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Abstract

Ranking and selection is the problem of identifying the best units according to some

parameters based on estimates for the parameters obtained from data. Various meth-

ods of ranking and selection have been developed, such as empirical Bayes methods

ranking units based on a multi-stage Bayesian hierarchical model. Compared with the

non-Bayesian methods, including local maximum likelihood and testing, the Bayesian

methods have a number of advantages. However, Bayesian methods have the diffi-

cultly of choosing the prior. A common choice is to use the conjugate prior for

mathematical convenience. We show that while this is often acceptable for many

Bayesian analysis, it can have serious problems for ranking.

We perform a simulation study to determine the effect of choice of prior on ranking

methods. We find that a heavy-tailed prior is more robust to misspecification in many

ranking problems, especially when we are focused on the top ranked units. We give an

example of applying the posterior mean ranking method with t-prior and normal prior

and some other ranking methods in a simulated market basket data, which provide

more comparison between different ranking methods. The results of the simulation

study can be applied to a range of empirical Bayesian analysis.
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Chapter 1

Introduction

1.1 Ranking and Selection

Ranking and selection are statistical inference problems, which aim to identify the

most important units from a list of candidates. Various approaches to ranking and

selection have been developed over the past decades, since the problem was first

introduced by Bechhofer [1] and Gupta [2]. Later work given by Bechhofer, Kiefer

and Sobel [3], Gibbons, Chakraborti [4] provided a good overview of the field.

In order to simplify our discussion, a general ranking problem is described by

Gibbons, Olkin and Sobel [5] as follows: Suppose there are n populations in our list,

which are indexed by parameters θi’s

f(x1; θ1), f(x2; θ2), · · · , f(xn; θn) (1.1)

Each θi represents the unknown parameter for the interest of ith population, and xi is

the real-valued measurement/observation sampled from the corresponding population

with variance σ2
i . Basically, the purpose is to rank these populations based on the

value of θi’s in a well-defined way (say from largest to smallest). Therefore, the true

ranks of units in the list θ = (θ1, θ2, · · · , θn)
′

are given by

Rk(θ) = rank(θk) =
n∑
j=1

I(θk ≤ θj), (1.2)

where I(·) is the indicator function.We assume the populations follow normal distri-

bution, that is Xi ∼ N (θi, σ
2
i ) in the following discussion. Adapting the methods to

other distributions is mostly straightforward.

The way we treat θi is critical to our methods of ranking and selection. Aitkin

and Longford [6] provide two approaches in ranking the effectiveness among schools,

one approach treating θi’s as fixed and another treating them as random.

If treating the θi’s as fixed parameters, then a natural way of proceed is using

the maximum likelihood (ML) method to obtain an estimate (θ̂MLE
i = xi) of θi. The

1
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rank of θi is based on the rank of θ̂MLE
i . Another frequently used method is the test-

ing approach, which is an application of the classical analysis of variance (ANOVA).

The testing approach simply tests the evidence against some designated null hypoth-

esis, usually H0 : θi = 0. The ranks from the testing approach are the ranks of

p-values, smallest to largest, for the test of H0 : θi = 0 against HA : θi > 0. The

first method is very useful when all of the variances σ2
i are relatively close (balanced

case) or extremely small. Since the MLE ranking ignores the effect of sampling fluc-

tuations, Xi’s associated with fairly high standard error are over-represented among

the top elements under MLE ranking. Conversely, testing approach based ranking

over-represents those Xi’s associated with fairly low standard error among the top

ranked elements [7].

The other approach: treating θi as random effect, assumes θi independent identi-

cally distributed (i.i.d) from some prior distribution. A simple two-stage hierarchical

model can be established in conjunction with Bayes or empirical Bayesian methods,

with the final ranks of the θi’s based on information from the posterior distribution.

The empirical Bayesian ranking methods rely on a certain loss function.

A very straightforward Bayes and empirical Bayesian method is posterior mean

ranking (PMR) [6]. This method gives the rank of θi as the rank of the posterior mean

E[θi|Xi, σ
2
i ] in the list of all posterior means. Moreover, Laird and Louis [8] proposed

the posterior expected ranking (PER) method, which is one of the most used methods

under the view of empirical ranking. This method is based on the posterior mean

of the ranks, in which it calculates the posterior distribution of θi, then calculates

the posterior distribution of the induced ranking and then ranks according to the

mean position of each unit in the ranking. Another method introduced by Berger

and Deely [9] gives ranks of θi’s by their posterior probability of θi being the largest

conditional on data and all θi not being homogenous. The usual procedure for this

method is: (a) a homogeneity test with null hypothesis H0 : θ1 = θ2 = · · · = θn; (b)

ranking the posterior probabilities Pr(θi is the largest|data, H0 false).

A series of papers coauthored by Gupta [10, 11] have covered the methodology

and application of ranking and selection problems with empirical Bayes. Laird and

Louis [8], Berger and Deely [9] provided some seminal contributions to the empirical

Bayesian ranking framework, which has been further developed in many ways. Lin
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et al. [12] elaborates the loss functions in empirical Bayes methods, by giving a series

of loss functions with which the corresponding empirical Bayes methods are able to

meet different objectives in ranking (e.g. identifying the relatively good or relative

poor units). Noma et al. [13] provides comparisons in microarray studies among three

ranking methods based on their corresponding loss functions.

Shen and Louis [14] compare various estimators of θi based on their performance in

estimating the parameter histogram, estimating the parameter ranks and estimating

unit-specific parameters.

Henderson and Newton [7] propose another empirical Bayes ranking method,

which ranks units on a statistic called “r-value” in their paper. The intention of the

r-value ranking method is to choose a series of cutoffs that maximize the expected

overlap between the selected unit and true top list. The cutoffs in ranking are math-

ematically defined by a family of threshold functions, T = {tα : α ∈ (0, 1)}, where

tα is a function tα(σ2), indicating that the ith unit Xi is in top α% if Xi ≥ tα(σ2
i ).

Then the threshold function of r-value, T ∗ = {t∗α : α ∈ (0, 1)}, satisfies that

Pr
(
Xi ≥ t∗α(σ2

i ), θi ≥ θα
)
≥ Pr

(
Xi ≥ tα(σ2

i ), θi ≥ θα
)

(1.3)

for any other threshold T = {tα : α ∈ (0, 1)}, where θα is the (1 − α)th quantile of

prior, that is Pr(θi ≥ θα) = α. Therefore, given the r-value threshold function, we

select θi before θj, if Xi > t∗α(σ2
i ), t

∗
α(σ2

j ) > Xj for some α.

These empirical Bayesian methods typically provide a compromise between the

p-value approach which is based only on the certainty that an effect is non-zero, and

not on the size of the effect [15], and the MLE approach which does not properly

account for the different uncertainties in the estimates. A number of advantages of

empirical Bayes methods are given by Laird and Louis [8], and Berger and Deely [9].

There have been numerous applications of ranking and selection, including iden-

tifying the most hazardous road sites by Brijs et al. [16]; ranking of institutions, e.g.

universities, schools and hospitals by Hall and Miller [17]; ranking of animals or plants

by their breeding value by Campos et al. [18]; ranking of risk factors, single-nucleotide

polymorphisms (SNPs), for type II diabetes (T2D) [7]. The methods of ranking and

selection are broadly being used in various domains of large-scale inference. In this

thesis, we present an application of ranking methods to market basket analysis.



4

1.2 Market Basket Analysis

Market basket analysis (MBA) is a common application of a methodology known

as association analysis, which is useful for discovering interesting relationships hid-

den in large data sets [19]. It is used to extract information useful for a variety of

business-related applications such as marketing promotions, inventory management,

and customer relationship management.

Table 1.1 gives a small example of two representations of a typical MBA dataset.

The data consist of a list of sets of items purchased in five transactions. The data

in Table 1.1 is expressed in two different ways. The left table is the original format

with each row being a transaction, which contains a uniquely labeled TID and a

set of items bought by a given customer, while the right table uses binary variables

to re-express the transaction data with “0” being not included in the corresponding

transaction, “1” being included.

TID Items

1 { Bread, Milk }
2 { Bread, Diapers, Beer, Eggs }
3 { Milk, Diapers, Beer, Cola }
4 { Bread, Milk, Diapers, Beer }
5 { Bread, Milk, Diapers, Cola }

=⇒

Items
TID Bread Milk Eggs Beer Cola Diapers

1 1 1 0 0 0 0
2 1 0 1 1 0 1
3 0 1 0 1 1 1
4 1 1 0 1 0 1
5 1 1 0 0 1 1

Table 1.1: An example of market basket transactions

Let I = {i1, i2, · · · , id} be the set of items in a market basket transaction data and

T = {t1, t2, · · · , tN} be the set of all transactions [19]. Our objective is to identify

association rules between item sets, that is, disjoint sets of items A and B such that

the probability of a transaction including both A and B is significantly different from

the product of the probabilities of including A and including B which would be the

probability if the purchase of A and B were independent. We use notation support

count as the frequency of occurrence of any itemset A,

count(A) = |{ti|A ⊆ ti, ti ∈ T}| (1.4)

Then, it is common to describe an association rule as an implication expression of

the form X leads to Y (X ⇒ Y ), where X and Y are disjoint itemsets, i.e. X∩Y = ∅.
A number of measures of the strength of an association rule have been proposed in



5

the literature. For example, two of the most commonly used measures are support

and confidence [20]

Support, s(A⇒ B) =
count(A ∪B)

N
(1.5)

Confidence, c(A⇒ B) =
count(A ∪B)

count(A)
(1.6)

Support is an estimation of the probabilities of the occurrence of corresponding

association rule which determines how often a rule is applicable to a given data set,

while confidence is an estimation of conditional probabilities of occurrence of corre-

sponding association rule given itemset A, which determines how frequently items in

B appear in transactions that contain A.

We will also look at the leverage measure introduced by Piatetsky-Shapiro in

1991 [21]. The Leverage measure, or Piatetsky-Shapiro (PS) measure is defined as

leverage(A⇒ B) = s(A⇒ B)− s(A)s(B) (1.7)

We will give more detail about leverage and the reason why it is a desirable measure

of our study in Section 3.2. The important point to observe about these measures

is that they are statistics, so they all have standard errors associated with them.

For applying the ranking methods discussed in Section 1.1, we will need to use the

estimated standard errors of these statistics.

1.3 Purpose of This Study

In this thesis, I study the effect of priors in empirical Bayes ranking methods, es-

pecially using normal/normal model in posterior mean ranking. The conventional

choices of priors in empirical Bayesian analysis are conjugate priors and nonparamet-

ric priors. In this thesis, I study what factors are important in choice of priors.

In the next chapter, we will focus on the heaviness of the tail of the prior distribu-

tion. We will compare posterior mean ranking using a light-tailed normal distribution,

a medium-tailed gamma distribution and a heavy-tailed Student’s t-distribution as

priors, under the same three choices of true priors. This will provide a comparison

of the loss arising from overestimating the tail weight and the loss arising from un-

derestimating the tail weight. Additionally, there will be some discussion about the

estimations of hyperparameters of priors.
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In the third chapter, there is an application to simulated MBA. We compare

posterior mean ranking with a suitable choice of prior to a variety of other ranking

methods, including MLE approach, testing approach, posterior mean ranking and

r-value ranking.

I will make some conclusions of the idea of choosing priors in Chapter 4 with

several progress to be made in future work.



Chapter 2

General Choice of Prior for Posterior Mean Ranking

2.1 Introduction

Bayesian approaches are very commonly used and powerful tools in ranking and

selection problems. Unlike testing approaches and local maximum likelihood ap-

proaches which only consider the information of observations/estimates, these rank-

ing approaches rely on the posterior distribution of θ in equation (1.1) which contains

information both from observations and prior information.

In a simplified general ranking problem, using the notation from equation (1.1),

there are n independent populations

f(x1; θ1, σ
2
1), f(x2; θ2, σ

2
2), · · · , f(xn; θn, σ

2
n). (2.1)

The intention of this ranking is to give orders to θi’s from large to small. For our

treatment of the θi’s as random effects, we assume that each θi has the same prior

distribution g(θ), and all θi’s are different. The conditional likelihood of observations

or the sampling model is normal N (θi, σ
2
i ), that is

f(x1; θi, σ
2
i ) = p(xi|θi, σ2

i ) =
1√

2πσi
e
− (xi−θi)

2

2σ2
i , (2.2)

where σ2
i is the variance of observation. The ranks of the true list of units θ =

(θ1, θ2, · · · , θn)
′

are as defined in Section 1.1, given by equation (1.2), Rk(θ), for k =

1, 2, · · · , n.

Although, for a general ranking problem, the primary objective is to give ranks

to θi close to their true ranks Ri(·). For our purposes, we consider the relative values

of the θi to also be important - if θi and θj are close, then ranking them in the wrong

orders is a small error; if the difference is larger then ranking them in the wrong order

should be considered a larger error. The loss function for posterior mean ranking

incorporates this factor in a very natural way. We Therefore focus on the effect of

prior distribution on posterior mean ranking.

7
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For an individual variable Xi with parameter θi, the posterior mean estimation

(θ̂PMi = E[θi|Xi, σ
2
i ]) minimizes expectation of a squared-error loss, which is

L(θ̂, θ) = (θ̂ − θ)2 (2.3)

where θ̂ is an estimate of θ.

For ranking, posterior mean ranking minimizes the expectation of a loss function

given by the best value minus the value chosen. That is if Xi with parameter θi is

the value we should choose, but instead we choose Xj with parameter θj, then the

loss function in selecting the top k units is

Lk(R̂) =
n∑
j=1

I(R̂j ≤ k)
n∑
i=1

I(R̂j = Ri)(θi − θj)

=
n∑
i=1

I(Ri ≤ k)θi −
n∑
j=1

I(R̂j ≤ k)θj

(2.4)

where R̂ = (R̂1, · · · , R̂n) is the ranks of all θ̂is by the ranking method and Ri is the

ranking of θi. That is E[L(·)] is minimized by posterior mean ranking R̂PMR defined

as

R̂PMR
k = rankPM(θk) =

n∑
j=1

I(θ̂k ≤ θ̂j)

=
n∑
j=1

I(E[θk|Xk, σ
2
k] ≤ E[θj|Xj, σ

2
j ])

(2.5)

The general form of posterior mean estimate is given by

E[θi|Xi] =

∫
θi
θi g(θi) p(Xi|θi, σ2

i ) dθi∫
θi
g(θi) p(Xi|θi, σ2

i ) dθi
(2.6)

There are some other choices for loss functions, which will give different poste-

rior distribution ranking. Mostly they can be converted to the posterior mean by

transforming the parameter space.

The most commonly chosen prior for posterior mean ranking is the conjugate

prior, which is a normal prior here, for its simplicity and generality. However, in

some cases, such a choice of prior will produce a poor result of ranking, since it can

favor small variance units. Especially, when we rank the top α units (θi’s), we are

more focusing on units with high observations/estimates. For example, when the
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two units θi and θj have very close variances where σ2
i is a bit larger than σ2

j , but

very different estimates with θ̂i much larger than θ̂j, the posterior mean method with

normal/normal model can rank the θj above θi. Examples of this problem will be

illustrated in Section 3.4.1. Thus normal priors seem to suffer from some deficiencies

that can not satisfy our purpose. How to choose a general choice of prior is a critical

task. The following sections will give some comparison of different types of prior:

heavy-tail, medium-tail and light-tail. By comparing the result of posterior mean

ranking with different priors, we are able to choose prior that is more robust to our

ranking procedure.

2.2 Simulations from Different Priors

In order to achieve our goal, we will firstly draw samples from three sets of priors with

different types of tail, normal distribution with light-tail, gamma distribution with

medium-tail and Student’s t-distribution with heavy-tail, so that we can compare the

effect of using different priors in cases where the tail of the prior used is too light or

too heavy.

We generate three sets of θ from different prior:

• θ(N)
1 , θ

(N)
2 , · · · , θ(N)

n i.i.d normal distribution, N (µ, τ 2) with µ = 1 and τ 2 = 0.1;

• θ(G)
1 , θ

(G)
2 , · · · , θ(G)

n i.i.d gamma distribution, Gamma(α, β) with α = 10 and

β = 10;

• θ(T )1 , θ
(T )
2 , · · · , θ(T )n i.i.d Student’s t-distribution, tν(η, λ) with d.f ν = 3, location

parameter (mean) η = 1 and inverse scaling parameter λ = 30.

Those settings mean that these three prior distributions have the same first two

moments, i.e. the same mean E[θ] = µ = α
β

= η = 1 and the same variance

Var(θ) = τ 2 = α
β2 = 1

λ
ν
ν−2 = 0.1, which simplify our analysis in the following sections.

We sample observations for each θi from same sampling distribution N (θi, σ
2
i ), where

σi ∼ Gamma(1, 5).

Then, we generate three sets of observations with corresponding prior,

• Normal prior observations: X
(N)
i |θ

(N)
i ∼ N (θ

(N)
i , σ2

i );
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• Gamma prior observations: X
(G)
i |θ

(G)
i ∼ N (θ

(G)
i , σ2

i );

• Student’s t prior observations: X
(T )
i |θ

(T )
i ∼ N (θ

(T )
i , σ2

i ).

In this study, we generate 10 simulations with each simulation let n = 50, 000.

Since we are focusing on ranking the top α%, which is related to the upper tail of the

posterior distribution in posterior mean ranking, we need to generate enough samples

in top α% ranking. Also, in the many real case of ranking, it is natural to have a large

number of data, such as market basket data. Therefore, such a number of samples in

each simulation satisfies our purpose.

2.3 Calculation of Posterior Means

We use the same normal prior, gamma prior and Student’s t-prior distributions in

simulation with different types of tail for estimating the posterior mean of these three

sets of θ.

We use the same normal prior

gN(θ) = p(θ|µ, τ 2) =
1√
2πτ

e−
(θ−µ)2

2τ2 (2.7)

with the hyperparameters (µ, τ 2) = (1, 0.1) to estimate the posterior mean of these

three sets of θ’s,

Therefore, the posterior mean of these three sets of data using a normal distribu-

tion prior is given by an explicit form

EN [θi|Xi, σ
2
i ] =

∫
θi
θi g

N(θi) p(Xi|θi, σ2
i ) dθi∫

θi
gN(θi) p(Xi|θi, σ2

i ) dθi

=
τ 2

τ 2 + σ2
i

Xi +
σ2
i

τ 2 + σ2
i

µ

(2.8)

Equation (2.8) shows that the posterior mean of a normal/normal model is weighted

mean of observed data and prior information. It is weighted by uncertainty of the

prior and measurement error of the observed data, which are the variance prior τ̂ 2

and the variance of observations σ2
i . This form also explains the reason that posterior

mean with normal prior prefers observations with low variance. The posterior mean

of a smaller variance (σ2
i ) observation is weighted closer to the observation, which
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give a larger posterior mean estimate. Therefore, the posterior mean method with

normal prior give higher ranks to units with small variance.

The posterior mean when using the same gamma prior (gG(θ)) is

EG[θi|Xi, σ
2
i ] =

∫
θi
θi g

G(θi) p(Xi|θi, σ2
i ) dθi∫

θi
gG(θi) p(Xi|θi, σ2

i ) dθi

=

∫
θi
θi θ

α−1eβθi e
− (Xi−θi)

2

2σ2
i dθi∫

θi
θα−1i eβθi e

− (Xi−θi)2

2σ2
i dθi

(2.9)

with

gG(θ) = p(θ|α, β) =
βα

Γ(α)
θα−1eβθ (2.10)

where (α, β) are equal to (10, 10) as used for the simulation.

And the posterior mean when using the same Studnet’s t-prior (gt(θ)) is

ET [θi|Xi, σ
2
i ] =

∫
θi
θi g

T (θi) p(Xi|θi, σ2
i ) dθi∫

θ
gT (θi) p(Xi|θi, σ2

i ) dθi

=

∫
θi
θi (1 + λ(θi−µ)2

ν
)−

ν+1
2 e

− (Xi−θi)
2

2σ2
i dθi∫

θi
(1 + λ(θi−µ)2

ν
)−

ν+1
2 e

− (Xi−θi)2

2σ2
i dθi

(2.11)

with

ĝT (θ) = p(θ|ν, λ, η) =
Γ(ν+1

2
)

Γ(ν
2
)

(
λ

πν
)
1
2 (1 +

λ(θ − η)2

ν
)−

ν+1
2 (2.12)

where (λ, η) are the same hyperparameters of prior equal to (1, 30).

However, we are not able to calculate an explicit form of posterior mean for the

gamma prior and the t prior as we have for the normal prior, because the integrals

above do not have an analytic solution. Therefore, we can only use numerical methods

to get the posterior mean for these two priors. Here we use a Gibbs sampler by taking

a selected prior and likelihood to sample from its posterior distribution and calculate

the mean of those posterior distribution samples.

2.4 Comparison of the Results

In this section, We show the effect of using different types of tail distributions for

estimating the posterior mean.
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In Section 2.3, we notice that the normal/normal model provides straightforward

form of posterior mean. There are some other benefits of using normal prior besides

its explicit form of posterior mean. It also gives a better estimation of θi than just

using observation as estimates in ranking problem.

True Prior
Normal Gamma T

Estimating Prior

Normal
MSE 0.0258 0.0256 0.0266

std.err 0.00025 0.00027 0.00251

Gamma
MSE 0.0263 0.0252 0.0293

std.err 0.00025 0.00028 0.00134

T
MSE 0.0271 0.0267 0.0218

std.err 0.00026 0.00029 0.00032

Table 2.1: Average MSE and standard error over 10 simulations

Table 2.1 is the average of total MSE of 50,000 samples over 10 simulations and

the average standard error of the total MSE over 10 simulations. Here MSE for one

simulation is the mean squared error between θj and its posterior mean estimation

θ̂j = E[θj|Xj], defined as

MSE =
1

n

n∑
j=1

(θj − θ̂j)2 =
1

n

n∑
j=1

(θj − E[θj|Xj])
2 (2.13)

The standard error in Table 2.1 is the average standard error over 10 simulations.

Since the MSE given in Table 2.1 is the estimate over 10 simulations, each with

50,000 points. For each simulation, we estimated the MSE as the mean of these

50,000 squared errors. However, there is some error in this based on the variance of

the estimated MSE. The standard error is an indication of how much error present

to the estimated MSE, which is calculated as equation (2.14)

std.err2 =
V ar((θj − θ̂j)2)

n

=

∑n
j=1[(θj − θ̂j)2 −

1
n

∑n
i=1(θi − θ̂i)2]2/(n− 1)

n

(2.14)

Since posterior mean estimation minimizes the expect of a squared-error loss given

by equation (2.3), MSE is a very reasonable measure in evaluating the precision of

the posterior mean estimator under different priors.
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Obviously, using the true prior is the best choice for the overall MSE, since using

the correct prior gives the smallest MSE. The effects of using prior with too heavy a

tail and using a prior with too light a tail are comparable. This means that using a

normal prior for convenience is likely to be reasonable unless we have good reason to

believe the prior is not normal.

In general, taking normal prior is good in overall estimation. Nevertheless, the

following results show the weakness of normal prior in estimating the upper tail of

posterior distribution, when we are more interested in the ranking the top α units.

This problem affects the performance of normal/normal model in posterior mean

ranking.

Two more measurements of the performance of posterior mean ranking method

with different priors are given below. Firstly, we define the MSE of top ranked α%

of θi for one simulation,

MSEα% =
1

k

i[k]∑
j=i[1]

(θj − θ̂j)2 =
1

k

i[k]∑
j=i[1]

(θj − E[θj|Xj])
2 (2.15)

where i[1], i[2], · · · , i[k] are indices of θ. Here it is given by ranking the true list of

parameters θi, that is Ri[1](θ) = 1, Ri[2](θ) = 2, · · · , Ri[k](θ) = nα%. Compared to

the overall MSE, the top α% MSE helps us focus on the accuracy of posterior mean

estimators with different choices of prior in top units (θi’s). These are the units we

are most interested in for the ranking problem. This MSE is an important indicator,

because the larger the MSE of posterior mean, the greater the chance of ranking in

the wrong order.

Another good measurement of the quality of ranking is the mean of the top α%

of ranked θ (θ̄α) for on simulation given by

θ̄α =
1

k

m[k]∑
j=m[1]

θj, (2.16)

where m[1],m[2], · · · ,m[k] are the indices of units (θi’s) given by a ranking method.

Here it is ranked by posterior mean method, which is R̂PMR
m[1]

= 1, R̂PMR
m[2]

= 2, · · · , R̂PMR
m[k]

=

nα%. Since the posterior mean ranking minimizes the loss function of ranking L(·)
(equation (2.4)), which is the sum of θi’s we should select in the top minus the sum

of θj’s selected by posterior mean ranking method in the top, the θ̄α is positively
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correlated to the second term of loss function, so increasing θ̄α will decrease the L(·).
Therefore, the mean of top α% of θ is a good measurement of performance of poste-

rior mean ranking with different choices of prior. The larger this value is, the better

the result of ranking.

True Prior
Normal Gamma T

Estimating Prior
Normal 0.1098 0.1622 0.4044
Gamma 0.0997 0.1341 0.1817

T 0.1188 0.1498 0.1632

Table 2.2: Average of the MSE of top ranked 1% of θi (MSE1%) over 10 simulations

Table 2.2 shows the average top 1% MSE of 10 simulations, using equation (2.15)

with α = 0.01, k = 500. In this table, it is shown that using a normal prior when

the prior is actually a heavy-tailed Student’s t-distribution, the MSE increases signif-

icantly, which is much worse than using a gamma distribution as prior. Conversely,

using a heavy-tail prior when the true prior has a light-tail seems to be less harmful.

In the first column of Table 2.2, the MSE of estimating θ with normal prior using

a t-distribution as prior is 0.1188 compared to 0.1098 using the true normal prior.

In the third column of Table 2.2, the MSE of estimating t-distribution as normal

distribution is 0.4044 comparing using true t-distribution prior which is 0.1632. This

difference is much larger, showing that using too light a tail in the prior has much

larger negative impact than using too heavy a tail.

True Prior
Normal Gamma T

Estimating Prior
Normal 1.7672 1.9675 2.1644
Gamma 1.7616 1.9748 2.1793

T 1.7608 1.9719 2.1824

Table 2.3: Average of the mean of top 1% of ranked θ (θ̄1) over 10 simulations

Table 2.3 shows the average mean of the top 1%, which is the top 500 values of θ

(θ̄1%), ranked by their posterior mean under different choices of prior. It shows that

taking normal/normal model in posterior mean ranking produces less satisfactory

results compared to using a t-distribution as prior. There is significant drop in θ̄1%

using a normal prior to analyse data with a heavy-tailed prior. Also when true prior
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is medium-tailed, a t-distribution prior gives better results than a normal prior.

Moreover, the following two tables give us a deeper view of the heavy-tail problem

using normal/normal model in posterior mean ranking. These results are for the top

5% ranking using posterior mean.

True Prior
Normal Gamma T

Estimating Prior
Normal 0.0713 0.0941 0.1258
Gamma 0.0691 0.0861 0.0815

T 0.0838 0.1024 0.0867

Table 2.4: Average of the MSE of top ranked 5% of θi (MSE5%) over 10 simulations

True Prior
Normal Gamma T

Estimating Prior
Normal 1.5785 1.6835 1.6181
Gamma 1.5770 1.6855 1.6167

T 1.5780 1.6835 1.6204

Table 2.5: Average of the mean of top 5% of ranked θ (θ̄5) over 10 simulations

Table 2.4 shows the result of average top 5% MSE over 10 simulations, using

equation (2.15) with α = 0.05, k = 2500. And Table 2.5 shows the average mean of

top 5%, which is top 2500 of θ (θ̄5%), ranked by their posterior mean under different

choices of priors. From Table 2.4, we see that taking prior as a gamma distribution

gives the best posterior mean estimation to true value θ over these three choices of

priors. As we can see in Table 2.5, in the situation that the true prior θ is a normal

prior θ
(N)
1 , θ

(N)
2 , · · · , θ(N)

n or a gamma prior θ
(G)
1 , θ

(G)
2 , · · · , θ(G)

n taking t-distribution

as prior gives good results for θ̄5%. This confirms the conclusion from Tables 2.2 and

Table 2.3 that using a prior with too light a tail is far more serious than using a prior

with too heavy a tail. This suggests that when selecting a parametric model for the

prior distribution in a ranking problem, it is safer to be on the side of heavier tails.

2.5 Different Choices of Prior Variance

In this section, we will study the influence of using the incorrect variance of the prior

distribution on the accuracy of the estimated ranking.
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Table 2.6 is the average overall MSE over 10 simulated sets of data calculated the

same way as equation (2.13) with their true family of prior but different variance of

prior distribution. Table 2.7 is the average top 5% MSE over 10 simulated sets of data

calculated the same way as equation (2.15) with their true family of prior but different

variance of prior distribution. Here the posterior means are given by equation (2.8),

equation (2.9) and equation (2.11) with different values for the parameters of the

prior, which allows us to change the variance of prior with fixed mean of prior. That

is

• Posterior mean of normal prior EN [θ
(N)
i |X

(N)
i ] with hyperparameters being

(µ, 0.5τ 2), (µ, 0.8τ 2), (µ, τ 2), (µ, 1.2τ 2), (µ, 1.5τ 2) (2.17)

• Posterior mean of gamma prior EG[θ
(G)
i |X

(G)
i ] with

0.5−1(α, β), 0.8−1(α, β), (α, β), 1.2−1(α, β), 1.5−1(α, β) (2.18)

• Posterior mean of t-distribution prior ET [θ
(T )
i |X

(T )
i ] with

(0.5−1λ, η), (0.8−1λ, η), (λ, η), (1.2−1λ, η), (1.5−1λ, η) (2.19)

Different Variance of from True Family of Prior
0.5Var(θ) 0.8Var(θ) Var(θ) 1.2Var(θ) 1.5Var(θ)

Normal Prior 0.0281 0.0261 0.0258 0.0259 0.0266
Gamma Prior 0.0273 0.0254 0.0252 0.0253 0.0259

T Prior 0.0231 0.0222 0.0218 0.0222 0.0225

Table 2.6: Average overall MSE using different prior variances over 10 simulations

Table 2.6 reveals as expected that average overall MSE of posterior mean esti-

mations using their true family of prior is minimized by accurately estimating the

variance of the prior. And errors in either direction have similar effects on the MSE.

However, it appears to be different when we concentrate on the top α% θi. Choos-

ing a larger variance of prior than its true variance of prior is less harmful to our

posterior mean estimators in all three priors. Indeed, overestimating the variance

may even improve the MSE of the top values.
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Different Variance of True Family of Prior
0.5Var(θ) 0.8Var(θ) Var(θ) 1.2Var(θ) 1.5Var(θ)

Normal Prior 0.1001 0.0794 0.0713 0.0657 0.0599
Gamma Prior 0.1181 0.0934 0.0861 0.0784 0.0727

T Prior 0.1055 0.0932 0.0867 0.0833 0.0783

Table 2.7: Average top 5% MSE ranked by true values (MSE5%) using different prior
variance over 10 simulations

Table 2.8 and Table 2.9 present the average overall MSE and the average of top

5% MSE results over 10 simulations.

The posterior means are given by equations (2.8), using a normal prior with differ-

ent variances of hyperparameters: (µ, 0.5τ 2), (µ, 0.8τ 2), (µ, τ 2), (µ, 1.2τ 2), (µ, 1.5τ 2).

The last column of these two Table 2.8 and Table 2.9 are the MSE result when the

variance of prior goes to infinity, which is the MSE between θj and its maximum

likelihood estimator, which is Xj here.

Different Variance of Normal Estimating Prior
0.5Var(θ) 0.8Var(θ) Var(θ) 1.2Var(θ) 1.5Var(θ) ∞

Normal Prior 0.0278 0.0258 0.0256 0.0257 0.0264 0.0798
Gamma Prior 0.0281 0.0261 0.0257 0.0259 0.0266 0.0802

T Prior 0.0295 0.0268 0.0263 0.0262 0.0267 0.0795

Table 2.8: Average overall MSE using normal prior with different variances over 10
simulations

Different Variance of Normal Estimating Prior
0.5Var(θ) 0.8Var(θ) Var(θ) 1.2Var(θ) 1.5Var(θ) ∞

Normal Prior 0.0999 0.0794 0.0713 0.0657 0.0598 0.0799
Gamma Prior 0.1362 0.1061 0.0941 0.0855 0.0763 0.0786

T Prior 0.1945 0.1455 0.1258 0.1115 0.0965 0.0819

Table 2.9: Average top 5% MSE ranked by true values (MSE5%) using normal prior
with different variances over 10 simulations

Table 2.8 and Table 2.9 show the same results as Table 2.6 and Table 2.7 that

when using normal prior with different prior variances, the average overall MSE is

minimized by accurately estimating the variance of prior, but overestimating the

variance leads to decrease in MSE of the top 5% units which can be most beneficial

where the true prior is a heavy-tailed t-distribution. Therefore, using overestimated
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prior variance in the normal/normal model can be less harmful in estimating the top

ranked θ, and therefore is better for ranking θ’s.

2.6 Conclusion of Robustness

Based on the comparison results in the previous sections, we draw the following

conclusions about the best choice of prior and a good estimation of prior parameters

in posterior mean ranking.

As in Section 2.4, a normal/normal model of choosing normal prior generally pro-

duces good results in estimating the posterior mean of all units. Such model is simple

to estimate. However, when it comes to choosing the top α units, posterior mean

ranking of normal/normal model appears to be less acceptable. Moreover estimating

the prior using a heavy-tail distribution such as the Student’s t-distribution from the

previous sections is less harmful and more robust in posterior mean ranking.

Lastly, when we are focusing on ranking the top α units, the accuracy of estimating

the parameters of the prior distribution seems to be less important. In some cases,

the posterior mean estimator is better when we overestimate the variance of the prior.

In the next chapter, we will apply what we have learned about the choice of prior

distribution to the problem of ranking and selection in market basket analysis. We

will compare a number of popular ranking methods to this problem.



Chapter 3

Application of Various Ranking Methods in Market Basket

Analysis

3.1 Introduction

Of all sorts of applications of ranking and selection from large scale data, choosing the

leading association rules is perhaps one of the most interesting and underdeveloped

examples. In this chapter, we give an example of applying some general ranking and

selection methods to rank the top associated items in market basket analysis.

First a measurement (leverage) is chosen to evaluate association patterns based

on transaction data. Then I will go through some of its properties and generate

a simulation of it. With the leverage measurement, I’m going to simulate a set of

market basket data. Finally, I will apply some ranking and selection methods to

my simulated market basket data, including empirical Bayesian approaches such as

posterior mean and r-values method, and some alternative methods, and compare the

results.

3.2 Objective Interestingness Measure: Leverage

Firstly, I would like to give a brief introduction of the selected objective interest-

ingness measure, leverage, which we have mentioned in Section 1.2. Since the size

of market basket data could be large, it is natural to generate hundreds and thou-

sands of association rules. Among all these rules, identifying the top association rules

of interest is a difficult job. Therefore it is important to evaluate association rules

objectively using well-accepted measure.

It is more convenient to use Table 3.1 which is a 2-way contingency table for

itemsets A and B to show some properties of leverage. We use notation A (B)

to indicate the event that itemsets A (B) don’t all occur in a transaction. Each

fij represents a frequency count of the corresponding event where i represents the

19
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B B
A f11 f10 f1+
A f01 f00 f0+

f+1 f+0 N

Table 3.1: A 2-way contingency table for itemsets A and B

occurrence of A, j represents the occurrence of B. f1+(f+1), represent the support

count of A(B) defined by equation (1.4). N is the total number of transactions.

The Leverage measure, Piatetsky-Shapiro (PS) measure defined by equation (1.7)

is expressed as

leverage(A⇒ B) =
f11
N
− f1+f+1

N2
(3.1)

Since leverage (PS) is symmetric, we simplify the notation of leverage as leverage(A,B).

Also using probabilities to express the leverage (PS) measure, we get

leverage(A,B) =P (AB)− P (A)P (B)

=P11 − P1+P+1

=P11 − (P10 + P11)(P01 + P11)

=P11 − (P10P01 + P10P11 + P01P11 + P11P11)

=P11(1− P10 − P01 − P11)− P10P01

=P11P00 − P01P10

(3.2)

where P11 is the probability that itemsets A and B both occur in a transaction,

P00 is the probability of neither of A and B occur, P10 (P01) is the probability only

one itemset AB (AB) occurs, P1+ (P+1) is the probability of A (B) occurring.

Under the expression by probabilities, it is more explicit that leverage measures

difference between the appearance of A and B together and what would be expected

if A and B were independent.

In addition, there are a few more advantages that can accrue by choosing leverage

measurement:

• The leverage treats the appearance of an itemset and disappearance of the

identical itemset differently, that is leverage(A,B) 6= leverage(A,B).

• The leverage is relatively complete and simply interpretable. It is easy to make

the case on business grounds that it represents the extra ratio of cases where
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items A and B both are sold, compared to what would be expected if they were

independent.

• The range of leverage (PS) measurement is between −1
4

to 1
4
, where 0 indicates

items A and B are independent. Positive leverage indicates that items A and B

are positively associated, and negative leverage indicates a negative association.

• Calculation of the theoretical variance of the estimator of leverage is reasonably

straightforward, compared to some other measures.

Now our ranking and selection procedure is based on ranking the leverage mea-

surement. Suppose the leverage of any two itemsets A and B is represented by θA,B,

we are ranking n association rules.

θA,B = leverage(A,B) = PS(A,B) (3.3)

3.2.1 Sample Distribution of Estimated Leverage

In order to learn how to estimate the leverage from the data, assume {f11, f10, f01, f00}
from the contingency table above is sampled from a multinomial distribution with

parameters (N,P11, P01, P10, P00).

A ∩B A ∩B A ∩B A ∩B
No. Xi Yi Zi Wi

1 0 0 1 0
2 0 0 0 1
3 0 1 0 0
4 0 0 0 1
5 1 0 0 0

Table 3.2: Indicator variable for multinomial distribution

Denote {Xj, Yj, Zj, Wj}, j = 1, · · · , N , to be the indicator variables of jth

trial, where 0 indicates fail and 1 indicates success. Thus our simulated data can be

expressed in the form of Table 3.2.

The proportions of each case give the maximum likelihood estimates of P11, P01, P10, P00

P̂11 =
f11
N

=

∑
Xi

N
, P̂01 =

f01
N

=

∑
Yi
N

, P̂10 =
f10
N

=

∑
Zi
N

, P̂00 =
f00
N

=

∑
Wi

N
.

Therefore, the maximum likelihood estimated leverage (θ̂) is given by

θ̂ = P̂11P̂00 − P̂01P̂10. (3.4)
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Expected Value of the Leverage (PS) Estimator

E[θ̂] = E[P̂11P̂00 − P̂01P̂10]

= E[P̂11P̂00]− E[P̂01P̂10]

= E

[∑
iXi

N

∑
jWj

N
]− E[

∑
k Yk
N

∑
l Zl
N

]
=

1

N2
(E[
∑
i

Xi

∑
j

Wj]− E[
∑
k

Yk
∑
l

Zl])

=
1

N2
(E[
∑
i6=j

XiWj]− E[
∑
k 6=l

YkZl])

=
1

N2
([N(N − 1)P11P00]− [N(N − 1)P01P10])

=
(N − 1)

N
(P11P00 − P01P10)

=
(N − 1)

N
θ

(3.5)

Therefore our estimated leverage θ̂ is an asymptotically unbiased estimator of

leverage θ when N is large enough.

Variance of the Leverage (PS) Estimator

We then calculate the variance of the estimated leverage θ̂, which is

Var(P̂11P̂00 − P̂01P̂10) =E[(P̂11P̂00 − P̂01P̂10)
2]− (E[P̂11P̂00 − P̂01P̂10])

2

=E[(P̂ 2
11P̂

2
00 + P̂ 2

01P̂
2
10 − 2P̂11P̂01P̂10P̂00)]

− (E[P̂11P̂00 − P̂01P̂10])
2

=E[(P̂ 2
11P̂

2
00)] + E[(P̂ 2

01P̂
2
10)]− 2E[P̂11P̂00P̂01P̂10]

− (E[P̂11P̂00 − P̂01P̂10])
2

(3.6)

We can divide this formula into small pieces and calculate each part of it.
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The first part of this formula is

E[(P̂ 2
11P̂

2
00)] =E

[∑
ijkl

XiXjWkWl

N4

]

=E

[
1

N4
{
∑
i=j

Xi(
∑
k 6=l 6=i

WkWl +
∑
k=l 6=i

Wk)

+
∑
i6=j

XiXj(
∑

k 6=l 6=i6=j

WkWl +
∑

k=l 6=i,j

Wk)}
]

=
1

N4
{NP11[(N − 1)(N − 2)P 2

4 + (N − 1)P00]

+N(N − 1)P 2
1 [(N − 2)(N − 3)P 2

4 + (N − 2)P00]}

=
N − 1

N3
P11P00[1 + (N − 2)P11 + (N − 2)P00 + (N − 2)(N − 3)P11P00)]

(3.7)

Then the third part of this formula is

E[P̂11P̂00P̂01P̂10] =
1

N4

∑
i,j,k,l
distinct

XiYjZkWl

=
(N − 1)(N − 2)(N − 3)

N3
P11P01P10P00

(3.8)

The last part of it is

(E[P̂11P̂00 − P̂01P̂10])
2 =

(N − 1)2

N2
(P11P00 − P01P10)

2

=
N − 1

N3
[N(N − 1)(P 2

11P
2
00 + P 2

01P
2
10 − 2P11P01P10P00)]

(3.9)

So the variance can be written as

Var(P̂11P̂00 − P̂01P̂10) =
N − 1

N3
[P11P00(1 + (N − 2)P11 + (N − 2)P00

+ (N − 2)(N − 3)P11P00) + P01P10(1 + (N − 2)P01

+ (N − 2)P10 + (N − 2)(N − 3)P01P10)

− 2(N − 2)(N − 3)P11P01P10P00

−N(N − 1)(P 2
11P

2
00 + P 2

01P
2
10 − 2P11P01P10P00)]

=
N − 1

N3
[P11P00 + P01P10

+ (N − 2)(P 2
11P00 + P11P

2
00 + P 2

01P10 + P01P
2
10)

− (4N − 6)P 2
11P

2
00 − (4N − 6)P 2

01P
2
10

+ 2(4N − 6)P11P01P10P00]

(3.10)
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And since

(N − 2)(P 2
11P00 + P11P

2
00 + P 2

01P10 + P01P
2
10) =(N − 2)[P11P00(1− P01 − P10)

+ P01P10(1− P11 − P00)]

(3.11)

So the variance can be simplified as

σ2(θ̂) = Var(θ̂) =
N − 1

N3
[(P11P00 + P01P10) + (N − 2)((P11P00 + P01P10)

− P11P01P10 − P11P01P00 − P11P10P00 − P01P10P00)

− (4N − 6)(P11P00 − P01P10)
2]

(3.12)

Therefore the variance of the estimator (σ2) is related to P11, P00, P01 and P10

which is related to θ.

3.2.2 Simulation Result of Leverage

Assume a true leverage θ is 0.007, with P11 = 0.01, P01 = 0.05, P10 = 0.04, P00 = 0.90.

We generate 10,000 estimated leverages calculated from the sample proportion of a

multinomial distribution population, each with N = 100, 000 and P11 = 0.01, P01 =

0.05, P10 = 0.04, P00 = 0.90. The following two graphs show some properties of θ̂.

Figure 3.1: Histogram plot and Q-Q plot of θ̂
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The left panel of Figure 3.1 is the histogram plot of estimated leverage, while the

right panel is the Q-Q plot of sample quantile against theoretical normal quantile

with a theoretical line.

These two figures show that the distribution of estimated leverage θ̂ is well ap-

proximated by normal distribution with mean θ and variance σ2. Even though these

two parameters are correlated, the correlation between mean and variance sampling

distribution shouldn’t harm our simulation in ranking problem. Therefore, we assume

these two parameter are independent, in conclusion, θ̂|θ, σ2 ∼ N (θ, σ2) .

3.3 Simulated Market Basket Data

To simplify our simulation, rather than simulate a full market basket analysis, we will

simulate market basket analysis for independent pairs of itemsets. That is, we will

generate contingency tables like Table 3.1 for independent pairs of itemsets. This will

give a similar marginal distribution for the leverages, but will ignore the relationship

between different pairs of itemsets due to the overlap. Since we have not yet adapted

our method to account for this relationship, simulating in this way allows us to focus

on the issues investigated in Chapter 2.

Firstly, we simulate the probabilities of any itemset occurring in a transaction,

which is the probabilities of a customer buying item, following a beta distribution

with parameters (1, 50). Here, the reason for choosing a beta distributions is that it

represents a typical situation where most items are fairly rare, and a few are more

common. Thus

The probability that itemset A occurs in a transaction is P1+.

The probability that itemset B occurs in a transaction is P+1.

P1+ and P+1 are independently distributed as Beta(1,50).

The prior distribution of leverage (PS) θ is

θ ∼

0 with probability 0.8

N (0, τ 2) with probability 0.2
(3.13)

where τ = min{0.2P1+P+1, 0.0002}. The simulated leverage values are chosen to

follow a typical situation, where most pairs of itemsets have no association. We also

assume that all the different association rules are independent. Such an assumption
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is not very realistic, but it is a useful simplification. And it shouldn’t do any harm for

our simulation. The choice of using truncated variance is designed to avoid negative

simulated values of Pij or the values greater than 1, with high probability.

Figure 3.2: A market basket simulated data sample: 10,000 association rules measured
by leverage from 100,000 transactions.

Then we can use θ, P1+ and P+1 to get P11, P01, P10 and P00 with the following

equations:

P11 = P1+P+1 + θ

P10 = P1+ − P11

P01 = P+1 − P11

P00 = 1− P11 − P01 − P10

Since it is easy to generate a large number of association rules from a real mar-

ket basket transaction data, we want to make this simulation study to be simi-

lar to a real market basket data example. Therefore, we simulate 10,000 contin-

gency tables to calculate the corresponding true leverage of each association rules
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(θi, for i = 1, 2, · · · , 10, 000). For each contingency table and corresponding true

leverage, we generate an estimated leverage from the multinomial distribution with

parameters (N,P11, P01, P10, P00) with N = 100, 000 using equation (3.4). And we

calculate the variance of estimated leverage (σ2). Note that, since in the real market

basket data P11, P00, P01 and P10 are usually unknown, we use estimated proportions

(P̂11, P̂01, P̂10, P̂00) to calculate the variance.

In this simulated market basket data, we obtain 10,000 leverage (θi), corresponding

estimated leverage (θ̂i), and the variance of this estimation σ2
i , for i = 1, 2, · · · , 10, 000.

Figure 3.3: A market basket simulated data sample: 10,000 association rules measured
by leverage from 100,000 transactions. The gray dash lines are the top 0.1%, top 1%
and top 5% of true leverage θi.

Figure 3.2 and Figure 3.3 show the results of the simulated market basket data.

Figure 3.2 is a scatterplot of estimates and estimated standard error similar to what

would be available in a real data example. Note that the standard errors are estimated
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from estimated probabilities, instead of true simulation probabilities. In a real data

case, it is natural that we can only get estimates and standard errors from observa-

tions. Figure 3.2 also shows the fact that there is some relationship between estimates

and standard error, since they are both related to the true values of leverage.

Figure 3.3 shows that although the large θi tend to have large estimated θ̂i, there

is still some variation in the estimated leverage. Also there are a large number of

θi equal to zero which makes the prior distribution of θ more heavy-tailed which, as

explained previously, can lead to problems with using a normal prior for ranking.

For our purposes, we are very concerned about the tail, in particular, the top α% of

associations with the highest true leverage.

3.4 Result of General Rank Methods

In this section, we provide the result of ranking applying different ranking methods,

such as posterior mean method with t-prior and normal prior, r-value method with

normal prior, MLE method and p-value method to our simulated market basket data.

It is convenient to use the same description as in usual ranking problems with

equation (1.1). In the simulated market basket data, there are n=10,000 association

rules. Assume the ith estimate of leverage θ̂i is calculated from the observations sam-

pled from corresponding population with unknown real-valued parameter of interest

θi, that is the n populations have density functions

f(θ̂1; θ1, σ
2
1), f(θ̂2; θ2, σ

2
2), · · · , f(θ̂n; θn, σ

2
n), (3.14)

where θ̂i is the estimates of θi calculated from observations, and σ2
i as the variance

of the estimate θ̂i. We denote g(θ) to be the prior density of θi, and assume the θi is

i.i.d g(θ).

The best result should be given by, using a three-stage hierarchical mixture model

based on the true prior:

f(θ̂i; θi, σ
2
i ) = p(θ̂i|θi, σ2

i ) = N (θi, σ
2
i ) =

1√
2πσi

e
− (θ̂i−θi)

2

2σ2
i

g(θi) = γg1(θi) + (1− γ)g2(θ)

(3.15)

where g1(θi) is 0 and g2(θi) is N (0, τ 2) with γ = 0.8. The τ is given by

τ = 0.2ab I(0.2ab < 0.0002) + 0.0002 I(0.2ab ≥ 0.0002) (3.16)
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with p(a) and p(b) are Beta(1,50). Our task is to rank units by θi from large to small

here.

Moreover, our discussion focuses on ranking based on the positive estimated lever-

age θ̂i, which is a positive association rule. It is important to separate positive and

negative associations in business applications, since positive association rules rep-

resents benefits we can earn from an association. Generally, we can still rank the

negative association rules using same method. We will apply what we have learned

in Chapter 2 and use a heavy-tailed prior to analyse the data.

3.4.1 Posterior Mean Ranking Method

Normal/Normal Model

The first result is applying the posterior mean ranking method to market basket

data to rank the association rules. A simple two-stage hierarchical model can be

established with likelihood density f(θ̂i; θi, σ
2
i ) being normal N (θi, σ

2
i ), and the prior

of θi for i = 1, 2, · · · , n being normal N (µ̂, τ̂ 2). That is,

ĝ(θ) = p(θi|µ̂, τ̂ 2) =
1√
2πτ̂

e
− (θi−µ̂)

2

2τ̂2
i (3.17)

where (µ̂, τ̂) are estimates of prior hyperparameters (µ, τ) through maximum likeli-

hood from our samples θ̂i and σ2
i . Then the posterior mean of θi is easily given by

equation (2.8), which is

E[θi|θ̂i, σ2
i ] =

τ̂ 2

τ̂ 2 + σ2
i

θ̂i +
σ2
i

τ̂ 2 + σ2
i

µ̂ (3.18)

In Figure 3.4, the left panel is a plot of estimated leverage against its estimated

standard error, while the right panel is the plot of estimated leverage against true

leverage. Those points colored in red are the top 1% selected by posterior mean

ranking method using normal/normal model here. As we can see, using normal prior,

posterior mean ranking prefers estimates with small standard error. From the right

panel, we are able to see that the method gives bad results in ranking the top 1%

units by leverage.
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Figure 3.4: Posterior mean: The red points are the top 1% association rules ranked
by posterior mean ranking using a normal distribution estimated from the data as
prior.

T/Normal Model

Now, we change the choice of prior in the posterior mean ranking method from a

normal distribution with light-tail to a Student’s t-distribution with heavy-tail. A

t/normal model is applied in the empirical Bayes method.

The posterior mean of a Student’s t-distribution ET [θi|θ̂i, σ2
i ] is given by equa-

tion (2.11). From the discussion of estimations of parameters for prior in Section 2.5,

it is not clear what the most appropriate estimates are for the hyperparameters, but

the estimates should not harm our ranking too much. Therefore, we use the first two

moment estimators to estimates the hyperparameters of the prior for simplicity of

computation. We choose the degrees of freedom of the t-prior to be 3, so that this

will satisfy our intention of selecting a heavy-tail prior. That is,

• Location parameter η̂ =
∑N

i=1 θ̂i = 4.059472× 10−7;

• Inverse scale parameter λ̂ =
ν
ν−2

Var[θ̂i]−E[σ2
i ]

= 630500364;

• Degrees of freedom ν̂ = 3.

Figure 3.5 shows the results of top 1% leverage (red points) under posterior mean
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Figure 3.5: Posterior mean: The red points are the top 1% association rules ranked
by posterior mean ranking method using student’s t-distribution as prior.

ranking using student’s t distribution as prior. The left panel shows the trade-off

between the estimates and standard errors. Since it takes a heavy-tail distribution

as prior, this ranking method puts more weight on estimated value, and less weight

on standard error, compared to Figure 3.4, which overpopulates estimates with small

standard error. Both these two figures, Figure 3.5 and Figure 3.4 support our conclu-

sion that using a conjugate prior will overweight standard error, owing to estimating

the prior as a too light-tailed distribution. This shows the ranking method chooses a

high estimate as generated from a very large error instead of its large true leverage.

3.4.2 R-value Ranking Method with Normal Prior

Figure 3.6 gives the result of using the r-value ranking method using a normal prior

with hyperparameters being estimated through maximum likelihood. The left panel

of Figure 3.6 is plot of estimated leverage against its estimated standard error. The

right panel shows estimated leverage against true leverage. Red points in both plots

are the top 1% units ranked by r-value. As the right panel of this figure shows, r-value

ranking chooses some units agreeing with the best selection. It selects the top units

with largest leverage and large standard error. Although r-value tries to maximize the

agreement between observation/estimates and prior, the method is hugely affected by
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Figure 3.6: R-value: The red points are the top 1% association rules ranked by r-value
ranking method using conjugate prior model.

its estimation of prior. Moreover using a normal prior has a problem that we stated in

Section 2.4, that it prefers units with small standard error. We see that this problem

has resulted in r-value ranking selecting many points with very small true leverage.

3.4.3 Local Maximum Likelihood (ML) Approach

Next we compare the local maximum likelihood (ML) approach. The local maximum

likelihood approach estimates θi through the maximum likelihood estimate, which is

θ̂i in our simulation. The MLE ranking method ranks units directly from estimates

without considering standard error.

The left panel of Figure 3.7 is plot of estimated leverage against estimated standard

error. Also the right panel shows estimated leverage against true leverage. Red points

in both plot are top 1% units ranked by MLE. Even though the method prefers units

with large error, it still gives an acceptable result in choosing the top 1% leverage

values, as the left panel of Figure 3.7 shows. Note that our simulation gives ML

ranking an advantage because ML ranking does not downweight observations with

large standard error, and in our simulation, the observations with larger leverage have

larger standard error.
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Figure 3.7: MLE: The red points are the top 1% association rules ranked by maximum
likelihood (ML) ranking method.

3.4.4 Testing Approach

The testing approach is mentioned in Section 1.1. Here, we take the null hypothesis

as H0 : θi = 0 for i = 1, 2, · · · , n. Then our p-value with a normal likelihood N (θi, σ
2
i )

for each unit θi is

p-value =Pr(observation ≥ θ̂i|H0 is true)

=Pr(estimates ≥ θ̂i|θi = 0)

=1− Φ

(
θ̂i − 0

σi

) (3.19)

Note that since the p-value is a decreasing function of θ̂i
σi

, p-value ranking in this

case is equivalent to ranking by θ̂i
σi

. The result of the testing approach is presented

in Figure 3.8. The left panel of this figure is a plot of estimated leverage against

estimated standard error, while the right panel shows estimated leverage against true

leverage. Red points in both plots are top 1% units ranked by p-value. Compared to

MLE ranking, this method selects fewer associations with true leverage 0, but also

misses some of the top associations because they have high standard errors.
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Figure 3.8: P-value: The red points are the top 1% association rules ranked by test
approach (p-value) ranking method using normal model, and H0 : θi = 0.

3.4.5 Comparison of Different Methods

In the last part of this chapter, I compare the result of the different methods applied

above.

Figure 3.9 provides us more details of how various methods rank the top units.

Each panel of this figure corresponds to a different ranking method. The highest

ranks of units are colored red. As the color changes from red to purple, the ranks of

units vary from top 1% to top 30%. It is again shown in this figure that posterior

mean with normal prior selects unit with relatively small standard errors, while MLE

gives no penalty to observation variance in ranking units. Posterior mean with t prior

gives a more desirable trade-off between standard error and estimates due to the fact

that its choice of a heavy-tailed prior.

Figure 3.10 displays a plot of cumulative average of true leverage (θ̄α) against the

percentage (α), with the cumulative average defined by equation (2.16). We explained

in Section 2.4 why this is a good measure of performance. That is

θ̄α =
1

k

m[k]∑
j=m[1]

θj, (3.20)

where m[1],m[2], · · · ,m[k] are the indices of units (θi’s) ranked by different ranking
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methods.

Figure 3.9: Comparisons of ranking via various methods. These plots show that
the top 30% units ranked by MLE, p-value, posterior mean with normal prior and
posterior mean with t-prior colored from red to purple.

Here the “Best choice” in the black dashed line is the cumulative average of the

top θ ranked by true values. “unconditional PM” in the purple line is the cumulative

average of top θi ranked by theoretical unconditional posterior mean, which is given

by the hierarchical model, in equation (3.15) and equation (3.16). Consequently, the
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unconditional posterior mean is calculated by a numerical integration of

E[θi|θ̂i, σ2
i ] =

∫∫∫
θi p(θ̂i|θi, σ2

i ) p(θi|τ 2i (a, b)) p1(a) p2(b) da db dθi∫∫∫
p(θ̂i|θi, σ2

i ) p(θi|τ 2i (a, b)) p1(a) p2(b) da db dθi

=

∫ 1

0

∫ 1

0

∫ 1

−1 θi
(1−a)49(1−b)49

ab
e
− (θ̂i−θi)

2

2σ2
i

− θ2i
2(0.2ab)2 da db dθi∫ 1

0

∫ 1

0

∫ 1

−1
(1−a)49(1−b)49

ab
e
− (θ̂i−θi)2

2σ2
i

−
θ2
i

2(0.2ab)2 da db dθi

(3.21)

This should give the best estimation of θi by posterior mean, that is the theoretically

best ranks we can achieve by using posterior mean methods, since the prior is known

here. It should give an upper bond on how well we could do using posterior mean.

The gap between “unconditional PM” and “Best choice” is the irreducible error, that

is the part of the error in ranking due to noise in the data.

“t-distribution prior PM” in the red line is the cumulative average of top θi ranked

by posterior mean using a Student’s t-distribution as prior, while “conjugate prior

PM” in the orange line is the cumulative average of top θi ranked by posterior mean

using normal prior. “r-value” in the green line is the cumulative average of top θi

ranked by r-value with a conjugate normal prior. “MLE” and “p-value” are cumula-

tive average of top θi ranked by MLE and p-value.

Figure 3.10 gives several results of comparing different ranking and selection meth-

ods. It is very close between the red line, green line and blue line in Figure 3.10, which

means the result of ranking using MLE, p-value and t/normal posterior mean are sim-

ilar. Still the red line lies above the others. We see that there is still a small gap

between the posterior mean with t-prior and the unconditional posterior mean. This

indicates that further work on selecting a prior and estimating the hyperparameters

could improve the results. The other empirical Bayes methods with normal prior,

including both r-value and posterior mean give an inadequate ranking.
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Figure 3.10: Cumulative average plot. This plot shows the cumulative average of
leverage, θ̄α over 20 sets of simulated market basket data using different ranking
methods.



Chapter 4

Conclusion and Future Work

In this thesis, we have studied the effect of choice of priors on empirical Bayes posterior

mean ranking methods. In a simulation study, we compared the performances of a

light-tailed normal prior, a medium-tailed gamma prior and a heavy-tailed Student’s

t-prior. As expected, the true prior performs best in each case. However, we found

that the ranking method using the normal prior when the true prior has a heavy tail

performs far worse than using the t-prior when the true prior has a lighter tail. We

conclude that using a heavier tailed prior is more robust to misspecification of the

prior.

In Chapter 3, we applied different ranking approaches to the simulated market

basket data. As was shown in ranking the leverage, empirical Bayes approaches with

normal prior produce very poor results, while posterior mean ranking method with a

Student’s t prior outperforms the other methods.

Although, we have mainly demonstrated the benefits of Student’s t-prior in poste-

rior mean ranking method, we expect the use of a heavy-tailed prior to be beneficial

for other empirical Bayes approaches. We have only studied one example each of

light-tailed, medium-tailed and heavy-tailed distributions. Further work is needed

to determine whether another heavy-tailed distribution might perform better. Since

there isn’t an explicit form of posterior distribution by using such prior, it requires

more computation to calculate the posterior distribution. Consequently, to choose

another heavy-tail prior is worthwhile to be done in the future. Also, use of a heavy-

tailed prior for empirical Bayes methods should be applied to a real data sets, to

confirm that the benefits observed in simulations are actually achieved in practice.

Further work is also needed to determine the extent to which a heavy-tailed prior

gains robustness to prior misspecification at the expense of efficiency. This will allows

us to find detailed recommendations regarding how heavy-tailed the prior distribution

should be.

38
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We also briefly examined the effect of prior parameter estimates on posterior mean

ranking. We found that the true values do not always give the best result, particularly

in cases where the prior is misspecified. In these cases, we found that overestimating

the variance can be advantageous. More work is needed on this topic to determine

how best to estimate parameters in the prior distribution for empirical Bayes ranking

methods.
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