fy1), represent the support
count of A(B) defined by equation (1.4). N is the total number of transactions.
The Leverage measure, Piatetsky-Shapiro (PS) measure defined by equation (1.7)

is expressed as

fi fifa
N N2
Since leverage (PS) is symmetric, we simplify the notation of leverage as leverage(A, B).

leverage(A = B) = (3.1)

Also using probabilities to express the leverage (PS) measure, we get
leverage(A, B) =P(AB) — P(A)P(B)
=P — PPy
=Py — (Pio + Pu1)(Po1 + Pr1)
=Py — (PioPor + PioPui + Por P+ P P)
=Pii(1 — Py — Por — Pui) — PuoPo

(3.2)

=P11Poo — Po1Pro

where Pj; is the probability that itemsets A and B both occur in a transaction,
Py is the probability of neither of A and B occur, Pjy (FPy1) is the probability only
one itemset AB (AB) occurs, Pi, (P,,) is the probability of A (B) occurring.

Under the expression by probabilities, it is more explicit that leverage measures
difference between the appearance of A and B together and what would be expected
if A and B were independent.

In addition, there are a few more advantages that can accrue by choosing leverage

measurement:

e The leverage treats the appearance of an itemset and disappearance of the

identical itemset differently, that is leverage(A, B) # leverage(A, B).

e The leverage is relatively complete and simply interpretable. It is easy to make

the case on business grounds that it represents the extra ratio of cases where
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items A and B both are sold, compared to what would be expected if they were

independent.

e The range of leverage (PS) measurement is between —1 to 1, where 0 indicates
items A and B are independent. Positive leverage indicates that items A and B

are positively associated, and negative leverage indicates a negative association.

e (Calculation of the theoretical variance of the estimator of leverage is reasonably

straightforward, compared to some other measures.

Now our ranking and selection procedure is based on ranking the leverage mea-
surement. Suppose the leverage of any two itemsets A and B is represented by 64 g,

we are ranking n association rules.

04 = leverage(A, B) = PS(A, B) (3.3)

3.2.1 Sample Distribution of Estimated Leverage

In order to learn how to estimate the leverage from the data, assume { f11, fio, fo1, foo}
from the contingency table above is sampled from a multinomial distribution with

parameters (N, Pi1, Po1, Pio, Poo)-

ANB|AnB|ANB| AnB
No. X; Y; Z; W;
1 0 0 1 0
2 0 0 0 1
3 0 1 0 0
4 0 0 0 1
5 1 0 0 0

Table 3.2: Indicator variable for multinomial distribution

Denote {X;, Y;, Z;, W;}, 7 = 1,---, N, to be the indicator variables of jth
trial, where 0 indicates fail and 1 indicates success. Thus our simulated data can be
expressed in the form of Table 3.2.

The proportions of each case give the maximum likelihood estimates of Py, Py, Pio, Poo

poodn XX p o XYi p o o X4 5 o XW
11 N N? 01 N N7 10 N N7 00 N N .

Therefore, the maximum likelihood estimated leverage (6) is given by

0 = Py Poo — Por Pro. (3.4)
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Expected Value of the Leverage (PS) Estimator

~

E[@] = E[Pnpoo - ]501]510]
= E[Pnpoo] - E[pmpw]
_z |:Zi X2 Wi E[Zk Vi 2o Zl}

N N ] N N

_ %(E[Z XYW - B Y Z)

(3.5)
= (B X, — B[S viz)
i#] kil

= %([N(N — 1) Py Poo] — [N(N — 1) Py, Pyo))
_ V=
== N (PHP()O - P01P10)

(N-1)
=t

Therefore our estimated leverage 0 is an asymptotically unbiased estimator of

leverage # when N is large enough.

Variance of the Leverage (PS) Estimator

We then calculate the variance of the estimated leverage é, which is

Var(pnpoo — 15011610) ZE[(pupoo — pmpw)z} — (E[Pnpoo — 15011310])2
=E[(P} Py, + P5 Py — 2Pu P Pio Poo)]
- (E[pnpoo — P01]510])2 (3.6)
=E[(P} %)) + E[(P5, PRy)] — 2B[Pr1 Pog Poy Pao)
- (E[Pllpoo - ]S01P10])2

We can divide this formula into small pieces and calculate each part of it.
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The first part of this formula is
A X X; Wi W,
E[(P121P020)] =E [Z #]
ijkl
1

=E {m{zxi(z Wi+ Y W)

i=j kAl k=13

Y XX ) Wi+ > Wk)}]

i KAEIA] [y
1
:m{NPH[(N —1)(N = 2)P{ + (N — 1) Py)

+ N(N = 1)P[(N = 2)(N = 3)P{ + (N — 2) Py}
NNQ L P Pool1 4+ (N = 2) Py + (N = 2)Poo + (N — 2)(N — 3) Py Pyo)]

(3.7)
Then the third part of this formula is
Aa Ao 1
E[P11 PooPo1 Pro) = i Z X.Y;2,W,
ailfinet (3.8)
N —-1)(N—-2)(N -3
= ( ) e i )P11P01P10P00

The last part of it is

A Aoa N —1)?
(B[P Py — PorPro])* = %(Pnpoo — Py Pyo)?

N (3.9)
e [N(N — 1)(P} Py, + P Ply — 2P11 Po1 Pio Poo)]

So the variance can be written as

A A N -1
Var(PHPOO — POIPIO) = N3 [PHPOQ(l + (N — 2)P11 + (N — 2)P00

+ (N = 2)(N = 3)Pyy Pay) + Por Pro(1+ (N — 2) Py

+ (N = 2)Pip + (N = 2)(N — 3) P Pio)

— (N = 2)(N — 3)Piy Pt Pio Pog

— N(N = 1)(P3 Py + Py Ply — 2P11 Pyt Pio Pyo)] (3.10)
N-—-1

=N [P11Poo + ForPro

+ (N = 2)(P}, Poo + P11 Py, + Py Pio + P Pfy)
— (4N — 6) P}, Py, — (4N — 6) P3, Py,
+ 2(4N — 6)P11P01P10P00]
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And since

(N _— 2)(P121P0[) + P11P020 + P021P10 —|— P01P120) :(N - 2)[P11P00(1 — P(]l — Pl[))
+ Po1Pro(1 — Py — Pyo)]

(3.11)
So the variance can be simplified as
o*(f) = Var(9) :%[(PHPOO + Po1Pio) + (N — 2)((Pr1Poo + Por Po)
— PyiPotPio — PuPoPo — PuPuoPo — PuPoPo)  (312)

_ (4N — 6)(P11P00 - P01P10)2]

Therefore the variance of the estimator (02) is related to Py, Py, Fo1 and Py

which is related to 6.

3.2.2 Simulation Result of Leverage

Assume a true leverage 6 is 0.007, with P;; = 0.01, Py; = 0.05, P1g = 0.04, Pyo = 0.90.
We generate 10,000 estimated leverages calculated from the sample proportion of a
multinomial distribution population, each with N = 100,000 and P;; = 0.01, Py; =
0.05, P;p = 0.04, Pyo = 0.90. The following two graphs show some properties of 0.

Histogram of Estimated Leverage Normal Q-Q Plot
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Figure 3.1: Histogram plot and Q-Q plot of 0
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The left panel of Figure 3.1 is the histogram plot of estimated leverage, while the
right panel is the Q-Q plot of sample quantile against theoretical normal quantile
with a theoretical line.

These two figures show that the distribution of estimated leverage 0 is well ap-
proximated by normal distribution with mean @ and variance 0. Even though these
two parameters are correlated, the correlation between mean and variance sampling
distribution shouldn’t harm our simulation in ranking problem. Therefore, we assume

these two parameter are independent, in conclusion, 0|0, 0% ~ N (0, 02) .

3.3 Simulated Market Basket Data

To simplify our simulation, rather than simulate a full market basket analysis, we will
simulate market basket analysis for independent pairs of itemsets. That is, we will
generate contingency tables like Table 3.1 for independent pairs of itemsets. This will
give a similar marginal distribution for the leverages, but will ignore the relationship
between different pairs of itemsets due to the overlap. Since we have not yet adapted
our method to account for this relationship, simulating in this way allows us to focus
on the issues investigated in Chapter 2.

Firstly, we simulate the probabilities of any itemset occurring in a transaction,
which is the probabilities of a customer buying item, following a beta distribution
with parameters (1,50). Here, the reason for choosing a beta distributions is that it
represents a typical situation where most items are fairly rare, and a few are more
common. Thus

The probability that itemset A occurs in a transaction is Py .
The probability that itemset B occurs in a transaction is P, 1.
Py and Py, are independently distributed as Beta(1,50).
The prior distribution of leverage (PS) 6 is

0 with probability 0.8
0 ~ (3.13)

N(0,7%)  with probability 0.2
where 7 = min{0.2P;, Py, 0.0002}. The simulated leverage values are chosen to
follow a typical situation, where most pairs of itemsets have no association. We also

assume that all the different association rules are independent. Such an assumption
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is not very realistic, but it is a useful simplification. And it shouldn’t do any harm for
our simulation. The choice of using truncated variance is designed to avoid negative

simulated values of P;; or the values greater than 1, with high probability.

2e-04 4e-04 6e-04

Estimated Leverage

-2e-04

-6e-04

[ I [ I I I
0.00000 0.00005 0.00010 0.00015 0.00020 0.00025

Standard Error

Figure 3.2: A market basket simulated data sample: 10,000 association rules measured
by leverage from 100,000 transactions.

Then we can use 0, P,y and P, to get P11, Py, Pip and Pyy with the following
equations:
Py =P P +0
Py =P — Py
Por = Py — Py
Poo=1— P11 — Py — Pro
Since it is easy to generate a large number of association rules from a real mar-
ket basket transaction data, we want to make this simulation study to be simi-
lar to a real market basket data example. Therefore, we simulate 10,000 contin-

gency tables to calculate the corresponding true leverage of each association rules
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(0;, fori = 1,2,---,10,000). For each contingency table and corresponding true
leverage, we generate an estimated leverage from the multinomial distribution with
parameters (N, Py, Py1, Pio, Poo) with N = 100,000 using equation (3.4). And we
calculate the variance of estimated leverage (02). Note that, since in the real market
basket data Py, Py, Fo1 and Pjg are usually unknown, we use estimated proportions
(1511, 1501, ]510, 1500) to calculate the variance.

In this simulated market basket data, we obtain 10,000 leverage (6;), corresponding

estimated leverage (6;), and the variance of this estimation ¢, fori = 1,2, -- -, 10, 000.
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Figure 3.3: A market basket simulated data sample: 10,000 association rules measured
by leverage from 100,000 transactions. The gray dash lines are the top 0.1%, top 1%
and top 5% of true leverage 6;.

Figure 3.2 and Figure 3.3 show the results of the simulated market basket data.
Figure 3.2 is a scatterplot of estimates and estimated standard error similar to what

would be available in a real data example. Note that the standard errors are estimated
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from estimated probabilities, instead of true simulation probabilities. In a real data
case, it is natural that we can only get estimates and standard errors from observa-
tions. Figure 3.2 also shows the fact that there is some relationship between estimates
and standard error, since they are both related to the true values of leverage.

Figure 3.3 shows that although the large 6; tend to have large estimated él-, there
is still some variation in the estimated leverage. Also there are a large number of
0; equal to zero which makes the prior distribution of # more heavy-tailed which, as
explained previously, can lead to problems with using a normal prior for ranking.
For our purposes, we are very concerned about the tail, in particular, the top a% of

associations with the highest true leverage.

3.4 Result of General Rank Methods

In this section, we provide the result of ranking applying different ranking methods,
such as posterior mean method with t-prior and normal prior, r-value method with
normal prior, MLE method and p-value method to our simulated market basket data.

It is convenient to use the same description as in usual ranking problems with
equation (1.1). In the simulated market basket data, there are n=10,000 association
rules. Assume the ith estimate of leverage 6; is calculated from the observations sam-
pled from corresponding population with unknown real-valued parameter of interest

0;, that is the n populations have density functions

f(él;elao-%)a f(é2;0270'%)7 T f(én;enaai)v (314>

2

where 6; is the estimates of 0; calculated from observations, and o; as the variance

of the estimate 6;. We denote g(0) to be the prior density of #;, and assume the 6; is
i.i.d g(8).
The best result should be given by, using a three-stage hierarchical mixture model

based on the true prior:
( ~ 2) ( ~ | 2) N( 2) 1 _M
/ ‘9i§0z’70—i = p(0; Qi,()‘i = 01‘70'1' — e 207
v2mo; (3.15)

9(0:) = v91(0;) + (1 — 7)g2(0)
where g1 (6;) is 0 and go(6;) is N(0,7%) with v = 0.8. The 7 is given by

7 = 0.2ab 1(0.2ab < 0.0002) + 0.0002 1(0.2ab > 0.0002) (3.16)
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with p(a) and p(b) are Beta(1,50). Our task is to rank units by 6; from large to small
here.

Moreover, our discussion focuses on ranking based on the positive estimated lever-
age éi, which is a positive association rule. It is important to separate positive and
negative associations in business applications, since positive association rules rep-
resents benefits we can earn from an association. Generally, we can still rank the
negative association rules using same method. We will apply what we have learned

in Chapter 2 and use a heavy-tailed prior to analyse the data.

3.4.1 Posterior Mean Ranking Method
Normal /Normal Model

The first result is applying the posterior mean ranking method to market basket
data to rank the association rules. A simple two-stage hierarchical model can be
established with likelihood density f(6;;6;, 02) being normal N(6;,2), and the prior
of §; for i =1,2,--- ,n being normal N(j1,72). That is,

1 _i=w?

9(0) = p(0ilp, %) = e (3.17)

2T

where (f1,7) are estimates of prior hyperparameters (u,7) through maximum likeli-
hood from our samples f; and o?. Then the posterior mean of 6; is easily given by

equation (2.8), which is

E[0:]6;, 07] = 0 + (3.18)

72 + o2

In Figure 3.4, the left panel is a plot of estimated leverage against its estimated
standard error, while the right panel is the plot of estimated leverage against true
leverage. Those points colored in red are the top 1% selected by posterior mean
ranking method using normal /normal model here. As we can see, using normal prior,
posterior mean ranking prefers estimates with small standard error. From the right
panel, we are able to see that the method gives bad results in ranking the top 1%

units by leverage.
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Figure 3.4: Posterior mean: The red points are the top 1% association rules ranked
by posterior mean ranking using a normal distribution estimated from the data as
prior.

T /Normal Model

Now, we change the choice of prior in the posterior mean ranking method from a
normal distribution with light-tail to a Student’s t-distribution with heavy-tail. A
t/normal model is applied in the empirical Bayes method.

The posterior mean of a Student’s t-distribution Ep[6;]6;,02] is given by equa-
tion (2.11). From the discussion of estimations of parameters for prior in Section 2.5,
it is not clear what the most appropriate estimates are for the hyperparameters, but
the estimates should not harm our ranking too much. Therefore, we use the first two
moment estimators to estimates the hyperparameters of the prior for simplicity of
computation. We choose the degrees of freedom of the t-prior to be 3, so that this

will satisfy our intention of selecting a heavy-tail prior. That is,

e Location parameter 1 = Zf\;l 0, = 4.059472 x 1077;

v

e Inverse scale parameter A= ﬁ = 630500364;

e Degrees of freedom 7 = 3.

Figure 3.5 shows the results of top 1% leverage (red points) under posterior mean
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Figure 3.5: Posterior mean: The red points are the top 1% association rules ranked
by posterior mean ranking method using student’s t-distribution as prior.

ranking using student’s t distribution as prior. The left panel shows the trade-off
between the estimates and standard errors. Since it takes a heavy-tail distribution
as prior, this ranking method puts more weight on estimated value, and less weight
on standard error, compared to Figure 3.4, which overpopulates estimates with small
standard error. Both these two figures, Figure 3.5 and Figure 3.4 support our conclu-
sion that using a conjugate prior will overweight standard error, owing to estimating
the prior as a too light-tailed distribution. This shows the ranking method chooses a

high estimate as generated from a very large error instead of its large true leverage.

3.4.2 R-value Ranking Method with Normal Prior

Figure 3.6 gives the result of using the r-value ranking method using a normal prior
with hyperparameters being estimated through maximum likelihood. The left panel
of Figure 3.6 is plot of estimated leverage against its estimated standard error. The
right panel shows estimated leverage against true leverage. Red points in both plots
are the top 1% units ranked by r-value. As the right panel of this figure shows, r-value
ranking chooses some units agreeing with the best selection. It selects the top units
with largest leverage and large standard error. Although r-value tries to maximize the

agreement between observation/estimates and prior, the method is hugely affected by
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Figure 3.6: R-value: The red points are the top 1% association rules ranked by r-value
ranking method using conjugate prior model.

its estimation of prior. Moreover using a normal prior has a problem that we stated in
Section 2.4, that it prefers units with small standard error. We see that this problem

has resulted in r-value ranking selecting many points with very small true leverage.

3.4.3 Local Maximum Likelihood (ML) Approach

Next we compare the local maximum likelihood (ML) approach. The local maximum
likelihood approach estimates 6; through the maximum likelihood estimate, which is

f; in our simulation. The MLE ranking method ranks units directly from estimates

without considering standard error.

The left panel of Figure 3.7 is plot of estimated leverage against estimated standard
error. Also the right panel shows estimated leverage against true leverage. Red points
in both plot are top 1% units ranked by MLE. Even though the method prefers units
with large error, it still gives an acceptable result in choosing the top 1% leverage
values, as the left panel of Figure 3.7 shows. Note that our simulation gives ML
ranking an advantage because ML ranking does not downweight observations with
large standard error, and in our simulation, the observations with larger leverage have

larger standard error.
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Figure 3.7: MLE: The red points are the top 1% association rules ranked by maximum
likelihood (ML) ranking method.

3.4.4 Testing Approach

The testing approach is mentioned in Section 1.1. Here, we take the null hypothesis
as Hy: 0; =0 fori=1,2,--- ,n. Then our p-value with a normal likelihood N(6;, o?)

for each unit 6; is

p-value =Pr(observation > 6;|Hy is true)

=Pr(estimates > 9AZ|0Z =0)
b
0;

Note that since the p-value is a decreasing function of %, p-value ranking in this

(3.19)

case is equivalent to ranking by g—’ The result of the testing approach is presented
in Figure 3.8. The left panel of this figure is a plot of estimated leverage against
estimated standard error, while the right panel shows estimated leverage against true
leverage. Red points in both plots are top 1% units ranked by p-value. Compared to
MLE ranking, this method selects fewer associations with true leverage 0, but also

misses some of the top associations because they have high standard errors.
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Figure 3.8: P-value: The red points are the top 1% association rules ranked by test
approach (p-value) ranking method using normal model, and Hy : 6; = 0.

3.4.5 Comparison of Different Methods

In the last part of this chapter, I compare the result of the different methods applied
above.

Figure 3.9 provides us more details of how various methods rank the top units.
Each panel of this figure corresponds to a different ranking method. The highest
ranks of units are colored red. As the color changes from red to purple, the ranks of
units vary from top 1% to top 30%. It is again shown in this figure that posterior
mean with normal prior selects unit with relatively small standard errors, while MLE
gives no penalty to observation variance in ranking units. Posterior mean with t prior
gives a more desirable trade-off between standard error and estimates due to the fact
that its choice of a heavy-tailed prior.

Figure 3.10 displays a plot of cumulative average of true leverage (f,) against the
percentage («), with the cumulative average defined by equation (2.16). We explained

in Section 2.4 why this is a good measure of performance. That is

B 1 M)
b0 =7 }Z 0;, (3.20)

J=mpa]

where myy, mpy, - - ,myy are the indices of units (6;’s) ranked by different ranking
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Figure 3.9: Comparisons of ranking via various methods.

These plots show that

the top 30% units ranked by MLE, p-value, posterior mean with normal prior and
posterior mean with t-prior colored from red to purple.

Here the “Best choice” in the black dashed line is the cumulative average of the

top € ranked by true values. “unconditional PM” in the purple line is the cumulative

average of top 6; ranked by theoretical unconditional posterior mean, which is given

by the hierarchical model, in equation (3.15) and equation (3.16). Consequently, the
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unconditional posterior mean is calculated by a numerical integration of

516, 2| — L1 05 2(0105,02) p(Or172(0, b)) pr(0) p(t) dadb
T IIT 0006, 07) p(6:172(0,) paa) palt) dadode,

(éi_el) 912
f01 S 0,00t TSGR g, g, g, (3.21)
B )49 (-2 67
fo fo f 1 %e 207 2(0.2ab)? da db db,

This should give the best estimation of §; by posterior mean, that is the theoretically
best ranks we can achieve by using posterior mean methods, since the prior is known
here. It should give an upper bond on how well we could do using posterior mean.
The gap between “unconditional PM” and “Best choice” is the irreducible error, that
is the part of the error in ranking due to noise in the data.

“t-distribution prior PM” in the red line is the cumulative average of top ¢; ranked
by posterior mean using a Student’s t-distribution as prior, while “conjugate prior
PM” in the orange line is the cumulative average of top 6; ranked by posterior mean
using normal prior. “r-value” in the green line is the cumulative average of top 6;
ranked by r-value with a conjugate normal prior. “MLE” and “p-value” are cumula-
tive average of top #; ranked by MLE and p-value.

Figure 3.10 gives several results of comparing different ranking and selection meth-
ods. It is very close between the red line, green line and blue line in Figure 3.10, which
means the result of ranking using MLE, p-value and t/normal posterior mean are sim-
ilar. Still the red line lies above the others. We see that there is still a small gap
between the posterior mean with t-prior and the unconditional posterior mean. This
indicates that further work on selecting a prior and estimating the hyperparameters
could improve the results. The other empirical Bayes methods with normal prior,

including both r-value and posterior mean give an inadequate ranking.
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Figure 3.10: Cumulative average plot. This plot shows the cumulative average of
leverage, 6, over 20 sets of simulated market basket data using different ranking
methods.



Chapter 4

Conclusion and Future Work

In this thesis, we have studied the effect of choice of priors on empirical Bayes posterior
mean ranking methods. In a simulation study, we compared the performances of a
light-tailed normal prior, a medium-tailed gamma prior and a heavy-tailed Student’s
t-prior. As expected, the true prior performs best in each case. However, we found
that the ranking method using the normal prior when the true prior has a heavy tail
performs far worse than using the t-prior when the true prior has a lighter tail. We
conclude that using a heavier tailed prior is more robust to misspecification of the

prior.

In Chapter 3, we applied different ranking approaches to the simulated market
basket data. As was shown in ranking the leverage, empirical Bayes approaches with
normal prior produce very poor results, while posterior mean ranking method with a

Student’s t prior outperforms the other methods.

Although, we have mainly demonstrated the benefits of Student’s t-prior in poste-
rior mean ranking method, we expect the use of a heavy-tailed prior to be beneficial
for other empirical Bayes approaches. We have only studied one example each of
light-tailed, medium-tailed and heavy-tailed distributions. Further work is needed
to determine whether another heavy-tailed distribution might perform better. Since
there isn’t an explicit form of posterior distribution by using such prior, it requires
more computation to calculate the posterior distribution. Consequently, to choose
another heavy-tail prior is worthwhile to be done in the future. Also, use of a heavy-
tailed prior for empirical Bayes methods should be applied to a real data sets, to

confirm that the benefits observed in simulations are actually achieved in practice.

Further work is also needed to determine the extent to which a heavy-tailed prior
gains robustness to prior misspecification at the expense of efficiency. This will allows
us to find detailed recommendations regarding how heavy-tailed the prior distribution
should be.

38
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We also briefly examined the effect of prior parameter estimates on posterior mean
ranking. We found that the true values do not always give the best result, particularly
in cases where the prior is misspecified. In these cases, we found that overestimating
the variance can be advantageous. More work is needed on this topic to determine
how best to estimate parameters in the prior distribution for empirical Bayes ranking

methods.
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