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Abstract 

The fishing industry is one of the most dangerous occupations in the world. Extreme 

weather factors are an intrinsic part of the fishing operating environment and can present 

danger to fishers and fishing vessels. This thesis aims to investigate relationships between 

extreme environmental conditions and fishing incident activity levels, fishing incident rates 

and the severity level of fishing incidents in Canadian Atlantic Waters. The extreme 

environmental conditions in Atlantic Canada are most often associated with the passage of 

extratropical cyclones and icy water and can be characterized using wind speed, 

precipitation, air and sea surface temperature, Laplacian of pressure and ice coverage over 

the study area.  Random Parameters Negative Binomial Regression showed that there was 

a strong relationship between the studied weather factors and fishing activity levels overall 

and, furthermore, different weather factors had different effects on various vessel sizes.  

There were correlations between harsh weather factors and fishing incidents.  More 

specifically, incident rates increased in extreme weather conditions, but the effect of 

weather conditions were different in different seasons and some of factors were shown to 

be more significant than the others. Logistic Regression was used to examine how weather 

factors affect the severity level of fishing vessel incidents. The Laplacian of pressure, wind 

speed, sea surface temperature, and darkness were the most significant weather factors with 

respect to the severity level of fishing incidents associated with cyclones. Logistic 

Regression was also applied for individual fishery types, revealing that distinct fisheries 

can be effected by different weather factors. 

The relationships between environmental conditions and fishing safety can change over 

time due to the effects of climate change on weather patterns. A general framework was 

proposed to quantify fishing incident risks in the future due to changes in weather 

conditions. We concluded that the risk from environmental conditions is projected to 

increase in Gulf of St. Laurence and South of Nova Scotia, decrease to the North of 

Newfoundland and Labrador, and remain similar in rest of the study area by the end of this 

century.  

Finally this research suggests a knowledge mobilization structure to improve and update 

fishing policies with respect to the findings of this thesis in particular, as well as long and 

short term environmental considerations in general. The practical implications of this 

research include increasing the awareness of decision makers about fishers’ vulnerability 

towards extreme environmental conditions, thus providing better response resources to 

lower the consequences of fishing incidents, and potentially devising better accident 

prevention strategies. 
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Chapter 1 Introduction 

1.1. Introduction to the Problem: Commercial Fishing Safety in Atlantic Canada 

Commercial fishing in Canada can be traced back to the 15th century when Cod fishing 

drew Europeans’ attention to Atlantic waters. Since then, the industry has survived two 

world wars, big business taking over many independent fisheries, and various economic 

pressures (CCPFH, n.d.). Today commercial fishing contributes $6.8 billion to annual 

Canadian economic activities and provides more than 80,000 direct jobs in four main 

regions of Canada:  Pacific, Central and Arctic, Quebec, and Atlantic-based (Gulf of Saint 

Lawrence, Maritimes, and Newfoundland and Labrador) with the highest landed value and 

number of licensed fish harvesters in the Atlantic region (DFO, 2012). In many Atlantic 

areas, primary and secondary fisheries enterprises comprise the largest private sector 

employer and the whole region depends on fishing. But fishing is no easy job; hard labour, 

long work hours, hazardous working conditions, the competitive nature of the work, and 

harsh weather conditions are intrinsic parts of commercial fishing which puts thousands of 

fish harvesters at the mercy of the ocean every day. In fact, commercial fishing has the 

highest fatality rate among all industries in Canada. Workers Compensation Board (WCB) 

statistics show that 0.831 workers per 1000 died while on the job in the fishing industry. 

The average across all other industries is 0.044 worker fatalities per 1000 workers. This 

represents a 19 times higher risk of dying while at work in the fishing sector than in any 

other industry (WCBNS, 2012).  (Twenty-two fish harvesters lost their lives and 1500 were 
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seriously injured while fishing in the province of Nova Scotia in the past five years) 

(WCBNS, 2015).  

Numerous research studies have been carried out to ascertain how to decrease the risk 

associated with the fishing industry from many different aspects such as vessel 

characteristics, operational regulations, human related errors, and environmental 

conditions. Weather factors are part of fishing environment that fish harvesters assume to 

be one of the leading factors in fishing incidents (Safecatch, 2006). It is not hard to imagine 

that any of strong winds, rough seas, ice, and freezing spray can prevent easy navigation 

and endanger the safety of the crew.  

This thesis is mainly focused on the role of environmental factors, in particular extreme 

weather factors, on fishing vessel incidents in Atlantic Canada (the weather conditions in 

Atlantic Canada will be described in the following section 1.2). Although there is an 

extensive literature on different aspects of fishing safety, there are only a few studies that 

have tried to reveal the underlying patterns of weather factors and fishing incidents. 

Furthermore, up to the time of this research, nobody has quantified the risks associated 

with the characteristics of cyclones and fishing safety, nor forecast future risk variations 

due to changing conditions. Fishing safety is a complex system and its behaviour can 

change due to interactions between its various elements such as weather conditions and 

fishing traffic. The use of advanced statistical and mathematical methods make it possible 

for us to integrate fishing traffic, fishing incidents, and extreme weather data from different 

projects, disciplines, time spans, and geographic regions into a consistent framework. This 

step is essential to investigate relationships between cyclone weather factors and fishing 
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safety in present and future time. Another aim of this research is to use effective 

visualization and knowledge mobilization methods to make a bridge from statistical 

findings to fishing safety practices.  

1.2. Weather Conditions in Atlantic Canada 

Atlantic Canada is said to have the most varied severe weather conditions in the country 

such as icebergs and extratropical cyclones due to climatic and geographic features of the 

region (Helicon Publishing, 2007). Ice-covered waters can affect the navigation of vessels, 

block their familiar paths, cause damage to a vessel’s hull, and/or trap small vessels.  

Extratropical cyclones are identified as any storm that occurs in the middle latitudes of the 

Earth and are characterized by strong winds, precipitation and temperature changes 

(Ulbrich et al., 2009).  Extratropical cyclones get their energy from a temperature contrast 

of cold and warm air masses and can be at any intensity (i.e. from weak to very strong) 

(NHC, n.d.). The intensity of extratropical cyclones can be measured via different criteria 

such as central sea level pressure, wind speed, local Laplacian of pressure, and vorticity.  

The local Laplacian of pressure, or simply Laplacian of pressure, is the indicator of 

pressure difference between centre of a cyclone and its frontiers, while vorticity is a 

clockwise or counter-clockwise spin in the troposphere caused by a change in wind 

direction or wind speed with altitude (Serreze et al., 1997).  Storms with high intensity (e.g. 

high Laplacian of pressure, high vorticity, strong winds, etc.) may have serious 

consequences such as fatal injuries in fishing incidents.  
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In this study, the percentage of area covered by ice (as an indicator of icy waters), wind 

speed, air and sea surface temperature, precipitation, and Laplacian of pressure (or 

vorticity) are chosen as characteristics of extratropical cyclones to represent extreme 

weather conditions in Atlantic Canada.  

1.3. Fisheries in Atlantic Canada 

Fisheries in Atlantic Canada are spatially distributed inshore, mid-shore, and offshore. 

Main target species are shrimp, groundfish, herring roe, seal, crab, lobster, tuna, salmon, 

scallop, and sea urchin. Many fishing vessels are used for multispecies fishing. 

Table 1-1 presents the Department of Fisheries and Oceans (DFO, 2008) classification of 

vessel lengths with respect to fishery types. Lobster fishing vessels are mainly smaller than 

45’ and herring roe fishing vessels are larger than 65’, but fishing vessels related to other 

species can be of any size.  

Table 1-1. Classification of fishing vessel length and related fisheries (DFO, 2008) 

Class Fishery 

1 - Less than 35' Shrimp, Lobster, Crab, and Groundfish 

2 - Between 35' and 45' Shrimp, Lobster, Crab, and Groundfish 

3 - Between 45' and 65' Shrimp, Crab, and Groundfish 

4 - Greater than 65' Shrimp, Crab, and Herring Roe 
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Fisheries management in Atlantic Canada is based on three main systems: Individual Quota 

(allowable catch by weight for a given period of time per license), limited traps, and 

competitive (fishing for a given period of time) (DFO, 2008) 

Weather conditions can have different effects on individual fishery types based on their 

location, vessel size, and management method. Larger vessels are typically more stable in 

strong winds and can carry more safety equipment. On the other hand, larger vessels can 

go further from shore, and therefore not be able to come back to harbour as readily in the 

case of an upcoming storm (cyclones can occur anywhere in the ocean; the spatial 

distribution of cyclones is illustrated in chapter 5). When fishing is especially competitive 

during a short fishing season, fish harvesters may go fishing or stay out in the ocean despite 

extreme weather condition in order to catch their quota.  

1.4. Fishing Risk Management with Respect to Extreme Weather Conditions 

Brooks and Pelot (2008) proposed a risk framework that illustrates the various phases of a 

risk event and strategy options to deal with it at each step (Figure 1-1). 
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Figure 1-1. The risk management framework. Source: Brooks and Pelot, 2008. 

In this study, Event is a fishing incident. It is defined as a discrete event in time that may 

last from a few minutes to a few days. Hazards includes a list of factors that may lead to a 

fishing incident such as weather conditions, engine failure, etc. This research focuses only 

on environmental conditions and doesn’t investigate other Hazards.  Delivery Mechanism 

indicates how a specific Hazard can affect an Event, for example whether a particular storm 

passing by a given region will affect a specific fishery type. Immediate Consequences 

refers to the consequences that happen during and just after an Event (e.g. damage to the 

fishing vessel, person in water, etc.). Ensuing Consequences is mainly about the 
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consequences sometime after an Event (e.g. the time it takes for a vessel to be repaired or 

to clean up a spill from an accident). Ultimate states present the final stage at which fishing 

activities can be resumed (either similar, better, or worse state then the state before an Event 

occurrence). 

There are different strategies to reduce the risk associated with each stage. The first group 

of strategies is entitled “Interfere with the system” and consists of Prevention and 

Detection. Prevention indicates actions undertaken to decrease the likelihood of an Event 

occurring with respect to determined Hazards. Detection presents the stage at which the 

imminent occurrence of an Event because of Hazards is detected by decision makers (i.e. 

Vessel Master, Fishing Company, etc.). “Strengthen System” is the second class of 

strategies that includes Vulnerability and Resilience assessments. Vulnerability is defined 

as susceptibility to negative impacts from a Hazard revealed only through the occurrence 

of that Hazard. In other words, it represents how likely a Hazard (extreme environment) 

can lead to an Event (fishing incident) in a particular set of conditions (e.g. fishery type, 

vessel size, etc.) and the magnitude of the consequences. Resilience refers to the capacity 

of a system (fish harvesters, fishing vessel, fishing company, etc.) to handle variations, 

adapt to potential damages, and cope with the Consequences of an Event (fishing incident).  

The final class of strategies is entitled “Lower Consequences” which consists of Response 

and Recovery. Response actions can be applied at both stages (Immediate and Ensuing 

Consequences). For example, the Canadian Coast Guard can save a person in the water 

(Response to Immediate Consequence) and then this person may need medical help on land 

(Response to Ensuing Consequence). Finally Recovery shows the stage at which the system 
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returns to an ultimate state (e.g. insurance pays the cost of medical treatment and the fish 

harvester can go back to work after a while). 

We adopt this framework as a risk management structure for this study. Extreme 

environmental conditions are chosen as the Hazards and the three main phases of the study 

are defined based on the stages of the risk management structure of Figure 1-1, as follows. 

Fishing Incident Occurrences 

This phase aims to reveal the relationship between extreme weather factors and fishing 

incident occurrences. This section is mainly associated with Prevention and Detection. 

Weather factors are part of the fishing environment and severe environmental conditions 

can cause or contribute to incident occurrences in different ways (i.e. Hazards). Strong 

winds can affect the stability of vessels, ice can cause damage to the hull of a vessel, 

precipitation can decrease visibility and lead to a collision, a large difference between air 

and surface temperature can result in freezing spray and slippery decks, and low air 

temperature can also affect the proper functioning of crewmembers.  Weather factors can 

also affect fishing traffic levels, and this effect is assumed to be dependent on vessel size. 

Small vessel sizes in general are more vulnerable to extreme weather conditions compared 

to medium and large size vessels. However, since larger vessels usually venture further 

offshore, they may not be able to take shelter or return to harbour in time when an intense 

storm arises.  

This phase of the research applies various statistical methods to reveal the underlying 

patterns of harsh weather factors (i.e. low air and sea surface temperature, strong winds, 
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high amount of precipitation, high ice concentration, and high Laplacian of pressure) 

associated with traffic levels of fishing vessels, fishing incident occurrences, and fishing 

incident rates (i.e. number of incidents over number of fishing trips). The statistical 

methods are chosen based on the characteristics of the problem and related literature, and 

statistical tests such as log-likelihood ratio test are carried out to choose the method with 

the best statistical fit for the data on hand.  

To take seasonal weather trends into account, analyses have been carried out for each 

season individually. The analysis of the effect of weather factors on fishing traffic levels 

were also carried out for different vessel-length classes in Table 1-1.  

Severity Levels of Fishing Incidents 

 This phase studies the relationship between the consequences of fishing incidents (e.g. life 

loss, vessel loss, minor injury, etc.) and extreme environmental factors. This section is 

mainly focused on Strengthening the System and Lowering the Consequences. It addresses 

Vulnerability and Response: Immediate and Ensuing Consequences, but doesn’t extend to 

Recovery and getting to Ultimate State. 

 Weather factors can affect the severity of incidents in different ways; in the case of a 

person in the water, low sea surface temperature can be a critical factor; low visibility (i.e. 

high amount of precipitation or fog, or darkness) may lead to collisions with ice and the 

loss of the vessel; strong winds and consequently high waves can put distance between a 

person in the water and their vessel in a short time. Harsh weather conditions can also delay 
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the arrival of help since Coast Guard vessels or helicopters have to follow safety 

regulations and may not be able to respond in very bad weather conditions.  

In this phase, to measure the consequences of incidents, life loss or potential life loss is 

used to classify incidents into severe or non-severe groups. Statistical methods are then 

applied to fishing vessel incidents, air and sea surface temperature, wind speed, 

precipitation, Laplacian of pressure, ice coverage, and time of incident (day or night) to 

determine which environmental factors are significant in explaining severity levels of 

incidents.  

Since different fishery types are generally associated with different vessel types, different 

fishing seasons, and different fishing locations, statistical models are also built for 

individual fishing types to determine the significant weather factors associated with 

impacts for each fishery type.  

The Future of Fishing Safety 

 To conduct long term planning for commercial fishing safety, it is necessary to investigate 

climate change effects. This phase aims to suggest a general framework to quantify future 

fishing risks due to changes in weather patterns. This framework first builds relationships 

between fishing safety and environmental conditions based on historical data and then 

predicts future risks according to these model outputs. This part of the research mainly 

covers Prevention, Detection, Vulnerability, and Response stages with respect to long term 

changes in extreme weather conditions (i.e. changes in Hazards). 
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This framework is adopted to estimate the spatial distribution of fishing incident rates in 

Atlantic Canada towards the end of the century. Fishing vessel incident data and historical 

vorticity data (as an indicator of storms hitting Atlantic waters in the past) are used to 

determine relationships between frequency and intensity of storms and relative fishing 

incident rates. We use tree-based models to extract these relationships from historical data 

and present them as rules (e.g. storms with vorticity higher than 8.2 (10-5 s-1) may lead to 

high fishing incident rates). These rules are then applied to projected storms in the period 

of 2081-2099 to estimate the spatial distribution of fishing incident rates in this period and 

compare it to the period 1980-2000. The results can provide information for strategic 

planning to ensure safe fishing practices despite changing weather patterns.  

1.5. Knowledge mobilization 

It is crucial that all people in, and involved with, the commercial fishing industry (e.g. fish 

harvesters, federal and provincial government, NGOs, etc.) attempt to ensure that fishing 

activities are practiced safely in harsh weather conditions. In other words, fish harvesters 

should be aware of the potential threats arising from extreme weather conditions; fishing 

policies and regulations should address short and long term weather considerations; and 

search and rescue planning should be carried out anticipating extreme weather events. All 

these considerations require that the findings from related research studies be presented in 

readily understandable language and through diverse means to decision makers. To achieve 

this goal, the final phase of this thesis adopts a knowledge mobilization structure (i.e. 

circulating the right information to the right people at the right time) to link the science to 

policy. First policies and regulations are reviewed to examine whether they are in 



12 

 

alignment with findings of the proceeding phases of this research (i.e. Chapter 3 – Fishing 

Incident Occurrences, Chapter 4– Severity Levels of Fishing Incidents, and Chapter 5 – 

The Future of Fishing Safety) and recommendations are made to improve general fishing 

safety with respect to long and short term weather considerations. 

1.6. Thesis Outline 

This thesis is in manuscript-based format and each phase of the research is presented as a 

manuscript submitted to a journal. In all of the presented manuscripts, S. Rezaee made a 

substantial contribution to the conception and design of the model, and the analysis and 

interpretation of the data. All references cited in the chapters are included in a single 

complete reference list at the end of thesis. 

  To summarize, this thesis is focused on: 

1. The existing relationships between extreme environment and fishing safety; 

2. Changes in fishing safety over time due to climate change effects; 

3. Recommendation on how fishing safety can be improved with respect to findings 

from 1 and 2.  

In other words, this dissertation aims to the answer questions about how to develop, 

integrate, and present the relevant information to the decision makers. The questions that 

need to be answered are: what type of data and analysis results are needed and when, how, 

and to whom should they be presented? To answer these questions, this thesis is organized 

as follows: 
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 Literature Review: This section follows the examination of weather factors in fishing 

safety studies and establishes a list of significant weather factors based on the cited 

literature. The literate review that is related to more specific topics such as statistical 

methods, climate change, and knowledge mobilization are presented in the related 

chapters.  

 Fishing Incident Occurrences: This chapter applies various statistical methods and 

compares them to determine the most appropriate method to reveal the relationship 

between extreme weather factors and fishing incident occurrences.  

 Severity Levels of Fishing Incidents: This part of the dissertation investigates the 

consequences of fishing incidents and examines the relationship between extreme 

weather factors and severity levels of fishing incidents. 

 The Future of Fishing Safety: To ensure fishing safety over long term, a framework 

is proposed in this chapter to estimate fishing incident risk with respect to potential 

climate change models towards the end of this century.  

 Knowledge Mobilization: This section uses knowledge mobilization concepts to link 

the findings of Chapters 3, 4, and 5 to Canadian fishing related policies and 

recommends improvements with respect to short and long term weather 

considerations. 

 Conclusion: The final part of these thesis summarizes the results from all the phases, 

points out the contributions, clarifies limitations of the results, and makes 

recommendation for pursuing future works in this area. 

Figure 1-2 illustrates the thesis chapters and their interconnection: 
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Figure 1-2. Thesis Outline 
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Chapter 2 Literature Review 

There are many different interpretations of risk in the literature. To be consistent, in this 

research we adopted ISO 31000 (ISO, 2009) definition: “Risk is the effect of uncertainty 

on objectives and it is often expressed in terms of a combination of the consequences of an 

event (including changes in circumstances) and the associated likelihood of occurrence.” 

Based on this definition fishing risk can be characterized as the combination of various 

causes and consequences as shown in Figure 2-1. Generally speaking, environmental 

conditions (e.g. harsh weather), vessel-related problems (e.g. instability), human-related 

issues (e.g. fatigue) and/or the combination of these factors can cause different types of 

fishing incidents. These incidents can bring harm to individuals, damage to the vessel, 

cargo, or the environment, or negatively impact the reputation and/or financial situation of 

the fishers or their company when applicable.  The objectives referred to in the definition 

are thus to avoid or mitigate any, or all, of these consequences. 

Lloyd’s Register (2000) categorizes different maritime incident types as: 

 Foundered: Sinking as a result of heavy weather, taking water in, breaking in two, 

etc.  

 Missing: Not receiving any news after a reasonable period of time. 

 Fire/Explosion: Vessel lost due to fire or explosion. 

 Collision: Striking or being struck by another ship, regardless of whether underway, 

anchored, or moored.  
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 Contact: Striking an external item such as drilling rigs/ platforms (not another ship 

or sea bottom); in some texts this is referred to as “allision”. 

 Wrecked/Stranded/Grounding: Touching sea bottom, sandbanks, seashore, or 

underwater wrecks. 

 Other: war losses, hull/machinery damage or any other failure that cannot be 

categorized in the aforementioned groups. 

However, when fishing incidents are studied, there is another category of incidents that 

should be added to the above list as well: 

 Capsizing: Overturning due to instability of the boats (Wang et al, 2005).  

 

•Environmental 
Conditions

•Vessel-Related 
Problems

•Human-Related 
Problems

Causes

• Foundered   

• Missing

• Fire/Explosion

• Collision

• Contact

•Grounded

• Capsizing

Fishing 
Incidents Types

•Harm to Individuals

•Damage to Property

•Damage to 
Environment

•Financial/Reputation 
Damage

Effects

Figure 2-1. Fishing Incidents: Causes and Effects 
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This chapter mainly attempts to review the studies on the relationships between weather 

conditions and fishing safety in general, and more detailed and specific literature related to 

climate change, knowledge mobilization, and statistical methods will be presented in 

literature review section of each related manuscripts (i.e. Chapters 3 ,4 ,5 and 6). It must 

be noted here that despite the varying importance of the different fishing incident types or 

fishing incident consequences, this review is mainly focused on the causes of incidents and 

doesn’t discriminate between the different incident types and consequences. 

Studies of fishing incidents causes are mainly focused on determining the most important 

factors. As mentioned before, these factors can be classified as environmental, vessel, 

and/or human related. Several representative studies, their critical factors, methods, and the 

relevant insights from the study are presented in Table 2-1. Each work is further explained 

in more detail in the following text.  

Table 2-1. Summary of fishing incidents related studies 

Article Factors Methods Insights 

Rothblum 

(2000) 
 Environmental 

 Vessel-related 

 Human-Related 

Literature 

Review 

Getting an insight about the 

linkage between 

environmental, vessel, and 

human related causes in marine 

incidents 

Jin et al (2001)  Environmental 

 Vessel-related 

Statistical 

Modelling 

The application of statistical 

modelling in quantifying risk 

Understanding the importance 

of precipitation for fishing 

incidents 
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Article Factors Methods Insights 

Jin and 

Thunberg 

(2005) 

 Environmental 

 Vessel-related 

Statistical 

Modelling 

The application of statistical 

modelling in quantifying risk 

Understanding the importance 

of wind speed in fishing 

incidents 

Understanding that different 

vessel sizes may encounter 

different risks 

Wu et al.  

(2005, 2008, 

2009) 

 Environmental Statistical 

Modelling 

Better understanding of the 

relationship between weather 

factors and fishing incidents 

Understanding the importance 

of wave height, ice 

concentration, air and, sea 

surface temperature in fishing 

incidents. 

Understanding the  importance 

of fishing activity levels on risk 

estimation 

Brennan (2008)  Environmental 

 Vessel-related 

 Human-Related 

Survey Better understanding of fish 

harvesters’ decision making 

process 

Understanding that different 

vessel sizes may encounter 

different risks 

Chatterton 

(2008) 
 Environmental 

 Human-Related 

Historical 

Data 

Exploration 

Understanding the importance 

of sea surface temperature, 

icing, and wind in fishing 

incidents 

Morel et al 

(2008) 
 Environmental 

 Human-Related 

Simulation/ 

Survey 

Better understanding of fish 

harvesters’ decision making 

process in harsh weather 

conditions 

Niclasen(2010)  Environmental 

 Vessel-related 

Literature 

review 

Better understanding of the 

relationship between waves 

(and winds) and vessels’ 

stability 
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Rothblum (2000) suggested that fatigue, inadequate communication, inadequate general 

technical knowledge, inadequate knowledge of own ship systems, poor design of 

automation, decisions based on inadequate information, faulty standards, policies, and/or 

practices, poor maintenance, and hazardous natural environments can contribute to human 

error and incidents in the marine industry. 

Jin et al. (2001) investigated the significant factors in marine incidents by means of 

mathematical modelling.  The variable in question was the number of vessel total losses 

and number of fatal or non-fatal crew injuries in the occurrence of commercial fishing 

vessel incidents. Unlike Rothblum (2000), their main focus was on vessel-related and 

environmental accidents which represent 57% of fishing incidents in the period of 1994-

1999 based on a US Coast Guard report. They estimated the probability of a total loss or 

injury in this category of accidents as a function of: 

 Event probability, and 

 Severity of the event given that it has occurred. 

They developed a Probit Regression model to predict the probability of total loss, and used 

a Negative Binomial Regression to predict the number of fatalities and non-fatal injuries. 

A Probit model is a type of regression model where the dependent variable is binary. The 

Probit model employs Probit link function which can be expressed as: 

Pr (Y=1|X) = ϕ (X' β)                                                                                                     (1.1) 
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where Y is the binary response variable (i.e. fishing incident probability) , X is the matrix 

of predictors (which will be listed shortly), β is the coefficient matrix, and ϕ is the 

cumulative distribution function of the standard normal distribution (Hosmer et al., 2013). 

The Negative Binomial Regression is a method that can accommodate count data, and the 

expected frequency for each possible value of the response variable (i.e. 1, 2, 3, ...) is 

assumed to be a function of explanatory variables as follows: 

𝜇𝑖 = 𝑒𝛽𝑋𝑖+𝜀𝑖                                                                                                                       (1. 2) 

where µi is the expected frequency of the response variable i (i.e. number of lives lost given 

that a fishing incident has happened), β is the matrix of coefficients, Xi is the matrix of 

predictors of the related response variable, and ε is the error term (Chang, 2005).  

The predictors used in Jin’s model are as follows: 

 Type of the accident: 

o Collision, 

o Fire/explosion, 

o Material or equipment failure, 

o Sinking, and 

o Grounding. 

 Cause of the accident (vessel based or environmental). 

 Operational conditions:  

o Location (inland waterway or not), and  

o Weather conditions: 
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 Presence of fog, 

 Presence of precipitation, 

 Wind speed. 

 Waterway status (calm, choppy or very choppy). 

 Time of accident (night or daytime). 

 Vessel characteristics: 

o Size, 

o Age, 

o Hull type, and 

o Fuel type. 

 Real price-fish 

The results of Probit Model showed that capsizing, sinking, fire/explosion, and 

environmental causes (i.e. precipitation and night time) will increase the likelihood of total 

losses in fishing incidents on coastal and ocean waters. 

The results of the Negative Binomial Regression indicated that fire/explosion, capsizing, 

and heavy precipitation are associated with high fatality rates. The fatality rate decreases 

when the price of fish catches increases: the higher the price of fish, the greater the 

incentive to reduce vessel damage to avoid interruptions; also, higher-priced catches are 

likely to result in greater funds available for repair and maintenance of fishing vessels. (Jin 

et al., 2001).  
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Later in 2005, Jin and Thunberg presented an assessment of key factors affecting incident 

occurrence in Northeastern United States through applying a Logistic Regression model. 

Logistic Regression estimates the probability of either level of the binary response variable 

occurring (i.e. incident occurrence that can be zero or one). The logit function maps the 

unit interval of probability [0, 1] onto the real domain (-∞, +∞) and the regression is carried 

out:  

Θ = 
1

1+e-(β+β1x)
                                                                                                                    (1.3) 

where θ is the probability of the positive event occurring (i.e. fishing incident), X is the 

matrix of predictors (which will be listed shortly), β is the intercept, and β1 is the matrix of 

coefficients of predictors (Hosmer et al., 2013) 

Jin and Thunberg’s database includes daily data of fishing vessel activities, fishing vessel 

incidents, wind speed, and spatial information on the incidents from 1981 up to 2000. The 

wind speed was recorded hourly from offshore buoys and nearshore weather stations. Each 

fishing area was assigned to the nearest weather recording station. The results revealed that 

accident probability is a function of wind speed, vessel location, time of the year and vessel 

characteristics. Higher winds speeds are associated with greater accident probability. 

Accidents were likely to happen near shore with the lowest possibility in the spring. 

Medium size vessels had the highest rate of incidents (number of incidents per unit of time) 

(Jin and Thunberg, 2005). 

Wu (2005) examined the statistical relationship of weather patterns on fishing vessel 

incidents in Atlantic Canada. The main objective of the research was to develop a model, 
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which can predict the probability of incidents or the level of severity based on weather 

conditions. In her research, she worked with three types of datasets: 

1. Incident data. 

2. Traffic data, and 

3. Weather data. 

Incident data (SISAR): When a Joint Rescue Coordination Centre (JRCC) of the Canadian 

Coast Guard receives a report of an incident, they dispatch the most available and suitable 

Search and Rescue (SAR) resource to provide assistance, and a record is created in the 

SISAR database. The SISAR (Search and Rescue Program Information Management 

System) database includes detailed information about the incidents such as time and 

location, type of vessel, type of incident, severity, etc.  

Traffic data (ZIF): The Zonal Interchange Files database provides detailed information 

about commercial fishing trips in Northwest Atlantic Fishing Organization (NAFO) 

subdivisions. The database includes information about vessel identification number, gross 

tonnage, home port, etc.  

Weather data:  

 Wave and Wind: AES40 North Atlantic Wave hindcast model for 1958-2003 

generated data at six-hour intervals.  

 Fog: There were no systematic historical records for the presence of fog in Atlantic 

Canadian waters at the time of research. Nevertheless, fog was predicted based on 
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sun angle, inversion base height, sea surface temperature and the difference between 

dew point temperature and sea surface temperature, all factors that were available. 

 The data about other weather factors and ice coverage were extracted from the 

National Ocean and Atmospheric Association (NOAA) database. 

The weather factors included in Wu’s (2005) analysis were as follows: 

 Wave height, 

 Air temperature, 

 Sea surface temperature, 

 Freezing spray, 

 Ice concentration, 

 Presence of fog, and 

 Amount of precipitation. 

Wu’s study area was a specified region of the Atlantic Ocean on the East Coast of Canada, 

restricted to the most limited available gridded weather areas. Temporal coverage was 1997 

to 1999, during which there were 2186 fishing incidents in the study area. 

Classification tree-based modeling was used to reveal relationships between weather 

factors and incident features. The results showed that the most dominant factor is traffic 

count, and when the traffic variable was excluded from the model, wave height became the 

most significant factor. Presence of fog and precipitation were not significant factors based 

on statistical modelling of incident occurrence (Wu, 2008). 
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To determine the relationship between weather factors and the severity of incidents, the 

incident data were divided into two groups based on the Canadian Coast Guard 

classification: severe and non-severe incidents. A Logistic Regression model was used to 

estimate the severity levels of incidents. The results showed that wave height and ice 

concentration were the most important factors in the prediction of the severity level of an 

incident (Wu et al., 2005). 

As mentioned before, the most significant factor in incident occurrence is the traffic. To 

circumvent the dominance of the traffic level, one approach is to find the relationship 

between weather factors and relative incident rate, which is defined as the number of 

incidents occurring for a given amount of traffic, on a given day within a certain grid cell 

given that there was at least one incident that took place within that grid-day. The term 

Relative Incident Rate (RIR) emphasizes relative comparisons and not absolute 

probabilities of incidents. Tree-based modelling was chosen as a data mining technique. 

The results revealed that fog and the amount of precipitation were not as critical as wave 

height, ice concentration, and air and sea surface temperature (Wu et al., 2009). 

However, unlike road accidents analysis which has continued to develop toward more 

complicated and comprehensive mathematical modelling, fishing incident related studies 

that have applied advanced statistical methods are scarce and the main part of literature is 

built on interviews, surveys, and historical data exploration.  

An interview with 46 fish harvesters in Newfoundland and Labrador revealed that 85% of 

them have experienced “being on board in extreme weather” (Brennan, 2008). When the 

fishing seasons are short and/or about to close, fishermen are more likely to go on fishing 
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trips even when bad weather prevails. If a harvester had a particularly bad year, he/she will 

probably take greater risks to set out in bad weather or stay in a storm with inadequate 

safety equipment. The results also indicate that the crew on larger ships are less likely to 

consider weather as a safety problem and they are more tempted to go out fishing despite 

weather warnings. They may also go out to sea in good weather but after weather conditions 

deteriorate, they may be too far out to take shelter. Based on the results, Brennan (2008) 

listed biophysical elements in fishing safety as follows: 

1. Gender of the harvester, 

2. Species fished, 

3. Fishing area, 

4. Nature of the fishing grounds, 

5. Weather conditions, 

6. Water temperature, and 

7. Vessel design. 

Morel et al. (2008) argued that to improve safety in the fishing industry, it is necessary to 

reinject resilience into the fishing safety management system. Resilience here refers to the 

ability of the system to recognize the problem and make safe decisions. This kind of 

decision is called a sacrificial decision which means making a decision in a way that 

balances productivity and safety or security. They created a simulation of a 14-day fishing 

tour using written scenarios. Skippers volunteering as subjects could request information 

throughout the experimental situations. The available information is listed as follows: 

 Information the skippers receive from the shore:  
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o The weather forecast for the next 24 hours 

o The current price of fish/prawn 

 Information exchanged between the skippers: 

o The geographical location of colleagues at sea, 

o The quantity of catch over the latest day of fishing, 

 Information directly linked to the fishing activity 

o The quantity of catch since the beginning of the fishing tour, 

o Breakdowns or damage to the fishing gear, 

 Permanent information throughout the fishing tour: 

o The price of diesel fuel, 

o Information related to the last fishing tour, and 

o Fixed expenses such as supplies, engine oil, etc. 

The two contrasting scenarios are: 

 SC1: very satisfying catch and steadily worsening weather conditions 

 SC2: very poor catch and weather conditions are identical to SC1. 

They asked skippers to make decisions in four stages: Day 0, Day 2, Day 6 and Day 10. 

Each stage was assigned a given safety level which is directly related to the weather 

conditions. These safety levels were determined based on experts’ opinions. Weather 

conditions included wind force, visibility, condition of the sea, and height of swell. They 

could choose an action from the following list: 

a) Continue operations in the same fishing zone, 



28 

 

b) Leave the fishing zone for another, 

c) Temporarily suspend the fishing activity, 

d) Return to harbour, or 

e) Other. 

Their reason for making each decision could be: 

 They felt they could handle the situation, 

 The situation was too dangerous for their crew, 

 The situation was too dangerous for their fishing gear, 

 They were satisfied with their catch, and 

 Other. 

The results showed that they never consider coming back to the harbour or stopping the 

fishing activity. If they feel the situation is too dangerous, they may go to another fishing 

zone where their colleagues are safely catching. In fact they rely on the information they 

can get from their colleagues and trust them or consult them more often than official 

weather reports (Morel et al., 2008). 

Based on historical data, one of the major causes of incidents is icing. The accumulation 

of ice on a vessel’s superstructure can cause instability, which in turn may lead to capsizing.  

In 1991, the United States Coast Guard established a series of icing and stability standards. 

Chatterton (2008) examined these standards to figure out if they are suitable for the vessels 

over 79 ft. long. Based on that research, seasonal darkness, cold water, high speed winds, 
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icing, fatigue and short fishing seasons are the most important factors in icing-related 

accidents.  

Niclasen et al. (2010) studied the important sea state parameters for small vessels’ safety 

and warning indices, which have been adopted in related literature.  A vessel is considered 

to be small if its length is shorter than average ocean wavelengths. Since the average 

wavelength is about 50-200 m, their study focused on vessels smaller than 45 m. Waves 

are assumed to create risk for vessels by affecting their stability and their study supported 

this assumption by showing that the incident rate rises with deteriorating weather and sea 

state conditions. One steep wave or synchronous rolling in a series of waves with a 

frequency close to the vessel’s own rolling period can lead to capsizing. It has been 

concluded that small vessel safety is dependent on (Niclasen et al., 2010):  

 Severity of the sea state: 

o Head sea: A sea in which waves or currents are running directly against the 

course of a ship. The danger here is slamming or shifting of cargo. 

o Following sea: A following sea refers to a wave direction that matches the 

heading of the boat. It is dangerous when waves are high.  

o Beam sea: A sea whose surface motion is approximately at a right angle to 

the course of a vessel. Sailing in beam seas can result in large roll angles 

and, in extreme conditions, the vessel can capsize.  

o Quartering sea: A sea striking a ship's quarter at an angle of about 45 

degrees to its heading. Waves in this situation can affect the stability of the 

vessel significantly.   

http://en.wikipedia.org/wiki/Following_sea
http://www.merriam-webster.com/dictionary/quartering%20sea
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o Crossing sea: A cross sea is a sea state with two wave systems traveling at 

oblique angles. It is particularly dangerous as the waves will approach a 

vessel from different directions. 

 The occurrence of particularly dangerous waves. A vessel is particularly vulnerable 

to broadside breaking waves that are relatively large compared to the size of the 

vessel. 

 Directionality of waves can affect the vessel’s stability. 

 Vessel’s and operator’s preparedness to deal with hazardous situations. There are 

some controllable factors, which can increase the danger in severe sea state 

conditions such as overloading, unsecured cargo, and unsecured openings. 

Although determining the important factors in fishing incidents by using the firsthand 

experience of fish harvesters is of great value, there is a gap in the fishing safety literature 

about how to use these factors in predicting incidents and consequently preventing them. 

Applying advanced mathematical modeling, which is the main focus of this study (these 

mathematical methods will be explained in detail in relevant chapters), can help to evaluate 

potential critical factors in fishing incidents, use them to predict and reduce the future risks 

due to potential climate change effects, and provide means to put the scientific results into 

practice (i.e. knowledge mobilization).   
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Chapter 3 Fishing Incident Occurrences 

Title: The Effect of Extreme Weather Conditions on Commercial Fishing Activities 

and Vessel Incidents in Atlantic Canada 

Authors: Sara Rezaee, Dr. Ronald Pelot, Dr. Alireza Ghasemi 

Abstract 

Extreme weather factors as a part of the commercial fishing operating environment can 

present danger to fish harvesters and fishing vessels.  In Atlantic Canada, these hazardous 

conditions are most often associated with the passage of extratropical cyclones. This 

research aims to identify extratropical cyclone weather conditions that are associated with 

the occurrence of maritime incidents, categorized both spatially and temporally. 

Quantifying the effects of cyclone weather factors on fishing traffic levels is a 

complementary objective. Negative Binomial Regression, Zero-Inflated Negative 

Binomial Regression, Fractional Logit Regression, and Random Parameters Negative 

Binomial Regression were applied to recognize patterns in historical fishing activity levels, 

incident data, and cyclone weather factors in Atlantic Canada. The results suggest that there 

is a strong relationship between the studied weather factors and fishing activity levels 

overall and, furthermore, different weather factors can have different effects on various 

vessel sizes.  There are also correlations between harsh weather factors and fishing 

incidents with respect to activity levels.  More specifically, incident rates increase in 

extreme weather conditions. 

 

Key words: Fishing Vessel Incidents, Fishing Vessel Traffic, Extreme Weather 

Conditions, Random Parameters, Negative Binomial Regression, Zero-Inflated Negative 

Binomial Regression, Fractional Logit Regression. 
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3.1. Introduction 

The fishing industry is one of the most hazardous occupations in the world. Fish harvesters 

are 52.4 times more likely to have a fatal incident at work compared to other occupations 

in Great Britain (Roberts, 2002). Fishing is also one of the most dangerous occupations in 

Canada with a fatality rate of 1.15 per 1000 persons, which is almost equivalent to the top-

listed risk occupations of forestry workers. In addition to the high risk of fatality, fish 

harvesters are also at risk of a wide range of non-fatal injuries during their work at sea 

(Murray et al., 1997). 

Mariners consider the most dangerous fishing situations to be associated with weather-

related factors (bad weather/poor forecasts), vessel characteristics (such as size and 

stability), and lack of safety equipment (Safecatch report, 2006). There is an extensive 

literature investigating different risk factors in fishing incidents. In the majority of them, 

the weather conditions are part of the study. Results of a report prepared by the National 

Research Council of Canada and the Canadian Coast Guard in 2005 showed that there have 

been more than 1000 incidents in Canadian waters due to icing since 1970 (Kubat and 

Timco, 2005).  Chatterton (2008) demonstrates that seasonal darkness, cold water, high 

speed winds, icing, fatigue and short fishing seasons are the most important factors in icing-

related accidents for the vessels over 79 ft. long. Wu et al. (2005, 2008, and 2009) applied 

classification tree-based modelling to study the historical patterns of fishing vessel 

incidents and weather factors in Atlantic Canada. The results showed that the most 

dominant factor is the amount of exposure of vessels (i.e. fishing traffic levels or number 

of fishing trips in the study area), and when the traffic variable was excluded from the 
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model, wave height became the most significant factor. Rezaee et al. (2015b) used Logistic 

Regression and Support Vector Machines to reveal the underlying relationships between 

extratropical cyclone weather factors and severity level of fishing incidents, showing that 

wind speed, ice concentration, sea surface temperature, and Laplacian of pressure are 

critical factors in the prediction of the severity levels of fishing incidents. The results of 

this study also suggested that incidents related to different fishery types might be affected 

by different weather conditions. Jin et al. (2001), Jin and Thunberg (2005), Wang et al. 

(2005), and Niclasen (2010) also investigated the key factors for fishing incidents and 

suggested that deteriorating weather is a significant environmental factor in their 

occurrences.  

This research aims to investigate the relation between commercial fishing incidents, fishing 

activity levels, and extreme weather conditions, as well as other weather factors. Extreme 

weather conditions in this research refer to extratropical cyclones that occur in the middle 

latitudes of the Earth and are characterized by strong winds, precipitation and temperature 

changes. Extratropical cyclone can be at any intensity (i.e. from weak to very strong).  

The analysis aims to determine if fishing activity levels and fishing incidents are 

significantly related to any or all of: wind speed, air and sea surface temperature, ice 

concentration, amount of precipitation, and/or Laplacian of pressure.  Note that these 

hypotheses are not mutually exclusive.  

The findings can help the Canadian Coast Guard or other decision makers in marine traffic 

to make more informed decisions about issuance of weather warnings such as Small Craft 

Advisories or to maintain a higher state of readiness of Search and Rescue resources under 
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certain extreme weather conditions. Fish harvesters can also be provided with better 

information about the potential consequences of certain weather conditions so they can 

prepare better for, or even avoid, risky conditions.  

This chapter is organized as follows: The next section on Data Sources describes the data 

preparation steps, Data Exploration looks at the different aspects of the datasets, the Model 

Development section elaborates on the modelling methods, Results presents the outcomes 

of the statistical analyses, and the Conclusion includes the discussion and concluding notes.  

3.2. Data Sources 

The study area for this research encompasses Atlantic Canadian Waters from 40° to 60° N 

latitude, and 73° 20' to 45° 50' W longitude over the years 2005-2010. Close examination 

of the data revealed that there were inconsistencies in the incident data collection process 

during year 2007; therefore, 2007 was excluded from the analysis.  

3.2.1. Weather Data 

Weather factors included in this study were chosen based on literature and personal 

communications with experts. Datasets with the finest available spatial and temporal 

resolutions were used to generate the subsets of weather data over Atlantic Canadian 

Waters during the study period. Since the chosen datasets have different characteristics, 

Table 3-1 presents the source, frequency of measurement, and grid size of each dataset.    
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Table 3-1. Weather Factors 

Weather factors can affect fishing vessels and fish harvesters in different ways. Wind speed 

is assumed to have a significant role in vessel stability. Air and sea surface temperature 

may affect the efficiency of crewmen and worsen the conditions after an incident happens. 

Ice concentration, which is presented as the weekly average of the percentage of each grid 

covered by ice, can cause navigation problems and may trap fishing vessels. Precipitation 

can reduce the visibility of fish harvesters and also affect their performance negatively. 

The Laplacian of pressure is an indicator of a passing extratropical cyclone’s intensity and 

it has been calculated using the nine grid cells of sea level pressure around an identified 

cyclone center by a climatology expert (Personal Communication, 2013/09/01) following 

Serreze and Barrett’s (2008) storm tracking algorithm. Although storms with higher 

Laplacians typically have stronger surface winds, this relationship is neither exact nor 

linear, as resulting winds can be affected by the storm size, rate of intensification, and the 

striking region (Mass and Dotson, 2010). For this reason, Laplacian of pressure and wind 

Field (Unit) Data Set Frequency Grid size 

Wind Speed (miles per 

second) 

NCEP /NCAR 

Reanalysis (Kalanya et 

al, 1996) 

6 hour 

intervals 

2.5 by 2.5 

degrees 

Air Temperature (degrees 

Kelvin) 

NCEP/NCAR 

Reanalysis 

6 hour 

intervals 

2.5 by 2.5 

degrees 

Sea Surface Temperature 

(SST) (degrees Celsius) 

NCEP OI SST V2 

(NOAA, 2014) 

Weekly 

mean 
1 by 1 degree 

Ice Concentration 

(percentage) 
NCEP OI V2 

Weekly 

mean 
1 by 1 degree 

Precipitation (mm) 
ERA-Interim-ECMWF 

(Dee et al, 2011) 

Daily total 

amount 

0.75 by 0.75 

degrees 

Laplacian of  pressure  

(mPa/km-2) 

Cyclone Database    

(Serrze and Barret, 

2008) 

6 hour 

intervals 

2.5 by 2.5 

degrees 
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speed are both included in the current study, to better characterize individual cyclone 

events. 

3.2.2. Incident Data  

When a vessel encounters a problem in Canadian waters and calls the Search and Rescue 

(SAR) Joint Rescue Coordination Center (Canadian Coast Guard and Department of 

National Defence), a record is generated in the SISAR (Search and Rescue Program 

Information Management System) database and the most available and suitable SAR 

resources is sent to the location of reported call. The SISAR database includes detailed 

information about these reported incidents such as time and location, fishery type, type of 

vessel, type of incident, and severity level. In this study, the term ‘incident’ refers to a 

record in SISAR database. The total number of fishing incidents over the 5 years (i.e.2005, 

2006, 2008, 2009, and 2010) within our area of interest is 3146.  

3.2.3 Fishing Activity Data 

Vessel Monitoring System (VMS) datasets were used as an indicator of fishing activities. 

VMS is a satellite-based, near real-time, positional tracking system, which allows the 

Department of Fisheries and Oceans (DFO) to monitor fisheries. The use of VMS allows 

fishing vessel positions to be transmitted to DFO at regular intervals. This information is 

relayed to a monitoring centre where data are analyzed and archived. This research uses a 

subset of VMS data within the study area, providing information for each unique 

(anonymized) vessel identifier its latitude and longitude, time, heading, speed, and vessel 

length. 
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3.2.4. Data Preparation 

The entire study area is overlaid by a series of grid squares of size 2.5 degrees by 2.5 

degrees (approximately 250 km by 250 km). This resolution is chosen to ensure the 

presence of at least one weather point in each grid. Consequently there are 88 grid squares 

that cover the study area of which thirteen are entirely on land, yielding 75 usable grids for 

the analysis. Over the five-year study period, the combination of grid cells and days thus 

yields 365*5*75=136,875 potential samples, referred to as grid-days. Figure 3-1 shows the 

gridded study area.  
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Figure 3-1. Gridded Study Area 

To match incident data with grid-days, the number of incidents in each grid-day was 

counted and assigned to the related grid-day. However to match the weather data with grid-

days, since all six weather factors are obtained in different frequencies and grid square 

sizes, decisions had to be made as to how to match weather factors with grid-days. Linear 

Interpolation was used to interpolate ice coverage and sea surface temperature (both 

measured weekly) to the related grid-day of the week. In the case of weather factors that 

were measured more than once in a day, thus with multiple values for a particular weather 

parameter at each grid point, two approaches were considered: 1. Assign the best, average 

or worst condition during the day to the grid (for example lowest air temperature); 2. 

Subjectively choose a combination of weather factors (e.g. air temperature measured at 
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6:00 am, wind speed measured at 12:00 pm., etc.) to be representative of weather 

conditions each day. The principal result of assigning the worst, best, or average weather 

condition to each grid for each day showed that using worst weather conditions results in 

better statistical fits. Therefore only the results for the worst weather conditions are 

reported in this research.  

Matching fishing activity data with grid-days was carried out in two steps. First VMS data 

were processed to connect data points for each trip and calculate trip tracks (i.e. a track 

comprises a combination of line segments from starting point in grid A to ending point in 

grid C through the intervening grids). Then the number of line segments in each grid-day 

was counted and assigned to the related grid-day.  

3.3. Data Exploration 

3.3.1. Frequency of Incidents 

The number of incidents by grid-day in the dataset varies from 0 to 7. Table 3-2 shows the 

frequency of each number of incidents in the dataset. 

Table 3-2. Incident Frequencies  

Number of Incidents Frequency Percentage 

0 133,729 92.37% 

1 2,639 1.93% 

2 369 0.27% 

3 96 0.07% 

4 27 0.02% 

5 10 0.01% 

6 5 0.004% 
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Number of Incidents Frequency Percentage 

7 2 0.001% 

Total 136,875 100% 

 

Since the number of incidents equal to or greater than one is notably fewer than the zeros, 

to accommodate this imbalance we grouped the nonzero incident grid-days by adding a 

binary variable named ‘Incident Occurrence’, which is set equal to 1 when at least one 

incident occurred in a grid-day and 0 otherwise. Figure 3-2 shows incident numbers and 

incident-occurrence numbers (number of grid-days with at least one incident) during the 

study period (excluding 2007). As Figure 3-2 shows the trend of temporal distribution of 

incident occurrences and incident numbers are similar; therefore, it was decided to use the 

binary variable incident occurrences instead of incident numbers in the analysis since the 

small number of samples with more than one incident may result in biased outcomes (i.e. 

there may not be sufficient patterns belonging to the minority classes (number of incidents 

greater than one) to adequately represent their distribution). 
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Figure 3-2.Temporal distribution of incident occurrences and incident numbers 

3.3.2. Seasonal Effect 

Different seasons are associated with different weather conditions and different traffic 

levels due to the opening and closing of fisheries. Table 3-3 presents the number of incident 

occurrences and total number of fishing trips in each grid-day for different seasons over 

the study period.  One can conclude that despite the fact that fewer fishing trips took place 

in winter compared to the summer and spring seasons, the rate of incident occurrences per 

trip in winter is much higher than the other seasons which can be related to harsher weather 

conditions in wintertime compared to other seasons. Since the study period is restricted to 

2005-2010 there are not enough data samples (i.e. five data samples for each season, e.g. 

winter incident rate for year 2005, 2006, 2008, 2009, 2010) to statistically test the 

differences between incident rates over different seasons (e.g. incident rates in spring 

versus incident rates in winter).      
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Table 3-3. Number of incidents, and total number of fishing trips in each grid-day for different 

seasons over the study period 

Season Start End Number of 

Incident 

Occurrences 

Number of 

Fishing Trips 

Number of 

Occurrences 

per 1000 

trips 

Winter Dec 21 Mar 19 549 108,729 5 

Spring Mar 20 Jun 20 1359 424,632 3.2 

Summer Jun 21 Sep 21 1171 472,634 2.5 

Fall Sep 21 Dec 20 788 197,742 3.9 

3.3.3. Vessel Length 

Different vessel lengths can indicate different capabilities of vessels to handle harsh 

weather conditions. Larger vessels are typically more stable in strong winds and can carry 

more safety equipment. On the other hand, larger vessels can go further from shore, and 

therefore not be able to come back to the harbour as readily in case of an upcoming storm. 

Table 3-4 shows DFO’s classification of fishing vessel length and related fisheries (DFO, 

2008). 

Table 3-4. Classification of fishing vessel length and related fisheries (DFO, 2008) 

Class Fishery 

1 - Less than 35' Shrimp, Lobster, Crab, and Groundfish 

2 - Between 35' and 45' Shrimp, Lobster, Crab, and Groundfish 

3 - Between 45' and 65' Shrimp, Crab, and Groundfish 

4 - Greater than 65' Shrimp, Crab, and Herring Roe 
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3.4. Model Development 

Modeling approach for three main research question of this chapter listed as fishing 

activity levels, fishing incident occurrences, and fishing incident rates will be explained 

in section 3.4.1, 3.4.2., and 3.4.3, respectively.  

3.4.1. Fishing Activity Levels 

One of the goals of this research is to examine whether there is a relationship between 

fishing activity levels (i.e. number of fishing trips in each grid-day) and weather conditions 

for grid-days associated with a cyclone (i.e. those with the Laplacian of pressure greater 

than zero), with breakdowns by winter, spring, summer, fall, vessel length-class 1, vessel 

length-class 2, vessel length-class 3, and vessel length-class 4. To better understand the 

variations of environmental conditions and fishing activity levels throughout study period, 

Table 3-5 presents the descriptive statistics of variables for each model. As shown in Table 

3-5, the number of trips in each grid-day is a non-negative integer value, which restricts 

our choices on statistical methods to count-data regression methods. It must be noted here, 

that this chapter only focuses on statistical methods, and doesn’t include data mining 

methods such as neural networks. The main reason to focus on regression methods rather 

than data mining methods is that the majority of data mining methods are defined as black 

boxes which can predict future values based on historical relationships; however, these 

historical relationships would be unknown to the analyst. Regression methods, on the other 

hand, can provide information on analysis of the problem in terms of relationships between 

causal factors and response variables. These methods can determine which predictors are 

statistically significant and consequently how the risk associated with them can be reduced.  
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Count methods are widely used in road safety literature. Despite some differences in 

marine and road safety such as frequency of incidents and trips and some environmental 

conditions (road characteristics versus ocean characteristics, visibility in roads versus 

oceans, traffic congestion in roads versus oceans), these topic have similarities such as the 

nature of the data (integer data), exposure variable (trips), some environmental conditions 

(wind speed, precipitation, etc.), human related problems (age, experience, etc.) and 

characteristics of vessel or car (age, maintenance, etc.). Therefore, it was decided to follow 

the road safety path for the analysis of traffic level data and benefit from the lessons learned 

in the rich road safety literature.  

The most common method in modelling count data in road literature is Poisson regression 

(Mannering and Bhat, 2014). However since the average number of fishing trips per grid-

day and the standard deviation of all the datasets are not equal, the datasets are likely to be 

overdispersed. In this case, the Negative Binomial Regression, which doesn’t require the 

mean to equal the standard deviation, is the most suitable model (Hilbe, 2011). The 

expected traffic frequency for each grid-day in the Negative Binomial Regression is 

assumed to be a function of explanatory variables as follows: 

 𝑦𝑖 = 𝑒𝛽𝑋𝑖+𝜀𝑖                                                                                                                  (3-1) 

where yi is the expected traffic frequency for grid-day i, β is the matrix of coefficients, Xi 

is the matrix of predictors for the related grid-day, and ε is the error term. 𝑒𝜀𝑖  is a gamma 

distributed error term with mean of 1.0 and variance 'a', which is the measure of dispersion. 

If 'a' is not significantly different than zero, Poisson Regression should be chosen over 

Negative Binomial Regression. The conditional probability of having y fishing trips with 
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randomly distributed error term ε in grid-day i is then defined by the following equation 

(Chang, 2005): 

P(𝑦𝑖|𝜖𝑖) =  
exp[−𝜇𝑖 𝑒𝑥𝑝(𝜀𝑖  )][ 𝜇𝑖 𝑒𝑥𝑝(𝜀𝑖  )]𝑦𝑖

𝑦𝑖 !
           yi =1,2,..,n                  (3-2) 

Over time there has been a steady improvement in statistical methodologies in road safety 

literature to extract more information from available datasets, reveal underlying patterns, 

and determine significant factors in analyses of traffic levels and incidents (Mannering and 

Bhat, 2014). It has been shown that one of the fundamental issues that traditional statistical 

methods such as Negative Binomial Regression failed to address is the effect of unobserved 

factors on road (marine) traffic (safety in general). These factors that may not be observed 

(or included) in a dataset can have an important effect on results and overlooking these 

unobserved factors can lead to biased interpretation of the model outcomes. For example 

when fishing traffic levels (or fishing safety in general) are studied with respect to 

environmental conditions, factors such as the experience of fishers in handling extreme 

environmental conditions, economic and social pressure, and some other subtle factors 

which can be very important in risk-taking behaviour might not be addressed, thus 

substantially influencing findings and the inferences drawn from the analysis of data. 

Random Parameters methods can accommodate the unobserved heterogeneity by allowing 

regression coefficients to vary across the observations (i.e. traffic level increases for some 

observations and decreases for some other observations under the same circumstances due 

to the effect of unobserved factors). Therefore these methods are more informative in terms 

of the underlying relationships between predictors and response variable and shown to be 

a better statistical fit than traditional methods (Anastasopoulos and Mannering, 2009; 
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Christoforou et al, 2010; and Anastaspoulos et ala., 2012). The regression coefficients in 

Random Parameters Negative Binomial Regression are defined as:  

βi = β + ϕ i                                                                                                                      (3-3) 

where ϕ is a randomly distributed term (e.g. normally distributed term, lognormal, uniform, 

triangular, etc.) . In this case equation (3-1) changes to: 

𝑦𝑖|ϕ i = 𝑒𝛽𝑋𝑖+𝜀𝑖                                                                                                                                              (3-4) 

The parameters can be estimated via maximum log likelihood. The log likelihood function 

is equal to: 

𝐿𝐿 = ∑ 𝑔(ϕ 𝑖)𝑃(𝑦𝑖|ϕ 𝑖
𝑑ϕ 𝑖)

𝑛
𝑖=1                                                                                     (3-5) 

where g(.) represents the distribution of random parameters (Anastasopoulos et ala, 

2012). 

The estimation of maximum likelihood is then carried out through a simulation-based 

method via the LIMDEP software (Greene, 2012). 

Table 3-5. Descriptive Statistics for variables - Traffic Level Models 

Variables Mean 
Standard 

Deviation 
Minimum Maximum 

Cyclone Grid-Days 

Number of Fishing 

Trips 
18.43041799 28.77095805 1 214 

Air Temperature(°K) 276.5552006 7.632909041 243.7 295 

Sea Surface 

Temperature(°C) 
5.580956694 5.095121252 -1.8 22.354 

The Laplacian of 

Pressure(mPa/Km2) 
1.29506E-10 5.90127E-11 2.11E-11 3.86E-10 

Ice Concentration 

(percentage) 
7.134975177 17.4489402 0 100 

Wind Speed(m/s) 10.67665412 4.726683725 0.8 33.4 
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Variables Mean 
Standard 

Deviation 
Minimum Maximum 

Precipitation(mm) 0.001029259 0.002044957 0 0.035301 

Winter 

Number of Fishing 

Trips 
9.589258631 17.3466899 1 138 

Air Temperature  267.295798 6.231758477 240.8 283 

Sea Surface 

Temperature 
0.94341058 1.628367531 -1.73 10.064 

The Laplacian of 

Pressure 
6.91278E-11 9.28243E-11 0 3.59E-10 

Ice Concentration 19.01108804 24.92970705 1.22E-06 100 

Wind Speed 11.27108573 4.824829448 0.9 33.4 

Precipitation 0.000632131 0.001457932 0 0.019453 

Spring 

Number of Fishing 

Trips 
26.76439165 38.07032788 1 236 

Air Temperature 275.8799082 4.745465712 250.8 293.1 

Sea Surface 

Temperature 
3.787238615 3.220877313 -1.8 16.607 

The Laplacian of 

Pressure 
3.99068E-11 6.0357E-11 0 2.61E-10 

Ice Concentration 7.526351203 17.40519345 0 100 

Wind Speed 8.283509301 3.722253037 0.8 24.4 

Precipitation 0.000524638 0.001303572 0 0.025289 

Summer 

Number of Fishing 

Trips 
25.43641354 32.8283202 1 228 

Air Temperature 285.2778166 4.162483813 265.8 296.5 

Sea Surface 

Temperature 
12.02146409 4.141602335 0.56 22.477 

The Laplacian of 

Pressure 
2.83711E-11 5.09263E-11 0 3.14E-10 

Ice Concentration 0.242191598 3.196185124 0 71.143 

Wind Speed 7.458640547 3.14501712 0.7 32.8 

Precipitation 0.000600064 0.001584626 0 0.035301 

Fall 

Number of Fishing 

Trips 
13.26237425 20.1392323 1 147 

Air Temperature 276.0189873 6.466018194 245.9 292.5 

Sea Surface 

Temperature 
6.300884842 4.001667773 -1.13 19.897 

The Laplacian of 

Pressure 
4.54713E-11 7.39636E-11 0 3.86E-10 

Ice Concentration 2.574792733 10.17374775 0 71 

Wind Speed 10.25293763 4.295348945 0.8 33.4 

Precipitation 0.000697697 0.00170049 0 0.019891 



48 

 

Variables Mean 
Standard 

Deviation 
Minimum Maximum 

Vessel Length-1 

Number of Fishing 

Trips 
21.5122795 31.13216204 1 236 

Air Temperature 277.9037069 8.202641128 240.8 296.5 

Sea Surface 

Temperature 
6.950800142 5.447837688 -1.8 22.477 

The Laplacian of 

Pressure 
4.11936E-11 6.76849E-11 0 3.86E-10 

Ice Concentration 5.230101891 14.60019597 0 90 

Wind Speed 8.756263306 4.009387914 0.7 33.4 

Precipitation 0.000613618 0.001544025 0 0.035301 

Vessel Length-2 

Number of Fishing 

Trips 
3.093518744 2.696512927 1 16 

Air Temperature 278.2533626 8.590137686 241 295.2 

Sea Surface 

Temperature 
7.757854863 5.214981431 -1.8 19.63 

The Laplacian of 

Pressure 
3.98426E-11 6.73E-11 0 3.86E-10 

Ice Concentration 2.842669366 9.624942815 1.22E-06 85.857 

Wind Speed 8.519516955 4.005761505 0.7 33.2 

Precipitation 0.000666558 0.001741399 0 0.025289 

Vessel Length-3 

Number of Fishing 

Trips 
1.331559133 0.700924226 1 7 

Air Temperature 276.319395 7.677286457 243.6 293.8 

Sea Surface 

Temperature 
5.366602212 5.176068711 -1.8 20.02 

The Laplacian of 

Pressure 
4.6992E-11 7.47186E-11 0 3.86E-10 

Ice Concentration 7.215538318 17.4989849 1.22E-06 100 

Wind Speed 9.893509022 4.512477353 0.7 33.4 

Precipitation 0.000640737 0.001587215 0 0.035301 

Vessel Length-4 

Number of Fishing 

Trips 
1.317390959 0.626689556 1 7 

Air Temperature 275.3401287 7.555422959 245.5 294.7 

Sea Surface 

Temperature 
4.49826669 4.885039221 -1.7414 19.891 

The Laplacian of 

Pressure 
5.07121E-11 7.6565E-11 0 3.86E-10 

Ice Concentration 10.17541877 21.14480332 1.22E-06 100 

Wind Speed 10.01423691 4.486524208 0.9 33.2 

Precipitation 0.000601212 0.001441354 0 0.035301 
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3.4.2. Fishing Incident Occurrences  

The grid-day database yields 136,875 data samples but only 3146 of these grid-days have 

had an accident during our study scope, which means that more than 92% of the data have 

zero values in their incident occurrence field. Traditionally the Poisson or Negative 

Binomial distribution is used to model accident counts in road or marine safety literature. 

However, analysis of such discrete events may result in biased outcomes due to infrequent 

occurrence over time-periods (i.e. the number of zeros compared to the number of incidents 

may dominate the patterns of non-zero data distribution).  Zero-Inflated methods are widely 

applied in Road Incidents and occupational health literature (Kumara and Chin, 2003, Lee 

and Mannering, 2002, Lord et al., 2005, Chin and Quddus, 2003, Carrivick et al., 2003, 

and Lord et al. 2007) to address excess zero issues in datasets similar to the fishing safety 

data (sparse incident data over study period).  These models assume that there are two types 

of zeroes: structural zero (there was no incident because there was no exposure in the grid-

day and consequently the probability of fishing incident occurrences remains zero no 

matter how the environmental conditions change); and statistical zero (fishing vessels went 

through a grid on a particular day but no incident happened on that grid day; therefore, 

there is a probability [0 to 1] of incident occurrences on that grid-day based on 

environmental conditions even though none has occurred to date). Therefore, zero-inflated 

models have two components; the first component is a binary distribution that generates 

structural zeroes and the second one is Poisson or Negative Binomial Regression that 

generates counts, some of which may be zero. (Lord al., 2005):  

P (yi) = π + (1-π) f (yi|Xi) ;
       yi = 0            (3-6) 
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P (yi) = (1-π) f (yi |Xi);  yi = 1,2,3,..,n           (3-7) 

where π is the probability of structural zeros, y is the response variable (i.e. number of 

incidents), n is the upper bound on y and X is the matrix of predictors. f(.) is a Negative 

Binomial probability distribution for y as given in equation (3-1).  

The Maximum Likelihood method can be used to estimate the parameters.  

3.4.3. Fishing Incident Rates 

Wu et al. (2008, 2009) showed that the most dominant factor in fishing incident 

occurrences is traffic. One way to subsume the effect of traffic and understand the effect 

of weather factors on incidents is to study the incident rate associated with fishing traffic 

levels for grid-days associated with a cyclone, and for winter, spring, summer, and fall 

respectively. Incident rate, defined as the number of incidents over the number of fishing 

trips in each grid-day, can take any value between 0 and 1. However, since our goal is to 

determine the relationship between weather factors and relative incident rates (i.e. which 

weather factors may increase incident rates), only grid-days that contain at least one 

incident were kept for analysis. It must be noted that since grid-days with no incidents were 

excluded from the analysis, calculated incident rates cannot be used in an absolute sense to 

predict incident numbers from predicted traffic levels. 

 Table 3-6 presents the descriptive statistics of selected variables for each model. 
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Table 3-6. Descriptive Statistics for variables- Incident Rate Models 

Variables Mean Standard 

Deviation 

Minimum Maximum 

Cyclone Grid-Days 

Incident 

Rates 

0.11475983 0.212087279 0.004902 1 

Air 

Temperature 

(°K) 

278.1284434 7.340682873 250 292 

Sea Surface 

Temperature 

(°C) 

6.808535386 5.067773344 -1.3529 18.997 

The 

Laplacian of 

Pressure 

(mPa/ Km2) 

1.14044E-10 5.03257E-11 2.33E-11 3.17E-10 

Ice 

Concentration 

(percentage) 

3.999678784 12.89275549 1.22E-06 92 

Wind 

Speed(m/s) 

9.357334826 4.071973615 1.9 26.4 

Precipitation 

(mm) 

3.50545E-05 0.000413418 0 0.025289 

Winter 

Incident 

Rates 

0.271565871 0.34163235 0.007246 1 

Air 

Temperature 

266.6556757 5.781437702 247.1 278.3 

Sea Surface 

Temperature 

1.304926424 1.984301911 -1.3843 7.5457 

The 

Laplacian of 

Pressure 

5.18324E-11 7.87551E-11 0 2.85E-10 

Ice 

Concentration 

18.61505734 24.68044468 1.22E-06 92 

Wind Speed 0.000532961 0.001284963 0 0.008366 

Precipitation     

Spring 

Incident 

Rates 

0.07513741 0.174751502 0.00565 1 

Air 

Temperature 

276.7650651 4.501419368 259.3 288.9 

Sea Surface 

Temperature 

4.40744841 3.118319538 -0.88 12.623 
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Variables Mean Standard 

Deviation 

Minimum Maximum 

The 

Laplacian of 

Pressure 

3.76059E-11 5.69636E-11 0 2.55E-10 

Ice 

Concentration 

5.988135109 14.62558262 1.22E-06 79 

Wind Speed 7.659459459 3.246062531 1.5 20.4 

Precipitation 0.00048258 0.001449692 0 0.025289 

Summer 

Incident 

Rates 

0.06635692 0.149822288 0.004386 1 

Air 

Temperature 

286.4868098 3.221463943 272.9 293.8 

Sea Surface 

Temperature 

13.13513163 2.945925324 0.93143 19.29 

The 

Laplacian of 

Pressure 

2.25185E-11 4.28482E-11 0 2.22E-10 

Ice 

Concentration 

0.060767067 1.900329833 1.22E-06 59.429 

Wind Speed 6.631288344 2.703836044 0.7 20.1 

Precipitation 0.000517901 0.001443989 0 0.017109 

Fall 

Incident 

Rates 

0.158901334 0.232855946 0.007143 1 

Air 

Temperature 

275.9556291 6.746201051 253.9 291.9 

Sea Surface 

Temperature 

7.620266461 3.5436631 -0.24143 16.287 

The 

Laplacian of 

Pressure 

3.63725E-11 6.73507E-11 0 3.17E-10 

Ice 

Concentration 

0.667455819 4.498692265 0 52 

Wind Speed 9.29089404 3.886260169 1.9 26.4 

Precipitation 0.000499648 0.001285941 0 0.011044 

 

Some researchers use Ordinary Least Squares Regression to model a fractional response 

variable, however this is conceptually flawed since the effect of predictors on the response 

variable tends to be non-linear and the variance of the response variable tends to decrease 



53 

 

when the mean gets closer to 0 or 1.  The most common way to handle this problem is to 

perform a logit transformation to map the original data to the real line   (Baum, 2008): 

ln
𝑦

1−𝑦
 = βX                 (3-8) 

where y is response variable, X is the matrix of predictors, and β is the matrix of 

coefficients. The problem with this approach is dealing with ones and zeros, since in the 

case of y=0, ln(0) is undefined and in the case of y=1, 𝑙𝑛
1

1−1
 is undefined, therefore these 

values have to be removed from the dataset. Papke and Wooldridge (1993) proposed robust 

Logistic Regression to resolve this issue. Fractional Logistic Regression is a quasi-

likelihood process that assumes that the extreme incident rates of zero and one (absolute 

certainty) are generated through the same process as the other (intermediate) incident rates. 

This method uses a logit function and binomial distribution to model the data. The variance 

of the binomial distribution must go to zero as the mean goes to either 0 or 1, as in each of 

these cases the variable is approaching a constant, and the variance will be maximized for 

a variable with mean of 0.5. 

The conditional mean can be expressed through the logit function (Jonasson, 2011):   

𝐸(𝑌|𝑋) =
exp (𝛽𝑋)

1+exp (𝛽𝑋)
                                                 (3-9) 

 Equation (3-10) then can be estimated with the Bernoulli log-likelihood function:  

LLm (β)= Y. ln(E(Y|X)+(1-Y)*ln(1-E(Y|X))                 (3-10) 

Since theoretically fishing incident rates can be any number between zero and one 

inclusively, Fractional Logistic Regression is preferred to truncating the data and dropping 
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the observations with zero or unit values, or coding them with some arbitrary values such 

as 0.0000001 and 0.9999999. (Baum, 2008). The outcome of this method is expressed in 

the same way as Logistic Regression (i.e. the probability of having an incident with respect 

to traffic based on weather factors).   

Applying Negative Binomial Regression is another way to investigate the relationship 

between incident rates and weather conditions. The incident rate is then defined as the 

number of incidents over fishing trips; therefore, multiplying both sides of equation (3-1) 

by the amount of exposure (i.e. number of fishing trips) moves the exposure to the right 

side of the equation (i.e. the log value of exposure is added to the regression coefficients 

in the final model). To account for unobserved heterogeneity in observations (as described 

in section 3.4.1), Random Parameters Negative Binomial Regression was applied on 

datasets in addition to traditional Negative Binomial Regression.   

3.5. Results 

3.5.1. The effect of extreme weather factors on fishing activity levels 

Random Parameters Negative Binomial Regression is carried out for the effects of weather 

factors on fishing activity levels for grid-days associated with a cyclone (i.e. those with the 

Laplacian of pressure greater than zero), winter, spring, summer, fall, vessel length-class 

1, vessel length-class 2, vessel length-class 3, and vessel length-class 4. For each model, 

grids with no traffic during the study period were excluded from the analysis (i.e. each 

model has different number of grids excluded). All predictors (i.e. wind speed, air and sea 

surface temperature, precipitation, ice coverage, and Laplacian of pressure) have been 
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included in the models, however only factors that were significant at significance level of 

0.05 have been reported in Table 3-7. Furthermore, since the correlation between air 

temperature and sea surface temperature is higher than 0.7, it was decided not to include 

both factors in the models simultaneously. Therefore two individual sets of predictors were 

tested for each model, whereby one includes sea surface temperature and one includes air 

temperature. The model with the highest log-likelihood ratio was chosen as the final model 

to be reported in Table 3-7.  

Table 3-7 shows the coefficients (and standard errors) of significant weather factors for 

fishing activity levels for each model at a significance level of 0.05 for Fixed Negative 

Binomial Regression, and mean and standard deviation with their standard error of 

normally distributed coefficients of from the Random Parameters Negative Binomial 

Regression method. Since only variables with p-values less than 0.05 have been reported, 

it was decided to report standard errors instead of p-values to examine how precise an 

estimate of the population parameter (coefficients) is.  

Table 3-7. Coefficient (standard error) of significant weather factors for fishing activity levels at 

significance level of 0.05 (Negative Binomial Regression) 

Factors Negative Binomial 

Regression 

Random parameters 

Negative Binomial 

Regression (Mean) 

Random 

parameters 

Negative Binomial 

Regression 

(Standard 

Deviation) 

Incidents Associated with a Cyclone (#observations=43198) 

Sea Surface 

Temperature (°C) 

0.21(0.011) 0.14(0.014) 0 

The Laplacian of 

Pressure (mPa/Km2) 

-0. 21(0.013) -0.36(0.08) 0 

Ice Concentration 

(percentage) 

-0.23(0.012) 0.01(0.009) 0.03(0.002) 
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Factors Negative Binomial 

Regression 

Random parameters 

Negative Binomial 

Regression (Mean) 

Random 

parameters 

Negative Binomial 

Regression 

(Standard 

Deviation) 

Wind Speed (m/s) -0.23(0.009) -0.29(0.007) 0 

Precipitation (mm) -0.11(0.009) -0.14(0.01) 0. 12(0.005) 

Log-likelihood (LL) -518.097 -412.342 

Winter (#Observations)=31595 

Sea Surface 

Temperature 

0.89(0.033) 0.16(0.0003) 0.016(7e-06) 

The Laplacian of 

Pressure 

-0.34(0.013) -0.007(4e-06) 0 

Ice Concentration -0.25(0.015) -0.04(0.0006) 0 

Wind Speed -0.27(0.016) -0.009(2e-06) 0 

Precipitation -0.27(0.016) -0.09(0.0002) 0.08(0.0001) 

LL -352.0199 -276.5049 

Spring(#observations=33015) 

Air Temperature(°K) 0.508(0.026) 0.07(3e-04) 0.01(0.0005) 

The Laplacian of 

Pressure 

-0.05(0.018) -0.033(0.1e-06) 0 

Ice Concentration -0.03(0.014) -0.008(9e-05) 0 

Wind Speed 0.19(0.017) 0.4(0.0002) 0 

LL -347.812 -276.0505 

Summer(#observations=33015) 

Air Temperature 0.70(0.025) -0.013(4e-06) 0.03(1e-6) 

The Laplacian of 

Pressure 

-0.08(0.018)   

Wind Speed -0.10(0.018) -0.18(0.0004) 0.06(0.0005) 

LL -456.592 -314.174 

Fall(#observations=31950) 

Air Temperature 0.39(0.018) 0.03(0.0001) 0.003(0.0007) 

Ice Concentration -0.36(0.027) -0.081(0.0003) 0 

Wind Speed -0.16(0.014) -0.09(0.0001) 0.05(7e-05) 

LL -517.1309 -330.061 

Vessel Length_1 (#observations=52609) 

Air Temperature 0.47(0.009) 0.095(0.0002) 0.09(8e-06) 
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Factors Negative Binomial 

Regression 

Random parameters 

Negative Binomial 

Regression (Mean) 

Random 

parameters 

Negative Binomial 

Regression 

(Standard 

Deviation) 

The Laplacian of 

Pressure 

 -0.008(1e-06) 0 

Ice Concentration -0.36(0.027) -0.006(3e-5) 0 

Wind Speed -0.16(0.014) -0.011(2e-04) 0 

LL -245.3358 -233.147 

Vessel Length_2 (#observations=12300) 

Sea Surface 

Temperature 

0.32(0.014) 0.033(2e-03) 0.005(2e-04) 

The Laplacian of 

Pressure 

-0.03(0.015) -0.016(3e-04) 0.007(1e-04) 

Ice Concentration -0.49(0.019) -0.01(0.0027) 0 

Wind Speed -0.15(0.013) 0.049(0.0014) 0.04(0.007) 

LL -454.4014 -292.8335 

Vessel Length_3 (#observations=15408) 

Ice Concentration -0.05(0.0009) -0.005(1e-06) 0.003(7e-05) 

LL -277.89079 -247.3920 

Vessel Length_4 (#observations=12599) 

Ice Concentration -0.17(0.009) -0. 02(3e-04) 0.01(0.005) 

LL -399.9107 -295.3218 

The likelihood ratio test of Poisson and Negative Binomial Regression showed that 

Negative Binomial Regression is a better fit than Poisson Regression for all of the models. 

The Random Parameters method, for all the datasets, shows a higher log-likelihood (LL) 

ratio than Fixed Negative Binomial Regression. Since Fixed Negative Binomial 

Regression is nested in the Random Parameters Negative Binomial Regression (i.e. Fixed 

Negative Binomial Regression is a special case of the Random Parameters method with all 

the variances equal to zero), it is possible to statistically compare these models by 

conducting a likelihood ratio test. The test statistic is: 
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 χh = −2[LL1− LL2]                                                                                                      (3-11) 

 where LL1 is the log likelihood at convergence of the fixed-parameters model, and LL2 is 

the log likelihood at convergence of the random-parameters model (Washington et al., 

2003).  The tests for all the datasets resulted in statistical superiority of the Random 

Parameters model compared to the Fixed Parameters model. 

The results of both methods show that activity levels decrease when weather conditions 

deteriorate in all of the models. When grid-days associated with a cyclone are studied, sea 

surface temperature, Laplacian of pressure, ice concentration, wind speed, and 

precipitation are chosen as the significant weather factors by both methods. To interpret 

the results of the Random Parameters method, the cumulative probability of (X<0) can be 

calculated (X represents the normally distributed coefficients of the predictors). For 

example for ice concentration, X ice concentration ~ N (0.01, 0.03) and therefore P(X ice 

concentration<0) =0.64. This means that 64% of the observed traffic levels increase when ice 

coverage decreases.  Similarly it can be shown that based on the results of the Random 

Parameters method for 90% of the observations, traffic levels decrease when the 

precipitation amount increases (i.e. P (X precipitation>=0)).  Since the Standard Deviation for 

the Laplacian of pressure, sea surface temperature, and wind speed are not significantly 

different than zero; these factors are fixed through observations.  

Interpretations of odds ratios show that if wind speed increases by 1 mile per second, the 

relative incidence rate of traffic levels change by a factor of 0.74 (i.e. 26% decrease in 

traffic levels). Similarly one unit increase of Laplacian of pressure will result in 30% 

decrease in number of fishing trips in the related grid-day.  

http://www.sciencedirect.com/science/article/pii/S0001457508001954#bib38
http://www.sciencedirect.com/science/article/pii/S0001457508001954#bib38
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During the winter season, sea surface temperature, ice concentration, wind speed, and 

precipitation are the significant weather factors (sea surface temperature and precipitation 

as random parameters and others as fixed). 70% of the observations show a decrease in 

traffic levels when precipitation amount increases. In the spring, air temperature as a 

random variable, and Laplacian of pressure, ice concentration, and wind speed as fixed 

variables (i.e. Standard deviation of these factors is not significantly different than zero) 

become critical. Summer related weather factors are the same as the spring ones, except 

for ice concentration, which is not a factor in summer. Results of the Random Parameters 

method show that for 62% of observations traffic level decreases as wind speed becomes 

stronger. In the fall, air temperature, ice concentration, and wind speed are significant. For 

85% of the observations, higher air temperature will result in higher traffic levels. The 

reason that precipitation is an important factor only in wintertime may be that during 

winter, precipitation can be in the form of icy rain and snow, which can decrease the 

visibility, ice up the superstructure thus affecting stability, and make the deck slippery. 

These conditions rarely occur in spring or summer, therefore precipitation is not a critical 

factor in these seasons. 

When considering vessel length, air temperature, wind speed and ice concentration are the 

significant weather factors for small fishing vessels. For 84% of the observations, traffic 

levels increase when air temperature rise.  Medium size vessels are mostly affected by sea 

surface temperature, Laplacian of pressure, wind speed, and ice concentration. Traffic 

levels of vessels with overall length greater than 45 feet were only affected by ice 

concentration (i.e. for 95% of vessels of length-class 3 and 97% of vessels of length-class 
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4, traffic levels decrease in higher ice concentration percentages). One explanation for this 

can be the capability of larger vessels to handle extreme weather conditions. In other words, 

despite weather factors being harsh, these vessels can still venture into the ocean. 

3.5.2. The effect of extreme weather factors on fishing incidents 

Zero-Inflated Negative Binomial Regression was applied for some models (Incidents 

associated with a cyclone, winter, spring, summer, fall) to study the effect of weather 

factors on fishing incidents. Because there were not enough data in the incident database 

to separate incident data based on vessel lengths, models related to the vessel lengths were 

not applicable for this part of the study.  

To choose the best statistical combination of weather factors for each model, a code was 

developed to carry out Zero-Inflated Negative Binomial Regression on all possible 

combination of weather factors for each individual model and choose the combinations 

with the smallest Akaike Information Criterion (AIC). The AIC for any statistical model is 

equal to: 

AIC=2k-2ln (L)            (3-12) 

where k is the number of parameters in the model and L is the maximized value of the 

likelihood function for the model. AIC aims to select the optimal model with the least mean 

squared error under the assumption that the true exact model is not among the candidates 

set (Akaike, 1974). 

Tables 3-8 and 3-9 show the coefficients (and standard errors) of significant weather factors 

for the aforementioned models at significance level of 0.05 for count and zero-state model 
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respectively. For each model, grids with no incidents during the study period were excluded 

from the analysis. 

Table 3-8. Coefficient (standard error) of significant weather factors for fishing incidents at significance 

level of 0.05 (Count Model) 

Models Observations Sea Surface 

Temperature 

(°C) 

Ice 

Concentration 

(percentage) 

Wind 

Speed 

(m/s) 

Precipitation 

(mm) 

Traffic 

Data (# 

of fishing 

trips) 

Cyclone 

Grid-
Days 

20193 - - -0.13(0.043 -0.09(0.038) 0.50(0.014) 

Winter 11322 - 0.12(0.057) - - 0.94(0.041) 

Spring 15749 - - -
0.15(0.044) 

- 0.44(0.011) 

Summer 18581 0.28(0.069)  -
0.29(0.054) 

- 0.44(0.014) 

Fall 14911 0.38(0.093) -0.38(0.187) -
0.15(0.051) 

- 0.65(0.030) 

 

Table 3-9. Coefficient (standard error) of significant weather factors for fishing incidents at significance 

level of 0.05 (Zero-State Model) 

Models Observations Air Temperature (°K) 

Cyclone Grid-Days 20193 -3.878(0.120) 

Winter 11322 -3.53(0.843) 

Spring 15749 -4.90(0.063) 

Summer 18581 -4.42(0.148) 

Fall 14911 -1.85(0.296) 

 

The results indicate that traffic is the most significant factor in fishing incident occurrences 

in all of the count models. It was also shown that it is more likely for incidents to happen 

during calmer weather (i.e. higher air and sea surface temperature, lower wind speeds, 
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lower amount of precipitation, and ice concentration) than extreme weather conditions. 

One potential explanation for this phenomenon is the strong correlation between traffic and 

incidents. Traffic levels increase in calm weather conditions and, as a consequence, the 

likelihood of having an incident increases as well. The results of zero-state models also 

show that when air temperature is low, it is likely that no incidents happen because of no 

exposure (i.e. no fishing activity). To subsume the dominant effect of fishing activity and 

understand the effects of weather conditions on fishing incidents, incident rates (number 

of incidents in each grid day per number of fishing trips in each grid-day) were studied as 

the next step. 

3.5.3. The effect of weather factors on fishing Incident Rates 

Fractional Logistic Regression, Negative Binomial Regression and Random Parameters 

Negative Binomial Regression models were applied to investigate the effect of weather 

factors on relative incident rates.   

To choose the proper density distribution for Random Parameters, normal, lognormal, 

triangular and uniform distribution were tested whereby normal distribution was chosen as 

the best fit. Table 3-10 presents the results of four developed models for incidents 

associated with a cyclone, winter, spring, summer, and fall respectively. For each model, 

only parameters that are found to be significant at significance level of 0.05 are presented. 

The Random Parameters method, for all the datasets, shows a higher log-likelihood (LL) 

ratio than Fixed Negative Binomial Regression and Fractional Logistic Regression.  

Likelihood ratio tests to compare Fixed and Random Parameters method for all the datasets 

resulted in statistical superiority of the Random Parameters model. That is, Random 
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Parameters models are more explanatory in terms of the relationship between weather 

factors and incident rates. 

Table 3-10. Coefficient (standard errors) of significant weather factors for fishing incident rates at 

significance level of 0.05  

Factors Fractional 

Logistic 

Regression 

Negative 

Binomial 

Regression 

Random 

Parameters 

Negative 

Regression(Mean) 

Random 

Parameters 

Negative 

Regression(Stan

dard Deviation) 

Incidents Associated with a Cyclone (#observations=894) 

Air 

Temperature 

(°K) 

-0.00334 

(0.0011) 

-0.00378 

(0.0049) 

-0.01510 (0.0056) 0.19440(0.009) 

Ice 

Concentration 

(percentage) 

0.00176 

(0.0006) 

0.00699 

(0.0025) 

0.00775 (0.0005) 0.02927(0.0053) 

Wind Speed 

(m/s) 

0.00195 

(0.0002) 

0.02744 

(0.0088) 

0.0320 (0.0019) 0.04287(0.002) 

Laplacian of 

Pressure 

(mPa/Km2) 

- 0.00039 

(0.7e-04) 

0.00037 (0.0001) 0 

Log-

Likelihood 

(LL) 

-1769.93 -1769.72 -1434.01 

Winter(#observations=370) 

Sea Surface 

Temperature 

(°C) 

-0.07302 

(0.0102) 

-0.32888 

(0.0356) 

-0.02886 (0.0008) 0.05562(0.007) 

Wind Speed - 0.04285 

(0.0116) 

0.03329 (0.0021) 0.04483(0.001) 

LL -781.47 -781.47 -520.98 

Spring(#observations=999) 

Sea Surface 

Temperature 

-0.0062 

(0.0021) 

-0.02820 

(0.0115) 

-0.05519* (0.0224) 0 

Ice 

Concentration 

0.00104 

(0.0004) 

0.00551 

(0.0021) 

0.00806 (0.0043) 0.02465(0.004) 

Precipitation 

(mm) 

- - 0.00018 (0.0001) 0.00288(0.005) 

LL -1789.76 -1789.76 -1394.79 

Summer(#observations=979) 

Air 

Temperature 

-

0.00599(0.0015) 

- - 0 

Wind Speed - - 0.01297 (0.0021) 0.02605(0.0004) 

LL -1633.40 -1637.98 -1352.60 
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Factors Fractional 

Logistic 

Regression 

Negative 

Binomial 

Regression 

Random 

Parameters 

Negative 

Regression(Mean) 

Random 

Parameters 

Negative 

Regression(Stan

dard Deviation) 

Fall(#observations=605) 

Sea Surface 

Temperature 

-0.02081 

(0.0027) 

-0.11085 

(0.0126) 

-0.11262 (0.0164) 0 

Wind Speed - 0.03494 

(0.0105) 

0.00285 (0.0002) 0.02289(0.0021) 

Laplacian of 

Pressure 

- - 0.00004 (1e-04) 0.00017(6e-06) 

LL -1188.49 -1185.49 -829.81 

 

Except for the summer case, the significant weather factors are almost the same in 

Fractional Logistic Regression and Negative Binomial Regression. The Random 

Parameters models usually have additional significant factors in addition to the ones in 

common with the other two. When studying incidents associated with a cyclone, air 

temperature, ice concentration, wind speed, and Laplacian of pressure (only in Fixed and 

Random Parameters Negative Binomial Regression) are significant. The signs of the 

coefficients in Fractional Logistic and Fixed Negative Binomial Regression indicate that 

lower air temperature, higher ice concentration, and intense storms (i.e. higher Laplacian 

of pressure) will result in higher incident rates. The Random Parameters model shows that 

53% of the times lower air temperature, 60% of the times higher ice concentration, and 

76% of the times stronger winds, will increases incident rates.  

Interpretations of odds ratios show that increase in wind speed by 1 mile per second will 

lead to a 3.25% increase in relative incident rates. Similarly one unit increase of Laplacian 

of pressure and one unit increase in ice concentration will result in 0.3% and 0.8% 

respective increase in relative fishing incident rates in the related grid-day. Based on these 
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results one can conclude that wind speed is very important in increasing the risk of 

incidents in case of stormy weather. The standard deviation of the Laplacian of pressure is 

found not to be statistically different than zero which indicates that it doesn’t vary much 

across observations. In winter time, Fractional Logistic Regression only resulted in 

significance for the sea surface temperature. However wind speed is also shown to be 

important in the Random Parameters model. For 70% and 78% of observations, incident 

rates increase with lower air temperature and stronger winds respectively. In the spring, 

sea surface temperature, ice concentration, and precipitation are chosen by Random 

Parameters model as significant weather factors. Sea surface temperature is found to be 

constant and not varying throughout the observations. The results indicate that incident 

rates increase for 63% of the observations when ice concentration is increasing. One 

potential explanation of why ice concentration is found to be significant in spring and not 

winter could be the preparedness of fish harvesters to navigate through ice. The results also 

show that 53% of the time precipitation may lead to an increase in incident rates. The 

results from the summer time are complicated. The Fractional Logistic Regression results 

show that incident rates increase when air temperature decreases. The results of the 

Random Parameter model indicate that for 85% of observations, stronger wind speed will 

result in higher incident rates. However, Fixed Negative Binomial Regression resulted in 

no statistical relationship between incident rates and weather factors. One can explain these 

results based on the opening of the majority of fishery seasons and the presence of 

recreational boating traffic in the ocean. Opening of the fisheries means long work hours, 

hard labour in a very competitive and stressful job situation. All of these factors may lead 

to increased incident rates regardless of weather factors. During this season, there may also 
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be collisions between inexperienced boats and fishing vessels, which is also not particularly 

tied to weather conditions. Finally in the fall, sea surface temperature, wind speed, and 

Laplacian of pressure are shown to be significant in the Random Parameters model. Sea 

surface temperature is found not to vary across the observations. For approximately 55% 

of the observations, stronger winds and higher Laplacian of pressure results in an increase 

of incident rates. Despite the fact that different weather factors are important in different 

seasons, one can conclude that extreme weather conditions (i.e. lower air and sea surface 

temperature, stronger winds, higher ice concentration, and intense storms) can increase 

incident rates for the majority of the observations. However the effect of these factors are 

different for each season. Precipitation is also found to not be significant most of the time.  

3.6. Discussion and Conclusion 

This research aims to investigate the relationships between weather factors and commercial 

fishing activity levels and incidents. Negative Binomial Regression and Random 

Parameters Negative Binomial Regression were applied to the grid-days associated with 

cyclones, four seasons, and four vessel length classes, to examine the relationship between 

weather factors and fishing activity levels. The quality of incident data doesn’t allow us to 

classify incident data based on vessel length, therefore Zero-Inflated Negative Binomial 

Regression was carried out only on the grid-days associated with cyclones and four seasons 

to show how the probability of having incidents can change in different weather conditions. 

Random Parameters Zero-Inflated Negative Binomial Regression is a useful extension of 

this work to take unobserved heterogeneity of data into consideration. Fractional Logistic 

Regression, Negative Binomial Regression, and Random Parameters Negative Binomial 
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Regression were also applied to the same models as Zero Inflated Negative Binomial 

Regression to study the effect of weather factors on fishing incident rates (number of 

fishing incidents/ number of fishing trips in each grid day). 

The results of the Random Parameters Negative Binomial Regression show that in each of 

the individual models fishing activity levels decrease when weather factors deteriorate. 

One can also conclude from the results that vessels with different lengths can be affected 

differently by weather conditions. For example, wind speed is a significant factor for small 

size vessels, however it is not critical for larger vessels. The outcomes of Zero-Inflated 

Negative Binomial Regression suggest that the pure probability of having an incident 

grows with an increase in traffic intensity, which in turn increases in the absence of extreme 

weather conditions. The results of the incident rate analysis showed that Random 

Parameters models are a statistically better fit than the traditional fixed models and they 

can also better explain the underlying relationships between weather factors and incident 

rates. The results of the Random Parameters model showed that for the majority of the 

observations, harsh weather factors can increase incident rates. Analyzing the distribution 

of coefficients will provide information on how each factor can affect the incident rates.   

Tobit modeling, another way to analyze incident related data has been widely used in road 

incident literature. However, it is mainly used when the average of weather factors over a 

period of time is studied (e.g. Anastasopoulos et al. 2012b). Therefore, if the goal of a study 

is to look at the effects of general weather factors (not particularly extreme weather factors) 

on incidents, Tobit modeling can be an alternative way to Zero-Inflated Negative Binomial 

Regression and Fractional Logistic Regression. 
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These results can be instructive for preventive measures, such as changing the regulations 

for commercial fishing season openings if certain weather conditions are deemed 

unacceptable or for better education of mariners leading to improved decision-making with 

respect to weather conditions. This information can also be useful inputs for boat design or 

for the issuance of specific warnings for different vessel sizes. Search and Rescue planning 

can also be reviewed in better anticipation of incident occurrences as a function of the 

weather forecasts generally and storm warnings in particular. (The practical implications 

of this research will be explained in detail in Chapter 6).  
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Chapter 4 Severity Levels of Fishing Incidents 

 

Title: The Effect of Extratropical Cyclone Weather Conditions on Fishing Vessel 

Incidents’ Severity Level in Atlantic Canada 

Authors: Sara Rezaee, Dr. Ronald Pelot, Dr. Joel Finnis 

 

Abstract 

Fishing is one of the most dangerous occupations in the world. In addition to the high risk 

of fatality, fish harvesters are also at risk of a wide range of non-fatal injuries during their 

work at sea. Weather factors are an intrinsic part of fish harvesters’ operating environment 

and they consider the most dangerous situations at sea to be associated with weather-related 

factors. This research aims to answer questions regarding the effects of extratropical 

cyclone weather conditions on the severity level of maritime incidents to provide more 

insight for fish harvesters and/or marine traffic decision makers such as Canadian Coast 

Guard. To achieve these goals, weather and incident data in Atlantic Canadian Waters were 

matched spatially and temporally then analyzed to explore their relationships. Logistic 

Regression was used to examine how weather factors affect the severity level of fishing 

vessel incidents. Ice concentration, wind speed, sea surface temperature, and darkness were 

the most significant weather factors with respect to severity level of fishing incidents. 

When only incidents associated with cyclones were taken into consideration, Laplacian of 

pressure as an indicator of cyclone’s intensity replaces ice concentration as a significant 

factor. Logistic Regression was also applied for individual fishery types, revealing that 

distinct fisheries can be effected by different weather factors. Improving our understanding 

of extreme events and revising safety related policies in commercial fishing is particularly 

important under climate change scenarios as fish harvesters’ reliance on traditional weather 

patterns becomes increasingly questionable. 

 

Key Words: Fishing Vessel Incidents, Cyclone Weather Conditions, Logistic Regression 
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4.1. Introduction 

Commercial fishing is one of the most dangerous occupations. In a United States Coast 

Guard report (US Coast Guard, 1999), it was noted that the commercial fishing fatality rate 

was 16 times higher than that for fire and police protective service occupations in 1996. 

Extreme weather conditions are one of the risk factors of fishing incidents. In particular, 

short fishing seasons may compel fish harvesters to achieve their quota as soon as possible 

and take serious risks to make trips regardless of weather conditions and stay at sea for 

long periods of time (Chatterton, 2008). An interview with 46 fish harvesters in 

Newfoundland and Labrador revealed that 85% of them have experienced being on board 

in extreme weather and harsh environmental conditions. If a harvester is having a 

particularly bad year, he/she may take greater risks setting out in bad weather or staying in 

a storm with inadequate safety equipment (Brennan, 2008). When skippers were asked to 

make decisions during a study and presented with a desired safety level directly related to 

the weather conditions, they never chose to come back to the harbour or stop the fishing 

activity no matter how severe the weather conditions were in the simulated exercise. If the 

situation was considered too dangerous, they sometimes opted to go to another fishing zone 

where their colleagues were safely operating (Morel et al, 2008). Harsh weather conditions 

can also combine with other risk factors such as machinery damage or engine failure thus 

leading to a disaster (Wang et al, 2005).  

There is an extensive literature investigating different risk factors in fishing incidents and, 

in the majority of them, the weather conditions are part the study. Jin et al. (2001) focused 

on significant factors related to vessel total losses and the number of fatal or non-fatal crew 
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injuries arising from commercial fishing vessel incidents. Type of incidents, operational 

conditions (e.g. weather conditions), cause of incidents, vessel characteristics, waterway 

status, and time of incident were the model elements. The results showed that if an accident 

is due to environmental factors, it is the precipitation, which is the most significant factor. 

Jin and Thunberg (2005) presented an assessment of key factors affecting incident 

occurrences in Northeastern United States, applying a Logit Regression model to examine 

daily data on fishing vessel activities, fishing vessel incidents, wind speed, vessel 

characteristics, and spatial information on the incidents from 1981 up to 2000. The results 

showed that accident probability is a function of wind speed, vessel location, time of year 

and vessel characteristics. Wu et al. (2005, 2008, and 2009) examined the relationship 

between statistical weather patterns and fishing vessel incidents in Atlantic Canada. 

Weather factors included in Wu’s analyses were wave height, air temperature, sea surface 

temperature, freezing spray, ice concentration, presence of fog, and amount of 

precipitation. Wave height appeared as the most significant factor in incident occurrence 

and wave height and ice concentration were shown to be statistically significant factors for 

severity levels of incidents. Chatterton, 2008 looked at ice-related incidents for vessels over 

79 ft. long and, based on his research, seasonal darkness, cold water, high speed winds, 

icing, fatigue and short fishing seasons are the most important risk factors. Niclasen et al. 

(2010) studied the important sea-state parameters for small vessels’ safety and warning 

indices, extracting their information from relevant literature.  Their study showed that the 

incident rate rises with deteriorating weather and sea state conditions. 
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Adverse environmental conditions are often associated with strong low pressure weather 

systems, or cyclones. These include both hurricanes (i.e. tropical cyclones), as well as more 

common mid-latitude cyclones (i.e. extratropical cyclones). Extratropical cyclones are 

typically less powerful than their tropical counterparts, however strong extratropical 

cyclones can produce winds similar to weak hurricanes, cover larger areas, and intensify 

rapidly. These characteristics make these cyclones a significant forecasting challenge and 

marine safety hazard. Unlike hurricanes, extratropical cyclones can also occur during cold 

conditions, contributing to icing events, producing blizzard conditions, and compounding 

the impacts of winds and waves with cold weather phenomena. The current study focuses 

exclusively on extratropical cyclones exclusively, as they are a much more common marine 

hazard than hurricanes; hereafter, the terms ‘extratropical cyclone’ and simply ‘cyclone’ 

will be used interchangeably. To illustrate, Figure 4-1 shows the tracks of the 50 most 

intense extratropical cyclones that passed through Atlantic Canada during 2000-2006. 
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Figure 4-1. Tracks of the 50 most intense extratropical cyclones that passed through Atlantic Canada 

during 2000-2006. (Source: STORMS Extratropical Cyclone Atlas, 2011) 

 This research aims to investigate the relationship between severity of commercial fishing 

incidents and extratropical cyclone weather factors, determine which weather factors are 

more significant, and compare incident severity levels in cyclone weather and non-cyclone 

weather conditions. The criterion to distinguish between cyclone and non-cyclone weather 

conditions is the presence of an identified cyclone centre within 750km of a given incident.  

The hypotheses to be tested are to determine whether severe incidents are significantly 

related to any or all of: wind speed, air and sea surface temperature, ice concentration, 

amounts of precipitation, Laplacian of pressure, and/or darkness.  

This article is organized as follows: Section 4-2 describes data sources and the data 

preparation step, Section 4-3 elaborates on the modelling method, Section 4-4 describes 

the results, and Section 4-5 includes the discussion and concluding notes. 
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4.2. Data Sources 

4.2.1. Study Scope 

The study area for this research encompasses Atlantic Canadian Waters from 40° to 60° N 

latitude, and 73° 20' to 45° 50' W longitude over the years 2000-2010. Close examination 

of the data revealed that there were inconsistencies in the incident data collection process 

during year 2007; therefore, 2007 was excluded from the analysis.  

4.2.2. Weather Data 

Several weather factors were chosen to be included in the analysis based on the literature 

and personal communication with experts.  These factors were extracted from datasets with 

the highest available spatial and temporal resolutions to achieve the greatest possible 

accuracy. These datasets cover the study area with different resolutions of frequency and 

spatial grid sizes. The details of each chosen weather factor are presented in Table 4-1.  

Table 4-1. Weather Factors 

Field Data set Frequency Grid size 

Wind Speed 

(miles per second) 

NCEP /NCAR 

Reanalysis 

(Kalnay et al., 

1996) 

6 hour 

intervals 

2.5 by 2.5 

degrees 

Air Temperature 

(in degrees Kelvin) 

NCEP/NCAR 

Reanalysis 

6 hour 

intervals 

2.5 by 2.5 

degrees 

 

Sea Surface Temperature (SST) (in 

degrees Celsius) 

 

NCEP OI SST 

V2 

 

 

Weekly mean 

 

 

1 by 1 

degree 

Ice Concentration 

(percentage) 

 

NCEP OI V2 Weekly mean 

 

1 by 1 

degree 
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Field Data set Frequency Grid size 

Precipitation (mm) 

 

ERA-Interim-

ECMWF (Dee 

et al., 2011) 

Daily total 

amount 

 

0.75 by 

0.75 

degrees 

Laplacian of  pressure (mPa/km-2) Cyclone 

Database 

6 hour 

intervals 

2.5 by 2.5 

degrees 

Wind speed is one of the most important factors in fishing vessel stability. Although air 

and sea surface temperature are likely contributing factors to the conditions after an 

incident happens, they can also adversely affect the normal functioning of crewmen. The 

ice data field represents the weekly median ice concentration values stored as the 

percentage of area covered, which can cause navigation problems and/or displace and trap 

fishing vessels. Precipitation gives an indication of visibility and can also affect the proper 

performance of fish harvesters.  Identification of extratropical cyclones follows Serreze 

and Barrett (2008), and is based on the identification of local minima in 6-hourly sea level 

pressure fields. The Laplacian of pressure is used here as a measure of cyclone intensity; it 

is calculated using the nine grid cells of sea level pressure around an identified cyclone 

center. Although storms with higher Laplacians typically have stronger surface winds, this 

relationship is neither exact nor linear, as resulting winds can be affected by the storm size, 

rate of intensification, and the striking region (Mass and Dotson, 2014) For this reason, 

Laplacian of pressure and wind speed have both been included in the current study, to better 

characterize individual cyclone events. 

4.2.3. Incident Severity Data  

When a Search And Rescue (SAR) Coordination Center of the Canadian Coast Guard 

receives a report of an incident, they dispatch the most available and suitable SAR resource 
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to provide assistance and a record in the SISAR database is created. The SISAR (Search 

and Rescue Program Information Management System) database includes detailed 

information about the incidents such as time and location, fishery type, type of vessel, type 

of incident, and severity. 

Maritime incidents are sub-classified according to the level of their severity as follows 

(Canadian Coast Guard 2000, 2001): 

 M4- False alarms and hoaxes 

 M3- Incidents resolved in the uncertainty phase (Non-Distress) 

 M2- Potential Distress incidents 

 M1-Distress incidents 

For the purposes of this research, only incidents classified as M1, M2, and M3 were 

studied, and M4 incidents weren’t included since such incidents do not create any real 

demand on SAR vessels.  

Table 4-2 shows the distribution of fishing incidents during the study period based on their 

severity level: 

 

Table 4-2. Distribution of Marine Incidents in Atlantic Canada Based on Severity Level (2000-2010)  

Incident Type Number Of Incidents Percentage 

M1 540 6% 

M2 746 9% 

M3 7364 85% 

Total 8650 100% 
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Since the small numbers of M1 and M2 incidents, compared to M3 incidents, can reduce 

the robustness of statistical analysis, M1 and M2 distress incidents are grouped into one 

category as serious consequence events (Severity=1) and Severity=0 is assigned to the 

remaining cases (i.e. M3). The total number of incidents in the test dataset is thus 8650. 

Since different fishery types can exhibit differences in vessel characteristics, seasonality of 

fishing, approximate geographic location, and distance from shore, it was decided to study 

the effect of cyclones on individual fishing types. Unfortunately not all of the SISAR 

incidents possess fishing type data, thus eliminating those, which are incomplete leaves us 

with 5393 records.  

   Table 4-3 shows the distribution of fishery types in the incident database. 
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Table 4-3. Distribution of Severe Incidents in Different Fisheries 

Fishing type Number of 

Incidents 

Percentage of 

Total Incidents 

Number 

of Severe 

Incidents 

Percentage of 

Severe Incidents 

Shrimp Fishing 448 8.31% 115 15.52% 

Groundfish 

Fishing 

594 11.01% 103 13.90% 

Crab Fishing 1317 24.42% 152 20.51% 

Herring Roe 294 5.45% 28 3.78% 

Lobster Fishing 2065 38.29% 173 23.35% 

Tuna Fishing 56 1.04% 4 0.54% 

Salmon Fishing 7 0.13% 1 0.13% 

Scallop Fishing 193 3.58% 31 4.18% 

Seal Fishing 402 7.45% 131 17.68% 

Sea Urchin 

Fishing 

17 0.32% 3 0.40% 

Total 53393 100% 741 100% 

 

4.2.4. Data Preparation 

To match incident data with weather data, Inverse Distance Weighting (IDW) interpolation 

has been applied. IDW methods are based on the assumption that the interpolating surface 

should be influenced most by the nearby points and less by more distant points. The 

interpolating surface is a weighted average of the sample points and the weight assigned to 

each sample point decreases as the distance from the interpolation point to the sample point 

increases.  Shepard (1968) first introduced the IDW weight function as: 

wi= 
hi

-p

∑ ℎ
𝑗
−𝑝𝑛

𝑗=1

                                                                                                                   (4-1) 
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where hi is the distance between the interpolated point and the sample point (i), p is the 

power and  it  controls the influence of nearby points, n is the number of sample points 

which will be used to estimate the value of the interpolated point, and wi is the weight 

assigned to each sample point i.  Franke and Nielson (Franke and Nielson, 1980) modified 

this formula in the following way: 

wi = 
[R-hi/R.hi]2

∑ [R-hj/R.hj]2𝑛
𝑗=1

                                                                                                            (4-2) 

where hi is the distance from the interpolation point to sample point j, R is the distance 

from the interpolated point to the most distant sample point, and n is the total number of 

sample points.  

IDW and Modified IDW were tested on 100 samples of each weather factor with known 

values to see which method provides better estimation. IDW was chosen to interpolate the 

air temperature and precipitation values to the incident locations. Sea surface temperature 

and ice concentration were interpolated by the IDW method taking land presence into 

consideration (i.e. only points for which the path between an incident and an adjacent 

concurrent weather point does not cross land were used). Modified IDW worked slightly 

better for wind speed. The number of sample points was at most 4 points for any of the 

weather factors. The Laplacian of pressure was not interpolated by this method; instead, 

considering the large size of extratropical cyclones (i.e. 500 to 1000 km) the highest 

Laplacian of pressure in a 750 km search radius from an incident at the time of its 

occurrence was assigned to it. Effectively, this means that the most intense, nearby 

extratropical cyclone is used as a decision criterion.  
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To determine whether an incident happened during darkness, first, sunset and sunrise time 

were calculated for each incident date. To do so, NOAA Sunrise/Sunset and Solar Position 

Calculators (2014) were applied. To determine how long after sunset it is considered to be 

dark, the concept of civil dawn and civil twilight was employed. Tables 4-4 and 4-5 show 

the number of incidents that happened during darkness in each year and for each fishery 

type over the study period, respectively: 

Table 4-4. Number of incidents happened during darkness for each year 

Years Incident Numbers Incidents That 

Happened During 

Darkness 

Ratio 

2000 1013 196 19% 

2001 1019 190 19% 

2002 1011 212 21% 

2003 928 186 17% 

2004 827 154 28% 

2005 824 230 28% 

2006 828 227 22% 

2008 802 181 23% 

2009 750 182 24% 

2010 707 178 25% 

Total 8709 1936 22% 

 

Table 4-5. Number of incidents that happened during darkness for each fishery type over the study period 

Fishery Type Incident Numbers Incidents 

Happened 

During 

Darkness 

Ratio 

Shrimp Fishing 506 143 28% 

Groundfish Fishing 630 166 26% 

Crab Fishing 1421 297 21% 

Herring roe Fishing 303 128 42% 

Lobster Fishing 2097 275 13% 

Tuna Fishing 59 21 36% 
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Fishery Type Incident Numbers Incidents 

Happened 

During 

Darkness 

Ratio 

Salmon Fishing 7 2 29% 

Scallop fishing 207 58 28% 

Seal Fishing 509 150 29% 

Sea Urchin Fishing 17 4 24% 

 

4.3. Model Building 

4.3.1. Data Exploration 

Table 4-6 shows the correlation coefficients between weather factors. The only high 

correlation is between air and sea surface temperature, which may be caused by the annual 

cycle of temperature.  Therefore, it was decided not to use both of these variables in the 

same model. 

Table 4-6. Correlation Coefficients between Weather Factors 

Weather 

Factors 

Air 

Temperatur

e 

Laplacia

n of 

Pressure 

Ice 

Concentration 

Precipitation Sea Surface 

Temperatur

e 

Wind 

Speed 

Air 

Temperature 

(°K) 

1 - - - - - 

Laplacian of 

Pressure 

(mPa/Km2) 

-0.09 1 - - - - 

Ice 

Concentration 

(percentage) 

-0.34 0.02 1 - - - 

Precipitation 

(mm) 

0.02 -0.02 -0.04 1 - - 

Sea Surface 

Temperature 

(°C) 

0.82 -0.12 -0.35 0.05 1 - 

Wind Speed 

(m/s) 

-0.16 0.19 0.07 0.01 -0.13 1 
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Figure 4-2 illustrates the cumulative percentage of severe and non-severe incidents in 

different weather conditions. Based on the results, severe incidents occur relatively more 

frequently in stronger winds, more intense cyclones, lower sea surface temperature, and 

more ice concentration than non-severe incidents. Conversely, with respect to 

precipitation, there was no visible difference between severe and non-severe incidents.  

 

Figure 4-2. Cumulative Percentage of Severe and Non-Severe Incidents in Different Weather Conditions. 

Upper Left: Wind Speed. Upper Right: Laplacian of Pressure.  Lower Left: Sea Surface Temperature. Lower 

Right: Ice Concentration. 

4.3.2. Methods 

At first, Logistic Regression (LR) and Support Vector Machines (SVM) were used to 

examine how weather factors affect the severity of fishing vessel incident. However, the 

comparison of these initial results showed that LR is more suitable for this data set, 
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therefore, only LR and its results will be explained in this paper (For details on SVM 

method and results please see Appendix A). LR is an appropriate method for the fishing 

incident data in several respects: in LR the dependent variable is categorical; LR does not 

require the predictors to be normally distributed; and, unlike Linear Regression, LR can 

accommodate metric and non-metric independent variables.  

The probability of each level of the categorical response variable is the outcome of the LR. 

The logit function maps the unit interval of probability [0, 1] onto the real domain (-∞, +∞) 

and the regression is carried out:  

g(θ)= ln 
𝜃

1−𝜃
                                                                                                                   (4-3) 

where θ is the probability of the positive event occurring (i.e. incident is severe).  

θ= 
1

1+e-(β+β1x)
                                                                                                                    (4-4) 

where x is the matrix of predictors, β is the intercept, and β1 is the matrix of coefficients of 

predictors(Hosmer and Lemeshow, 2004). 

To highlight the effects of cyclone weather conditions on incident severity level, two 

different models were tested: one including all incidents regardless of whether they 

coincided with a cyclone or not (Model 1), and one with only incidents which were 

associated with a cyclone (Model 2).  

After generating primary results for the effect of weather factors on the severity level of 

incidents, the fishery type was also included in the study as a dummy variable. In addition 

to a joint estimation including all fishery types, individual models were also built for 
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different fishery types. Since the number of data points for Tuna, Salmon, and Sea Urchin 

fishing were quite few and LR is sensitive to sample size, it was decided not to study these 

three fishery types. 

4.4. Results 

Table 4-7 represents the results of LR applied to Model 1 (entire database) and Model 2 

(incidents associated with cyclones, i.e. Laplacian of pressure>0) at a significance level of 

0.05. To test statistical significance of the models, a Chi-Square test was carried out. The 

null hypothesis was stated as “All regression coefficients are equal to zero”. Calculated p-

values were equal to 4.44e-25 and 3.48e-09 for Model 1 and 2, respectively. Based on these 

p-values, the null hypothesis can be rejected at any confidence level.   

Table 4-7. LR Results from Model 1 and Model 2 

Model Number of 

Incidents 

Significant 

Factors 

Coefficients P-value Cross-

Validation 

Model 1 8650 Ice Concentration 0.008 7.2e-3 0.12 

Sea Surface 

Temperature 

-0.02 3e-4 

Wind speed 0.06 1.04e-13 

Darkness 0.32 4.84e-06 

Model 2 1413 Laplacian of 

Pressure 

3.33e+09 0.04 0.13 

Sea Surface 

Temperature 

-4.11e-02 8e-3 

Wind speed 6.13e-02 1e-3 

Darkness 0.43 0.01 

 

The results show that when the entire database, regardless of a cyclone happening or not, 

is examined, ice concentration becomes a significant factor along with wind speed, sea 

surface temperature, and darkness.  However, when only incidents associated with a 

cyclone are taken into account, ice concentration as a significant predictor is replaced by 
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cyclone intensity (i.e. Laplacian of pressure) and actually ice is not even an important factor 

anymore.  

One potential explanation can be the fishery types. The seal fishery is one of the most 

dangerous fishery types, and ice plays an important role in that activity. Table 4-8 shows 

the number of severe incidents that happened in the presence of ice or cyclones for each 

fishery type. 

Table 4-8. Number of Severe Incidents Happened In Presence of Ice or Cyclones for Each Fishery Type 

Fishery Type Number of Severe incidents-

Ice 

Number of Severe Incidents-Cyclone 

Shrimp 

Fishing 

18 33 

Groundfish 

Fishing 

4 24 

Crab Fishing 5 33 

Herring Roe 1 0 

Lobster 

Fishing 

10 30 

Scallop 

Fishing 

1 5 

Seal fishing 144 28 

Total (% of 

all incidents) 

183 (25%) 153 (21%) 

 

Figure 4-3 shows the spatial distribution of incidents, which are associated with ice 

presence and those associated with cyclone presence over the study period. It appears that 

incidents associated with ice happen mostly around the north of Newfoundland and the 

Gulf of St. Laurence, which could be related to seal fishing, while most of the incidents 

associated with cyclones are happening further from shore or south of Nova Scotia which 

could be related to lobster and shrimp fishing incidents. These results suggest studying 

individual fishing types to see how they are affected by different weather factors.  
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Figure 4-3. The Spatial Distribution of Incidents Which Are Associated with Ice Presence and Incidents 

Associated with Cyclone Presence Over the Study Period. 

A sensitivity chart for the likelihood of high severity incidents by sea surface temperature 

(Celsius) and wind speed (m/s) from Model 1 is shown in Figure 4-4. This chart shows 

how the risk of severe fishing incident changes as wind speed and sea surface temperature 

change. For this illustration, it was assumed that incidents are happening during the day 

and ice concentration is constant and equal to 13%, which is the most frequent value other 

than zero that was observed in database. It shows that likelihood increases with wind speed 

and decrease with sea surface temperature. This chart also indicates interactions between 

wind speed and sea surface temperature, since the slopes of likelihood lines for sea surface 
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temperature range (given wind speed range) are not constant for different wind speeds, nor 

vice versa. In other words, likelihood lines are not parallel.  

 

Figure 4-4. Sensitivity Chart for Likelihood of High Severity Incidents from Model 1 (Ice 

Concentration=13%) 

To determine significant weather factors for different fishery types a dummy variable (as 

an indicator of fishery type) was generated to build a new LR model (Model 3). The results 

of this model could provide general insight to compare the risk of severe incidents among 

different fisheries, however, to determine which weather factors that can affect each 

distinct fishery type, individual models were also studied. Tables 4-9, 4-10, and 4-11 

summarize the results for Model 3 and individual models, respectively. 

Table 4-9. LR Results from Model 3 (Fishery type as a dummy variable) 

Significant Factors Coefficient P-Value Cross-Validation 

Sea Surface 

Temperature (°C) 

-0.02 8e-03 0.11 
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Significant Factors Coefficient P-Value Cross-Validation 

Wind Speed (m/s) 0.06 7.5e-07 

Groundfish Fishing -0.04 7e-03 

Crab Fishing -0.09 4.29e-11 

Herring Roe -1.05 6.8e-06 

Lobster Fishing -1.28 2e-16 

Scallop Fishing -0.50 0.03 

Seal fishing 0.21 1.8e-04 

 

Table 4-10. Significant Coefficients (p-values) from Individual Fishery Types 

Fishery 

Types 

Sea Surface 

Temperature 

(°C) 

Wind Speed 

(m/s) 

Ice 

Concentration 

(percentage) 

Laplacian 

of Pressure 

(mPa/Km2) 

Darkness 

Shrimp 

Fishing 

- - - 4.17e+09(0.

02) 

- 

Groundfis

h Fishing 

-0.04(0.04) 0.09(1e-03) - - - 

Crab 

Fishing 

- - - - - 

Herring 

Roe 

- - - 3.22e+11(4e

-03) 

- 

Lobster 

Fishing 

- 0.06(6e-03) - - 0.59(0.01) 

Scallop 

Fishing 

- 0. 14(0.01) - - - 

Seal 

fishing 

- - 0.03(0.02) - - 
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Table 4-11. LR Results from Individual Fishery Types (Chi-Square Test and Cross-validation) 

Fishery Type Chi-Square Test Cross-Validation 

Shrimp Fishing 0.005 0.15 

Groundfish Fishing 0.0003 0.14 

Crab Fishing Insignificant for all weather  

factors 

 

Herring Roe 0.004 0.08 

Lobster Fishing 0.001 0.08 

Scallop Fishing 0.004 0.13 

Seal fishing 0.008 0.14 

 

Sea surface temperature and wind speed were shown to be significant weather factors in 

the joint Model 3, which uses shrimp fishing as the reference fishery type. Therefore, the 

indicator variables for fishery type show the changes in the risk of having a severe incident 

compared to the shrimp fishery. For example, comparing seal fishing versus shrimp fishing, 

the log odds of severity increases by 0.21, whereas for lobster fishing, it decreases by 1.28. 

These results and the outcomes from the individual models show that weather factors can 

have different effects on different fishery types, which is likely related to the environment 

they work in, their distance from shore and the characteristics of their vessels. For example 

the severity level of crab fishing incidents is not dependent on weather factors; one 

potential explanation for this can be the locations of this fishery type, which is very close 

to shore so in case of emergency fish harvesters are better able to reach a harbour. It was 

also shown that darkness is only important for the severity level of the lobster fishing but 

does not affect other fishing types.   
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4.5. Discussion and Conclusion 

This analysis aims to examine whether certain weather factors can discriminate between 

high distress and less severe marine fishing incidents. Logistic Regression was used to 

reveal these patterns. It was shown that ice concentration, sea surface temperature, wind 

speed, and darkness are significant weather factors for the occurrence of severe incidents 

but when there is a cyclone present, the cyclone’s intensity, sea surface temperature, wind 

speed, and darkness become the critical weather factors. It is also demonstrated that 

different fishing types may be predominantly affected by different weather factors.  

These results can be instructive for preventive measures, such as changing the regulations 

for commercial fishing season openings if certain weather conditions are deemed 

unacceptable or better education of mariners leading to improved decision-making with 

respect to weather conditions. Since different weather factors can affect different fishery 

types, this information can be useful inputs for boat design or for the issuance of specific 

warnings for individual fishery types. For example Scallop Fishing is more sensitive to 

wind speed that should be taken into account when making decisions. Another example is 

Lobster Fishing that is affected by wind speed and darkness, so providing fish harvesters 

with this kind of information may help them to be better equipped for high risk situations. 

Search and Rescue planning can also be reviewed in better anticipation of severe incident 

occurrences as a function of the weather forecasts generally and storm warnings in 

particular.  
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Chapter 5 The Future of Fishing Safety 

Title: Will Commercial Fishing Be a Safe Occupation in Future? A Framework to 

Quantify Future Fishing Risks under Climate Change Scenarios. 

Authors: Sara Rezaee, Dr. Christian Seiler, Dr. Ronald Pelot, Dr. Alireza Ghasemi 

Abstract 

 Weather factors are an intrinsic part of the fishing environment. Changes in weather 

patterns due to climate change may affect the fishing environment and fishing safety. This 

article proposes a general framework to quantify fishing incident risks in the future due to 

changes in weather conditions. This framework first builds relationships between fishing 

safety and weather conditions based on historical data and then predict future risks 

according to these relationships with respect to changes in weather patterns.  This paper 

applies the suggested framework using fishing incident data, fishing activity levels, and 

extreme weather conditions in Atlantic Canada to estimate the spatial distribution of fishing 

incident rates in the future. To do so, a classification tree is applied to historical storm 

tracks based on several climate models and then generated rules are applied to future storm 

tracks projected by selected climate change models towards the end of this century to 

predict fishing risks associated with changes in weather factors. We conclude that the 

environmental conditions that drive fishing incidents are projected to remain very similar 

by the end of this century. 

 

 

Keywords: Climate Change, Extreme Weather Events, Fishing Safety, Fishing Incidents, 

Classification and Regression Trees  
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5.1. Introduction 

The fishing industry is one of the most hazardous occupations in the world. In addition to 

the high risk of life loss, fish harvesters are exposed to the risk of different non-fatal injuries 

during their work at sea (Murray et al., 1997). Fatigue, inadequate communication, 

decisions based on incomplete information, and the hazardous natural environment can 

contribute to incidents in the marine industry (Rothblum, 2000). Fish harvesters’ 

appreciation of risk and safety are dynamic. This dynamism is caused by uncertain 

circumstances associated with changing regulations, technology development, industrial 

conditions and environmental circumstances (Power, 2008). Recently, fish harvesters’ 

reliance on traditional weather patterns and familiar environmental conditions has become 

increasingly questionable due to climate change effects which can contribute to high risks 

associated with fishing industry. Although different fishing safety studies have shown that 

there is a correlation between fishing incidents and weather factors (Jin et al, 2001; Jin and 

Thunberg, 2005, Chatterton, 2008; Wu et al, 2008, 2009; Niclasen, 2010, Rezaee et al. 

2015a, Rezaee et al 2015b), there is nevertheless a gap in understanding about how changes 

in weather patterns in the future may affect fishing safety. Studies such as Berkes and Dolly 

(2002), and Furgal and Seguin (2006) have investigated the effects of climate change on 

fishing traditions of Canadian communities, and Schulte and Chun (2009) have looked at 

different aspects of climate change on fish harvesters’ occupational safety. However, up to 

the time of this research, we did not encounter research papers that apply mathematical 

models to estimate the risk to commercial fishing based on different climate change 

scenarios.   
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This research suggests a framework to estimate future risks to the fishing industry arising 

from changes in weather patterns. Figure 5-1 visualizes this framework and presents some 

examples of its key elements. The inputs include fishing incident data, fishing activity 

levels (the amount of exposure), and extreme weather characteristics such as the frequency 

and intensity of storms. Based on the question at hand, some other key factors such as 

fishery type and vessel characteristics may be added to the list. Different mathematical 

models can be applied to the available data to reveal underlying relationships (i.e. fishing 

incidents as the dependent variable and weather conditions and/or other variables such as 

fishery type as predictors). After building historical relationships, mathematical models 

can be used to predict fishing incident probabilities for the period of interest based on 

weather factor predictions or new fishing locations. The results of this prediction can then 

be reported as vulnerability maps, statistical reports, or in some of other format stipulated 

by the user.  
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Figure 5-1. Framework to estimate future risks in the fishing industry under climate change scenarios 

This paper explores the application of this framework to predict fishing incident rates 

(number of fishing incidents over the number of fishing trips) in the period 2081-2099 

based on the historical relationships between fishing incidents, fishing trips, and the 

frequency and intensity of storms over the years 2000-2004 in Atlantic Canada. Figure 5-

2 illustrates the tracks of the 50 most intense extratropical cyclones (i.e. highest vorticity) 

in the area of interest during 2000-2005.   

In this study it is assumed fishing locations, technology, and fishing methods wouldn’t 

change dramatically in the future. If any of this information is available, it should be added 

to the framework and considered in fishing incident rate estimations.   

This article is organized as follows: Materials and Methods section provides information 

on input datasets and the Classification Tree method; the Results section interprets the 
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outcomes of the trees, Discussion and Conclusion follows Results and includes the 

concluding notes.  

 

Figure 5-2. Tracks of the 50 most intense extratropical cyclones that passed through Atlantic Canada (area 

limited to the red rectangle) during 2000-2005 (Source: STORMS Extratropical Cyclone Atlas, 2011) 

5.2. Materials and Methods 

The study area for this research encompasses Atlantic Canadian Waters from 40° to 60° N 

latitude, and 73° 20' to 45° 50' W longitude (see Figure 5-4).  The historical fishing and 

incident data span the years 2000-2004, and the incident rate is forecasted for the period 

2081-2099 (since the climate projections in the area are available for that period), and the 

incident rate predictions are compared to the patterns from the years 1980-2000 to identify 

changes. 
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5.2.1. Incident Data 

The Search and Rescue (SAR) Joint Rescue Coordination Center (staffed by the Canadian 

Coast Guard and Department of National Defence) is responsible to provide help in the 

case of reported maritime incidents. The SISAR database (Search and Rescue Program 

Information Management System) records detailed information about these incidents and 

the actions that SAR resources have taken to provide help. This information includes time 

and location of the incident, type of vessel, type of incident, severity level of the incident, 

characteristics of the assigned SAR resources, etc. The total number of fishing incidents 

within our area of interest in the SISAR dataset over 2000-2004 is 4782. Spatial distribution 

and some other characteristics of the incident data are shown in the data exploration 

section.   

5.2.2. Traffic Data 

The traffic data comprises a post-processed version of a subset of the Department of 

Fisheries and Oceans (DFO) Zonal Interchange Fishery (ZIF) files for the years 2000-2004, 

within the specified study area of this research.  The ZIF data include information on 

commercial fishing vessel trips such as date landed (of the catch), homeport, port landed, 

and NAFO (Northwest Atlantic Fishery Organization) subdivisions where the fishing 

effort(s) took place. A “Path Generation Algorithm” developed by Pelot et al. (2002) and 

Shields (2003) which includes an essential land-avoidance algorithm (Hilliard and Pelot, 

2002) was applied to the ZIF files to generate feasible catch-effort positions within the 

NAFO unit areas reported by a fishing vessel for each day, and then the points are 

connected in chronological order to simulate the travel history of the vessel for each trip. 
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Figure 5-3 shows the spatial distribution of fishing trips in Atlantic Canada over 2000-

2004. 

 

Figure 5-3. Spatial Distribution of Fishing Trips in Atlantic Canada over 2000-2004 (NB: New Brunswick, 

NL: Newfoundland and Labrador, NS: Nova Scotia, PEI: Prince Edward Island) 

5.2.3. Historical Storm Data 

Storm tracks were obtained from the Seiler and Zwiers (2015a) analysis. This historical 

database includes information about the computed storms paths and their relative intensity. 

To plot a cyclone track, the position of the centre of a cyclone should be identified and 

tracked throughout the cyclone’s life cycle and then be connected in chronological order. 

To identify the position of a cyclone’s centre, different algorithms have been introduced in 

the related literature (Hodges, 199; Serreze and Barrett, 2008). These algorithms identify 

and track extratropical cyclones in observational reanalysis data and climate model 

simulations based on different criteria such as vorticity and minimum sea level pressure, 
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using threshold values to differentiate actual cyclones from noise (Seiler and Zwiers, 

2015). However, it has been shown that results are consistent for strong cyclones when 

applying different algorithms to the same reanalysis data (Neu et al, 2012).  

In this research extratropical cyclones were identified using the objective-feature tracking 

algorithm TRACK (Hodges, 1999) which was run on three reanalysis products: NCEP- 

CFSR (Saha et al, 2010), ERA-Interim (Dee et al., 2011), and NASA -MERRA (Rienecker, 

2011).  

Climate reanalysis products generally combine climate models with observations and 

generate numerical descriptions of the current climate. The National Centers for 

Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) includes 

estimates of several atmosphere-ocean-land surface-sea ice variables such as wind fields, 

air temperature, ocean currents, etc. from 1979 to 2011. ERA-Interim is a global 

atmospheric reanalysis product from 1979 to present, provided by the European Centre for 

Medium-Range Weather Forecasts (ECMWF) organization and it also includes same 

variables as NCEP_CFSR. Modern-ERA Retrospective Analysis for Research and 

Applications (MERRA) is a National Aeronautics and Space Administration (NASA) 

reanalysis product that covers 1979 to present and has similar output variables to the other 

reanalysis products.  

TRACK (objective feature tracking algorithm) works in a way that first computes relative 

vorticity from the 6-hourly zonal and meridional wind components at 850 hPa. The next 

step is to remap vorticity to a common T42 grid (128 x 64  regular longitude/latitude global 

horizontal grid cells mainly used in atmosphere, ocean, and land modelling, with a 
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resolution of approximately 2.8125 degrees), and to identify cyclone centers from the 

maximum of T42 vorticities. The path of these centers are then tracked if the cyclone 

exceeds: (i) a vorticity of 10-5 s-1, (ii) a lifetime of 2 days, and (iii) a propagation of 1000 

km.  

 In this chapter, the terms storm and extratropical cyclones are used interchangeably.  

5.2.4. Climate Change Models 

Projections from 20 climate change models referred to as the Coupled Model 

Intercomparison Project –Phase 5: CMIP5 (Taylor et al., 2012) were simulated over the 

study area for the period 2081-2099 (Seiler and Zwiers, 2015b). The CMIP5 project is a 

standard experimental protocol for studying the output of coupled Atmosphere-Ocean 

General Circulation Models (AOGCM). AOCGMs allow the simulated climate adjust to 

changes in climate forcing such as increasing atmospheric carbon dioxide. The objective 

of CMIP5 models is to better understand future climate changes arising from either natural, 

unforced variability or in response to changes in radiative forcing in a multi-model context. 

There are mechanisms associated with the carbon cycles and clouds which lead to model 

differences and the CMIP5 project aims to assess these mechanism and determine why 

similarly forced models may produce a range of responses.  The uncertainty and differences 

in models are due to differences in model components, parameterizations schemes, and 

resolutions. The resolutions of the climate models used in this study are listed in Table 5-1. 

The emission scenario for these climate models is RCP8.5. The Representative 

Concentration Pathways (RCP) address the changes in the balance between incoming and 
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outgoing radiation to the atmosphere caused by changes in atmospheric composition and 

provide inputs for climate modeling. RCP8.5 represents a rising radiative forcing pathway 

leading to 8.5 W/m2 in 2100.  

Table 5-1. CMIP5 Models, references, and their corresponding resolutions (number of grid squares in the 

zonal (x), meridional (y) and vertical (z) direction of the atmospheric model component, e.g. 128x64 L 26 

means 128 grids in zonal direction , 64 grids in meridonal direction and 26 vertical layers ) 

Climate Model Reference Resolution (x,y,z) 

BCC_CSM1.1  Xin et al., 2013 128x64 L 26 

BCC-CSM1.1(m)  Xin et al., 2013 320x160 L 26 

CanESM2  Arora et al., 2011 128x64 L 26 

CCSM4  Gent et al, 2011 288x192 L 26 

CNRM-CM5  Voldoire et al, 2013 256x128 L31 

FGOALS-g2  Li et al, 2013 128x60 L 26 

GFDL-CM3 Donner et al, 2011 144x90 L 49 

GFDL-ESM2G  Dunne et al, 2013 144x90 L 24 

GFDL-ESM2M Dunne et al, 2013 144x90 L 24 

HadGEM2-ES  Martin et al, 2011 192x144 L 38 

INM-CM4  Volodin et al, 2010 180x120 L 21 

IPSL-CM5A-LR   Dufresene et al, 2013 96x96 L 39 

IPSL-CM5A-MR Dufresene et al, 2013 144x143 L 39 

IPSL-CM5B-LR Dufresene et al, 2013 96x96 L 39 

MICRO-ESM  Watanabe et al, 2011 128x64 L 80 

MICRO-ESM-CHEM Watanabe et al, 2011 128x64 L 80 

MPI-ESM-LR  Giorgetta et al, 2013 192x96 L 47 

MPI-ESM-MR Giorgetta et al, 2013 192x96 L 95 

MRI-CGCM3  Yukimoto et al, 2012 320x160 L 48 

MRI-ESM1 Yukimoto et al, 2011 320x160 L 48 

 

5.2.5. Data Matching 

To determine the relationship between storm characteristics and fishing safety, it is 

necessary to integrate fishing incident data, fishing traffic data, and historical cyclone data 

into a consistent structure. To do so, the study area is overlaid by a series of grid squares 

of size 2.5 degrees by 2.5 degrees, then fishing incidents, fishing traffic levels, and cyclone 

databases are matched with these grid cells. There are 88 grid squares that cover the study 
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area, however thirteen of them are completely on land and therefore removed from study 

area. Figure 5-4 shows the gridded study area.  

 

Figure 5-4. Gridded Study Area (NB: New Brunswick, NL: Newfoundland and Labrador, NS: Nova Scotia, 

PEI: Prince Edward Island) 

To match incident data with grids, the number of incidents were counted in each grid cell 

over the study period (2000-2004). The study period was restricted based on data 

availability).  For the corresponding traffic levels, the number of line segments for fishing 

vessel trajectories (see Figure 5-3) in each grid was assigned to that grid. 

Frequency and intensity of cyclones were chosen to represent cyclone weather conditions 

and these variables were matched with fishing incident and fishing traffic data. The 

frequency of storms in this study was defined as the number of storms passing a specify 

grid square and it was calculated for the grids via the same process as the incident data with 
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an assumption that a storm can affect an area 750 km around its centre (i.e. approximately 

eight surrounding grids about the centre of the storm). The intensity of a storm can be 

measured by its vorticity. To match intensity of storms with other datasets, the highest 

vorticity of all the storms passing through a grid in each year over the study period (2000-

2004) was assigned to that grid,  where the spatial and temporal resolution is a grid-year 

for this part of the study.   

5.2.6. Data Exploration 

To get a better understanding of the relationships among fishing incidents, fishing traffic 

levels, and cyclone characteristics in Atlantic Canada, the hot spots of storms (in terms of 

frequency and intensity), fishing incidents, and fishing traffic levels were examined.  

Table 5-2 shows the number of grid-days that were associated with storms as simulated by 

NCEP-CFSR, ERA-Interim and NASA-MERRA respectively over the study period. Grid-

days are defined as a combination of grids and days represented by grid-dayijk where i is 

the grid ID, j is the ordinal day in each year, and k is the index for each year.  NASA-

MERRA has apparently simulated fewer storms over this period compared to NCEP-CFSR 

and ERA-Interim over the study area, which may lead to different outcomes in the model 

development phase.  

Table 5-2. Number of grid-days that were associated with a storm tracked via NCEP-CFSR, ERA-Interim 

and NASA-MERRA projects respectively in 2000-2004  

Year NCEP-CFSR ERA-Interim NASA-MERRA 

2000 393 401 356 

2001 392 369 334 

2002 373 380 319 

2003 419 411 363 

2004 415 438 393 

Total 1992 1999 1765 
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Figure 5-5 presents the spatial distribution of storms simulated by NCEP-CFSR, ERA-

Interim and NASA-MERRA. To colour-code the maps, the Natural Break method (Jenks, 

1967) was used. In this method, data are divided into an arbitrary number of classes (in our 

case 5 classes) and then the data are repeatedly broken into sets to obtain the sets with the 

smallest in-class variance. The darkest red represents the highest frequency while yellow 

stands for the lowest number of stormy days.  Even though these Figures are not exactly 

the same, they all suggest that grid cells in the eastern part of Newfoundland and Labrador 

have the greatest number of stormy days, while areas in South of Nova Scotia and New 

Brunswick have the least during 2000-2004.  
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Figure 5-5. Spatial distribution of storms frequency simulated by (a) NCEP-CFSR. (b) ERA-Interim.  

(c) NASA-MERRA during 2000-2004 

Figure 5-6 shows the spatial distribution of severe storms (i.e. grids with highest vorticity) 

over the study area for NCEP-CFSR, ERA-Interim, and NASA-MERRA. Again to colour 

code the maps, the Natural Breaks method was applied. Dark red shows the highest 
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vorticity and yellow represents the lowest vorticity in the dataset. Despite some differences 

in the maps of Figure 6, all of them suggest that the most severe storms (i.e. storms with 

high vorticities) happen in Southeast part of the study area. 

Orange and dark yellow grids in the North part of Newfoundland and Labrador in the ERA-

Interim and NASA-MERRA maps compared to the corresponding yellow grids in the 

NCEP-CFSR map indicate that ERA-Interim and MERRA simulated more intense storms 

in this area than did NCEP-CFSR which again may lead to different results in the model 

development phase.    

Comparison of Figures 5-5 and 5-6 indicates that grid squares in the far East of the study 

area and North of Newfoundland and Labrador experience more frequent and intense 

storms than other areas.  
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Figure 5-6.Spatial distribution of severe storms simulated by (a) NCEP-CFSR (b) ERA-Interim (c) NASA-

MERRA during 2000-2004 

Figure 5-7(a) shows the spatial distribution of grids with incidents during 2000-2004. 

Natural Breaks were used to colour code the map. Dark red shows the grids with the highest 
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concentration of incidents. Grids around Nova Scotia and Prince Edward Island (PEI) are 

areas with the most frequent incident occurrences. Figure 5-7(b) shows the distribution of 

fishing activity in the study area during 2000-2004. Again Natural Breaks were used to 

colour code the map with dark red associated with the highest number of fishing trips. 

Fishing trips mostly occur near shore around Nova Scotia and South and East of 

Newfoundland and Labrador. To adjust for the dominant effect of traffic on incidents, 

Figure 5-7(c) shows the spatial distribution of incident rates (number of incidents per 

number of fishing trips) in each grid over 2000-2004. Grids with no traffic during the study 

period were removed from the database. The results show that although most of the 

incidents happened near the shore of Nova Scotia, grids to the north of Newfoundland and 

Labrador, grids in the eastern part of the map, and far south have higher incident rates. As 

mentioned earlier, these grids have also high number of storms and/or severe storms, which 

suggests the existence of some relationships between storms and fishing incidents.  
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Figure 5-7. Spatial distribution of (a) fishing incidents (b) fishing trips (c) fishing incident rates during 2000-

2004 

In addition to studying the spatial distribution of storms and fishing incident hotspots, some 

characteristics of those fishing incidents associated with a storm were studied to better 
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understand the conditions at the time of the storm. Unfortunately not all of the records in 

the SISAR database were filled out completely, which left us with very few incidents to do 

this analysis (157, 169, and 142 records for incidents associated with storms simulated by 

NCEP-CFSR, ERA-Interim, and NASA-MERRA, respectively). Tables 5-3, 5-4, and 5-5 

show different fishery types, incident types, and actions taken by Canadian Coast Guard in 

cases of incidents associated with storms simulated by NCEP-CFSR, ERA-Interim, and 

NASA-MERRA, respectively: 

Table 5-3. Number of incidents by fishery type that are associated with a storm tracked by NCEP-CFSR, 

ERA-Interim and NASA-MERRA respectively 

Fishing type NCEP-CFSR ERA-Interim NASA-MERRA 

Shrimp fishing 20 20 18 

Groundfish fishing 14 21 18 

Crab fishing 38 42 32 

Herring roe fishing 3 1 1 

Lobster fishing 42 25 28 

Tuna fishing 1 1 3 

Scallop fishing 2 0 0 

Seal fishing 37 59 42 

Total 157 169 142 

 

Due to differences in the spatial distribution of the frequency and intensity of storms related 

to each reanalysis product, different fishery types were matched with each model. Based 

on the results in Table 5-3, Lobster Fishing is the most frequent fishing type concurrent 

with storms simulated by NCEP-CFSR. ERA-Interim and NASA-MERRA related storms, 

on the other hand, are mostly matched with seal fishing. This could be explained by the 

spatial distribution of severe storms, since Figure 4(b) and 4(c) demonstrated that some 

severe storms reflected in these models occurred in to the north of Newfoundland and 

Labrador which is the location of seal fisheries. 
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Table 5-4. Types of fishing incidents associated with a storm tracked by NCEP-CFSR, ERA-Interim and 

NASA-MERRA respectively 

Type of Incident NCEP-CFSR ERA-Interim NASA-

MERRA 

Capsized 0 0 1 

Disabled 114 131 103 

Disoriented 1 1 1 

Grounded 6 0 3 

On fire 1 4 4 

Medical 9 8 8 

Foundered 0 1 0 

Taking on Water 15 12 13 

Missing Person(s) 2 1 1 

Stranded 0 1 0 

Other 9 10 8 

Total 157 169 142 

 

The results suggest that disabled vessels and taking on water are the most common types 

of incidents during a storm. 

Table 5-5. Canadian Coast Guard action in case of Incidents associated with a storm tracked by NCEP-

CFSR, ERA-Interim and NASA-MERRA respectively 

Action NCEP-CFSR ERA-Interim NASA-

MERRA 

Assist another unit 0 2 0 

Assistance in ice 2 6 2 

Communication 1 0 1 

Escort 21 21 21 

Evacuation 10 9 8 

Fire Fighting 0 0 1 

Investigation 2 1 1 

Monitoring 18 15 14 

None 0 1 1 

Other 9 7 7 

Rescue 2 2 2 

Search 3 6 3 

Technical assistance 2 1 2 

Towed 87 97 79 

Transport of person(s) 0 1 0 

Total 157 169 142 
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Although different incidents have required different response actions, the numbers in Table 

5-5 suggest that incidents that happened during a storm mostly needed to be towed, 

escorted, monitored, or evacuated.  

5.2.7. Data preparation 

To make the interpretation of incident rates easier, it was decided to categorize rates into 

three main groups: Low, Medium and High. Theoretically, incident rate in each grid square 

can adopt any value between 0 and 1. However as the histogram of incident rates over the 

study period shows (Figure 5-8), most of the rates except a couple of outliers are less than 

0.03. To ensure sufficient data in each of the three classes, tertiles were used with the first 

33% of sorted incident rate values categorized as Low, the next third as Medium and the 

rest as High. The upper bound for the first group was 0.001, for the second group it was 

0.006, and for the third group was 1. 

 

Figure 5-8. Histogram of incident rates (incidents per unit traffic in a grid square) over 2000-2004 

5.2.8. Model Development 

The objective of this step is to develop a model that can predict fishing incident rate classes 

in each grid square based on frequency and intensity of storms passing through that grid. 

Table 5-6 summarizes the descriptive statistics of predictors from NCEP-CFSR, ERA-
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Interim, and NASA-MERRA storm databases. Minimum frequency and/or intensity of 

zero shows that there were grids with no storms associated with them over the study period.   

Table 5-6. Descriptive statistics of predictors from NCEP-CFSR, ERA-Interim, and NASA-MERRA storm 

databases 

Dataset Frequency of Storms Intensity of Storms 

Min Average Max Min Average Max 

NCEP-CFSR 1 26.30 86 1.27 4.92 12.09 

ERA-Interim 0 26.49 93 0 4.76 11.52 

NASA-MERRA 0 23.67 93 0 4.36 12.97 

 

Figure 5-9 shows the scatter plot matrix of incident rate class, and frequency and intensity 

of storms simulated by NCEP-CFSR. As shown, no linear, monotonic or even functional 

correlation between the dependent variable (i.e. Incident Rate Class) and independent 

variables (i.e. storm Frequency and Intensity) can be recognized. Therefore, standard 

multiple regression methods are not appropriate here. Tree-based modelling can be used as 

an alternative exploratory technique for uncovering structures in the data pool when the 

relationships between dependent and independent variables are hard to find.  Breiman et 

al. (1984) suggested an algorithm that is commonly referred to as Classification and 

Regression Trees (CART) to handle these situations. CART has the advantage of being 

able to analyze complex data and provide an informative way of showing results in the 

form of decision trees. It can accommodate any type of predictor variable and can handle 

missing values in both the response variable and predictors (Speybroeck, 2012).  

CART aims to partition the space X (predictor variables X1, X2…) into disjoint sets A1, 

A2,.., each one as homogenous as possible. Belonging to a given set indicates the predicted 

class of the observations, for example, if observation i belongs to set Ak it means that the 
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value of response variable for this observation is k. The pseudocode for binary recursive 

partitioning is as follows (Loh, 2011): 

1. Start at the root node; 

2. Choose the split point that minimizes the sum of the node impurities (e.g. 

number of misclassifications) in the two child nodes; 

3. If a stopping criterion is reached then stop, otherwise apply step 2 to each 

child node in turn. 

The node impurity is called the deviance, and a deviance of zero corresponds to a perfectly 

homogenous node. The deviance decreases as the tree size increases. The deviance of a 

node is defined as the sum of the deviances of all observations in the node: 

D(µ;y)=∑ D(µ,yj)                                                                                                         (5. 1) 

where y is the predicted value at the particular node and µ is estimated by the node average 

(i.e. the mean of the values of the cases from sample space X assigned to that node), yj is 

the predicted value for each observation that gets classified under this particular node. 

Splitting proceeds by choosing the candidate children, which minimize the deviances 

(Breiman et al., 1984).  
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Figure 5-9. Scatter Plot Matrix of Incident Rate Class, and Frequency and Intensity of Storms 

5.3. Results 

5.3.1. Historical Relationships 

Table 5-7 shows the summary of the full classification trees based on the NCEP-CFSR, 

ERA-Interim, and NASA-MERRA models respectively.  
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Table 5-7. Results of full classification trees for NCEP-CFSR, ERA-Interim, and NASA-MERRA datasets 

Dataset 
Number of End 

Nodes 

Residual Mean 

Deviance 

Misclassification 

Rate 

Best 

Number 

of Nodes 

NCEP-CFSR 9 0.43 0.32 7 

ERA-Interim 11 0.38 0.28 10 

NASA-

MERRA 
10 0.44 0.34 5 

 

Both predictors (frequency and intensity) are included in the full trees. The size of tree is 

based on the number of end nodes. The residuals were obtained by subtracting the fitted 

values from the response variable. The mean was calculated based on the sum of the 

deviance over all of the leaves, divided by the number of total cases in the dataset minus 

the number of end nodes in the final tree. Generally speaking, the full tree is a fairly 

accurate partition of the datasets, however due to the small ratio of the number of 

observations to the number of potential predictors (67/2= 33.5), the likelihood of 

overfitting data is high (Hansen et al., 1996). To avoid overfitting, filter out noise, and 

reduce the complexity of the final model, classification trees should be pruned. The basic 

idea of pruning is to define the “cost” of adding another variable (split) to the model with 

respect to the information it adds to the final model (similar to the stepwise approach in 

regression, when no additional variables are added to the model when the F-Test for the 

remaining variables fails to achieve the significance level (e.g. 0.05)) (Therneau, 1997). 

Cross validation is a common method to prune classification trees, which divides the 

dataset into “k” mutually exclusive subsets. For each subset, a tree is fitted to the remaining 

(k-1) subsets and the kth subset is used to evaluate the results. This procedure is repeated k 

times. Deviances are summed up over all the subsets for different tree sizes and the size of 
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the next best tree is chosen based on the cross-validation results (miss-classification rate).  

The best numbers of nodes based on cross-validation results are reported in the last column 

of Table 5-7 for each tree. Based on these results, the trees have been pruned to their best 

size. Table 5-8 summarizes the results of the pruned trees for the NCEP-CFSR, ERA-

Interim, and NASA-MERRA datasets.  

Table 5-8. Results of pruned trees for NCEP-CFSR, ERA-Interim, and NASA-MERRA datasets 

Dataset Number of End Nodes Residual Mean Deviance 
Misclassification 

Rate 

NCEP-CFSR 7 0.53 0.37 

ERA-Interim 10 0.47 0.29 

NASA-MERRA 5 0.56 0.41 

 

Figure 5-10, 5-11, and 5-12 show the pruned trees for NCEP-CFSR, ERA-Interim, and 

NASA-MERRA respectively.  
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Figure 5-10. Classification Tree for NCEP-CFSR where the labels at the end of the nodes represent the 

incident rate class (1 means low, 2 means medium, and 3 means high) 
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Figure 5-11. Classification Tree for ERA-Interim where the labels at the end of the nodes represent the 

incident rate class (1 means low, 2 means medium, and 3 means high) 



119 

 

 

Figure 5-12. Classification Tree for NASA-MERRA where the labels at the end of the nodes represent the 

incident rate class (1 means low, 2 means medium, and 3 means high) 

Generally all these trees indicate that high storm intensity will lead to high incident rates. 

The only exception is in the NASA-MERRA tree (Figure 5-12) when high intensity and 

medium frequency has led to low risk class (second final node from right). One potential 

explanation can be the combination of frequency and intensity in this tree. Unlike the other 

two trees (i.e. NCEP-CFSR and ERA-Interim related trees), the NASA-MERRA tree 

doesn’t divide data at a high intensity threshold but uses a fairly medium value (the average 

intensity for the dataset is 4.36 which is greater than 3.98), so a combination of average (or 

even low) intensity and average frequency led to the low risk class node in this tree.  
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It was also shown that a combination of low frequency and average intensity storms can 

produce high incident rates. One explanation for this outcome could be the fact that when 

storms are rare in some areas, fish harvesters may not be well prepared for stormy 

conditions and even a storm with average intensity could lead to incident occurrences. 

Average intensity and average frequencies of storms generally lead to medium or low 

incident rates but the thresholds are different in each model (for example high intensity 

means more than 8.23 for the NCEP-CFSR-Tree and more than 8.15 for the ERA-Interim-

Tree). 

Misclassification rates residuals have been calculated using cross validation (K=10). Note 

that none of the models have a classification rate greater than 70 % (4th column of Table 5-

8). The potential explanation for this is that there are many other factors (human related, 

environmental factors other than storms), which were not included in these models. 

However, considering that only storm frequency and storm intensity are introduced as the 

predictors of incident rates, the performance of this model seems fair. 

5.3.2. Predictions 

To study changes in fishing risks due to climate change, fishing incidents rates estimated 

based on frequency and intensity of storms in two periods (1980-2000) and (2081-2099) 

were compared. To do so, storms simulated by CMIP5 models for the period 2081-2099 

were spatially matched with the grids over the study area and the number of storms and the 

highest vorticity estimated in each model was assigned to the corresponding grid. Trees 

built on historical data from NCEP-CFSR, ERA-Interim and NASA-MERRA were applied 

to each of the 21 CMIP5 models individually, therefore, each grid was classified as low, 
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medium, or high risk based on the predicted weather factors in each climate model (e.g. 

grid i may be classified as low risk based on CCSM4 projection, medium risk based on 

FGOALS-g2 projection, and high risk based on MRI_ESM1 projection). Figure 5-13 

shows the grids with pie charts indicating what percentage of models classified the related 

grid as having low (white), medium (yellow), or high (red) incident rates based on the tree 

built on NCEP-CFSR as an example. One can conclude that hot spots of incident rates in 

the period of 2081-2099 will be located to the south of Nova Scotia, the south of New 

Brunswick, and Eastern parts of the study area. Figure 5-13 demonstrates a fair amount of 

consistency around the risk level in each grid associated with all of the 21 models, although 

north of Newfoundland shows more variability in this regard. Since there may be more 

than one risk class estimated for a grid by the 21 CMIP5 models, the class which is 

predicted by the majority of CMIP5 models (i.e. largest sections in pie charts of Figure 5-

13) was chosen as the representative risk class in 2081-2099 and then it was compared to 

the risk classification for the period 1980-2000. To get the risk estimates for the period 

1980-2000, storms simulated for this period by NCEP-CFSR, ERA-Interim, and NASA-

MERRA were spatially matched with grids over the study area and fishing incident rates 

were calculated based on built trees.  
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Figure 5-13. Estimated incident risks for the period 2081-2099 based on NCEP-CFSR-Tree. Pie charts 

illustrate the percentage of projections that classify the grid as high risk (red), medium risk (orange), and 

low risk (white). 

Figure 5-14 maps the differences between risk classification of the grids in 1980-2000 and 

2081-2099 according to each of the three tree-based models NCEP-CFSR, ERA-Interim, 

and NASA-MERRA. The maps are colour coded in such a way that dark blue shows 

reduction in risk by two classes (from high to low), blue shows reduction in risk by one 

class (from high to medium, medium to low), white means no change, orange means 

increase in risk by one class (low to medium, medium to high), and red means increase in 

Canada 
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risk by two classes (low to high). It is assumed that changes from high to medium and 

medium to low (or vice versa) are equivalent (i.e. it can be presented by the same colour).  
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Figure 5-14. Differences between incident rate classes in 1980-2000 and 2081-2099 based on (a) NCEP-

CFSR (b) ERA-Interim (c) NASA-MERRA. Dark blue: Reduction in risk by two classes (from high to low), 

Blue: Reduction in risk by one class (from high to medium, medium to low), White: No change, Orange: 

Increase in risk by one class (low to medium, medium to high), and Red: Increase in risk by two classes (low 

to high).  

As Figure 5-14 suggests, NCEP-CFSR-Tree and ERA-Interim-Tree both predict risk 

reduction in the area North of Newfoundland and Labrador. The results of all three models 

indicate that there is an increase in the risk rate in the Gulf of St. Laurence and southern 

(a) 

(b) 

(c) 

Canada 

Canada 

Canada 

Atlantic Ocean 

Atlantic Ocean 

Atlantic Ocean 
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parts of Labrador. Despite the differences in the three maps, one can conclude that there 

wouldn’t be many changes in fishing risk due to climate change in the future and decreases 

and increases in risk may occur only in a few grids. To study these differences 

mathematically two methods are carried out: 

1. Raster Analysis, which generates a cross-tabular listing of map intersections and 

counts the number of cells within each class to represent the coincidence percentage. 

This method gives a general idea of how well the maps match (Berry, 2007).  

2. Percent Difference, which simply investigates the change of category for each grid. 

It is an alternative approach for statistical tests such as the t-test. Statistical tests 

require some conditions such as normal distribution or independence of the data, 

which is rarely the case in mapped data. To interpret the results of Percent Difference, 

the Thirds rule can be adopted.  “Thirds rule of thumb” for comparing map surfaces 

indicates “if two-thirds of the map area is within one-third (one unit class change) 

difference, the surfaces are fairly similar; if less than one-third of the area is within 

one-third difference, the surfaces are fairly different” (Berry, 2007).  

Raster analysis results yielded 70%, 73%, and 83% similarity among estimated fishing 

risks for 1980-2000, and 2081-2099 periods based on NCEP-CFSR, ERA-Interim, and 

NASA-MERRA trees, respectively. Percentage Difference results indicated that 74%, 

77%, and 100% of grids are in the 33% difference area when comparing 1980-2000 and 

2081-2099 periods based on NCEP-CFSR, ERA-Interim, and NASA-MERRA tress, 

respectively. All these results imply that these periods are fairly similar in terms of fishing 

incident rates; however these results are based on intensity and frequency of storms and if 
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more variables are included in the study or if historical relationships are built based on a 

larger time span, these findings may change.  

5.4. Discussion and Conclusion 

This research aims to reveal the underlying relationships between extreme weather events 

and fishing safety and to investigate how the spatial distribution of fishing incidents may 

change due to climate change effects. This paper proposes a general framework: 

1. Build a mathematical model based on historical relationships between fishing 

incidents, fishing activity levels, and extreme weather events. 

2. Run the model developed in step one using storm projections for the period of 

interest.  

In our case, extreme weather conditions relate to storm frequency and storm highest 

intensity in each grid of 2.5 degrees by 2.5 degrees over Atlantic Canadian waters during 

2000 to 2004. To track storms, three reanalysis products, namely NCEP-CFSR, ERA-

Interim, and NASA-MERRA were used. Classification tree analysis was then applied to 

the incident rates (number of incidents over number of fishing trips in each grid) and storm 

frequency and intensity data. Both frequency and intensity of storms appeared to be 

important for the prediction of incident rates for all of three datasets (NCEP-CFSR, ERA-

Interim, and NASA-MERRA). Projections of 21 CMIP5 climate models were used as 

potential climate change scenarios for the period 2081-2099 in Atlantic Canada. Despite 

some disparities in results across the scenarios, we conclude that the environmental 

conditions that drive fishing incidents are projected to remain very similar by the end of 
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this century. However, including other extreme weather factors, such as surface wind 

speed, precipitation, and temperature in the analysis could lead to more precise results since 

fishing safety can be affected by many environmental and non-environmental factors, 

whereas assuming that it can be explained through few factors is somewhat simplistic.  

The dynamic characteristic of storms is another factor that could be taken into account 

when interactions between fishing safety and changing climate are studied. Frequency and 

intensity of storms are different each year and some individual years may be particularly 

harsh. Figure 5-15 populates the grids with pie charts indicating what percentage of the 

models classified the related grid as having low (white), medium (yellow), or high (red) 

incident rates based on the tree built on NCEP-CFSR for individual year 2081 as an 

example. Comparing Figure 5-15 to Figure 5-13 shows that although the bottom left corner 

of the map shows low fishing risk averaged over the whole period, it is risky in that specific 

year.  
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Figure 5-15. Estimated incident risks for year 2081 based on NCEP-CFSR-Tree. Pie charts illustrate the 

percentage of projections that classify the grid as high risk (red), medium risk (orange), and low risk (white). 

This makes the point that inter-annual variability of the risk level can be significant, even 

though multi-year averages a fairly stable. The variability of risk for each year is especially 

important in short term and tactical planning such as search and rescue resource allocation. 

Even though search and rescue stations are located and built based on long term 

considerations, information on the hot spots of incidents with respect to possible weather 

patterns in particular years may enhance their preparedness and the accessibility of search 

and rescue resources to these hotspots, which consequently can improve safety and lower 

the cost of search and rescue.   
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Chapter 6 Knowledge Mobilization 

Title: Review of Fishing Safety Policies in Canada with Respect to Extreme 

Environmental Conditions and Climate Change Effects 

Authors: Sara Rezaee, Dr. Mary R.Brooks, Dr. Ronald Pelot 

Abstract 

Fishing is one of the most dangerous occupations in the world. Numerous research studies 

have been carried out to ascertain how to improve fishing safety from many different 

perspectives. Several of these studies focused on the relationship between environmental 

factors, climate change effects, and fishing safety. This paper aims to suggest a knowledge 

mobilization structure to improve and update fishing policies with respect to fishing safety 

and environmental conditions. Significant safety factors extracted from related literature 

are stability of vessels, fisheries management, safety equipment, communication, 

insurance, training, safety information and culture, weather forecasts, fatigue, and search 

and rescue planning. The paper then reviews policies related to these factors to examine if 

they address extreme environmental conditions and climate change. The paper presents 

recommendations to improve general fishing safety with respect to short and long term 

environmental considerations.  

 

Key words: Fishing Safety, Fishing Policies and Regulations, Extreme Environmental 

Factors, Climate Change 
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6.1. Introduction 

Fishing is identified as the deadliest occupation in Canada.  The fatality rate for fish 

harvesters is 0.831 per 1000 persons per year, which is 19 times higher than any other 

industry in the country. In addition to the risk of life loss, fish harvesters are at danger of 

serious or minor injuries during their work at sea. In the province of Nova Scotia, 

approximately 4% of fish harvesters have experienced at least one serious injury while 

fishing. It is important to note that these numbers only represent incidents reported to 

Workers Compensation Boards (WCBs) in Canada as not all injuries or fatalities of small 

fishing operations may appear in these statistics (WCBNS, 2012).  

An overview of incidents reported to the Canadian Coast Guard (CCG) in Atlantic Canada 

showed that 8,650 incidents occurred in this area during the period 2000-2010, and that 

15% of these were classified as severe incidents (i.e. life loss or total vessel loss) (Rezaee 

et al., 2015a). Hard labour, long working hours, hazardous working conditions, and the 

competitive nature of the work are the elements of commercial fishing that contribute to 

the risks associated with the industry. Harsh environmental conditions combined with any 

of these factors could lead to a disaster. Several studies show that there is a correlation 

between various weather factors and fishing incidents (Jin et al, 2001; Jin and Thunberg, 

2005, Chatterton, 2008; Wu et al, 2008, 2009; and Niclasen, 2010). Rezaee (2015a, 2015b) 

studied the relationship between extreme environmental factors (i.e. air temperature, sea 

surface temperature, wind speed, ice concentration, precipitation, and Laplacian of 

pressure as the indicator of cyclones’ intensity), fishing incident rates, and severity levels 

of fishing incidents, respectively. The results of these studies showed that there is a 
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statistically significant relationship between these factors and fishing incidents and that 

these relationships and the degree of correlation between predictor factors and incidents 

are different for specific fishery types. Another important issue that should be taken into 

account when studying the effects of environmental conditions on fishing safety is climate 

change. Global warming may cause short and long term changes in weather patterns and 

this may also affect fishing safety. Rezaee (2015c) proposed a framework to estimate 

fishing risk with respect to potential climate change scenarios. The results of these studies 

will be explained in detail in section 6.2.2. 

It is concluded from cited literature that generally harsh environmental factors can increase 

the risk of fishing incidents and worsen the situation during the period of recovery after an 

incident happens. Findings from the literature indicate that environmental factors and 

climate change are important elements to consider in formulating policies to improve 

fishing safety. This paper uses a knowledge mobilization structure to link the outcomes of 

different research efforts to safety policies and regulations. Knowledge mobilization is 

commonly defined as “getting the right information to the right people in the right format 

at the right time, so as to influence decision making” (ONF, n.d.). Knowledge mobilization 

can be challenging for many reasons including differences in priorities of researchers and 

end-users, a lack of a common language between them, uncertainty around use of research, 

lack of mutual trust, different understandings of policy and practices, time related 

challenges, and so on (Shantz, 2012). Therefore, it is very important to find a proper way 

to present knowledge in a readily understandable language for all the users and strengthen 

the connection between research, policy, and practice as much as possible. Knowledge 
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mobilization models are mainly presented as a product model with three main elements: 

input (evidence and research), outcome (practice and decisions), and process that links 

input to output (Levin, 2008). The knowledge mobilization structure proposed in this paper 

has the following elements: 

1. Input: Input to the framework comprises significant fishing safety factors in Canada 

extracted from related literature (along with a review current Canadian policies 

related to these factors) and findings of the studies related to the effects of extreme 

environmental conditions on fishing safety (section 6.2); 

2. Process: To build a bridge between the input items, relationships between research 

findings and safety factors are determined (section 6.3);  

3. Outcome: Recommendations to modify regulations and policies in an attempt to 

make commercial fishing a safer occupation with respect to weather considerations 

are presented as the output of this framework (section 6.4).  

Before the knowledge mobilization structure approach can be used, the bodies within 

Canada responsible for fishing safety policies and regulation are introduced. 

Many federal and provincial organizations are involved in fishing safety in Canada. 

Federally, Transport Canada (TC) and the Department of Fisheries and Oceans (DFO) are 

responsible for setting regulations and policies. Generally speaking, TC establishes policies 

on construction and stability of vessels, navigation and fishing equipment, lifesaving 

appliances, licensing, and the vessel-related training of fish harvesters. DFO is responsible 

for fisheries management, such as the setting of fishing seasons, fishery location, species 

that may be caught and the catch limits (i.e. size and/or legal number of fish that can be 



133 

 

caught). The Canadian Coast Guard (CCG), located within DFO, provides safety services 

for mariners and also regulates radio communication and ice navigation in Canadian 

waters. After a fishing incident, search and rescue in Canada is a shared responsibility 

across government departments and several agencies; for Atlantic Canadian waters, that 

responsibility is housed within the Joint Rescue Coordination Centre (JRCC) located in 

Halifax, one of three Canadian JRCCs. Other governmental or non-governmental 

organizations such as the Nova Scotia Fisheries Safety Council, the National Research 

Council and various fishers’ associations mainly work on research, training, and increasing 

safety awareness among fish harvesters. All of these departments and policies can directly 

or indirectly affect fishing safety in Atlantic Canada, the geographic location for this 

research.  

6.2. Input 

Input items of the knowledge mobilization framework are classified into two categories: 

fishing safety factors and the effects of extreme environmental conditions on fishing 

incidents. Fishing safety factors involves a review of fishing safety literature to provide a 

list of safety factors that may need improvement in Canada and examines current Canadian 

policies related to each factor.  

The second part of the input summarizes findings of several research studies on the effect 

of extreme environmental factors on fishing incidents and determines which environmental 

factors are significant in fishing safety in Atlantic Canada.  
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6.2.1. Fishing Safety Factors 

Kaplan and Kite-Powell (2000) indicated that fish harvesters find policies on reduced 

crewmembers, short fishing seasons, and restricted areas to be the main safety-related 

policies implicated in fishing incident levels. Loughran et al. (2002) concluded from a 

study on fishing vessel safety that safety culture is not very strong in fishing industries. 

Piniella (2007) focused on the use of safety equipment in a Spanish fishing fleet and 

showed that there is a need for training on the proper use of this equipment; he also 

highlighted the lack of safety culture among fishing communities. Windle et al. (2008) 

compared regulatory regimes and fishing safety outcomes in six countries (including 

Canada) and recommended improvements in policies with respect to safety training, safety 

equipment, inspection and enforcement, communication, search and rescue, weather 

forecasting resources, and fisheries infrastructure. Håvold (2010) showed that fish 

harvesters’ safety attitude, safety training, and management’s safety attitudes have 

significant influence on fishing safety policies and practices. An investigation of small 

fishing vessel incidents that occurred in Canadian waters during 1999-2010 showed that 

the main safety issues in Canada are as follows: vessel stability, fisheries resource 

management, lifesaving appliances, regulatory approach to safety, training, safety 

information, cost of safety, fatigue, fishing industry statistics, and safe work practices 

(TSB, n.d.). From the above it is clear that literature on fishing safety policies, mostly are 

focused on identifying factors of relevance.  

Adopting the findings of the preceding studies, a list of factors that policies and regulations 

related to them may need improvement is created. The list comprises: 
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Factors related to incidents occurrences: 

 Stability: The stability of a vessel is defined as its ability to deal with strong winds, 

high waves, loading, and other forces resulting from the vessel’s operations. Loss 

of stability is one of the main factors leading to fishing incidents.  TC requires every 

new fishing vessel to go through a stability inspection on, or near, the completion 

of construction. The inspection should include loading conditions (half load and 

full load), departure and arrival situations, worst case operating conditions, and 

accumulated ice on topside and rigging. If a vessel is larger than 150 gross tons, it 

needs to have a stability booklet on board that specifies the limits of that particular 

vessel’s stability (Minister of Justice, 2007a, 2007b).  

 Fisheries Management Strategies: DFO’s vision is declared as follows (DFO, 

2004):  

“Safe, healthy, productive waters and aquatic ecosystems, for the benefit of present 

and future generations by maintaining the highest possible standards of: service to 

Canadians, marine safety and environmental production, scientific excellence, and 

conservation and sustainable resource use.”  

Although safety is stated as one of its main objectives, DFO’s policies over time 

show that fishing safety has not been a main priority in the fisheries management 

decision-making process. DFO’s policies mainly focused on sustainable and 

responsible fishing over economic, social and safety considerations (FAO, 2000). 

In other words, DFO mainly regulates the time of opening and closing of the 



136 

 

fisheries, effort intensity, and vessel size in a way that fish stocks are protected as 

much as possible, with little explicit consideration of fishing safety.   

 Weather Forecasts: Environment Canada (EC) provides marine weather forecasts 

for shippers, boaters and fish harvesters through their website and radio stations. 

There are no stated policies or regulations on how fish harvesters get the weather 

forecast and no specified safety practices in cases where weather warnings are 

issued. 

 Fatigue: Hours of work is not included in policies or regulations but fatigue has 

been determined to be one of the main causes of fishing incidents. Harsh weather 

conditions can have a significant effect on levels of fatigue. It is not hard to imagine 

that working in strong winds, heavy rain, and low temperatures can be exhausting 

and mentally frustrating.  

Factors related to incident consequences 

 Safety equipment: Fishing vessels are required by TC to carry lifesaving 

appliances, vessel safety equipment, visual signals, navigation equipment, and 

firefighting equipment (TC, n.d.).  

 Communication: The CCG is responsible for fishing vessel radio communication 

regulations. Radio communication service is mainly used to exchange messages for 

safety and navigation. Fishing vessels that are 20 meters or more are required to 

have a SART (Search And Rescue Transponder) in their vessels under lifesaving 

regulations (Minister of Justice, 2014). DFO also requires certain fisheries to carry 

vessel monitoring system (VMS) devices on their vessels for fisheries management 
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purposes (DFO, n.d.). Automatic Identification System (AIS) is another 

transponder, which is mandatory for every ship operating in Canadian waters, 

which is 500 tons or more, other than a fishing vessel (TC, 2007). 

 Search and Rescue: Search and rescue can be conducted via air and ocean. The 

JRCC Halifax coordinates maritime search and rescue operations in emergencies 

carried out by the CCG and Canadian Coast Guard Auxiliary (CCGA) and the 

Canadian armed forces assist with airside support. CCG and CCGA have their own 

limitations in harsh weather conditions as well. A search and rescue resource cannot 

venture out to sea if there is a big storm occurring or imminent, thus their response 

may be delayed.  

 Insurance and Workers Compensation Boards: Insurance is not mandatory for 

fishing vessels; however some provincial governments require proof of insurance 

coverage before issuing permits for some fisheries. Workers Compensation Board 

coverage is only mandatory for certain size vessels, and the premium is relatively 

high (WCBNS, 2012). 

Factors related to fishing safety in general 

 Safety Information and Culture: There is no policy on fishing safety culture; 

however TC, DFO, Transportation Safety Board of Canada (TSB), etc. can 

effectively increase awareness among fish harvesters which may potentially foster 

a culture of safer practices among fishing communities. 

 Training: Training can have a considerable effect on fishing safety. Currently, 

training is only compulsory for Masters and watchkeeping officers (TC, 2011). The 
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Master of the fishing vessel should also make sure that all the crewmembers know 

how to use safety equipment. Several federal and provincial organizations such as 

the Canadian Council of Professional Fish Harvesters, Professional Fish Harvesters 

Certification Board, Nova Scotia Fisheries Sector Council, and Prince Edward 

Island Fishermen’s Association attempt to increase awareness among fish 

harvesters and provide training courses for them.  

Fishing safety is a complex system and there is a dynamic relationship between its 

elements. In other words, safety related factors are not independent of each other and any 

change in one factor can affect others. For example, fishing management strategies may 

lead to competitive fishing during a short season that can add considerably to the fatigue 

factor. Proper training on use of safety equipment may decrease the severity level of fishing 

incidents considerably and a decreased number of severe fishing incidents may eventually 

decrease insurance rates.  

To study the relationship between safety factors and environmental conditions, the results 

from Rezaee et al. (2015a, 2015b, and 2015c) will be described in the following section. 

6.2.2. The Effects of Extreme Environmental Conditions on Fishing Safety 

Rezaee et al. (2015a) focused on the relationships between fishing incident rates (i.e. 

number of fishing incidents over related fishing traffic) and extreme environmental factors 

in Atlantic Canada. The environmental factors were chosen based on the related literature 

and experts’ opinions, and comprise wind speed, air and sea surface temperature, 
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precipitation, ice coverage and Laplacian of pressure. Several statistical methods were 

applied to the data sets and the following results were obtained: 

 On stormy days, lower air temperature, higher ice coverage, and strong winds will 

increase fishing incident rates.  

 Low sea surface temperature, and high wind speed are critical weather factors in 

winter.  

 Low sea surface temperature, high ice coverage, and heavy rain are significant 

weather conditions for fishing incident rates in spring.  

 Wind speed is the main weather factor that affects safety in summer and wind speed 

and high Laplacian of pressure may lead to risky situations for fishing incidents in 

the fall.  

Rezaee et al. (2015b) investigated the effects of environmental conditions after an incident 

happens (i.e. incident consequences which can be severe or non-severe). The results are 

summarized as follows: 

 High Laplacian of pressure, low sea surface temperature, and strong wind speeds 

are significant weather factors in severe incident occurrences (i.e. life loss and/or 

total damage to the vessel) 

 Shrimp and herring roe fisheries are more vulnerable to intense storms (i.e. high 

Laplacian of pressure). 

 Strong wind speeds and low sea surface temperature can cause severe incidents for 

Groundfish fishers.  
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 Ice coverage is the critical environmental factor in the severity level of seal fishing.  

 Scallop fishing and lobster fishing are at danger of severe incidents when the 

Laplacian of pressure is high (i.e. intense storms). (Rezaee et al, 2015b). 

Rezaee et al. (2015c) proposed a general framework to study the effects of climate change 

on fishing safety. Intensity and frequency of storms hitting Atlantic Canada were chosen 

as predictors of fishing incident rates. Comparing the estimated fishing incident rates in 

2081-2099 to the historical records from the years 1980-2005 in the area of interest showed 

a great of deal of similarity between the spatial distributions of incident rates in these two 

periods. Figure 6-1 compares these two periods: White shows no change, blue indicates 

risk reduction by one class (i.e. medium to low or high to medium), orange implies risk 

increase by one class, and red shows risk increase by two classes (i.e. low to high) in 2081-

2099 compared to 1980-2005. Based on this figure, one can conclude that generally the 

shorelines around New Brunswick and Gulf of St. Lawrence could experience an increase 

in fishing risk due to climate change effects. However, it must be noted that this study only 

adopts frequency and intensity of storms as fishing safety predictors, whereas including 

more determinants, such as air and sea surface temperature, vessel characteristics, fisheries 

location, etc., could result in more accurate estimations of impacts.  
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Figure 6-1.Differences between incident rates classes in 1980-2000 and 2081-2099 based on ERA-Interim Reanalysis 

product storm simulation. White: no difference, blue: risk reduction by one class (i.e. medium to low or high to 

medium), orange risk increase by one class, and red risk increase by two classes (i.e. low to high) in 2081-2099 

compared to 1980-2000. 

When climate change is studied, it is also necessary to consider annual variations in the 

frequency and intensity of storms. These factors differ for each individual year in that 

period and some years may be particularly harsh. This dynamic characteristic of storms 

can lead to high fishing incident risks in some years despite the average over longer periods 

remaining steady. 

6.3. Process of Linking Research Findings to Safety Factors 

This step attempts to reveal relationships between safety factors and significant 

environmental conditions in fishing safety. These relationships will be employed to 

recommend improvements in fishing policies and regulations. 
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 Each of the significant environmental factors in fishing incidents (listed in section 6.2.2) 

might affect safety factors (listed in section 6.2.1) directly or indirectly. For example, 

strong wind speed can affect stability, complicate search and impede timely rescue. 

Working in strong winds can be stressful and add to fatigue. Low temperature can worsen 

the situation of a person in the water and lead to serious injuries; this brings attention to 

the importance of proper insurance for risky fisheries (smoothing the recovery phase if an 

incident happens). Low sea surface temperature causes cold shock and drowning would be 

inevitable for a person in water without a personal floating device even in calm seas. Ice 

coverage can trap vessels and cause damage to the hull, which signifies the importance of 

communication, search and rescue and insurance. Precipitation lowers visibility, may 

affect communicating devices and add to the fatigue of crewmembers. The Laplacian of 

pressure is an indicator of intense storms which implies strong winds, heavy rains, and 

changes in temperature, therefore vulnerability towards strong storms can affect vessel 

stability, search and rescue planning, communication, and usage of insurance and personal 

safety equipment.  

Table 6-1 summarizes the results from Rezaee (2015a) and (2015b) and shows the 

relationships between environmental and safety factors.  
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Table 6-1. The relationship between environmental and safety factors. 

Environmental 

Factor 

Season Fishery Type Safety Issue 

(Direct effect) 

Safety Issue 

(Indirect 

effect) 

Wind Speed  Winter 

 Summer 

 Groundfish 

 Scallop 

 Lobster 

 Stability 

 Search and Rescue 

 

 

 Fisheries 

Management 

 Safety 

Information 

and Culture 

 Weather 

Forecast 

 Fatigue 

 Training 

Air and Sea 

Surface 

Temperature 

 Winter 

 Spring 

 Groundfish  Insurance 

 Safety Equipment 

 Fisheries 

Management 

 Safety 

Information 

and Culture 

 Weather 

Forecast 

 Fatigue 

 Training 

Ice coverage  Spring  Seal  Stability 

 Search and Rescue 

 Communication 

 Insurance 

 Safety 

Information 

and Culture 

 Weather 

Forecast 

 Fatigue 

 Training 

Precipitation  Spring --  Communication 

 Fatigue 

 Safety 

Information 

and Culture 

 Weather 

Forecast 

 Training 

Laplacian of 

Pressure 
 Fall  Shrimp 

 Herring Roe 

 Stability 

 Safety Equipment 

 Search and Rescue 

 Communication 

 Insurance 

 Safety 

Information 

and Culture 

 Weather 

Forecast 

 Training 

 

Weather patterns may alter due to climate change. All the relationships listed in Table 6-1 

should be reviewed periodically due to short term and long term climate change 

considerations and revised if necessary.  
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In the following section, recommendations are presented with respect to results from 

Rezaee (2015a, 2015b, and 2015c) and similar studies (Jin et al., 2001; Jin and Thunberg, 

2005; Chatterton, 2008; Wu et al, 2008, 2009; and Niclasen, 2010), to modify Canadian 

policies in a way that general fishing safety is improved.  

6.4. Output (Fishing Safety Policies) 

Stability: Extreme environmental conditions, and the resulting poorer operating conditions 

are different in each part of the country and each fishery type (see Table 6-1); therefore, 

inspections should be customized based on the particular environmental characteristics of 

each location/fishery. However, these considerations should be periodically updated due 

to short and long term climate change effects. It is also important to increase awareness 

among fish harvesters about the role of stability in fishing vessel incidents and inform them 

about factors that can affect stability. Currently there are training courses on stability like 

the Fish SAFE Stability Education Program (Fish SAFE, n.d.) and Fishing Vessel Stability 

Simulator (CCPFH, n.d.).  However, providing a more comprehensive and consistent 

training on stability all over the country, offered by TC and/or Fishers Associations, 

particularly for fishery types that are more vulnerable to strong winds (e.g. Lobster fishing), 

may decrease fishing incidents risks. Spot checks of fishing vessels’ stability by TC can 

also improve safety, particularly if a vessel is modified or the location/target species of 

fishing has changed significantly since the previous inspection.  

 Fisheries Management: Including safety of fish harvesters in general, and extreme 

environmental conditions in particular, in fisheries management infrastructure can 

significantly reduce fishing risk. DFO’s regulations can indirectly affect many safety 
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related issues. Short fishing seasons can increase fatigue, lead to overloaded vessels (thus 

decreasing stability) and/or cause fish harvesters to stay out in harsh weather conditions. 

Adopting quota-based fishing programs instead of tightly specified fishing seasons gives 

more flexibility to fish harvesters and may improve safety especially as Table 6-1 shows 

that each fishery can be affected by different weather conditions. Involving fish harvesters 

in decision-making processes from the beginning, and considering the specific 

environmental conditions for each location in decision making, as well as updating this 

information periodically based on climate change effects, can also help manage fishing 

risk. 

Weather Forecasts: Governmental agencies’ (e.g. TC, EC, DFO, and CCG) support of 

research on more accurate weather forecasts, and research on the most effective ways to 

share forecasts with fish harvesters, could improve fishing safety. Additional regulations 

towards better adherence to good safety practices in case of storm warnings could improve 

fishing safety.  

Fatigue: Increasing awareness about fatigue through public engagement programs and 

training courses provided by TC and Fishers Associations could better prepare fish 

harvesters for critical environmental conditions. 

Safety Equipment: Several studies show that life-saving appliances may not be very easy 

for fish harvesters to use (Piniella, 2007; TSB, n.d.) so training courses offered by CCG, 

TC, and Fishers Associations on how to use this equipment in case of storms and 

improvements in life-saving appliance designs to increase the efficiency and ease of use 

would improve safety. More frequent and extensive inspections of this equipment by TC 
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or provincial Fishers’ associations is another action that can increase safety; however, there 

should be a cost-benefit analysis to find a balance between the cost of these inspections 

and the value they may add to safety. Furthermore, the issue of who would bear the cost is 

also another challenge for such policy changes. Improving awareness by fish harvesters 

about the critical role of the safety equipment in case of incidents particularly in stormy 

and cold weather can also save lives.  

Communication: Encouraging all fishing vessels to carry radio-communication devices 

(SART, VMS, or AIS), even when it is not required by law, and training all crewmember 

on how to use these devices in case of an emergency (offered by CCG and Fishers’ 

Associations) can improve fishing safety. TC’s periodic inspection of equipment to make 

sure that it works efficiently in extreme weather conditions (heavy rain and storms) is also 

of high importance and can save lives. 

Search and Rescue: CCG’s support of research to determine hotspots of incidents based 

on short and long term weather patterns (research similar to that presented in Figure 1), 

and planning and allocating search and rescue resources based on the findings of related 

fishing safety research studies can save life, time, and money.    

Insurance and Workers Compensation Boards: Despite the fact that insurance and 

Workers Compensation Board coverage is not directly related to safety, encouraging all 

fish harvesters (particularly the ones with more vulnerability to extreme weather such as 

shrimp and herring roe fishing) to have proper insurance would alleviate the potentially 

harsh consequences of incidents. The need for insurance is also an important consideration 

in case of climate change, since factors such as weather conditions and locations of 
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fisheries may change and fish harvesters may encounter unfamiliar situations, which may 

contribute to the risks associated with the industry. 

Safety Information and Culture: Knowledge mobilization, involving fish harvesters in 

decision-making processes from early stages of developing new policies and practices, and 

encouraging research programs on safety culture in all governmental and provincial fishing 

related organizations may improve overall fishing safety.  

Training: Training courses on the stability of the vessels, the use of safety equipment in 

case of extreme environmental conditions, and technical topics can improve fishing safety 

effectively. TC, DFO, and provincial Fishers’ associations could offer these training 

courses. To encourage all the fish harvesters to attend, the fee of these courses should be 

kept as low as possible.  

Table 6-2 summarizes key safety related policies and recommendations (responsible 

agencies).  

  



148 

 

Table 6-2. Summary of key safety related policies and recommendations (responsible agencies) 

Safety Issue Current Policy Recommendations 

Stability  Inspection at the time of (or close 

to) completion of a new vessel 

 Safety Booklet for large vessels 

 Inspection based on updated extreme 

environment conditions and climate 

change effects (TC) 

 Training courses on stability (TC and 

Fishers’ associations) 

 Spot checks (TC) 

Fisheries 

Management 
 Time, location, and effort intensity 

regulations in alignment with 

protection of fish stocks  

 Limitation on vessel sizes for some 

fisheries 

 Quota-based fishing programs (DFO) 

 Involvement of fish harvesters in 

decision making process from the early 

stages (DFO) 

 Extreme weather consideration for 

individual fisheries, temporally and 

spatially (DFO) 

Weather 

Forecasting 
 --  Support research on weather forecast 

improvements (TC, DFO, CCG, and 

EC) 

 Support research on sharing forecast 

information among fish harvesters 

(TC, DFO, CCG, and Fisheries’ 

associations) 

 Increasing reliability and effective use 

of weather forecasts and warnings 

(EC) 

Fatigue  --  Increase awareness (Fisheries’ 

associations) 

 Training courses (Fishers’ 

associations) 

Safety 

Equipment 
 Mandatory for all fishing vessels 

to carry safety equipment with 

respect to number of crewmembers 

 Training courses on how to use the 

equipment in case of extreme weather 

(TC, CCG, and Fisheries associations) 

 Improvements in design of the 

equipment (TC) 

 Periodic inspection of the equipment 

(TC) 

 Increasing awareness among fishing 

communities (TC and Fishers’ 

associations) 

Communication  Mandatory for large vessels  Periodic inspections (TC) 

 Training for all crewmembers (CCG 

and Fisheries’ associations) 

 Encourage use of radio-communication 

(SART, VMS, and AIS) for all vessels 

(Fishers’ association and DFO) 

Search and 

Rescue 
 Responsibility of Canadian Coast 

Guard and Canadian Coast Guard 

Auxiliary 

 Support research on operational and 

tactical resource planning with respect 

to extreme environmental conditions 

and climate change (CCG) 
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Safety Issue Current Policy Recommendations 

Insurance and 

Workers 

Compensations 

Boards 

 Mandatory for certain fisheries  Encourage to have proper insurance 

coverage for all vessels (Fishers’ 

associations and TC) 

Safety 

Information 

and Culture 

 --  Knowledge mobilization (TC, DFO, 

and Fishers’ associations) 

 Support research on safe work 

practices (TC, DFO, and Fisheries’ 

associations) 

 Involvement of fish harvesters in 

decision making processes from the 

early stages (TC, DFO, and Fishers’ 

associations) 

 Training  Mandatory for Masters and 

watchkeeping officers 

 Consistent training courses on stability 

of the vessels; use of safety equipment 

in case of extreme environmental 

conditions, and technical topics for all 

crewmembers (Fishers’ associations, 

TC, and DFO) 

6.5. Moving Forward 

6.5.1. Implications for Managerial Practice 

Fishing safety literature demonstrates that there is a correlation between environmental 

factors and fishing incidents. To improve fishing safety and lower the consequences of 

incidents, it is of great importance to consider environmental factors and potential climate 

change scenarios in the context of fishing safety related policies and regulations. This study 

identifies different fishing vessel safety issues in Canada and discusses relationships 

between these safety factors and environmental conditions (see Table 6-2). However, this 

research examines the policies from a general point of view as it does not investigate all 

the details, exemptions, vessel characteristics, fishery types, regional infrastructures, and 

cost and benefit considerations. In this section we show how decision makers can utilize 

these recommendations to address safety issues, customized as needed for different fishing 

fleets, vessel types, and so on.   
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The following list presents some of the key questions that should be answered through 

ongoing research about each safety factor with consideration of weather conditions:  

Vessel Stability: Wind speed and wave heights directly affect vessel stability and may lead 

to an incident. Hence, consideration of weather factors in stability inspections is a must, 

however it should be clarified whether:  

 Is it necessary to update stability inspection procedures with respect to changing 

weather patterns in the particular area of interest? If yes, how often? 

 Is there already sufficient training for fish harvesters to periodically inspect the 

stability of their own vessels? If not, is it economically and technically possible to 

train them to do periodic inspections of their vessels with respect to weather 

considerations? Is there any local organization other than TC (e.g. Fishers’ 

association) that can help them on this subject? 

Fisheries Management: Individual quota based management system allows fish 

harvesters to catch a specific amount of fish (measured by weight) in a given period of 

time. This management strategy would give flexibility to fish harvesters in choosing a good 

time for fishing (avoiding trips in harsh weather conditions). However, it is necessary to 

conduct a multi-stakeholder study that compares the advantages and disadvantages of quota 

based management from both ecological and safety perspectives for each fishery type. It is 

also important to create a comprehensive stakeholder engagement plan to involve fish 

harvesters in an evidence-based decision making process about fishing safety related 

strategies for each aspect of interest.  
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Weather forecast: New research studies show that people prefer probabilistic forecasts to 

deterministic forecasts in extreme weather conditions (LeClerc and Joslyn (2012); (2015)). 

There should be specific survey based studies to investigate what the best ways are to 

circulate weather forecast information to fish harvesters to support their decision making 

process for different fishery types, length of fishing trips, and fishing communities.  

Fatigue:  Extreme weather factors can add to fatigue; it is not hard imagine that it is harder 

to work in strong winds than calm weather, but it is necessary to measure these effects 

scientifically. Experimental studies can quantify the effects of weather factors in each 

region on fatigue, and subsequently crew work plans might be revised accordingly. Here 

are some sample questions: 

 Does precipitation increase fatigue? Would it be safer to get to shelter as quickly 

as possible or would it be better to take more frequent breaks, depending on 

fishing location and distance to shore?  

Safety equipment: There are numerous studies on how safety equipment can affect fishing 

safety. However there are still issues to be investigated regarding training fish harvesters 

on safety equipment such as:  Is it beneficial (economically and practically) to train fish 

harvesters to inspect their equipment periodically? Is there any local organization other 

than TC or CCG (e.g. Fishers’ association) that can help them on this subject? 

Communication: There is a gap in the policy literature on how communication can affect 

fishing safety. There are some key questions to be answered in this respect: 
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 Is there any statistical change in fishing incident rates (and/or consequences) 

before and after usage of a communication device on specific vessel types or 

sizes or by fishery locations? The same questions can be posed particularly for 

incidents related to weather conditions? 

 Will training crewmembers about communication devices improve safety 

considerably? What are the cost-benefit results in this regard? 

Search and Rescue: Search and Rescue stations are mainly built to maximize the 

availability of various response resources and accessibility to incident hot spots. Search 

and Rescue stations are responsible to address all type of incidents (i.e. fishing, shipping, 

recreational boating, ferries, etc.) (Pelot et al, 2015). However, a comprehensive 

spatiotemporal study that tries to answer following questions would particularly benefit 

fishing safety:  

 Where are new locations of fish stocks for different fisheries, and does this affect 

Canadian Coast Guard resource allocation? 

 What are the potential weather patterns in different areas due to climate change? 

What are the effects of changing weather patterns on fishing safety? 

Insurance: An empirical study should be conducted to examine the effects of insurance 

on fishing safety in an attempt to answer the following questions: 

 How fishing vessel’s insurance premium is calculated? What are the important 

factors affecting insurance market? How do fish harvesters evaluate the insurance 

rates? 



153 

 

 Does having insurance encourage fish harvesters to take more risk in extreme 

weather conditions? (What are their risk perceptions?) 

 What are the different types of insurance? What is the best insurance plan for each 

type of vessel or fishery? Should insurance be obtained through large companies or 

small community based groups? 

In conclusion, it is important to recognize the research gaps in different aspects of fishing 

safety related policies and ascertain these policies are in alignment with fishing safety 

research findings. Different entities (e.g. TC, CCG, DFO, NGOs, fishing communities, 

etc.) could be involved in addressing these research gaps to mitigate fishing risk. The 

methodology proposed in this paper can be customized and applied by these entities as 

needed.   

 6.5.2. Contributions to scholarly knowledge 

In this research, current Canadian policies related to fishing safety factors are reviewed to 

examine whether they adequately address extreme environmental factors and climate 

change. The results showed that there is a gap between current practices and research 

findings. Therefore recommendations are made to highlight these gaps and improve fishing 

safety based on these findings. However, fishing related policies were reviewed from a 

general point of view and did not investigate all the regulatory details and exemptions. 

Addressing individual fishery types, vessel sizes, fishing communities, etc. would provide 

better links between understanding fishing policies and the implications of extreme 

environmental conditions. Future research studies that examine the relationship between 

weather factors and safety factors more deeply with respect to specific characteristics of a 
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fishing safety system for a particular fishery type would be of high importance in 

improving fishing safety.    
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Chapter 7 Conclusion 

7.1. Findings 

This thesis has shown that there are statistically significant relationships between extreme 

weather factors and fishing incidents in Canadian Atlantic Waters. To explain these 

relationships, this dissertation structure is formed on a risk framework suggested by Brooks 

and Pelot (2008). Based on this framework, a fishing incident is defined as a discrete event 

in time that is proceeded by hazards (environmental conditions) which has immediate and 

ensuing consequences (life loss, total damage to the vessel, minor injuries, etc.).  

This study is focused on providing information that could help decision makers to interfere 

with the system (prevent and detect fishing incidents when extreme weather conditions are 

anticipated), strengthen the system (decrease vulnerability of fishing industry towards 

extreme weather conditions) and lower the severity of immediate and ensuing 

consequences of fishing incidents (provide timely and proper response in case of extreme 

events). The objectives of this thesis can be summarized as follows: 

1. To reveal the existing relationships between extreme environmental conditions and 

fishing safety; 

2. To show changes in fishing safety over time due climate change effects; 

3. To present recommendations on how fishing safety can be improved with respect 

to findings from points 1 and 2.  

To achieve these objectives the following questions have been asked and several statistical 

methods were applied to provide answers to these questions. It must be noted here that this 
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research was conducted for an area of interest on the east coast of Canada (Canadian 

Atlantic Waters), and the specific results may not apply elsewhere, but the approach could 

be replicated in other regions. 

Do the environmental factors have any effect on the level of fishing activities (i.e. traffic 

amount)? Yes they do. Negative Binomial Regression and Random Parameters Negative 

Binomial Regression methods were used to determine if there is a relationship between 

fishing activity levels and any or all of air temperature, sea surface temperature, wind 

speed, precipitation, ice coverage, and Laplacian of pressure. Individual models were 

developed for specific situations including for cyclone weather conditions exclusively (i.e. 

Laplacian of pressure is greater than 0), for the four seasons (winter, spring, summer, fall), 

and for different size vessels notably vessel length-class 1 (i.e. less than 35'), vessel length-

class 2 (i.e. between 35' and 45'), vessel length-class 3 (i.e. between 45' and 65'), and vessel 

length-class 4 (i.e. greater than 65'). The study period included years 2005 to 2010.  

The results showed that fishing activity levels decrease when weather conditions 

deteriorate in all the models that were developed. When cyclone weather conditions are 

studied specifically, sea surface temperature, Laplacian of pressure, ice concentration, 

wind speed, and precipitation are the statistically significant environmental factors. During 

the winter season, sea surface temperature, ice concentration, wind speed, and precipitation 

are the significant environmental factors. In the spring, air temperature, Laplacian of 

pressure, ice concentration, and wind speed become critical. Summer related weather 

factors are the same as the spring ones, except for ice concentration which is not a factor 

in summer. In the fall, air temperature, ice concentration, and wind speed are significant. 
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When considering vessel length, air temperature, wind speed and ice concentration are the 

significant environmental factors for small fishing vessels. Medium size vessels are mostly 

affected by sea surface temperature, Laplacian of pressure, wind speed, and ice 

concentration. Traffic levels of vessels with overall length greater than 45 feet are only 

affected by ice concentration. 

Do the environmental factors have any effect on the occurrence of commercial fishing 

incidents? Yes they do; however, the traffic level is a more significant factor in fishing 

incident occurrences than environmental factors. Zero-Inflated Negative Binomial 

Regression was used to determine the relationship between fishing incidents, 

environmental factors (similar to the preceding question), and fishing traffic levels (as a 

predictor of fishing incidents) for cyclone weather conditions specifically, and for the 

winter, spring, summer, and fall. The study period included years 2005 to 2010. 

The results indicate that traffic is the most significant factor in fishing incident occurrences 

in all of the count models. It was also shown that it is more likely for incidents to happen 

during calmer weather (i.e. higher air and sea surface temperature, lower wind speeds, 

lower amount of precipitation, and ice concentration) than extreme weather conditions. 

One potential explanation for this phenomenon is the strong correlation between traffic and 

incidents. Traffic levels increase in calm weather conditions and, as a consequence, the 

likelihood of having an incident increases as well. The results of zero-state models also 

show that when air temperature is low, it is likely that no incidents happen because of little 

exposure (i.e. almost no fishing activity). To isolate the effects of environmental 
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conditions, fishing incident rates (number of incidents per number of fishing trips) were 

studied as the next step. 

Do the environmental factors have any effect on the fishing incident rates (incident 

frequencies relative to the traffic amount)? Yes they do. Fractional Logistic Regression, 

Negative Binomial Regression, and Random Parameters Negative Binomial Regression 

were applied for various situations including cyclone weather conditions, winter, spring, 

summer, and fall. The resulting significant environmental factors are the same as in the 

previous question. The study period included years 2005 to 2010. 

When studying incidents associated with a cyclone, it was shown that lower air 

temperature, higher ice concentration, stronger wind, and higher Laplacian of pressure will 

result in higher incident rates. In wintertime, incident rates increase with lower air 

temperature and stronger winds. In the spring, sea surface temperature, ice concentration, 

and precipitation are chosen by the Random Parameters model as significant weather 

factors. The results from the summertime are complicated. The Fractional Logistic 

Regression results show that incident rates increase when air temperature decreases. The 

results of the Random Parameters model indicate that stronger wind speed will result in 

higher incident rates. However, Fixed Negative Binomial Regression resulted in no 

statistical relationship between incident rates and weather factors during the summer. One 

can explain these results based on the opening of fishery seasons and the presence of 

recreational boating traffic in the ocean. Opening of the fisheries means long work hours 

and hard labour in a very competitive and stressful job situation. All of these factors may 

lead to increased incident rates regardless of weather factors. During this season, there may 
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also be collisions between inexperienced boats and fishing vessels which is also not 

particularly tied to weather conditions. Finally in the fall, sea surface temperature, wind 

speed, and Laplacian of pressure are shown to be significant. The general conclusion is that 

extreme environmental conditions (i.e. lower air and sea surface temperature, stronger 

winds, higher ice concentration, and intense storms) can increase incident rates. However 

different weather factors are shown to be statistically significant at different times of the 

year. Precipitation is also found to not be significant most of the time.  

Do the environmental factors have any effect on the severity level of commercial fishing 

incidents? Yes they do. Logistic Regression was used to determine the relationship 

between extreme environmental factors and the severity of fishing incidents for several 

models: Entire database (regardless of weather conditions and fishery type), cyclone 

weather conditions,  joint model that uses fishery type as a dummy variable, and finally 

individual fishery types (i.e. shrimp, herring roe, groundfish, seal, lobster, scallop, and crab 

fisheries). The study period included years 2000 to 2010. 

The results show that when the entire database, regardless of a cyclone happening or not, 

is examined, ice concentration becomes a significant factor along with wind speed, sea 

surface temperature, and darkness.  However, when only incidents associated with a 

cyclone are taken into account, ice concentration as a significant predictor is replaced by 

cyclone intensity and actually ice is not even a statistically relevant factor anymore. Sea 

surface temperature and wind speed are shown to be significant weather factors in the 

model, with fishery type as a dummy variable (whereby shrimp fishing is used as the 

reference fishery type). Results show that seal fishing is the only fishery more risky than 
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shrimp fishing. The outcomes from the individual fishery type models show that weather 

factors can have different effects on severity for different fishery types, which is likely 

related to the environment they work in, their distance from shore and the characteristics 

of their vessels. Shrimp and herring roe fisheries are vulnerable to intense storms (i.e. high 

Laplacian of pressure), groundfish fishing is affected by strong wind speeds and sea surface 

temperature, seal fishing is only affected by ice coverage, and scallop and lobster fishing 

are risky in high winds. Severity levels of crab fishing incidents are not significantly related 

to environmental conditions.  

Does climate change have any effect on commercial fishing safety? Yes, it does in some 

locations. A framework was proposed to quantify fishing incident risks with respect to 

climate change effects. The framework was then applied using fishing incident data (2000-

2005), historical vorticity data (1980-2000), and potential climate change scenarios (2081-

2099) in Atlantic Canada. Intensity (i.e. vorticity) and frequency of storms hitting the study 

area were chosen as predictors of fishing incident rates.  

Comparing the estimated fishing incident rates in 2081-2099 to 1980-2000 in the area of 

interest showed a great of deal of similarity between the spatial distributions of incident 

rates in these two periods. Based on the results, generally the shorelines around New 

Brunswick and the Gulf of St. Laurence would experience increase in fishing risk due to 

climate change effects. 

 When climate change is studied, it is also necessary to consider annual variations in 

frequency and intensity of storms. In other words, the overall trends over a period can be 

different for each individual year in that period, with some years being particularly harsh. 
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This inter-annual variability in the characteristics of storms may lead to high fishing 

incident risk in some specific years.  

How can these results be put into practice? A knowledge mobilization structure was 

suggested to improve and update fishing policies with respect to fishing safety and 

environmental conditions. Significant risk factors that may need improvements in Canada 

were extracted from the relevant literature. The list comprised stability of vessels, fisheries 

management practices, safety equipment, communication, insurance, training, safety 

information and safety culture, weather forecasts, crew fatigue, and search and rescue 

planning. Policies related to these issues were reviewed to examine whether they address 

extreme environmental conditions and climate change. Finally recommendations were 

presented to improve general fishing safety with respect to short and long term 

environmental considerations.  

7.2. Contributions 

The contributions of this study involve three facets: the research aspect, the modelling 

developments, and the practical applications. 

7.2.1. Research aspect  

Numerous studies have been carried out on fishing safety, however, nobody up to the time 

of this research has studied the statistical relationships between cyclone characteristics and 

commercial fishing safety. This research provides answers to the questions of whether 

cyclones can affect fishing traffic levels, fishing incident occurrence, and fishing severity 

level, by means of advanced statistical models. In addition to that, this research proposes a 
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general framework to estimate fishing incident rates and highlight variations in risk 

towards the end of century based on potential climate change scenarios. No one up to the 

time of this study has addressed fishing incident risk estimations due to climate change 

effects. 

7.2.2. Model development 

Databases used in this study were gathered from different sectors and projects, covering 

various time spans, geographic locations, resolutions, and time frequencies. This research 

transforms all these data to a consistent framework to perform the analysis and ensure that 

they are accurate and compatible with each other in terms of the requirements of the 

statistical analyses. It also adopts advanced statistical analysis methods such as the Random 

Parameters Models to reveal the underlying relationships between environmental factors 

and fishing incident rates and activities. These methods, unlike traditional ones that treat 

parameters as constant across observations, considers the unobserved heterogeneity among 

observations. Hence the models are more complicated than traditional ones, but they are 

statistically better fit for the data and are more explanatory in terms of relationships 

between predictors and dependent variables.  

7.2.3. Practical application  

These findings of the research provide a better understanding of impacts of the 

environmental on fishing activity level, incident rates and severity of fishing incidents and 

also highlights risk variations due to climate change.  
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These results can be instructive for preventive measures, such as changing the regulations 

for commercial fishing season openings if certain weather conditions are deemed 

unacceptable, or better education of mariners leading to improved decision-making with 

respect to weather conditions. Since different weather factors can affect different fishery 

types, this information can provide useful inputs for boat design or for the issuance of 

specific warnings for individual fishery types. Providing fish harvesters with this kind of 

information may help them be better equipped for high risk situations. Search and Rescue 

planning can also be reviewed, with better anticipation of severe incident occurrences as a 

function of the weather forecasts generally and storm warnings in particular.  

To present findings from this research to decision makers, in addition to using effective 

visualization tools and statistical reports, this research proposes a general knowledge 

mobilization framework to improve fishing safety policies with respect to weather 

considerations.  The outcomes of this research are also inputs to ongoing work on 

fishermen’s perception towards weather factors, which can help to increase awareness 

among fish harvesters and foster a safe work practice culture among them. 

7.3. Limitations 

Due to the nature of this study, that is a data-driven statistical analysis based on historical 

data, the quality of data obtained and the methods to process the data impose limitations 

on the results from the study. 
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7.3.1. Data Accuracy Limitations 

The biggest challenge of this research is not having access to the real-time data. The 

incident records in the SISAR database do not have accurate weather conditions at the time 

of incident, and all the weather data is modelled and assumed to be a good representation 

of the conditions at the time of the incident, which may not be true in some cases.  

The traffic data is also not real-time data but is generated by connecting reported latitudes 

and longitudes of a fishing vessel’s locations via straight lines in chronological order. 

However vessels may not move in straight lines all the time. Not knowing the actual path 

of a fishing trip also restricts our capability to calculate length of fishing trips in each grid. 

In addition to that, the traffic data is a subset of the VMS dataset and not all the fishing 

vessels are required by law to carry a VMS device on board. Therefore, this dataset may 

not represent comprehensive traffic data of small fishing vessels.  

The SISAR database does not include enough data on vessel sizes and the provided VMS 

dataset does not have information on fishery types. Hence it wasn’t possible to develop 

fishing incident rate models for various vessel sizes or individual fisheries.  

Since some minor fishing incidents can be managed with the help of other nearby fishing 

vessels, there is a probability that these incidents may not be reported to CCG. Therefore 

the SISAR database may not represent all fishing incidents in the study area.   

Fog (indicator of visibility) is considered as an important safety factors by fish harvesters 

in literature, however up to the time of this study, fog data is generated based on the 
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modelled weather data, so due to dubious quality of the data it was decided not to use these 

kind of factors.  

7.3.2. Data Availability Limitations 

Although the SISAR dataset includes a field named “Primary cause of the incident”, the 

completion rate of this field is very low. Therefore it is not possible to separate incidents 

which occurred due to environmental conditions from non-environmental conditions. 

Furthermore, in some cases even if environmental conditions may not be the “primary” 

cause of an incident, they may have a role in incident occurrence or consequences. For 

example the primary cause of an incident can be indicated as fatigue; however, fatigue 

might be intensified by harsh weather condition. Therefore, the quality of the current 

datasets doesn’t allow is to isolate fishing incidents, which are associated with 

environmental conditions from other factors (i.e. considered as noise in our model).    

When the effect of climate change on fishing safety is studied, it is assumed that nothing 

will change except weather patterns. However this may not be true and fish stock locations, 

vessel characteristics, fishing methodologies, and fishermen’s risk perception may change 

accordingly. These factors and other significant environmental factors such as air 

temperature, ice coverage, etc. in the late-century period of interest were not available at 

the time of this study. 

In general, data limitations on variables arise due to several reasons: 

 The variable is not measured or no data are collected (or estimated) on the variable. 

Some examples are estimated precipitation, temperature, and new location of fisheries 
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in the future in related literature, fishers’ ages or experience levels in the SISAR 

database, and lobster fishing activity levels in the VMS dataset.  

 Data collected on a variable doesn’t possess the essential quality for statistical analysis. 

Some examples are weather conditions at the time of fishing incidents and vessel 

characteristics such as vessel length and vessel age in the SISAR database.  

 Data are collected on the variable but the data availability is restricted due to legal and 

policy considerations. Some examples are fishery types in the VMS dataset which are 

not available for safety related studies, or the vessel licencing database which can be 

used to extract information on vessel characteristics through cross-referencing with the 

SISAR database and/or the VMS database. This database is not available for safety 

related studies.   

Some of these limitations can be overcome by changing regulation and policies. For 

example the CCG can make filling out vessel characteristics related fields mandatory in 

the SISAR database, and databases such as the Licensing database can be shared with 

researchers to extract useful information on vessel characteristics.  

7.4. Future Work 

Possible extensions of this work are listed as follows: 

 Collecting more detailed and accurate real time data would be very helpful to pursue 

more work in this regard. Adding other environmental factors such as fog, wave 

heights, etc. may also help to obtain a better understanding of fishing safety with 

respect to environmental conditions.  
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 The length of fishing trips can indicate the exposure of fishers to environmental 

conditions. Including these factors as one of the predictors of fishing incidents with 

respect to environmental conditions can lead to more realistic results and provide more 

insight into relative differences of risk of inshore, mid-shore, and offshore fisheries.  

 In all the phases of this study, other contributing risk factors such as vessel 

characteristics and human error were deemed to be constant. Considering fishing safety 

as a system and studying the interaction between all the elements such as environmental 

factors, human factors, vessel related factors, etc. would provide more insight into 

fishing safety. 

 This study did not distinguish among different locations of fishing due to data 

limitations. However doing spatial analysis combined with weather and traffic 

conditions would be a potential extension to this work. 

 Adding more weather factors such as air and sea surface temperature, ice coverage, etc. 

to the climate change model output variables may help to achieve more accurate 

estimations of fishing incident rates in the desired period. Future work could also be 

dedicated to using climate projections for the near future (forecast for 5 to 10 years 

ahead) and study the dynamic behavior of fishing safety over time (i.e. comparison 

among past, current, near future, and longer time horizons) 

 Fishing related policies were reviewed from a general point of view and did not 

investigate all the regulatory details and exemptions. Addressing individual fishery 

types and vessel sizes would provide better links between understanding of fishing 

policies and extreme environmental conditions. 
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 The relationship between fishers’ perception and reality needs to be addressed in future 

work. Studies have shown that fishers perceive factors such as fog or precipitation as 

risky factors (Findlay, 1997); however, statistical methods have shown that these 

factors may not be statistically significant in fishing incidents (Wu et al., 2005; 2008, 

2009; Rezaee et al, 2015a, 2015b). Revealing the reasons behind these differences can 

provide better insight into the driving factors of fishing incidents.   
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Appendix A- Supplementary Material 

A.1. Support Vector Machines Method 

Logistic Regression (LR) and Support Vector Machines (SVM) were used to examine how 

weather factors affect the severity of fishing vessel incident. However, the initial results 

showed that LR is a more appropriate method than SVM for the problem in hand. In this 

section, the SVM method, the outcomes of applying this method on the severity of 

incidents  data, and the results of comparison between LR and SVM are explained.  

Support Vector Machines (SVMs) are a set of supervised learning methods that can be used 

for classification and regression analysis. The main idea is to separate data with a 

hyperplane that has the largest minimum distance from all training data (i.e. largest 

margin).  

In other words, the algorithm is looking for a linear classifier which is as far as possible 

from the closest members of both classes and separates the two classes. Points which are 

located outside of the hyperplane are called non-support vectors and data points which are 

located on the hyperplane are named support vectors. 

Figure A-1 shows the principles of SVM. The objective here is to separate squares and 

circles. D(x) is the decision function for classifying data. Margins are represented by dotted 

lines. 
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Figure A-71. Principles of SVM classification. Source (He and Ghodsi, 2010)  

 If the data are not linearly separable, a trade-off parameter is added to the model which 

minimizes the distance of misclassified points to the correct margin (i.e. ε in Figure A-1). 

The search for the optimal hyperplane is carried out through the following optimization 

problem (Hearst et al., 1998): 

Min  
1

2
 βTβ+C∑i ε                                                                                                        (A-1) 

s.t. 

 yi(β
T xi+βo) ≥ 1-εi     ∀ for i=1..n                                                                                   (A-2) 

εi ≥0                                                                                                                               (A-3) 

where βo and β are hyperplane parameters, called weight and bias respectively,  C is the 

trade-off parameter, and ε is the distance of each error point from its correct place. xi is the 

training matrix,  yi is the label of the training data (i.e. severe or non-severe), and n is the 

number of training data points.  
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The above problem is a Lagrangian problem. The solution of this problem can be expressed 

as a linear combination of the training vectors: 

β= ∑ 𝛼𝑖 
𝑛
𝑖=1 𝑦𝑖𝑥𝑖                                                                                                           (A-4) 

αi ≥ 0  i=1..n                                                                                                                 (A-5) 

where α is the Lagrange multiplier. 

Replacing β with the above equation, the dual form of the model will be the following:  

min  
1

2
 ∑i ∑j αi αj yi yj K(xi, xj) -∑i αi                                                                                                                 (A-6) 

s.t.  ∑i αiyi=0                                                                                                               (A-7) 

0≤ αi≤ C                                                                                                                      (A-8) 

where K represents the Kernel function which maps the not linearly separable data into 

another space where the data are linearly separable. 

Since the distribution of severe incidents is skewed (the non-severe class has more records 

than the severe class) then the decision boundary is driven towards the rare class (i.e. it is 

biased to predict 0 rather than 1). To address this problem, the cost sensitive version of 

SVM was applied since it has a greater penalty for misclassifying the rare class than the 

zero class (Osuna et al., 1997). 

A.2. Results 

The hyper parameters for the SVM model are determined via tuning before running the 

model, using a grid search over given parameter ranges; for example if the Class Weight 
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range is (0,5), provided by the analyst, the algorithm looks for the optimal weight in this 

range . Table A-1 shows the tuning of SVM. 

Table - 7-1. SVM Parameter Tuning 

SVM-Kernel (K) exp (-γ *|xi-xj|2) 

γ 0.0001 

Cost of Constraints Violation (C) 1000 

Class Weight-Severe 2 

Class Weight-Non_ Severe 0.5 

 

The Kernel function was chosen to be the Gaussian radial basis function. The value of this 

function is always between 0 and 1 and decreases with distance between xi and xj. γ is a 

free parameter of this function. 

Table A-2 represents the results of LR and SVM applied to Model 1 (entire database) and 

Model 2 (incidents associated with cyclones, i.e. Laplacian of pressure>0).  

Table 7-2. SVM and LR Results of Model 1 and Model 2 

Model Chi-Square 

Test for LR 

LR-Cross 

Validation 

error 

LR-F1 Score SVM-Cross 

Validation 

error 

SVM-F1 

Score 

Model 1 4.44e-25 0.12 0.58 0.15 0.6 

Model 2 3.48e-09 0.13 0.58 0.15 0.62 

 

The comparison between the SVM and LR results was carried out using two criteria: Cross-

Validation and F1-Score. As shown in Table A-2 the cross-validation results of LR are 

better than SVM. This may be caused by assigning more weight to the severe class than 

the non-severe class in the SVM method which increases the number of false positives (i.e. 

non-Severe incidents which are classified as severe).  
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The F1-score is measured as follows: 

F1= 
2∗True Positives 

2∗True Positives+False Positives+False Negatives
                                                           (A-9) 

Since the greater weight given to the severe class incidents in SVM increases the number 

of true positives and decreases false negatives, the F1-score for SVM is better than that for 

LR. But because the number of false positives are also increasing proportionally, this 

improvement is not considerable. Since LR is easier to interpret and it is more explanatory 

in terms of relationship between weather factors and fishing incidents, it was decided to 

only conduct LR for the rest of analysis.  
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