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Abstract

Detection of spatiotemporal patterns have many applications in areas such as com-

puter vision and data mining. Specifically, the analysis and mining of biological data

with high dimensionality (e.g. multi-cell recordings, fMRI) are heavily dependent

on detection of these patterns. In this thesis, we propose two unsupervised learning

algorithms for obtaining filters that capture temporal patterns. In particular, we are

interested in applying our methods for detection of regularities in multi-cell record-

ings of neurons. We propose two approaches: convolutional restricted Boltzmann

machine (RBM) and convolutional denoising auto-encoder. The experimental results

demonstrate that the proposed methods are able to detect temporal patterns in arti-

ficial data and multi-cell recordings from rat’s brain. Moreover, we propose a Monte

Carlo method for quantitatively evaluating the convolutional RBM by estimating the

log-likelihood of data under the model distribution. The experimental results on test

dataset of handwritten digits (MNIST), demonstrate that the convolutional RBM can

learn a good generative model with small number of parameters.
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Chapter 1

Introduction

1.1 Motivation

The goal of machine learning is to build systems that can learn from complex data

and make accurate predictions for previously unseen data. In the past few decades,

machine learning has been successful in tackling many real world problems. For

example it has been successfully applied in optical character recognition [56, 22, 14,

12], face detection [71, 13, 59, 72], and speech recognition [26, 24, 61, 21]. Moreover

it has been a powerful tool in solving the challenging problems in computer vision

[35, 73], natural language understanding [5], autonomous car driving [52, 47], data

mining of biological data [67, 15], medical imaging [30], and web search/information

retrieval [62].

Many real-world machine learning applications require a good feature represen-

tation to be successful. A good feature representation is a representation that has

captured regularities or patterns in the data. In machine learning two paradigms

exist in general for modeling the regularities for obtaining good representations: the

engineering, or design paradigm, and the learning paradigm. The design paradigm

is based on the knowledge of human experts about the structure of regularities and

patterns. The design paradigm is the classical approach of machine learning for de-

scribing content of data. On the other hand, the learning paradigm is concerned with

devising algorithms that can ”learn” to capture the regularities and ideally learn a

good representation of data. Indeed, the algorithm learns the feature representation

of the input.

The most challenging machine learning tasks are defined over high dimensional

temporal data types such as video sequences, acoustic data, etc. These tasks require

modeling the temporal regularities of data to represent the content. For example

video classification is based on modeling regularities of moving objects in the frames

in order to extract features that could be used to classify content of video. The

1
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prospect of unsupervised feature learning has recently gained much attention for

facing the challenges of high dimensional data.

The unsupervised feature learning algorithms can learn regularities and patterns

from unlabeled data in order to transform them to better representations. The inter-

esting aspect is that it is possible to build hierarchical representations. This approach

is called ”deep unsupervised feature learning”. The deep methods learn structures of

data by capturing simple concepts or regularities first and then successfully build up

more complex concepts by composing the simpler ones together. At each level of hier-

archy the algorithm learns a more abstract representation which captures regularities

of that level. In recent years, this approach has gained significant interest as a way of

building hierarchical representations [28, 6, 53, 8, 36]. Moreover, applying the deep

feature learning methods to machine learning tasks with high dimensional temporal

data has improved the performance of state of the art methods [48, 73, 26, 49].

Many machine learning tasks and data mining applications work with biological

temporal data with high dimensionality such as fMRI, and multi-cell recordings of

neurons. Specifically, the problem of detecting the spatiotemporal patterns from

these data is very challenging and currently depends on the design paradigm. The

challenges of this applications can be tackled by unsupervised learning algorithms.

These approaches typically learn a group of filters or pattern detectors to obtain better

representations. These filters capture the motifs or regularities in the input. Hence,

the task of detecting spatiotemporal patterns from biological data can be tackled

by learning such filters. In the recent years, such approaches have been successfully

applied on biological data. For example, recently an unsupervised method has been

used for learning temporal representation of fMRI to classify memories of brain [18].

Moreover, another similar approach has been proposed for identifying brain networks

and temporal activations of the brain regions [30].

In this thesis, we are interested in solving the problem of detection of spatiotempo-

ral patterns; specifically, the problem of detection of patterns in multi-cell recordings

which contain simultaneous records of many neurons’ spike. The multi-cell recordings

are obtained by inserting micro-electrodes into animals’ brains and recording tempo-

ral firing of multiple neurons. The spatiotemporal patterns in these data encapsulate
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the perceived information by brain. For example, it has been shown that firing pat-

terns are directly correlated with location of an animal in a given environment [64] or

the past experiences of the animal [19, 31, 16]. Moreover, these patterns have been

shown to be packets of information that are being transfered from one brain region to

another [42]. Solving the task based on the design paradigm is unpractical because the

structure of patterns are not known. However, there are extensive works on modeling

and analyzing structure of patterns from multi-cell recordings by using algorithms

such principle component analysis [9] , Clustered factor analysis [10] and many latent

variable models [32, 11, 44, 58]. We tackle this task by proposing approaches that

can learn to detect the patterns. Developing such a system can fundamentally help

the neuroscience research studies of multi-cell recordings.

1.2 Proposed Methods

This work presents two methodologies for discovering spatiotemporal patterns in

multi-cell recordings. The first method is a heuristic search which is our baseline

algorithm. The other method is based on unsupervised learning. This approach con-

sists of two stages. The first stage is an unsupervised learning process. We propose

two algorithms to be used in this stage. The learning algorithms provide a group of

filters which have captured the patterns in the data. The next stage of our method-

ology is to use the learned filters for discovering the patterns. Figure 1.1 shows the

schematic overview of our system. The input of the system is a binary temporal

dataset and the outputs are the discovered patterns. In the following, we will give a

brief explanation of the heuristic search and the unsupervised learning methods.

The proposed search algorithm is in principle a brute force search which can dis-

cover temporal motifs that occur with sufficient frequency. What this search method

does, is roughly the following. The algorithm randomly selects a part of data as a

potential pattern and computes the frequency of its occurrences. If the frequency

is high enough, the procedure continues by searching for other parts of the possible

pattern. The method does not assume anything about structure of patterns which

makes it a generic search. However, it is extremely vulnerable when the patterns

have variations. We use this algorithm as a baseline algorithm for the spike pattern

detection task and we compare its accuracy with our other proposed methods.
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The first unsupervised algorithm is based on a generative probabilistic model

called restricted Boltzmann machine (RBM). The RBM is a bipartite stochastic net-

work with two layers, where a set of latent (or hidden) binary random variables are

densely connected to a set of input (or visible) variables. However, there are no con-

nections between hidden variables or between visible variables. The joint distribution

is described by an energy function which is simply a sum of products between the

hidden, visible units, and the weights between the two layers. The model is trained

by maximizing the likelihood of observed inputs under model distribution. Roughly

speaking, after training, the RBM represents its input data using latent variables.

The learned weights are pattern detectors and latent variables represent presence of

patterns. This model has been basis of representation learning for many applica-

tions: human motion learning [66], object recognition [54, 7, 1], information retrieval

[55] in which it has helped classification tasks by learning good pattern detectors to

transform corresponding data to better representations.

Although RBM has shown promise even for learning pattern detectors from tem-

poral data, dimensionality of the input space is fairly limited. Since our pattern

recognition task is concerned with high dimensional temporal datasets, we use a

shared parameter model of RBM called convolutional RBM (CRBM). The challenge

of these data is that spatiotemporal motifs can occur at any location of input space.

To address this issue the convolutional RBM has the property that its pattern detec-

tors share their filters among input space. In this fashion, a feature detector which

captures useful information in one part of an input can pick up the same information

elsewhere. This model has been used for many high dimensional temporal data clas-

sification tasks such as speech recognition [40] and video classification [60]. We will

use this model to learn the desired filters to capture the temporal patterns.

The other proposed unsupervised learning method, is based on denoising auto-

encoder (DAE). The auto-encoder is basically a neural network which reconstruct its

input. In other words, the output of neural network is the input itself. Denosing auto-

encoder is a stochastic version where the input is stochastically corrupted, but the

uncorrupted input is still used as target for the reconstruction. We use the shared

parameter version of DAE known as convolutional DAE for the temporal pattern

recognition. The reason is that spatiotemporal patterns occur at arbitrary location
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Figure 1.1: The schematic overview of proposed spatiotemporal pattern detection
system.

of input space and convolutional DAE can learn pattern detectors that deal with this

issue. This model has been used for applications that deal with temporal data such

as video classification [20], speech recognition [33], sequence classification [2].

In this work, we use various techniques for a better training of models. The

performance of our system is extremely dependent on the learned filters. Therefore,

many regulations are added to the learning process to obtain best filters. The sparsity

regularizations are incorporated to the training procedures to learn distinct and clear

filters. Moreover, an over-fitting prevention technique is proposed for convolutional

RBM which uses the free-energy of model. Furthermore, a quantitative analysis is

performed for obtaining a better insight to the learned models. For this analysis, the

annealed importance sampling is used to estimate the log-likelihood of data under

CRBM distribution. This estimation for the training set and validation gives an

insight into the learned model.

In this thesis, the proposed approaches are evaluated on artificial datasets as well

as empirical multi-cell recordings. An algorithm is proposed for generating artifi-

cial data that has similar properties of empirical multi-cell recording while it has

known patterns. The experiments shows that all proposed methods are able to detect

the patterns of artificial data. Moreover, the performance of proposed approaches

against changes in the data such as noise, variations of patterns and scale of input
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space, are evaluated. The results suggest that convolutional RBM model has a supe-

rior performance over other approaches. Furthermore, the experiments using CRBM

on empirical data suggest that this model is able to detect shared patterns in two

multi-cell recordings.

1.3 Summary of Contributions

The main contributions of this thesis are as follows:

• We present a generic heuristic search algorithm for detecting spatiotemporal

patterns. By applying the method on artificial data, we successfully extract the

inserted patterns.

• We propose an algorithm to use the filters of learning models and extract occur-

ring spatiotemporal patterns. This algorithm is able to select the best detected

patterns without any manual inspection.

• This thesis proposes a technique for prevention of over-fitting of convolutional

RBM. For this technique, the free energy of model is used as an indicator of

over-fitting. This method played an important role for a better training CRBM.

• We use a Monte Carlo method, namely Annealed importance Sampling (AIS),

for convolutional RBM to estimate the log-likelihood of data under model dis-

tribution. We develop the necessary formulations to apply the AIS on CRBM.

By this method, we are able to do a quantitative analysis of trained models by

comparison of log-likelihoods.

• We show that training criterion of convolutional DAE is equivalent to score

matching of an energy-based model. The free-energy of this energy model can

be used as a over-fitting indicator.

• We present an algorithm for generating synthetic multi-cell recording which has

the similar properties of empirical data and has known injected spatiotemporal

patterns. The generated data of our algorithm are used to evaluate the proposed

detection system.
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• We apply the proposed method on a empirical multi-cell recording and we show

that there are common patterns between the spontaneous activities and stimuli-

driven activities in rat’s brain.

1.4 Organization of Thesis

The organization of the thesis is as follows. Chapter 2 will present some Neuroscience

background, a brief description of what firing patterns represent and the goal of apply-

ing our proposed algorithms on the data. In Chapter 3, we will discuss the heuristic

search algorithm. Chapter 4 presents the convolutional restricted Boltzmann machine

and discusses the training algorithm and necessary monitoring procedures, also its re-

sults on MNIST dataset. Chapter 5 presents the convolutional denoising auto-encoder

and compares the learned filters of this model with different regularizations. Chapter

6 discusses the Monte Carlo method for estimating the log-likelihood of convolutional

RBM and compares the results of different models. Chapter 7 presents our proposed

algorithm for using the learned filters of unsupervised learning and extracting the

patterns of spike data. In the Chapter 8, the experiments on the our synthetic multi-

cell recoding and empirical collected data are discussed. Finally Chapter 9 provides

a summary and the conclusion.



Chapter 2

Background

2.1 Introduction

This chapter presents a brief background about Neuroscience and the importance

of pattern discovery on neuronal multi-cell recordings. We describe briefly some

neuroscience studies and the discoveries by cell recording from brain. Then, open

questions and possible research applications of pattern detection system are discussed.

2.2 Neuroscience Background

The neural network of the brain consists of billions of neurons. Neurons process and

transmit information through electro-chemical signals. A short-lasting raise and fall

of electrical potential of a cell is called action potential which is known as spike or

fire of a neuron. They play a major role in cell-to-cell communication of signals.

Moreover, there are different ways of classifying neurons. One way of classification

is based on location and shape of the cell where some of them are: Pyramidal cells,

Basket cells, Spindle cells and etc. Moreover, there are different ways to categorize

regions of the brain but a major one is: frontal lobe, parietal lobe, occipital lobe,

temporal lobe, cerebellum and brainstem.

The classical approach of learning about neurons is recording neuronal activities

of animals. The typical method is that we insert a micro-electrode system into ani-

mal’s brain to measure when neurons generate action potentials. These systems have

single-unit and multi-unit recorder devices. The simultaneous recording of multi-cells

have provided researchers with rich information about the firing rate, frequency, pat-

terns, etc. There are many informative studies by cell recordings that we will discuss

to give a brief understanding of what we can learn by the recording of neurons.

8
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Multi-cell Recording and Memory Replay

Many important studies using cell recording are made in the Hippocampus. The

Hippocampus is located in the medial temporal lobe of the brain and is considered

to play important roles in the consolidation of information from short-term memory

to long-term memory. The study by John O’Keefe et al. was conducted by recording

firing patterns of multiple pyramidal cells in the Hippocampus of rats. The striking

results of this research showed that there is a strong correlation between the spatial

location of rat in a given environment and the sequence of firing pattern in the

Hippocampus [51]. The recorded pyramidal cells in the Hippocampus for this reason

are called the place cells in the brain. The fact that the patterns of spikes are in

direct correlation with the external stimuli drew attention for more studies.

Another important study by recording was by Skaggs and McNaughton [64] which

showed that the patterns of activity of neurons of rats during exploration of environ-

ment are replayed again during sleep. In other words, the study suggested that

temporally sequenced memories for previous experiences are reactivated again during

sleep. Moreover, Foster and Wilson [19] showed that sequential replay also occurs

during ”awake periods” immediately after environmental exploration of rats. A large

number of studies in the recent years have been done in this regard and have suggested

that patterns of spikes in resting or sleep replays the firing patterns seen during prior

behaviors [16, 31]. In addition, it was not only patterns of behaviors were replayed.

The replays have been shown in the visual cortex in the absence of behavioral ex-

perience [34, 31]. In other words, the patterns of spikes were replayed after a visual

stimulus were presented to animal.

All in all, it has been argued that the replay of sequences might play a major

role in memory and learning mechanism [19]. Therefore, understanding more about

the sequences and the firing patterns of neurons can help researchers understand

the learning procedures and memory mechanism of brain. The replay of sequences of

firing were not the only discovery by multi-cell recordings. In the following we discuss

another discovery which shows that firing patterns also play a role in transferring

information from one region of the brain to the others.



10

Multi-cell Recording and Packet-like Patterns

In recent years, Luczak et al. [41, 43] have been studying the neuronal population

spiking patterns of rats in auditory cortex. Their studies have suggested that the

repetition of patterns evoked by external stimuli, during spontaneous activities (spikes

when rat is sleeping or resting) do not necessarily imply replay of the stimuli. In

these studies, they record neurons in the auditory cortex of rats. Therefore, auditory

stimulation was used as external input in order to record evoked responses of neurons.

The results have shown that there are common structures conserved among various

sensory stimuli-driven activities and spontaneous activities. They argued that due

to circuitry of connections of the neurons, organization of activities (patterns) have

”limited vocabulary”. Therefore it is speculated that spiking patterns have limited

structures that we might be able to discover.

In [42], Luzak et al. made another breakthrough by showing that population

activity of neurons can be viewed as packets. They showed that packet-like structure

is an ever-present feature of spontaneous and stimulus evoked cortex activities. This

means that spikes of a group of neurons is roughly speaking a package of information

which has a certain structure. They suggest that the packets reflect an opening

of a gate that allows some part of the brain transmit a representation of external

information to other brain regions. In other words, different regions of the brain

communicate with packets of informations with certain structures. This implies that

learning more about structure of patterns can teach us more about communication

of information between regions of the brain.

2.3 Statistical Analysis of Empirical Multi-cell Recording

In the following, we describe a statistical analysis of our empirical data to demonstrate

the basic known structure in the data that we will work with. The multi-cell record-

ings of this thesis are taken from [41]. The data are from experiments on multiple

rats. The recording device of these experiments use silicon micro-electrode to collect

data from auditory cortex. The system recorded simultaneously from populations

of 40 − 100 neurons. During the experiments rats were under urethane anesthesia

while presenting 500 ms long auditory stimulus (tone or natural sound snipets) every
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Figure 2.1: Plot of spikes of representative neurons in response to a pure tone with
various frequencies. The solid line is the average time of spikes and is called perievent
time histograms (PETHs). The plot is taken from [41] with kind permission of author.

2 second.

The following analysis can be carried out to demonstrate the sequential structure

of firing patterns (full description is in [41]). First, let’s look at the individual activity

of neurons in response to external input. Figure 2.1 demonstrate raster plot of spikes

of two selected neurons in response to various tone frequencies. Vertical axis shows

frequencies and for each frequency there are multiple trials. The solid line is called

perievent time histograms (PETHs) which is basically the average number of spikes

over different trials. It can be observed that PETH of each individual neuron has a

stereotypical pattern. In other words, the response time of each neuron to stimulus

is different than others. This stereotyped PETH suggest that responses of neurons

at population level might have a sequential organization. Figure 2.2 visualizes the

sequential organization. Figure 2.2 shows a gray-scale bar denoting the mean PETHs

over all tones and trials within onset 100 ms response. These gray-scale bars are

sorted by mean response (spike) time of neurons(MSL) depicted by red dots.

This simple analysis demonstrates the global structure of firing pattern evoked by
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Figure 2.2: Mean activity of 90 simultaneously recorded neurons to tone stimuli.
Gray bars represent Neuron’s PETH normalized between 0 and 1. Red dots denote
each neurons mean spike time (latency of neuron’s response to stimuli also known
as MSL)in the 100 ms after tone onset. Neurons are ordered vertically by MSL
to illustrate sequential spread of activity. The plot is taken from [41] with kind
permission of author.

stimuli. The same analysis for activities not evoked by stimuli (spontaneous spikes)

also shows the similar global sequential structure. Further analysis described in the

paper suggested that there is a correlation between the order of neurons spiking in the

sequence of stimulus-locked spikes and spontaneous spikes. The paper concludes that

the structure of activities have a limited vocabulary which means there are limited

patterns in the activity of a population of neurons.

2.4 Open Questions

Given the described studies and analysis, the importance of recognition of firing

patterns in the brain can be realized. The firing patterns of Hippocampus have a

direct correlation with environment representation in the brain and they are replayed

for memory consolidation. The structure of these patterns are limited and they

represent information packages in the brain. Therefore, discovering the new structures

in these data can help us learn more about the brain. The researches raise the question

of what other structures and organizations are in the cortical activities? What kind of

messages, are transfered between the regions of the brain? Answering these questions

needs data mining tools that can discover new patterns in these data.

We can define the data as sequence of vectors that contain activity of neurons

over time. In other words, the multi-cell recording of Nv neurons over NT times as a

binary matrix of Nv ×NT . Figure 2.3 shows a portion of recorded data provided by

[41] that is recorded from auditory cortex of rats.
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Figure 2.3: The multi-cell recording from auditory cortex of rats. There are 90
neurons and time measurements are in milliseconds.

In many of the studies described in this chapter, the procedure of discovering

sequences were carried out by human experts. For example, the sequences that many

papers showed the replay in the brain were discovered by manually reordering recorded

neurons in a way that they appear in a sequence. The experts have tried many

combination of orders to find the right order in which some neurons had a particular

sequence. In the case of described statistical analysis, the sequential spike of neurons

were emerged by ordering them by their latency in response. However, there might

be many subsets of neurons that have sequential order in response but they have

different frequency so that simple analysis can not reveal them.

The goal of our proposed pattern discovery system is to detect possible existing

structures in the multi-cell recordings. This system can be used in general to detect

any pattern in the data. In this thesis, for the acquired data, we ask the system to

discover new patterns in the stimulus evoked activities and spontaneous activities.

Then we compare the detected motifs to recognize the shared structures between

these two spike trains.



Chapter 3

Heuristic Search

3.1 Introduction

This chapter presents a heuristic search for discovering spatiotemporal patterns. The

algorithm is fundamentally a brute force approach for detecting recursing temporal

motifs. The advantage of this method is that it is pretty simple and does not need

any presumption about structure of patterns. It works very fast and does not need

any pre-processing of data. The method does not go through entire search space and

it takes into account the fact that temporal patterns tend to occur repetitively over

time. In this chapter we demonstrate the algorithm on simple artificial data and

evaluate the result visually. In the chapter 8, we will discuss the result of the method

on more complicated data.

3.2 Algorithm

Let us begin by an intuitive view of what the algorithm is doing. At the core, it is

searching for spikes of neurons which happen with particular orders (e.g. sequentially)

or spikes that occur together with a probability higher than random coincidences.

There are infinite number of combination of spikes that could occur in the data

(patterns can appear in any forms). Therefore, it is impossible to systematically go

through all possible combinations and search for their occurrences. This algorithm

randomly selects combination of spikes that exist in the data and searches for their

repetitions. If the frequency is sufficient to be a pattern, then it looks for other

possible parts.

At each iteration of search, the algorithm randomly selects n spikes within the

onset I time steps. Figure 3.1 illustrates the procedure for an example spike dataset.

The randomly selected spikes within interval I are marked by circles (n = 3). Then

algorithm searches for time windows in which exactly the same spikes occur (in the

14
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Figure3.1:Anillustrationofheuristicsearchalgorithmonanexampledataset.The
horizontalaxisistimeandverticalisindexofneurons.Eachdotrepresentsaspike
atagiventime.Theωisthesetof{t0,t1,t2}.

figure,circlesspotoccurrences).Letusdefinetherandomlyselectedcombinationof

spikesasγspikes.Thenumberofoccurrenceofγdeterminesfrequencyofrepetitions.

Thiscountgivesusanintuitionabouthowlikelythiscombinationis.Ifthelikelihood

ofoccurrenceismorethanathreshold,thenγisapotentialdistinctpattern.Ifthis

combinationisadistinctpattern,thenthealgorithmshouldfindentirepattern.The

likelihoodofotherpossiblespikesaroundthiscombinationgivesusabetterclueabout

thestructureofpattern.Hence,atthisstagealgorithmfindsallthetimestepsthat

thecombinationoccurs.Letusnamethesetimestepsω(ω={ti:i=1,..,m}where

tiaretimestepsthatγspikesoccur).Inalgorithm1,thesizeofωsetiscompared

withathresholdwhichisanintegernumberbiggerthan1.Thealgorithmlooksat

allpossiblespikeswithinTwindowaroundωtimesteps(Figure3.1).Theboxesin

Figure3.1demonstratetheTwindowtimearoundoccurredspikeswithcirclemarks.

ThemapofprobabilityofallpossiblespikeswithinTwindowdescribestheoverall

structureapatternthatisoccurringovertime.Iftheprobabilityforsomeofspikes

(includingγspikes)isdramaticallyhigherthanothersinthismap,thenthosespikes

arepartofapattern. Wedefinematrixofprobabilityforallpossiblespikeswithin

timewindowTasprobabilitymap(Pmap). Wecallthismapaprobabilitymap
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Algorithm 1: The Heuristic Search algorithm for temporal spike patterns.

while TRUE do
γ ← randomly select n spikes in X(1 : Nv, I);

ω ← time steps of occurrence of γ;

if ‖ω‖ > threshold then

Pmap ← 1
‖ω‖
∑

t∈ωX(1 : Nv, t− T/2 : t+ T/2);

if Pmap is a new pattern save;

which means it contains the probability of spike of each neuron at a given time for

a window of time. This map is matrix that for each neuron there is a row and for

each time, there is a column. The map shows us the probability of each spike at a

given time. The procedure for computing Pmap is as follows. Suppose the multi-cell

recording X is a binary Nv × Nt array where Nv is number of neurons and Nt total

number of time measurements. Having obtained the ω set, the map is computed by

Pmap = 1
‖ω‖
∑

t∈ωX(1 : Nv, t − T/2 : t + T/2) where ‖ω‖ is the size of set ω. The

matrices X(1 : Nv, t − T/2 : t + T/2) for two values of t ∈ ω are shown by boxes in

Figure 3.1. Note that matrix X is binary and by summing X(1 : Nv, t−T/2 : t+T/2)

matrices, the number of occurred spikes is being counted. The Pmap is a matrix of

size Nv × T .

The algorithm 1 shows the pseudo code of proposed heuristic search. After ob-

taining Pmap at each iteration, algorithm compares the current map with previously

saved maps to make sure that it is not saving repetitive results. The comparison is

done by computing cross-correlation between the maps. An important point is that

the Pmap determines likelihood of spikes within a predefined window of time. If some

spikes in this map have a high probability, then this indicates that their neurons have

a tendency to spike very often together with a particular structure. For example in

the figure 3.1 the selected neurons happened to have systematic sequential spikes.

Therefore, in their corresponding Pmap, they have high probability of spike.

We expect this algorithm to work by randomly selecting spikes because it is expo-

nentially unlikely that a random combination occur with high frequency in data. It is

obvious that there is no guarantee to find all the patterns with this algorithm. How-

ever with limited number of neurons it is conceivable that after waiting long enough
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(a)
(b)

Figure 3.2: (a) the raster plot of artificial data with two sequential pattern with
different frequencies. (b) the returned Pmaps of heuristic search on artificial data.

we could expect to locate many patterns. If one two selected spikes are not part of

pattern, then the frequency of its occurrence would be very low and consequently we

would not continue with algorithm.

The hyper parameters of algorithm such as thresholds and size of intervals should

be determined through trial and error. In the chapter 8, the actual numbers in the

implementation will be discussed. This algorithm is vulnerable against jitter of spikes

in the patterns or in other words variation of patterns over time. The reason is that

if the relative timing of γ spikes starts to vary over time, then the algorithm would

miss many occured time steps and therefore, the obtained Pmap can not capture

accurately the true structure of patterns.

3.3 Results on artificial data

In order to initially test the algorithm, we generated a simple binary temporal data.

The data is a 128 × 10000 matrix. The I parameter were selected to be 5000 time

steps and the T is 5. There are two sequential patterns occurring independently with

different frequencies and at different location of input space (5 sequential spike in a

row). Figure 3.2a shows the generated data. After 100 iteration (we count iteration

if the random spikes have high enough frequency) in this data, the returned Pmaps

show the sequential patterns that were embedded in the data. Figure 3.2b depicts

the returned maps.
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3.4 Summary

We presented a heuristic search for spike pattern recognition. This method finds pat-

terns of spikes over time and selects those that occur more repetitively. The approach

is very simple and do not presume any structure for the expected patterns. There are

parameters that should be tweaked around to get better results by algorithm.



Chapter 4

Convolutional Restricted Boltzmann Machine

4.1 Introduction

Discovering spike patterns from multi-cell recording dataset is an extremely hard task

since there is no information about the structure of patterns. Therefore, it is vary

hard to design any filter to extract patterns from an input data since structure of

patterns are not known. Learning pattern detector filters from data is the main task

of unsupervised feature learning algorithms. The main objective of these approaches

is to learn filters that transform input data to a more abstract representations. Vir-

tually any type of data has multiple levels of abstraction. For example, the visual

world can be described in many levels: pixel intensities, edges, object parts, objects

and beyond. The prospect of learning models that simultaneously represent these

levels of abstraction has recently generated much interest in the field of deep learning

algorithms [28, 6, 53, 8, 36]. Ideally, a feature learning method learns multiple pattern

detectors which transform input to a more abstract representation. The idea is to

obtain an invariant representation from a highly variable space(e.g. pixel intensities).

Building a hierarchy upon such feature learning model yields the desired multiple

levels of abstraction. For our particular application, we are not interested in learn-

ing deep hierarchy from spiking datasets. Rather we are interested in training such

learning models to obtain pattern detectors. In other words, our goal is to obtain

spike pattern detectors in a purely unsupervised manner.

In this chapter, we build upon belief networks because we are interested in learn-

ing a generative model of our dataset which can be trained in a purely unsupervised

manner. The deep model of belief networks has been successfully used for unsuper-

vised feature learning and has been incorporated into many machine learning tasks.

The deep belief network (DBN) was introduced by Hinton et al. [27] and is based on

restricted Boltzmann machine(RBM). RBMs can be stacked on top of each other to

19
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form a hierarchical representation. This deep model has proven to be computation-

ally efficient (being able to apply in practical applications) for large datasets of high

dimensional data such as images, human motion (e.g. [66, 28]).

The DBNs were successful in controlled domains, however scaling up to realistic

input sizes(e.g. 200×200 pixel size images) is a challenging task. Therefore, a convo-

lutional structure has been introduced into these models to mitigate lack of success

in larger domains [39]. The convolutional structure is a shared parameter scheme

which enables hidden nodes of RBM to share their parameters. This technique en-

joys the benefits of having less parameters and yet being able to capture patterns

that replicate at different locations of input space. The patterns in the input space

can appear at any arbitrary location: object parts in images appear at any place.

The Convolutional RBM (CRBM) addresses this issue by learning feature detectors

that are shared among all locations of input. In this fashion a feature detector which

captures useful information in one part of an input can pick up the same information

elsewhere. Thus, the model can represent large input spaces using only a small num-

ber of feature detectors. This factor is essential for our multi-cell recording pattern

recognition since the patterns in our dataset, can appear at any location or can occur

at any time. That’s why we need a model that learn filters that can detect pattern

at any location.

This chapter introduces the convolutional restricted Boltzmann machine. We dis-

cuss the necessary background about the model, training algorithm and the main

monitoring procedures during training. In addition, we present our proposed tech-

niques for preventing the model from over-fitting which is crucial for our application.

We evaluate our techniques on the hand written digits (MNIST) as a standard dataset.

In addition, we discuss the crucial role of sparsity regularizations. These techniques

are essential when we train our model on the multi-cell recording and play a vital role

for learning distinct pattern detectors.

4.2 Restricted Boltzmann Machine

We begin by describing the restricted Boltzmann machine (RBM), then we present

the convolutional version in the following section. The RBM is a generative bipartite

stochastic network (Markov random field) with two layers, where a set of latent
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(or hidden) binary random variables are densely connected to a set of input (or

visible) variables. The visible variables are observed and hidden variables are feature

detectors of the network. In general this model could be designed for binary observed

random variables or real-valued visible variables. In this thesis we work with binary

datasets therefore we define only the binary model. Figure 4.1 shows the connections

of visible and hidden variables of RBM and the corresponding weights between their

connections. The general form of these random fields are called Boltzmann machines

[29] where there are connections among visible and hidden units. The restriction of

RBMs allows for more efficient training algorithm. The joint distribution is described

by an energy function (as in standard log-linear models), which is simply a sum of

products between the hidden, visible units, and the weights between the two layers.

The joint probability distribution over this network is defined as follows:

P (v, h) =
1

Z
exp(−E(v, h)) (4.1)

Where h and v are hidden and visible variables represented as vectors of size n and m.

The Z is the partition function which is simply sum over all possible configurations

and it is defined as:

Z =
∑
v,h

exp(−E(v, h)) (4.2)

Energy function for binary visible variables is defined as:

E(v, h) =−
∑
i,j

viWijhj−
∑
j

bjhj−
∑
i

aivi (4.3)

Where vi , hj are binary states of visible unit i and hidden unit j, the bj,ai are their

corresponding bias and Wi,j is the weight matrix. Training this model is basically

maximizing the log-likelihood of observed variables. In other words, the parameters

of the network (weights and bias) are updated so that energy of observed instances

are minimized ( maximize the probability). On the other hand, training procedure

maximizes the energy of all other unobserved possible instances and consequently they

would have lower probability. In order to obtain the log-likelihood function, we need

the probability of the visible layer (p(v)). The p(v) is determined by marginalizing

out h:

p(v) =
1

Z

∑
h

exp(−E(v, h)) (4.4)
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Figure 4.1: A restricted Boltzmann machine with 3 hidden nodes and 4 visible nodes.
There is a weight wij for each connect between hidden node i and visible node j.

Therefore the log-likelihood function J is defined over the training set as the following:

J =
∑
i∈D

log(P (v(i))) =
∑
i∈D

log
(∑

h

exp(−E(v(i), h)
)

(4.5)

Where D is the training dataset. The parameters of network namely W,a, b should

be obtained such that function J is maximized. In other words:

argmax
W,a,b

J = argmax
W,a,b

∑
i∈D

log(P (v(i))) (4.6)

This process is typically based on stochastic gradient ascent algorithm which needs

derivative of objective function. The derivative with respect to the parameter W is

derived as follows:
∂J

∂Wij

= 〈vihj〉
data
−〈vihj〉

model
(4.7)

where the angle brackets are used to denote expectations under the distribution spec-

ified by the subscript that follows. The data distribution is p(h|v) where v is clamped

to training examples(e.g. images) and the model distribution is p(v, h).

Computing the exact log-likelihood gradient is not practical since expectation

terms are intractable due to intractability of partition function Z. There is an ap-

proximation algorithm called Contrastive Divergence (CD) [28] which has been proved

to work in practical applications. The CD algorithm computes unbiased samples of

expectations terms in a procedure called Gibbs sampling. Gibbs sampling requires

conditional independence of variables. Because of special structure of RBM , the

hidden and visible variables are conditionally independent. Given training data v, we

can obtain an unbiased sample of h using the following conditional distribution:

p(hj = 1|v) = σ
(
bj +

∑
i

viWij

)
(4.8)
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Figure 4.2: The 500 filters learned by RBM model on MNIST.

Where σ(x) is the logistic function 1/
(
1 + exp(−x)

)
. Given sampled hidden states h,

a ”reconstruction” of visible variables can be obtained using the following conditional

distribution:

p(vi = 1|h) = σ
(
ai +

∑
j

hjWij

)
(4.9)

Algorithm 2 explains the procedure of training RBM. The algorithm begins by sam-

pling hidden values given the training samples. Then it needs to estimate the ex-

pectation term 〈vTh〉data which means multiplication of values of hidden nodes given

the value of visible nodes. Thus algorithm computes the probability of h given data

points v in the mini-batch. Then it samples h based on the obtained probability. The

procedure continues by estimating the expectation term 〈vTh〉model which requires

sampling values of both h given v and vice versa. Estimating this distribution can

be done by continuing sampling procedure. The algorithm has a hyper parameter k

which determines how many samples the algorithm draws from model distribution.

However, in practice just one sampling step is shown to be practical [28].

4.2.1 Training RBM on hand written digit dataset (MNIST)

We trained an RBM model on MNIST dataset. The dataset contains 60000 images

of hand written digits where the size is 28 × 28 and images are binary. We trained
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Algorithm 2: Contrastive Divergence Algorithm(CDk) for training RBM.

while NOT Converged do

for All Mini-batches of training set D do

Sampling h ∼ p(hj = 1|v) = σ
(
bj +

∑
i viWij

)
;

Sampling v′ ∼ p(vi = 1|h) = σ
(
ai +

∑
j hjWij

)
;

Sampling h′ ∼ p(hj = 1|v′) = σ
(
bj +

∑
i v

′
iWij

)
;

for CDk = 2 to k do

Sampling v′ ∼ p(vi = 1|h′) = σ
(
ai +

∑
j hjWij

)
;

Sampling h′ ∼ p(h′j = 1|v′) = σ
(
bj +

∑
i v

′
iWij

)
;

Update all parameters W,a, b using (ε is the learning rate.):

Wi,j ← Wi,j + ε
(
〈vihj〉−〈v′ih′j〉

)
ai ← ai + ε

(
〈vi〉−〈v′i〉

)
bj ← bj + ε

(
〈hj〉−〈h′j〉

)
;

an RBM with 500 hidden nodes. The k parameter of contrastive divergence was

25 and we trained the model with a sparsity regularization explained in the section

4.3. Figure 4.2 shows the weights after training. Each hidden node has 784 weights

connected to input layer. We transformed this vector to a 28×28 matrix to show it in

the figure. As it is shown in Fig. 4.2 the network has learned edge detectors similar.

Training this unsupervised learning algorithm on image dataset results in filters that

can capture low-level patterns(edges) in images [4].

4.2.2 Sharing Parameters

The main problem of restricted Boltzmann machine is that it is not scalable to large

input spaces (e.g. big image sizes). The reason is that the pattern detectors of this

network (hidden nodes) are connected to the entire input space. Thus, it has huge

number of parameters to be learned. In addition, if patterns with the same structure

are at different locations of input space, RBM learns different pattern detectors for

each location. Figure 4.2 shows the filters of RBM on MNIST. It demonstrates

the fact that there many similar edge detectors (with the same orientation) but at

different locations. A share parameter scheme should be introduced to address this
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Figure4.3:AsharedparameterschemeforRBM.Thehiddenlayerorfeaturemap
layerhashiddennodesthatareconnectedtoafewvisiblenodesandallsharethe
sameweights(indicatedwiththesamecolor).

issue.Inthisscheme,patterndetectors(hiddennodes)sharetheirweightsamong

inputlocations.Figure4.3illustratesasharedparameterstructureforRBM.The

figureshowsthathiddennodesareconnectedtofewvisiblenodesandallofthem

sharethesameweights(3weightsaresharedanddepictedwith3differentcolors).

Withthehelpofthisscheme,thefeaturedetectionabilityofmodelwouldbelocation

invariant. Moreover,themodelwouldhavemuchfewerparameters. Thisisvery

importantwhenitcomestotraininglargenetworks.Inthefollowingsectionwe

presentthesharedparameterRBMknownasConvolutionalRBM.

4.3 ConvolutionalRestrictedBoltzmann Machine

TheconvolutionalrestrictedBoltzmannmachine(CRBM)wereproposedbyLeeet

al.[39]. Webeginexplainingthemodelbyintroducingthenecessarynotions.

4.3.1 Notations

Inthisthesisweusethefollowingnotations.ThesizeofinputspaceisNv×Nv,even

thoughitisnotarequirementforhavingsquaredinputoreventwodimensionalinput.

Allofthevariablesarebinary-valued,whilenotingthatitispossibletogeneralize

modeltoreal-valuedvisibleunits. Weuse∗todenoteconvolution1,and•todenote

element-wiseproductfollowedbysummation,i.e.A•B=trATB.Alsothetildeon

topofanarray(A)istheoperationofflippingthearrayhorizontallyandvertically.

1Theconvolutionofanm×marraywithann×narraymayresultinanm−n+1×m−n+1
arrayoranm+n−1×m+n−1array. Weletthereadertodeterminethecasebycontext
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4.3.2 Algorithm

The CRBM is the shared parameter RBM. In this model we have two layers: Visible

layer V and hidden layer H (corresponding to the figure 4.4). The input layer is

Nv×Nv of binary random variable. The hidden layer H has K groups. Each group is

Nh ×Nh binary random variables. Each hidden group has a weight matrix with size

Nw ×Nw where (Nw = Nv −Nh + 1). It should be noted that the weights are shared

among hidden units within each group. In addition, each hidden group has a bias bk

and all visible units share a single bias c. We define the joint probability distribution

as:

P (v, h) =
1

Z
exp(−E(v, h)) (4.10)

E(v, h) = −
K∑
k=1

Nh∑
i,j=1

Nw∑
r,s=1

hkijW
k
r,svi+r−1,j+s−1 −

K∑
k=1

bk
∑
i,j

hki,j − c
∑
i,j

vi,j (4.11)

using the introduced notations, we can re-write as:

E(v, h) = −
K∑
k=1

hk • (W̃ k ∗ v)−
K∑
k=1

bk
∑
i,j

hki,j − c
∑
i,j

vi,j (4.12)

Similar to the RBM, we need to maximize the log-likelihood of observed samples to

minimize the energy of observed instances while maximizing the energy of all possible

unobserved instances. The gradient of the log-likelihood with respect to weights has

the following form:
∂J

∂W k
= 〈v ∗ hk〉

data
−〈v ∗ hk〉

model
(4.13)

To estimate the expectation terms, we use the contrastive divergence algorithm

[27]. The CRBM version of algorithm is presented in Algorithm 3. The procedure

performs Gibbs sampling which requires the conditional distributions for hidden and

visible variables:

P (hki,j = 1|v) = σ((W̃ k ∗ v)i,j + bk) (4.14)

P (vi,j = 1|h) = σ((
∑
k

W k ∗ hk)i,j + c) (4.15)

where the σ is the logistic function. Similar to RBM, it is needed to sample hidden

nodes given training examples to estimate data expectation and to draw samples of
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Algorithm 3: The Contrastive Divergence Algorithm for Convolutional RBM.

while NOT Converged do

for All v in all Mini-batches do

for all k sample hk ∼ P (hki,j = 1|v) = σ((W̃ k ∗ v)i,j + bk);

for all hidden group k sample and sum v′ ∼
P (vi,j = 1|h) = σ((

∑
kW

k ∗ hk)i,j + c);

for all hidden group k sample h′k ∼ P (hki,j = 1|v) = σ((W̃ k ∗ v)i,j + bk);

for CDk = 2 to k′ do
for all hidden group k sample and sum v′ ∼
P (vi,j = 1|h) = σ((

∑
kW

k ∗ hk)i,j + c);

for all hidden group k sample h′k ∼
P (hki,j = 1|v) = σ((W̃ k ∗ v)i,j + bk);

Update all parameters W,a, b using :

for all k do

W k
i,j ← W k

i,j + ε
(
〈vihkj 〉−〈v′ih′kj 〉

)
ai ← ai + ε

(
〈vi〉−〈v′i〉

)
bkj ← bkj + ε

(
〈hkj 〉−〈h′kj 〉

)
;

hidden and visible given each other (h′ and v′) to estimate the model expectation

term. The k′ parameter of algorithm determines the number of sampling steps that

we should take in order to estimate the model expectation. In other words, in order

to get better estimation of model distribution, algorithm could keep drawing samples

v′ and h′ (going up and downs in the network).

4.4 Monitoring learning procedure

In order to increase the performance of learning procedure, hyper parameters have

been introduced for update rule of the CD algorithm. Moreover, monitoring proce-

dures have been proposed for having insight into the learning process. Specifically,

we propose a technique to prevent the model from learning trivial filters caused by

over-fitting. In the following subsections we will discuss these techniques in details.
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Figure4.4:TheconvolutionalrestrictedBoltzmannmachinearchitecture.

4.4.1 Momentum

Momentumisamethodforgradientdescentoptimizationtoavoidlocalminimums.

Thismethodimproveproceduretoescapethecomplexerrorsurfaceoflog-likelihood

functionofRBMandCRBMmodel.Giventhegradientandmomentumtermm,the

updatetermofparametersattimetwouldhavethefollowingform:

∆ω(t)=m∆ω(t−1)+
∂J

∂W
(4.16)

Where ωisderivativeortheupdatetermforourparametersand0<m<1isa

hyperparameterwhichshouldbedeterminedthroughtrialanderror. Everystep

weaddfractionm ofpreviousupdatetermstocurrentone. Duringthetraining

process,thisfractionshouldbecomecloseto1whilelearningrateshouldreduce.If

wecombineahugelearningrateandmomentumtheupdatestepswouldovershoot

theglobalminimum. Thereasonforhavingamomentumtermisthatgradientat

mostpointsoftheerrorsurfacedonotdirecttotheglobalminimumandsuccessive

gradientsoscillatefromonesidetoanother.Themomentumtermhelpsthelearning

processbydampingtheoscillations.
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4.4.2 Weight Decay

The wight decay is a regularization method widely being used for artificial neural

networks to regularize optimization process and help generalization performance. In

this method optimization objective is penalized for having large parameters by adding

the sum of squared of parameter to the objective function. In this way, by minimizing

the objective the parameter of network itself is constrained to be minimized as well.

Therefore, large values of weight matrix is penalized to decrease when there is no gra-

dient in that direction. In the case of CRBM we use this technique while minimizing

the negative log-likelihood of data. Thus, given the gradient term, the update term

∆ω (the term that we use to update our parameter W ) is modified to be:

∆ω = α
∂J

∂W
+ αλW (4.17)

Where α is the learning rate and λ controls the effect of weight decay regularization.

We used this technique to help the CRBM learn the strongest signal in the visible

layer and avoid noise in the data.

4.4.3 Sparsity Regularization

The convolutional RBM model is over-complete in that the size of the representation

is much larger than the size of the input. In other words, since the size of input and

hidden groups are roughly the same (filters are typically very small), this model is

over-complete by a factor of K (number of hidden groups). In general, this issue

runs the risk of learning trivial solutions, for instance feature detectors of images

could be representing single pixels [38]. Moreover, they might learn multiple filters

with the same captured pattern. To address these issues, it is needed to force the

representation to be ”sparse”, meaning only a tiny fraction of the hidden units should

be active in relation to a given stimulus.

In this thesis, we use the sparsity regularization used by lee et al. [38]. This

approach, regularizes the objective function (log-likelihood) to encourage the hidden

groups to have their mean activity be close to a small constant. Specifically, it

has been suggested by [38] that the following simple update rule (followed by each
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contrastive divergence update) works well in practice:

bk ∝ ρ− 1

N2
h

∑
i,j

p(hki,j = 1|v) (4.18)

where ρ is a target sparsity, and each example v is treated as a mini-batch. We

select the learning rate such that we could keep the average activity of each hidden

group for entire training set to be constant while allowing individual variations.

4.4.4 Free Energy

Preventing machine learning methods from over-fitting is one of the main challenges

of subject. In order to prevent learners from simply memorizing the training exam-

ples, monitoring the generalization error of the model while the learning process is

progressing is essential. The most typical monitoring statistic for RBMs is the recon-

struction error of training and validation set. The reconstruction of an instance of

visible variables can be done by going up and down in the network. In other words,

first samples of hidden states are drawn using equation 4.14 (going up) then the sam-

ples of visible are drawn given the hidden samples using equation 4.15 (going down).

The mean squared error of the reconstruction and the true sample is an indication

of progress of learning. Typically at the beginning there should be fluctuations for

error but generally it goes down as the learning progress. The average reconstruction

error of network on a validation set roughly indicates the progress of generalization.

However, this error is not a perfect measure since it is not the objective function that

model is trying to minimize. Thus, it is necessary to have good insight during the

training. We measure the free energy of Convolutional RBM as an indicator of learn-

ing progress. The negative log of unnormalized probability of data under the model

distribution is called the free energy. Since the measure is unnormalized, it can not

directly measure the likelihood of data. However the ratio of average free energy of

training and validation examples is a good indicator that whether model has a good

generalization because the normalizing constant is canceled out. The subtraction of

free energy of training and validation set should be near 1 and dramatic divergence

of them indicates over-fitting [25]. The general form of free-energy of data point x
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for CRBM is defined as:

F (x) = − log
∑
h

e−E(x,h) (4.19)

By substituting the energy function of convolutional RBM, we can derive the following

equation:

F (x) = −c
∑
i,j

xi,j −
K∑
k=1

log(1 + exp(
∑
i,j

(W̃ k ∗ x)i,j) + bk) (4.20)

The proof is given in the appendix A. During the training process we compare free

energy of the two sets and when the difference between these two values change

substantially, we stop the training.

4.4.5 Training CRBM on MNIST

We tested our implementation on MNIST dataset. In order to train a better model,

we whitened the images of MNIST. The whitening technique of [35] were used which

is a standard method in deep learning field. We trained a convolutional RBM with

16 filters of 8 × 8. The number of contrastive divergence was 1 and we used the

explained sparsity regularization. The momentum term was 0.9 and weight decay

was 0.01. Figure 4.5a depicts the free energy of model for validation and training set.

We stop the training when the two numbers started to diverge. Figure 4.5b shows

the learned filters of network. It shows that model were able to learn Gabor edge

filters with different orientations.

4.5 Summary

In this chapter, we presented the convolutional restricted Boltzmann machine as an

unsupervised learning method. The training algorithm and monitoring procedures

were discussed. Moreover, the implemented sparsity regularizations and over-fitting

prevention techniques were explained. Finally, we discussed the results of training

this model on MNIST dataset.
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(a)

(b)

Figure 4.5: (a) The free energy of convolutional RBM during training on MNIST. (b)
The filters learned by CRBM on MNIST.



Chapter 5

Convolutional Auto-encoders

5.1 Introduction

We discussed in the previous chapter that the main purpose of unsupervised feature

learning is to extract useful features from unlabeled data. These algorithms aim to

detect and remove data redundancies by preserving essence of data and learning to

transform it into robust and discriminative representations. Feature learning methods

have been widely used in scientific and industrial applications [23, 2, 46, 54]. Most

unsupervised models are based on encoder-decoder paradigm [46]. In this paradigm,

first the input is transformed into feature space (encoder) which is typically low-

dimensional and then expanded into original space (decoder). Example models of

such paradigm are restricted Boltzmann machines [27], auto-encoders [54] and en-

ergy based models [37]. There are connections between the auto-encoder and RBMs

that auto-encoder training approximates RBM training by Contrastive Divergence

[3]. Because training an auto-encoder seems easier than training an RBM, they have

been used as building blocks to train deep networks.

In this chapter we build upon convolutional denoising auto-encoders (CDAE) as

our feature learning algorithm. We are interested in auto-encoders since training

this model is easier than RBM. Moreover, RBM need probabilistic inference and

approximations for learning while auto-encoders do not need any approximation. We

use the convolutional version of auto-encoder as we did for RBM, to address the issue

of variability of location of patterns in input space. Also to reduce the number of

learn-able parameters in our model. We discussed in the previous chapter that shared

parameter scheme help model to learn translation invariant representations. These

benefits are important for multi-cell recording dataset with huge input spaces and

repetition of patterns.

The issue of learning repetitive pattern detectors or filters with trivial solutions

are very important challenges for unsupervised feature learners in general. Sparsity

33
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regularizations are typically the remedy to address these issue. These regularizations

encourages encoder layer to transform input to a representation with sparse active

variables. Consequently, such measures encourage model to learn distinct filters that

transform input to more robust and discriminative representation. The role of these

measures are vital for the multi-cell recording dataset since we need clear and distinct

pattern detectors.

This chapter presents the convolutional auto-encoder model. We use a winner-

take all algorithm for the sparsity regularization which helps our learned filters be

clear. Moreover, we explain the denoising auto-encoder. This model adds a simple

modification to the original model which improves its robustness against noise in the

data. The robustness against noise is a very important factor for multi-cell recordings

since these data sets are extremely noisy. We test our implementation on MNIST as a

baseline dataset. The results demonstrate the effects of regularizations and denoising

scheme.

5.2 The Basic Auto-encoder

We begin by describing the auto-encoder and continue by the convolutional version

in the following section. The auto-encoder is basically a neural network which re-

constructs its input. In other words, the output of neural network is the input itself.

The model encodes input X to a new representation H and it reconstructs from this

representation. Figure 5.1 shows the neural network of auto-encoder. The network

can have multiple hidden layers that transform its input to new representations. We

continue by assuming there is only one layer. The hidden layer is obtained by

H = f(WX + b) (5.1)

where f is could be a linear or nonlinear function and W and b are weights and bias.

The reconstruction is given by

Z = g(W TH + a) (5.2)

where g could be the same as f . The objective function is typically the mean squared

error of input and reconstruction. To train the model, the objective function is

minimized by stochastic gradient descent. The relationship of this model and principal
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Figure5.1:TheAuto-encoderneuralnetwork.

componentanalysisisveryinteresting.Ifthereisonelinearhiddenlayerwithkhidden

nodesandmeansquaredcriterionisusedthenthemodelprojectsinputinthespan

ofkprincipalcomponentsofdata[3].Bengio[3]usestheformulationthatgeneralizes

themeansquarederrorcriteriontotheminimizationofthenegativelog-likelihoodof

thereconstruction,giventheencodingrepresentationH:

RE=−log(p(X|H)) (5.3)

Iftheinputdataisbinary(whichisthecaseforourmulti-cellrecording),thenthe

criterionbecomesthecross-entropybetweeninputandthereconstruction:

−log(p(X|H))=−
i

Xilog(gi(H))+(1−Xi)log(1−gi(H)) (5.4)

5.3 ConvolutionalAuto-encoder

Theconvolutionalversionusesthesamebasicparadigmofauto-encoder. However,

thenodesinthefeaturespacesharetheirweightsamongtheinputlocations.Inother

words,insteadofhavingonegroupoffeaturedetectors,therearemultiplegroupsof

detectorswherenodesinsideeachgroupsharethesamefilter. Thefeaturenodes

insideeachgrouphavedifferentreceptivefield. Toputitinformalnotation,there

areKfilterswhichprojectinputxtokthrepresentationhk:

hk=f(Wk∗x+bk) (5.5)
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where ∗ denotes convolution and f could be a linear or non-linear function (typically

sigmoid). W k is the weight or filter and bk is the bias term. The hidden representation

is projected back to original space with the following:

z = g(
K∑
k=1

W̃ k ∗ hk + c) (5.6)

Where the tilde operation is to denote flipping the array horizontal and vertically.

The criterion for training the model is typically the squared error but we used the

cross-entropy since the data is binary.

5.4 Sparsity Regularization

One of the key challenges of these models is the issue of learning sparse representation.

This means that model should learn a representation where tiny number of feature

detectors are active. Encouraging the model to learn such representation forces the

filters to be distinct and informative. In this thesis, we regularize training algorithm

by a winner take all method developed in [45].

In this method, we explicitly inhibit all the weak response from input. In other

words, after transforming the input to feature map, within each feature map the node

with strongest value is selected as the response of input and all other nodes in that

representation are set to zero. To put it differently, after computing each hk from

input, the hkij with maximum value in this map is kept and other values are set to

zero. The method during the training, directly forces the representation to be sparse.

The reconstruction is done with the new sparse representation. In this fashion, only

variables with maximum value in hk would have gradient to update the filter. Hence

each filter learn to reconstruct strongest signal in data and consequently algorithm

would learn distinct filters. To put it differently, after the selection of strongest hidden

nodes, the reconstruction error is only back-propagated through these hidden units.

Hence the regularizer prevents the model from the use of an overly large number of

hidden units within each feature map, when reconstructing the input. Therefore, we

encourage explicitly to learn sparse representation and ideally learning sharper filters.
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5.5 Denoising Auto-encoder

Denosing auto-encoder [69] is a stochastic version of the auto-encoder where the input

is stochastically corrupted, but the uncorrupted input is still used as target for the

reconstruction. This model is trying to do two main jobs: to encode input with

keeping relevant information and also to undo the effect of corruption process. The

model do the latter by capturing the statistical dependencies in the input dimensions

[3]. In [70] the corruption process set half of the input dimensions to zero and the

network tries to predict missing values given received information which resulted

in learning very robust representation. To put it formally, the training criterion of

denosing auto-encoder is the following:

− log(p(X|H(X̃))) (5.7)

Where H(X̃) is the hidden representation of stochastically corrupted data point X̃.

The main argument for having such scheme is that a good representation learning

algorithm should learn representations that have robustness to partial destruction of

the input , i.e., partially destroyed inputs should yield almost the same representations

[69]. Learning such representation is a perfect attribute for the model that is going to

be trained on multi-cell recording. We incorporate this technique for our convolutional

auto-encoder to learn better filters and better model of our dataset. The multi-cell

recording dataset is extremely noisy and consequently spike patterns are extremely

noisy. Learning a model which learns clear and distinct spike pattern detectors is

possible by a denoising scheme.

5.6 Training the Models on MNIST

We trained different models on the MNIST handwritten digit in order to demonstrate

the effects of the sparsity regularization and denoising scheme. We trained convolu-

tional auto-encoder with 64, 16× 16 filters on MNIST. Figure 5.2a shows the learned

filters without any regularization. The picture vividly shows that filters are noisy

and smeared. We then add the winner take all sparsity constraint to the model and

train it again. Figure 5.2b depicts the filters that model with sparsity regularization

learns. The figure shows that filters are more distinct than previous model. The effect

of denoising scheme is shown by figure 5.2c.
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(a) (b) (c)

Figure 5.2: The filters learned by convolutional auto-encoder on MNIST: (a) with no
regularization (b) with sparsity regularization (c) denoising CAE with sparsity.

5.7 Summary

We presented convolutional auto-encoder as a feature learning algorithm. The win-

ner take all sparsity method were explained as the regularization for learning distinct

filters. Moreover, denoising scheme for obtaining robustness against noise were intro-

duced to the convolutional AE. We tested our implementations on MNIST dataset

and visualized the learned filters.



Chapter 6

The Quantitative Analysis

6.1 Introduction

Measuring the performance of an unsupervised feature learning algorithm is typically

based on improvement of these algorithms on classification error. For example stacked

auto-encoders and deep belief networks have been used as pre-training step of a

deep neural network and has improved the classification error significantly (e.g. [28,

17]). In other words, the unsupervised feature learning has helped to improve a

supervised learning task. More improvement of classification error indicates a better

unsupervised learning algorithm and therefore a better learned model. We can not

use such indicator for our learning algorithms, since our task is not classification.

In addition, what typically is reported as an indicator of good learned model for a

generative stochastic feature learning like RBM is the generated samples of model.

By starting from a random initial state of visible units and Gibbs chain sampling

of model’s variables (going up and down in the network), many examples would be

generated after long enough updates. These samples should look like the training

examples. For instance, by training on MNIST, the generated samples should look

like digits. This method also can not help us for our task since generating spike

looking data would not give us any insight to what the model has learned. However,

an important indicator for generative models is the likelihood of data under model

distribution.

The log-likelihood of unseen data under the trained model distribution, gives a

rich insight to what model has learned. In other words, by comparing the likelihood

of training data and validation set under the model distribution, it is possible to

assess how good is the learned model. It gives us confidence that the unsupervised

learning model has a good generalization over the data generating distribution. An

unfortunate limitation of restricted Boltzmann machine is that the probability of

data under the model is not known due to computationally intractable normalizing

39
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constant, known as the partition function. Therefore, a good estimation of partition

function would provide the ability to estimate the likelihood of data under RBM

distribution. A good estimate of the partition function would help for controlling

model complexity, which plays an important role for making RBMs generalize well.

This chapter presents an estimation algorithm for partition function of convo-

lutional restricted Boltzmann machine based on a Monte Carlo method known as

annealed importance sampling(AIS). Ruslan and Murray [63] demonstrated that by

using AIS and taking advantage of bipartite structure of RBM, in principle one can

obtain an efficient estimate of the partition function and further could approximate

log-probability of data under the model distribution. We adapted the formulation of

their work for convolutional RBM and compare our results on MNIST with reported

estimates in [63].

Moreover, denoising auto-encoders are competitive alternative for RBMs for unsu-

pervised learning and have been used for pre-training of deep networks. The fact that

training this model is easier than RBM, justifies further research to develop better

algorithms for analyzing training of this model. Vincent et al. [68] show that DAE

training criterion is equivalent to training an energy-based model. This yields several

useful insights to training procedure. It defines a proper probabilistic model for the

DAE model, which makes it in principle possible to compute free-energy. The free

energy can give us insight to prevent model from over-fitting. In this chapter, we

adapt the formulation of [68] and generalize it to convolutional DAE. We evaluate

our work on the MNIST dataset.

6.2 Annealed Importance Sampling

The goal in this section is to introduce an algorithm to estimate the ratio of partition

function of two distributions. Suppose that there are two distributions defined over

space X with probability density function pA = p∗A(x)/ZA and pB = p∗B(x)/ZB. The

pA is an intractable distribution and pB is its approximation. To estimate the ratio of

their normalizing constant, we could do simple importance sampling. Suppose that

pA(x) 6= 0 whenever pB(x) 6= 0, also assume that we can draw independent samples

from pA, the unbiased estimate of ratio of partition functions can be obtained using
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the following Monte Carlo approximation:

ZB

ZA

≈ 1

M

M∑
i=1

p∗B(x
(i))

p∗A(x
(i))
≡ 1

M

M∑
i=1

ω(i) = r̂IS (6.1)

Where x(i) ∼ pA. If pA is not a good approximation of pB or in other words, two

distributions are not close enough, the estimator r̂IS will be very poor especially

if the space X is very high dimensional. Therefore, we should incorporate a bet-

ter method for our RBM with high dimensional space. The Annealed Importance

Sampling (AIS) has been widely used for estimating partition functions of energy-

based models (e.g. [50, 65]). The AIS method is the following. There are conditions

which are fully described in [63] for this method to work. However we mention three

of them: (1) we should be able to define a sequence of intermediate distributions

p0, p1, ...pK , with p0 = pA and pK = pB. (2) we should be able to define a Markov

Chain transition operator Tk(x;x
′) to draw sample x′ given x. (3) we should be able

to compute unnormalized probability of intermediate distributions. A typical choice

for the intermediate distributions are:

pk(x) ∝ p∗A(x)
1−βkp∗B(x)

βk (6.2)

with 0 < β0 < β1 < ... < βK = 1 chosen by user. After defining the intermediate

distributions, the following procedure can be done for estimating ratio of partition

function (taken from [63]):

Annealed Importance sampling run:

1. Generate x1, x2, ...xK as follows:

• Sample x1 from pA = p0

• Sample x2 given x1 from T1

• ...

• Sample xK given xK−1 from TK−1

2. Set

ω(i) =
p∗1(x1)

p∗0(x1)

p∗2(x2)

p∗1(x2)
...

p∗K(xK)

p∗K−1(xK−1)
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It is important that there is no need for commuting normalizing constants of

intermediate distributions. After performing M runs of AIS, the estimate of ratio

would be obtained by:

ZB

ZA

≈ 1

M

M∑
i=1

ω(i) = r̂AIS (6.3)

If we could define pA such that its partition function be tractable, then it is possible

to get a good estimate of the target partition function of pB.

6.3 AIS for Restricted Boltzmann Machine

salakhutdinov and Murray proposed the following algorithm for AIS on RBM [63].

In order to estimate the partition function of a target RBM with parameters θB =

{WB, bB, aB}, RBM is defined with zero weights θA = {0, bA, aA}. These RBMs

have distributions pA, pB over visible variables space ν ∈ {0, 1}D. The intermediate

distributions according to AIS generic choice are:

pk(v) =
p∗k(v)

Zk

=
1

Zk

∑
h

exp(−Ek(v, h)) (6.4)

with the energy function (given in Eq. 4.3):

Ek(v, h) = (1− βk)E(v, hA; θA) + βkE(v, h
B; θB) (6.5)

with 0 < β0 < β1 < ... < βK = 1. Therefore, for i = 0 there is p0 = pA and for

i = K there is pK = pB. The Markov chain transition operator necessary for AIS is

proposed to be defined as the following. Using equations 6.4, 6.5, it is easy to derive

the conditional distributions of RBM which could be used as Gibbs sampler for visible

variables of intermediate distributions:

p(hAj = 1|v) = σ((1− βk)bAj ) (6.6)

p(hBj = 1|v) = σ(βk
∑
i

WB
ij vi + bBj ) (6.7)

p(v′i = 1|h) = σ((1− βk)aAi + βk(
∑
j

WB
ij h

B
j + aBi )) (6.8)
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Therefore, given v, v′ can be sampled using these conditional distributions. The next

condition of AIS was being able to compute unnormalized probability of intermedi-

ates. According to equation 6.4, it is needed to marginalize h in order to get the

p∗k(v). Due to special structure of RBM, summing over h has a linear cost in terms

of number of hidden nodes:

p∗k(v) =
∑
hA,hB

e(1−βk)E(v,hA)+βkE(v,hB) (6.9)

= e(1−βk)
∑

i a
A
i vi
∏
j

(1 + e(1−βk)b
A
j )

×eβk
∑

i a
B
i vi
∏
j

(1 + eβk(
∑

i W
B
ij vi+bBj ))

After performing AIS run using the described equations, the partition function of

RBM A is needed to finalize the calculation of normalizing constant of RBM B.

Based on Eq. 4.2 and 4.3, the partition function of A is computed by:

ZA =
∏
j

(1 + ebj)
∏
i

(1 + eai) (6.10)

Therefore, by using Eq. 6.3 and ZA, the ZB is computable.

6.4 AIS for Convolutional RBM

We adapted the formulation of AIS from RBM to the convolutional RBM. The inter-

mediate distributions are the same as RBM with the difference that energy functions

have the form of CRBM. The transition operator based on Eq. 4.14, 4.15 and 6.4

have the following form:

p((hkA)ij = 1|v) = σ((1− βl)bAk ))ij (6.11)

p((hkB)ij = 1|v) = σ(βl
∑
k

W k
B ∗ v + bBk )ij (6.12)

p(v′ij = 1|h) = σ((1− βl)cA + βl(
∑
k

W k
B ∗ hB + cB))ij (6.13)
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(a) (b) (c)

Figure 6.1: Generated samples during AIS run : (a) samples at k = 0 (b) samples at
k = 10000 (c) samples at k = 14000.

with 0 < β0 < β1 < ... < βl = 1 for the AIS run. The unnormalized intermediate

probability distributions p∗k(v) have the following form and the proof is given in the

appendix B.

p∗l (v) =
∑
hA,hB

e(1−βl)E(v,hA)+βlE(v,hB) (6.14)

= e(1−βl)c
A

∑
ij vij

∏
k

(1 + e(1−βl)b
A
k )

×eβlc
B

∑
ij vij

∏
k

(1 + eβl
∑

ij(W̃
k
B∗v+bBk )ij)

Finally, the partition function of CRBM A is needed to estimate target constant ZB:

ZA = (
∏
k

(1 + eN
2
hbk))× (1 + ec)N

2
v (6.15)

6.5 Estimating the Log-likelihood

In section 4.4.4, it was explained that the free energy is the log of unnormalized

probability of data. In other words, the unnormalized log-likelihood of data under

model distribution. Hence, the F of data point x for convolutional RBM is:

F (x) = −c
∑
i,j

xi,j −
K∑
k=1

log(1 + exp(
∑
i,j

(W̃ k ∗ x)i,j) + bk) (6.16)
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Table 6.1: Comparison of log-likelihood of CRBM with RBM on MNIST

The Model LogZ LogZ ±σ Avg. Train Log-Prob Avg. Test Log-Prob
RBM500-CD1[63] 350.15 0.1 -122.86 -125.53
RBM500-CD3[63] 280.09 1.9 -102.81 -105.50
RBM500-CD25[63] 451.28 0.09 -83.1 -86.34
CRBM32x21x21CD1 176.56 3.4 -128.04 -129.1
CRBM32x21x21CD25 193.1 1.1 -105.2 -107.09

After AIS run and estimating the Z of model, the log-likelihood of example x is

obtained by:

log p(x) = F (x)− logZ (6.17)

We implemented the AIS for convolutional RBM and evaluated on MNIST dataset.

In the experiments the CRBM has 32, 8 × 8 filters. The contrastive divergences

with k = 1, and k = 25 were performed to compare their log-likelihoods. It is

expected that RBM with more contrastive divergence steps, learn a model with higher

likelihood of data. We used the same experimental setup as suggested in [63] in our

implementation. We used 500 βk spaced uniformly from 0 to 0.5, 4000 βk spaced

uniformly from 0.5 to 0.9, and 10,000 βk spaced uniformly from 0.9 to 1.0, with a

total of 14, 500 intermediate distributions. Figure 6.1 shows the generated samples of

AIS run at different stage of run. The picture shows that algorithm converges (Model

successfully mixes) at last iterations.

Table 6.1 reports the estimated partition functions and average log-likelihood and

compares with reported numbers of [63]. The RBM500-CD25 is the RBM with 500

hidden nodes and 25 contrastive divergence iterations. The average log-likelihood

on test set of MNIST for CRBM model with much less parameters than RBM500

is -107.09 which is relatively close enough to RBM’s number. To clarify this point,

the RBM500 model has 784 × 500 = 392000 parameters while CRBM32x21x21 has

32 × 8 × 8 = 2048 parameters (without considering biases). Thus the CRBM can

learn a good model in comparison with RBM with a huge number of parameters.

Moreover, the average log-likelihood of training and validation are very close which

demonstrate good generalization of models.
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6.6 Denoising Auto-encoders as Energy-based Model

Having a good insight into the learning process of denoising auto-encoder yields better

training and model selection. Vincent et al. [68] have shown a connection between

training criterion of DAE and score matching (SM) of an energy-based model with a

particular energy function. Obtaining this energy model yields several benefits. The

main benefit for our application is that we could avoid over-fitting by monitoring the

free energy of model. We explain this theory and generalize it for convolutional DAE.

In this theory for an energy based model with the following probability distribution:

p(x; θ) =
1

Z(θ)
exp(−E(x; θ)) (6.18)

The score is the derivate of log density with respect to data point: ψ(x; θ) = ∂ log p(x;θ)
∂x

.

The core principle of score matching is learning parameter θ so that score ψ(x; θ)

best matches the corresponding score of true distribution ∂ log q(x)
∂x

. Thus the objective

function is expected value of squared error of two vectors under true distribution:

JSM = Eq(x)

[
1

2

wwwwψ(x; θ)− ∂ log q(x)

∂x

wwww2
]

(6.19)

In the framework of [68],the following necessary conditions should hold in order to

prove that the training denoising auto-encoder with squared error is equivalent to the

score matching. First condition is that the input x should be corrupted by Gaussian

additive noise (x̃ = x + ε, ε ∼ N (0, σ2I)). Second, the objective should be mean

squared error of input and reconstruction of corrupted input. Therefore the DAE

should minimize the following objective function:

JDAE = Eq(x,x̃)

[
1

2
‖W T sigmoid(Wx̃+ b) + c− x‖2

]
(6.20)

Where q(x, x̃) is the joint distribution of x and corrupted x̃ (equations are in the

Appendix C). Given these necessary conditions and some other conditions discussed

in [68], it is shown in [68] that minimizing the JDAE is equivalent of score matching

of a energy based model with the following energy function:

E(x;W, b, c) = − 1

σ2
(cTx− 1

2
‖x‖2 +

∑
j

softplus(〈Wj, x〉+ bj)) (6.21)
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where the function softplus(x) = log(1 + ex). In the following, We generalize this

framework for convolutional denoising auto-encoder discussed in previous chapter.

The corresponding energy function of convolutional DAE is the following:

E(x;W, b, c) = − 1

σ2
(
∑
ij

(cx+
∑
k

softplus(W k ∗ x+ bk))ij −
1

2
‖x‖2) (6.22)

Where c is a constant bias term and x is a matrix. The proof for obtaining this

equation is given in the Appendix C. The energy function can be used to monitor the

training of our model. We compute the difference of energy function under training

and validation set as a measure of over-fitting. The free energy is equal to the energy

function for this model:

F (x) = − 1

σ2
(
∑
ij

(cx+
∑
k

softplus(W k ∗ x+ bk))ij −
1

2
‖x‖2) (6.23)

6.7 Summary

We presented a Monte Carlo approximation algorithm for convolutional RBM to es-

timate log-likelihood of data under the model distribution. The log-likelihood of data

under model distribution is an indicator or measurement of goodness of a learned

generative model. We tested the AIS algorithm for convolutional RBM on MNIST

data set. The results suggest that CRBM model is able to learn a good generative

model of dataset with dramatically fewer parameters than RBM. Moreover, Denois-

ing auto-encoders were discussed with their corresponding energy based model. We

discussed our generalization of DAE for convolutional version.



Chapter 7

Spike Pattern Recognition

7.1 Introduction

This chapter presents the pattern extraction stage of the methodology. In the previous

chapters we discussed two proposed unsupervised learning algorithms for the first

stage of system. The purpose of first stage was learning distinct filters. The obtained

filters are able transform input data into new representations. The extraction stage

of our methodology incorporates new representation of data and extract patterns.

There are some considerations associated with this stage. Firstly, the learned filters

do not necessarily reflect distinct patterns. There might be filters that reflect mixture

of two patterns due to coincidence of occurrences. Moreover, there might be filters

that reflect noise or smeared patterns. In addition, it is a possibility that a filter only

reflect small part of actual pattern due to bad design. Therefore, it is crucial that

the extraction stage to address these issues.

7.2 Model Design for Spike Data

The multi-cell recoding is a binary two dimensional array of neurons spike record. The

system is searching for motifs or repeated structural activity of neurons over time.

Therefore, the filter size of learning algorithms should be designed such that filters

transform data into a feature space where occurrence of patterns over time could be

revealed. In other words, filters size should be such that new representation be a one

dimensional time representation of patterns. The input space of convolutional RBM

and convolutional DAE is Nv ×Nv. In order to fit the data for model, the data with

typically long time dimensions is sliced into many instances of Nv ×Nv matrices. In

our system, the filter size is designed to be Nv×Nf . Therefore, each pattern detector’s

receptive field contains activity of all the neurons (Nv) over Nf time steps. Given this

filter design, the hidden representation of input would be an (Hk = 1×Nv −Nf +1)

48
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Figure7.1:Designofarchitectureoftheproposedunsupervisedlearningalgorithms
forlearningspatiotemporalfilters.BothoftheconvolutionalRBMandconvolutional
DAEhavethesamefilterdesign.

array.Ideallythesearraywouldrepresentpresenceofpatternscapturedbyafilter.

TheFigure7.1demonstratesthedesignedmodelforunsupervisedlearning.Thisfilter

designhelpsusintheextractionstagetosearchfortimestepsthathavemaximum

probabilityofpresenceofapattern.Itshouldbementionedthatinourdesign,the

heightoffilteristhesameasheightofinputbecauseweexpectfiltertolookatall

neuronsatthesametimeandpickupthosespikesthathavestructuralorganization.

7.3 ExtractionofPatterns

AtthisstageaftertrainingCRBMandCDAEondata,thelearnedfiltersareusedto

extractthepatterns.Thefilterstransformdataintohiddenrepresentationinorderto

workwithasimplerrepresentation.Thecoreprincipleofextractionistocreateamap

ofstructureofpatterns.Inotherwords,creatingaprobabilitymapwhichdescribes

probabilityofspikeofneuronsinapattern-likeactivity.Let’svisuallyillustratethe

point.Thefirststepofextractionistofindtimestepsthatfiltersindicatethereare
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Figure7.2:Illustrationofcomputingprobabilityofspikearoundtimestepswithhigh
indicationofpatternbyafilter.

highchanceofpresenceforapattern.Figure7.2showsthesetimestepsbyuparrow.

Withininterval Iaroundthetimesteps,therepetitionofspikesiscountedoverthe

indicatedtimesteps(forexamplespikewithcirclemarkinFigure7.2repeated3times

).Bynormalizingthiscountbynumberoftimesteps,theprobabilityofthatspike

withinintervalIiscomputed.Ifthisprobabilityiscomputedforallpossiblespikesin

theintervalI,thematrixthatcontainsprobabilitiesiscalledprobabilitymapwithin

intervalI.Thisprobabilitymapindicatesthelikelihoodofspikeofneuronswhena

filtersuggestsoccurrenceofapattern.Thismapdescribesthestructureofoccurred

patterns.Inoursystem,thenewrepresentationofdataisusedtodetecttimesteps

thatthereishighindicationforpresenceofpatterns.

Obtainingnewrepresentationofdataforeachmethodisdifferent.TheCRBMis

aprobabilisticmodelandthevaluesofhiddenrepresentationsaresamplesofdistri-

butioninequation4.14.Thisequationistheconditionalprobabilityofhiddenspace

hkgivendatainputv(p(hk|v)).Inoursystem,theprobabilitydistributionp(h|v)is

consideredasthenewrepresentation. Pleasenotethatinputvatthisstagecould

thewholemulti-cellrecordingwitharbitrarytimedimension,sovcouldhavesize

ofNv×TwhereTistotalnumberoftimemeasurements(thenewrepresentation

wouldbe1×T−Nf+1array). ForCAEmodel,thefeaturespaceh
kofgiven
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input v is computed by equation 5.5. Each hidden variable hkj in the new represen-

tation determines the likelihood for presence of filter W k at time step j. There are

strong indication for presence of a pattern at time steps that likelihoods are high in

h. From signal processing perspective, local peaks in the signal h determine high

chance of pattern existence. Therefore, we define operation max
l
{hk} to return set

l which contains indexes that have maximum value in the vector hk ( in other words

l = {ti : hk(ti) is a local maximum }). Given these indexes, we construct the prob-

ability map for τ window around l time points. To put it formally, the map of kth

filter is MAP k
τ = 1

‖l‖
∑

i∈l x(1 : Nv, i − τ/2 : i + τ/2) where l is returned by max

operation and x is input data. The matrix x(1 : Nv, i− τ/2 : i+ τ/2) are illustrated

by the boxes in Figure 7.2.

We mentioned previously that filters might capture a small part of patterns. To

address this issue, we set τ � Nf so that probability maps be over a large time

window. The Nf of each filter determines the maximum number of time steps of a

captured pattern. If the filters capture a pattern partially, it would be possible to

reveal other parts by choosing a big τ . We also discussed the problem of learning

filters that contain smeared patterns or noise in the data. To mitigate this problem,

the following analysis is carried out to distinguish smeared patterns from clear ones.

If there were no pattern in the activity of neurons then they would be spiking

independently and randomly with a constant probability. At this condition, the

probability of spike of neuron at any time is estimated to be mean of data. We know

that this is not true and neurons are not spiking randomly and there are moments

where their activity have a structural form. If the learned filters are supposed to

capture such structural activities, then their corresponding MAP s should be as far

as possible form randomly independent neurons map. In other words, the probabilities

in the MAP should be as far as possible from mean of data. We use Kullback-leibler

divergence in order to quantify the distance of a MAP and mean of data (chance).

Kullback-leibler divergence is defined as a measure of distance between two prob-

ability distributions. The KL divergence of two distribution p and q is defined as

follows:

DKL(p||q) = −
∑
x

p(x) log q(x) +
∑
x

p(x) log p(x) = H(p, q)−H(p) (7.1)
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Where H(p, q) is cross-entropy and H(p) is entropy. This is a measure of information

lost when q is used to approximate p. The p and q for our application are defined

as follows. We divide MAP by its sum and treat it as p distribution. This is the

distribution of probability of spike of neurons within interval τ . The q is based on

the MAP of chance for τ interval over all time steps of data which is computed by

MAP chance
τ = 1

|T |
∑T

i x(:, i− τ/2 : i + τ/2). Similar to computing MAP but instead

of summing over only l time steps, it is summed over all time steps. The chance

MAP is divided by its sum to create the q distribution. The KL divergence of this

two distributions determines how much information is lost, if the pattern MAP is

approximated with chance (randomly spiking neurons). If the MAP is a sharp and

distinct pattern, KL should be big number. It is very easy to rank the obtained

MAP s of system by the KL distance from chance. By ranking the MAP s, the best

ones whose distance is greater than a threshold can be selected. If a MAP contain

smeared pattern or noise its distance would be high enough to be separated.

7.4 Summary

We presented a two stage pattern recognition paradigm for extracting spike patterns.

The architecture of unsupervised learning for the application were explained with

detailed reasons of choices. It was explained that how the learned filters are used to

create a map which describes the pattern in the data. Our system uses KL divergence

for distinguishing the best detected patterns.



Chapter 8

Experimental Results

8.1 Introduction

Evaluating the proposed algorithms on the multi-cell recordings is not possible since

existing patterns in the empirical data are not known and the purpose of our research

is to discover those patterns. Hence, we generate synthetic datasets which have basic

properties of actual multi-cell recordings and known patterns embedded at known

times. Using artificial input for evaluation has two benefits. First, it is possible to

visually inspect that algorithms have indeed detected the injected patterns. Second, it

is possible to manipulate the parameters of data and measure accuracy of algorithms.

The manipulation of the data are typically intended to make the problem harder.

For example, the noise in the data or the variability of structure of patterns can be

manipulated. By comparing accuracies, the most reliable detection approach can be

selected among the heuristic search algorithm and unsupervised algorithms. In this

chapter, first algorithm for generation of artificial data is discussed with the results of

methods on the data. Then, the empirical multi-cell recordings and the corresponding

experiment will be discussed.

8.2 Generating Synthetic Data

The important factor for the artificial data is that it should resemble observed record-

ings of the cortex. We know from empirical datasets that the timing of successive

spikes are highly irregular. The interpretation of this regularity has led to divergent

views of cortical recordings. On the one hand, it has been argued that irregularity

arise from stochastic forces and inter-spike intervals convey little information. Alter-

natively, it has been postulated that timing of spikes, inter-spike intervals and their

patterns can convey information. We obviously are on the later side and looking for

the patterns. A synthetic cortical recording should have the property of irregular

53
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spike timing and at the same time inter-spike interval should convey information. We

incorporate a two stage algorithm for generating data with such property.

In the first stage, the interpretation that inter-spike intervals reflect a random

process is assumed. Therefore, the generation of each spike is driven by continuous

signal r(t) which will be referred to as instantaneous spike rate. It follows from the

assumption that generation of each spike is independent of all others. The spike train

can be described by a particular kind of random process called a Poisson process. In

the next stage, a pattern embedding algorithm is used in order to have inter-spike

interval of some of neurons conveying pattern like activity. The embedding stage

changes the instantaneous spike rate of selected neurons at random time points so

that they exhibit sequential organization. The core principle of pattern embedding

stage is that at some random time steps, a few neurons will fire in a row. However,

they are not precise and sometimes they fire with jitter in time.

Let us begin by explaining Poisson random process for generating spike train. We

assume that underlying instantaneous firing rate is a constant r. Imagine that we are

given a long interval (0, T ) and we place a single spike in that interval at random.

Then we pick a sub-interval (t1, t2) of length ∆t = t2− t1. The probability that the

spike occurred during the sub-interval equals ∆t/T . Now let’s place k spikes in the

(0, T ) interval and find the probability that n of them fall in the (t1; t2) sub-interval.

The answer is given by the binomial formula:

P{n spikes during∆t} = k!

(k − n)!n!
pnqk−n (8.1)

where p = ∆t/T and q = 1 − p. If the mean firing rate (ratio r = k/T ) is constant

while k and T are increased, then it can be shown that as k → ∞, the probability

that n spike will be in an interval of length ∆t equals:

P{n spikes during∆t} = e−r∆t
(r∆t)n

n! (8.2)

This is the formula for the Poisson probability density function. Therefore by uni-

formly random placing of spikes in (0, T ), the inter-spike interval would be Poisson

distributed. Given the above proof, by the following algorithm, a Poisson spike train is

generated. The continuous interval (0, T ) is divided to small intervals of δt. For each

small interval with index i, a sequence of random numbers x[i], uniformly distributed
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(a) (b)

Figure 8.1: The Firing rate map R for two groups of neurons at time step t0 = 0 and
Gaussian with std σ = 3. (a) group of neurons with indexes [76 − 92] (b) group of
neurons with indexes [12− 32]

between 0 and 1 are generated. If x[i] < r, a spike is generated (X[i] = 1), otherwise

no spike (X[i] = 0). This process is performed for multiple neurons independently.

Hence, for generating Poisson spike train of Nv neurons for T small intervals, random

numbers x[i, j] where 0 < i < Nv and 0 < j < T , are generated. Then if x[i, j] < r,

a spike is generated, otherwise no spike.

According to [41], the cortical recordings contain sequential structures. Therefore

a sequential organization is assumed as the basic pattern to be inserted into the

Poisson process. The pattern embedding stage modifies the Poisson spike generation

in the following way. The algorithm first selects its target neurons by choosing np

groups with ns neurons among all Nv. Let’s call the selected groups as γ neurons.

Then a set of exponentially distributed random time steps between 0 and T (for each

np group of neurons separately), are generated. Let us define the generated times as

Γ time steps. The algorithm changes the firing rate of γ neurons at Γ time points,

such that they spike in a sequence. In other words, the generated numbers x would

not be simply compared with r but rather for Γ, they are compared with firing rate

map R.

The firing rate R is created in the following way. Since the observations in the

multi-cell recordings demonstrate that timing of spikes within the neuronal organi-

zations are not precise [42], the algorithm do not change the firing rate of neurons

at precisely the Γ times. It increases the rate of time steps before and after Γ with

Gaussian form centered at Γ times. Suppose we want to generate a spike train with

128 neurons and 500 time steps. We select 2 groups with 20 neurons (neurons with
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Figure 8.2: The generated data with 128 neurons and 500 time steps. Each dot is a
spike. The group of neurons with index 12− 32 and 76− 96 have a sequential spiking
pattern at some random time steps.

indexes [12− 32] and [76− 96]). Let’s imagine that randomly generated time steps in

Γ are {t0, t1, t3}. For the all time steps t in the interval (t0, t0+ τ), the firing rate is a

Gaussian with mean t0 and std σ. The rate of neurons in each group is shifted in time

in a way that they form a sequence. For example the neuron with index 12 in the first

group has R(12, t) = 1
σ
√
2π
e−

(t−t0)
2

2σ2 , the index 13 has R(13, t) = 1
σ
√
2π
e−

(t−(t0+1))2

2σ2 and

so on to the last neuron. The center of Gaussian is shifted 1 time step forward for

the next neuron in the sequence. The same story goes for the other group (76− 96).

The rate of all other neurons in the interval (t0, t0 + τ) remains as our constant r.

The figure 8.1 shows the R for our both groups of neurons separately with t0 = 0 ,

τ = 20 , σ = 3 and r = 0.01. For other times in the Γ, the same procedure takes

place. The σ parameter determines the jitter of spikes within sequences. We vary this

parameter in our experiments to measure robustness of the our algorithms against

jitter of spikes.

An important attribute of a realistic synthetic spike recording is that neurons

involved in spike patterns are not located near each other. During the recording

procedure from animals, when the electrodes are placed in the cortex, the label or

index of recorded neurons are arbitrary. Therefore, if a group of neurons were involved

in pattern like activity, their index would not necessarily be close to each other.

Having such property is critical for our synthetic datasets. We randomly permute
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Figure 8.3: The reordered version of generated data with 128 neurons and 500 time
steps.

the neurons in the generated data to simulate the situation in the actual multi-cell

recordings. In other words, the index of neurons in the data are randomly reordered.

The dataset that we generated for evaluation of algorithms has the following

parameters. The number of neurons Nv = 128 and T = 100000 time steps. The

instantaneous firing rate (r) of neurons or the probability of independent spike is

0.01. We have the same selected neurons as in the example for sequential spiking

(12 − 32 and 76 − 96). The σ of Gaussian is in most of experiments 3. Figure 8.2

shows the 500 time steps of generated spikes before reordering of neurons. Figure 8.3

shows the permuted version of Figure 8.2.

8.3 Experiments on Synthetic Data

We evaluate our proposed methods by extracting patterns of synthetic dataset. The

synthetic dataset contains sequential spiking patterns occurring at random times.

The main expected result from our proposed methods is that they find those times

and detect which neurons are involved in the pattern. Previous chapters explained

how the proposed models work. It is expected that methods roughly find the Γ time

steps and estimate the R map that we used to generate our spikes. It was discussed

that the detection phase of our unsupervised algorithms first determine the time steps

of high indication for a pattern, therefore these high indication time steps should be
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very close to Γ times. The probability map of all possible spikes around these high

indication should be a good estimate of R.

Measuring the accuracy of detected patterns is not straightforward. However, we

define a measure to quantify accuracy of our methods. The accuracy of detection of

patterns is defined as the distance between the obtained MAP s (or Pmaps) and the

firing rate map R. Defining the distance between the two maps is not also easy. It

should be considered that the window size ofMAP s could be bigger than R. In other

words, it is not possible to align these two maps so that spikes involved in patterns

coincide. To address these issues, the normalized cross-correlation of two matrices is

defined as the measure. What the cross-correlation do is sliding one map over the

other and computes the integration of their products for each position. When the

maps match, the value of operation is maximized. This is because when the patterns

of maps are aligned, they make a large contribution to the integral. The normalized

cross-correlation of two matrices F , T at point (u, v) is defined as:

ncc(u, v) =

∑
x,y(F (x, y)− F̄ )(T (x− u, y − u)− T̄ )

σFσT
(8.3)

where f̄ is the mean and σf is the standard deviation of matrix f. The maximum of

ncc is considered as the accuracy measure. In the following, we will discuss results of

the proposed methods on the artificial data and their corresponding accuracy.

8.3.1 Heuristic Search

In oder to perform heuristic search on synthetic dataset, we used the following param-

eters. In the 500 onset time steps of data (I = 500), the algorithm selects n = 3 spikes

as potential patterns (number of γ spikes). The threshold frequency of repetition of

these γ spikes is the expected number of spikes during T time steps. The expected

number of spikes in the dataset x is m×T where m is mean of data (m = mean(x(:)))

and T is number of times. In other words, if the frequency of repetition of γ spikes

were greater than m× T , then they would be considered as a potential distinct pat-

tern (please look at algorithm 1). The window size τ for the computing the Pmaps

was 20 time steps.

We tested the heuristic search on the synthetic dataset to detect the inserted pat-

terns. As it was explained in the chapter 3, the search algorithm returns its patterns
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Figure 8.4: Top row are the obtained Pmaps of heuristic search from synthetic dataset
with jitter σ = 1. The down row are the Pmaps from dataset with jitter σ = 3. The
order of neurons were rearranged to the pre-shuffling arrangement to visualize the
detected patterns.
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as probability maps (Pmap) which describe the probability of spikes in a pattern-like

activity. If the search algorithm detect the embedded patterns, the returned maps

would be very similar to the firing map R. In order to visually demonstrate execution

of the search on the data, Figure 8.4 shows the obtained maps from searching two

datasets. The first data is generated with standard deviation of Gaussian (jitter pa-

rameter) σ = 1 in which patterns are a sharp sequence. After searching for patterns,

the obtained Pmaps are shown in the top row of Figure 8.4. This visual depiction of

Pmaps shows that indeed algorithm successfully detected sequential patterns. The

other data were generated with σ = 3 so that the patterns have variations over time.

Detection of such transient regularities is much harder for our search algorithm. This

can be observed in the obtained maps in the second row of Figure 8.4 which show

the results from latter dataset. As explained in the chapter 3 the heuristic search is

extremely vulnerable to jitter of spikes. If neurons involved in pattern do not spike

at a precise timing, then the computed probabilities in Pmap would be very small

due to lack of detection of all occurrences of patterns. The obtained map should

be a good estimate of firing rate R, however, if the heuristic search miss time steps

then the Pmaps would be very weak estimate. To quantify the accuracy of a map

in Figure 8.4, we compute the cross-correlation between the firing rate R and the

selected Pmap after sorting by KL. The accuracy of the selected map from second

row of Figure 8.4 is 0.65. Obviously, with only one result, it is not possible to evaluate

the method. Therefore, we will measure the accuracy of method in section 8.3.3 for

different training sets with different parameters in order to have a better insight of

performance.

8.3.2 Unsupervised Learning

In order to apply convolutional RBM on the synthetic spike data, we have tried many

filter designs and many hyper parameters and the following parameters were selected

in the end. The input layer were designed to be a 128× 128 array and therefore, the

generated data were sliced into 80 mini-batches of 100 examples of 128 × 128 array

(100000/128 ≈ 80 × 100). There were two set of synthetic data generated, one for

training and another for validation. The CRBM had 20 filters of size 128 × 5. The

learning rate were initially 0.01 and gradually decreased during the iterations. The
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(a) (b)

Figure 8.5: TheMAP s obtained by convolutional RBM on the synthetic dataset. (a)
and (b) are the best selected maps.

momentum were initially 0.5 and were gradually increased to 0.9. The weight decay

parameter λ were 0.001. The maximum number of iterations were 2000 however the

learning usually stops when the free energy of validation and training set are diverging.

After the training phase of our methodology, the detection stage, generated MAP s

for all filters with window size parameter τ = 40. The maps were sorted by their KL

divergence from chance in order to select the best ones.

Figure 8.5a and 8.5b depict the best MAP s learned by CRBM from generated

data with σ = 3 and after sorting by KL in order to select the best two maps. The

order of neurons in the depicted MAP s were restored to the original arrangement

before randomization. In other words, we reorder neurons to the arrangement that

sequential organizations are visually detectable. The figures show that neurons with

index 12-32 and 76-96 have a sequential probability to spike as we expected. By

computing the normalized cross-correlation of these two maps and their corresponding

R, the accuracy of them are 0.86 and 0.81. This accuracy means that two maps have

more than 80 percent overlap with the actual firing rate and therefore our method was

able to detect structure of embedded patterns. Figure 8.6 depicts the learned filters

of the model. The area with red color in the filters have higher values which means

filter detect a pattern if it exist there and the areas with blue color indicate smaller

values and filter do not care about that region. In this visual inspection, it can be
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Table 8.1: Comparison of log-likelihood of two CRBM models on Synthetic dataset

Model LogZ LogZ ±σ Avg. Train Log-Prob Avg. Test Log-Prob
CRBM20x128x5 520.2 0.08 -188.32 -189.4
CRBM20x128x15 821.1 1.3 -245.02 -248.9

revealed that filters of the model are able to detect the sequential patterns that are

occurring in the data. Figure 8.7 has the rest of obtained maps of model that are

sorted by KL divergence. It can be observed from this sorting that the last maps are

less accurate in terms of estimating the actual pattern of data. They contain mostly

noisy activities in the data.

In order to demonstrate a quantitative measurement of the learned CRBM model

the log-likelihood of synthetic dataset under the model distribution is estimated. For

training the model two dataset is generated with the same parameters, training set

and validation set. The log-likelihood of training data and validation set are estimated

to demonstrate that the learn models have a good generalization. Table 8.1 reports

the estimated numbers. The average log-likelihood of CRBM with 20×128×5 filters

for the training set was -188.32 and validation set was -189.4 which shows a good

generalization because the numbers are very close. Moreover, the table compares

estimated numbers of CRBM with 20× 128× 5 filters and CRBM with 20× 128× 15

which has a bigger Nf and therefore bigger filters. The CRBM with 20 × 128 × 15

filters has -245.02 and -248.9 average log-likelihood. The numbers in comparison to

the first model, can be interpreted in this way that CRBM with smaller filters have

a better generalization. We speculate that the reason for this better generalization

is that training a model with smaller filters is easier since there are fewer learn-able

parameters. However, it is not good to design very small filters (e.g. Nf = 1 or

Nf = 2) since it would not be able to capture the patterns with jitter.

Moreover, the convolutional DAE is also evaluated by training on the synthetic

dataset. The architecture of the model and hyper parameters are selected the same as

CRBM. The training objective function is cross-entropy of reconstruction and input

since the data is binary. After training the model on the dataset and obtaining filters,

the detection phase createMAP s with τ = 40. Figure 8.8 shows theMAP s obtained
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Figure 8.6: The obtained filters by convolutional RBM from synthetic data with
σ = 3. The neurons of filters are rearranged to the pre-shuffling order to demonstrate
visually what the filters have captured.
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Figure 8.7: The obtained MAP s of convolutional RBM and sorted by KL diver-
gence from top left to bottom right. The Neurons of each map are reordered to the
pre-shuffling arrangement to demonstrate visually the obtained results.
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Figure 8.8: The obtained MAP s by convolutional denoising auto-encoder. The Neu-
rons of each map are reordered to the pre-shuffling arrangement to demonstrate vi-
sually the obtained results.
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Figure 8.9: The plot of performance against increasing instantaneous spike rate.

by CDAE to visualize the detected patterns. The normalized cross-correlation be-

tween the best selected map and the firing rate map R is 0.62. The 60 percent overlap

of two maps shows that it has captured the pattern however the accuracy is lower

than the CRBM model. We will compare the two methods more systematically in

the following section.

8.3.3 Evaluation of Algorithms against Data Manipulation

In this section we will discuss the evaluation of methods on different generated

datasets. The main purpose is the evaluation of our algorithms on generated datasets

with different parameters. The proposed algorithms should be able to detect patterns

of multi-cell recordings even in highly hard conditions. For example, if the records

are highly noisy or when the patterns are highly variable. Therefore, the parameters

of synthetic dataset are manipulated to measure the accuracy of each method against

the changes. In the following, we describe the effect of these changes.

Effect of Noise

One of the main difficulties in our task is the noise. The probability of instantaneous

spike (r) determines the amount of noisy activities. The proposed algorithms should

be able to deal with highly noisy activity of neurons. The instantaneous spike rate

of empirical multi-cell recordings is roughly 0.05. Therefore, it is important that our
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methods be able to recognize patterns of synthetic dataset with such spike rate. Figure

8.9 shows the result of the corresponding experiment which is the plot of accuracy

versus noise of data. The accuracy in the plot is the cross-correlation between the

best selected MAP of each method. We obtain the maps, then we sort them by KL

divergence to select the best one. Then we compute the normalized cross-correlation of

bestMAP with the R of all patterns. The maximum of normalized cross-correlations,

determines the accuracy of method. The accuracy is between 0 and 1 and indicates

percentage of match of two maps. It is shown in the figure that as we increase the

noise, the performance of all algorithms decrease. The accuracy of heuristic search

rapidly drops with more noise in the data. The performance drops since finding the

right combination that fall into the patterns becomes much more harder when the

activity of neurons become more uncorrelated. The CRBM is the best method and

demonstrates a robust accuracy against noise. The accuracy of CRBM for firing rate

of 0.05 is around 0.83 which is relatively acceptable.

We speculate that the reason for such performance is that CRBM is a stochastic

generative model. During the training, some group of hidden nodes learn to model

noise and other hidden nodes learn patterns in the data. In other words, during the

training, algorithm decreases the energy of observed noise in addition to observed

patterns in the data which maximize the log-likelihood. Hence, some of the filters

learn the noise of data and other filters become pattern detectors. When the MAP s

of filters are sorted by KL divergence, the noise detectors can be marginalized. This

ability of RBM for handling noise in the data even better than denoising auto-encoder

has been reported on background noise of MNIST as well [57]. The denoising auto-

encoder is more vulnerable to noise if our inserted noise to the model and the actual

noise of data are not the same.

Effect of Jitter

The next important factor in this application is jitter of individual spikes within

patterns. The parameter that determines jitter is the σ of Gaussian in the firing rate

R. We did a performance analysis on Jitter by increasing the σ. By this increment,

the Gaussian of firing rate becomes wider and therefore the neurons will spike with

less precise timing in the sequence. Increasing this parameter causes the sequential
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Figure 8.10: The plot of performance against increasing jitter of spikes.

activities, spread over time and correlations between spikes become weaker. Therefore

it is much harder to detect the sequences over time. Figure 8.10 shows the performance

of all methods against jitter. The plot demonstrates that heuristic search dramatically

lose its performance as we expected to happen. The reason is that heuristic search

looks for precise occurrence of a combination of spikes over time. Increase in the jitter

means that probability of precise occurrence of that combination becomes very low

and the obtained Pmap would be a bad estimate of R.

The CRBM method demonstrates the best performance against jitter over CDAE.

We again surmise that this superior performance is because CRBM is a generative

probabilistic model. As we train it on data, we are maximizing the likelihood of

all observed jitters of spikes in the patterns, while decreasing the likelihood of all

possible unobserved jitters. This gives a representation power to the model and allow

various hidden nodes learn the jitters. In other words, the model learns the probable

variations of its patterns. Therefore, the learned filters of CRBM can detect patterns

with variations over their occurrences.

Effect of Number of Neurons

An important aspect of our task is scalability of proposed algorithms. As the number

of recorded neurons in multi-cell recordings increases, the problem of pattern detection

becomes harder. In other words, increase in the number of recorded neurons and



69

Figure 8.11: The plot of performance against increasing ratio of number of pattern
neurons over total number of neurons.

consequently increase in the possible number of neurons involved in the patterns,

makes the recognition problem much harder. We evaluate the ability of our proposed

algorithms against this challenge. Figure 8.11 depicts the performance of algorithms

against increase in ratio of ns

Nv
where Nv is total number of neurons and ns is number of

neurons in the selected groups for sequential activity. In other words, the dimension

of patterns that are occurring over time is increasing. In this way, the filter size

of unsupervised learning also need to be increased which mean more parameters to

be learned. Therefore, training the algorithms would be harder as well. The Nv is

multiplied by 2 and ns by 2.2 to increase the ratio.

Figure 8.11 demonstrate that performance of algorithm drops by this increase.

However the CRBM model shows a relatively more stable performance than other

two methods. The reason of drop for heuristic method is obvious. If there are more

neurons, there would be more possible correlated spikes in the data. Hence, the

likelihood of randomly picking the spikes of patterns becomes lower. We speculate

the reason of the drop for unsupervised learning algorithms is bad design. The data

with larger patterns and input size need more careful choose of filter and hyper

parameters. For every data, different designs should be tested and compared by a

quantitative analysis such as the analysis of estimating log-likelihood to select the

best matching filter design.
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8.4 Empirical Multi-cell Recordings

The experimental multi-cell recordings are provided by [41]. The data contains records

of spikes of 105 neurons in the auditory cortex of rats. The entire dataset contains 40

minutes record of spikes. The sampling time resolution is 3.2 ms which means that

recorder device in the brain captures the spikes every 3.2 ms. The rats were presented

by multiple auditory stimulus from natural sounds to tones with different frequencies.

The external inputs were exposed to animals every 2 seconds for a duration of 500

ms. The reason for these stimulus is to capture the patterns of activity of neurons

when animal is exposed to external input. The data is first pre-processed to create

stimulus-driven dataset and spontaneous-activities data and then the CRBM model

is applied to discover patterns in these two datasets.

8.4.1 Preprocessing

In the preprocessing stage, the onset 100 ms activity of neurons in response to stimuli

are concatenated to form the stimulus-driven dataset. In other words, the onset 100

ms activities at the beginning of presence of stimuluses every 2 second, are taken

out. The spontaneous activity dataset is the spiking activity of neurons without any

stimulus. Hence, the last 100 ms activity of neurons before next stimuli, are taken

out. The external input is only present for 500 ms and 2 sec later, next stimuli is

present, therefore the 500 ms of activities before next one could be considered as

spontaneous activity. The spontaneous dataset contains record of 105 neurons for

186170 ms and stimulus-locked dataset contains 114208 ms.

8.4.2 Training CRBM

The convolutional RBM is selected for discovering the patterns of empirical datasets

because this method had the best performance on the synthetic dataset. The following

parameters are selected for this experiment. The model has 20 filters of 105× 5. The

hyper parameters are the same as CRBM for synthetic dataset. Figure 8.12 shows

8 obtained filters after training of model on stimulus-driven dataset. After training

the model, the corresponding MAP of each filter with τ = 40 are computed. The

obtained maps are then sorted by KL divergence from chance (mean of data) and
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16 MAP are selected as the best ones. In order to reveal the possible sequences

in the obtained maps, the order of neurons are rearranged by the mean spike time.

The mean spike time is computed for each neuron at the map by averaging times

multiplied by probability of spike. In other words, for each neuron n, all time steps t

in interval (0, 40) are multiplied by MAP (n, t) to form the array ϑ or simply (ϑ(t) =

t × MAP (n, t)). Then the mean of this array is calculated for mean spike time

MST = 1
40

∑
t ϑ(t). All neurons are then sorted by their MST in the obtained maps.

The comparison of the MAP s from spontaneous dataset and stimulus dataset can

show the common structure of two datasets.

8.4.3 Discussion

We compare the selected MAP s from both datasets by comparing the normalized

cross-correlation (NCC) between the maps. After reordering the neurons by mean

spike time, the sequential pattern in the maps are expected to be detectable. Hence,

the max of NCC between each pair of maps from the datasets is a good measure of

similarity of sequential activities. The histogram of obtained similarity between the

maps is in Figure 8.13. The figure shows that majority of maps have over 70 percent

correlation which shows that they share common sequences. In other words, since

overwhelming majority of maps have a high percentage of matching, there are common

patterns that exist between stimulus-driven activities and spontaneous spikes.

8.5 Summary

In this chapter, the proposed spike pattern detection methods were evaluated on

artificial datasets. The noise, jitter and number neurons of dataset were manipulated

to test the performance of algorithms. The CRBMmodel demonstrate the most stable

accuracy against changes in the parameters. Moreover, the CRBMwere applied on the

empirical multi-cell recording of rats. We showed that there are common structures

in spontaneous and stimuli driven dataset.
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Figure 8.12: The obtained filter by CRBM on Multi-cell recording of stimulus-driven
activities dataset. The order of neurons are NOT rearranged by means spike time.

Figure 8.13: The histogram of Normalized Cross-Correlation between the selected
MAP s from spontaneous dataset and stimulus-locked dataset. The NCC were com-
puted between each pair of selected MAP s.



Chapter 9

Conclusion and Future Studies

9.1 Conclusion

This thesis presented a search algorithm that was able to detect patterns of temporal

binary data. The method was very simple and it was experimentally shown that it

is able to detect spatiotemporal of patterns with low variation over time. In other

words, if patterns occur with a fixed form over time, this algorithm is able to detect

it. Moreover, we presented two unsupervised learning approaches for detection of

temporal patterns. Initially, we evaluated our methods on image dataset and it was

demonstrated that sparsity regularization help learning distinct filters. Furthermore,

the log-likelihood estimation of convolutional RBM revealed that this method is able

to learn a good generative model with small number of parameters.

The proposed unsupervised methods were successful in detection of patterns from

artificial temporal data even with high variability of structures. We showed that

convolutional RBM has a superior performance over other unsupervised approach in

terms of accuracy of detection. Moreover, it was experimentally shown that the con-

volutional RBM exhibit a relatively better performance against extreme variability of

patterns in addition to extreme noise. All in all, the good accuracy of CRBM, encour-

aged us to use this model for empirical brain records. By applying this method on

activities evoked by stimulus to the animal and also activities without being provoked

by any external source, it was shown that there are common structural patterns in

these activities. The method was able to detect the sequential patterns of empirical

multi-cell recordings.

9.2 Future Studies

There are many open challenges for this task. So far we have tested our algorithms

on limited datasets and we have shown a basic demonstration for empirical multi-cell

73
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recordings. The main future study will be more experimenst on various datasets.

Datasets of recordings from different brain regions and with different experimental

setups. It is crucial to demonstrate that the proposed methods actually work in

practice for discovering spike patterns. In addition, another important issue is that

after training the unsupervised methods on multi-cell recordings, it is not easy to

interpret the learned filters and the obtained maps. Further researches are required

for devising new ways of evaluating obtained filters in order to discover the structures.

Moreover, It is reasonable to assume existence of hierarchal structures in patterns

of the multi-cell recordings. Hence, we would need further researches about using

unsupervised hierarchical representation learning for detecting patterns that have

hierarchical structure. In other words, more researches should be done in the area

of deep unsupervised learning methods to discover hierarchical patterns of multi-cell

recordings.



Appendix A

The Free Energy of Convolutional Restricted Boltzmann

Machine

A.1 Preliminary

Before proving the formula of free energy of CRBM, we need to prove the following

statement: ∑
x

∏
j

f(xj) =
∏
j

∑
xj

f(xj) (A.1)

where x is a binary valued n dimensional array and f is a function. The left hand

side sum is over all possible values of array x. We start from the left side by setting

only the first index x0 to its possible values:∑
x,x0=0

(
f(0)

n∏
j=1

f(xj)

)
+
∑

x,x0=1

(
f(1)

n∏
j=1

f(xj)

)
(A.2)

=
∑
x

(f(0) + f(1))
n∏

j=1

f(xj)

If we continue with this process for all other indexes of x, we will get:

(f(0) + f(1)) (f(0) + f(1)) ... (f(0) + f(1)) =
∏
j

∑
xj

f(xj) (A.3)

Therefore, we reached to the right hand side and the statement is proved. A special

case of function could be f(t) = et. Then the equation A.1 will become:∑
x

∏
j

f(xj) =
∏
j

(1 + exj) (A.4)

A.2 The Free Energy

Let’s obtain the equation of the free energy of CRBM. By definition we know that:

F (v) = − log
∑
h

e−E(v,h) (A.5)
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and the energy is:

E(v, h) = −
K∑
k=1

hk • (W̃ k ∗ v)−
K∑
k=1

bk
∑
i,j

hki,j − c
∑
i,j

vi,j (A.6)

Therefore F (v) is:

F (v) = − log
∑
h

exp

(
K∑
k=1

hk • (W̃ k ∗ v) +
K∑
k=1

bk
∑
i,j

hki,j + c
∑
i,j

vi,j

)
(A.7)

we can take out the c
∑

i,j vi,j which is not dependent on the h and use the definition

of operation •:

F (v) = −c
∑
i,j

vi,j − log
∑
h

exp

(
K∑
k=1

∑
ij

(
(W̃ k ∗ v)ij + bk

)
hkij

)
(A.8)

= −c
∑
i,j

vi,j − log
∑
h

K∏
k=1

exp

(∑
ij

(
(W̃ k ∗ v)ij + bk

)
hkij

)

Using the proved statement A.1 and the special case A.4, we can get:

F (v) = −c
∑
i,j

vi,j − log
K∏
k=1

(
1 + exp

(∑
ij

(
(W̃ k ∗ v)ij + bk

)))
(A.9)

By applying the log, we will get the final equation:

F (v) = −c
∑
i,j

vi,j −
K∑
k=1

log

(
1 + exp

(∑
ij

(
(W̃ k ∗ v)ij + bk

)))
(A.10)



Appendix B

The Annealed Importance Sampling for CRBM

B.1 Intermediate Distribution

In this section, we show how the equation of intermediate distribution equation are

derived for the AIS algorithm of CRBM. The definition of intermediate distribution

is :

p∗l (v) =
∑
hA,hB

e(1−βl)E(v,hA)+βlE(v,hB) (B.1)

where 0 < β0 < β1 < ... < βl < .. < βL = 1. The energy function of A is:

EA(v, h) =
K∑
k=1

bk
∑
i,j

hki,j + cA
∑
i,j

vi,j (B.2)

and energy of B is:

EB(v, h) =
K∑
k=1

hk • (W̃ k ∗ v) +
K∑
k=1

bk
∑
i,j

hki,j + cB
∑
i,j

vi,j (B.3)

We can take out the terms that are not dependent on h:

p∗l (v) = exp(cA
∑
i,j

vi,j)
∑
hA

exp

(
(1− βl)

K∑
k=1

bA,k

∑
i,j

hA,k
i,j

)
(B.4)

×exp(cB
∑
i,j

vi,j)
∑
hB

exp

(
βl

K∑
k=1

bA,k

∑
i,j

hB,k
i,j

)
Because hidden vectors are binary, by using the same technique in the section A.1 we

can get:

p∗l (v) = exp(cA
∑
i,j

vi,j)
∏
k

1 + exp ((1− βl)bA,k) (B.5)

×exp(cB
∑
i,j

vi,j)
∏
k

1 + exp(βlbB,k)
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B.2 Partition Function

In this section, we show the how the partition function of convolutional RBM with

zero weight matrix can be computed. By definition we have:

Z =
∑
v

∑
h

exp

(
−

K∑
k=1

bk
∑
i,j

hki,j − c
∑
i,j

vi,j

)
(B.6)

by using the same technique in the section A.1, we marginalize out h:

Z =
∏
k

(1 + eN
2
hbk)

∑
v

exp(c
∑
i,j

vi,j) (B.7)

where Nh is the number of hidden nodes in each hidden group. We marginalize v to

get the partition function:

Z =

(∏
k

(1 + eN
2
hbk)

)
× (1 + ec)N

2
v (B.8)



Appendix C

The Energy-based Model for Convolutional Denoising

Auto-encoder

In this section, we explain how the energy based model of convolutional auto-encoder

can be obtained. First we bring the proof for denoising auto-encoder from [68] then we

expand it to convolutional denoising aut-encoder. The following necessary conditions

should be hold for a basic denoising auto-encoder, in order to be proven that training

criterion is equivalent to the score matching. First, the real valued input x should

be corrupted by Gaussian additive noise (ẋ = x + ε, ε ∼ N (0, σ2I)). Second, the

objective should be mean squared error of input and reconstruction of corrupted

input. Therefore the DAE should minimize the following objective function:

JDAE = Eq(x,ẋ)

[
1

2
‖W T sigmoid(Wẋ+ b) + c− x‖2

]
(C.1)

where the q(x, ẋ) can be found in table C.1. For convolutional denoising auto-encoder,

the objective function is:

JCDAE = Eq(x,ẋ)

1
2

wwwww∑
k

W̃ k ∗ sigmoid(W k ∗ ẋ+ bk) + c− x

wwwww
2
 (C.2)

In [68], it is considered that matching the score of Parzen density estimate qσ(x̃)

which is based on our corrupted example of the training set (Please see Table C.1), is

equivalent to score matching of our dataset which has the objective in equation 6.19.

Therefore the regular score matching objective JSM is equivalent to score matching

of Parzen density estimator JESM :

JSM ≡ JESM = Eqσ(ẋ)

[
1

2

wwwwψ(ẋ; θ)− ∂ log qσ(ẋ)

∂ẋ

wwww2
]

(C.3)

The JESM itself is equivalent to denoising score matching objective [68]:

JDSM = Eqσ(x,ẋ)

[
1

2

wwwwψ(ẋ; θ)− ∂ log qσ(ẋ|x)
∂ẋ

wwww2
]

(C.4)
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Table C.1: The notations and symbols.

q(x) Unknown true pdf. x ∈ Rd

Dn = {x(1), ..., x(n)} Training Set: i.i.d. sample from q

q0(x) =
1
n

∑n
i=1 δ(‖x− x(i)‖) Empirical pdf associated with Dn

qσ(ẋ|x) = 1
(2π)d/2σd e

− 1
2σ2 ‖ẋ−x‖2 noise model

qσ(ẋ, x) = qσ(ẋ|x)q0(x) Joint pdf

qσ(ẋ) =
1
n

n∑
i=1

qσ(ẋ|x(i)) Parzen density estimate based on Dn

softplus(x) = log(1 + ex) softplus function
softplus′(x) = sigmoid(x) = 1

1+e−x derivative of softplus

where:
∂ log qσ(ẋ|x)

∂ẋ
=

1

σ2
(x− ẋ) (C.5)

Given the above equivalences, we prove that training convolutional denoising auto-

encoder with objective JDAE is equivalent to score matching of following energy-based

model:

p(x; θ) =
1

Z(θ)
exp(−E(x; θ)), (C.6)

E(x;W, b, c) = − 1

σ2
(
∑
ij

(cx+
∑
k

softplus(W k ∗ x+ bk))ij −
1

2
‖x‖2)

The score of this model is:

ψ(x; θ) =
∂ log p(x)

∂x
= −∂E

∂x
(C.7)

By taking the derivative:

−∂E
∂xu,v

=
1

σ2

(
(c+

∑
k

softplus′(W k ∗ x+ bk)
∂(W k ∗ x+ bk)

∂x
− x)u,v

)
(C.8)

=
1

σ2

(
(c+

∑
k

W̃ k ∗ sigmoid(W k ∗ x+ bk)− x)u,v

)
Which can be rewritten as:

ψ(x; θ) =
−∂E
∂x

=
1

σ2

(
(c+

∑
k

W̃ k ∗ sigmoid(W k ∗ x+ bk)− x)

)
(C.9)
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Substituting this score in equation C.4:

JDSM = Eqσ(x,ẋ)

[
1

2

wwwwψ(ẋ; θ)− ∂ log qσ(ẋ|x)
∂ẋ

wwww2
]

(C.10)

= Eqσ(x,ẋ)

1
2

wwwww 1

σ2

(
(c+

∑
k

W̃ k ∗ sigmoid(W kẋ+ bk)− x)

)
− 1

σ2
(x− ẋ)

wwwww
2


= Eqσ(x,ẋ)

 1

2σ4

wwwww∑
k

W̃ k ∗ sigmoid(W kẋ+ bk) + c− x

wwwww
2
 =

1

2σ4
JCDAE

Thus we shown that training convolutional denoising auto-encoder with objective

JCDAE is equivalent to score matching objective JDSM . Putting all together:

JSM ≡ JESM ≡ JDSM ≡ JCDAE (C.11)
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[41] Artur Luczak, Peter Barthó, and Kenneth D Harris. Spontaneous events out-
line the realm of possible sensory responses in neocortical populations. Neuron,
62(3):413–425, 2009.

[42] Artur Luczak, Peter Bartho, and Kenneth D Harris. Gating of sensory input
by spontaneous cortical activity. The Journal of Neuroscience, 33(4):1684–1695,
2013.
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