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Abstract 37 

Sampling requirements for the quality control (QC) of cement-based solidification/stabilization 38 

(S/S) construction cells do not currently specify the sample size considering the accuracy of the 39 

estimated effective hydraulic conductivity of the cells from the samples, nor considering the risk 40 

associated with drawing the wrong conclusions about the acceptability of the cells. In this paper, 41 

probabilistic simulations are performed to examine the influence of a soil-cement material’s 42 

mean, variance, and correlation length on sampling requirements for a QC program of cement-43 

based S/S construction cells. The sampling requirements are determined by considering a 44 

hypothesis test, having null that the constructed material is unacceptable, and targeting 45 

acceptable probabilities of making an erroneous decision. Two types of errors can be made: 1) 46 

concluding that the material is acceptable when it actually is not, or 2) failing to conclude that 47 

the material is acceptable when it actually is. The paper investigates how many samples are 48 

required in order to keep the probabilities of making these errors acceptably small. Plots are 49 

provided which can be used to estimate required number of samples. The paper concludes by 50 

discussing how the simulation-based results compare to current sampling requirements for the 51 

QC of an actual set of cement-based S/S construction cells.  52 

Key words: geotechnical quality control, sampling error, hypothesis test, groundwater 53 

contamination, solidification, stabilization 54 
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Introduction 55 
 56 

Cement-based solidification/stabilization (S/S) is a source-controlled remediation technology 57 

in which cement is mixed with contaminated media, such as contaminated soil, sediment, 58 

sludge, and industrial waste, to minimize the migration of contaminants and thereby to limit 59 

the contamination of ground and/or surface waters. A major concern with such remediation 60 

efforts is to decide how reliable the efforts have been at meeting performance objectives set 61 

by a regulator. To assess the success of a cement-based S/S, a quality control (QC) program 62 

is typically undertaken which involves sampling the site to estimate its final effective 63 

hydraulic conductivity. If the sample suggests that the final effective hydraulic conductivity 64 

is sufficiently small, the cement-based S/S is considered to be successful. Such QC programs 65 

are usually performed by dividing the entire S/S site into a number of cells over the plan area 66 

(which will be referred to here as construction cells) and sampling each cell individually. The 67 

subdivision into a sequence of cells allows each cell to be assessed individually, which 68 

reduces the expense of additional remediation/replacement in the event that the effective 69 

hydraulic conductivity is suggested to be too high and thus unacceptable – only the 70 

unacceptable cell needs to be further remediated or replaced. Since the further remediation of 71 

unacceptable cells can be quite expensive, it is important that the cell sampling scheme be 72 

suitably accurate to avoid both 1) ground and/or surface water contamination by missing 73 

unacceptable construction cells and 2) having to further remediate construction cells deemed 74 

to be unacceptable but which are actually acceptable. The goal of this paper is to determine 75 

the number of samples required to allow a QC program to properly minimize the 76 

probabilities of the negative outcomes of water contamination and/or unnecessary further 77 

remediation costs. 78 
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Attention is restricted in this paper to S/S sites where contaminant migration occurs 79 

predominately via advection in the horizontal direction (i.e. no diffusion) and where the 80 

contaminated layer thickness is small relative to its areal extent. This allows the site to be 81 

modeled as two-dimensional, which basically means that the soil properties over the soil 82 

layer thickness are taken to be constant. Traditionally, the equation governing the total 83 

advective flow,Q , through a saturated S/S construction cell is given by Darcy’s law as 84 

follows,   85 

[1] iAkQ eff=   

where effk is the effective hydraulic conductivity of the construction cell, i is the hydraulic 86 

gradient across the cell and A  is the area perpendicular to the direction of flow. The effective 87 

hydraulic conductivity, effk , is defined as the single value of hydraulic conductivity which 88 

yields the same total flow through the cell as does the actual spatially varying hydraulic 89 

conductivity field (see Fenton and Griffiths, 1993). In order to ensure that the construction 90 

cell will perform effectively in restricting contaminant migration via advection, samples are 91 

collected and tested during construction in a QC program to estimate the cell’s effective 92 

hydraulic conductivity. If the estimated effective hydraulic conductivity is less than or equal 93 

to the regulatory hydraulic conductivity, critk , then the construction cell is considered to be 94 

acceptable. Otherwise it is deemed unacceptable and must be repaired or replaced. The 95 

question is: How many samples should be taken in order to reliably make this decision? In 96 

common practice samples are collected based on the sample density method (USACE 2000), 97 

which requires a certain number of samples per unit volume. The number of samples 98 

required by the USACE Method is independent of the statistics of the sampled field and 99 
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makes no attempt to assess the probability of making an error in deciding about the 100 

acceptability of a cell. Since different levels of spatial variability of a constructed S/S system 101 

will certainly affect the accuracy of the estimate of effk , it is clear that using a fixed number 102 

of samples (e.g. per unit volume) will result in different decision error probabilities as the 103 

level of spatial variability of the hydraulic conductivity field changes. This paper aims to 104 

examine the influence of the mean, variance, and correlation length of a cell’s hydraulic 105 

conductivity field on the number of samples required to achieve acceptably small decision 106 

error probabilities. 107 

Random fields are commonly used to model spatially variable engineering properties (Fenton 108 

and Griffiths 2008) and they will be used here to model the hydraulic conductivity field. The 109 

sampling problem will be investigated by simulating possible realizations of the 2-D 110 

hydraulic conductivity field, virtually sampling each realization at selected locations and then 111 

deciding whether the realization is acceptable or not on the basis of the sample results. An 112 

error in the decision is made if either the cell is deemed to be acceptable when it is not (Type 113 

I error), or if the cell is deemed to be unacceptable when it is actually acceptable (Type II 114 

error). As will be shown, the probability of making a decision error reduces as the number of 115 

samples increases, not surprisingly, and the task is to determine just how many samples are 116 

required to reduce the error probabilities to acceptable levels, which will be assumed to be 117 

5% in this paper. 118 

The random conductivity field realizations will be simulated using a method called Local 119 

Average Subdivision (LAS) (Fenton and Vanmarcke 1990). The LAS algorithm preserves 120 

the spatial correlation, over the ensemble, between local averages of the property. Correlation 121 

between points can be characterized by a parameter called the correlation length,  , which is 122 
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the distance within which the property of interest is significantly correlated and beyond 123 

which is largely uncorrelated. One of the motivations of LAS arises from the fact that instead 124 

of point measurements, engineering properties are usually measured over some volume, thus 125 

representing the average property over that volume. Thus, LAS directly simulates 126 

realizations of such ‘local’ averages. Local averaging reduces the variance of the random 127 

field. In the 2-D model considered here, the final variance depends on the area selected for 128 

local averaging, decreasing as the local averaging area increases (Fenton and Griffiths 2008). 129 

Further details regarding the correlation structure and variance reduction used in the random 130 

field model can be found in the “Parametric Study” section of this paper. 131 

Research relating to the sampling requirements for a QC program of cement-based S/S 132 

construction cells is not available in literature, so far as the authors are aware. Some research 133 

has been conducted on the sampling requirements for soil liner systems, which is similar to 134 

the requirements for cement-based S/S construction cells, as discussed next.  135 

Benson et al. (1994) presented a method to select the number of samples that should be 136 

collected and tested during the construction of compacted soil liners in order to ensure 137 

reliable liners at some confidence level. Not surprisingly, they found that the accuracy of the 138 

estimate increases as the sample size increases and also showed that samples should be 139 

collected at higher frequency for soils having highly variable hydraulic properties as well as 140 

for soils with mean hydraulic conductivity close to the regulatory value. In their 141 

investigation, simulations were performed using a three-dimensional stochastic model with 142 

varying hydraulic conductivity mean, variance, and liner thickness. However, they did not 143 

explicitly consider the random field nature of the liner, that is independence between adjacent 144 
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elements in their model was assumed for simplicity, i.e., they ignored the correlation between 145 

hydraulic conductivity values.  146 

Menzies (2008) examined the influence of the correlation length on sampling requirements of 147 

soil liner systems in order to achieve target reliability against excessive flow through the 148 

liner. Influences of the hydraulic conductivity mean and variance on sampling requirements 149 

were investigated using a two-dimensional stochastic model to perform simulations.  In 150 

Menzies’ study, two types of hypothesis test errors were considered, i.e., Type I where the 151 

sample data led to the conclusion that the liner was acceptable when it was not, and Type II 152 

where the sample data suggested that the liner was unacceptable when it actually was 153 

acceptable. It was found that a “worst case” correlation length existed, which was about 5%-154 

10% and 2%-3% of the liner size in any direction, that maximized the probabilities of Type I 155 

and Type II errors, respectively. Menzies (2008) also found that for a particular sample size, 156 

both types of error probabilities reached a maximum value when the mean hydraulic 157 

conductivity of the liner was close to the regulatory value, requiring more samples in this 158 

case to achieve the same reliability as obtained when the mean hydraulic conductivity is 159 

farther away from the regulatory value. In his stochastic model, Menzies used the arithmetic 160 

average of the hydraulic conductivity field to be the effective hydraulic conductivity. He also 161 

assumed the correlation structure to be isotropic. This work extends that of Menzies’ to a 162 

case where the flow is in-plane so that geometric averaging is required. 163 

 164 

 165 
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Background on Sampling Theory 166 
 167 

The overall objective of QC sampling of cement-based S/S construction cells is to ensure that 168 

the cell will be acceptable, i.e., that its effective hydraulic conductivity, effk , will be less than 169 

the regulatory hydraulic conductivity, critk .  The decision about whether a construction cell is 170 

acceptable is made on the basis of a set of samples taken from the cell.  This decision making 171 

process is essentially a hypothesis test where the null hypothesis ( )0H  is that the cell is 172 

unacceptable, so that the burden of proof is on showing that the alternative hypothesis ( )aH  173 

is true, at an appropriate level of confidence. 174 

[2] 
:

:o eff crit

a eff crit

H k

H

k

k k




  

As mentioned previously, two types of errors may result in making this decision about the 175 

acceptability of the cell. These are 1) concluding that the S/S construction cell is acceptable 176 

when it is not (Type I), or 2) failing to conclude that the S/S construction cell is acceptable 177 

when it actually is (Type II). The challenge is to determine how many samples should be 178 

collected to ensure that the probability of making either type of error will be acceptably 179 

small.  180 

Taking an infinite number of samples from the construction cell will eliminate any chances 181 

of making a decision error, but this is neither physically nor economically feasible. This 182 

means that some chance of error will always exist and so it is necessary to relate the error 183 

probabilities with the number of samples taken in order to determine the number of samples 184 

required. 185 
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Analytical results exist for the sample size required to ensure that the probabilities of Type I 186 

and II errors are sufficiently small (see, e.g., chapter 8 of Devore, 2008). These results, 187 

however, assume that the samples are independent. Since the construction cell hydraulic 188 

conductivity values are generally correlated, existing analytical results cannot be used to 189 

determine required sample sizes for the quality control of construction cells. The goal of this 190 

paper is to investigate how the probabilities of Type I and Type II errors change as a function 191 

of the number of samples within construction cells. 192 

Probabilistic Simulations 193 

 194 

The construction cells investigated in this paper are designed to provide a barrier against 195 

horizontal flow and are thin (vertically) relative to their planar dimension, as shown in Figure 196 

1. Because the cell is relatively thin, the flow is largely in the plane and a two-dimensional 197 

flow model is acceptably accurate. Since a two-dimensional flow model is also much faster, 198 

computationally, than a three-dimensional model, the two-dimensional model will be used 199 

here. It is to be noted, however, that the resulting model can therefore only investigate the 200 

sampling requirements per unit area, not per unit volume. As will be seen later, this leads to 201 

some difficulties in comparing recommendations here to current practice. 202 

The hypothesis test problem is studied here using Monte Carlo simulations employing a 203 

modified version of the two-dimensional random finite element method (RFEM) program, 204 

mrflow2d (Fenton and Griffiths 2008). The original program was designed to analyze 205 

stochastic fluid flow problems and is described in Fenton and Griffiths (1993). The program 206 
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is modified in this study to enable the sampling of the random field at prescribed locations. 207 

The mesh discretization used in the simulations is as shown in Fig.1. 208 

The flow regime assumes that an impervious boundary exists on the top and bottom, and on 209 

the left and right, faces of Fig.1. A uniform unit pressure head was applied on the front face 210 

which directs the flow, Q, in the x  direction. The inputs to the model are the mean and 211 

standard deviation of point-scale hydraulic conductivity, correlation lengths (assumed 212 

isotropic), the number of elements in each direction, the element size, and the number and 213 

locations of the samples to be taken. Given these inputs, the RFEM model generates a 214 

random field of log-normally distributed hydraulic conductivity. The steps followed in the 215 

simulations are as follows: 216 

1. Given the mean, standard deviation and correlation length of the hydraulic conductivity 217 

at the point-scale, generate a realization of the local averages, iG , for mi ,......,2,1 , 218 

where m   is the specified number of elements in the model, using the Local Average 219 

Subdivision (LAS) algorithm (Fenton and Vanmarcke 1990). Each local average, iG , is 220 

the arithmetic average of a standard Gaussian field, G  over the i th element. 221 

2. The lognormally distributed hydraulic conductivity value, ik ,  is assigned to the i th 222 

element through the transformation  ikki Gk lnlnexp   , where kln  and kln  are the 223 

mean and standard deviation of the logarithm of k  obtained from the specified mean and 224 

standard deviation k and k via the transformations: 225 

[3a]  2 2
ln ln 1 kk v     
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[3b] 2
lnln 2

1
ln kkk     

   226 

where /k k kv    is the coefficient of variation. 227 

3. Sample the field at the specified element locations. This is done simply by recording the 228 

value of jk  generated for the j’th sampled element. Measurement error is assumed to be 229 

zero. 230 

4.  Compute the geometric average, Gk , of the sample and the effective hydraulic 231 

conductivity of the entire conductivity field, effk as follows, 232 

[4] 












 


n

j
jG k

n
k

1

ln
1

exp   

[5] 











∑
1

ln
1

exp
m

i
ieff k

m
k   

 233 

 where 234 

=n  number of samples taken from the random field, 235 

=jk  hydraulic conductivity of the j  th sampled element of the random field, 236 

=m  number of elements of the random field, and 237 

=ik
 
hydraulic conductivity of the i th element of the random field. 238 
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Fenton and Griffiths (1993) demonstrated that the geometric average was the best 239 

estimate of the effective hydraulic conductivity for relatively square flow regimes, where 240 

the effective hydraulic conductivity was defined by them to be the single value of 241 

hydraulic conductivity which yields the same total flow through the cell as does the 242 

actual spatially varying hydraulic conductivity field. Hence, geometric averages of the 243 

element hydraulic conductivities and the samples are used to obtain the actual and the 244 

predicted effective hydraulic conductivity of the random field, respectively. In other 245 

words, the effective hydraulic conductivity, effk  , used in this paper, closely 246 

approximates the uniform (spatially constant) hydraulic conductivity value which yields 247 

the same total flow as computed through the actual spatially random hydraulic 248 

conductivity field. If eff critkk   then the total flow through the cell exceeds the regulatory 249 

limit and the cell is unacceptable.  250 

The geometric average, Gk  , is the sample estimate of the effective hydraulic 251 

conductivity, effk . If G critk k  then the cell is deemed to be acceptable, even though it 252 

may not be (Type I error). Alternatively, if critG k>k  then the cell is deemed to be 253 

unacceptable, even though it may actually be acceptable (Type II error). For each 254 

realization, the sample geometric average, Gk , and the effective hydraulic conductivity, 255 

effk  are compared to the regulatory hydraulic conductivity, critk . This comparison results 256 

in one of the following four outcomes being recorded for each realization: 257 

- Both Gk  and the actual effective hydraulic conductivity of the random field are below 258 

the regulatory value  G crit eff critk kk k . This is a favorable outcome. 259 
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- Both Gk  and the actual effective hydraulic conductivity of the random field are above 260 

the regulatory value  G crit eff critk kk k . This outcome will result in the cell 261 

being deemed to be unacceptable but is a favorable outcome since it is predicted by 262 

the sample.  263 

- Gk  is less than the regulatory hydraulic conductivity, while the actual effective 264 

hydraulic conductivity of the field exceeds the regulatory value 265 

 < k kG crit eff critkk   . This is an unfavorable Type I error (cell is assumed 266 

acceptable when it is not) resulting in the worst outcome of this hypothesis test, 267 

where an unsafe cell is deemed to be safe.  268 

- Gk  is greater than the regulatory value, while the actual effective hydraulic 269 

conductivity of the field is less than the regulatory value  G crit eff critk kk k . 270 

This is an unfavorable Type II error (cell is assumed unacceptable when it is actually 271 

acceptable) which would require some unnecessary work, such as excavating the 272 

treated material and reapplication of the S/S process for the construction cell, 273 

resulting in a higher project cost. 274 

Of the two types of errors, the Type I error is the worst from an environmental protection 275 

standpoint since it results in an unacceptable cell being accepted. The above steps are 276 

repeated over simn  realizations for each parameter set (as discussed in the next section) to 277 

estimate the probabilities of Type I ( 1p ) and Type II ( 2p ) errors, according to: 278 

[6] 
simn

n
p 1

1 =   
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[7] 
simn

n
p 2

2 =   

where 1n  is the number of realizations where G critk k  while eff critkk   , 2n  is the number 279 

of realizations where G critk k  while eff critkk   , and simn  is the total number of realizations 280 

considered. 281 

Parametric Study 282 
 283 

In order to enable the results to be scaled to any desired regulatory hydraulic 284 

conductivity, critk , the mean of the point-scale hydraulic conductivity of the input 285 

distribution, k , and the effective hydraulic conductivity, effk , can be normalized by the 286 

regulatory hydraulic conductivity, critk .  287 

[8] 
crit

k
k

k


    

[9] 
crit

eff
eff k

k
k    

 288 

where k is the normalized mean hydraulic conductivity and effk  is the normalized effective 289 

hydraulic conductivity. 290 
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The correlation length, ,ln k  can also be non-dimensionalized by dividing by the effective 291 

dimension of the construction cell, D , where XYD   and X and Y are the planar 292 

dimensions of the construction cell; 293 

[10] 
D

k
k

ln
ln


    

Non-dimensionalizing the correlation length allows the results to be scaled to any 294 

construction cell size so long as it has same (or similar) aspect ratio  YX /  as used in this 295 

study, which is .1=YX   296 

Parametric variations considered in the simulations are presented in Table 1. 297 

Table 1: Parametric variations considered in the simulations 298 

Parameter Variation 

Normalized mean hydraulic conductivity, k  0.01 to 10.0. 

Coefficient of variation, kkk    0.1, 1.0, 2.0, and 5.0. 

Normalized correlation length, kln   0.01, 0.05, 0.1, 0.5, 1.0, 5.0, and 10.0. 

Number of samples, n  1, 4, 9, 16, 25, and 49 (see Fig 2) 

 299 

The lognormally distributed random hydraulic conductivity field is fully specified by its 300 

mean, its variance, and its correlation structure. In this study, the correlation between pairs of 301 

ln k  values is assumed to be Markovian having the following separable correlation function 302 
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(which is a product of two directional correlation functions – see, e.g., Vanmarcke 1984, for 303 

more details.), 304 

[11]      221121ln 2exp2exp,  k   

in which i  is the distance between points in each coordinate direction, i 1 and 2. The 305 

decay rate parameters i , for i 1 and 2, are the directional correlation lengths. In this study, 306 

the correlation lengths are assumed to be equal; .ln21 k   307 

Since the correlation function is separable, its corresponding variance reduction function (see 308 

Vanmarcke 1984) is also separable and can be written explicitly as the product: 309 

[12]      YXYXk  ,ln   

where 310 

[13]  





















 1
2

exp
2

2 lnln
2

2
ln

kk

k XX

X
X




   

and similarly for ( )Yγ . 311 

      Regarding the finite element model, a sensitivity analysis was performed in order to examine 312 

the influence of the element size on the output quantities of interest (i.e., the probabilities of 313 

Type I and Type II errors). A domain of size (1×1) was discretized into 32×32, 64×64, 314 

72×72, 80×80, 88×88, and 128×128 elements. All mesh resolutions gave similar results for 315 

the approximately ‘worst case’ correlation length (see discussion below) of ln 0.5k    and 316 

using 25000simn  . For example, Type I error probabilities ranged from 0.0239 at a 317 
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resolution of 32×32 to 0.0230 at a resolution of  128×128. Some of the intermediate mesh 318 

resolutions actually yielded higher discrepancies. For example, the 88×88 resolution yielded 319 

a Type I error probability of 0.0262, which was 14% higher than that found at  the 128×128 320 

resolution. Since a sample size of 25000simn  results in a standard error on the estimated 321 

error probability of about 4% (see below), it is believed that the high probability given by the 322 

88×88 resolution field is an outlier, due to an unresolved modeling problem. All of the other 323 

resolutions were within 3% of the 128×128 resolution. The effect of mesh resolution on the 324 

estimated probabilities of Type II errors was very similar. The Type II error probability was 325 

estimated to be 0.09472 for the 32×32 mesh and 0.09468 for the 128×128 mesh. Ignoring the 326 

88×88 mesh results, all other results were within 3% of the 128×128 mesh results. Based also 327 

on reasonable computing time, a 64×64 element density was selected for all simulations. The 328 

number of realizations selected was 25000simn   for all parameter sets considered. This 329 

means that the standard deviation of any probability estimate is   simnpp ˆ1ˆ  , where p̂ is 330 

the estimated probability, which, for small p̂  is approximately p̂0063.0 . In other words, 331 

the Monte Carlo simulation can reasonably accurately estimate p̂  down to about 1/10000. 332 

Results 333 
 334 

      Influence of Correlation Length on Error Probabilities  335 

It is instructive to first consider the probabilities of Type I and II errors at the limiting values 336 

of ln k . At the lower limit, when ln k  is equal to 0, points within the field will have no 337 

correlation with each other, which means that the ln k  field is white noise (Fenton and 338 

Griffiths 2008). In this case, any local average of ln k  will consist of an infinite number of 339 
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independent values whose average is a non-random constant (equal to the median) so that 340 

one (local average) sample is sufficient to completely specify the effective hydraulic 341 

conductivity of the field. That is, the probability of making any type of error (i.e., either Type 342 

I or Type II) will be zero on the basis of one or more samples if ln 0k  . At the other 343 

extreme, when ln k   , points within the random field are perfectly correlated with each 344 

other which means that they are all equal if the field is stationary, as assumed here. In this 345 

case, the field can be represented by a single (random) hydraulic conductivity value so that 346 

one sample is sufficient to predict the actual effective hydraulic conductivity of the entire 347 

field, resulting in error probabilities again being equal to 0. At intermediate correlation 348 

lengths (i.e., between zero and infinity), the probabilities of Type I and II errors are non-zero 349 

and will be affected by the number of samples taken – fewer samples will result in larger 350 

error probabilities. 351 

Figure 3 shows the influence of the normalized correlation length on the probability of a 352 

Type I error for different numbers of samples ( n   1, 4, 9, 16, 25, and 49) for 1.0k
   and 353 

1.0kv  . Each point on the plot is obtained using 25000 realizations and indicates that, for 354 

given number of samples, as the correlation length increases the probability of a Type I error 355 

at first increases and then decreases, as expected. For example, when k 1.0, k 1.0, and 356 

4n , the probability of a Type I error increases from close to 0 at a normalized correlation 357 

length of 0.1 to a maximum value of 0.036 at a normalized correlation length of 1.0, and then 358 

decreases to 0.019 when the normalized correlation length reaches 10.0. The probability 359 

continues to decrease thereafter to 0 as ∞→′lnkθ  (not shown). The highest error probability 360 

occurs at a “worst case” correlation length, in this case at about 0.1=′ln kθ . Since the actual 361 
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correlation length is rarely, if ever, known at any site, the practical importance of the 362 

existence of a “worst case” correlation length is that it can be used to produce sampling plans 363 

which are conservative, that is, guaranteed to have error probabilities no higher than 364 

specified in the sampling design.  365 

Figure 3 also shows that for given correlation length, the probability of a Type I error 366 

decreases as the number of samples increases. For example, when 0.1=,0.1=′ kk νμ and 367 

,5.0=′ln kθ  the probability of a Type I error decreases from 0.032 when 4=n  to 0.009 when 368 

49=n . 369 

Figure 4 illustrates the influence of the normalized correlation length on the probability of a 370 

Type II error for various numbers of samples ( n 1, 4, 9, 16, 25, and 49) for 1.0k
   and 371 

1.0kv  . Similar to Fig. 3, a “worst case” correlation length occurs at an intermediate 372 

correlation length, in this case at around 10% to 50% of the field dimension. For example, 373 

when k 1.0, k 1.0, and n 4, the probability of a Type II error starts at 0.03, increases 374 

to  0.18, and then drops back down to 0.02 for  kln 0.01, 0.1, and 10.0, respectively.  375 

Figure 4 also shows that an increase in the number of samples decreases the probability of a 376 

Type II error. For example, when 0.1=,0.1=′ kk νμ and ,5.0=′ln kθ  the probability of a Type 377 

II error decreases from 0.15 when n 4 to 0.03 when n 49. The converging nature of the 378 

plots on both sides of the worst case indicates that at very low and high correlation lengths, 379 

the probability of a Type II error tends to 0, which is as expected.  380 

Similar trends to those shown in Figs. 3 and 4 are seen for all other parameter set 381 

combinations considered and so are not repeated here. The “worst case” correlation lengths 382 
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occur at about 1 to 5 times the field dimension for Type I errors and at about 0.1 to 10 times 383 

the field dimension for Type II errors. In general, the “worst case” correlation is somewhere 384 

between 0.1 and 1.0 times the field dimension. If it is more important to minimize the 385 

probability of committing a Type I error, then choosing the correlation length to be equal to 386 

the field dimension would be appropriate. For most of the following comparisons, an 387 

intermediate worst case correlation length of ln 0.5k    has been selected. 388 

      Influence of Mean on Error Probabilities  389 
 390 

When the mean hydraulic conductivity of the random field is much less than the regulatory 391 

hydraulic conductivity, both the effective hydraulic conductivity and the sample geometric 392 

average will almost always be less than the regulatory value so that the probabilities of Type 393 

I and II errors will be small. Similarly, when the mean hydraulic conductivity is much higher 394 

than the regulatory value, both the effective hydraulic conductivity and the sample geometric 395 

average will almost always be higher than the regulatory value so that, again, the 396 

probabilities of Type I and II errors will be small.  The highest decision error probabilities 397 

will occur when the mean hydraulic conductivity is close to the regulatory value. Figures 5 398 

and 6 illustrate the influence of the mean on the probabilities of Type I and Type II errors, 399 

respectively, for 1.0kv  , ln 0.5k   , and n 4, 16 and 49. For given number of samples, the 400 

highest probability of a Type I error in Fig. 5 occurs when the mean hydraulic conductivities 401 

are about 1.7 times the regulatory value. For example, in the case where 1.0kv  , ln 0.5k    402 

and n 4, the probability of a Type I error reaches a maximum of about 0.15 when 1.7k .  403 
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Similarly the highest probabilities of a Type II error (Fig. 6) are observed when 1.1k . For 404 

example, for k 1.0,  kln 0.5, and n 4, the probability of a Type II error reaches a 405 

maximum of about 0.15 when =′kμ 1.1. 406 

      Influence of Coefficient of Variation on Error Probabilities 407 
 408 

Figures 7 and 8 illustrate the influence of the coefficient of variation on the probabilities of 409 

Type I and II errors, respectively, for =′kμ 1.0,  kln 0.5, and varying n . Points on the plots 410 

are obtained using 25000 realizations. The figures show that both Type I and Type II error 411 

probabilities (mostly) decrease with increasing coefficients of variation. For example, for 412 

k 1.0,  kln 0.5, and n 4, probabilities of Type I and Type II errors decrease from 0.03 413 

to 0.01 and from 0.15 to 0.12, respectively, when the coefficient of variation increases from 1 414 

to 2. However, the probability of Type II errors does tend to show a maximum at around a 415 

coefficient of variation of 1.0, so that this value of k  seems to be a “worst case” for the 416 

probability of Type II errors. 417 

      Influence of Number of Samples on Error Probabilities 418 
 419 

It is expected that in a QC program of a cement-based S/S construction cell, increasing n  420 

decreases the chances of making an error in the decision about the approval of the 421 

construction cell. When the entire cell is sampled at every point, the probability of making a 422 

decision error will be zero. Figures 9 and 10 show the influence of the number of samples on 423 

probabilities of making a Type I and a Type II error, respectively, for different normalized 424 

means (i.e., k 0.01, 0.1, 0.9, 1.0, 1.1, and 10.0), k 1.0 and  kln 0.5. These figures 425 

indicate that as the number of samples increase, the probabilities of Type I and Type II errors 426 
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decrease as expected. Also as expected, the probabilities of both types of errors are very 427 

close to zero when the normalized mean is far from 1.0. 428 

Application of the Simulation Results 429 
 430 

Simulations are performed for an example to illustrate the scalability the simulation results 431 

presented in the previous sections (which considered a 1×1 cell). The example construction 432 

cell size is 10 m×10 m which is modeled using 160×160 elements each of size 0.0625 433 

m×0.0625 m. The normalized mean and coefficient of variation of the point-scale hydraulic 434 

conductivity specified in the simulations are both 1.0, the normalized correlation lengths 435 

considered are 0.01, 0.05, 0.1, 1.0, and 10.0, and the number of samples used are 1, 4, 9, 16, 436 

and 25. Figures 11 and 12 present the comparison between the simulation results for 437 

probabilities of a Type I and a Type II error for the example problem and the case considered 438 

in this paper. Good agreements are obtained for both error probabilities between the two  439 

cases for all normalized correlation lengths, which illustrates the scalability of the simulation 440 

results presented in this paper. 441 

The authors are currently developing a follow-up paper to present the results of a statistical 442 

analysis of an existing cement-based S/S system. The details can be found in Liza (2014), but 443 

the basics are summarized as follows: the S/S site is roughly peanut shaped in plan, having a 444 

treated area of about 114,000 m2 with average thickness of 3.9 m. Over the site, 2086 445 

hydraulic conductivity samples have been taken, allowing for reasonably accurate estimation 446 

of the hydraulic mean (normalized by a regulatory value of 81 10  m/s), and coefficient of 447 

variation, which were found to be 0.468 and 1.679, respectively. Liza (2014) also performed 448 
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a goodness-of-fit test and found that the lognormal distribution gave a very reasonable fit to 449 

the hydraulic conductivity data. To estimate the correlation length, a relatively densely 450 

sampled rectangular subset of the site, having plan dimensions 55 m by 85 m, was selected 451 

over which a regular observational grid was interpolated. The estimated directional 452 

correlation lengths ranged from 9 m to 15 m, with an ‘isotropic’ correlation length estimate 453 

of 11 m. The remainder of this discussion concentrates on the 55 m by 85 m sub-site, since it 454 

has an estimated correlation length, but uses the k  and kv  values estimated from the entire 455 

site. 456 

The question now becomes: How do the results presented in this paper compare to the 457 

current sampling requirements specified by the USACE (2000) of 1 sample for every 500 m3 458 

of S/S material. First of all, the results presented herein are based on a 2-D model, and so the 459 

sampling requirements are given per unit area, not per unit volume. However, if the 460 

contaminated soil is in a layer which is thin relative to its areal extent, the 2-D specification 461 

is deemed to be quite reasonable. In any case, the actual volume of S/S material at the sub-462 

site is approximately 355 85 3.9 18,233 m   , requiring 18232/500 = 36 samples, according 463 

to USACE. 464 

To use the results of Figures 11 and 12, the rectangular sub-site must be approximated by a 465 

square of dimensions 255 85 4,675 mD D    , so that 68 mD  . For this square area, 466 

Figures 11 and 12 remain exactly the same except that the site size is now 68 m 68 m and 467 

when ln 1k    it means that ln 68 mk  . If the error probabilities are to be restricted to being 468 

less than 5% at ln 1k   , it can be seen that 25n   seems to be sufficient (giving a maximum 469 
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probability of a Type I error of around 2% and a probability of a Type II error of around 4%). 470 

This number of samples is in the same ballpark as that recommended by USACE.  471 

The maximum probabilities given in Figures 11 and 12 are approximately “worst case” since 472 

k  is selected to be 1.0 with 1kv  , the latter being approximately the worst case for the 473 

Type II error (see Figure 8). If the actual statistics for the site are used, 0.47k  , 1.7kv  , 474 

and ln 11/ 68 0.16k    , the results change as follows; 475 

1. The reduced correlation length will reduce the Type I error, suggesting that fewer 476 

samples could be taken, but corresponds to the worst case Type II error, so that 477 

25n   would still seem reasonable, 478 

2. The coefficient of variation of 1.7 leads to a reduction in the probabilities of both 479 

types of errors (see Figures 7 and 8), suggesting that this could lead to a reduction in 480 

the required number of samples, 481 

3. The reduction in the normalized mean leads to a significant reduction in the 482 

probabilities of both types of errors, suggesting again that a reduction in the required 483 

number of samples would be appropriate. 484 

It is to be noted that in general the actual statistics of an S/S field will not be known prior to 485 

the sampling (generally, if it were, there would be no need for the sampling), so that worst 486 

case results are recommended and conservative. In this light, it appears that the USACE 487 

(2000) sampling recommendations are quite reasonable for this site, leading to probabilities 488 

of Type I and II errors which are below 5%. 489 
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     Summary and Conclusions 490 
 491 

In this study, Monte Carlo simulations are performed using a modified version of the two-492 

dimensional random finite element method (RFEM) program, mrflow2d, to examine the 493 

influence of the correlation length, hydraulic conductivity mean and coefficient of variation 494 

on sampling requirements for a QC program of cement-based S/S construction cells.  The 495 

modification made to the program enables the sampling of the random field at prescribed 496 

locations.  497 

Based on the results obtained in this study, the following conclusions can be drawn: 498 

 For a specific number of samples in the QC program, the greatest probability of 499 

making an error in the hypothesis test occurs at a “worst case” correlation length, 500 

indicating that more samples are required at this correlation length. The “worst 501 

case” correlation lengths are found to be 1 to 5 times the effective construction 502 

cell dimension (square root of the construction cell area) for the probability of a 503 

Type I error and 0.1 to 10 times the effective construction cell dimension for the 504 

probability of a Type II error. If a single “worst case” value were to be 505 

recommended, it would be to set the correlation length equal to the effective 506 

construction cell dimension. The worst case correlation length leads to 507 

conservative sampling requirements to achieve target hypothesis error 508 

probabilities.  509 

 For a specific number of samples, the greatest error probabilities occur when k  510 

is approximately 1.7 for Type I errors and 1.1 for Type II errors. This suggests 511 

that more samples are required when the normalized mean hydraulic conductivity 512 
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is in the range 1.1 to 1.7 in order to ensure that cells are properly identified as 513 

being unacceptable or acceptable (note that although the population mean k  may 514 

be above critk , individual cells may very well have eff critk k ). For  a constant 515 

number of samples, the probabilities of Type I and Type II errors rapidly 516 

approach zero when the mean hydraulic conductivity deviates significantly from 517 

the regulatory value (e.g. k = 0.01, 0.1, and 10.0). This, of course, implies that 518 

targeting the mean hydraulic conductivity well below the regulatory value is 519 

desirable, although possibly more expensive. Note that targeting a lower mean 520 

hydraulic conductivity may have no benefits with respect to the required number 521 

of QC samples, since the worst case must always be assumed prior to sampling. 522 

 Increasing the number of samples is effective in decreasing both Type I and Type 523 

II error probabilities, which, of course, agrees with statistical theory. 524 

 For a specific number of samples, an increase in the hydraulic conductivity 525 

coefficient of variation, kv , generally results in an decrease in probabilities of 526 

Type I and Type II errors, at least when k 1.0 and 1kv  . This reduction in 527 

error probability is largely because the resistance to flow increases as kv  528 

increases, due to downstream blockages, so that the value of effk  decreases with 529 

increasing kv . The general implication is that when k  is approximately 1.0, more 530 

samples will be required to achieve acceptably small error probabilities 531 

when 1kv ;  or less. 532 

 When an actual S/S site is considered, it appears that the USACE (2000) sampling 533 

recommendation is quite similar to the recommendations made in this study to 534 
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achieve error probabilities of less than 5% under reasonably “worst case” 535 

statistical assumptions. Work is ongoing to determine how to best refine the 536 

sampling requirements suggested by this research for general use in practice. 537 
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List of Symbols 567 

 568 

The following symbols are used in this paper: 569 

 570 

A = Construction cell area perpendicular to flow 

D  = Effective dimension of the construction cell 

G  = Standard normal random field 

iG  = Local average of G over the i th element 

0H  = Null hypothesis 

aH   Alternative hypothesis 

i  = Hydraulic gradient across the construction cell 
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critk  = Regulatory hydraulic conductivity 

effk  = Effective hydraulic conductivity 

effk   = Normalized effective hydraulic conductivity 

Gk  = Sample geometric average 

ik  = Hydraulic conductivity of the  i th element 

jk  = Hydraulic conductivity of the j th sample 

kln
 

= Log-hydraulic conductivity field 

l  = Number of samples in each of the x  and y directions 

m  = Number of elements 

n  = Number of samples 

1
n  = Number of realizations where critG kk  while actual criteff kk    

2
n  = Number of realizations with critG kk   while actual criteff kk   

1
p  = Probability of a Type I error 

2
p  = Probability of a Type II error 

Q  = Total flow through the construction cell 

X  = Planar dimension of the construction cell in the x direction 

Y  = Planar dimension of the construction cell in the y direction 

YX /

 
= Aspect ratio of the construction cell 

i  = Correlation length in the i th direction of the kln  random field, =i 1, 2 

k  = Random field correlation length for hydraulic conductivity 

kln
 

= Correlation length of the kln random field 

kln  = Normalized correlation length of the kln random field 
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k  = Mean of the hydraulic conductivity field 

'
k  = Normalized mean of the hydraulic conductivity field 

kln
 

= Mean of the log-hydraulic conductivity field, kln  

kln
 

= Standard deviation of the log-hydraulic conductivity field, kln  

k  = Standard deviation of the hydraulic conductivity field 

k  = Coefficient of variation of the hydraulic conductivity field 

kρln

 

= Correlation coefficient between points in the kln random field 

kγln  = Variance reduction function when kln is averaged over some volume 

γ  = Same as kγln  

i  = Distance between points in the i th direction of the random field, =i 1, 2 
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Fig.1. Illustration of mesh discretization used in the simulations  

 

Fig. 2. Sampling locations shown as small black squares 
 



 

Fig. 3. Influence of correlation length on the probability of a Type I error for mean and 

coefficient of variation of 1.0 

 

Fig. 4. Influence of correlation length on the probability of a Type II error for mean and 

coefficient of variation of 1.0 
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Fig. 5. Influence of mean on the probability of a Type I error 

 

Fig. 6. Influence of mean on the probability of a Type II error 
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Fig. 7. Influence of coefficient of variation on the probability of a Type I error 

 

Fig. 8. Influence of coefficient of variation on the probability of a Type II error 
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Fig. 9. Influence of number of samples on the probability of a Type I error 

 

Fig. 10. Influence of number of samples on the probability of a Type II error 
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Fig. 11. Comparison of the simulation results for the probability of a Type I error between a (10  

m × 10 m) and a 1 × 1 cell 

 

Fig. 12.  Comparison of the simulation results for the probability of a Type II error between a (10  

m × 10 m) and a 1 × 1 cell	
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