
MICROBLOG TEXT PARSING:
A COMPARISON OF STATE-OF-THE-ART PARSERS

by

Syed Muhammad Faisal Abbas

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

July 2015

� Copyright by Syed Muhammad Faisal Abbas, 2015

Table of Contents

List of Tables . v

List of Figures . viii

Abstract . x

Acknowledgements . xi

Chapter 1 Introduction . 1

1.1 Purpose . 1

1.2 Motivation . 1

1.3 Research Objectives . 3

1.4 Contribution . 4

1.5 Thesis Overview . 4

Chapter 2 Background and Related Work 6

2.1 Twitter Language . 6

2.2 Related Work on Comparison of Parsers 7

2.2.1 Independent Comparison of Parsers on Microblog Text 8

2.2.2 Comparison of Parsers on Microblog by Parser Writers 9

2.2.3 Comparison of Parsers in General 9

2.2.4 Comparison on Running-time Performance of Parsers 9

2.2.5 Summary . 10

Chapter 3 Natural Language Parsers 11

3.1 Dependency Parsers . 11

3.1.1 MST Parser . 12

3.1.2 MALT Parser . 12

3.1.3 Tweebo Parser . 13

3.2 Constituency Parsers . 13

ii

3.2.1 Senna Parser . 15

3.2.2 Stanford Parser . 17

3.2.3 Bikel-Collins Parser . 17

3.2.4 Berkeley Parser . 18

3.2.5 BLLIP (Charniak Reranking) Parser 19

Chapter 4 Methodology . 20

4.1 Overview . 20

4.2 Datasets . 20

4.2.1 Web2.0 Twitter Dataset . 21

4.2.2 Penn Treebank . 22

4.3 Parsers . 23

4.3.1 Senna Parser . 28

4.3.2 Stanford Parser . 28

4.3.3 Bikel-Collins Parser . 29

4.3.4 Berkeley Parser . 29

4.3.5 BLLIP (Charniak Reranking) Parser 30

4.4 Evaluation Methods . 30

4.4.1 Functional Performance Evaluation Metrics 30

4.4.2 Running-time Performance Evaluation 34

Chapter 5 Evaluation and Discussion 36

5.1 Functional Performance Evaluation . 36

5.1.1 Dependency Parse Comparison 36

5.1.2 Constituency Parse Comparison 51

5.2 Running-time Performance Evaluation 58

5.2.1 Tweebo Parser . 58

5.2.2 MST Parser . 59

5.2.3 MALT Parser . 59

iii

5.2.4 Senna Parser . 60

5.2.5 Stanford Parser . 61

5.2.6 Berkeley Parser . 64

5.2.7 BLLIP Parser . 65

5.2.8 Bikel-Collins Parser . 67

5.2.9 Summary . 67

5.3 Summary . 68

Chapter 6 Conclusion and Future Work 71

6.1 Conclusion . 71

6.1.1 Findings . 72

6.2 Future Work . 72

6.2.1 Treating Microblog as Verbal Communication 73

6.2.2 Up training . 73

6.2.3 Unsupervised Parsing . 73

6.2.4 Evaluating Other Neural Network Based Dependency Parsers . 73

Bibliography . 75

Appendix A Tagsets . 79

A.1 Comparison of Various Tagsets . 79

A.2 PTB Tagset . 82

A.3 ARK Tweet tagset . 83

iv

List of Tables

Table 4.1 Basic statistics on the Web2.0 datasets 21

Table 4.2 An example output of Senna parser 28

Table 5.1 Functional performance of Tweebo parser 38

Table 5.2 Functional performance of Tweebo parser on tokenized input . . 38

Table 5.3 Functional performance of MST parser on tokenized input 40

Table 5.4 Functional performance of MALT parser trained on WSJ 41

Table 5.5 Functional performance of MALT parser trained on Web2.0 Twit-
terDev . 41

Table 5.6 Functional performance of Senna parser 42

Table 5.7 Functional performance of Senna parser on tokenized text 43

Table 5.8 Functional performance of Stanford parser using PCFG language
model . 44

Table 5.9 Functional performance of Stanford parser using PCFG language
model on tokenized text . 44

Table 5.10 Functional performance of Stanford parser using PCFG-caseless
language model . 45

Table 5.11 Functional Performance of Stanford parser using PCFG-caseless
language model on tokenized text 46

Table 5.12 Functional performance of Berkeley parser on tokenized text . . . 47

Table 5.13 Functional performance of BLLIP parser 48

Table 5.14 Functional performance of BLLIP parser on tokenized text 48

Table 5.15 Functional performance of Bikel-Collins parser on tokenized text 49

Table 5.16 Functional performance of various parsers — micro-averaged and
macro-averaged Unlabelled Attachment Score (UAS) measures . 50

Table 5.17 Functional performance of various constituency parsers – PARSE-
VAL measure . 57

Table 5.18 Running-time performance of Tweebo parser 58

v

Table 5.19 Running-time performance of Tweebo parser on tokenized text . 59

Table 5.20 Running-time performance of MST parser on tokenized text . . . 59

Table 5.21 Running-time performance of MALT parser trained on WSJ . . . 59

Table 5.22 Running-time performance of MALT parser trained on TwitterDev 60

Table 5.23 Running-time performance of Senna parser 60

Table 5.24 Running-time of conversions to dependency trees for Senna parser 60

Table 5.25 Running-time performance of Senna parser on tokenized text . . 61

Table 5.26 Running-time performance of Stanford parser using PCFG lan-
guage model . 61

Table 5.27 Running-time of conversion to dependency trees for Stanford parser
using PCFG language model . 62

Table 5.28 Running-time performance of Stanford parser using PCFG lan-
guage model on tokenized text 62

Table 5.29 Running-time of conversion to dependency trees for Stanford parser
using PCFG language model on tokenized text 62

Table 5.30 Running-time performance of Stanford parser using PCFG-caseless
language model . 63

Table 5.31 Running-time of conversion to dependency trees for Stanford parser
using PCFG-caseless language model 63

Table 5.32 Running-time performance of Stanford parser using PCFG-caseless
language model on tokenized text 63

Table 5.33 Running-time of conversion to dependency trees for Stanford parser
using PCFG-caseless language model on tokenized text 64

Table 5.34 Running-time performance of Berkeley parser 64

Table 5.35 Running-time of conversion to dependency trees for Berkeley parser 64

Table 5.36 Running-time performance of Berkeley parser on tokenized text . 65

Table 5.37 Running-time of conversion to dependency trees for Berkeley parser
on tokenized text . 65

Table 5.38 Running-time performance of BLLIP parser 66

Table 5.39 Running-time of conversion to dependency trees for BLLIP parser 66

Table 5.40 Running-time performance of BLLIP parser on tokenized text . . 66

vi

Table 5.41 Running-time of conversion to dependency trees for BLLIP parser
on tokenized text . 66

Table 5.42 Running-time performance of Bikel-Collins parser on tokenized text 67

Table 5.43 Running-time of conversion to dependency trees for Bikel-Collins
parser on tokenized text . 67

Table 5.44 Running-time performance of various parsers - Average parse time
for dependency trees per tweet 68

Table 5.45 Functional and running-time performance of various parsers - micro-
averaged and macro-averaged UAS measures and average parse
time for dependency trees per tweet 69

vii

List of Figures

Figure 3.1 Labelled dependency tree of a sentence 11

Figure 3.2 Dependency tree of an example tweet under Tweebo parser . . . 14

Figure 3.3 Parse tree of a sentence under a constituency grammar 15

Figure 3.4 (a) Parse tree representation (b) Senna definition of levels . . . 16

Figure 4.1 Word length distributions of Web2.0 TwitterTest and PTB-WSJ
datasets . 23

Figure 5.1 Dependency tree of an example sentence in Twittertest gold stan-
dard . 36

Figure 5.2 Dependency tree of the example sentence as parsed by Tweebo
parser . 37

Figure 5.3 Dependency tree of the example sentence as parsed by MST parser 39

Figure 5.4 Dependency tree of the example sentence as parsed by MALT
parser . 40

Figure 5.5 Dependency tree of the example sentence as parsed by Senna parser 42

Figure 5.6 Dependency tree of the example sentence as parsed by Stanford
parser – PCFG model . 43

Figure 5.7 Dependency tree of the example sentence as parsed by Stanford
parser – PCFG-caseless model 45

Figure 5.8 Dependency tree of the example sentence as parsed by Berkeley
parser . 46

Figure 5.9 Dependency tree of the example sentence as parsed by BLLIP
parser . 47

Figure 5.10 Dependency tree of the example sentence as parsed by Bikel-
Collins parser . 49

Figure 5.11 FREVAL performance evaluation of Senna on Parsing microblog
text . 52

Figure 5.12 FREVAL performance evaluation of Stanford parser with Stan-
dard PCFG model on Parsing microblog text 53

viii

Figure 5.13 FREVAL performance evaluation of Stanford parser with PCFG-
caseless model on parsing microblog text 54

Figure 5.14 FREVAL performance evaluation of Berkeley parser on Parsing
Microblog Text . 55

Figure 5.15 FREVAL performance evaluation of BLLIP parser on Parsing Mi-
croblog Text . 56

Figure 5.16 FREVAL performance evaluation of Bikel parser on parsing mi-
croblog text . 57

Figure 5.17 FREVAL performance evaluation of various parsers on parsing
microblog text . 58

Figure 5.18 Functional performance (dependency parse) vs. Running-time
performance . 69

ix

Abstract

Parsing is a natural language processing task in which relationships between words are

deduced. It is essential for higher levels of semantic analysis, especially when predicates

are required to be extracted from the text.

Parsing is a widely established task and much effort has been put into devising good

methods for it, which has resulted in reasonably accurate processing of this task. How-

ever, most of the work has been limited to formally written text such as news articles or

discussion groups. Microblog text is a significant body of text that is written by laypeo-

ple in quite an informal language which is significantly different from formal written

language so as to require special considerations. There are many applications in the

area of analysis of microblog text that require high-quality and fast parsing, such as

identification of user intentions.

Dealing with large amount microblog text, we need to consider the running-time per-

formance of the methods for many reasons: the amount of microblog text is huge and

the pace new text is being generated is insurmountable, as well as the life span of its

significance is very short.

In this thesis we evaluated various parsers and their parsing performance as it relates

to microblog text: we evaluated eight (8) state of the art parsers, five (5) of these

parsers are inherently constituency (Phrase-Structure) parsers, while three (3) of them

are dependency parsers. We compared all of the parsers after converting the output

of constituency parsers to dependency trees and evaluated the performances using Un-

labelled Attachment Score (UAS). In addition we compared the constituency parsers

using PARSEVAL and FREVAL measures. Finally, we evaluated the selected parsers

for their running-time performance as well.

x

Acknowledgements

Alhamdolillah, with the grace of God, I have been able to get through the phase of

getting this work done.

I am thankful to my supervisor Vlado Keselj without whose continual support through-

out this research I could not have completed this study.

I would like to thank my family: my wife Raazia and our boys Ahmad and Ahsan.

Their understanding of my engagement was more than what can be expected. Their

support was a vital part of my getting to the completion of this work.

I would also like to thank Marie-Michelle Echanique, whose keeping me on focus, spe-

cially at the end of the work, prevented distractions and greatly helped me.

I am grateful to my late parents who made me what I am; may their souls be blessed.

And lastly, I thank God for giving me the guidance and strength to overcome the

difficulties that come across my way, and making the world in my path just right to my

abilities.

xi

Chapter 1

Introduction

1.1 Purpose

The purpose of this thesis is to do a comprehensive study on comparison of available

state of the art parsing methods and tools and how they perform on the English-

language microblog text. We discuss and evaluate various state-of-the-art methods and

tools employed in parsing of microblog text. We present an analysis on the performance

of the methods and tools and a discussion on what are the differences between those

performances on regular text and that on microblog text.

1.2 Motivation

Words in a sentence do not stand alone; words define, elaborate, explain, and qualify

other words within a sentence (and sometimes beyond the sentence boundaries).

Even though classification of text using bag of words (word features) has been a success-

ful approach for many natural language processes, many higher level problems require

deeper understanding of the relationships between the words. In applications where

predicates need to be extracted from text or user intentions are needed to be inferred,

the structure of the sentences become quite important.

For example, as a heuristic rule, the template

“<noun> such as <noun>”

can be used to extract IS-A relationship between two nouns. “. . . animals such as cats

. . . ” can be used to extract relationship that “cats are animals” or cat IS-A animal.

However if we encounter a little more complex phrases, for example “. . . animals other

1

2

than cats such as dogs . . . ”, this rule fails. To infer correctly “dogs are animal” from

this phrase, the structure of the phrase must be deduced.

Similarly, when classification of a text to a topic or sentiment is not sufficient for an

application, for example where intent of the user is also needed, structure of the text

becomes more important. When someone writes something about ‘car’, it makes more

sense to an automobile seller to know whether that person is interested in buying a car

more than if she is just interested in cars in general.

To solve problems like these, parsing comes to rescue. Parsing is an important stage

towards processing of meaning of any language by computational mechanisms. It is

the step where the syntactic structure of the sentences is captured and it is determined

how the words within a sentences are related to each other. Many times such as in our

example above, there are distant relationships between words.

Microblogging is a recent phenomenon that has emerged with the technological advances

the 21st century has brought us. The prime example of microblogging is Twitter.

Microblogging provides easy access to vast amount of textual information, specially,

about thought processes and behaviour patterns of lay-people (specialists have been

being heard through other means of communications). The importance of utilizing

microblogging information to gain insights about people for various applications is

getting more and more evident as new applications are being envisioned.

Microblogging text is being used to analyse markets for businesses. It is employed as a

better communication channel for collecting buyer/user feedback to businesses. Also in

political domain, understanding of political thought of the masses is getting accessible

through the use of microblogging communication channel.

Also, aggregating of knowledge from numerous sources is also being utilized, to gain

insights, than just asking experts about certain subject matter. It can be argued that

aggregates may provide better accuracy than expert knowledge. Moreover, acquiring

knowledge from numerous inexpensive sources as opposed to getting it from few experts

is making more and more economic sense. Access to Microblog allows us to aggregate

knowledge from vastly many and diverse sources.

3

The parsing technology has been sufficiently developed in the recent past that the

problem of parsing was assumed to be reasonably solved. However, almost all of the

work done has been focused on formally written work such as news articles. We can

see that the language features of the text used by lay-people in microblogging differs

considerably from the formally written text of news articles. Thus there is a standing

problem in parsing microblog text; the functional performance of the parsers, which

have been quite good in parsing formal text, is significantly degraded when it comes to

parsing microblog text.

Moreover, the amount of parsing required to parse microblog text, its total size being

huge, the running-time performance, in addition to functional performance, is becoming

more and more important. In order to process huge amount of microblog text, it is

imperative to employ tools and methods that can process the text in minimal amount

of time.

In this thesis, we have tried to evaluate various extant methods of parsing for their

functional and running-time performance of parsing microblog text. We have come up

with recommendations as to which methods and tools to use when parsing microblog

text is required. We have analysed the performance differences, and have tried to

understand the ways the performance could be improved.

Most of the evaluations of parsers are done by authors who either developed a parser or

provided some contributions to improve the performance of a parser. We are not aware

of a detailed independent study on evaluation and comparison of parsers performance

on microblog data.

1.3 Research Objectives

The research objectives for this thesis are to evaluate various state-of-the-art parsers

and compare their functional and running-time performance in parsing microblog text.

Impartial and comprehensive evaluation is the objective.

An important part of the objective is an impartial execution of the experiments and

analysis of the results so to perform an unbiased inquiry for evaluation of parsers for

4

microblog text. The importance of running-time performance of the parsing technique

cannot be over-emphasized for microblog data, and evaluation of the same is also a

target.

1.4 Contribution

This study has covered considerably expansive comparison of state of the art parsers on

microblog text. Various parsers have been evaluated for their functional performance

while keeping a keen focus on running-time performance of the same. We have suggested

which parsing techniques to follow to keep the performance under practical feasibilities.

We have evaluated the parsing tools and methods specifically on the microblog text

language, which is significantly different from the formally and semi-formally written

language of news articles or newsgroup discussions on which most of the existing re-

search is based.

We have collected data points to facilitate decisions for the choice of parsers for mi-

croblog parsing as well as we have provided some directions for future research.

1.5 Thesis Overview

In the following chapter, we provide a background for this thesis highlighting some of

the language features specific to microblog text. We also present an overview of the

existing research done on parsers on microblog text as well as parsers in general.

Before going into our methodology and evaluations, we present a short overview of

various natural language parsers. In this chapter we list the parsers we have selected

and provide a discussion of their working principles.

Following that, we describe our methodology, detailing the datasets employed in our

research as well as the parsers selected for evaluation. We present a brief account of the

methods employed by the parsers. We also describe our evaluation methods in detail.

Next, we present evaluation and detailed discussion of our experiments. We provide

5

dependency tree performance comparison of all of the parsers, and constituency tree

performance comparison of constituency parsers. We also provide running-time perfor-

mance of the parsers on microblog text.

Finally, we conclude our thesis with our analysis and recommendations for the parsing

methods to be employed for microblog text parsing as well as some future research

directions that we envision to be beneficial.

Chapter 2

Background and Related Work

2.1 Twitter Language

The concept of microblogging stared with Simple Message Service (SMS) that was

conceived in 1984 when the technical limitation kept the size of the text to 160 charac-

ters [30]. Twitter added further restrictions to limit the text size to 140 characters and

reserved 20 characters for user-name in order to keep the compatibility with SMS and

to avoid tweets to span multiple SMS messages.

A large scale study [31] has been done on language issues of microblog on Twitter.

The main idea of this study was to find the various language distributions and cross-

language differences in Twitter. Additionally, it attempts to identify the behaviour of

Twitter users of different languages. It highlights some features of the form of language

used in Twitter.

It was found that 21% of all and 25% of English language tweets contains URLs or

links in their tweets. This single feature is significant differentiator of microblog text

from the regular text. In addition, there are Twitter specific features of the language

used; e.g. there are hash-tags, at mentions, replies and re-tweets. In English language

tweets 14% of the tweets contains hash-tags, 47% at-mentions, 29% were replies and

13% identified as re-tweets.

Another study [34] was done to evaluate if language features of English language tweets

can be classified with various meta-data that is available about the tweets.

For example, the form of the language has a strong relation to the location of the user.

Also the language of people with more than 1000 followers differs significantly from that

of those having less than 1000 followers. This study also shows the language variability

6

7

between tweets of users with different meta-data features.

Various features of Micro Text Twitter is the prime example of microblogging

service. The text in twitter has many specific features that not present in other written

text. Some of the features of twitter are listed below:

� Hash-tags: Hash-tags are free-form tags or keywords included in tweets, in the

form of #keyword [31].

� At-mentions: At-mentions are when a Twitter user refers to a specific user by

including a mention anywhere in their tweets, done in the form of @username [31].

� Replies: A reply, a specific form of mention with @username appearing at the

beginning of the tweet is a tweet responding to a previous messages [31].

� Re-tweet: Re-tweeting is typically used to spread a tweet received from followees

to followers [8]. There is no specific syntax for re-tweet A common form of re-

tweeting is “RT @username”. People have also used various de facto conventions

to signify re-tweet such as “RT:@”, “re-tweeting @”, “re-tweet @”, “(via @)”,

“RT (via @)”, “thx @”, “HT @”, and “r @” [8].

2.2 Related Work on Comparison of Parsers

Since research on parsing methods was very actively looked upon where the parser per-

formance improvement was peaked and plateaued before the advent of microblogging,

there has not been extensive work on parsing of microblog text. The problem of parsing

microblog text is significantly different from parsing formally written text due to lan-

guage feature differences. It is worthwhile to look into evaluating parser performance

for microblog text.

We discuss some related work in this section. The following discussion employs the

use of two measures commonly used for evaluation of parser performance: Labelled At-

tachment Score (LAS) and Unlabelled Attachment Score (UAS). Labelled Attachment

Score (LAS) is a the percentage of correctly identified dependencies between words

8

along with the labels. Whereas, Unlabelled Attachment Score (UAS) is the percentage

of correctly identified dependencies between words ignoring the labels. A more precise

definition of these is provided in section 4.4.1.

2.2.1 Independent Comparison of Parsers on Microblog Text

Since microblog text processing has relatively recently gained interest in the NLP re-

search community, we don’t find expansive work of independent comparisons of parsing

of microblog text in the literature.

A study by Derczynski et al. [20] did some effort in evaluating performance on high

level tasks specific to microblog genre, pointing out its noise. It covered a comparison of

part of speech (POS) tagging and named entity recognition (NER) tasks on microblog.

There has been a study on sentiment analysis on microblog text [24], but it doest not

look into the lower level task of parsing.

Another study [22] showed the specific difficulty in parsing microblog text. It was

found that POS tagging is a difficult task when it comes to microblog text. The study

only uses a single parser, MALT parser, and shows the functional performance of the

parser on microblog text. The analysis did not evaluate any other available parsers.

It was also reported that a big difference of performance was due to the difference in

POS tagging. The LAS on MALT WSJ vanilla was reported to be between 67% and

71% depending upon the number of training data. MALT up training was performed

by training it on trees produced by Berkeley parser. They used training resources on

Twitter as well as a sports discussion forum. They have reported that a statistically

significant improvement in Labelled attachment score (LAS) of 4.67% and in unlabelled

attachment score (UAS) of 3.74% was obtained by up training MALT.

The major shortcoming of this study is that it only evaluated one parser. To give

a broad understanding of the domain, we need most major parsers to be evaluated

to obtain a clearer picture. Moreover, the running-time performance aspect was not

touched at all.

9

2.2.2 Comparison of Parsers on Microblog by Parser Writers

We see that that there is a parser (Tweebo parser) designed specifically for English

microblog text [36]. Their work does provide a performance metric of this parser, but

it does not compare other parsers on the microblog text. It was claimed that Tweebo

parser is the first syntactic dependency parser designed explicitly for English tweets.

They have claimed to achieve 80.7% unlabelled attachment score (UAS) on their test

set and 76.1% on Web2.0 TwitterTest dataset (which they called TEST-FOSTER).

Tweebo parser starts with TurboParser, an open-source parser, which uses MIRA [19]

to train weights. We included Tweebo parser in our comparison for an independent

evaluation.

2.2.3 Comparison of Parsers in General

There have been independent studies in comparing various parsers but the research

in this area has experienced significantly reduced activity, seeing the interest of the

researchers dwindle when the performance of the parsers plateaued after improving

considerably. Much research took the direction of parsing languages other than English

and on multilingual parsing [9].

Another study [25] was done on Collins parser [15, 14] with varying training corpora,

but again it was not done for comparing various parsers.

2.2.4 Comparison on Running-time Performance of Parsers

Interestingly, we did not see any major work on comparison of parsers in terms of their

running-time performances.

10

2.2.5 Summary

Our limited search for related literature did not satisfy a need for an expansive inde-

pendent parser evaluation and comparison specifically for microblog text. More im-

portantly, hardly any evaluation did take running-time performance of the parsers into

consideration.

Chapter 3

Natural Language Parsers

Natural Language Parsing is a task in which sentence structures and the relationships

between words are deduced.

There are two main types of natural language parsers: constituency parsers and depen-

dency parsers. Each of these targeting two different types of parse trees: constituency

trees (also known as phrase structure trees) and dependency trees.

3.1 Dependency Parsers

Dependency parsers is a class of parsers that create word dependency trees: identifying

head (also known as root) word and dependency relations between words in a sentence.

An example of this is illustrated in Fig. 3.1.

DT NN VBZ VBG DT NN NNS .

This tree is illustrating the dependency relations .

ROOT

det

d-obj

aux

n-subj

punct

det

nn

Figure 3.1: Labelled dependency tree of a sentence

Following is a brief introduction of the dependency parsers we selected for our evalua-

tions.

11

12

3.1.1 MST Parser

MST parser [39] is a two state multilingual dependency parser. This parser is designed

with two components: an unlabelled parser and an edge labeller. The edge labeller is

applied after the unlabelled parsers is employed to parse the text to label the edges

with dependency labels.

It can define a wide range of functions about parsing decisions. A model was added to

integrate morphological features derived from each token [39, p. 217].

Once the tree is established, in the second stage, labels are assigned to the edges. The

labelling is done with a pair of edges by using first order Markov factorization [39, p.

217]

l = argmax
l

M∑
m=2

s(l(i,jm), l(i,jm−1), i,y,x)

in which each factor is the score of labelling the adjacent edges (i, jm) and (i, jm−1), in

the tree y for the sentence x. The score function is a dot product of feature represen-

tation and weight vector [39, p. 217]

s(l(i,jm), l(i,jm−1), i,y,x) = w · f(l(i,jm), l(i,jm−1), i,y,x)

Given a feature representation the highest scoring label sequence is obtained using

Viterbi’s algorithm [39, p. 217]. MIRA [19] online learner is used to set the weights [39,

p. 217].

3.1.2 MALT Parser

MALT parser [41] is also a data-driven parser-generator. It generates a parser using a

treebank. It is essentially an implementation of inductive dependency parsing in which

the derivation of a dependency tree is obtained by the syntactic analysis of the sentence

to be parsed by using inductive machine learning.

MALT parser is based a dependency parser that uses deterministic approach. The

idea is based on shift-reduce parsing for context-free grammar. Deterministic parsing

13

is better suited for disambiguation. It also uses history based models for predicting the

parser actions at non-deterministic choice points. For training, a classifier is trained

to predict a parsing action at a particular parsing configuration using the parse his-

tory and the input string. Parsing is done by the classifier making a dependency tree

deterministically [41, para. 3].

MALT parser can also be turned into a constituency parser that finds the phrase struc-

ture trees for a sentence [28].

3.1.3 Tweebo Parser

Tweebo parser [36] is a parser designed specifically to parse Twitter Text. It is trained

on Twitter text corpus. It uses Ark Tweet POS Tagger to tag words that uses specialized

tag set ‘Ark Tweet Tag set’, which is provided as an appendix A.3.

Tweebo parser does not ignores annotation tokens, rather it interprets Twitter anno-

tation tokens with syntactic functions [36].

Tweebo parser also tokenizes multi-word expressions. One aspect of Tweebo parser is

especially notable; that it considers the possibly of tweets to have multiple sentences

and thus marks multiple roots in a single tweet [36]. Tweebo also ignores punctuation

tokens. For example the parse under Tweebo for the tweet “OMG I love the Biebs and

want to have this babies ! —> LA Times: Teen Pop star Heartthrob is All the Rage

on Social Media ... #belieber” is shows in figure 3.2.

Tweebo parser [36] is a parser designed specifically to parse Twitter Text. It is trained

on Twitter text corpus. It uses Ark Tweet POS Tagger to tag words, which uses

specialized tag set ‘Ark Tweet Tag set’ as listed in appendix A.3.

3.2 Constituency Parsers

Constituency parsers is a class of parsers that parse sentences with constituency gram-

mars, also known as phrase structure grammars.

14

OMG I love the Biebs and want to have his babies ! —>

ROOT ROOT

LA Times: Teen Pop star Heartthrob is All the Rage on Social Media ... #belieber

ROOT ROOT

Figure 3.2: Dependency tree of an example tweet under Tweebo parser

The term ‘Phrase Structure Grammar’ was originally introduced by Noam Chomsky

in 1957 [42] as defined by phrase structure rules. In these grammars, a sentence is

composed of structure of phrases and terms. Terms are individual words or part of

speech tags of those words, while phrases are a sequence of part of speech that have a

specific syntactic and semantic value.

For example, a very common rule defined in English is that a sentence is composed of a

noun phrase followed by a verb phrase. Noun phrase is a sequence of words, that define

the subject, while the verb phrase contains the verb and any object.

A phrase structure grammar is defined by a set of terminals, a set of non-terminals,

production rules, and a special non-terminal denoting the sentence.

A sentence “This tree is illustrating the constituency relation” can be parsed as Fig-

ure 3.3 where the grammar (for this sentence) is defined as

S ::= NP VP

NP ::= ADJ N

NP ::= DT NP

VP ::= V VP

VP ::= V NP

15

DT ::= the

N ::= tree | relation

V ::= is | illustrating

ADJ ::= constituency

Constituency parsers work with constituency grammars to find the structure of the

parse tree according to the grammar.

S

NP1 VP1

ADJ N1 V1 VP2

V2 NP2

DT NP3

ADJ N2

This tree is illustrating the constituency relations.

Figure 3.3: Parse tree of a sentence under a constituency grammar

3.2.1 Senna Parser

Senna is a software that outputs various Natural Language Processing (NLP) predic-

tions, such as part of speech (POS) tags, chunking (CHK), named entity recognition

(NER), semantic role labelling (SRL) and syntactic parsing (PSG) [17].

Senna parser is a discriminative parser, as opposed to a generative parser; instead of

guessing what is the language model behind a target sentence, it tries to predict the

structure which the sentence most probably corresponds to [16].

16

S Level4

VP Level3

S Level2

NP VP Level1

CC N V V POSTags

But stocks kept falling Words

(a) (b)

Figure 3.4: (a) Parse tree representation (b) Senna definition of levels

Senna parser is a fast discriminative parser, which does not rely on information ex-

tracted from PCFGs [29], and it does not rely on most of the classical parsing fea-

tures [16].

Senna uses specialized word representations [18] and then tackles the problem of parsing

as a recursive tagging task.

Senna parser is a neural network parser, and is based on a Convolutional Neural Network

(CNN) adapted for text. In Senna CNN is combined with a structured tag inference in

a graph, where the resulting model is named Graph Transformer Network (GTN).

Senna generates a parse tree using chunking as its base task. Chunking is an NLP task,

in which a sub-sequence of words in a sentence are selected to represent a phrase.

It uses a bottom up approach: in each level a task of chunking is performed to get the

higher level, recursively performing this process until a root label is achieved.

17

3.2.2 Stanford Parser

Stanford parser is an unlexicalized PCFG parser [35], i.e. it uses POS tags as leaf nodes

of the parser tree.

Stanford parser works on probabilistic context free grammar (PCFG) and uses max-

imum likelihood estimation over subcategorized grammar. Subcategorization means

that a word category is divided into several categories, for example verb phrases may

be divided into finite and non-finite verb phrases [35].

Stanford parser uses context for phrase capture [35]. It uses parent annotation to denote

the context of the phrase, i.e. phrases are marked with their parents; a phrase P whose

parent is S is marked as PˆS.

The main distinction of Stanford parser, is that it de-emphasizes importance of words

in parsing [35], and puts more importance on the categories and subcategories of words

in finding most likely parse trees.

3.2.3 Bikel-Collins Parser

Bikel-Collins parser is an implementation of Collins parser [14] by Bikel. This statistical

parser is based on probabilities of dependencies between head-words in parse-trees [6].

Collins parser decomposes the process of tree generation into many smaller problems

and thus makes the estimation of the parameters tractable [6, p. 481].

This parser uses lexical information by modelling head-modifier relations between pairs

of words [15, p. 184]. It is also a maximum likelihood parser, which finds a tree that

has the maximum likelihood for a given sentence based on the training corpus.

Formally, given a sentences S and a tree T , the model [15, p. 184] estimates the

conditional probability P (T |S). The most likely parse under the model is then:

Tbest = argmaxTP (T |S)

Collins parser assumes a different representation of Parse tree as a set of baseNP and

18

a set of dependencies [15, p. 184]. Lets call the set of baseNPs B, and the set of

dependencies D. The model then becomes

P (T |S) = P (B,D|S) = P (B|S)× P (D|S,B)

Sentence S is a list of words tagged with part-of-speech tags: S =< (w1, t1), (w2, t2), . . . , (wn, tn) >.

For POS-tagging Collins parser employs maximum entropy tagger.

Parsing algorithm is a simple bottom-up chart parser [6, p. 481].

3.2.4 Berkeley Parser

Berkeley parser is an implementation of most likely parse tree parsing [43]. However, the

major difference with other parsers is that Berkeley parser employs a technique which

alternately merges and splits basic non-terminal symbols to maximize the likelihood of

training treebank while keeping the size of the learned grammar under control.

Berkeley parser learns by obtaining an X grammar from the training set by binarizing

the grammar X of the treebank [44, p. 405]. This binarization is chosen to be simple

left branching.

Learning is done by Expectation-Maximization algorithm, using inside-outside proba-

bilities to find out latent annotation. Formally, given a sentence S and its unannotated

tree T , consider a non-terminal A spanning (r, t) and its children B and C spanning

(r, s) and (s, t) respectively. Let Ax be a sub-symbol of A, By of B and Cz of C. Then

the inside and outside probabilities can be computed recursively as follows [43, p. 434]:

PIN(r, t, Ax) =
∑
y,z

β(Ax → ByCz)× PIN(r, s, By)PIN(s, t, Cz)

POUT (r, s, By) =
∑
x,z

β(Ax → ByCz)× POUT (r, t, Ax)PIN(s, t, Cz)

POUT (r, t, Cz) =
∑
x,y

β(Ax → ByCz)× POUT (r, t, Ax)PIN(r, s, By)

In Expectation step, posterior probabilities (PIN , POUT) of each annotated rule is com-

puted, while in the Maximization step, the rule probabilities (β) are updated by the

weighted observations of above probabilities [43, p. 434].

19

To break the local maxima of the EM algorithm, the learning algorithm repeatedly

performs splitting of the symbols. The symbols are split into two with 1% randomness

added to break the symmetry. To reduce the size of the resulting grammar, merging

step is performed after each splitting [43, p. 435].

3.2.5 BLLIP (Charniak Reranking) Parser

BLLIP is an implementation of Charniak reranking parser [12, 11, 10] that uses

Maximum-Entropy inspired parser learning. Formally, if the generative model for the

parse tree π is defined as:

p(π) =
∏
c∈π

p(t|l, H)× p(h|t, l, H)× p(e|l, t, h,H)

Where, c is a constituent of the tree, t is the pre-terminal of c, h is the head of c, l is

the label of c, H is the information outside c that is relevant and e is the expansion of

c into other constituents [11, p. 132].

Chapter 4

Methodology

4.1 Overview

In this chapter, we will describe the methodology of evaluation we have employed for

this thesis.

We evaluated nine (9) parsers: 6 of these parsers are constituency (phrase-structure)

parsers, while three (3) are dependency parsers.

We performed evaluation in two classes: we compared constituency parsers using PAR-

SEVAL and FREVAL measures, whereas, we evaluated all nine (9) of the parsers, using

unlabelled attachment score (UAS) on dependency trees. For constituency parsers, we

converted the constituency (phrase-structure) trees to dependency trees for evaluation

purposes. LTH constituent-to-dependency conversion tool [33] for Penn-style treebanks

was used for this conversion.

We selected Twitter data to be the target for our parsing evaluations. The reasons

for this choice is the pervasiveness of Twitter as a common user sharing microblogging

service available as well as availability of access to Twitter text generated by users.

We evaluated the contemporary methods and tools of parsing text, including one that

specifically targets microblog text. We evaluated various combinations of methods and

tools in order to understand and to evaluate the efficacy of the state of the art methods.

4.2 Datasets

We have used mainly two data sets in our study. For our main dataset we have selected

one that is prepared by Foster et al [23] named Web2.0 dataset. This is the dataset

20

21

we used as a gold standard for evaluation purposes. The other dataset we used is

Penn Treebank (Wall Street Journal) corpus. Though this is a standard dataset used

for parser training and evaluations, we used this dataset for training purposes only.

We trained the parsers using PTB WSJ chapters 2 through 22 or used pre-trained

models (trained on the same sections of PTB-WSJ) that are provided with the parsers

distributions.

4.2.1 Web2.0 Twitter Dataset

This dataset consists of 1000 manually annotated sentences taken from tweets and a

discussion forum posts. The data was prepared by extensive process whereby it was

first parsed automatically then parses were annotated using Penn Treebank bracketing

and then hand annotated using Penn Treebank Trees and subjective decision were taken

in order to decide on elements specific to tweets. The process was done twice by the

annotator and then the parsing was validated by a second annotator who performed

this process on 10% of the data. A 95.8% agreement was found between the two

annotators. The Twitter dataset consists of 519 manually annotated sentences taken

from tweets from a corpus of 60 million tweets on 50 themes. 269 sentences are grouped

for development of parser (called TwitterDev) and the remaining 250 as a test set (called

TwitterTest). Usernames have been replaced by a generic text ‘Username’ and URLs

have been replaced by a generic text ‘Urlname’ . The discussion forum dataset consists

of 481 sentences taken from BBC Sports 606 threads. The forum posts were split into

sentences by hand. The development set consists of 258 sentences (called FootballDev)

and the test set consists of 223 sentences (called FootballTest)

Corpus
Name

Number of
Sentences

Mean
Sentence
Length

Median
Sentence-
Length

Standard
Deviation
Sentence
Length

TwitterDev 269 11.1 10 6.4
TwitterTest 250 11.4 10 6.8
FootballDev 258 17.7 14 13.9
FootballTest 223 16.1 14 9.7

Table 4.1: Basic statistics on the Web2.0 datasets

22

The dataset is provided in three files. The files ending in gold contain the gold phrase

structure trees. The files ending in tokens contain the tokenized sentences. The files

ending in goldpos contain the POS-tagged sentences (in reduced CoNLL format). The

files ending in sd165 are the result of applying the Stanford constituency-to-dependency

converter (v.1.6.5) to the gold trees.

4.2.2 Penn Treebank

We have used Wall Street Journal (WSJ) archive of Penn Tree bank 3 (PTB3). PTB-

WSJ contains 2,499 English language news stories obtained from Wall Street Journal.

We used Wall street journal section 02 through 21 for training purposes and 00 and

01 for evaluation purposes. The training set consists of 38,541 parsed sentences with

mean sentence length of 23.84 words with standard deviation of 11.18 words and median

sentence length of 23.

In preparation of this dataset, PTB POS tagging is done in a two stage process where

an automated tagging process is employed in the first stage and human annotators are

employed in the second stage.

PTB Bracketing (Syntactic Parsing) is also done in a two stage process; 1) Automated

Bracketing which is corrected by 2) Human annotators.

Figure 4.1 shows the sentence length distribution differences of the two dataset: Web2.0

TwitterTest dataset and PTB-WSJ dataset. Web2.0 Twitter dataset has an average

length of 11.4 words with standard deviation of 6.8 while the PTB-WSJ dataset has an

average sentence length of 23.84 words with a standard deviation of 11.18.

23

0 10 20 30 40 50 60 70

sentence − length− (words)

PTB-WSJ
Web2.0 TwitterTest

Figure 4.1: Word length distributions of Web2.0 TwitterTest and PTB-WSJ datasets

PTB Tagset

PTB Tag set is based on Tag set of Brown corpus which originally consists of 87 simple

tags. PTB has reduced the number of tags based on lexical recoverability. PTB adds

to Brown Corpus in encoding words syntactic function into the tags. PTB has indeter-

minacy where there is an ambiguity between multiple tagging for a work. In such cases,

PTB allows multiple tags for a word; however, this is restricted to few common occur-

rences such as JJ-NN (adjective or noun as pronominal modifier), JJ-VBG (adjective

or gerund/present participle), JJ-VBN (adjective or past participle), NN-VBG (noun

or gerund/present participle) and RB-RP (adverb or particle). PTB Tag set consists

of 36 POS tags and 12 other tags (for punctuation and currency symbols)

4.3 Parsers

We have selected eight (8) parsers for our evaluations. The criteria we used for this se-

lection base basically the popularity of the parsers, the availability of parser executables

and/or source code.

Following is a description of the execution details for running the parsers.

MST Parser

MST parser is developed in Java and its source code is available [3] online.

24

It is bundled with make and build command files, which seamlessly build the executable.

It is bundled with two pre-trained models: dep.model and dep-lab.model. The dep-

lab.model is labelled model.

The input data file should contains tokenized text with each sentence separated with a

newline character.

The following command:

java -classpath ”.:lib/trove.jar” -Xmx1800m mstparser.DependencyParser test model-

name:dep.model test-file:test.txt output-file:out.txt format:CONLL

will use the input file test.txt and will create an output file out.txt containing dependency

trees for each of the sentences in test.txt in CONLL format using the pre-trained model

dep.model.

We employed the unlabelled trained data in our evaluations.

MALT Parser

MALT parser is implemented as a Java program [32]. It is distributed with its source

along with compiled java byte code.

We used the latest version (version 1.8.1) at the time of access in our evaluations. A

non-optimized version of the MALT parser system was used in our evaluations. We

used the parser with the default options, so the performance parameters might not be

perfect for our test set.

MALT does not come with a pre-trained model. We trained a model from PTB-WSJ

section 02 through 21 by this command:

java -jar maltparser-1.8.1.jar -c wsj-02-21 -i wsj-02-21.conll -m learn

which created a model wsj-02-21.mco as specified by the argument -c.

We then used the created mode to evaluate our test set by this command:

25

java -jar maltparser-1.8.1.jar -c wsj-02-21 -i �testFile -o �outFile -m parse

which used the earlier created mode wsj-02-21.mco to parse the provided �testFile and

created an output file �outFile.

Tweebo Parser

Tweebo parser is a parser developed in C programming language and is available in

source code online [2].

Since this parser is developed specifically for Twitter which is a canonical instance of

Microblogging service, this parser is quite relevant in the current discussion. Though

determination of the value of specialized tagging in parsing of microblog text for higher

level NLP tasks is outside the scope of this thesis, we cover the parsing performance of

this parser and compare it with the other parsers available to determine how it fares.

Since, the parser and its precedent POS tagger use specialized POS tag set, the com-

parison of labelled PARSEVAL measures with the other parsers’ output may not be

very pertinent, however we will use the unlabelled PARSEVAL measures to compare

the parsing performance of various parsers utilizing different tag sets.

We hypothesized that Tweebo parser could outperform the non-Twitter specific parsers

since it uses Twitter specific POS tagging and parsing techniques.

Tweebo comes with build command install.sh and a run command run.sh for Linux

environments.

It comes with pre-trained models and thus the run.sh command only takes a single

argument: the name of the input text file and prints the output on standard out which

can be redirected.‘

Preprocessing Tweebo parser has a peculiar default tokenization so that employing

the default tokenization created substantially negative performance as compared to the

gold standard.

26

So a pre-tokenized version of the gold standard text was used to evaluate Tweebo parser.

However, in the given tokenization scheme, Tweebo does not utilize normal tokenization

heuristics and just assumes a white space as a separator in all cases, resulting in an

incorrect tokenization in several cases as described below. For example possessive ‘s’

(’s) ending is not tokenized as a separate token, rather, it is assumed to be part of of the

single token. This approach creates problem in assigning correct head of the sentence.

Based on our experimentation on the training data, several rules were devised to pre-

process the test set. A discussion of these is presented below.

Rules for standardizing Tweebo input Following is the list of the rules that were

employed to pre-process test set.

� Short hand notation for multi word tokens such as “I′m” is tokenized as two

tokens by default. So a rule is created to add a space delimiter between every

non space and instances of the following exact matches.

(′m, ′M, ′s, ′S, ′re, ′RE, ′ve, ′VE, ′ll, ′LL, ′d, ′D)

where “′m” is shorthand for “am”. “′s” is shorthand for “is”. “′re” is shorthand

for “are”. “′ve” is shorthand for “have”. “′ll” is shorthand for “will”. “′d” is

shorthand for “had’ and “would”.

An space was added between “<nonSpace>′m” so that it becomes “<nonSpace><space>′m”

< nonSpace >′ m =⇒< nonSpace >< space >′ m

< nonSpace >′ M =⇒< nonSpace >< space >′ M

< nonSpace >′ s =⇒< nonSpace >< space >′ s

< nonSpace >′ S =⇒< nonSpace >< space >′ S

< nonSpace >′ re =⇒< nonSpace >< space >′ re

< nonSpace >′ RE =⇒< nonSpace >< space >′ RE

< nonSpace >′ ve =⇒< nonSpace >< space >′ ve

27

< nonSpace >′ V E =⇒< nonSpace >< space >′ V E

< nonSpace >′ ll =⇒< nonSpace >< space >′ ll

< nonSpace >′ LL =⇒< nonSpace >< space >′ LL

< nonSpace >′ d =⇒< nonSpace >< space >′ d

< nonSpace >′ D =⇒< nonSpace >< space >′ D

� Similarly the Tweebo tokenization is very simple when it comes to currency

amount values tokenization. An space was added between the currency symbol

(�) and any numeric token.

A space was added between �<Number> so that it becomes �<space><number>.

e.g. �54.0 becomes � 54.0.

� Finally, the numeric percentage values are tokenized incorrectly, creating problems

in parsing. A space was added between a numeric token and the percent sign (%).

A space was added between <number>% so that it becomes <number><space>%

e.g 34% becomes 34 %.

Post Processing: Working on tokenized text, Tweebo separates the apostrophe from

the verb, e.g “I ′m” becomes “I”, “′”, and “m”. Whereas in the gold standard, it is “I”

and “′m”. If we process without additional preprocessing as suggested below, Tweebo

tokenized this as one token “I ′m”, which is also a wrong head. So a rule is created to

join the apostrophe (′) with the verb (m).

Also, Tweebo parses single tweets as multiple sentences, whereas in the gold standard,

every tweet is parsed as a single sentence with a single head. A rule is applied where

the second head is always made a descendent of the first head. A rule was created

in which, the first head of the sentence is preserved, and all subsequent heads of the

sentence are made dependent on the previous head.

28

4.3.1 Senna Parser

Senna parser is implemented in C programming language and is available with source

code with pre-built binaries for Windows and Linux platforms [45].

Senna takes various parameters to determine what type of output is requested. We

executed Senna with -psg argument, specifying that we are interested in constituency

parse tree output for the provided input.

It takes the input from standard in and outputs the result to the standard out.

please VB S-VP O please S-V (S1(SINV(VP*
no DT B-NP O - B-A1 (NP*
adam NN I-NP O - I-A1 *
lambert NN E-NP O - E-A1 *))
! . O O - O *))

Table 4.2: An example output of Senna parser

The PSG output lists all tokens on a single line with the parse tree in the last column,

where the token is represented by an asterisk as in Fig. 4.3.1.

4.3.2 Stanford Parser

Stanford parser is bundled up with a trained PCFG language model for English from

PTB-WSJ corpus, as well as a language model that ignores case differences between

words: PCFG-case-less model; this model is also used in our evaluations.

Stanford parser is implemented in Java programming language and is available with

source code and pre-built Java executable stanford-parser.jar [27]. The latest version

at the time of our access was 3.2.0.

The pre-trained model is also provided in stanford-parser-3.2.0-models.jar. The two

models that we used in our evaluations are PCFG and caseless which are both created

by training on PTB-WSJ section 2 through 21.

We used the following command to parse input with PCFG model:

29

java -mx1800m -cp “�scriptdir/*:” edu.stanford.nlp.parser.lexparser.LexicalizedParser

-sentences newline -outputFormat “penn”

edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz �testFile >�outFile

which uses englishPCFG model and and the following command to parse input with

caseless model:

java -mx1800m -cp “�scriptdir/*:” edu.stanford.nlp.parser.lexparser.LexicalizedParser

-sentences newline -outputFormat “penn”

edu/stanford/nlp/models/lexparser/englishPCFG.caseless.ser.gz �testFile >�outFile

4.3.3 Bikel-Collins Parser

Bikel-Collins parser is an implementation of Collins parser by Daniel Bikel in Java

programming language as is available with source code. It is implemented in Java pro-

gramming language and pre-built Java executable is bundled with the distribution [5].

We used the settings as defined in the provided collins.properties file defined to emulate

Mike Collins’ 1997 Model 2 without any change.

4.3.4 Berkeley Parser

Berkeley parser is implemented in Java and is available with source code and pre-built

Java executable. We used the BerkeleyParser version 1.7 in our evaluations, the latest

available at the time of our access [26].

Berkeley parser is distributed with an pre-trained model eng sm6.gr which is trained

on Wall Street Journal.

The command which we used to execute the Berkeley parser is follows:

java -jar BerkeleyParser-1.7.jar -gr eng sm6.gr <�testFile >�outFile

30

4.3.5 BLLIP (Charniak Reranking) Parser

BLLIP parser is implemented in C programming language and is distributed with make

file.

We executed the BLLIP parser with provided executable file parse.sh with command:

./parse.sh �testFile >�outFile

which uses provided ec50spfinal model and cvlm-l1c10P1 estimator and the provided

EN English data model.

4.4 Evaluation Methods

This section describes the details of the evaluation metrics used for this work. We

employed two sets of evaluations: first for the constituency (phrase structure) parsing

and the second for dependency parsing. The other orthogonal axis of evaluation was

running-time performance of the parsers.

We focused on two criteria of evaluation: one is the functional performance evaluation

and the other is running-time performance evaluation.

4.4.1 Functional Performance Evaluation Metrics

Function performance of parsers is evaluated to determine how good parsing they do.

The ‘goodness’ of the parsers is determined by metrics which are different for different

types of the parsers, i.e. constituency parsers and dependency parsers.

Evaluation Metrics for Constituency Parsers

Parser evaluations have been done using PARSEVAL [1] which is the most commonly

used evaluations method for constituency parsers.

31

Constituency parsing evaluation is done with the help of two measures: recall and

precision. Recall is defined as the percentage of phrase boundaries in the candidate

parse that are exactly present in the standard parse, while precision is defined as the

percentage of phrase boundaries in the standard parse that are exactly present in the

candidate parse. If we assume a test set consisting of sentences {S1, S2, . . . , Sn} and

their corresponding standard parsed trees T S =
{
τS1 , τ

S
2 , . . . , τ

S
n

}
. Now let the parser

output be a set of candidate trees TC =
{
τC1 , τ

C
2 , . . . , τCn

}
. We can write the definition

of trees as a set of all labelled constituents :

τ = {(i, X, j)}

where (i, X, j) stands for a constituent in τ that cover the span i, to j with label X.

The PARSEVAL (Labelled recall, precision) are as follows:

LR(TC , T S) =

∑
i |τSi ∩ τCi |∑

i |τCi |
and

LP (TC , T S) =

∑
i |τSi ∩ τCi |∑

i |τSi |
finally, the PARSEVAL F1-score is the standard

F1 =
2× (LR× LP)

(LR + LP)

We also employed a more elaborate approach to PARSEVAL measure, called FREVAL [4].

This measure is a generalization of PARSEVAL from individual nodes to arbitrary sized

fragments, i.e. sub-trees defined as connected non-empty sub-graphs of a tree. To de-

scribe formally, let max = |τ | denote the number of nodes in a tree τ . A tree τ is

represented by a sequence of sets of situated fragments

Frag1(τ), F rag2(τ), . . . , F ragmax(τ)

where for ever 1 ≤ s ≤ max, we define Frags(τ) as the set of all situated fragments ϕ

in τ of size |ϕ| = s. A situated fragment (i, ϕ, j) is a fragment. More formally,

Frags(τ) = {(i, ϕ, j)|fragment(ϕ, τ) ∧ |ϕ| = s ∧ span(ϕ) = 〈i, j〉}

32

Given the fragment size s Fragment Labelled Recall of size s (FLRs) and Fragment

Labelled Precision of size s (FLPs) are defined as:

FLRs(T
C, T S) =

∑
i |Frags(τ

C
i) ∩ Frags(τ

S
i)|∑ |Frags(τSi)|

and

FLPs(T
C , T S) =

∑
i |Frags(τ

C
i) ∩ Frags(τ

S
i)|∑ |Frags(τCi)|

FREVAL shows the performance of parsers on varying fragment sizes, so as to help

make finer grain performance comparisons.

Evaluation Metrics for Dependency Parsers

Following the standard route, if we employ recall and precision to evaluate dependency

trees, the recall is defined as the percentage of dependency relationships in the key

that are also found in the answer while the precision is defined as the percentage of

dependency relationships in the answer that are also found in the key. However, for

dependency tree evaluation labelled and unlabelled attachment scores are generally

used [38] for parser evaluation.

Attachment score is a single accuracy metric as defined in [37]. It is defined as the

percentage of words that have the correct head. A single accuracy metric is valuable

because of the single head property of dependency trees. This one-to-one correspon-

dence between the words and their heads allows us to use attachment score as the

metric to determine the accuracy of the parse.

The evaluation is generally done with two different methods labelled attachment score

(LAS) and unlabelled attachment score (UAS). Assuming we have a given dependency

tree parse of a sentence in the form of

((word, head, label)1, (word, head, label)2, . . . , (word, head, label)max)

and that we have a set of candidate parses DC =
{
DC

1 , D
C
2 , . . . , D

C
n

}
and a set of

standard parse DS =
{
DS

1 , D
S
2 , . . . , D

S
n

}
of the same set of n sentences, the labelled

attachment score is defined as two metrics:

LASmicro =

∑n
i (|match(DC

i , D
S
i)|)∑n

i |DS
i |

33

and

LASmacro =

∑n
i

|match(DC
i ,DS

i)|
|DS

i |
n

where match(DC , DS) is defined as

match(DC , DS) =

{
(word, head, label)i

∣∣∣∣∣
(wordC, headC , labelC)i = DC [i]∧
(wordS, headS, labelS)i = DS[i]∧

wordC = wordS ∧ headC = headS∧
labelC = labelS

}

Here LASmicro is averaged over words and LASmacro is average of sentences.

For the unlabelled attachment score we ignore the label as we use the sets DU =

{(word, head)|(word, head, label) ∈ D}. Now assuming
{
DUC

1 , DUC
2 , . . . , DUC

n

}
be the

set for candidate parses and
{
DUS

1 , DUS
2 , . . . , DUS

n

}
be the set for standard parses, the

unlabelled attachment score is again defined as two metrics:

UASmicro =

∑n
i (|DUC

1 ∩DUS
1 |)∑n

i |DUS
i |

and

UASmacro =

∑n
i

|DUC
1 ∩DUS

1 |
|DUS

i |
n

Here, UASmicro is averaged over words and UASmacro is average of sentences.

One implementation is given by MALTEval [40] for UAS and LAS evaluations.

We have used unlabelled attachment score for the reason that the set of parsers we have

evaluated do not share the tag sets. Though most of the parsers use Penn treebank tag

set, some parsers use different tag set specific to the language of the Twitter.

One problem we encounter in using attachment score evaluation as implemented in

MALTEval is that it requires the candidate and standard parses to be tokenized ex-

actly the same to compare the heads of the tokens. However, we found out that the

various parsers employ different tokenization heuristics which cause different tokeniza-

tions, which MALTEval cannot handle.

So we implemented our own evaluator to first match the tokenization of the two sen-

tence using maximum spanning the tokens with a dynamic programming solution to

34

the longest common subsequence (LCS) problem, so the match function was changed

accordingly:

match(DC , DS) =

{
(word, head)i

∣∣∣∣∣

(wordC, headC)i = DUC [i]∧
(wordS, headS)j = DUS[j]∧

wordC = wordS ∧ headC = headS∧
LCS(DUC , DUS, i) =

LCS(DUS, DUC , j)

}

Where LCS(DC , DS, i) gives the index of the word in the longest common token list

corresponding to the ith word in the sentence DC.

To evaluate the effect of correct tokenization on the parser performance we evaluated

the parsers with and without pre-tokenized text.

4.4.2 Running-time Performance Evaluation

The other aspect that we focused on evaluating on the performance of the parsers was

to find out how fast they can parse the text. When it comes to parse microblog or

Twitterverse, it is imperative that it is done as fast as possible.

For this purpose we timed the parsing of the tweets for each of the parsers in batches

running multiple times, and then averaged the time for each tweet.

We timed for the real, user and system time for the processes on a Unix machine, using

the standard time command. The Linux ‘time’ command gives three different measures

for time taken by a command: Real time is the clock time the process took to complete

the task, User time is the actual CPU time that the process took to run in the user

mode, and Sys time is the actual CPU time that the process took to run in the kernel

mode. We kept our analysis limited to user time.

The machine specifications were Intel Core i7 Quad Core 2.00 GHz, with 8 GB of RAM,

running 64 Bit Windows 8.1 Pro operating system. In order to evaluate all parsers on

one environment. Since some of the parsers are only available on Linux, therefore we

35

created a virtual machine on VMware running Ubuntu 14.04 Linux with 1 GB of RAM

in the virtual machine.

Since the purpose of this evaluation was a comparison of the performance of the various

parsers, so this setup, though far from ideal, worked fine for evaluation various parsers

running-time performance.

Chapter 5

Evaluation and Discussion

5.1 Functional Performance Evaluation

We have done functional performance evaluation in two modes: we have converted the

constituency tree output of all of the constituency parsers to dependency trees, and

then evaluated all dependency trees using unlabelled attachment scores.

In addition, we compared the constituency (phrase-structure) parsers, using standard

PARSEVAL (and extended form of it, FREVAL) measures.

5.1.1 Dependency Parse Comparison

We evaluated various parsers for their functional performance in parsing Twitter text

to create dependency trees.

NNP VRB PRP VBP VBG NNP NNP DTV NN .

Username hope you ’re watching sky news this am .

ROOT

Figure 5.1: Dependency tree of an example sentence in Twittertest gold standard

The comparison were done using two measures: micro-averaged Unlabelled Attachment

Score (micro-UAS) and macro-averaged Unlabelled Attachment Score (macro-UAS).

36

37

The micro-UAS and macro-UAS are calculated by comparing the parses generated by

the parser under evaluation with the gold-parses in our test set.

For example, the tweet “Username hope you’re watching sky news this am” is parsed

in TwitterTest as gold standard as in Fig 5.1

Tweebo Parser

Being a dependency parser, Tweebo parser was evaluated using the unlabelled attach-

ment score.

N V L V N N O V ,

Username hope you’re watching sky news this am .

ROOT ROOT

Figure 5.2: Dependency tree of the example sentence as parsed by Tweebo parser

We can see in Fig. 5.2 that the Tweebo parser parses a tweet with multiple roots.

The 250 sentences of Web2.0 TwitterTest dataset was evaluated, the micro average

UAS score was 58.67% while the macro Average UAS was almost the same 58.75%.

We also evaluated Micro and Macro UAS ignoring punctuation tokens, and obtained

same micro average of 58.67% but increased macro average 69.12%

Evaluating for only the sentences which have complete token matching of the candi-

date parse with the gold standard parse, which where 162 in number, the score was

significantly better at 63.55% and 62.99% respectively.

Only 3 sentences out of 250 had complete match with the gold standard.

38

Number of Sentences: 250
Micro Average UAS: 58.67
Macro Average UAS: 58.75
Micro Average UAS (Ignore Punctuation): 58.67
Macro Average UAS (Ignore Punctuation): 69.12
Number of Matched Token Sentences: 162
Micro Average UAS (Matched Token): 63.55
Macro Average UAS (Matched Token): 62.99
Number of Complete Matches: 3

Table 5.1: Functional performance of Tweebo parser

Tokenized Input: For tokenized input, the performance of Tweebo parser declined

a little bit, the reason being, Tweebo uses some peculiar heuristics in tokenization, for

example I′m is tokenized as I, ′, and m.

The Micro average Unlabelled Attachment Score is 57.74%, while macro average for

UAS was 57.66%. Ignoring punctuation gave a significantly better parse performance

in terms of macro-average UAS 68.81% macro UAS, only the same on micro-average

UAS with 57.74% micro UAS.

The number of matched tokens for a tokenized input increased from 162 to 191. However

the parsing performance decreased, giving a UAS about 57%. Ignoring punctuation

tokens gave significant improved parsing score of 67%. Complete match of the parse

trees was still limited to 3 sentences.

Number of Sentences: 250
Micro Average UAS: 57.74
Macro Average UAS: 57.66
Micro Average UAS (Ignore Punctuation): 57.74
Macro Average UAS (Ignore Punctuation): 68.81
Number of Matched Token Sentences: 191
Micro Average UAS (Matched Token): 62.11
Macro Average UAS (Matched Token): 61.62
Number of Complete Matches: 3

Table 5.2: Functional performance of Tweebo parser on tokenized input

39

MST Parser

We performed evaluation on MST parser using the bundled unlabelled trained model as

well as trained on Web 2.0 TwitterDev dataset. Since MST parser requires a tokenized

input, we used Stanford tokenizer to tokenize the input and provided that to the MST

parser.

NNP VBP PRP VBP VBG NN NN DT VBP .

Username hope you ’re watching sky news this am .

ROOT

Figure 5.3: Dependency tree of the example sentence as parsed by MST parser

The Stanford tokenizer did a reasonably good job in tokenizing input, 201 sentences

out of 250 matched tokenization with the gold standard.

Using the supplied unlabelled trained model, given on tokenization from Stanford tok-

enizer, the performance of MST parser was quite poor. It gave only 14.41% micro-

averaged UAS with 15.31% macro-averaged UAS. Ignoring punctuation tokens de-

creased micro-averaged UAS but increased macro-average UAS to 13.79% and 17.37%

respectively. From the performance of the parser with the provided trained model, it

can be deduced that the model is quite naively trained.

A complete match of only 1 sentence out of 250 was observed.

40

Number of Sentences: 250
Micro Average UAS: 14.67
Macro Average UAS: 15.72
Micro Average UAS (Ignore Punctuation): 13.78
Macro Average UAS (Ignore Punctuation): 17.72
Number of Matched Token Sentences: 231
Micro Average UAS (Matched Token): 14.68
Macro Average UAS (Matched Token): 15.58
Number of Complete Matches: 1

Table 5.3: Functional performance of MST parser on tokenized input

We also observed that for MST parsing the real time was less than the CPU time which

means that the MST parser is CPU bound process and it uses multi-core processing/multi-

threading to lessen real parsing time.

MALT Parser

MALT parser does not come with a default model, so training was required. To keep

the training comparable with other parsers, we used the same training corpus for all

the parsers. We used PTB-WSJ 02-21 corpus, which contains 38543 sentences. The

training time was about 4 seconds.

NNP VBP PRP VBP VBG NN NN DT VBP .

Username hope you ’re watching sky news this am .

ROOT

Figure 5.4: Dependency tree of the example sentence as parsed by MALT parser

The performance of MALT parser was not too low but not too high as well. At best

it can be classified as a mediocre parser when it comes to parsing microblog text.

Though out of 250 sentences, 215 were correctly tokenized, the micro-averaged UAS

41

was 61.72% and macro-averages UAS was found to be 60.01%. Ignoring Punctuation

decreased the micro-averaged UAS while increasing the macro-averaged UAS to 57.25%

and 62.65% respectively. Since the default correct tokenization rate was high, ignoring

the unmatched sentences did not improve the performance level much; only the micro-

averaged UAS became 62.88% and macro-averaged UAS became 61.23%.

39 sentences out of 250 had complete matched parses with the parses of the gold-

standard.

Number of Sentences: 250
Micro Average UAS: 61.72
Macro Average UAS: 60.01
Micro Average UAS (Ignore Punctuation): 57.25
Macro Average UAS (Ignore Punctuation): 62.65
Number of Matched Token Sentences: 215
Micro Average UAS (Matched Token): 62.88
Macro Average UAS (Matched Token): 61.23
Number of Complete Matches: 39

Table 5.4: Functional performance of MALT parser trained on WSJ

When we trained the MALT parser on Web2.0 TwitterDev data set, the performance

declined considerably, due to the limited size of the dataset. Training time was only

about 2 seconds (1973 ms).

The parsing performance of MALT parser trained on Web2.0 TwitterDev dataset was

only 10.17% micro-averaged UAS and 15.93% macro-averaged UAS. We assume that

this performance is a result of small training size and signifies a larger training size

requirement of MALT parser. Number of complete matches also reduced to 13 from 37.

Number of Sentences: 250
Micro Average UAS: 10.17
Macro Average UAS: 15.93
Micro Average UAS (Ignore Punctuation): 8.94
Macro Average UAS (Ignore Punctuation): 16.39
Number of Matched Token Sentences: 215
Micro Average UAS (Matched Token): 10.59
Macro Average UAS (Matched Token): 17.15
Number of Complete Matches: 13

Table 5.5: Functional performance of MALT parser trained on Web2.0 TwitterDev

42

Senna Parser

NNP VBP PRP VBP VBG NN NN DT VBP .

Username hope you ’re watching sky news this am .

ROOT

Figure 5.5: Dependency tree of the example sentence as parsed by Senna parser

Senna parser faired quite well on Unlabelled Attachment Score evaluation. For 250

sentences Micro-average UAS was 70.42% and macro-averaged UAS was 71.23. Ig-

noring punctuation tokens reduced the micro-averaged UAS considerably to 63.52�,

signalling that Senna did have a good performance on punctuation tokens and the head

assignments, while the macro-averaged UAS improved negligibly to 72.45%.

Also the number of matched token sentences was only 177 out of 250, ignoring the

unmatched token sentences improved the parsing score considerably to 75.68% and

77.86% micro-averaged UAS and macro-averaged UAS respectively. This clearly shows

importance of tokenizing on Senna’s performance.

Number of complete matches was also reasonably high to 75 sentences.

Number of Sentences: 250
Micro Average UAS: 70.42
Macro Average UAS: 71.23
Micro Average UAS (Ignore Punctuation): 63.52
Macro Average UAS (Ignore Punctuation): 72.45
Number of Matched Token Sentences: 177
Micro Average UAS (Matched Token): 75.68
Macro Average UAS (Matched Token): 77.86
Number of Complete Matches: 75

Table 5.6: Functional performance of Senna parser

Running Senna on pre tokenized input did improve performance slightly, though the

43

number of matched token sentences rose to 215 from 177. The micro-averaged UAS

was 72.92% while the macro-averaged UAS was 75.91%. This means the tokenization

improves better parsing for sentences, but does not improve significantly for words (and

phrases).

Number of complete matches for pre-tokenized text also increased from 75 to 87 sen-

tences, about 16%.

Number of Sentences: 250
Micro Average UAS: 72.92
Macro Average UAS: 75.91
Micro Average UAS (Ignore Punctuation): 65.21
Macro Average UAS (Ignore Punctuation): 77.20
Number of Matched Token Sentences: 215
Micro Average UAS (Matched Token): 75.16
Macro Average UAS (Matched Token): 77.96
Number of Complete Matches: 87

Table 5.7: Functional performance of Senna parser on tokenized text

Stanford Parser

NNP VBP PRP VBP VBG NN NN DT VBP .

Username hope you ’re watching sky news this am .

ROOT

Figure 5.6: Dependency tree of the example sentence as parsed by Stanford parser –
PCFG model

We evaluated the Stanford parser using two different models from among those that

are provided with the parsers: a standard PCFG model developed from PTB-WSJ and

a PCFG-caseless model developed from the same corpus ignoring the letter case.

44

Evaluating Stanford on PCFG language model which gave quite good results of 71.41%

micro-averaged UAS and 71.27% macro-averaged UAS. Ignoring punctuation tokens

lowered the micro-average UAS considerably to 64.02% while improved the macro-

average negligibly to 72.07%. Similarly since 215 sentences out of 250 had matching

tokenization, ignoring mismatched tokens did not improve results significantly.

Number of complete matches were 67 out of 250.

Number Of Sentences: 250
Micro Average UAS: 71.41
Macro Average UAS: 71.27
Micro Average UAS (Ignore Punctuation): 64.02
Macro Average UAS (Ignore Punctuation): 72.07
Number Of (Matched Token) Sentences: 215
Micro Average UAS (Matched Token): 72.67
Macro Average UAS (Matched Token): 72.50
Number of Complete Matches): 67

Table 5.8: Functional performance of Stanford parser using PCFG language model

Running Stanford parser using PCFG model on pre-tokenized text did not improve the

results at all, rather it degraded the results a little, with micro-averaged UAS to 71.00%

and macro-averaged UAS to 71.28%, though the number of matched-tokenization sen-

tences increased from 215 to 234.

Also the number of complete matches increased slightly from 67 to 70.

Number Of Sentences: 250
Micro Average UAS: 71.00
Macro Average UAS: 71.28
Micro Average UAS (Ignore Punctuation): 62.96
Macro Average UAS (Ignore Punctuation): 72.27
Number Of (Matched Token) Sentences: 234
Micro Average UAS (Matched Token): 72.17
Macro Average UAS (Matched Token): 72.10
Number of Complete Matches): 70

Table 5.9: Functional performance of Stanford parser using PCFG language model on
tokenized text

Running Stanford parser with PCFG-caseless model on Web2.0 TwitterTest dataset

45

NNP VBP PRP VBP VBG NN NN DT VBP .

Username hope you ’re watching sky news this am .

ROOT

Figure 5.7: Dependency tree of the example sentence as parsed by Stanford parser –
PCFG-caseless model

improved the functional performance of the parser a little, increasing the micro-averaged

UAS to 72.71% and macro-averaged UAS to 73.07%. Ignoring punctuation increased a

little more to 65.14% (compared to 62.96%) and 73.85%(compared to 72.27%) of micro

and macro averages.

One additional complete match was obtained using PCFG-caseless model; there were

70 complete matches (100% match between candidate and standard parse trees) when

using regular PCFG model, whereas with PCFG-caseless model 71 complete matches

were observed.

Number of Sentences: 250
Micro Average UAS: 72.71
Macro Average UAS: 73.07
Micro Average UAS (Ignore Punctuation): 65.14
Macro Average UAS (Ignore Punctuation): 73.85
Number of Matched Token Sentences: 215
Micro Average UAS (Matched Token): 73.86
Macro Average UAS (Matched Token): 74.21
Number of Complete Matches: 71

Table 5.10: Functional performance of Stanford parser using PCFG-caseless language
model

Using pre-tokenized text to run Stanford parser with PCFG-caseless language model

further improved the functional performance of the parser slightly. It achieved micro-

averaged UAS of 72.91% and macro-averaged UAS to 73.59%. Ignoring punctuation

46

decreased the micro-averaged UAS to 64.55% while increasing the macro-averaged UAS

to 74.68%. Number of matched-tokenization sentences also rose from 215 to 235.

Only three (3) sentence were additionally completely matched with the parse of the

gold-standard.

Number Of Sentences: 250
Micro Average UAS: 72.91
Macro Average UAS: 73.59
Micro Average UAS (Ignore Punctuation): 64.55
Macro Average UAS (Ignore Punctuation): 74.68
Number Of (Matched Token) Sentences: 234
Micro Average UAS (Matched Token): 73.50
Macro Average UAS (Matched Token): 74.04
Number of Complete Matches): 74

Table 5.11: Functional Performance of Stanford parser using PCFG-caseless language
model on tokenized text

Berkeley Parser

NNP VBP PRP VBP VBG NN NN DT VBP .

Username hope you ’re watching sky news this am .

ROOT

Figure 5.8: Dependency tree of the example sentence as parsed by Berkeley parser

Berkeley parser requires tokenized text. The micro-averaged UAS was to 72.93% and

macro-averaged UAS was 72.46% . Ignoring punctuation, degraded micro-average UAS

considerably, and improved macro-averaged UAS slightly, to 65.21% and 73.76% re-

spectively. Since almost all of the sentences tokens were matched (249 out of 250),

ignoring the unmatched token sentence did almost nothing to the results. Number of

complete matches was astounding 80 sentences out of 250 sentences.

47

Number Of Sentences: 250
Micro Average UAS: 72.94
Macro Average UAS: 72.46
Micro Average UAS (Ignore Punctuation): 65.21
Macro Average UAS (Ignore Punctuation): 73.76
Number Of Matched Token Sentences: 249
Micro Average UAS (Matched Token): 72.94
Macro Average UAS (Matched Token): 72.75
Number of Complete Matches: 80

Table 5.12: Functional performance of Berkeley parser on tokenized text

BLLIP Parser (Charniak Reranking Parser)

NNP VBP PRP AUX VBG NN NN RB RB .

Username hope you ’re watching sky news this am .

ROOT

Figure 5.9: Dependency tree of the example sentence as parsed by BLLIP parser

The functional performance of BLLIP (also known as Charniak Reranking) parser was

the highest among all the parsers we evaluated.

On Web2.0 Twittertest data, the micro-averaged UAS was 75.04% while the macro-

averaged UAS was 76.49%. Ignoring punctuation degraded the word average UAS

(micro-averaged) to 67.54% while improved the sentence average UAS (macro-averaged)

to 77.37%. Since number of matched token sentences was reasonably high 195 (out of

250), the performance increase ignoring the unmatched token sentences with micro-

average increasing to 76.84% and micro-average to 78.27%. A number of complete

match was also a great 83 sentences out of 250.

48

Number of Sentences: 250
Micro Average UAS: 75.04
Macro Average UAS: 76.49
Micro Average UAS (Ignore Punctuation): 67.54
Macro Average UAS (Ignore Punctuation): 77.37
Number of Matched Token Sentences: 195
Micro Average UAS (Matched Token): 76.84
Macro Average UAS (Matched Token): 78.27
Number of Complete Matches: 83

Table 5.13: Functional performance of BLLIP parser

Running BLLIP parser on pre-tokenized text improved the performance results only

very slightly, signifying high quality of tokenization as part of the parser.

The micro-averaged UAS was 75.94% while the macro-averaged UAS was 77.10%. Ig-

noring punctuation decreased the micro-averaged UAS to 68.39% while improved the

sentence average to 78.08%.

Number of matched token sentences also increased to 201 (from 195), which is not

too much, justifying negligible change in the performance numbers obtained by ignor-

ing non-token-matched sentences. The micro-averaged UAS was 76.38% while macro

averaged UAS was 77.59%.

Number of complete matches also increase by one sentence to 84 (out of 250 sentences).

Number Of Sentences: 250
Micro Average UAS: 75.94
Macro Average UAS: 77.10
Micro Average UAS (Ignore Punctuation): 68.39
Macro Average UAS (Ignore Punctuation): 78.08
Number Of Matched Token Sentences: 201
Micro Average UAS (Matched Token): 76.38
Macro Average UAS (Matched Token): 77.59
Number of Complete Matches: 84

Table 5.14: Functional performance of BLLIP parser on tokenized text

49

NNS VBP PRP VBP VBG NN NN DT RB .

Username hope you ’re watching sky news this am .

ROOT

Figure 5.10: Dependency tree of the example sentence as parsed by Bikel-Collins parser

Bikel-Collins Parser

Bikel-Collins parser does not come with included language model, so we trained on PTB

WSJ-02-21 to keep consistent baseline. The Bikel-Collins parser requires tokenized text

and does not perform any tokenization, other than splitting sentences on space.

Bikel-Collins parser performs at par on Web2.0 TwitterTest dataset as compared to

other parsers. In parsing 250 tweets, it performed to micro-averaged UAS of 72.62%

and macro-averaged UAS of 73.12%. Ignoring punctuation degraded the micro-averaged

UAS to 65.22%, while increased the macro-averaged UAS to 73.54%. Since it does not

attempt to tokenize at all, all 250 sentences were matched correct with tokenization.

82 sentences (out of 250) had complete parse match.

Number Of Sentences: 250
Micro Average UAS: 72.62
Macro Average UAS: 73.12
Micro Average UAS (Ignore Punctuation): 65.22
Macro Average UAS (Ignore Punctuation): 74.54
Number Of (Matched Token) Sentences: 250
Micro Average UAS (Matched Token): 72.62
Macro Average UAS (Matched Token): 73.12
Number of Complete Matches): 82

Table 5.15: Functional performance of Bikel-Collins parser on tokenized text

50

Summary

Comparing all the parsers with or without pre-tokenized text (for those parser that do

take non-tokenized text), we see that BLLIP parser (also known as Charniak reranking

parser) fares the best in terms of both micro-averaged UAS and macro-averaged UAS.

BLLIP parser gave 75.94% micro-averaged UAS over all words in the tweets and gave

77.10 macro-averaged UAS over all sentences in the tweet dataset. This result was

obtained by providing pre-tokenized sentences.

We see that Senna parser was the second best parser in terms of its macro-average

performance on tokenized text giving 73% micro-average UAS and 76% macro-average

UAS.

After Senna parser, Stanford, Berkeley and Bikel-Collins all parsers fared almost the

same on around 72% micro and 73% macro-average.

Parser micro-avg
UAS

macro-avg
UAS

Berkeley parser on tokenized text 72.94 72.46
Bikel-Collins parser on tokenized text 72.62 73.12
BLLIP 1 parser 75.04 76.49
BLLIP parser on tokenized text 75.94 77.10
MALT parser on tokenized text 61.72 60.01
MST parser on tokenized text 14.67 15.72
Senna parser 70.42 71.23
Senna parser on tokenized text 72.92 75.91
Stanford parser-PCFG 71.41 71.27
Stanford parser-PCFG on tokenized text 71.00 71.28
Stanford parser-PCFG-caseless 72.71 73.07
Stanford parser-PCFG-caseless on tokenized text 72.91 73.59
Tweebo parser 58.67 58.75
Tweebo parser on tokenized text 57.74 57.66

Table 5.16: Functional performance of various parsers — micro-averaged and macro-
averaged Unlabelled Attachment Score (UAS) measures

51

5.1.2 Constituency Parse Comparison

Senna Parser

The performance of Senna parser was much degraded, as expected, when it is used to

parse Twitter text as compared to the normal news text. Though Senna is not designed

to be a parser per se, but an NLP tool for higher level tasks such as SRL, we can get

parsed trees output from Senna. It is reported that Parsing is important part of SRL

and the SRL evaluation of senna is pretty high going to F1 score of 79.2% which is

usually much lower than the F1 score in just the parsing task.

When we evaluated Senna to work with Twitter data, the performance of Senna was

degraded. We got the F1 score of PARSEVAL measure of only 72.49% with precision

of 73.61% and recall of 71.40%.

In total 250 sentences were evaluated, where 75 sentences were error sentences and

175 valid sentences were present. Complete match of only 28.0% was obtained where

tagging accuracy was 84.42%.

We also did FREVAL measure that deals with parser evaluation on fragments and the

result was that if we increased the fragment size we get lower performance, however,

Senna still has better performance as compared to other parsers.

For fragment size of one (1) (essentially PARSEVAL), out of 1500 fragments 1071 were

matched with F1 score of 72.49%.

Increasing the fragment size to two (2), produced an F1 Score of 56.43% with 55.47%

recall and 57.42% precision. More than two fragment size the F1 score was considerably

lower to an F1 score of 43.83%.

52

2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

Number of Fragments

P
er
ce
n
ta
ge

Recall
Precision
F1 Score

Figure 5.11: FREVAL performance evaluation of Senna on Parsing microblog text

We can see, the performance of parsing with increasing fragment size is a much difficult

problem. Also we can note that Senna has higher precision for larger fragments as

compared to the recall. For smaller fragments, the recall and precision are closely

matched to the F1 score, making Senna a good choice to balance recall and precision.

Stanford Parser

We evaluated Stanford parser’s functional performance on Twitter text. The perfor-

mance is expectedly degraded from that of the regular written work text such as news

posts, though, it was is not too bad.

We evaluated two trained models with Stanford parser, one being a standard model

trained for Probabilistic Context-Free Grammar (PCFG) on English text and the other

being the model trained for case-less English.

The test results were 67.29% F1 Score with 66.82% precision and 67.76% recall for the

case-less model, where as for the standard mode the F1 score was 66.93% with 67.04%

precision and 66.82% recall.

We can see from the results that both of the models performed almost equally well, but

53

the case-less model slightly preferred recall over precision as compared to the standard

model resulting in a very slight improvement on F1 score (0.36%).

For standard PCFG model, in total 250 sentences were evaluated, where 24 sentences

were error sentences and 226 valid sentences were present. Complete match of only

20.34% was obtained. Tagging accuracy was 81.80%.

Where as, for case-less model, out of 250 sentences 24 were error sentences and 226

sentences were valid sentences. Complete match of 23.01% was found. Tagging accuracy

was found to be 83.46%.

An interesting thing can be noted here, that the case-less model has a little better

tagging accuracy of 83.46% as compared to the standard PCFGmodels tagging accuracy

of 81.80%. This can be justified by the language used in Twitter where many people

do not worry about using correct cases for words such as pronouns or acronyms.

2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

Number of Fragments

P
er
ce
n
ta
ge

Recall
Precision
F1 Score

Figure 5.12: FREVAL performance evaluation of Stanford parser with Standard PCFG
model on Parsing microblog text

54

2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

Number of Fragments

P
er
ce
n
ta
ge

Recall
Precision
F1 Score

Figure 5.13: FREVAL performance evaluation of Stanford parser with PCFG-caseless
model on parsing microblog text

Berkeley Parser

Berkeley parser performed as par with Stanford parser. We evaluated parsing the same

Web2.0 test set with standard WSJ grammar provided with the Berkeley parser.

Out of 250 tweets, we got 247 as valid parses with only 3 error sentences. However

there was zero complete match, i.e. none of the sentences had a perfect match with

corresponding parse in the gold set.

Interesting is the performance of the Berkeley parser that, even though none of the sen-

tences had a perfect match, its performance was comparable to most other parsers. We

got 63.23% precision, with 68.65% recall given an F-1 score of 65.83% for PARSEVAL

measures.

For FREVAL measures, i.e evaluating fragments with varying lengths, we found slightly

slow degradation of performance. For example for fragments of size 5, the precision was

24.33% with recall of 24.22% giving an F-1 score of 24.27%.

POS-tagging accuracy was about 82.59%.

55

2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

Number of Fragments

P
er
ce
n
ta
ge

Recall
Precision
F1 Score

Figure 5.14: FREVAL performance evaluation of Berkeley parser on Parsing Microblog
Text

BLLIP Parser (Charniak Reranking Parser)

The parsing Performance of BLLIP parser on microblog text was among the con-

stituency parsers we evaluated.

Out of 250 tweets, 57 were error sentences with 197 valid sentences. A complete match

was obtained 25.39%, while the tagging accuracy was only 79%.

The parsing PARSEVAL performance of BLLIP was 72.22% precision with 72.45%

recall resulting in a F-1 score of 73.81%.

The FREVAL of larger fragments was also better with a fragment of length 5 giving

39.47% precision, 31.20% recall resulting in a F-1 score of 34.85%.

BLLIP parser performance is considerably better in even higher fragment sizes. The

F1 score of 2.9% was found at fragment size of 20 whereas all other parsers had zero

F-1 score.

Also we can see that BLLIP parser favours precision over recall for the microblog text

parsing. The difference between precision and recall increases as the fragment sizes are

increased.

56

2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

Number of Fragments

P
er
ce
n
ta
ge

Recall
Precision
F1 Score

Figure 5.15: FREVAL performance evaluation of BLLIP parser on Parsing Microblog
Text

,

Bikel-Collins Parser

The performance of the Bikel parser was quite good. This parser had 23.67% complete

match with a tagging accuracy of 79.89%. The PARSEVAL precision was 75.55% and

recall was 73.03% giving a PARSEVAL F1-Score of 74.27%.

The larger fragments evaluation was also reasonably high. For fragments of size 5,

40.37% precision with 32.49% recall giving an F1- Score of 36.00%.

57

2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

Number of Fragments

P
er
ce
n
ta
ge

Recall
Precision
F1 Score

Figure 5.16: FREVAL performance evaluation of Bikel parser on parsing microblog text

Summary

Parser Precision Recall F1 score
Berkeley parser-tokenized 61.84 67.21 64.41
Bikel-Collins-tokenized 75.55 73.03 74.27
BLLIP parser 75.22 72.45 73.81
Senna parser 73.61 71.40 72.49
Stanford parser-PCFG 67.04 66.82 66.93
Stanford parser-PCFG-caseless 66.82 67.76 67.29

Table 5.17: Functional performance of various constituency parsers – PARSEVAL mea-
sure

58

2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

Number of Fragments

F
-1

S
co
re

Berkeley
Bikel-Collins

BLLIP
Senna

Stanford

Figure 5.17: FREVAL performance evaluation of various parsers on parsing microblog
text

5.2 Running-time Performance Evaluation

5.2.1 Tweebo Parser

Tweebo parser was not found to be fast. It took about 18.24 seconds on average in CPU

time to parse 250 tweets taking about 73 milliseconds for each parse on the average.

Also there was significant difference between the real time and CPU time, so it can be

deduced that the Tweebo is IO bound parsing.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m44.960s 0m42.466s 0m39.975s 42.467s 170ms
user 0m18.961s 0m17.303s 0m18.459s 18.241s 73ms
sys 0m5.875s 0m6.695s 0m5.537s 6.036s 24ms

Table 5.18: Running-time performance of Tweebo parser

Total average time to parse a tweet was 73 ms

Time for tokenized text was slightly greater i.e. 20.86 seconds for 250 tweets, on the

average 83 milliseconds per tweet.

59

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m38.600s 0m40.523s 0m43.067s 40.73s 163ms
user 0m20.229s 0m20.965s 0m21.402s 20.865s 83ms
sys 0m5.331s 0m5.396s 0m6.324s 5.684s 23ms

Table 5.19: Running-time performance of Tweebo parser on tokenized text

Total average time to parse a tweet was 83 ms

5.2.2 MST Parser

MST parser time for tokenized text was reasonably fast, perhaps due to simplicity of

the model (giving poor performance). It took 8.68 CPU seconds for 250 tweets, on the

average 35 milliseconds per tweet.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m9.102s 0m5.839s 0m5.827s 6.923s 28ms
user 0m8.848s 0m8.571s 0m8.608s 8.676s 35ms
sys 0m1.028s 0m0.705s 0m0.638s 0.79s 3ms

Table 5.20: Running-time performance of MST parser on tokenized text

Parsing time for MST parser on tokenized text was 35 ms

5.2.3 MALT Parser

MALT parser requires tokenized text. MALT parser was quite good in terms of running-

time performance in parsing. The average time to parse 250 sentences text by MALT

parser trained on PTB-WSJ was 4.7s, giving a mere 19ms time per sentence in terms

of CPU time. We can also note that the real time is less than CPU time, signifying

that MALT utilizes multi-thread and/or multi core processing facilities by default.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m4.783s 0m3.085s 0m3.041s 3.636s 15ms
user 0m4.922s 0m4.716s 0m4.647s 4.762s 19ms
sys 0m0.549s 0m0.454s 0m0.530s 0.511s 2ms

Table 5.21: Running-time performance of MALT parser trained on WSJ

60

MALT parser, trained on Web2.0 TwitterDev dataset, was quite fast in parsing the

Web2.0 TwitterTest dataset. The average CPU time it took to parse 250 sentences

text (out of three runs) was only 3.8 seconds, giving 15 ms average per sentence.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m2.088s 0m2.055s 0m2.045s 2.063s 8ms
user 0m3.805s 0m3.812s 0m3.807s 3.808s 15ms
sys 0m0.410s 0m0.430s 0m0.425s 0.422s 2ms

Table 5.22: Running-time performance of MALT parser trained on TwitterDev

Parsing time for MALT parser was 15 ms per tweet on the average.

5.2.4 Senna Parser

As for running-time performance, Senna was among the faster parsers. It was quite

fast. Senna only took about 4.3 seconds to parse 250 sentences on the average out of

three runs which averages to about 17 milliseconds for each tweet.

We can also note that the real time was more than the CPU time, which shows that

Senna does not use multi threading or multi-core facilities available on default.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m8.424s 0m5.586s 0m4.595s 6.202s 25ms
user 0m4.455s 0m4.174s 0m4.428s 4.352s 17ms
sys 0m0.164s 0m0.132s 0m0.123s 0.14s 1ms

Table 5.23: Running-time performance of Senna parser

The conversion time from Senna output to Dependency tree was significant to Senna

parsing time. It took about 3.3 seconds of CPU time to convert the output to depen-

dency tree on the average, giving 13 ms of CPU.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m2.246s 0m4.476s 0m1.659s 2.794s 11ms
user 0m3.361s 0m3.520s 0m3.137s 3.339s 13ms
sys 0m1.040s 0m0.897s 0m0.759s 0.899s 4ms

Table 5.24: Running-time of conversions to dependency trees for Senna parser

61

So in cumulative, Senna takes on the average about 30 ms to parse a single

tweet to dependency.

The time taken for tokenized input did not change much for Senna; the average CPU

time taken was 4.4 seconds for tokenized input, which averages to about 18 milliseconds

per tweet. We observed in these runs that the real time was almost the same as the CPU

time, showing that although senna does not use multi-threading, it is quite efficient in

terms of IO processes.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m4.747s 0m4.649s 0m4.452s 4.616s 18ms
user 0m4.428s 0m4.502s 0m4.264s 4.398s 18ms
sys 0m0.165s 0m0.106s 0m0.123s 0.131s 1ms

Table 5.25: Running-time performance of Senna parser on tokenized text

The total time for Senna to parse tokenized text to dependency tree struc-

ture is about 31 ms per tweet.

5.2.5 Stanford Parser

The running-time performance of Stanford parser was found to be quite low. It took

about 26 seconds in average to parse 250 sentences, averaging to 105 milliseconds per

tweet, when we employed PCFG language model in parsing using the Stanford parser.

We can see that Stanford CPU time was slightly more than the real time, though not

much, we can infer that it employs multi-threading.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m25.083s 0m23.334s 0m23.322s 23.913s 96ms
user 0m26.200s 0m25.892s 0m26.345s 26.146s 105ms
sys 0m0.841s 0m0.732s 0m0.672s 0.748s 3ms

Table 5.26: Running-time performance of Stanford parser using PCFG language model

The time to convert the Stanford PCFG output trees to dependency trees is also sig-

nificant. It took 14 ms of CPU time per tweet to convert to dependency tree.

62

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m1.685s 0m2.189s 0m1.854s 1.909s 8ms
user 0m3.298s 0m3.802s 0m3.759s 3.62s 14ms
sys 0m0.674s 0m0.875s 0m0.742s 0.764s 3ms

Table 5.27: Running-time of conversion to dependency trees for Stanford parser using
PCFG language model

The total time taken to parse a tweet to dependency structure is 121 ms.

Time taken to parse pre-tokenized text was the same, with 26 seconds to parse 250

sentences on the average of three runs, averaging 104 milliseconds per sentence.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m23.689s 0m23.675s 0m23.607s 23.657s 95ms
user 0m25.934s 0m25.670s 0m26.267s 25.957s 104ms
sys 0m0.802s 0m0.892s 0m0.839s 0.844s 3ms

Table 5.28: Running-time performance of Stanford parser using PCFG language model
on tokenized text

Time taken to convert constituency trees generated by the Stanford parser using PCFG

language model on pre-tokenized text was 15 ms per sentences.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m4.168s 0m1.976s 0m1.726s 2.623s 10ms
user 0m3.250s 0m3.661s 0m4.032s 3.648s 15ms
sys 0m1.226s 0m0.745s 0m0.343s 0.771s 3ms

Table 5.29: Running-time of conversion to dependency trees for Stanford parser using
PCFG language model on tokenized text

Hence total average time to parse tweets to dependency trees by Stanford

parser using PCFG language model on pre-tokenized text was 119 ms

Running the Stanford parser with PCFG-case-less language model was slightly slower

than the PCFG language model. It took 27 seconds to parse 250 sentences on the

average of three runs, giving an average of 107 milliseconds per sentence.

63

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m23.925s 0m25.280s 0m24.280s 24.495s 98ms
user 0m26.744s 0m27.908s 0m26.527s 27.06s 108ms
sys 0m0.768s 0m0.764s 0m0.827s 0.786s 3ms

Table 5.30: Running-time performance of Stanford parser using PCFG-caseless lan-
guage model

CPU time to convert constituency trees generated by Stanford parser using PCFG-

case-less language mode was 14 ms per sentences on the average.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m1.584s 0m1.970s 0m1.721s 1.758s 7ms
user 0m3.272s 0m3.146s 0m4.000s 3.473s 14ms
sys 0m0.704s 0m0.829s 0m0.408s 0.647s 3ms

Table 5.31: Running-time of conversion to dependency trees for Stanford parser using
PCFG-caseless language model

Total average time to parse sentences by Stanford parser PCFG-case-less

was 122 ms

Running time of Stanford parser with PCFG-case-less language on pre-tokenized input

was about the same, 27.3 seconds to parse 250 sentences on the average of three runs,

averaging to 109 milliseconds per sentence.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m24.703s 0m24.290s 0m24.680s 24.558s 98ms
user 0m27.016s 0m27.094s 0m27.713s 27.274s 109ms
sys 0m0.873s 0m0.806s 0m0.685s 0.788s 3ms

Table 5.32: Running-time performance of Stanford parser using PCFG-caseless lan-
guage model on tokenized text

Conversion time in terms of CPU from constituency trees generated by Stanford PCFG-

caseless model on pre-tokenized text was 14 ms.

64

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m1.829s 0m1.555s 0m1.699s 1.694s 7ms
user 0m3.743s 0m3.256s 0m3.780s 3.593s 14ms
sys 0m0.769s 0m0.619s 0m0.649s 0.679s 3ms

Table 5.33: Running-time of conversion to dependency trees for Stanford parser using
PCFG-caseless language model on tokenized text

Total average CPU time per sentence by Stanford parse using PCFG case-

less model on pre-tokenized text was 123 ms

5.2.6 Berkeley Parser

The running time for Berkeley parser to parse Web2.0 TwitterTest dataset of 250 tweets

was quite high. It took on average (from three runs) a considerable 36 seconds in terms

of CPU time, while the real time as even larger to 65 seconds. On the average Berkeley

parsers took 145 ms to parse a tweet. We can also see that CPU time is much lesser

than real time, signifying IO boundedness of the parser. Though this increase in real

time can be seen in only one run (Run 2), suggesting this might have been some system

factor at run time.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m56.367s 1m24.681s 0m54.209s 65.086s 260ms
user 0m36.305s 0m35.718s 0m36.449s 36.157s 145ms
sys 0m1.013s 0m1.211s 0m1.178s 1.134s 5ms

Table 5.34: Running-time performance of Berkeley parser

The conversion time for Berkeley parser from constituency trees to dependency trees

was 14 ms on the average in terms of CPU time.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m1.698s 0m3.096s 0m1.829s 2.208s 9ms
user 0m2.739s 0m4.379s 0m3.189s 3.436s 14ms
sys 0m0.983s 0m0.768s 0m0.522s 0.758s 3ms

Table 5.35: Running-time of conversion to dependency trees for Berkeley parser

65

The total average time to parse a sentence by Berkeley parser was found to

be 159 ms

Running Berkeley parser to parse pre-tokenized text takes about the same time as non-

tokenized text. It took on the average 37.5 seconds to parse the 250 sentence dataset

(in three runs), averaging to 150 ms per sentence.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m35.007s 0m37.266s 0m40.850s 37.708s 151ms
user 0m36.586s 0m38.513s 0m37.395s 37.498s 150ms
sys 0m1.069s 0m1.012s 0m1.304s 1.128s 5ms

Table 5.36: Running-time performance of Berkeley parser on tokenized text

It took 15 ms on the average per sentence to convert the output of Berkeley parser on

pre-tokenized text to Dependency trees.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m2.990s 0m2.761s 0m2.710s 2.82s 11ms
user 0m3.114s 0m3.952s 0m4.344s 3.803s 15ms
sys 0m1.209s 0m1.000s 0m0.582s 0.93s 4ms

Table 5.37: Running-time of conversion to dependency trees for Berkeley parser on
tokenized text

The total time to parse a sentence to Dependency tree was 165 ms on the

average.

5.2.7 BLLIP Parser

BLLIP-Charniak parser is among the slower parsers. To parse 250 sentence Web2.0

TwitterTest it took about 90 seconds in terms of CPU time to parse the complete

dataset on the average out of three runs. The average time to parse a sentence was

quite high, about 364 ms per sentence in terms of CPU time. We also note that the CPU

time was slightly greater than the real time, suggesting that it uses multi-threading at

least for some part of parsing.

66

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 1m30.789s 1m22.255s 1m21.951s 84.998s 340ms
user 1m31.178s 1m31.087s 1m30.625s 90.963s 364ms
sys 0m2.716s 0m3.402s 0m2.810s 2.976s 12ms

Table 5.38: Running-time performance of BLLIP parser

The time to convert constituency trees generated by BLLIP parser was 14 ms on the

average in terms of CPU time.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m2.035s 0m2.678s 0m1.669s 2.127s 9ms
user 0m3.045s 0m3.938s 0m3.590s 3.524s 14ms
sys 0m1.001s 0m1.110s 0m0.434s 0.848s 3ms

Table 5.39: Running-time of conversion to dependency trees for BLLIP parser

Thus the total time to parse a sentence using BLLIP parser was found to

be 380 ms on the average.

The parse time to parse pre-tokenized text was about the same, only slightly better in

two runs out of three, so it might be just system factor. The time it took to parse the

dataset on the average was 87.6 seconds averaging to 350 ms.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 1m16.720s 1m16.529s 1m24.177s 79.142s 317ms
user 1m24.464s 1m24.537s 1m33.847s 87.616s 350ms
sys 0m3.108s 0m2.957s 0m3.469s 3.178s 13ms

Table 5.40: Running-time performance of BLLIP parser on tokenized text

It took 15 ms on the average per tweet to convert the constituency trees generated by

BLLIP parser when running on pre-tokenized text.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m2.755s 0m1.750s 0m2.081s 2.195s 9ms
user 0m4.192s 0m3.307s 0m3.393s 3.631s 15ms
sys 0m0.717s 0m0.978s 0m0.877s 0.857s 3ms

Table 5.41: Running-time of conversion to dependency trees for BLLIP parser on tok-
enized text

67

The Total time to parse a tweet to dependency trees by BLLIP parser when

run on pre-tokenized text was found to be 365 ms

5.2.8 Bikel-Collins Parser

Bikel-Collins parser was the slowest among the parsers we evaluate, slower by a multiple

of second slowest parser and two order of magnitude slower of the fastest parser. It

took a whopping 231 seconds to parse the dataset of 250 tweets in terms of CPU time,

averaging to 925 ms to parse a single tweet. We also see the Bikel-Collins parser does

not employ threading by default.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 3m54.312s 3m51.216s 3m51.799s 232.442s 930ms
user 3m54.445s 3m49.614s 3m50.055s 231.371s 925ms
sys 0m1.388s 0m1.262s 0m1.100s 1.25s 5ms

Table 5.42: Running-time performance of Bikel-Collins parser on tokenized text

To convert the phrase-structure (constituency trees) generated by Bikel-Collins parser

to dependency trees it took 13 ms per tweet on the average.

Time Run 1 Run 2 Run 3 Average Run Average per sentence
real 0m1.674s 0m1.486s 0m2.609s 1.923s 8ms
user 0m3.129s 0m2.858s 0m3.912s 3.3s 13ms
sys 0m0.570s 0m0.579s 0m0.602s 0.584s 2ms

Table 5.43: Running-time of conversion to dependency trees for Bikel-Collins parser on
tokenized text

Thus the time taken by Bikel-Collins parser to parse a tweet to dependency

tree was found to be 938 ms on the average.

5.2.9 Summary

We see that there is significant variation in parsing time of various parsers. The fastest

was MALT parser, with Senna and MST parser coming close second. And the slowest

was Bikel-Collins parser.

68

We can see that this time difference is significant enough to consider parsing time for

time sensitive application in choice of a parser, about two orders of magnitude.

Parser CPU Time
(ms)

MALT parser – tokenized text 19
Senna parser 30
Senna parser – tokenized text 31
MST parser – tokenized text 35
Tweebo parser 73
Tweebo parser – tokenized text 83
Stanford parser-PCFG – tokenized text 119
Stanford parser-PCFG 121
Stanford parser-PCFG-caseless 122
Stanford parser-PCFG-caseless – tokenized text 123
Berkeley parser 159
Berkeley parser – tokenized text 165
BLLIP parser – tokenized text 365
BLLIP parser2 380
Bikel-Collins parser – tokenized text 938

Table 5.44: Running-time performance of various parsers - Average parse time for
dependency trees per tweet

5.3 Summary

We found out that there are two contenders for parsing microblog text: one is Senna

parser and the other is BLLIP parser. BLLIP was the best at functional performance

while its running-time performance was not too degraded. And Senna was the best

at running-time performance while still keeping up with other parsers on functional

performance.

One thing we can also note about Senna and BLLIP parsers, is that the functional

performance of BLLIP is quite good in both cases where we provide a pre-tokenized

text or not. So the tokenizer of the BLLIP parser works better than the Senna tokenizer.

While if we use Senna for non-tokenized text, its performance degrades.

MALT parser was fastest but its functional performance was quite poor. Bikel-Collins

69

0 200 400 600 800 1,000

60

65

70

75

Tweebo
Tweebo-tokenized

MALT-tokenized

Senna

Senna-tokenized

Stanford-PCFG

Stanford-caseless-tokenized
Berkeley-tokenized

BLLIP
BLLIP-tokenized

Bikel-Collins-tok

Parsing time - CPU (ms)

m
ic
ro
-a
ve
ra
ge
d
U
A
S

Figure 5.18: Functional performance (dependency parse) vs. Running-time perfor-
mance

parser was high in performance but its running-time performance was extremely poor.

Parser micro-avg
UAS

macro-avg
UAS

CPU Time
(ms)

Berkeley parser – tokenized text 72.94 72.46 165
Bikel-Collins parser 72.62 73.12 938
BLLIP 3 parser 75.04 76.49 380
BLLIP parser – tokenized text 75.94 77.10 365
MALT parser – tokenized text 61.72 60.01 19
MST parser – tokenized text 14.67 15.72 35
Senna parser 70.42 71.23 30
Senna parser – tokenized text 72.92 75.91 31
Stanford parser-PCFG 71.41 71.27 121
Stanford parser-PCFG – tokenized text 71.00 71.28 119
Stanford parser-PCFG-caseless 72.71 73.07 122
Stanford parser-PCFG-caseless – tokenized text 72.91 73.59 123
Tweebo parser 58.67 58.75 73
Tweebo parser – tokenized text 57.74 57.66 83

Table 5.45: Functional and running-time performance of various parsers - micro-
averaged and macro-averaged UAS measures and average parse time for dependency
trees per tweet

Ignoring MST parser, which was extremely poor, Tweebo parser was the worst per-

former, for both pre-tokenized and non-tokenized text. Stanford parser is also a good

70

contender as its performance, both functional and temporal, is close to the best perform-

ing parsers. We also note that correct tokenization has significant effect on functional

performance of most of the parsers.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We found out that there are two contenders for parsing microblog text, one is Senna

parser and the other is BLLIP parser. BLLIP was best at functional performance while

its running-time performance was not too degraded. And Senna was best at running-

time performance while still keeping up with other parsers on functional performance.

Comparing all the parsers with or without pre-tokenized text (for those parser that do

take non-tokenized text), we see that BLLIP parser (also known as Charniak reranking

parser) fares the best in terms of both micro-averaged UAS and macro-averaged UAS.

BLLIP parser gave 75.94% micro-averaged UAS over all words in the tweets and gave

77.10 macro-averaged UAS over all sentences in the tweet dataset. This result was

obtained by providing pre-tokenized sentences.

We see that Senna parser was the second best parser in terms of its macro-average

performance on tokenized text giving 73% micro-average UAS and 76% macro-average

UAS.

After Senna parser, Stanford, Berkeley and Bikel-Collins all parsers fared almost the

same on around 72% micro and 73% macro-average.

MALT parser was fastest but its functional performance was quite poor. Bikel-Collins

parser was high in performance but its running-time performance was extremely poor.

One important thing we found that dependency parsers as a category did not fare well

as a group against constituency parsers, even though we used correctness of depen-

dency parse trees as evaluation criteria even for constituency parsers, by converting the

constituency trees into dependency trees. The functional performance of constituency

71

72

parsers was greater. Even the running-time performance of constituency parsers, even

including the additional time taken to convert constituency trees to dependency trees,

was much less than that of the dependency parsers.

We have found that microblog text differs considerably from the formally written text.

Parsing of microblog text is significantly different problem from parsing of regular for-

mally written text. The performance of all of the parsers is significantly reduced when

it comes to parsing microblog text.

Also the running-time performance of the parsers matters substantially more for mi-

croblog text as the amount of the microblog text is growing exponentially and the

significance of its value is very short lived. The processing methods that need to parse

the microblog text must be very high performing to be valued for real world applications

to parse microblog text.

6.1.1 Findings

Based on our evaluations following is a list of findings.

� Senna (a neural network parser) worked best considering both the functional and

running-time performance.

� Correct tokenization is important for functional performance.

� Constituency parsers fare better than dependency parsers in general.

6.2 Future Work

There are great possibilities of research work on parsing of microblog text.

Following is a synopsis of some of the suggested possible future work.

73

6.2.1 Treating Microblog as Verbal Communication

There are multiple things that can be done to continue this work. One of them is

that Microblog text may be closer to verbal communication as compared to written

communication, so it would be worthwhile to look into a different training data than

Wall Street Journals written news articles, such as ATIS or switchboard corpus in PTB.

It would be interesting to find out how various parsers perform on microblog text when

they are trained on switchboard corpus or ATIS corpus in PTB.

6.2.2 Up training

One approach, worthwhile taking up, is up-training of the parsers with additional tweets

that are collected with one of the best performing parsers. For example, we saw that

Bikel-Collins parser had best FREVAL F-1 score, but its running-time performance

was extremely poor. What can be done is to generate a significant amount of parsed

microblog text, parsed with Bikel-Collins parser, and then use it to train other parser

and to evaluate if this increases their functional performance.

6.2.3 Unsupervised Parsing

The other research direction that we felt valuable is to look into unsupervised parsing,

such as suggested by Bod [7].

Since the microblog text is huge and is being generated at a tremendous rate, it can be

assumed that creating a significant sized corpus of hand parsed text is quite a daunting

task. Hence, approaches in unsupervised parsing might be beneficial to look at.

6.2.4 Evaluating Other Neural Network Based Dependency Parsers

Stanford parser has released a neural network dependency parser [13]. Since Senna, the

one of the best performing parser is a neural network parser, it would be worthwhile to

evaluate Stanford Neural network parser for microblog text.

74

Another parser that uses CRF Parsing using Neural net approaches [21] is worth the

effort to evaluate.

Bibliography

[1] Steven Abney, S Flickenger, Claudia Gdaniec, C Grishman, Philip Harrison, Don-
ald Hindle, Robert Ingria, Frederick Jelinek, Judith Klavans, Mark Liberman,
et al. Procedure for quantitatively comparing the syntactic coverage of English
grammars. In Proceedings of the workshop on Speech and Natural Language, pages
306–311. Association for Computational Linguistics, 1991.

[2] Chris Dyer Jacob Eisenstein Jeffrey Flanigan Kevin Gimpel Michael Heilman Ling-
peng Kong Daniel Mills Brendan O’Connor Olutobi Owoputi Nathan Schneider
Noah Smith Swabha Swayamdipta Archna Bhatia, Dipanjan Das and Dani Yo-
gatama. Tweeboparser. [Online; accessed 22-January-2015].

[3] Jason Baldrige and Ryan McDonald. MSTParser-source. [Online; access 2-
February-2015].

[4] Joost Bastings and Khalil Sima’an. All Fragments Count in Parser Evaluation.
In Proceedings of the Ninth International Conference on Language Resources and
Evaluation (LREC’14), Reykjavik, Iceland, may 2014. European Language Re-
sources Association (ELRA).

[5] Daniel M. Bikel. Software. [Online; accessed 10-January-2015].

[6] Daniel M Bikel. Intricacies of Collins’ parsing model. Computational Linguistics,
30(4):479–511, 2004.

[7] Rens Bod. Unsupervised parsing with U-DOP. In Proceedings of the Tenth Con-
ference on Computational Natural Language Learning, pages 85–92. Association
for Computational Linguistics, 2006.

[8] Danah Boyd, Scott Golder, and Gilad Lotan. Tweet, tweet, retweet: Conversa-
tional aspects of retweeting on Twitter. In System Sciences (HICSS), 2010 43rd
Hawaii International Conference on, pages 1–10. IEEE, 2010.

[9] Sabine Buchholz and Erwin Marsi. CoNLL-X shared task on multilingual depen-
dency parsing. In Proceedings of the Tenth Conference on Computational Natu-
ral Language Learning, pages 149–164. Association for Computational Linguistics,
2006.

[10] Eugene Charniak. Eugene Charniak-Software. [Online; accessed 2-February-2015].

[11] Eugene Charniak. A maximum-entropy-inspired parser. In Proceedings of the 1st
North American chapter of the Association for Computational Linguistics confer-
ence, pages 132–139. Association for Computational Linguistics, 2000.

75

76

[12] Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and MaxEnt
discriminative reranking. In Proceedings of the 43rd Annual Meeting on Associa-
tion for Computational Linguistics, pages 173–180. Association for Computational
Linguistics, 2005.

[13] Danqi Chen and Christopher D. Manning. A fast and accurate dependency parser
using neural networks. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), volume 1, pages 740–750, 2014.

[14] Michael Collins. Michael Collins - Software and Data Sets. [Online; accessed
2-February-2015].

[15] Michael John Collins. A new statistical parser based on bigram lexical dependen-
cies. In Proceedings of the 34th annual meeting on Association for Computational
Linguistics, pages 184–191. Association for Computational Linguistics, 1996.

[16] Ronan Collobert. Deep learning for efficient discriminative parsing. In Interna-
tional Conference on Artificial Intelligence and Statistics, number EPFL-CONF-
192374, 2011.

[17] Ronan Collobert et al. Natural language processing (almost) from scratch. The
Journal of Machine Learning Research 12, pages 2493–2537, 2011.

[18] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the
25th international conference on Machine learning, pages 160–167. ACM, 2008.

[19] Koby Crammer and Yoram Singer. Ultraconservative online algorithms for multi-
class problems. The Journal of Machine Learning Research, 3:951–991, 2003.

[20] Leon Derczynski, Diana Maynard, Niraj Aswani, and Kalina Bontcheva.
Microblog-genre noise and impact on semantic annotation accuracy. In Proceedings
of the 24th ACM Conference on Hypertext and Social Media, pages 21–30. ACM,
2013.

[21] Greg Durrett and Dan Klein. Neural CRF Parsing. In Proceedings of the 53rd An-
nual Meeting on Association for Computational Linguistics. Association for Com-
putational Linguistics, 2015.

[22] Jennifer Foster, Özlem Çetinoglu, Joachim Wagner, Joseph Le Roux, Stephen
Hogan, Joakim Nivre, Deirdre Hogan, Josef Van Genabith, et al. # hardtoparse:
POS Tagging and Parsing the Twitterverse. In proceedings of the Workshop On
Analyzing Microtext (AAAI 2011), pages 20–25, 2011.

[23] Jennifer Foster, Ozlem Cetinoglu, JoachimWagner, Joseph Le Roux, Joakim Nivre,
Deirdre Hogan, and Josef VanGenabith. From news to comment: Resources and
benchmarks for parsing the language of web 2.0. 2011.

77

[24] Guo Fu-liang and Zhou Gang. Research on micro-blog sentiment orientation anal-
ysis based on improved dependency parsing. In Consumer Electronics, Commu-
nications and Networks (CECNet), 2013 3rd International Conference on, pages
546–550. IEEE, 2013.

[25] Daniel Gildea. Corpus variation and parser performance. In Proceedings of the 2001
Conference on Empirical Methods in Natural Language Processing, pages 167–202,
2001.

[26] The Berkeley NLP Group. Berkeley parser. [Online; accessed 15-January-2015].

[27] The Stanford Natural Language Processing Group. The Stanford Parser: A sta-
tistical parser. Online; accessed 18-January-2015.

[28] Johan Hall and Joakim Nivre. A dependency-driven parser for German dependency
and constituency representations. In Proceedings of the Workshop on Parsing
German, pages 47–54. Association for Computational Linguistics, 2008.

[29] James Henderson. Discriminative training of a neural network statistical parser.
In Proceedings of the 42nd Annual Meeting on Association for Computational Lin-
guistics, page 95. Association for Computational Linguistics, 2004.

[30] F Hillebrand. The Creation of the SMS Concept from Mid-1984 to Early 1987.
Short Message Service (SMS): The Creation of Personal Global Text Messaging,
pages 23–44.

[31] Lichan Hong, Gregorio Convertino, and Ed H Chi. Language Matters In Twitter:
A Large Scale Study. In ICWSM, 2011.

[32] Jens Nilsson Johan Hall and Joakim Nivre. Maltparser. [Online; accessed 20-
January-2015].

[33] Richard Johansson and Pierre Nugues. Extended constituent-to-dependency con-
version for English. In 16th Nordic Conference of Computational Linguistics, pages
105–112. University of Tartu, 2007.

[34] Tibor Kiss and Jan Strunk. Unsupervised multilingual sentence boundary detec-
tion. Computational Linguistics, 32(4):485–525, 2006.

[35] Dan Klein and Christopher D Manning. Accurate unlexicalized parsing. In Pro-
ceedings of the 41st Annual Meeting on Association for Computational Linguistics-
Volume 1, pages 423–430. Association for Computational Linguistics, 2003.

[36] Lingpeng Kong, Nathan Schneider, Swabha Swayamdipta, Archna Bhatia, Chris
Dyer, and Noah A Smith. A dependency parser for tweets. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, Doha, Qatar,
to appear, 2014.

78

[37] Kübler, Sandra and McDonald, Ryan and Nivre, Joakim. Dependency parsing.
Synthesis Lectures on Human Language Technologies, 1(1):1–127, 2009.

[38] Dekang Lin. A dependency-based method for evaluating broad-coverage parsers.
Natural Language Engineering, 4(02):97–114, 1998.

[39] Ryan McDonald, Kevin Lerman, and Fernando Pereira. Multilingual dependency
analysis with a two-stage discriminative parser. In Proceedings of the Tenth Con-
ference on Computational Natural Language Learning, pages 216–220. Association
for Computational Linguistics, 2006.

[40] Jens Nilsson and Joakim Nivre. MaltEval: an Evaluation and Visualization Tool
for Dependency Parsing. In LREC, 2008.

[41] Joakim Nivre. An efficient algorithm for projective dependency parsing. In Proceed-
ings of the 8th International Workshop on Parsing Technologies (IWPT. Citeseer,
2003.

[42] Chomsky Noam. Syntactic structures. The Hague: Mouton, 1957.

[43] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate,
compact, and interpretable tree annotation. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, pages 433–440. Association for Com-
putational Linguistics, 2006.

[44] Slav Petrov and Dan Klein. Improved Inference for Unlexicalized Parsing. In
HLT-NAACL, pages 404–411. Citeseer, 2007.

[45] Leon Bottou Michael Karlen Koray Kavukcuoglu Pavel Kuksa Ronan Collobert,
Jason Weston. Senna. [Online; accessed 22-January-2015].

Appendix A

Tagsets

A.1 Comparison of Various Tagsets

Category Examples Claws c5 Brown Penn

Adjective, ordinal number sixth, 72nd, last ORD OD JJ

Adjective, comparative happier, worse AJC JJR JJR

Adjective, superlative happiest, worst AJS JJT JJS

Adjective, superlative, semantically chief, top AJ0 JJS JJ

Adjective, cardinal number 3, fifteen CRD CD CD

Adjective, cardinal number, one One PNI CD CD

Adverb often, particularly AV0 RB RB

Adverb, negative not, nt XX0 * RB

Adverb, comparative Faster AV0 RBR RBR

Adverb, superlative Fastest AV0 RBT RBS

Adverb, particle up, off, out AVP RP RP

Adverb, question when, how, why AVQ WRB WRB

Adverb, degree &question how, however AVQ WQL WRB

Adverb, degree very, so, too AV0 QL RB

Adverb, degree, postposed enough, indeed AV0 QLP RB

Adverb, nominal here, there, now AV0 RN RB

Conjunction, coordination and, or CJC CC CC

Conjunction, subordinating although, when CJS CS IN

Conjunction, complementizer that That CJT CS IN

Determiner this, each, other DT0 DT DT

Determiner, pronoun any, some DT0 DTI DT

Determiner, pronoun, plural these, those DT0 DTS DT

Determiner, prequalifier Quite DT0 ABL PDT

Determiner, prequantifer all, half DT0 ABN PDT

Determiner, pronoun or double conj. Both DT0 ABX DT(CC)

Determiner, pronoun or double conj. either, neither DT0 DTX DT(CC)

Determiner, article the, a, an AT0 AT DT

79

80

Determiner, post determiner many, same DT0 AP JJ

Determiner, possessive, second mine, yours DPS PP�� PRP

Determiner, question which, whatever DTQ WDT WDT

Determiner, possessive &question Whose DTQ WP� WP�

Noun aircraft, data NN0 NN NN

Noun, singular woman, book NN1 NN NN

Noun, plural women, books NN2 NNS NNS

Noun, proper, singular London, Michael NP0 NP NNP

Noun, proper, plural Australians, Methodists NP0 NPS NNPS

Noun, adverbial tomorrow, home NN0 NR NN

Noun, adverbial, plural Sundays, weekdays NN2 NRS NNS

Pronoun, nominal (indefinite) none, everything, one PNI PN NN

Pronoun, personal, subject you, we PNP PPSS PRP

Pronoun, personal, subject, 3SG she, he, it PNP PPS PRP

Pronoun, personal object you, them, me PNP PPO PRP

Pronoun, reflexive herself, myself PNX PPL PRP

Pronoun, reflexive, plural themselves, ourselves PNX PPLS PRP

Pronoun, question, subject who, whoever PNQ WPS WP

Pronoun, question, object who, whoever PNQ WPO WP

Pronoun, existential there There EX0 EX EX

Verb, base present form(not infinitive) take, live VVB VB VBP

Verb, infinitive take, live VVI VB VB

Verb, past tense took, lived VVD VBD VBD

Verb, present participle taking, living VVG VBG VBG

Verb, past/passiveparticiple taken, lived VVN VBN VBN

Verb, present 3SG -s form takes, lives VVZ VBZ VBZ

Verb, auxiliary do, base Do VDB DO VBP

Verb, auxiliary do, infinitive Do VDB DO VB

Verb, auxiliary do, past Did VDD DOD VBD

Verb, auxiliary do, present participle Doing VDG VBG VBG

Verb, auxiliary do, past participle Done VDN VBN VBN

Verb, auxiliary do, present 3SG Does VDZ DOZ VBZ

Verb, auxiliaryhave, base Have VHB HV VBP

Verb, auxiliary have, infinitive Have VHI HV VB

Verb, auxiliary have, past Had VHD HVD VBD

Verb, auxiliary have, present participle Having VHG HVG VBG

Verb, auxiliaryhave, past participle Had VHN HVN VBN

81

Verb, auxiliary have, present3SG Has VHZ HVZ VBZ

Verb, auxiliary be, infinitive Be VBI BE VB

Verb, auxiliary be, past Were VBD BED VBD

Verb, auxiliary be, past 3SG Was VBD BEDZ VBD

Verb, auxiliary be, present participle Being VBG BEG VBG

Verb, auxiliary be, past participle Been VBN BEN VBN

Verb, auxiliary be, present 3SG is, s VBZ BEZ VBZ

Verb, auxiliary be, present 1SG am, m VBB BEM VBP

Verb, auxiliary be, present are, re VBB BER VBP

Verb, modal can, could, ll VM0 MD MD

Infinitive marker To TO0 TO TO

Preposition, to To PRP IN TO

Preposition for, above PRP IN IN

Preposition, of of PRF IN IN

Possessive s, POS � POS

Interjection (or otherisolate) oh, yes, mmm ITJ UH UH

Punctuation, sentence ender . ! ? PUN . .

Punctuation, semicolon ; PUN . :

Punctuation, colon orellipses : PUN : :

Punctuation, comma , PUN , ,

Punctuation, dash - PUN - -

Punctuation, dollar sign � PUN �

Punctuation, quotation mark left PUQ

Punctuation, quotationmark right PUQ

Foreign words (not in English lexicon) UNC (FW-) FW

Symbol, alphabetical A, B, c, d ZZ0

Symbol, List item A A. First LS

82

A.2 PTB Tagset

POSTags Definition

CC Coordinating Conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition / subordinating con-

junction

JJ Adjective

JJR Adjective Comparative

JJS Adjective Superlative

LS List Item Marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

PP� 1 Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol (mathematical or scien-

tific)

TO To

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund/present participle

VBN Verb, past participle

VBP Verb, non-third person singular

present

VBZ Verb, third person singular

present

WDT wh-determiner

WP wh-pronoun

WP� Possessive wh-pronoun

WRB wh-adverb

Pound sign

� Dollar sign

. Sentence-final punctuation

, Comma

: Colon, semi-colon

(Left bracket character

) Right bracket character

1There is an inconsistency aboutPossessive Pronoun in Penn treebank POS tagset in various sources.
(Mar93), (San90) and (Tay03) list PP� whereas(Man99) lists PRP�. Most online webresource suggest
PRP� but still there are some web resources suggesting PP�The Treebank data itself tags possessive
pronouns with PRP�, although most ofthe documentation with Treebank 2 lists PP�. However, the
README.pos (in Treebank 2/Treebank 2/cdrom/tagged/) points out the change in possessivepro-
noun from PP� to PRP�, along with other changes which incidentally havebeen incorporated by most
of the references.

83

A.3 ARK Tweet tagset

Tag Description Example

Nominal, Nominal+Verbal

N common noun(NN, NNS) books someone

O pronoun (personal/WH; not possessive; PRP, WP) it you u meeee

S nominal+possessive books someones

ˆ proper noun (NNP, NNPS) lebron usa iPad

Z proper noun + possessive Americas

L nominal + verbal hes bookll iono(= I dont know)

M proper noun + verbal Markll

Other open-class words

V verb including copula, auxiliaries (V*, MD) might gonna ought couldn’t is

eats

A adjective (J*) good fav lil

R adverb (R*, WRB) 2 (i.e too)

! interjection (UH) lol haha FTW yea right

Other closed-class words

D determiner (WDT, DT, WP�, PRP�) the teh its its

P pre- or post-position, or subordinating conjunction

(IN, TO)

while to for 2 (i.e., to) 4(i.e., for)

� coordinating conjunction (CC) and n & +BUT

T verb particle (RP) out off Ud UP

X existential there there, predeterminer (EX, PDT) Both

Y X+verb theres all

Twitter online-specific

hashtag (indicates topic/category for tweet) #acl

@ at-mention (indicates another user as a recipient of

a tweet)

@BarakObama

� discourse marker, indication of continuation of mes-

sage across multiple tweets

RT and : in re tweets con-

struction RT @user : hello

http://bit.ly/xyz

U URL or email address

E emoticon :-) :b (: <3 o O

Miscellaneous

� numeral (CD) 2010 four 9:30

, punctuation (#, �, ’ ’, (,), , , . , : , ‘ ‘) !!! ?!?

G Other abbreviations, foreign words, possessive end-

ings, symbols, garbage (FW, POS, SYS, LS)

–>awesome . . . Im

